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ABSTRACT. This paper presents the evaluation of a daily inflow forecasting model using a tool that facili-

tates the analysis of mathematical models for hydroelectric plants. The model is based on a Fuzzy Inference

System. An offline version of the Expectation Maximization algorithm is employed to adjust the model pa-

rameters. The tool integrates different inflow forecasting models into a single physical structure. It makes

uniform and streamlines the management of data, prediction studies, and presentation of results. A case

study is carried out using data from three Brazilian hydroelectric plants of the Parana basin, Tiete River,

in southern Brazil. Their activities are coordinated by Operator of the National Electric System (ONS) and

inspected by the National Agency for Electricity (ANEEL). The model is evaluated considering a multi-step

ahead forecasting task. The graphs allow a comparison between observed and forecasted inflows. For sta-

tistical analysis, it is used the mean absolute percentage error, the root mean square error, the mean absolute

error, and the mass curve coefficient. The results show an adequate performance of the model, leading to a

promising alternative for daily inflow forecasting.

Keywords: inflow forecasting, hydroelectric plants, fuzzy inference systems.

1 INTRODUCTION

Hydroelectric operation planning is important even in countries with wide availability of wa-

ter resources. For example, Brazil has more than 140 hydroelectric plants that contribute al-
most 80% of its power generation capacity. Despite the large hydroelectric potential, in 2001 the
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reservoir levels decreased and forced the Brazilian population to reduce their energy consump-

tion (ANEEL, 2008).

In this context, an important activity is the inflow forecast. It is fundamental to the planning of
the water and energy resources of a system. It is important to have accurate estimates of the vari-
ables involved in the hydroelectric planning so that computational models, used for optimization

and simulation of the system, provide reliable results (Hidalgo et al., 2012, 2014; ONS, 2010;
Lopes, 2007).

A considerable amount of research has been conducted in order to formulate models that aim to
improve the quality of the predicted inflows. In general, these models are assigned to one of two

broad categories: conceptual or parametric.

Conceptual models require a large amount of high-quality data associated with geographical,
hydrological, and meteorological characteristics. Parametric models use mathematical functions
to relate meteorological variables to inflow (Coulibaly et al., 2005; Dawson & Wilby, 2001).

They do not require a detailed understanding of the basin’s physical characteristics (Zhang et
al., 2009).

Regarding the used technique, the models can be deterministic, stochastics, statistics, neural
networks or fuzzy systems. Soil Moisture Accounting Procedure (SMAP) is an example of de-

terministic conceptual model. It considers the basin’s physical processes to represent the vari-
ables (Lopes et al., 1982). Stochastic models employ the concept of probability for occurrence of
the inflows. As example can be cited the linear stochastic model named MEL (ANEEL, 2007).

Linear regression is a statistic technique used in some researches, such as in Souza Filho &
Lall (2004).

Neural networks and fuzzy systems are versatile tools as they can be applied to several time
series problems. They are employed in situations where it is difficult to determine the physical

process or when it is not possible to obtain a mathematical representation of the process (Bowden
et al., 2005). They always yield some answer even when the input information is not complete.
Neural Networks and fuzzy systems models can process non-linear problems and complex data.

Therefore, they are interesting for forecasting of hydrological data.

In D’Angelo et al. (2011) a Kohonen neural network is used to find the best centers of time
series to be used in fuzzyfication process; in Melo et al. (2007) it is applied to predict the daily
and monthly sugar price. Wong et al. (2010) present a novel adaptive neural network to predict

periodical time series with a complicated structure.

Concerning inflow forecasting, Nayak et al. (2004) present the application of an Adaptive Neuro
Fuzzy Inference System (ANFIS) for modeling of hydrologic time series. The results show that
the forecasted flow series preserve the statistical properties of the original flow series.

Bravo et al. (2009) present the performance of two medium-range streamflow forecast models: a

multilayer feed-forward Artificial Neural Network (ANN) and a distributed hydrological model.
According to them, the ANN model seems to be less sensitive to precipitation error than the

Pesquisa Operacional, Vol. 37(1), 2017
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hydrological model. However, the hydrological model demonstrates a better forecasting skill

than the ANN model for longer lead times.

In Zambelli et al. (2009), an offline Fuzzy Inference System (FIS) is used for inflow forecasting.
The annual inflows are disaggregated into monthly samples and used for long-term hydropower
scheduling. The use of this tool for daily or hourly forecasting may be an interesting alternative

that complements time series analysis for inflow modeling, usually performed in hydroinformat-
ics via physical and conceptual models (Luna et al., 2009).

Luna et al. (2009) presents Takagi-Sugeno (TS)-FIS and Soil Moisture Accounting Procedure
(SMAP) models applied for Parana river basin. In this paper, TS-FIS model uses a bottom up

approach and the parameters are adapted by an online version of the Expectation Maximiza-
tion (EM) algorithm (Jacobs et al., 1991). The objective in this paper is to compare the results
of TS-FIS and SMAP carried out separately with the results of a combination of the two models

(TS-FIS + SMAP).

Given the importance of inflow forecasting for hydropower generation systems, this paper
presents an evaluation of TS-FIS model, previously presented by Luna et al. 2009. In the new
version, TS-FIS model is embedded in a computational tool that makes uniform and stream-

lines the management of data, prediction studies, and presentation of results. An offline ver-
sion of the EM optimization is employed to adapt the FIS parameters. The relationship between
dependent and independent variables is established during the learning process using linguistic

propositions (rules). In order to improve results, the proposed FIS model uses as rainfall vari-
able the accumulated precipitation of the last days. The number of considered days is chosen by
maximizing the correlation coefficients between observed runoff and accumulated precipitation

during those days. The forecasting studies are carried out for three hydroelectric plants: Nova
Avanhandava (NAV), Bariri (BAR), and Barra Bonita (BBO). The results are compared with
PREVIVAZ and MLRM models. The objective is to increase the quality of the forecasted water

inflow, contributing to the choice of an operational policy that meets demand in an economical
and safe way.

2 FUZZY MODEL

The model uses the first order TS-FIS (Takagi & Sugeno, 1985). In order to increase the clarity

of this paper, a general description of the model structure is presented.

2.1 General Structure

Figure 1 shows the general structure of the model. It consists of the input vector, input space
partition, rule base, and model’s output.

The input vector at instant time k is denoted as xk =
[

xk
1 , xk

2 , . . . , xk
p

]
∈ Rp, with k ∈ Z+

0 . The

input space represented by xk ∈ Rp is partitioned into M sub-regions, each one represented by a
fuzzy rule. Each input pattern has a membership degree associated with each region of the input

Pesquisa Operacional, Vol. 37(1), 2017
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Figure 1 – General structure of the model.

space partition. This is calculated through membership functions gi (xk) that vary according to
centers and covariance matrices related to the fuzzy partition, and are computed by:

gi(x
k ) = gk

i = αi · P[i ∣∣xk ]∑M
q=1 αq · P[q ∣∣xk ] (1)

where αi are positive coefficients satisfying
∑M

i=1 αi = 1 and P[i ∣∣xk ] is defined according to:

P[i
∣∣∣xk ] = 1

(2π)p/2 det(Vi )1/2
exp

{
−1

2
(xk − ci )V

−1
i (xk − ci )

T
}

(2)

where det(·) is the determinant function.

The antecedents of each fuzzy If-Then rule (Ri ) are represented by their respective centers ci ∈
R

p and covariance matrices Vi |p×p. The consequents are represented by local linear models
with outputs yi , i = 1, . . . , M defined by:

yk
i = ∅

k · θT
i (3)

where ∅k = [1 xk
1 xk

2 . . . xk
p]; θi = [θi0 θi1 θip ] is the coefficient vector of the local linear model

related to the i-th rule.

Pesquisa Operacional, Vol. 37(1), 2017
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The model output y(k) = ŷk , which represents the predicted value for future time instant k, is

calculated by means of a non-linear weighted averaging of local outputs yk
i and its respective

membership degrees gk
i , i.e.:

ŷ(xk ) = ŷk =
M∑

i=1

gk
i yk

i (4)

2.2 Optimization Algorithm

The proposed methodology suggests the use of the offline EM algorithm for the optimization of
the FIS parameters. This algorithm has been used for the optimization of several models based
on computational intelligence (Luna et al., 2011; Lazaro et al., 2003).

First, the FIS structure is initialized. In order to define the number of rules M to codify in the

model structure, the unsupervised Subtractive (SC) algorithm (Chiu, 1994) is used over the input-
output training data set. Initial values for spreads codified in the covariance matrix are the same
used by the SC algorithm. Therefore, the FIS structure is initialized as follows:

• c0
i = ψ0

i |1...p where ψ0
i |1...p is composed of the first p components of the i-th center

found by the SC algorithm;

• σ 0
i = 1.0;

• θ0
i = [ψ0

i |p+10 . . . 0]1×p+1, where ψ0
i |p+1 is the p + 1-th component of the 1-th center

found by the SC algorithm;

• V 0
i = 10−4 I , where I is a p × p identity matrix;

• α0
i = 1/M .

After the initialization, the model parameters are readjusted on the basis of the offline EM algo-
rithm (Luna & Ballini, 2011). The objective is to maximize the log-likelihood of the observed
values of yk at each M step of the learning process. This objective function is defined by:

£(D, �) =
N∑

k=1

ln

(
M∑

i=1

gi(x
k ,C) × P(yk

∣∣∣xk, θi )

)
(5)

where D = {xk , yk |k = 1, . . . , N }, � contains all model parameters, and C contains just the
antecedent parameters (centers and covariance matrices). However, for maximizing £(D, �), it

is necessary to estimate the missing data hk
i during the E step. This missing data, according to

mixture of experts theory, is known as the posterior probability that xk belong to the active region
of the i-th local model.

When the EM algorithm is adapted for adjusting fuzzy systems, hk
i may also be interpreted as a

posterior estimate of membership functions defined by Eq. (2). Thus, hk
i is calculated as:

hk
i = αi P(i

∣∣xk )P(yk
∣∣xk , θi )∑M

q=1 αq P(q
∣∣xk )P(yk

∣∣xk, θq )
(6)

Pesquisa Operacional, Vol. 37(1), 2017
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for i = 1, . . . , M . These estimates are referred to as “posterior”, because these are calcu-

lated assuming yk , k = 1, . . . , N as known. Moreover, conditional probability P(yk
∣∣xk, θi ) is

defined by:

P(yk
∣∣∣xk, θi ) = 1√

2πσ 2
i

exp

(
−[yk − yk

i ]2

2σ 2
i

)
(7)

with σ 2
i estimated as:

σ 2
i =

(
N∑

k=1

hk
i [yk − yk

i ]2

)/ N∑
k=1

hk
i (8)

Hence, the EM algorithm for determining FIS parameters can be summarized as:

1. E step: Estimate hk
i via Eq. (6);

2. M step: Maximize Eq. (5) and update model parameters, with optimal values calculated

as:

αi = 1

N

N∑
k=1

hk
i (9)

ci =
(

N∑
k=1

hk
i xk

)/ N∑
k=1

hk
i (10)

Vi =
(

N∑
k=1

hk
i (x

k − ci )
′(xk − ci )

)/ N∑
k=1

hk
i (11)

for i = 1, . . . , M , where M is the size of the fuzzy rule base, N is the number of input-
output patterns at the training set. For all these equations, Vi was considered as a positive

diagonal matrix, as an alternative to simplify the problem and avoid infeasible solutions.
An optimal solution for θi is derived by solving the following equation:

N∑
k=1

hk
i

σ 2
i

(yk −∅k · θi ) ·∅k = 0 (12)

where αi is the standard deviation for each local output yi , i = 1, . . . , M , with σ 2
i defined

by Eq. (8). After the adjustment of parameters, calculate the new value for £(D, �).

3. If convergence is achieved, then stop the process, else return to step 1.

As noticed, for maximizing £, it is necessary to know the data distribution. Due to the lack

of knowledge of the real distribution of precipitation and inflow data, the model is adjusted
assuming a normal distribution of the observed records.

Pesquisa Operacional, Vol. 37(1), 2017
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3 TOOL

The tool utilized for evaluation integrates different models of inflow forecasting in a single physi-
cal structure. It was created to facilitate the analysis of models developed to predict water inflows.

Details about this tool can be found at Hidalgo et al. (2015).

Figure 2 presents the physical structure of the tool. It consists of a database, an interface, a set
of text files, and a specific module of advanced queries (queries builder, statistical analysis, and
graphical analysis).

The “Database” module stores the input general data for the models, such as: observed inflow

and observed/predicted rainfall. It holds data since 01/01/2000. Inflow data were supplied by
AES-Tiete Company (AES-Tiete, 2016), while rainfall data were provided by Somar Company
(SOMAR, 2016). The models from Somar Company are based on mathematical and physical

formulas. From an initial situation (current condition of the atmosphere), several meteorological
variables are simulated for a given time interval. The models run with gridded information by
interpolating the data. A specialist program indicates an average rainfall amount for certain re-

gion, considering the four nearest grid points. The uncertainties of the input data are managed by
TS-FIS model since it is based on fuzzy rules. According to Jimoh et al. (2013) fuzzy models can
be applied to problems with vague, ambiguous, qualitative, incomplete or imprecise information.

The set of “Text Files” contains specific information for a study. Data that characterizes the

study, coefficients used by the model for the study, and input/output data of the study are exam-
ples of specific information for a study.

The “Queries Builder” allows the analysis of the database contents without technical knowledge
of the Structured Query Language and/or the relationship among the database tables. The module

automatically creates a specific SQL command for extracting the information from the database.

The “Statistical Analysis” module shows the numerical results on a grid. If the study is applied to
a past period, the Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mass Curve Coefficient (E) between observed and predicted

inflows are calculated.

Through the “Graphical Analysis” module, the tool allows the visualization of the predicted
inflows’ trajectory. Still in the graphical analysis, the tool presents the precipitations graph close
to the inflows graph. This facilitates the evaluation of the forecasted results as a function of

the rainfall in the period.

4 CASE STUDY

The case study considers three hydroelectric plants of the Parana basin, Tiete River, in southern

Brazil. The hydroelectric plants are Nova Avanhandava (NAV), Bariri (BAR), and Barra Bonita
(BBO). The first two are run-of-river plants and the latter is a plant with reservoir of accumula-
tion. A continuous period of three years (from 01/01/2005 to 12/31/2007) of rainfall data was
collected.

Pesquisa Operacional, Vol. 37(1), 2017
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Figure 2 – General structure of the tool for management of inflow forecasting studies (Hidalgo et al., 2015).

In the first step, the queries builder was used to extract information from the database related
to the time series. Table 1 shows the maximum, minimum, mean, and standard deviation values
of inflow (m3/s) and rainfall (mm/day) for the three hydroelectric plants. As can be seen, NAV
presents the highest inflow values, followed by BAR and BBO. On the other hand, the average

rainfall is lower in NAV than in the other two hydro plants.

Table 1 – Statistical analysis of used data provided by the queries builder.

Plant
Inflow (m3/s) Rainfall (mm/day)

Max. Min. Mean S. Dev. Max. Min. Mean S. Dev.

NAV 3707 218 728 505 115 0 3.92 9.80

BAR 2561 116 483 353 63 0 3.96 9.07

BBO 2336 92 432 331 92 0 4.20 8.64

For building input patterns, past and future precipitation information and past inflow data are

considered. Therefore, a general input pattern is defined as:

xk = [
xk

1 , xk
2 , . . . , xk

p

] = [
rk

1 , r
k
2 , . . . , r

k
a , sk

1 , sk
2 , . . . , sk

b

]
(13)

where a ∈ Z
+ indicates the number of components of the input vector containing past and

future rainfall information represented by r, and b ∈ Z+ represents the number of input vector
terms containing past inflow records represented by s, with p = a + b. It means that if we

are forecasting the streamflow for time instant k, rainfall terms composing the input patterns
will consider the last a − 1 accumulated B days rainfall lags, the expected accumulated B days
rainfall for instant k, as well as the last b inflows recorded up to k − 1 as input variables. For

the next h steps ahead, forecasted inflows and rainfall will be necessary. Figure 3 shows a signal
flow diagram for the mapping of time-series into input space, considering a = 5 and b = 3.

With the purpose of improving the explanatory power of the rainfall time series for each hydro
plant, the FIS model uses as rainfall variable the accumulated precipitation of the last B days,

where B is selected by maximizing the correlation coefficients between observed runoff and
accumulated precipitation during those B days. Optimal B values for all the three inflow time
series as well as correlation coefficient achieved are presented in Table 2.

Pesquisa Operacional, Vol. 37(1), 2017
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Figure 3 – Signal flow diagram.

Table 2 – Optimal B values, correlation co-
efficients, and lags for buildinginput patterns

considering rainfall and runoff information.

Plant B Correlation a b

NAV 6 0.73 4 3

BAR 5 0.74 5 3

BBO 4 0.76 5 1

Table 2 also shows the number of lags a and b considered as input variables for modeling each

model. These numbers of lags were selected by maximizing the model performance for a multi-
step ahead daily inflow forecasting task, with time horizon varying from one to twelve days
ahead. As observed, in the case of runoff (b), the first three lags of NAV and BAR and the first

one of BBO were considered as input variables. In the case of accumulated precipitation, the
lags considered varied from 4 to 6 days.

After input-output patterns are built, data set is normalized to the unit interval and then split up
in two subsets: a training data set and a testing data set. The training data set was composed by

the first two years of historical data, whereas the testing data set was composed by the last one.
Initial spreads for the SC algorithm (r2

a ) was equal to 1.25.

Pesquisa Operacional, Vol. 37(1), 2017
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5 ANALYSIS OF RESULTS

In this section, two components of the advanced queries module were utilized: statistical and
graphical analysis. The first was employed to evaluate the performance of the hydrologic models

using the following metrics: MAPE, RMSE, MAE, and E . The second component was used to
facilitate the visual comparison between observed and predicted inflows.

The statistics are given for a forecasting horizon h varying from 1, . . . , 12 months. Since FIS
provides a different forecasted trajectory for each time instant, columns 2 to 13 present average

errors of the last 353 predicted trajectories from one to twelve steps ahead.

Figure 4 shows the MAPE between observed and forecasted inflows for NAV, BAR, and BBO
from 01/01/2007 to 12/31/2007, for one to up to twelve days ahead multi-step forecasting task.
The worst performance in terms of MAPE was obtained by the BBO plant. The NAV plant

presented the lowest MAPE. However, since this metric is a relative index, it is necessary to
consider at least another absolute performance metric, as follows.

Figure 4 – MAPE values for NAV, BAR, and BBO.

Table 3 shows the RMSE and MAE between observed and forecasted inflows for the same set of

plants and the same time period, for h = 1, . . . , 12. Considering the RMSE, the BBO plant
presents better results than both the NAV and the BAR from the third month on. Likewise,
the BBO plant outperforms NAV and BAR from the fourth month onwards regarding MAE.

It means that the BBO plant achieved, on average, better results than NAV and BAR for RMSE
and MAE. The highest values are presented by the NAV plant, which is expected due to the
inflow levels.

The next performance metric is known as Mass Curve Coefficient (E). It is defined by Eq. (14):

E =
∑N

k=1(y
k − ȳ)2 −∑N

k=1(y
k − ŷ)2∑N

k=1(y
k − ȳ)2

(14)

where ȳ is the observed mean inflow. The first sum in the numerator denotes the total Square

Error (SE) achieved – assuming as forecast inflow the historical mean for all k. The second sum

Pesquisa Operacional, Vol. 37(1), 2017
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Table 3 – RMSE and MAE values for NAV, BAR, and BBO.

Plant
Horizon (h) – months

1 2 3 4 5 6 7 8 9 10 11 12

Root Mean Square Error (RMSE) – m3/s

NAV 4.40 7.34 9.44 10.81 11.70 12.29 12.67 12.94 13.10 13.21 13.27 13.31

BAR 3.67 5.76 7.18 8.06 8.60 8.92 9.04 9.04 9.01 8.96 8.92 8.87

BBO 5.06 6.20 7.00 7.55 7.94 8.13 8.19 8.19 8.18 8.16 8.14 8.13

Mean Absolute Error (MAE) – m3/s

NAV 36.09 60.77 81.89 98.06 110.28 119.91 126.86 132.08 135.77 138.63 140.80 142.29

BAR 37.57 55.75 69.85 80.16 87.25 91.96 94.94 96.71 97.93 98.94 99.73 100.39

BBO 51.40 62.07 70.26 76.27 80.67 83.72 85.85 87.44 88.73 89.74 90.57 91.29

represents the SE achieved by the evaluated model (FIS). Therefore, the closer E is to the unity,
the better the model is, since the respective SE will be lower than the SE given by the mean.

Table 4 shows the E values, again, for the same set of plants and the same time period. Regarding

explanatory power, the FIS presented a Mass Curve Coefficient (E) varying from 82% to 98%
for NAV, 79% to 97% for BAR, and 79% to 93% for BBO.

Table 4 – E values for NAV, BAR, and BBO.

Plant
Horizon (h) – months

1 2 3 4 5 6 7 8 9 10 11 12

Mass Curve Coefficient (E)

NAV 0.98 0.95 0.92 0.89 0.88 0.86 0.85 0.84 0.84 0.83 0.83 0.82

BAR 0.97 0.93 0.89 0.86 0.84 0.82 0.81 0.81 0.80 0.80 0.80 0.79

BBO 0.93 0.90 0.87 0.85 0.83 0.82 0.81 0.81 0.80 0.80 0.80 0.79

Forecast trajectories for one-step ahead and for one up to twelve-steps ahead are shown in Fig-
ures 5, 6, and 7, for NAV, BAR, and BBO, respectively. It is possible to realize that the difficulty
in predicting inflows increases during humid periods. This occurs because the different trajecto-

ries obtained at the beginning of the year tend to be apart from the observed one with the increase
of the lead time and especially before the peak flows.

These results can be compared with the output from other known forecasting methods. We have
chosen two models: PREVIVAZ and MLRM.

PREVIVAZ analyzes the historical series of weekly inflows of each hydroelectric and selects, for

each week, a model from several alternatives of stochastic modeling. These alternatives based on
the time series models proposed by Box and Jenkins, more specifically, autoregressive models
with or without moving mean component; AR and ARMA, respectively. These models are con-

structed as a function of past information in different time steps (lags). They may or may not to
show periodic correlation structure. The temporal correlation structure of the series of weekly
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Figure 5 – One-step ahead and one up to twelve-step-ahead daily inflow forecasting for NAV plant.

Figure 6 – One-step ahead and one up to twelve-step-ahead daily inflow forecasting for BAR plant.

inflow is defined at intervals of different durations (weekly, monthly, quarterly and half-yearly).
In addition, the parameters of these models are estimated using different methods (method of
moments, regression). The definition of the modeling alternatives can be made from a prior pro-

cessing (Box-Cox and/or logarithmic) of the series of weekly inflows (CEPEL, 2016).

PREVIVAZ has been chosen because it is the current forecasting model used by ONS. Accord-
ing to ONS (2008), in 2007, the mean percentage error in the inflow forecasting was of 30% for
NAV, 33% for BAR, and 37% for BBO.
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Figure 7 – One-step ahead and one up to twelve-step-ahead daily inflow forecasting for BBO plant.

MLRM is a linear regression model with more than two explanatory variables. Therefore, it is a
multiple linear regression model. MLRM models the relationship among the inflow to observed

rainfalls (the previous five days) and observed inflows (the previous two days) by fitting a linear
equation. It uses the least square method that minimizes the sum of the squares of residuals –
vertical deviations from each data point to the line (Hidalgo et al., 2015).

MLRM has been chosen because it is a very simple and fast technique that requires few variables.
For the coefficients adjusted as described in Hidalgo et al. (2015), the mean percentage error for
NAV, BAR, and BBO is around 12% with the best result for BAR and the worst result for NAV.

6 CONCLUSIONS AND FUTURE RESEARCH

This paper presented the evaluation of a TS-FIS model embedded in a tool developed to run
inflow forecasting models and aid the analysis of their results. The model was adjusted for three
Brazilian hydroelectric plants that belong to the interconnected power system of the country.

Different metrics were used to validate the model, i.e. MAPE, RMSE, MAE, and E . They showed
satisfactory performance especially for short forecasting horizons. It was possible to realize that
the performance of the model becomes degraded as the forecast horizon moves away from the
actual time instant. This happens because the prediction errors of the previous steps feed into the
input pattern for the next step ahead. However, given that the value of the mass curve coefficient
varies from 79% to 98%, we can consider that the model presents an adequate performance due
to its capability of explaining the hydrological process in at least 79%.

As future research the authors consider three suggestions. The first is the application of evolu-
tionary algorithms to optimize model parameters. The fitness function of these algorithms may
incorporate forecasting errors n-steps ahead.
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The second suggestion consists of adjusting two forecasting models. One of them is adjusted for
the humid period that shows higher variability of the inflows, and another one for the dry period
where inflow behavior is more predictable.

As a third suggestion, it is also interesting to analyze the results from the combination of different
models adjusted for the same goal. For example, one based on FIS and the other based on linear
regression. Previous work in this area demonstrates that joining predictors may lead to a decrease
in forecasting errors, especially in multiple-steps ahead prediction.
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[22] MELO B, MILIONI AZ & NASCIMENTO JÚNIOR CL. 2007. Daily and monthly sugar price fore-
casting using the mixture of local expert models. Pesquisa Operacional, 27(2): 235–246.

[23] NAYAK P, SUDHEER K, RANGAN D & RAMASASTRI K. 2004. A neuro-fuzzy computing technique

for modeling hydrological time series. Journal of Hydrology, 291: 52–66.

[24] ONS. 2008. Annual evaluation report of inflow forecasting – 2007. Operator of the National Electric

System. Available from: www.ons.org.br. Accessed on: 10/05/2015.

[25] ONS. 2010. Inflow Forecasting. Operator of the National Electric System. Available from: www.
ons.org.br. Accessed on: 10/06/2016.

[26] SOMAR. 2016. Somar Meteorology. Available from: www.somarmeteorologia.com.br. Accessed

on: 10/06/2016.

Pesquisa Operacional, Vol. 37(1), 2017



�

�

“main” — 2017/5/3 — 17:33 — page 144 — #16
�

�

�

�

�

�

144 FUZZY INFERENCE SYSTEMS FORMULTI-STEP AHEAD DAILY INFLOW FORECASTING

[27] SOUSA FILHO FA & LALL U. Model of sazonal and interanual inflow forecasting. Revista Brasileira

de Recursos Hı́dricos, 9(2): 61–74 (in Portuguese).

[28] TAKAGI T & SUGENO M. 1985. Fuzzy identification of systems and its applications to modeling

and control. IEEE Transactions on Systems, Man and Cybernetics, 15(1): 116–132.

[29] WONG WK, XIA MIN & CHU WC. 2010. Adaptive neural network model for time-series forecast-
ing. European Journal of Operational Research, 207(2): 807–816.

[30] ZAMBELLI M, LUNA I & SOARES S. 2009. Long-term hydropower scheduling based on deter-

ministic nonlinear optimization and annual inflow forecasting models. PowerTech, IEEE Bucharest,

pp. 1–8.

[31] ZHANG J, CHENG C-T, LIAO S-L, WU X-Y & SHEN J-J. 2009. Daily reservoir inflow forecasting

combining QPF into ANNs Model. Hydrology Earth System Sciences Discussions, 6: 121–150.

Pesquisa Operacional, Vol. 37(1), 2017


