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Resumo

O objetivo do projeto de doutorado foi explorar as aplicações de técnicas de Machine Learn-
ing em análise de dados e desenvolver uma nova metodologia para abordar um problema físico
específico: a reconstrução de bárions multi-estranhos. Este trabalho foi desenvolvido em colab-
oração com o Experimento ALICE (A Large Ion Collider Experiment). O ALICE tem como
objetivo estudar matéria fortemente interagente em densidades de energia tão altas que um es-
tado da matéria chamado Plasma de Quarks e Glúons (QGP) se forma. Isso é alcançado usando
um conjunto de detectores projetados e otimizados para medir colisões ultra-relativísticas de íons
pesados no LHC (Large Hadron Collider) localizado no CERN. O aumento da estranheza é um
dos possíveis observáveis para investigar o QGP, portanto, precisamos de medições precisas da
produção de partículas estranhas. Detectar essas partículas envolve a reconstrução de seus vér-
tices de decaimento e a determinação da massa invariante de várias combinações de trajetórias.
No entanto, a presença de inúmeras combinações de trajetórias que não estão associadas ao pro-
cesso de decaimento introduz um fundo significativo nos espectros de massa invariante. Para lidar
com esse desafio, cortes de seleção com base em variáveis topológicas são comumente usados para
suprimir o fundo combinatório. Uma vez que esses parâmetros topológicos frequentemente exibem
correlações, há um potencial considerável para melhorias por meio do uso de técnicas de análise
multivariacional, como o Machine Learning. Neste trabalho, a implementação de métodos de
Machine Learning resultou em maior eficiência e significância, aumentando assim a precisão dos
espectros de momento transversal das partículas estudadas. O Machine Learning também permi-
tiu o acesso a um ponto experimental sem precedentes na região de baixo momento transverso. A
extensão do limite inferior melhorou o procedimento de extrapolação, resultando em uma maior
precisão na produção global de partículas.

Palavras-chave: Aprendizado de máquina, Partículas estranhas (Física nuclear), Grande Col-
isor de Hádrons (França e Suiça), Experimento ALICE, Plasma de quarks e glúons



Abstract

The objective of the PhD project was to explore the applications of Machine Learning techniques
in data analysis and develop a novel methodology to address a specific Physics problem: The
reconstruction of multi-strange baryons. This work was developed within the A Large Ion Collider
Experiment (ALICE) collaboration. ALICE aims to study strongly interacting matter in such high
energy densities that a state of matter called Quark-Gluon Plasma (QGP) forms. It accomplishes
this using a set of detectors designed and optimized to measure ultra-relativistic collisions of
heavy nuclei at the Large Hadron Collider (LHC) located at CERN. Strangeness enhancement
is one possible observable to probe the QGP, therefore we need precise measurement for the
production of strange particles. Detecting these particles involves reconstructing their secondary
decay vertices and determining the invariant mass of various track combinations. However, the
presence of numerous combinations tracks that are not associated with the decay process introduces
a significant background in the invariant mass spectra. To address this challenge, selection cuts
based on topological variables are commonly employed to suppress the combinatorial background.
Given that these topological parameters often exhibit correlations, there is a considerable potential
for improvement through the use of multivariate analysis techniques, such as Machine Learning. In
this work the implementation of Machine Learning methods has resulted in enhanced efficiency and
significance, therefore increasing the precision of the transverse momentum spectra of the studied
particles. Machine Learning also allowed the access to an unprecedented experimental point in the
low transverse momentum region. The extension of the inferior limit improved the extrapolation
procedure, leading to improved precision of the overall particle production yield.

Keywords: Machine Learning, Strangeness (Nuclear physics), Large Hadron Collider (France
and Switzerland), ALICE experiment, Quark-Gluon Plasma
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Chapter 1

A brief introduction to Machine
Learning

Since it is a thesis in physics this chapter is meant to introduce core concepts and terminology of
the field of Machine Learning that were used in this work. It starts by presenting two definitions of
Machine Learning and a brief discussion on the fact that even though the term “Machine Learning”
is showing up very often in almost every field of knowledge these days, it is just a problem-solving
paradigm that is already used in physics, quite often, perhaps without even knowing that it
satisfies the definitions. It is also introduced a class of problems that can be solved with Machine
Learning, called classification problem, and the two types of Machine Learning algorithms used in
the developed methodology: Artificial Neural Network and Boosted Decision Tree.

1.1 Definition of Machine Learning
Definition 1.1.1. “Machine Learning is to give a computer the ability to perform a task without
being explicitly programmed to do it.”

The “Learning” part of the concept is due to the fact that usually the computer’s ability to
perform a task, in this way, is obtained through an iterative process called training and that
resembles the idea of the human ability to learn by conditioning. Figure 1.1 illustrates the
difference in paradigm between conventional computing and Machine Learning [1].
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Figure 1.1: Flowchart illustrating the difference in paradigm between conventional computing and
Machine Learning.

In conventional computing the rules are the necessary code that one writes to execute a task
and get an answer. In that scenario the computer was explicitly programmed to do so, therefore
it does not satisfy the definition of Machine Learning. The data is a possible input of the code in
conventional computing.

In Machine Learning the data is a necessary input to a model that can learn rules and with
those rules execute a task. This is what the phrase ’...without being explicitly programmed...’
means in the definition. The answer is a possible input to the model, when it is present we call it
“Supervised Learning” and when it is not we call it “Unsupervised Learning”.

Examples of tasks that can be performed using supervised learning are classification and regres-
sion. Examples of tasks that can be performed using unsupervised learning are pattern recognition,
clustering and data generation.

A more formal definition of Machine Learning can be enunciated as [2]

Definition 1.1.2. “Given a task T with an experience E, over a data set, and a performance
metric for the task P(T), an algorithm is Machine Learning if P(T) increases with E.”

Δ𝑃 (𝑇 ) > 0 ⇔ Δ𝐸 > 0. (1.1.1)

One could reasonably argue that equation 1.1.1 is also a good definition of the word "learn",
and given the context of computing and algorithms, the expression "Machine Learning" becomes
not just a fancy name for a field of study but also a literal semantic statement.
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1.2 Linear regression
Linear regression is often used as an introductory example in Machine Learning [3]. The goal

of linear regression is to find the line that best describes a data set. Technically, it represents a
line when the data is in a two-dimensional Cartesian plane (R2). In a more general case of R𝑛,
with an euclidean metric, the linear regression finds the best hyper-plane that describes the data
set.

Consider a data set with size 𝑆 in which each data can be written as a vector �⃗�𝑖 = (𝑥𝑖1, ..., 𝑥𝑖𝑛),
where each entry is a real number, called feature, and 𝑌𝑖 is a known answer for each �⃗�𝑖 with
1 ≤ 𝑖 ≤ 𝑆. The linear regression problem use the hypothesis that 𝑌 is a linear function of �⃗�. Let

𝑃𝑖 = 𝑤0 + �⃗� · �⃗�𝑖, (1.2.1)

be a linear prediction of each entry in the data set. To solve the linear regression problem is to
determine the parameters 𝑤0 and �⃗� = (𝑤1, ..., 𝑤𝑛), called weights, to best describe the data set,
that is make 𝑃𝑖 as close as possible of 𝑌𝑖 for every data.

It is common in the literature to redefine �⃗� = (1, 𝑥𝑖1, ..., 𝑥𝑖𝑛) and �⃗� = (𝑤0, 𝑤1, ..., 𝑤𝑛) to
simplify expression for 𝑃 , that becomes just

𝑃𝑖 = �⃗� · �⃗�𝑖, (1.2.2)

incorporating the 𝑤0 weight, also called bias term, in the dot product.
The solution to this problem involves defining a cost function, the classic choice is the mean

squared error between 𝑌𝑖 and 𝑃𝑖, given by

𝐽 ≡ 1
𝑆

𝑆∑︁
𝑖=1

(𝑌𝑖 − 𝑃𝑖)2 = 1
𝑆

𝑆∑︁
𝑖=1

(︁
𝑌𝑖 − �⃗� · �⃗�𝑖

)︁2
. (1.2.3)

And them minimizing J with respect to �⃗� . Since we are dealing with a linear hypothesis, there is an
analytical solution for the optimization, that is going to be presented for the sake of completeness.

It is convenient to define a data matrix Φ ∈ R𝑆×𝑁 , where 𝑁 = 𝑛 + 1. Such matrix has in
each of its lines one of the S data vectors �⃗�𝑖 with 𝑛 features plus the unit in the redefinition for
equation 1.2.2 . Then we can say that for the entire data set

𝑃 = Φ�⃗� , (1.2.4)

where 𝑃 ∈ R𝑆 is the vector with all predictions that we want to approach �⃗� ∈ R𝑆, the vector with
all answers. Let �⃗� = �⃗� − 𝑃 be the error vector. With that, equation 1.2.3 becomes

𝐽 = 1
𝑆

|�⃗�|2, (1.2.5)

therefore
min

�⃗�
𝐽 = min

�⃗�
|�⃗�|2. (1.2.6)
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To optimize the the error with respect to the weights we do

𝑑

𝑑�⃗�
|�⃗�|2= 𝑑

𝑑�⃗�
|�⃗� − Φ�⃗� |2= 0 (1.2.7)

and find that
�⃗� = (ΦΦ𝑇 )−1Φ𝑇 �⃗� . (1.2.8)

Here we conclude that the solution of the linear regression requires the inverse matrix of ΦΦ𝑇 to
exist.

Note that the task of finding the best hyper-plane to describe the data reduces to an opti-
mization problem. And that is the core of the Machine Learning paradigm. For example one can
write a code that performs a gradient descendent to minimize the cost-function, therefore finding
an optimal �⃗� and consequently the best hyper-pane. This logic satisfies definition 1.1.1 of Ma-
chine Learning. Even tough the discussion started with a linear hypothesis the paradigm does not
change if it was any other type of function. That means, every time we execute a fitting procedure
in physics, we are using Machine Learning.

1.3 Classification problem
The reconstruction of strange particles is a far more complicated problem to be addressed and

solved with a linear hypothesis. Nevertheless the problem we want to solve falls into the category of
classification problem, that is one possible application of supervised learning techniques. Just like
in the linear regression, the data set is composed of feature vectors, however the answer associated
to each data is a discrete information, called class.

When there are only two possible classes we call it a binary-classification problem. The model
to solve such a problem receives features as input and its output is actually not discrete, it is
constructed to be interpreted as the probability 𝑃 of the input belonging to one of the classes,
with 𝐶 = 1 being a possible known answer. The probability of the input belonging to the other
class, that has 𝐶 = 0, is simply 1−𝑃 . A Machine Learning algorithm to solve this type of problem
can be structured as follows:

1. Parameterize 𝑃 .

2. Select a data sample containing features and their respective known classes 𝐶, called training
set.

3. Define a cost function 𝐽(𝑃, 𝐶).

4. Iterate over the training set to minimize 𝐽 .

In this work two different types of Machine Learning algorithms were used, that are essentially,
two different ways of parameterize 𝑃 .
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1.3.1 Artificial Neural Networks
The neuron is the basic unit of a neural network, such a structure can receive any number of

inputs and has one number as its output. For the purpose of this work it is enough to define the
perceptron [4]. Which is a type of neuron that performs the scalar product of the input with its
own parameters, called synaptic weights and then passes this number through a, usually, non-linear
function, called activation function.

Neural networks consist of interconnected neurons, forming complex structures like a Multi-
Layer Perceptron (MLP), a particular type of architecture where all the neurons in a layer are
fully connected with the ones of the next. Figure 1.2 depicts the described structure, with three
input neurons, one inner layer with four neurons and one output neuron.

Figure 1.2: Schematic of a Neural Network MLP.

𝑃 (𝑤) is determined by a sequence of scalar products between neuron inputs and synaptic
weights. In the example of figure 1.2 we have for each of the four inner neurons

𝑛𝑖 = 𝑓𝑖

⎛⎝ 3∑︁
𝑗=1

𝑤𝑖𝑗𝑥𝑗

⎞⎠ , (1.3.1)

therefore the output is given by

𝑃 = 𝑓𝑃

(︃ 4∑︁
𝑖=1

𝑤𝑃 𝑖𝑛𝑖

)︃
= 𝑓𝑃

⎛⎝ 4∑︁
𝑖=1

𝑤𝑃 𝑖𝑓𝑖

⎛⎝ 3∑︁
𝑗=1

𝑤𝑖𝑗𝑥𝑗

⎞⎠⎞⎠ (1.3.2)

and the more inner layers we have, more complicated it gets.
The optimization of neural networks is typically numerical and often involves methods like

gradient descent and back-propagation to iteratively adjust weights and minimize the cost function.
This approach allows us to address classification problems that go beyond linear relationships and
enables the development of more intricate models for the reconstruction of strange particles.
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1.3.2 Boosted Decision Trees
Boosted Decision Trees are a bit different, since they don’t have parameters like the synap-

tic weights. They only have what we call hyper-parameters. For the neural networks, hyper-
parameters are the fixed choices of the model, such as the number of layers, and the numbers
of neurons in each layer. Boosted Decision Trees have fixed hyper-parameters, like the number
of estimators and their depth. However the training process of such algorithm minimizes 𝐽 by
modifying the contents inside the hyper-parameters.

Decision trees are simple models, they work by recursively splitting the data set into subsets
based on the features, eventually forming a tree-like structure with decision rules at each node.
Boosting involves training a series of decision trees sequentially, where each tree corrects the errors
made by the previous ones. It is an ensemble learning method that combines the predictions of
multiple decision trees to create a robust and accurate model.

Each tree is, essentially, a sequences of "yes or no, questions" about the features, to define
a score. The depth gives how many questions are asked by each estimator, and the number of
estimators are how many sequences of questions are performed. In the end the scores are combined
as the model’s prediction. Figure 1.3 illustrates the idea. In the depicted example there are 𝑛
estimators of depth 2.

Figure 1.3: Schematic of a BDT.
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Chapter 2

Heavy-ion physics

In this chapter an introduction to the some aspects of the standard model of particle physics
is presented emphasizing the strong interaction between quarks and gluons and giving a highlight
to the strange quark. The discussion them moves towards the main object of study of the field of
heavy-ion physics, a state of matter called quark-gluon plasma (QGP), and them is introduced the
observable used to probe such state regarding the highlighted strange quark that motivates this
work of improving the measurement of strange particles.

2.1 Elements of the standard model for heavy-ion physics
Since 1978 the standard model of particles physics is one of the most well succeeded scientific

theories in human history, in the sense of prediction capabilities and precision [5]. Almost 20% of
every Nobel prize in physics ever awarded was somehow related with this model that describes the
fundamental structures of matter and its interactions.

The particles of the standard model, presented in figure 2.1 , consists of fermions and bosons
and for each of them there is also a respective anti-particle that has the same mass as the corre-
sponding particle but carries the opposite electric charge and quantum numbers. The fermions are
particles of spin 1

2 and the building blocks of matter. They are divided into three generations of
quark and leptons. For the quarks each generation has two types, that we call flavors, a positive
(+2

3𝑒) and negative (−1
3𝑒) electrically charged, and the flavors gets heavier, and therefore unstable,

with the generations. Only the up and down quarks (1𝑠𝑡 generation) are stable. The strange quark
is the lightest (𝑚𝑠=96 MeV/𝑐2) unstable flavor and the top quark is the heaviest (𝑚𝑡=173 GeV/𝑐2)
weighting about the same as an entire caffeine molecule.

For the leptons each generation has one electrically charged (-1𝑒) flavor, that like the quarks gets
heavier and unstable across generations, and one respective flavor of neutrino that are electrically
neutral. Neutrinos behave differently with respect of mass and stability, since they can oscillate
they must have at least a tiny mass but it’s not yet well understood why or how they acquire mass
[6, 7, 8].

The bosons are particles of integer spin and the mediators of the interactions. Three fundamen-
tal interactions are described by the standard model. The gluon mediates the strong interaction,
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the photon mediates the electromagnetic interaction and the W and Z bosons are the mediators
of the weak interaction. All of them have spin 1 and because of that are also called vector bosons.
And finally the last discovered piece of the model is the Higgs boson with spin 0 and because of
that also called scalar boson. The interaction with such particle results in the generation of mass
of every elementary particle through the Higgs mechanism of spontaneous symmetry breaking [9].
I’m not going to delve into the mathematical aspect of the theory of the standard model in this
work, however its worth mentioning that it resides in the regime of Quantum Field Theory [10],
that symmetry is one very fundamental aspect of it, and also bounded by theorem [11] with one
very fundamental aspect of nature that are conservation laws.

Figure 2.1: The Standard Model of Particle Physics. Figure from [12].

2.1.1 Strong interaction
In this work the focus is set into the strong interaction that happens only between quarks

and gluons. Like the well known electromagnetism that requires a particle to have an electric
charge to interact, the strong interaction have its own charge that appears in three types and three
anti-types. The total charge of a system is neutral if there are present one charge of each type,
one charge of each anti-type or a charge of type and its respective anti-type, this logical way of
summing zero is called algebra and it behaves like this for the strong interaction because of the
symmetry group of the theory 𝑆𝑈(3) [13] that implies in the conservation law of such charges. We
are already familiar with a concept that satisfies the described algebra: The RGB color system
where R+G+B = white (0). And that is why the charge of the strong interaction is called color
charge, and the theory that describes it is called Quantum Chromodynamics (QCD).
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QCD has two fundamental properties to be discussed: color confinement and asymptotic free-
dom. However before entering the discussion I believe to be important to briefly define some
terminology:

• "parton": is either a quark or gluon.

• "hadron": any particle formed by quarks or anti-quarks.

• "meson": a particle formed by a quark and an anti-quark.

• "baryon": a particle formed by three quarks.

• "anti-baryon": a particle formed by three anti-quarks.

Color confinement

Note that the definitions of meson, baryons and anti-baryons calls back to the given algebra of
a neutral color system. It is the fundamental property, called color confinement, that essentially
states that every measurable particle must be color neutral, therefore we can only measure bound
states of quarks and gluons and never the elementary partons alone.

If one tries to pull apart, let’s say, a pair of quark and anti-quark the attraction between them
will increase with the distance and the potential energy will become high enough to generate the
masses of a new pair of quarks and anti-quarks. This idea is illustrated in figure 2.2 and defines
the concept of hadronization.

There is a particular interest in hadrons containing strange quarks, more specifically for this
work, the goal was to improve the detection of multi-strange baryons, that possesses more than
one strange quark. They are the Ξ−(𝑠𝑠𝑑) and Ω−(𝑠𝑠𝑠) and their respective anti-particles Ξ+(𝑠𝑠𝑑)
and Ω+(𝑠𝑠𝑠).

Figure 2.2: Depiction of color confinement resulting in hadronization.
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Asymptotic freedom

In the perturbative framework of QCD, predictions for observables are expressed in terms of
the running coupling 𝛼𝑠(𝜇2

𝑅), with 𝜇𝑅 being an renormalization scale. In a given QCD process
the running coupling indicates the effective strength of the strong interaction when the scale 𝜇𝑅

approaches the momentum transfer 𝑄 of the process.[14] The second fundamental property of
QCD, arises when calculating rate of the running 𝛼𝑠. For this discussion is sufficient to say that

𝑑𝛼𝑠

𝑑𝜇2
𝑅

< 0, (2.1.1)

which means that the running coupling of QCD is monotonic decreasing, as shown in figure 2.3 .
Therefore the strength of the strong interaction becomes weak for processes with high 𝑄.

Figure 2.3: Summary of measurements of 𝛼𝑠 as a function of the respective energy scale 𝑄. Figure
from [14].

2.2 Quark-Gluon Plasma
With everything discussed up to this point, it is possible now to introduce the main object of

study of the field of heavy-ion physics: The state of matter called quark-gluon plasma (QGP), that
forms under extreme conditions of pressure or temperature. For example in a heavy nuclei collision
in the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research
located in Geneva in the France–Switzerland border, or the Relativistic Heavy-Ion Collider (RHIC)
at BNL, the Brookhaven National Laboratory located in Upton, Long Island in the United States.

In the QGP the partons are locally deconfined, which means that their dynamics within the
plasma is not limited by the color confinement property. It may seem like a contradiction, however
the QGP as a whole must be color neutral and the state itself is not directly measurable. However
throughout the years several observables were proposed as QGP signatures and measured in heavy-
ion collisions [15, 16], for example anisotropic flow, jet quenching, number of constituent quark
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scaling and the one signature that is the focus of this work: Strangeness enhancement. Therefore
the detection of strange particles is one way of probing such state of matter.

Results obtained with lattice QCD [17] calculations estimates a phase transition to the QGP,
as ilustrated in Figure 2.4 . In the regime of a heavy-ion collision the transition to QGP should
happen at temperatures around 200 MeV. Which is in the same order of magnitude of twice the
mass of the strange quark, therefore the QGP can thermally produce strange quarks through a
process called gluon fusion [18, 19].

Figure 2.4: Phase diagram (temperature, net baryon density) of QCD matter, ranging from regular
nuclear matter to Quark-Gluon Plasma. Figure from [20]

The thermal production of strange quarks inside a deconfined medium favors their combination
into multi-strange baryons, as illustrated in figure 2.5. The ratio of measured multi-strange baryons
to pions (the most abundantly produced hadron) as a functions of charged particle multiplicity
defines the observable known as strangeness enhancement. Charged particle multiplicity is denoted
by ⟨𝑑𝑁𝑐ℎ/𝑑𝜂⟩|𝜂|<0.5, that is the average counts of charged particles produced inside a pseudo-
rapidity window. That number is associated with the number of participant nucleons in a heavy-ion
collision, that gives the expected collective effect to allow a phase transition.
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Figure 2.5: Multistrange (anti)baryons as signature of QGP, Figure from [21]

Figure 2.6 shows the strangeness enhancement observable, measured in several collisions sys-
tems, however ALICE still haven’t published it in Pb-Pb at √

𝑠𝑁𝑁=5.02 TeV, which is the collision
system reported in this thesis. An interesting aspect of figure 2.6 is that it also shows an enhance-
ment with respect to the multiplicity of proton-proton collision where QGP is not expected to
happen.

That is the context and background that motivates this work of exploring new tools for the
analysis of experimental data in the ALICE collaboration. Seeking to improve the methodology
of strangeness reconstruction, but first we need to introduce the ALICE experiment and briefly
explain how it acquires the data to be analyzed.
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Figure 2.6: 𝑝𝑇 -integrated yield ratios of strange and multi-strange hadrons to (𝜋+ + 𝜋−) as a
function of ⟨𝑑𝑁𝑐ℎ/𝑑𝜂⟩ measured in the rapidity interval |𝑦|< 0.5. The empty and dark-shaded
boxes show the total systematic uncertainty and the contribution uncorrelated across multiplicity
bins, respectively. The values are compared to calculations from MC models [22, 23, 24], and to
results obtained in Pb-Pb and p-Pb collisions at the LHC [25, 26, 27]. Figure from [28].
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Chapter 3

A Large Ion Collider Experiment

This short chapter presents a description of the A Large Ion Collider Experiment (ALICE) and
the introduction of some key aspects and variables in experimental heavy-ion collisions necessary
for the following chapter about the methodology for the strangeness reconstruction.

ALICE is one of the four major experiments locate around the LHC, the other three are
ATLAS, CMS and LHCb. ALICE is a complex of detector designed for measuring the products
of ultra-relativistic heavy-ion collisions.

3.1 Coordinate system and kinematic variables
ALICE uses right-handed orthogonal Cartesian coordinate system, with the origin at the beams

interaction point. �̂� is perpendicular to the beam direction, aligned with the local horizontal and
pointing to the center of the LHC. 𝑦 is perpendicular to �̂� and the beam direction and pointing
upward. 𝑧 is parallel to the beam direction and points accordingly to the right-hand rule. ALICE’s
muon arm sits at negative 𝑧. The azimuthal angle 𝜑 goes counter-clockwise from �̂� to 𝑦, looking
from positive 𝑧. The polar angle 𝜃 goes from 𝑧 to the 𝑥𝑦 plane, also called transverse plane. The
described coordinate system is depicted in figure 3.1 .

For the analysis it is convenient to look at the coordinate system as a transverse component and
a longitudinal one. The most important transverse kinematic variable is the transverse momentum
(𝑝𝑇 ) defined by

𝑝2
𝑇 = 𝑝2

𝑥 + 𝑝2
𝑦. (3.1.1)

Since 𝑧 is the direction of the beam (longitudinal) every collision, also called event, has initial
𝑝𝑇 ≈ 0. Therefore the transverse plane is associated with particles produced by the collision.

The two main main longitudinal variable are the rapidity (𝑦)1 and pseudo-rapidity (𝜂) defined
as follows

𝑦 = 1
2 ln

(︃
𝐸 + 𝑝𝑧𝑐

𝐸 − 𝑝𝑧𝑐

)︃
, (3.1.2)

1Rapidity is also represented by "𝑦" and should not be confused wit the 𝑦 direction of the coordinate system. In
the definition of transverse momentum 𝑝𝑦 is the momentum in the 𝑦 direction.
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Figure 3.1: Coordinate system of ALICE.

𝜂 = 1
2 ln

(︃
|𝑝|+𝑝𝑧

|𝑝|−𝑝𝑧

)︃
= − ln

[︃
tan

(︃
𝜃

2

)︃]︃
. (3.1.3)

It is worth noting that 𝜂 is Lorentz invariant since it can be reduced to a function of 𝜃 only.
And also, since

𝐸2 = (𝑚𝑐2)2 + (|𝑝|𝑐)2, (3.1.4)

in the limit of high momentum, with respect to the laboratory frame, rapidity and pseudo rapidity
are the same.

(|𝑝|𝑐) ≫ 𝑚𝑐2 ⇒ 𝐸 ≈ |𝑝|𝑐 ⇒ 𝑦 ≈ 𝜂. (3.1.5)

With the introduced variables it is now possible to define one core observable of this work, the
transverse momentum distribution, also called 𝑝𝑇 spectrum, that can be denoted as

𝑓(𝑝𝑇 ) = 1
𝑁𝑒𝑣

𝑑2𝑁

𝑑𝑝𝑇 𝑑𝑦
. (3.1.6)

It was chosen to already present it normalized by the number of events (𝑁𝑒𝑣). Such observable,
essentially, tells us how many particles, per interval of 𝑝𝑇 and in a given rapidity window (usually
|𝑦|< 0.5), are produced in a heavy-ion collision. It is worth noting that the transverse momentum
spectra does not denote a continuous derivative in the sense of calculus, however each experimental
point that builds up the distribution is given by the counts of particle in each 𝑝𝑇 interval divided
by Δ𝑝𝑇 and all that is performed inside a rapidity window, given by the detector acceptance, and
also divided by the window size Δ𝑦. Therefore, it represents a numeric derivative.
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3.2 Measurements for strangeness reconstruction
A detailed description of the ALICE apparatus can be found in reference [29]. In this work the

focus is going to be the simple description of some detectors and the set of measurements necessary
to perform the strangeness reconstruction analysis and build the 𝑝𝑇 spectra of the multi-strange
baryons.

Central detectors

The two main central detectors in ALICE are the Inner Tracking System (ITS), which is a
silicon detector, illustrated in figure 3.2 . And the Time Projection Chamber (TPC), which is a
gas detector, illustrated in figure 3.3 . Together they are responsible for determine the primary
vertex (PV), the point in space in which the initial Pb-Pb collision happened. They are also
responsible for determining the trajectory of the particles produced in the events.

Figure 3.2: ALICE’s Inner Tracking System (ITS). Figure from [30]

Another important feature of the TPC is to provide particle identification (PID) information
based on the energy loss of a charged particle crossing it. It is necessary for the strangeness
reconstruction analysis the identification of protons, kaons and pions.

Figure 3.4 presents how the the TPC performs PID. The 𝑥 axis is the momentum 𝑝 nor-
malized by charge 𝑧, in units of the elementary electron charge 𝑒. The 𝑦 axis is the energy loss
inside the detector. The curves for each particle where obtained with superimposed Bethe-Bloch
parameterization and are well discriminated [32].

Forward detectors

The main forward detectors are the V0A and V0C, which are scintillator detectors. They are
responsible for the centrality estimation of Pb-Pb collisions. That is, essentially a proxy of the
impact parameter.
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Figure 3.3: ALICE’s Time Projection Chamber (TPC). Figure from [31]

Figure 3.4: TPC dE/dx as a function of momentum with superimposed Bethe-Bloch lines for
various particle species for RUN2 Pb-Pb low interaction rate runs. Figure from [32]

The centrality estimation is performed by splitting the events, in a given set, in classes based
on the signal measured by the scintillator. The higher the amplitude, the more central the collision
was and then the event tends to be placed in a lower centrality class. 0-10% is the lowest centrality
class used in this work, therefore it contain the subset of most central events. 80-90% was the
higher centrality class used in this work, therefore it contain the subset of least central events, or
most peripheral ones. Figure 3.5 presents the centrality estimation procedure [33].
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Figure 3.5: Distribution of the sum of the amplitudes in the V0 detectors for Pb-Pb at √
𝑠𝑁𝑁=5.02

TeV. The threshold boundaries that define each centrality class are represented by the vertical lines.
The inset shows a zoom in the most peripheral region. The Glauber Negative Binomial Distribution
(NBD-Glauber) fit is shown in red. Figure from [33]

The centrality classes can also be mapped into charged particle multiplicity [34, 35, 36], as
presented in table 3.1.

Table 3.1: Charged particle multiplicity in each centrality class
Centrality class ⟨𝑑𝑁𝑐ℎ/𝑑𝜂⟩|𝜂|<0.5

0-10% 1764 ± 49.75
10-20% 1180 ± 31
20-30% 786 ± 31
30-40% 512 ± 15
40-50% 318 ± 12
50-60% 183 ± 8
60-70% 96.3 ± 5.8
70-80% 44.9 ± 3.4
80-90% 17.52 ± 1.9

With all that in hand, we use the PID information from TPC, the PV information and tracking
from ITS and TPC to calculate geometrical information about the identified particles that have
fundamental importance in the strangeness reconstruction procedure. Since we count the multi-
strange baryons by looking into possible decay products, using the geometry of the tracks to
distinguish non-correlated tracks to actual decay products.

The analysis is done separately in every centrality class that we have access to, thanks to the
V0 detectors. By obtaining the corrected 𝑝𝑇 spectra in every centrality class, we can extract to
total production yield of multi-strange baryons as a function of ⟨𝑑𝑁𝑐ℎ/𝑑𝜂⟩|𝜂|<0.5, using table 3.1,
and by dividing it by the production yield of pions [37] we can obtain the strangeness enhancement
observable.
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Chapter 4

Data analysis methodology

This chapter starts with a brief introduction of the data processing from the raw signal of the
detectors to the actual data set in which the analysis was performed in this work. Then it covers
the concepts of strangeness reconstruction, as well as the steps necessary to obtain the results of
multi-strange baryon production from ALICE data.

4.1 ALICE data flow
ALICE has a complex online-offline framework for extract, process and storage data [38]. The

read out of raw data from the detectors is performed by the Data Acquisition system (DAQ)
and gathering the information of the other four online systems: Central Trigger Processor (CTP),
Detector Control System (DCS), Experiment Control System (ECS) and High-Level Trigger (HLT),
the framework called Shuttle, process the data and store it in the ROOT format.

ROOT [39] is a C++ framework developed at CERN to, essentially, store and analyze data
in an efficient way. The data stored by Shuttle is them curated by the ALICE Data Preparation
Group (DPG) and becomes available for analyzers, usually in the format of ESD (Event Summary
Data), that contains the information about the primary vertex, tracks and multiplicity, that we
actually need to perform the strangeness reconstruction analysis.

4.2 Strangeness Reconstruction
Strangeness reconstruction is the data analysis procedure used to count the production of

strange particles in high energy collisions. In this work the particles of interest were the multi-
strange baryons (Ξ−, Ξ+, Ω− and Ω+). These particles are unstable and decay inside the ALICE
detector in the presence of a magnetic field. The particles produced in these decays are called
daughters and their tacks are measured by the ITS and TPC. The geometry of the decay is called
cascade topology because it consists of a decay into a charged meson and neutral baryon that also
decays into a V0 topology, that is a charged meson and a charged baryon. Figure 4.1 illustrates
the process for for Ξ−.
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Figure 4.1: Cascade decay topology of Ξ−.

The decay channels for each particle are listed bellow with the respective branching ratios(BR)
in table 4.1 . In the cascade decay topology 10 variables can be defined as presented in figure
4.2 and they are used in the reconstruction analysis. Five of these variables are associated only
with the V0 decay and together with the other five they compose the set called topological variables.

Table 4.1: Decay channels of strange baryons
Cascade BR V0 BR

Ξ−(𝑑𝑠𝑠) → 𝜋−(�̄�𝑑) + Λ0(𝑢𝑑𝑠) 100% Λ0(𝑢𝑑𝑠) → 𝑝(𝑢𝑢𝑑) + 𝜋−(�̄�𝑑) 64%
Ξ+(𝑑𝑠𝑠) → 𝜋+(𝑢𝑑) + Λ̄0(�̄�𝑑𝑠) 100% Λ̄0(�̄�𝑑𝑠) → 𝑝(�̄��̄�𝑑) + 𝜋+(𝑢𝑑) 64%
Ω−(𝑠𝑠𝑠) → 𝐾−(�̄�𝑠) + Λ0(𝑢𝑑𝑠) 68%
Ω+(𝑠𝑠𝑠) → 𝐾+(𝑢𝑠) + Λ̄0(�̄�𝑑𝑠) 68%

To reconstruct these particles we select various combinations of three identified tracks, called
candidates. For example, for the Ξ− analysis each candidate is a set of [𝜋−

𝑏 ,𝜋−
𝑣 ,𝑝𝑣], that can

correspond to a secondary vertex. Where 𝜋−
𝑏 denotes a pion that, in this candidate, is consider

to be the bachelor track and 𝜋−
𝑣 and 𝑝𝑣, in this candidate, are consider to be from the V0 decay.

Then we determine the invariant mass of each candidate and populate a histogram with such
values, often called invariant mass spectra. Then count the strangeness production by extracting
the signal of the invariant mass spectra.

However, the presence of numerous candidates that are not associated with the decay pro-
cess introduces a significant background in the invariant mass spectra. To address this challenge,
selection cuts based on topological variables are commonly employed to suppress the combinato-
rial background. This procedure is going to be called standard analysis in this work. As these
topological parameters often exhibit correlations, there exists a considerable potential for improve-
ment through the use of Machine Learning (ML) analysis techniques solving a binary classification
problem: "Is this candidate signal (an actual multi-strange baryon decay) or is it combinatorial
background?".
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Figure 4.2: Topological variables of the cascade decay. Ξ− is given as example.

In this work the analysis was performed in both ways for comparison purposes. Following the
standard procedure and using two different ML techniques: Artificial Neural Networks (NN) and
Boosted Decision Trees (BDT). In all analysis the selection criteria of table 4.2 were applied to
the entire data set. That is, only candidates within such criteria were considered for the analysis.

Table 4.2: Selection criteria
Selection Cut value for Ξ(Ω)

PID in TPC dE/dx < 4𝜎
Rapidity Interval |𝑦|< 0.5
Proper Lifetime 𝑚𝐿/𝑝 < 15(12) cm/c

Least Number of Crossed Rows in the TPC 𝑁𝐶𝑅 ≥ 80
Minimum Daughter Track Length 𝑇𝐿 > 90 cm

Ratio 𝑁𝐶𝑅/𝑇𝐿 𝑁𝐶𝑅/𝑇𝐿 ≥ 0.8 cm−1

Invariant Mass Structure cos(𝑃𝐴𝐵𝐵) < 0.999928

The PID in TPC is a particle identification criteria based on the energy deposition (dE/dx)
of the candidate tracks. The rapidity interval cut is applied because of ALICE’s detection range.
The Invariant Mass structure is a know issue of wrong combination of tracks that populates a
specific part of the invariant mass spectra and disturbs the signal extraction. Such problem can be
mitigated by defining a pointing angle between the the bachelor and baryon tracks and applying
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the listed cut in the cosine of this angle [40]. All other selection criteria are detector related and
are applied to assure good track quality.

The standard analysis of topological cuts consists in populate the invariant mass spectra only
with candidates with topological variables within the values in table 4.3 .

Table 4.3: Topological cuts from standard analysis.
Topological variable Cut value for Ξ(Ω)

DCA(V0 tracks) < 1.0 cm
DCA(V0 negative track - PV) > 0.2 cm
DCA(V0 positive track - PV) > 0.2 cm

V0 transverse decay radius > 3.0 cm
V0 cos(𝑃𝐴) > 0.95†

DCA(bachelor - V0) < 1.0(0.6) cm
DCA(bachelor - PV) > 0.1 cm

Cascade transverse decay radius > 1.2(1.0) cm
Cascade cos(𝑃𝐴) > 0.95†
DCA(V0 - PV) > 0.1 cm

V0 Invariant Mass Window ±0.005 GeV/c2

†: These are baseline values for cosine of pointing angle selections that can be optimized with
a 𝑝𝑇 -dependent parametrization presented in figure 4.3 .

Note that there is an additional variable in the table 4.3 , V0 Invariant Mass Window, that is
actually not topological. However it is an applied cut, given that the cascade decays produces a
Λ0 particle, it is expected that the invariant mass of the V0 tracks are close to 𝑚Λ0 .

Figure 4.3: Parametrization of cosine of pointing angle cuts as a function of 𝑝𝑇 . Cascade 𝑐𝑜𝑠(𝑃𝐴)
is shown in red and V0 cos(𝑃𝐴) is shown in blue.
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4.3 Machine Learning analysis
To perform the Machine Learning analysis a training, validation and test set were built from

Monte Carlo (MC) simulated data. Eighth models were trained in total. One for each particle,
four neural networks and four boosted decision trees. The models for Ξ− and Ξ+ trained with
around 200,000 candidates each. Evenly divided in signal and background respecting the transverse
momentum and centrality distributions of the MC data set. For Ω− and Ω+ it were around 50,000
candidates each also evenly divided in signal and background respecting the transverse momentum
and centrality distributions of the MC data set. Each validation set had a quarter of the training
set size also respecting the mentioned distributions.

The neural networks were built with the TensorFlow library [41] with the architecture of one
input layer with 11 neurons, four inner layers with 256, 64, 16 and 4 neurons respectively and one
output layer with 1 neuron. The activation function of all neurons was the sigmoid function

𝑓(𝑥) = (1 + 𝑒−𝑥)−1. (4.3.1)

The cost function was the binary cross entropy, and the optimizer was ADAM with 𝜖 = 10−8 and
learning rate 𝑙𝑟 = 10−4 [42].

The boosted decision trees were built with the XGBoost library [43] with the architecture of
100 estimators of depth 2. The cost function, called ’objective’ in XGBoost, was the binary logistic
function.

All the models receives as input the 11 variables from table 4.3 . That means the task
performed by the models is to calculate the probability that the tracks, from a given candidate,
were originated in a cascade decay. Based on topological information.

The validation sets were used during the training process to avoid over fitting. Every model
were trained until convergence. Figure 4.4 shows the distributions of the output 𝑃 from the Ξ−

Neural Network, in the respective validation set. Since we have access to the known answers in
the validation set as well it is possible to see how the model splits the classes.
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Figure 4.4: Prevision distribution of the Ξ− Neural Network for the background data (blue) and
signal data (orange) in the validation set.

4.3.1 Training results in the test set
After training, the models were used to predict the test set. Figure 4.5 presents an output

in the region 0.8<𝑝𝑇 <1.0 GeV/c. Low transverse momentum regions are more challenging due to
the presence oh higher background counts and a special attention was given to it in the analysis.

The standard analysis were also applied to the same data set for comparison. The ML clas-
sification has a freedom of choice, which is the minimum value of 𝑃 to classify a given candidate
as a the particle of interest, this value is called classification threshold. So only candidates with
𝑃 grater than the threshold populates the invariant mass spectra. Traditional analysis of clas-
sification typically uses 𝑃>0.5, but in this work we delve into the implications of changing such
parameter.

Figure 4.6 shows how the counts of signal and background change with the classification
threshold and compare it to the signal and background counts obtained with the standard anal-
ysis. The background counts falls faster then the signal ones which is expected given the output
distributions. What is interesting is what is happening in the intersections with the standard
analysis.

When both methods yields the same amount of background, at classification threshold 0.66,
the signal counts obtained with machine learning is higher than the standard one. When both
methods yields the same amount of signal, at classification threshold 0.86, the background counts
obtained with machine learning is higher than the standard one.
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Figure 4.5: Neural network output distribution for signal (in red) and background (in gray) in the
test set for 0.8≤ 𝑝𝑇 <1.0GeV/c.

One important variable in this type of analysis is the significance

𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 ≡ 𝑆𝑖𝑔𝑛𝑎𝑙√
𝑆𝑖𝑔𝑛𝑎𝑙 + 2 × 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

, (4.3.2)

that is shown in the inset plot in figure 4.6 and from the intersection with the standard value,
at classification threshold 0.28, until the classification threshold limit 1.0, the machine learning
presents improvement.

Another important variable is the efficiency, which is simply the amount of signal classified cor-
rectly divided by the total counts of signal in the data set. Therefore the signal counts intersection
is the same as the efficiency intersection, since both analysis were performed in the same data set.

Since efficiency decreases with threshold, significance increases and the significance intersec-
tion occurs before the efficiency intersection, every choice of threshold between them results in a
simultaneous improvement of the machine learning in both variables with respect to the standard
analysis.

Figure 4.7 shows the intersection points of signal, background and significance across transverse
momentum. In each 𝑝𝑇 interval any choice of threshold between the blue and black points provides
simultaneous improvement.

The average background intersection threshold, of 0.74, was chosen to compare the efficiency
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Figure 4.6: Classification threshold analysis for 0.8≤ 𝑝𝑇 <1.0 GeV/c. Signal and background
counts from the standard analysis are shown in red. Signal and background counts from the ML
analysis are shown in blue. Full lines indicates background, dashed lines indicates signal. Signal
intersection at threshold=0.86 and background intersection at threshold=0.66. Inner graphic shows
significance as a function of classification threshold for both methods and the intersection at
threshold=0.28.

and significance of the methods as a function of 𝑝𝑇 as reported in figures 4.8 and 4.9 . That
also shows ±0.1 variations in the chosen threshold. For efficiency the overall gain s 22% and for
significance 19%, being 37% in the lowest 𝑝𝑇 bin.



44

Figure 4.7: Classification thresholds of the intersections of signal counts (in black), background
counts (in red) and significance (in blue) as a function of 𝑝𝑇 . The dashed line indicates the average
classification threshold for background intersections.
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Figure 4.8: Efficiency of reconstructing Ξ− using an artificial neural network (in blue) in comparison
with the standard analysis of topological cuts (in red). Open points indicate the efficiencies for
±0.1 of the classification threshold choice. Bellow efficiencies are the ratio from the standard
method. The average gain is 22%.

Figure 4.9: Significance of reconstructing Ξ− using an artificial neural network (in blue) in compar-
ison with the standard analysis of topological cuts (in red). Open points indicate the significance
for ±0.1 of the classification threshold choice. Bellow significance are the ratio from the standard
method. The average gain is 19% and 37% in the lowest 𝑝𝑇 bin.
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4.4 Analysis in the complete data set
With the trained machine learning models the next step of the methodology consists in classify

the complete data set of Pb-Pb collision, at center of mass energy √
𝑠𝑁𝑁 = 5.02 TeV, measured

with ALICE in 2015. It consists of 42 million events, that can not be simply downloaded an
analyzed.

ALICE has its own framework to process and analyze this data, called 𝐴𝑙𝑖𝑃ℎ𝑦𝑠𝑖𝑐𝑠 that runs
in the CERN computing grid. However it did not have any support for machine learning tech-
niques. One challenging part of the job was to write the necessary code that could operate exactly
like the trained machine learning models and incorporate it into the 𝐴𝑙𝑖𝑃ℎ𝑦𝑠𝑖𝑐𝑠 framework. The
framework is C++ based and three classes where developed to allow the usage of machine learn-
ing in strangeness reconstruction: 𝐴𝑙𝑖𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 𝐴𝑙𝑖𝐵𝐷𝑇 and 𝐴𝑙𝑖𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘. The
codes are now part of the official repository of the ALICE collaboration and are presented here in
Appendix B.

The classes are rather simple, however they operate exactly as needed. An intermediary step is
needed since the models were trained in python. One must first save the structure of the trained
model from python and them place it in the appropriate data structure using the ROOT framework
to be read and used by the classes.

The classes are them used by the official strangeness analysis task that gives as output a set of
three dimensional histograms containing counts in bins of invariant mass, 𝑝𝑇 and centrality. For
each particle, there is one histogram filled with counts from the standard analysis and 50 histograms
filled with counts from the neural network analysis and 50 histograms filled with counts from the
boosted decision tree analysis. Each of those 50 histograms are filled with different values of
threshold, varying form 0 to 0.98, with steps of 0.02.

Nine centrality classes where studied. For each of them there are at least 22 (6) 𝑝𝑇 bins for
Ξ± (Ω±) that requires a signal extraction from the invariant mass histogram. Figure 4.10 gives
an example of invariant mass histogram comparing the one obtained with the neural network with
the standard one.

Signal Extraction

The signal extraction is performed in to steps, in the first one a fit of a Gaussian plus a first
order polynomial is performed in the region (𝑚-0.01,𝑚+0.01), where 𝑚 denotes the PDG mass of
the particle [14]

• 𝑚 = 1.32171 GeV/𝑐2 for Ξ±

• 𝑚 = 1.67245 GeV/𝑐2 for Ω±

The second step uses the fitted Gaussian’s mean (𝜇) and standard deviation (𝜎) to adjust a second
order polynomial in the region (𝜇 − 6𝜎,𝜇 − 3𝜎)+(𝜇 + 3𝜎,𝜇 − 6𝜎), that is ignoring the peak region.
That is consider the background function (𝑓𝐵𝐺). The extracted signal is them

𝑆𝑒𝑥𝑡 ≡
∫︁ 𝜇+3𝜎

𝜇−3𝜎
𝐻𝑑𝑥 +

∫︁ 𝜇+3𝜎

𝜇−3𝜎
𝑓𝐵𝐺𝑑𝑥, (4.4.1)
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where 𝑥 simply denotes the horizontal component of the invariant mass spectra, and 𝐻 denotes
the entire invariant mass histogram, therefore it’s integral is simply the sum of the counts within
the peak region divided by the invariant mass bin size (Δ𝑥).

Figure 4.10: Invariant mass spectrum of Ξ− for 1.2≤ 𝑝𝑇 <1.4 GeV/c in real data reconstructed
by the neural network analysis (in black) in comparison with the spectrum reconstructed by the
standard analysis (in red). Dashed curves indicate the fits performed by signal extraction. Ratio
of the extracted signals show a 22% improvement due to the use of neural network.

Signal Extraction fine tuning

The lowest 𝑝𝑇 bin in the standard analysis is 0.8≤ 𝑝𝑇 <1.0 GeV/c for the Ξ± and 1.2≤ 𝑝𝑇 <1.6
GeV/c for the Ω±. However we believed that it would be possible to extend the limit in the
machine learning analysis given the improvements in efficiency and significance. And turns out,
it is possible, however a fine tuning in the signal extraction procedure was needed to effectively
count the Ξ± in 0.6≤ 𝑝𝑇 <0.8 GeV/c and the Ω± in 0.8≤ 𝑝𝑇 <1.2 GeV/c.

The fine tuning procedure consists in defining a function that is the sum of a Gaussian plus a
second order polynomial. The 𝜇 and 𝜎 are fixed from the first fit. The entire histogram is adjusted
without ignoring the peak region, and with a larger fit range (𝜇 − 12𝜎, 𝜇 + 12𝜎). The new 𝑓𝐵𝐺 is
building using the found parameters for the second order polynomial. Figure 4.11 ilustrates the
procedure and compares it with the previous described one.
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Figure 4.11: Invariant mass spectrum of Ξ− for 0.6≤ 𝑝𝑇 <0.8 GeV/c in real data reconstructed
by the neural network analysis. (in black) in comparison with the spectrum reconstructed by the
standard analysis (in red). Dashed curves indicate the fits performed by signal extraction. Ratio
of the extracted signals show a 22% improvement due to the use of neural network.

The extension of the inferior 𝑝𝑇 limit was possible for every centrality class in the Ξ± analysis
and in centrality classes from 0-40% in the Ω± analysis.

Corrected 𝑝𝑇 spectra

The signal extraction provides particles counts per 𝑝𝑇 bin separated into centrality classes. To
compute the transverse momentum distribution of the particles it is also necessary to apply the
efficiency correction factor. Bringing back the expression from previous chapter

𝑓(𝑝𝑇 ) = 1
𝑁𝑒𝑣

𝑑2𝑁

𝑑𝑝𝑇 𝑑𝑦
(4.4.2)

is the value of the corrected 𝑝𝑇 spectra at each 𝑝𝑇 bin.

𝑁 = 𝑆𝑒𝑥𝑡

𝑒
(4.4.3)

is given by the extracted signal 𝑆𝑒𝑥𝑡 corrected by the efficiency 𝑒.
To compute the efficiency we apply the methodology used to build the invariant mass spectra

to a so called associated Monte Carlo data set, built to reproduce well enough the observables of
the data set that are being analyzed. In the associated Monte Carlo we simply count how many
particles of interest are kept by the methodology, and the ratio with the total number of particles
generated in the Monte Carlo gives the efficiency.

Then in each point of the corrected 𝑝𝑇 spectra 𝑁 is divided by the size of the respective 𝑝𝑇 bin
Δ𝑝𝑇 and also by Δ𝑦 = 1, since the acceptance rapidity region is |𝑦|< 0.5.
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Extrapolation to low pT

To account for the total particle production yield we need to estimate how many particles
are produced between 𝑝𝑇 = 0 and the lowest 𝑝𝑇 bin of the spectra. This procedure is called
extrapolation to low 𝑝𝑇 and was performed with a blast-wave fit of the spectra [44]. Which is
a phenomenological description for the 𝑝𝑇 spectra produced in heavy-ion collisions depending on
collective variables, given by

1
𝑝𝑇

𝑑𝑁

𝑑𝑝𝑇

∝
∫︁ 𝑅

0
𝑟𝑑𝑟𝑚𝑇 𝐼0

(︃
𝑝𝑇 sinh 𝜌

𝑇𝑘𝑖𝑛

)︃
𝐾1

(︃
𝑚𝑇 cosh 𝜌

𝑇𝑘𝑖𝑛

)︃
, (4.4.4)

where 𝑚𝑇 is the transverse mass, 𝐼0 and 𝐾1 are modified Bessel functions, 𝑅 is the radius of
the medium,

𝜌 = tanh−1 𝛽𝑇 (4.4.5)

is the velocity profile, where

𝛽𝑇 =
(︂

𝑟

𝑅

)︂𝑛

𝛽𝑠 (4.4.6)

is the transverse velocity distribution, parameterized by the surface velocity 𝛽𝑠.
After this fit we can integrate the obtained function from 𝑝𝑇 = 0 to the lowest 𝑝𝑇 bin of

the spectra, to count the production in the non-measured region. Associated with each point of
the spectra and to the extrapolation there are statistical uncertainties and a series of systemat-
ical uncertainties that must be calculated. This particular discussion is the purpose of the next
chapter.
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Chapter 5

Computation of Uncertainties

It was show that the ML based methodologies simultaneously improved the efficiency and
significance in the reconstruction of multi-strange baryons. As well as enabled the access to an
unprecedented experimental data point in the low transverse momentum region of the corrected
𝑝𝑇 spectra. In this chapter it is discussed the implications of such improvements by evaluating
and comparing the statistical uncertainties, and the sources of systematical uncertainties of the
corrected 𝑝𝑇 spectra that are affected by the change in the analysis methodology.

5.1 Statistical uncertainties
The statistical uncertainties are originated in the invariant mass spectra and therefore propa-

gated through the procedure of signal extraction described in the previous chapter. The improve-
ments due to ML analysis reflects in the statistical uncertainty of the corrected spectra as shown in
figure 5.1 that presents the ratio between statistical uncertainties of the Neural Network analysis
by the standard analysis in the 0-10% centrality class for Ξ−.

Figure 5.1: Ratio between the statistical uncertainty of the Ξ− corrected 𝑝𝑇 spectra obtained with
the neural network analysis by the one obtained with the standard analysis in the 0-10% centrality
class.
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5.2 Systematical uncertainties
There are several sources of systematic uncertainties that can be accounted for. They were

studied in detail in a previous work [40]. Here are presented the two main sources of systematic
uncertainties of the 𝑝𝑇 spectra that are affected by the change in methodology and the two sources
of systematic uncertainties of the extrapolation to low 𝑝𝑇 procedure that are the dominant terms
in the total uncertainty of the production yield.

5.2.1 Candidate selection
Essentially the ML analysis substitutes the topological cuts from the the standard analysis by

a cut in the probability output of the ML, called selection threshold. What is typically done to
evaluate the systematic of such a selection is vary each topological cut individually by an arbitrary
amount, usually 10%, and take the difference in extracted signal of each variation and sum them in
quadrature. To reproduce this idea in the ML analysis it was taken in consideration the invariant
mass spectra in a stable region in threshold selection, from 0.4 to 0.8, with 21 steps of 0.02 in
threshold. The signal of each of them were extracted and the average signal calculated. The
systematic uncertainty was assumed to be the maximum difference between the average and a
signal in the threshold region.

Tables 5.1 and 5.2 presents three 𝑝𝑇 bins that were used to compare the systematic of
the standard analysis with the ML ones. To illustrate the method described for computing the
systematic of ML figure 5.2 shows the the uncertainty for Ξ− in 0.8< 𝑝𝑇 <1.0 GeV/c of the
Neural Network and 5.3 shows the the uncertainty for Ω+ in 2.8< 𝑝𝑇 <3.2 GeV/c of the BDT,
both compared to the standard analysis.

Table 5.1: Systematic Uncertainties for Ξ−(Ξ+) in percentage (%)
0.8 < 𝑝𝑇 < 1.0 GeV/c 2.4 < 𝑝𝑇 < 2.6 GeV/c 4.8 < 𝑝𝑇 < 5.0 GeV/c

NN 7.7 (7.3) 1.5 (1.0) 2.5 (3.0)
BDT 9.1 (4.4) 1.3 (1.4) 1.3 (1.8)
STD 13.4 (10.5) 1.8 (1.7) 2.4 (2.5)

Table 5.2: Systematic Uncertainties for Ω−(Ω+) in percentage (%)
1.6 < 𝑝𝑇 < 2.0 GeV/c 2.8 < 𝑝𝑇 < 3.2 GeV/c 3.6 < 𝑝𝑇 < 4.0 GeV/c

NN 1.9 (3.8) 8.6 (7.5) 5.0 (8.0)
BDT 4.7 (10.0) 7.5 (3.9) 4.5 (9.7)
STD 11.4 (11.1) 8.5 (9.2) 7.7 (16.6)
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Figure 5.2: Ξ− in 0.8< 𝑝𝑇 <1.0 GeV/c candidate selection systematic uncertainty of the NN
(blue) and standard analysis (red). The blue markers are the NN extracted signal in each threshold
interval. Blue line is the NN average extracted signal. Blue dashed lines are the estimate systematic
for NN. Red line is the extracted signal from the standard analysis. Red dashed lines are the
standard analysis systematic.

Figure 5.3: Ω+ in 2.8< 𝑝𝑇 <3.2 GeV/c candidate selection systematic uncertainty of the BDT
(black) and standard analysis (red). The black markers are the BDT extracted signal in each
threshold interval. Black line is the BDT average extracted signal. Black dashed lines are the
estimate systematic for BDT. Red line is the extracted signal from the standard analysis. Red
dashed lines are the standard analysis systematic.
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5.2.2 Signal extraction
The last source of systematical uncertainty calculated for the corrected 𝑝𝑇 spectra was associ-

ated with the signal extraction procedure. First the peak region was redefined from (𝜇−3𝜎,𝜇+3𝜎)
to (𝜇 − 2.75𝜎,𝜇 + 2.75𝜎) and (𝜇 − 3.25𝜎,𝜇 + 3.25𝜎) and the redefinition that produced the higher
difference in extracted signal was chosen. Then the function used to fit the background region was
redefined from a second order polynomial to a first order and a third order and again the redefi-
nition that produced the higher difference in extracted signal was chosen. The two contributions
were then summed in quadrature to estimate the signal extraction systematic. For the fit of the
third order polynomial the background region was chosen to be (𝜇−7𝜎,𝜇−3𝜎) and (𝜇+3𝜎,𝜇+12𝜎)
to maintaining the exact same procedure in the reference analysis for comparison purposes [40].

5.2.3 Other sources of systematic uncertainties
There were also took into account other sources of systematic uncertainties imported from

previous analysis, presented in tables 5.3 and 5.4 , that were assumed to don’t change significantly
by the change in the methodology.

Table 5.3: Systematic Uncertainties for Ξ−(Ξ+) in percentage (%)
𝑝𝑇 (GeV/c) 0.8 to 1.0 2.4 to 2.6 4.8 to 5.0

Material budget 4.2 (5.3) 1.5 (1.7) 0.0 (0.0)
Transport code 0.0 (1.0) 0.0 (1.0) 0.0 (1.0)
Track selection 3.5 (2.4) 1.0 (1.5) 1.9 (1.9)

Particle Identification 0.0 (1.4) 0.9 (1.0) 1.0 (0.9)
Proper Lifetime 2.3 (1.7) 0.6 (0.5) 1.6 (1.4)

Event centrality selection 1.6 (1.7) 0.6 (0.7) 0.8 (0.8)

Table 5.4: Systematic Uncertainties for Ω−(Ω+) in percentage (%)
𝑝𝑇 (GeV/c) 1.6 to 2.0 2.8 to 3.2 3.6 to 4.0

Material budget 2.2 (2.6) 1.6 (1.6) 0.0 (0.0)
Transport code 0.0 (1.0) 0.0 (1.0) 0.0 (1.0)
Track selection 0.9 (1.4) 1.3 (0.6) 1.2 (0.8)

Particle Identification 2.4 (4.6) 2.0 (2.3) 5.6 (4.8)
Proper Lifetime 2.1 (2.0) 0.7 (0.8) 0.4 (0.7)

Competing decay rejection 2.9 (2.2) 4.8 (5.1) 2.3 (1.8)
Event centrality selection 1.0 (1.0) 0.7 (0.8) 0.4 (0.7)

All the sources of systematic uncertainties of the corrected 𝑝𝑇 spectra were summed in quadra-
ture. Figures 5.4 and 5.5 present the corrected 𝑝𝑇 spectra of Ξ− + Ξ+ and Ω− + Ω+ with all
the described uncertainties comparing each ML model with the standard analysis in the 0-10%
centrality class. The comparison of the spectra in the other centrality classes can be found in the
Appendix A. The methods are in agreement within uncertainties.
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Figure 5.4: Comparison of obtained corrected 𝑝𝑇 spectra of Ξ− + Ξ+ in 0-10% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.

Figure 5.5: Comparison of obtained corrected 𝑝𝑇 spectra of Ω− + Ω+ in 0-10% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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5.2.4 Extrapolation to low transverse momentum
The extrapolation to low 𝑝𝑇 is a necessary technique to estimate the particle production yield

from 𝑝𝑇 =0 GeV/c to the lowest 𝑝𝑇 experimental point. This is done by performing a fit of a
theoretical function in the experimental points that extends itself all the way back to 0 GeV/c.
The yield was estimated using the Blast-Wave function.

The systematic uncertainty of such procedure accounts for the total production yield of particles
and not for the spectra itself. It is calculate using two separated methods and summing their
uncertainties in quadrature.

High-Low variation fitting

The first source of systematic is estimated by dislocating every point in the corrected 𝑝𝑇

spectra by its own total uncertainty in two ways. Let 𝑓(𝑝𝑇 ) be the value of each point in the
corrected 𝑝𝑇 spectra and 𝜎𝑓 (𝑝𝑇 ) =

√︁
𝜎𝑠𝑡𝑎𝑡(𝑝𝑇 )2 + 𝜎𝑠𝑦𝑠𝑡(𝑝𝑇 )2 the respective total uncertainty, that

is the quadratic sum of the statistical and systematic uncertainties. The High variation is the
spectra given by 𝑓ℎ𝑖𝑔ℎ(𝑝𝑇 ) = 𝑓(𝑝𝑇 ) + 𝜎𝑓 (𝑝𝑇 ) and the Low variation is is the spectra given by
𝑓𝑙𝑜𝑤(𝑝𝑇 ) = 𝑓(𝑝𝑇 ) − 𝜎𝑓 (𝑝𝑇 ). Both spectra were fitted with the Blast-Wave function and the one
that gave the maximum difference in the extrapolated yield was chosen for the uncertainty.

Figures 5.6 to 5.9 shows the described procedure comparing the ML models with the standard
analysis in the 0-10% centrality class.

Figure 5.6: High-Low fit extrapolation to low 𝑝𝑇 of Ξ− + Ξ+ spectra in 0-10% centrality class.
Markers are the spectra, lines are the Blast-Wave fit of the spectra and dashed lines are the High-
Low fits used to estimate the systematic uncertainty. Neural network analysis is shown in blue
and the standard analysis in red.
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Figure 5.7: High-Low fit extrapolation to low 𝑝𝑇 of Ξ− + Ξ+ spectra in 0-10% centrality class.
Markers are the spectra, lines are the Blast-Wave fit of the spectra and dashed lines are the High-
Low fits used to estimate the systematic uncertainty. BDT analysis is shown in black and the
standard analysis in red.

Figure 5.8: High-Low fit extrapolation to low 𝑝𝑇 of Ω− + Ω+ spectra in 0-10% centrality class.
Markers are the spectra, lines are the Blast-Wave fit of the spectra and dashed lines are the High-
Low fits used to estimate the systematic uncertainty. Neural network analysis is shown in blue
and the standard analysis in red.
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Figure 5.9: High-Low fit extrapolation to low 𝑝𝑇 of Ω− + Ω+ spectra in 0-10% centrality class.
Markers are the spectra, lines are the Blast-Wave fit of the spectra and dashed lines are the High-
Low fits used to estimate the systematic uncertainty. BDT analysis is shown in black and the
standard analysis in red.

Secondary function fitting

The second source of systematic is the choice of the function to perform the fit since other
functions can be used in the extrapolation procedure. The systematic uncertainty here is calcu-
lated by fitting the spectra with three other functions: 𝑚𝑇 exponential, Boltzmann and PHENIX
modified Hagedorn and choosing the one that gives the maximum difference in the extrapolated
yield for the uncertainty.

Figures 5.10 to 5.13 shows the described procedure comparing the ML models with the
standard analysis in the 0-10% centrality class. And tables 5.5 to 5.7 presents the contribu-
tions of both sources of low 𝑝𝑇 extrapolation systematic uncertainties as well as the uncertainties
propagated from the spectra for the production yield of particles.
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Figure 5.10: Secondary function fit extrapolation to low 𝑝𝑇 of Ξ− + Ξ+ spectra in 0-10% centrality
class. Markers are the spectra, lines are the Blast-Wave fit of the spectra and dashed lines are the
𝑚𝑇 exponential fits used to estimate the systematic uncertainty. Neural network analysis is shown
in blue and the standard analysis in red.

Figure 5.11: Secondary function fit extrapolation to low 𝑝𝑇 of Ξ− + Ξ+ spectra in 0-10% centrality
class. Markers are the spectra, lines are the Blast-Wave fit of the spectra and dashed lines are the
𝑚𝑇 exponential fits used to estimate the systematic uncertainty. BDT analysis is shown in black
and the standard analysis in red.
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Figure 5.12: Secondary function fit extrapolation to low 𝑝𝑇 of Ω− +Ω+ spectra in 0-10% centrality
class. Markers are the spectra, lines are the Blast-Wave fit of the spectra. Dashed line for Neural
Network is the 𝑚𝑇 exponential fit and dashed line for the standard analysis is the Hagedorn fit
used to estimate the systematic uncertainty. Neural network analysis is shown in blue and the
standard analysis in red.

Figure 5.13: Secondary function fit extrapolation to low 𝑝𝑇 of Ω− +Ω+ spectra in 0-10% centrality
class. Markers are the spectra, lines are the Blast-Wave fit of the spectra. Dashed line for BDT is
the 𝑚𝑇 exponential and dashed line for the standard analysis is the Hagedorn fit used to estimate
the systematic uncertainty. BDT analysis is shown in black and the standard analysis in red.
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Table 5.5: Standard analysis relative uncertainties of production yield of Ξ− + Ξ+ (Ω− + Ω+)
Centrality class Spectra Uncert. % High-Low Uncert. % Secondary Function Uncert. %

00-10% 2.14 (3.27) 2.49 (7.10) 6.61 (0.73)
10-20% 1.81 (3.11) 2.14 (5.80) 2.11 (1.90)
20-30% 1.81 (3.13) 2.28 (6.02) 1.63 (1.85)
30-40% 1.84 (2.98) 2.69 (7.14) 3.89 (1.06)
40-50% 1.84 (3.25) 2.96 (6.37) 1.35 (4.12)
50-60% 1.94 (4.02) 2.83 (4.71) 3.72 (19.1)
60-70% 1.94 (4.21) 2.95 (3.50) 2.66 (21.6)
70-80% 2.08 (3.59) 3.85 (15.2) 1.32 (4.62)
80-90% 2.48 (6.33) 4.96 (17.8) 2.46 (13.1)

Table 5.6: Neural network analysis relative uncertainties of production yield of Ξ− +Ξ+ (Ω− +Ω+)
Centrality class Spectra Uncert. % High-Low Uncert. % Secondary Function Uncert. %

00-10% 1.81 (5.68) 0.85 (3.61) 2.79 (0.53)
10-20% 1.59 (3.96) 0.81 (3.07) 2.58 (6.31)
20-30% 1.37 (3.31) 0.88 (3.31) 2.06 (1.26)
30-40% 1.39 (3.42) 1.02 (2.69) 1.52 (6.07)
40-50% 1.37 (2.03) 1.02 (4.99) 1.12 (2.22)
50-60% 1.28 (2.76) 1.07 (5.23) 0.58 (17.04)
60-70% 1.48 (2.94) 1.13 (5.25) 0.22 (2.18)
70-80% 1.66 (3.36) 1.49 (15.4) 0.96 (4.46)
80-90% 2.62 (6.83) 2.68 (14.08) 0.66 (3.57)

Table 5.7: BDT analysis relative uncertainties of production yield of Ξ− + Ξ+ (Ω− + Ω+)
Centrality class Spectra Uncert. % High-Low Uncert. % Secondary Function Uncert. %

00-10% 1.67 (4.17) 0.91 (3.24) 3.20 (4.81)
10-20% 1.46 (3.35) 0.78 (2.59) 2.02 (2.28)
20-30% 1.26 (3.93) 0.85 (3.81) 1.45 (2.34)
30-40% 1.32 (3.19) 0.98 (2.32) 1.35 (6.90)
40-50% 1.29 (2.17) 0.98 (3.87) 1.17 (6.39)
50-60% 1.28 (2.67) 0.92 (4.43) 0.47 (16.93)
60-70% 1.48 (2.73) 1.18 (5.44) 0.02 (11.36)
70-80% 1.87 (3.59) 1.73 (15.73) 0.81 (2.10)
80-90% 2.53 (5.56) 2.51 (15.42) 0.86 (5.56)
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Chapter 6

Results and discussion

This chapter presents the main physical results obtained using the methods described in the
previous chapter: the corrected 𝑝𝑇 spectra and total yield production of multi-strange baryons
in Pb-Pb collisions at the center of mass energy of √

𝑠𝑁𝑁 = 5.02 TeV, as well as the strangeness
enhancement, defined as the ratio of multi-strange baryons to pions as a function of charged particle
multiplicity. Which is the QGP observable of interest in this work.

6.1 Transverse momentum spectra
Figure 6.1 presents the corrected 𝑝𝑇 spectra for Ξ− +Ξ+ and Ω− +Ω+ across all the centrality

classes, obtained with each method described in this work.
The spectra of different methods are in agreement within uncertainties and the Machine Learn-

ing based methods presents an overall uncertainty improvement. An unprecedented experimental
point in the low 𝑝𝑇 region is presented for Ξ− + Ξ+ across all centrality classes and for Ω− + Ω+ in
the centrality classes 0-40%. For higher centrality classes it was not possible to perform a reliable
signal extraction due to low counts in the invariant mass spectra.

6.2 Particle production yield
The particle production yield is computed by integrating the corrected 𝑝𝑇 spectra and its

respective extrapolation to low 𝑝𝑇 using a blast-wave function. Tables 6.1 to 6.3 presents
the results for Ξ− + Ξ+ and Ω− + Ω+ also across all the centrality classes, obtained with each
method described in this work. The yields obtained with each methods are in agreement within
uncertainties.

Both the uncertainty improvement of the spectra and the presence of the additional point,
when it is present, due to Machine Learning reflects as improvement in the yield uncertainties.
Figures 6.2 and 6.3 presents the comparison of yields of multi-strange baryon production, as
well, as the ratio of uncertainties from Machine Learning based methods to the standard analysis,
showing an overall reduction of 40% in the Ξ− + Ξ+ measurement and 20% in the Ω− + Ω+, across
centrality classes.
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Figure 6.1: Transverse momentum spectra of Ξ−+Ξ+ (left) and Ω−+Ω+ (right) in Pb-Pb collisions
at √

𝑠𝑁𝑁 = 5.02 TeV for all centrality classes. Obtained with the standard analysis (top), a Neural
Network analysis (center) and a Boosted Decision Tree analysis (bottom). Line error bars are the
statistical uncertainties and box errors are the total systematic uncertainties of each spectra.
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Table 6.1: Standard analysis: Particle production yield
Centrality class Ξ− + Ξ+ Ω− + Ω+

00-10% 10.80 ± 0.80 1.53 ± 0.12
10-20% 7.21 ± 0.25 1.11 ± 0.08
20-30% 4.88 ± 0.16 0.68 ± 0.05
30-40% 3.11 ± 0.16 0.47 ± 0.04
40-50% 1.97 ± 0.07 0.24 ± 0.02
50-60% 1.04 ± 0.05 0.11 ± 0.02
60-70% 0.54 ± 0.02 0.044 ± 0.0099
70-80% 0.21 ± 0.01 0.022 ± 0.0035
80-90% 0.074 ± 0.004 0.0047 ± 0.0011

Table 6.2: Neural Network: Particle production yield
Centrality class Ξ− + Ξ+ Ω− + Ω+

00-10% 11.06 ± 0.38 1.64 ± 0.11
10-20% 7.50 ± 0.24 1.03 ± 0.08
20-30% 5.02 ± 0.13 0.75 ± 0.04
30-40% 3.29 ± 0.08 0.42 ± 0.03
40-50% 1.97 ± 0.04 0.27 ± 0.02
50-60% 1.10 ± 0.02 0.11 ± 0.02
60-70% 0.55 ± 0.01 0.056 ± 0.0036
70-80% 0.215 ± 0.005 0.021 ± 0.0034
80-90% 0.073 ± 0.003 0.0049 ± 0.0008

Table 6.3: Boosted Decision Tree: Particle production yield
Centrality class Ξ− + Ξ+ Ω− + Ω+

00-10% 10.81 ± 0.40 1.54 ± 0.11
10-20% 7.34 ± 0.19 1.08 ± 0.05
20-30% 4.96 ± 0.10 0.69 ± 0.04
30-40% 3.31 ± 0.07 0.41 ± 0.03
40-50% 1.96 ± 0.04 0.24 ± 0.02
50-60% 1.09 ± 0.02 0.11 ± 0.02
60-70% 0.54 ± 0.01 0.0497 ± 0.0064
70-80% 0.212 ± 0.006 0.021 ± 0.0035
80-90% 0.072 ± 0.003 0.00559 ± 0.00096
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Figure 6.2: Ξ− + Ξ+ production yield as a function of centrality class. The standard analysis is
shown in red, Neural Network analysis in blue and BDT analysis in black. Lower plot presents the
ratio of uncertainties from Machine Learning based methods to the standard analysis.

Figure 6.3: Ω− + Ω+ production yield as a function of centrality class. The standard analysis is
shown in red, Neural Network analysis in blue and BDT analysis in black. Lower plot presents the
ratio of uncertainties from Machine Learning based methods to the standard analysis.
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6.3 Strangeness Enhancement
The ratio between multi-strange baryons and pions as a function of charged particle multiplicity,

that is mapped into centrality classes using table 3.1, defines the observable known as strangeness
enhancement. Which is one possible observable for probing the QGP. The lower the centrality class
higher the number of interacting particles forming the QGP in the collision which implies in higher
thermal production of strange quarks given the expected temperature of the phase transition to
QGP and the mass of the strange quark. Therefore the proportion of strange particles should
increase with the number of colliding particles.

Figure 6.4 shows the obtained results with all three methods together with the already
published results in different collision systems.

Figure 6.4: Ratio of multi-strange baryons to pions as a function of charged particle multiplicity
compared with previous measurements already presented in figure 2.6.
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Chapter 7

Conclusion

In this work we developed a novel methodology, using Machine Learning techniques, for mea-
suring multi-strange baryons in Pb-Pb collisions at the center of mass energy √

𝑠𝑁𝑁 = 5.02 TeV
with the ALICE apparatus at the LHC. This was possible since the data analysis procedure of
strangeness reconstruction is, essentially, a classification problem, which is a class of problems
known to have applicable tools based on the paradigm that defines Machine Learning. The models
used were artificial neural networks, in the form of a multi-layer perceptron, and boosted decision
trees.

A new code was developed, and it is now part of the official ALICE repository, in order to
allow compatibility between the collaboration’s analysis framework (in C++) and the Machine
Learning models built in python. The framework is necessary in order to perform the analysis in
the complete data set, accessing the computational power of the Worldwide LHC Computing Grid
(WLCG).

The analysis was also performed in the standard way in order to evaluate the impact of the
Machine Learning models. The efficiency and significance of machine learning based methods
presents a simultaneous overall improvement of around 20% with respect to the standard analysis.
Such improvement led to the extension of the inferior 𝑝𝑇 limit of the measured particles. The
presence of an additional 𝑝𝑇 bin directly impacts the total production yield computation, since it
requires a low 𝑝𝑇 extrapolation of the measured spectra, resulting in an overall reduction of around
40% in the Ξ− + Ξ+ yield uncertainty and around 20% in the Ω− + Ω+ yield uncertainty.

The physical results of all methods we worked with are in agreement within uncertainties. The
ratio of multi-strange baryons to pions as a function of charged particle multiplicity are presented
and show the expected increase in the relative production of strangeness. Therefore verifying the
strangeness enhancement observable for QGP. The Machine Learning improvements also reflect in
the overall precision of such measurement.

The results regarding the methodology comparison in this work were presented at the XLIV
Brazilian Workshop on Nuclear Physics in 2021 as a poster, and at the III SBF Spring Meeting in
2023 as the talk "Strangeness reconstruction with machine learning in heavy-ion collisions". The
results of multi-strange baryon production in the collision system and energy that we worked with
were still not published by the collaboration. We are seeking internal approval for the obtained
results and working with the collaboration towards a publication.
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As part of the ALICE collaboration during the period of this project I also participated in the
data taking of pp collisions in 2022, that is the so called Run3 of the ALICE experiment that started
after the upgrades during the last long shutdown. The data taking is performed by the shift crew
inside the ALICE Run Control Center (ARC), I did a total of 26 shifts of 8 hours, totaling more
than 200 hours of work. Six of those where training shifts, in twelve shifts I was assigned at the
Experiment Control System (ECS) position, being responsible by the creation of the environments
to acquire data and detector calibration, in the other eight shifts I was assigned at the Shift Leader
(SL) position, being responsible for the entire crew: ECS, DCS (Detector Control System) and QC
(Quality Control), and coordinating the team with the objective of performing the data taking in
the best way possible. I also worked in a service task for the collaboration being part of the team
that did the multiplicity calibration of the Run3 data in the Data Preparation Group (DPG).

This work started in 2019 and was, like everything else, affected by the COVID-19 pandemic.
During such a difficulty period we had the opportunity to explore the potential of Machine Learning
outside the field of physics, and contribute with the understanding of the impact of the disease
in patients at the University’s Hospital. In collaboration with the School of Medical Sciences of
UNICAMP we developed a study that was later published [45] in the Informatics in Medicine
Unlocked (https://doi.org/10.1016/j.imu.2022.101138).

In this work I had the incredible opportunity to participate in an international collaboration
at the frontier of physics research and experienced how challenging it is to work in a high energy
physics experiment like ALICE. It requires knowledge of physics, engineering and computer sci-
ences. Professionals from various fields worldwide gathered to make this level of research possible.
It improved my overall skills as a scientist and collaborator. I learned what is to work as a group
to achieve goals that are far too big to be done alone. It made me realise that even though physics
is an exact science, to do science is a human activity. Working as a group, scientists expand the
boundaries of knowledge and I am very grateful to be a part of it.

I developed an understanding of the fundamentals of heavy-ion physics, detectors, data acqui-
sition and analysis. Explored a new field of knowledge, Machine Learning, and was pioneer in
the study of those techniques in my research group, that is now working with it in a variety of
projects. During this project I was amazed by the potential and applicability of Machine Learning
tools and it was very interesting to apply it in the strangeness reconstruction, look to the data
analysis through a new lens, develop new tools and a new method for investigating such particles
that resulted in the same physics with higher precision.



68

Bibliography

[1] F. Chollet. Deep Learning with Python. Manning, 2017. isbn: 9781638352044. url: https:
//books.google.com.br/books?id=wzozEAAAQBAJ.

[2] T.M. Mitchell. Machine Learning. McGraw-Hill international editions - computer science
series. McGraw-Hill Education, 1997. isbn: 9780070428072. url: https://books.google.
com.br/books?id=xOGAngEACAAJ.

[3] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive Computation and
Machine Learning series. MIT Press, 2016. isbn: 9780262035613. url: https://books.
google.com.br/books?id=-s2MEAAAQBAJ.

[4] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous
activity”. In: The bulletin of mathematical biophysics 5.4 (Dec. 1943), pp. 115–133. issn:
1522-9602. doi: 10.1007/BF02478259. url: https://doi.org/10.1007/BF02478259.

[5] D. Griffiths. Introduction to Elementary Particles. Physics textbook. Wiley, 2008. isbn:
9783527406012. url: https://books.google.com.br/books?id=w9Dz56myXm8C.

[6] B. Pontecorvo. “Neutrino Experiments and the Problem of Conservation of Leptonic Charge”.
In: Zh. Eksp. Teor. Fiz. 53 (1967), pp. 1717–1725.

[7] John N. Bahcall. “Solar Neutrinos. I. Theoretical”. In: Phys. Rev. Lett. 12 (11 Mar. 1964),
pp. 300–302. doi: 10.1103/PhysRevLett.12.300. url: https://link.aps.org/doi/10.
1103/PhysRevLett.12.300.

[8] Q. R. Ahmad et al. “Measurement of the Rate of 𝜈𝑒 + d → p + p + e− Interactions Produced
by 8𝐵 Solar Neutrinos at the Sudbury Neutrino Observatory”. In: Phys. Rev. Lett. 87 (7
July 2001), p. 071301. doi: 10.1103/PhysRevLett.87.071301. url: https://link.aps.
org/doi/10.1103/PhysRevLett.87.071301.

[9] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”. In: Phys. Rev.
Lett. 13 (16 Oct. 1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.13.508.

[10] M.D. Schwartz. Quantum Field Theory and the Standard Model. Quantum Field Theory and
the Standard Model. Cambridge University Press, 2014. isbn: 9781107034730. url: https:
//books.google.com.br/books?id=HbdEAgAAQBAJ.

[11] E. Noether. “Invariante Variationsprobleme”. ger. In: Nachrichten von der Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918 (1918), pp. 235–257.
url: http://eudml.org/doc/59024.

https://books.google.com.br/books?id=wzozEAAAQBAJ
https://books.google.com.br/books?id=wzozEAAAQBAJ
https://books.google.com.br/books?id=xOGAngEACAAJ
https://books.google.com.br/books?id=xOGAngEACAAJ
https://books.google.com.br/books?id=-s2MEAAAQBAJ
https://books.google.com.br/books?id=-s2MEAAAQBAJ
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://books.google.com.br/books?id=w9Dz56myXm8C
https://doi.org/10.1103/PhysRevLett.12.300
https://link.aps.org/doi/10.1103/PhysRevLett.12.300
https://link.aps.org/doi/10.1103/PhysRevLett.12.300
https://doi.org/10.1103/PhysRevLett.87.071301
https://link.aps.org/doi/10.1103/PhysRevLett.87.071301
https://link.aps.org/doi/10.1103/PhysRevLett.87.071301
https://doi.org/10.1103/PhysRevLett.13.508
https://link.aps.org/doi/10.1103/PhysRevLett.13.508
https://link.aps.org/doi/10.1103/PhysRevLett.13.508
https://books.google.com.br/books?id=HbdEAgAAQBAJ
https://books.google.com.br/books?id=HbdEAgAAQBAJ
http://eudml.org/doc/59024


69

[12] Cush. Standard Model of Elementary Particles. Available online at: https://en.wikipedia.
org / wiki / File : Standard _ Model _ of _ Elementary _ Particles . svg, last accessed on
12.10.2023. 2019.

[13] W. Rossmann. Lie Groups: An Introduction Through Linear Groups. Oxford graduate texts
in mathematics. Oxford University Press, 2006. isbn: 9780199202515. url: https://books.
google.com.br/books?id=bAjulQ65W-UC.

[14] J Beringer et al. “Review of Particle Physics, 2012-2013. Review of Particle Properties”.
In: Phys. Rev. D 86.1 (2012). The 2012 edition of Review of Particle Physics is published
for the Particle Data Group as article 010001 in volume 86 of Physical Review D. This
edition should be cited as: J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001
(2012)., p. 010001. doi: 10.1103/PhysRevD.86.010001. url: http://cds.cern.ch/
record/1481544.

[15] ALICE Collaboration. The ALICE experiment – A journey through QCD. 2022. arXiv: 2211.
04384 [nucl-ex].

[16] J. Adams et al. “Experimental and theoretical challenges in the search for the quark–gluon
plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions”.
In: Nuclear Physics A 757.1 (2005). First Three Years of Operation of RHIC, pp. 102–183.
issn: 0375-9474. doi: https://doi.org/10.1016/j.nuclphysa.2005.03.085. url:
https://www.sciencedirect.com/science/article/pii/S0375947405005294.

[17] Kenneth G. Wilson. “Confinement of quarks”. In: Phys. Rev. D 10 (8 Oct. 1974), pp. 2445–
2459. doi: 10.1103/PhysRevD.10.2445. url: https://link.aps.org/doi/10.1103/
PhysRevD.10.2445.

[18] Johann Rafelski and Berndt Müller. “Strangeness Production in the Quark-Gluon Plasma”.
In: Phys. Rev. Lett. 48 (16 Apr. 1982), pp. 1066–1069. doi: 10.1103/PhysRevLett.48.1066.
url: https://link.aps.org/doi/10.1103/PhysRevLett.48.1066.

[19] P Koch, B Müller, and J Rafelski. “Strangeness in relativistic heavy ion collisions”. In: Physics
Reports 142.4 (1986), pp. 167–262. issn: 0370-1573. doi: https://doi.org/10.1016/0370-
1573(86)90096- 7. url: https://www.sciencedirect.com/science/article/pii/
0370157386900967.

[20] Antonin Maire. “Production des baryons multi-étranges au LHC dans les collisions proton-
proton avec l’expérience ALICE”. Presented 13 Oct 2011. 2011. url: https://cds.cern.
ch/record/1490315.

[21] Johann Rafelski. “Melting hadrons, boiling quarks”. In: The European Physical Journal A
51.9 (Sept. 2015). doi: 10.1140/epja/i2015-15114-0. url: https://doi.org/10.1140%
2Fepja%2Fi2015-15114-0.

[22] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. “A brief introduction to PYTHIA
8.1”. In: Computer Physics Communications 178.11 (June 2008), pp. 852–867. doi: 10.1016/
j.cpc.2008.01.036. url: https://doi.org/10.1016%2Fj.cpc.2008.01.036.

https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://books.google.com.br/books?id=bAjulQ65W-UC
https://books.google.com.br/books?id=bAjulQ65W-UC
https://doi.org/10.1103/PhysRevD.86.010001
http://cds.cern.ch/record/1481544
http://cds.cern.ch/record/1481544
https://arxiv.org/abs/2211.04384
https://arxiv.org/abs/2211.04384
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://www.sciencedirect.com/science/article/pii/S0375947405005294
https://doi.org/10.1103/PhysRevD.10.2445
https://link.aps.org/doi/10.1103/PhysRevD.10.2445
https://link.aps.org/doi/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevLett.48.1066
https://link.aps.org/doi/10.1103/PhysRevLett.48.1066
https://doi.org/https://doi.org/10.1016/0370-1573(86)90096-7
https://doi.org/https://doi.org/10.1016/0370-1573(86)90096-7
https://www.sciencedirect.com/science/article/pii/0370157386900967
https://www.sciencedirect.com/science/article/pii/0370157386900967
https://cds.cern.ch/record/1490315
https://cds.cern.ch/record/1490315
https://doi.org/10.1140/epja/i2015-15114-0
https://doi.org/10.1140%2Fepja%2Fi2015-15114-0
https://doi.org/10.1140%2Fepja%2Fi2015-15114-0
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016%2Fj.cpc.2008.01.036


70

[23] T. Pierog et al. “EPOS LHC: Test of collective hadronization with data measured at the
CERN Large Hadron Collider”. In: Physical Review C 92.3 (Sept. 2015). doi: 10.1103/
physrevc.92.034906. url: https://doi.org/10.1103%2Fphysrevc.92.034906.

[24] Christian Bierlich and Jesper Roy Christiansen. “Effects of color reconnection on hadron
flavor observables”. In: Physical Review D 92.9 (Nov. 2015). doi: 10.1103/physrevd.92.
094010. url: https://doi.org/10.1103%2Fphysrevd.92.094010.

[25] The ALICE Collaboration. “Multi-strange baryon production at mid-rapidity in Pb–Pb col-
lisions at sNN=2.76 TeV”. In: Physics Letters B 728 (2014), pp. 216–227. issn: 0370-2693.
doi: https : / / doi . org / 10 . 1016 / j . physletb . 2013 . 11 . 048. url: https : / / www .
sciencedirect.com/science/article/pii/S0370269313009544.

[26] The ALICE Collaboration. “Multi-strange baryon production in pPb collisions at sNN=5.02 TeV”.
In: Physics Letters B 758 (2016), pp. 389–401. issn: 0370-2693. doi: https://doi.org/
10.1016/j.physletb.2016.05.027. url: https://www.sciencedirect.com/science/
article/pii/S0370269316301745.

[27] The ALICE Collaboration. “Multiplicity dependence of pion, kaon, proton and lambda pro-
duction in p–Pb collisions at sNN=5.02 TeV”. In: Physics Letters B 728 (2014), pp. 25–
38. issn: 0370-2693. doi: https://doi.org/10.1016/j.physletb.2013.11.020. url:
https://www.sciencedirect.com/science/article/pii/S0370269313009234.

[28] The ALICE Collaboration. “Enhanced production of multi-strange hadrons in high-multiplicity
proton–proton collisions”. In: Nature Physics 13 (2017), pp. 535–539. doi: https://doi.
org/10.1038/nphys4111. url: https://www.nature.com/articles/nphys4111.

[29] The ALICE Collaboration. “The ALICE experiment at the CERN LHC”. In: Journal of
Instrumentation 3.08 (Aug. 2008), S08002. doi: 10.1088/1748-0221/3/08/S08002. url:
https://dx.doi.org/10.1088/1748-0221/3/08/S08002.

[30] ALICE: Technical proposal for a Large Ion collider Experiment at the CERN LHC. LHC
technical proposal. Geneva: CERN, 1995. url: https://cds.cern.ch/record/293391.

[31] G Dellacasa et al. ALICE time projection chamber: Technical Design Report. Technical design
report. ALICE. Geneva: CERN, 2000. url: https://cds.cern.ch/record/451098.

[32] Elena Botta. Particle identification performance at ALICE. Particle identification perfor-
mance at ALICE. Tech. rep. 6 pages, 5 figures, Proceeding of the Fifth Annual Conference on
Large Hadron Collider Physics, May 15-20, 2017, Shanghai, Cina. 2017. arXiv: 1709.00288.
url: http://cds.cern.ch/record/2282027.

[33] “Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb
collisions at √

𝑠NN = 5.02 TeV”. In: (2015). url: https://cds.cern.ch/record/2118084.
[34] K. Aamodt et al. “Centrality Dependence of the Charged-Particle Multiplicity Density at

Midrapidity in Pb-Pb Collisions at √
𝑠NN = 2.76 TeV”. In: Phys. Rev. Lett. 106 (3 Jan.

2011), p. 032301. doi: 10.1103/PhysRevLett.106.032301. url: https://link.aps.org/
doi/10.1103/PhysRevLett.106.032301.

https://doi.org/10.1103/physrevc.92.034906
https://doi.org/10.1103/physrevc.92.034906
https://doi.org/10.1103%2Fphysrevc.92.034906
https://doi.org/10.1103/physrevd.92.094010
https://doi.org/10.1103/physrevd.92.094010
https://doi.org/10.1103%2Fphysrevd.92.094010
https://doi.org/https://doi.org/10.1016/j.physletb.2013.11.048
https://www.sciencedirect.com/science/article/pii/S0370269313009544
https://www.sciencedirect.com/science/article/pii/S0370269313009544
https://doi.org/https://doi.org/10.1016/j.physletb.2016.05.027
https://doi.org/https://doi.org/10.1016/j.physletb.2016.05.027
https://www.sciencedirect.com/science/article/pii/S0370269316301745
https://www.sciencedirect.com/science/article/pii/S0370269316301745
https://doi.org/https://doi.org/10.1016/j.physletb.2013.11.020
https://www.sciencedirect.com/science/article/pii/S0370269313009234
https://doi.org/https://doi.org/10.1038/nphys4111
https://doi.org/https://doi.org/10.1038/nphys4111
https://www.nature.com/articles/nphys4111
https://doi.org/10.1088/1748-0221/3/08/S08002
https://dx.doi.org/10.1088/1748-0221/3/08/S08002
https://cds.cern.ch/record/293391
https://cds.cern.ch/record/451098
https://arxiv.org/abs/1709.00288
http://cds.cern.ch/record/2282027
https://cds.cern.ch/record/2118084
https://doi.org/10.1103/PhysRevLett.106.032301
https://link.aps.org/doi/10.1103/PhysRevLett.106.032301
https://link.aps.org/doi/10.1103/PhysRevLett.106.032301


71

[35] J. Adam et al. “Centrality Dependence of the Charged-Particle Multiplicity Density at Midra-
pidity in Pb-Pb Collisions at √

𝑠𝑁𝑁 = 5.02 TeV”. In: Phys. Rev. Lett. 116 (22 June 2016),
p. 222302. doi: 10.1103/PhysRevLett.116.222302. url: https://link.aps.org/doi/
10.1103/PhysRevLett.116.222302.

[36] The ALICE Collaboration. “Centrality dependence of the pseudorapidity density distribution
for charged particles in Pb–Pb collisions at sNN=5.02 TeV”. In: Physics Letters B 772 (2017),
pp. 567–577. issn: 0370-2693. doi: https://doi.org/10.1016/j.physletb.2017.07.017.
url: https://www.sciencedirect.com/science/article/pii/S0370269317305646.

[37] S. Acharya et al. “Production of charged pions, kaons, and (anti-)protons in Pb-Pb and
inelastic 𝑝𝑝 collisions at √

𝑠𝑁𝑁 = 5.02 TeV”. In: Phys. Rev. C 101 (4 Apr. 2020), p. 044907.
doi: 10.1103/PhysRevC.101.044907. url: https://link.aps.org/doi/10.1103/
PhysRevC.101.044907.

[38] Jan Fiete Grosse-Oetringhaus et al. “The ALICE online-offline framework for the extraction
of conditions data”. In: Journal of Physics: Conference Series 219.2 (Apr. 2010), p. 022010.
doi: 10.1088/1742-6596/219/2/022010. url: https://dx.doi.org/10.1088/1742-
6596/219/2/022010.

[39] R Brun, F Rademakers, and S Panacek. “ROOT, an object oriented data analysis frame-
work”. In: (2000). url: https://cds.cern.ch/record/491486.

[40] Danilo Silva De Albuquerque. “Multi-strange hadrons in Pb–Pb collisions at the LHC with
ALICE. Hádrons multi-estranhos em colisões Pb–Pb no LHC com o ALICE”. Presented 16
Aug 2019. Campinas State U., 2019. url: http://cds.cern.ch/record/2690627.

[41] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

[42] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.
arXiv: 1412.6980 [cs.LG].

[43] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016, pp. 785–794. isbn:
978-1-4503-4232-2. doi: 10.1145/2939672.2939785. url: http://doi.acm.org/10.1145/
2939672.2939785.

[44] Ekkard Schnedermann, Josef Sollfrank, and Ulrich Heinz. “Thermal phenomenology of hadrons
from 200A GeV S+S collisions”. In: Phys. Rev. C 48 (5 Nov. 1993), pp. 2462–2475. doi: 10.
1103/PhysRevC.48.2462. url: https://link.aps.org/doi/10.1103/PhysRevC.48.2462.

[45] Daniela M.H. Padilha et al. “Construction of a nomogram for predicting COVID-19 in-
hospital mortality: A machine learning analysis”. In: Informatics in Medicine Unlocked 36
(2023), p. 101138. issn: 2352-9148. doi: https://doi.org/10.1016/j.imu.2022.101138.
url: https://www.sciencedirect.com/science/article/pii/S2352914822002751.

https://doi.org/10.1103/PhysRevLett.116.222302
https://link.aps.org/doi/10.1103/PhysRevLett.116.222302
https://link.aps.org/doi/10.1103/PhysRevLett.116.222302
https://doi.org/https://doi.org/10.1016/j.physletb.2017.07.017
https://www.sciencedirect.com/science/article/pii/S0370269317305646
https://doi.org/10.1103/PhysRevC.101.044907
https://link.aps.org/doi/10.1103/PhysRevC.101.044907
https://link.aps.org/doi/10.1103/PhysRevC.101.044907
https://doi.org/10.1088/1742-6596/219/2/022010
https://dx.doi.org/10.1088/1742-6596/219/2/022010
https://dx.doi.org/10.1088/1742-6596/219/2/022010
https://cds.cern.ch/record/491486
http://cds.cern.ch/record/2690627
https://www.tensorflow.org/
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1103/PhysRevC.48.2462
https://doi.org/10.1103/PhysRevC.48.2462
https://link.aps.org/doi/10.1103/PhysRevC.48.2462
https://doi.org/https://doi.org/10.1016/j.imu.2022.101138
https://www.sciencedirect.com/science/article/pii/S2352914822002751


72

Appendix A

Comparison of transverse momentum
spectra

This appendix presents the comparison of the 𝑝𝑇 spectra for Ξ− + Ξ+ and Ω− + Ω+ obtained
with Machine Learning based methods and the standard analysis in centrality classes form 10%
to 90%, omitted in Chapter 5. All the results are in agreement within uncertainties.

Figure A.1: Comparison of obtained corrected 𝑝𝑇 spectra of Ξ− + Ξ+ in 10-20% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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Figure A.2: Comparison of obtained corrected 𝑝𝑇 spectra of Ξ− + Ξ+ in 20-30% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.

Figure A.3: Comparison of obtained corrected 𝑝𝑇 spectra of Ξ− + Ξ+ in 30-40% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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Figure A.4: Comparison of obtained corrected 𝑝𝑇 spectra of Ξ− + Ξ+ in 40-50% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.

Figure A.5: Comparison of obtained corrected 𝑝𝑇 spectra of Ξ− + Ξ+ in 50-60% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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Figure A.6: Comparison of obtained corrected 𝑝𝑇 spectra of Ξ− + Ξ+ in 60-70% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.

Figure A.7: Comparison of obtained corrected 𝑝𝑇 spectra of Ξ− + Ξ+ in 70-80% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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Figure A.8: Comparison of obtained corrected 𝑝𝑇 spectra of Ξ− + Ξ+ in 80-90% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.

Figure A.9: Comparison of obtained corrected 𝑝𝑇 spectra of Ω− + Ω+ in 10-20% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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Figure A.10: Comparison of obtained corrected 𝑝𝑇 spectra of Ω− + Ω+ in 20-30% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.

Figure A.11: Comparison of obtained corrected 𝑝𝑇 spectra of Ω− + Ω+ in 30-40% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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Figure A.12: Comparison of obtained corrected 𝑝𝑇 spectra of Ω− + Ω+ in 40-50% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.

Figure A.13: Comparison of obtained corrected 𝑝𝑇 spectra of Ω− + Ω+ in 50-60% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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Figure A.14: Comparison of obtained corrected 𝑝𝑇 spectra of Ω− + Ω+ in 60-70% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.

Figure A.15: Comparison of obtained corrected 𝑝𝑇 spectra of Ω− + Ω+ in 70-80% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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Figure A.16: Comparison of obtained corrected 𝑝𝑇 spectra of Ω− + Ω+ in 80-90% centrality class.
Top panel show the spectra of the standard analysis in red, of the neural network in blue and of
the BDT in black. Line error bars are the statistical uncertainties and box errors are the total
systematic uncertainties of each spectra. Bottom panel presents the ratio between the ML based
analysis and the standard analysis.
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Appendix B

Codes developed for the ALICE
framework

Código B.1: AliMachineLearning.h
1 #ifndef AliMachineLearning_H
2 #define AliMachineLearning_H
3 #include <TNamed . h>
4
5 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
6 // TObject to hold Machines
7 // v i r t u a l c l a s s : other s p e c i f i c c l a s s e s w i l l d e r i v e from th i s
8 // but share the i n t e r f a c e !
9 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

10
11 c l a s s AliMachineLearning : public TNamed {
12
13 public :
14 // Simple cons t ruc to r
15 AliMachineLearning ( ) ;
16
17 //TNamed−i n s p i r e d cons t ruc to r
18 AliMachineLearning ( const char ∗ name , const char ∗ t i t l e = "Machine␣Learning " ) ;
19
20 // Simple de s t ruc to r
21 ~AliMachineLearning ( ) ;
22
23 void Clear (Option_t∗ = " " ) {}; //dummy
24
25 virtual void LoadModel ( TString lModelName ) {};
26
27 virtual double Pred ic t (double ∗X, int K) { return 0 . 0 ; } ;
28
29 // v i r t u a l void Pr int (Option_t ∗ opt ion ="") {};
30
31 private :
32 ClassDef ( AliMachineLearning , 1 ) ;
33 } ;
34 #endif
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Código B.2: AliMachineLearning.cxx
1 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
2 // TObject to hold Machines
3 // v i r t u a l c l a s s : other s p e c i f i c c l a s s e s w i l l d e r i v e from th i s
4 // but share the i n t e r f a c e !
5 // This i s a base c l a s s f o r AliNeuralNetwork and AliBDT
6 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
7
8 #include " AliMachineLearning . h "
9 #include <iostream>

10 #include <TROOT. h>
11 using namespace std ;
12
13 ClassImp ( AliMachineLearning ) ;
14
15 //________________________________________________________________
16 AliMachineLearning : : AliMachineLearning ( ) : TNamed( )
17 {
18 // Dummy Constructor − not to be used !
19 }
20
21 //________________________________________________________________
22 AliMachineLearning : : AliMachineLearning ( const char ∗ name , const char ∗ t i t l e ) : TNamed(name , t i t l e )
23 {
24 // TNamed−i n s p i r e d cons t ruc to r
25 }
26
27 //________________________________________________________________
28 AliMachineLearning : : ~ AliMachineLearning ( )
29 {
30 // A bor ing c l a s s . Nothing to d e l e t e .
31 }
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Código B.3: AliNeuralNetwork.h
1 #ifndef AliNeuralNetwork_H
2 #define AliNeuralNetwork_H
3 #include <TNamed . h>
4 #include " AliMachineLearning . h "
5 #include " TFile . h "
6 #include "TH2. h"
7 #include "TH1. h"
8
9 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

10 // TObject to hold Neural Network
11 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
12
13 c l a s s AliNeuralNetwork : public AliMachineLearning {
14
15 public :
16 //Dummy Constructor
17 AliNeuralNetwork ( ) ;
18
19 //Standard Constructor
20 AliNeuralNetwork ( const char ∗ name , const char ∗ t i t l e = " Neural ␣Network " ) ;
21
22 // Simple de s t ruc to r
23 ~AliNeuralNetwork ( ) ;
24
25 // I n t e r f a c e to con f i gu r e parameters o f the machine
26 void LoadModel ( TString lModelName ) ;
27
28 double Pred ic t (double∗ X, int K) ;
29
30 // void Pr int (Option_t ∗ opt ion ="" ) ;
31
32 private :
33
34 //Histograms to s t o r e s i n ap t i c weights o f the Neural Network
35 TH2D∗ fW1 ;
36 TH1D∗ fB1 ;
37
38 TH2D∗ fW2 ;
39 TH1D∗ fB2 ;
40
41 TH2D∗ fW3 ;
42 TH1D∗ fB3 ;
43
44 TH2D∗ fW4 ;
45 TH1D∗ fB4 ;
46
47 TH2D∗ fW5 ;
48 TH1D∗ fB5 ;
49 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50
51 ClassDef ( AliNeuralNetwork , 1)
52 } ;
53 #endif
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Código B.4: AliNeuralNetwork.cxx
1 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
2 // TObject to hold V0 con f i gu r a t i on + r e s u l t s histogram
3 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
4
5 #include <TNamed . h>
6 #include " AliMachineLearning . h "
7 #include " AliNeuralNetwork . h "
8 #include " TFile . h "
9 #include "TH2. h"

10 #include "TH1. h"
11 #include "TMath . h"
12 #include <iostream>
13 #include <TROOT. h>
14 using namespace std ;
15
16 ClassImp ( AliNeuralNetwork ) ;
17 //________________________________________________________________
18 AliNeuralNetwork : : AliNeuralNetwork ( ) : AliMachineLearning ( ) ,
19 fW1(0 ) , fB1 (0 ) , fW2(0 ) , fB2 (0 ) , fW3(0 ) , fB3 (0 ) , fW4(0 ) , fB4 (0 ) , fW5(0 ) , fB5 (0)
20 {
21 // de f au l t const ructor , don ’ t a l l o c a t e memory here !
22 // t h i s i s used by root f o r IO purposes , i t needs to remain empty
23 }
24 //________________________________________________________________
25 AliNeuralNetwork : : AliNeuralNetwork ( const char ∗ name , const char ∗ t i t l e ) : AliMachineLearning (name , t i t l e ) ,
26 fW1(0 ) , fB1 (0 ) , fW2(0 ) , fB2 (0 ) , fW3(0 ) , fB3 (0 ) , fW4(0 ) , fB4 (0 ) , fW5(0 ) , fB5 (0)
27
28 {
29 // Named cons t ruc to r
30
31 }
32
33 //________________________________________________________________
34 /∗
35 AliNeuralNetwork : : AliNeuralNetwork ( const AliNeuralNetwork& lCopyMe , TString lNewName) : AliMachineLearning ( lCopyMe ) ,
36 {
37 SetName( lNewName . Data ( ) ) ;
38 }
39 ∗/
40 //________________________________________________________________
41 AliNeuralNetwork : : ~ AliNeuralNetwork ( )
42 {
43
44 // Proper de s t ruc to r : d e l e t e po in t e r data member
45 i f (fW1){ delete fW1 ; fW1 = 0x0 ;}
46 i f ( fB1 ){ delete fB1 ; fB1 = 0x0 ;}
47 i f (fW2){ delete fW2 ; fW2 = 0x0 ;}
48 i f ( fB2 ){ delete fB2 ; fB2 = 0x0 ;}
49 i f (fW3){ delete fW3 ; fW3 = 0x0 ;}
50 i f ( fB3 ){ delete fB3 ; fB3 = 0x0 ;}
51 i f (fW4){ delete fW4 ; fW4 = 0x0 ;}
52 i f ( fB4 ){ delete fB4 ; fB4 = 0x0 ;}
53 i f (fW5){ delete fW5 ; fW5 = 0x0 ;}
54 i f ( fB5 ){ delete fB5 ; fB5 = 0x0 ;}
55
56 }
57
58 //________________________________________________________________
59 /∗
60 AliNeuralNetwork& AliNeuralNetwork : : operator=(const AliNeuralNetwork& lCopyMe)
61 {
62 i f (&lCopyMe == th i s ) re turn ∗ t h i s ;
63 // Care fu l with names
64 SetName( lCopyMe .GetName ( ) ) ;
65 Se tT i t l e ( lCopyMe . GetTit le ( ) ) ;
66
67 return ∗ t h i s ;
68 }
69 ∗/
70 //________________________________________________________________
71 void AliNeuralNetwork : : LoadModel ( TString lModelName )
72 //Function to load s i n ap t i c weights o f neura l network and s t o r e them in the data members
73 {
74 TFile ∗ FileModel = 0x0 ;
75 FileModel = TFile : : Open( lModelName . Data ( ) ) ;
76
77 //Check ex i s t ence , p l e a s e
78 i f ( ! Fi leModel ) cout << Form( "Cannot␣open␣ requested ␣Model␣ f i l e ␣%s " , lModelName . Data ( ) ) ;
79 i f ( ! FileModel−>IsOpen ( ) ) cout <<Form( "Cannot␣open␣Model␣ f i l e ␣%s " , lModelName . Data ( ) ) ;
80
81 TH2D∗ lW1 = (TH2D∗) FileModel−>Get ( "W1" ) ;
82 i f ( ! lW1) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣W1␣ l aye r " , lModelName . Data ( ) ) ;
83 lW1−>SetName( "W1_to_copy" ) ;
84 fW1 = (TH2D∗) lW1−>Clone ( "W1" ) ;
85
86 TH1D∗ lB1 = (TH1D∗) FileModel−>Get ( "B1" ) ;
87 i f ( ! lB1 ) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣B1␣ l ay e r " , lModelName . Data ( ) ) ;
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88 lB1−>SetName( "B1_to_copy " ) ;
89 fB1 = (TH1D∗) lB1−>Clone ( "B1" ) ;
90
91 TH2D∗ lW2 = (TH2D∗) FileModel−>Get ( "W2" ) ;
92 i f ( ! lW2) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣W2␣ l aye r " , lModelName . Data ( ) ) ;
93 lW2−>SetName( "W2_to_copy" ) ;
94 fW2 = (TH2D∗) lW2−>Clone ( "W2" ) ;
95
96 TH1D∗ lB2 = (TH1D∗) FileModel−>Get ( "B2" ) ;
97 i f ( ! lB2 ) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣B2␣ l ay e r " , lModelName . Data ( ) ) ;
98 lB2−>SetName( "B2_to_copy " ) ;
99 fB2 = (TH1D∗) lB2−>Clone ( "B2" ) ;

100
101 TH2D∗ lW3 = (TH2D∗) FileModel−>Get ( "W3" ) ;
102 i f ( ! lW3) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣W3␣ l aye r " , lModelName . Data ( ) ) ;
103 lW3−>SetName( "W3_to_copy" ) ;
104 fW3 = (TH2D∗) lW3−>Clone ( "W3" ) ;
105
106 TH1D∗ lB3 = (TH1D∗) FileModel−>Get ( "B3" ) ;
107 i f ( ! lB3 ) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣B3␣ l ay e r " , lModelName . Data ( ) ) ;
108 lB3−>SetName( "B3_to_copy " ) ;
109 fB3 = (TH1D∗) lB3−>Clone ( "B3" ) ;
110
111 TH2D∗ lW4 = (TH2D∗) FileModel−>Get ( "W4" ) ;
112 i f ( ! lW4) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣W4␣ l aye r " , lModelName . Data ( ) ) ;
113 lW4−>SetName( "W4_to_copy" ) ;
114 fW4 = (TH2D∗) lW4−>Clone ( "W4" ) ;
115
116 TH1D∗ lB4 = (TH1D∗) FileModel−>Get ( "B4" ) ;
117 i f ( ! lB4 ) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣B4␣ l ay e r " , lModelName . Data ( ) ) ;
118 lB4−>SetName( "B4_to_copy " ) ;
119 fB4 = (TH1D∗) lB4−>Clone ( "B4" ) ;
120
121 TH2D∗ lW5 = (TH2D∗) FileModel−>Get ( "W5" ) ;
122 i f ( ! lW5) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣W5␣ l aye r " , lModelName . Data ( ) ) ;
123 lW5−>SetName( "W5_to_copy" ) ;
124 fW5 = (TH2D∗) lW5−>Clone ( "W5" ) ;
125
126 TH1D∗ lB5 = (TH1D∗) FileModel−>Get ( "B5" ) ;
127 i f ( ! lB5 ) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣B5␣ l ay e r " , lModelName . Data ( ) ) ;
128 lB5−>SetName( "B5_to_copy " ) ;
129 fB5 = (TH1D∗) lB5−>Clone ( "B5" ) ;
130
131
132 fW1−>SetDi rec to ry ( nu l l p t r ) ;
133 fB1−>SetDi rec to ry ( nu l l p t r ) ;
134 fW2−>SetDi rec to ry ( nu l l p t r ) ;
135 fB2−>SetDi rec to ry ( nu l l p t r ) ;
136 fW3−>SetDi rec to ry ( nu l l p t r ) ;
137 fB3−>SetDi rec to ry ( nu l l p t r ) ;
138 fW4−>SetDi rec to ry ( nu l l p t r ) ;
139 fB4−>SetDi rec to ry ( nu l l p t r ) ;
140 fW5−>SetDi rec to ry ( nu l l p t r ) ;
141 fB5−>SetDi rec to ry ( nu l l p t r ) ;
142 FileModel−>Close ( ) ;
143 }
144
145 //________________________________________________________________
146 double AliNeuralNetwork : : Pred ic t (double∗ X, int K)
147 //Function to return neura l network p r ed i c t i on
148 {
149
150 i f ( ! fW1 | | ! fB1 | | ! fW2 | | ! fB2 | | ! fW3 | | ! fB3 | | ! fW4 | | ! fB4 | | ! fW5 | | ! fB5 )
151 {
152 cout << "Can␣not␣ Pred ic t : ␣One␣ or ␣more␣ o f ␣ the ␣NN␣ l ay e r s ␣ are ␣empty ! " << endl ;
153 return ( 0 ) ;
154 }
155
156 //PERFORM FORWARD FUNCTION THROUGH NEURAL NETWORK
157
158 //1 s t : [ 1 ] [K] x [K] [ 2 5 6 ] = [ 1 ] [ 2 5 6 ]
159 double v1 [ 2 5 6 ] = {0};
160 for ( Int_t j =0; j <256; j++)
161 {
162 //Layer product
163 for ( Int_t k=0; k<K; k++)
164 v1 [ j ] += X[ k ]∗ fW1−>GetBinContent (k+1, j +1);
165 //Bias sum
166 v1 [ j ]+=fB1−>GetBinContent ( j +1);
167 // Act ivat ion func t i on : Sigmoid
168 v1 [ j ] = 1.0/(1 .0+TMath : : Exp(−1.0∗v1 [ j ] ) ) ;
169 }
170
171 //2nd : [ 1 ] [ 2 5 6 ] x [ 2 5 6 ] [ 6 4 ] = [ 1 ] [ 6 4 ]
172 double v2 [ 6 4 ] = {0};
173 for ( Int_t j =0; j <64; j++)
174 {
175 //Layer product
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176 for ( Int_t k=0; k<256; k++)
177 v2 [ j ] += v1 [ k ]∗ fW2−>GetBinContent (k+1, j +1);
178 //Bias sum
179 v2 [ j ]+=fB2−>GetBinContent ( j +1);
180 // Act ivat ion func t i on : Sigmoid
181 v2 [ j ] = 1.0/(1 .0+TMath : : Exp(−1.0∗v2 [ j ] ) ) ;
182 }
183
184 //3 rd : [ 1 ] [ 6 4 ] x [ 6 4 ] [ 1 6 ] = [ 1 ] [ 1 6 ]
185 double v3 [ 1 6 ] = {0};
186 for ( Int_t j =0; j <16; j++)
187 {
188 //Layer product
189 for ( Int_t k=0; k<64; k++)
190 v3 [ j ] += v2 [ k ]∗ fW3−>GetBinContent (k+1, j +1);
191 //Bias sum
192 v3 [ j ]+=fB3−>GetBinContent ( j +1);
193 // Act ivat ion func t i on : Sigmoid
194 v3 [ j ] = 1.0/(1 .0+TMath : : Exp(−1.0∗v3 [ j ] ) ) ;
195 }
196
197 //4 th : [ 1 ] [ 1 6 ] x [ 1 6 ] [ 4 ] = [ 1 ] [ 4 ]
198 double v4 [ 4 ] = {0};
199 for ( Int_t j =0; j <4; j++)
200 {
201 //Layer product
202 for ( Int_t k=0; k<16; k++)
203 v4 [ j ] += v3 [ k ]∗ fW4−>GetBinContent (k+1, j +1);
204 //Bias sum
205 v4 [ j ]+=fB4−>GetBinContent ( j +1);
206 // Act ivat ion func t i on : Sigmoid
207 v4 [ j ] = 1.0/(1 .0+TMath : : Exp(−1.0∗v4 [ j ] ) ) ;
208 }
209
210 //5 th : [ 1 ] [ 4 ] x [ 4 ] [ 1 ] = [ 1 ] [ 1 ]
211 double v5 = 0 ;
212 //Layer product
213 for ( Int_t k=0; k<4; k++)
214 v5 += v4 [ k ]∗ fW5−>GetBinContent (k+1 ,1) ;
215 //Bias sum
216 v5+=fB5−>GetBinContent ( 1 ) ;
217 // Act ivat ion func t i on : Sigmoid
218 v5 = 1.0/(1 .0+TMath : : Exp(−1.0∗v5 ) ) ;
219
220 return ( v5 ) ;
221 }
222
223 //________________________________________________________________
224 /∗
225 void AliNeuralNetwork : : Pr int (Option_t ∗ opt ion ="")
226 {
227 cout<<"========================================"<<endl ;
228 cout<<" AliNeuralNetwork Conf igurat ion "<<endl ;
229 cout<<"========================================"<<endl ;
230
231 return ;
232 }
233 ∗/
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Código B.5: AliBDT.h
1 #ifndef AliBDT_H
2 #define AliBDT_H
3 #include <TNamed . h>
4 #include " AliMachineLearning . h "
5 #include " TFile . h "
6 #include "TH1. h"
7
8 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
9 // TObject to hold Boosted Dec i s ion Trees

10 //+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
11
12 c l a s s AliBDT : public AliMachineLearning {
13
14 public :
15 //Dummy Constructor
16 AliBDT ( ) ;
17
18 //Standard Constructor
19 AliBDT( const char ∗ name , const char ∗ t i t l e = "BDT" ) ;
20
21 // Simple de s t ruc to r
22 ~AliBDT ( ) ;
23
24 // I n t e r f a c e to con f i gu r e parameters o f the machine
25 void LoadModel ( TString lModelName ) ;
26
27 double Pred ic t (double∗ X, int K) ;
28
29 // void Pr int (Option_t ∗ opt ion ="" ) ;
30
31 private :
32
33 //Histograms to s t o r e BDT parameters
34 TH1I∗ fFt ; // Feature to a v a l i a t e
35 TH1D∗ fSoS ; // Sp l i t o f corresponding Feature or Score on the l e a f
36 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37
38 ClassDef (AliBDT , 1)
39 } ;
40 #endif
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Código B.6: AliBDT.cxx
1 #include <TNamed . h>
2 #include " AliMachineLearning . h "
3 #include "AliBDT . h"
4 #include " TFile . h "
5 #include "TH1. h"
6 #include "TMath . h"
7 #include <iostream>
8 #include <TROOT. h>
9 using namespace std ;

10
11 ClassImp (AliBDT ) ;
12 //________________________________________________________________
13 AliBDT : : AliBDT() : AliMachineLearning ( ) ,
14 fFt (0 ) , fSoS (0)
15 {
16 // de f au l t const ructor , don ’ t a l l o c a t e memory here !
17 // t h i s i s used by root f o r IO purposes , i t needs to remain empty
18 }
19 //________________________________________________________________
20 AliBDT : : AliBDT( const char ∗ name , const char ∗ t i t l e ) : AliMachineLearning (name , t i t l e ) ,
21 fFt (0 ) , fSoS (0)
22
23 {
24 // Named cons t ruc to r
25
26 }
27
28 //________________________________________________________________
29 /∗
30 AliBDT : : AliBDT( const AliBDT& lCopyMe , TString lNewName) : AliMachineLearning ( lCopyMe ) ,
31 {
32 SetName( lNewName . Data ( ) ) ;
33 }
34 ∗/
35 //________________________________________________________________
36 AliBDT : : ~ AliBDT()
37 {
38
39 // Proper de s t ruc to r : d e l e t e po in t e r data member
40 i f ( fFt ){ delete fFt ; fFt = 0x0 ;}
41 i f ( fSoS ){ delete fSoS ; fSoS = 0x0 ;}
42 }
43
44 //________________________________________________________________
45 /∗
46 AliBDT& AliBDT : : operator=(const AliBDT& lCopyMe)
47 {
48 i f (&lCopyMe == th i s ) re turn ∗ t h i s ;
49 // Care fu l with names
50 SetName( lCopyMe .GetName ( ) ) ;
51 Se tT i t l e ( lCopyMe . GetTit le ( ) ) ;
52
53 return ∗ t h i s ;
54 }
55 ∗/
56 //________________________________________________________________
57 void AliBDT : : LoadModel ( TString lModelName )
58 //Function to load s i n ap t i c weights o f neura l network and s t o r e them in the data members
59 {
60 TFile ∗ FileModel = 0x0 ;
61 FileModel = TFile : : Open( lModelName . Data ( ) , "READ" ) ;
62
63 //Check ex i s t ence , p l e a s e
64 i f ( ! Fi leModel ) cout << Form( "Cannot␣open␣ requested ␣Model␣ f i l e ␣%s " , lModelName . Data ( ) ) ;
65 i f ( ! FileModel−>IsOpen ( ) ) cout <<Form( "Cannot␣open␣Model␣ f i l e ␣%s " , lModelName . Data ( ) ) ;
66
67 TH1I∗ lFt = (TH1I∗) FileModel−>Get ( " FeatureIndex " ) ;
68 i f ( ! lFt ) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣data␣member" , lModelName . Data ( ) ) ;
69 lFt−>SetName( " FeatureIndex_to_copy " ) ;
70 fFt = (TH1I∗) lFt−>Clone ( " FeatureIndex " ) ;
71
72 TH1D∗ lSoS = (TH1D∗) FileModel−>Get ( " Spl it_or_Score " ) ;
73 i f ( ! lSoS ) cout << Form( " F i l e ␣%s␣does ␣note ␣ conta in ␣ va l i d ␣data␣member" , lModelName . Data ( ) ) ;
74 lSoS−>SetName( " Split_or_Score_to_copy " ) ;
75 fSoS = (TH1D∗) lSoS−>Clone ( " Spl it_or_Score " ) ;
76
77 fFt−>SetDi rec to ry ( nu l l p t r ) ;
78 fSoS−>SetDi rec to ry ( nu l l p t r ) ;
79 FileModel−>Close ( ) ;
80 }
81
82 //________________________________________________________________
83 double AliBDT : : Pred ic t (double∗ X, int Nt)
84 //Function to return BDT pr ed i c t i on
85 //Nt = number o f t r e e s
86 {
87



89

88 i f ( ! fFt | | ! fSoS )
89 {
90 cout << "Can␣not␣ Pred ic t : ␣One␣ or ␣more␣ o f ␣ the ␣data␣members␣ are ␣empty ! " << endl ;
91 return ( 0 ) ;
92 }
93
94 //PERFORM FORWARD FUNCTION THROUGH BDT
95
96 double P = 0 . 0 ;
97
98 int nodes = int ( fFt−>GetNbinsX ()/Nt ) ; // nodes per t r e e = 2^( tree_depth + 1) − 1
99

100 for ( int i =0; i<Nt ; i++)
101 {
102 // booste r i s t r u c tu r e
103 int Lidx = 1 ; // l o c a l index o f a node in each t r e e [ 1 , nodes ]
104 int Gidx = ( nodes∗ i )+Lidx ; // g l oba l index o f a node in Nt t r e e s
105
106 while ( Lidx < ( nodes+1)/2 )
107 {
108 i f ( X[ int ( fFt−>GetBinContent (Gidx ) ) ] < fSoS−>GetBinContent (Gidx ) ) Lidx = 2∗Lidx ;
109
110 e l s e Lidx = 2∗Lidx+1;
111
112 Gidx = ( nodes∗ i )+Lidx ;
113 }
114
115 //Sum l e a f s co r e
116 P += fSoS−>GetBinContent (Gidx ) ;
117 }
118
119 /∗
120 //100 boos t e r s
121 f o r ( i n t i =0; i <100; i++)
122 {
123 //Booster v a r i a b l e s
124 in t idx0 = in t ( fFt−>GetBinContent ( (7∗ i )+1) ) ;
125 double Sp l i t 0 = fSoS−>GetBinContent ( (7∗ i )+1);
126
127 in t idx1 = in t ( fFt−>GetBinContent ( (7∗ i )+1+1) ) ;
128 double Sp l i t 1 = fSoS−>GetBinContent ( (7∗ i )+1+1);
129
130 in t idx2 = in t ( fFt−>GetBinContent ( (7∗ i )+2+1) ) ;
131 double Sp l i t 2 = fSoS−>GetBinContent ( (7∗ i )+2+1);
132
133 //3 to 6 should be l e av e s
134 in t idx3 = in t ( fFt−>GetBinContent ( (7∗ i )+3+1) ) ;
135 double Score3 = fSoS−>GetBinContent ( (7∗ i )+3+1);
136
137 in t idx4 = in t ( fFt−>GetBinContent ( (7∗ i )+4+1) ) ;
138 double Score4 = fSoS−>GetBinContent ( (7∗ i )+4+1);
139
140 in t idx5 = in t ( fFt−>GetBinContent ( (7∗ i )+5+1) ) ;
141 double Score5 = fSoS−>GetBinContent ( (7∗ i )+5+1);
142
143 in t idx6 = in t ( fFt−>GetBinContent ( (7∗ i )+6+1) ) ;
144 double Score6 = fSoS−>GetBinContent ( (7∗ i )+6+1);
145
146 i f ( idx3+idx4+idx5+idx6 !=−4)
147 cout << " somethin i s wrong with a l e a f ! " << endl ;
148
149 // booste r i s t r u c tu r e
150 i f ( X[ idx0 ]< Sp l i t 0 )
151 {
152 //0 : yes
153 i f (X[ idx1 ]< Sp l i t 1 )
154 //1 : yes
155 P+=Score3 ;
156 e l s e
157 //1 : no
158 P+=Score4 ;
159 }
160 e l s e
161 {
162 //0 : no
163 i f (X[ idx2 ]< Sp l i t 2 )
164 //2 : yes
165 P+=Score5 ;
166 e l s e
167 //2 : no
168 P+=Score6 ;
169 }
170 }
171 ∗/
172 P = 1.0/(1 .0+TMath : : Exp(−1.0∗P) ) ;
173
174 return (P) ;
175 }
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176
177 //________________________________________________________________
178 /∗
179 void AliBDT : : Pr int (Option_t ∗ opt ion ="")
180 {
181 cout<<"========================================"<<endl ;
182 cout<<" AliBDT Conf igurat ion "<<endl ;
183 cout<<"========================================"<<endl ;
184
185 return ;
186 }
187 ∗/
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