
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Mateus Gabi Moreira

On the Feasibility of Using SOA Metrics to Assess
Cohesion during Microservices Evolution

Sobre a Viabilidade de Usar Métricas SOA para Avaliar
a Coesão durante a Evolução dos Microsserviços

CAMPINAS
2023

Mateus Gabi Moreira

On the Feasibility of Using SOA Metrics to Assess Cohesion
during Microservices Evolution

Sobre a Viabilidade de Usar Métricas SOA para Avaliar a Coesão
durante a Evolução dos Microsserviços

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Breno Bernard Nicolau de França

Este exemplar corresponde à versão final da
Dissertação defendida por Mateus Gabi
Moreira e orientada pelo Prof. Dr. Breno
Bernard Nicolau de França.

CAMPINAS
2023

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Moreira, Mateus Gabi, 1996-
 M813o MorOn the feasibility of using SOA metrics to assess cohesion during

microservices evolution / Mateus Gabi Moreira. – Campinas, SP : [s.n.], 2023.

 MorOrientador: Breno Bernard Nicolau de França.
 MorDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Mor1. Arquitetura de software. 2. Evolução de software. 3. Métricas de coesão.

I. França, Breno Bernard Nicolau de, 1983-. II. Universidade Estadual de
Campinas. Instituto de Computação. III. Título.

Informações Complementares

Título em outro idioma: Sobre a viabilidade de usar métricas SOA para avaliar a coesão
durante a evolução dos microsserviços
Palavras-chave em inglês:
Software architecture
Software evolution
Cohesion metrics
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Breno Bernard Nicolau de França [Orientador]
Paulo Roberto Miranda Meirelles
Bruno Barbieri de Pontes Cafeo
Data de defesa: 10-10-2023
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-5714-318X
- Currículo Lattes do autor: http://lattes.cnpq.br/8133924488381617

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Mateus Gabi Moreira

On the Feasibility of Using SOA Metrics to Assess Cohesion
during Microservices Evolution

Sobre a Viabilidade de Usar Métricas SOA para Avaliar a Coesão
durante a Evolução dos Microsserviços

Banca Examinadora:

• Prof. Dr. Breno Bernard Nicolau de França
IC/UNICAMP

• Prof. Dr. Paulo Roberto Miranda Meirelles
IME/USP

• Prof. Dr. Bruno Barbieri de Pontes Cafeo
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 10 de outubro de 2023

Agradecimentos

À medida que concluo este trabalho, é impossível não expressar minha gratidão a todos
aqueles que contribuíram de alguma forma para a realização deste trabalho.

Primeiramente, quero expressar minha gratidão ao meu orientador, Prof. Dr. Breno
Bernard Nicolau de França, pela orientação, paciência e insights valiosos ao longo deste
processo. Sua dedicação e apoio foram fundamentais para o desenvolvimento desta
pesquisa.

Agradeço também aos membros da banca examinadora, Prof. Dr. Paulo Roberto
Miranda Meirelles e Prof. Dr. Bruno Barbieri de Pontes Cafeo, por sua disponibilidade
em revisar este trabalho e por suas sugestões construtivas, que contribuíram significati-
vamente para a qualidade final desta dissertação.

Não posso deixar de agradecer aos colegas de laboratório e aos amigos que compar-
tilharam ideias, conhecimentos e experiências ao longo desta jornada. Suas contribuições
foram inestimáveis.

À minha família, agradeço pelo constante apoio, incentivo e compreensão durante os
momentos desafiadores. Suas palavras de encorajamento foram super importantes até
a conclusão deste projeto. Em especial para Sheila que nos momentos mais difíceis me
apoiou a seguir em frente. Ao José Marcelo, meu filho, que virou meu mundo de cabeça
para baixo e me mostrou que não temos controle de nada.

Por fim, estendo minha gratidão ao Instituto de Computação, cujo ambiente propí-
cio à pesquisa e ao aprendizado foi vital para o desenvolvimento deste trabalho. Além
disso, agradeço à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Código de Financiamento 88887.388238/2019-00, pelo apoio financeiro que
possibilitou a realização deste estudo.

Resumo

CONTEXTO: A Arquitetura de Microsserviços (MSA) oferece benefícios como complexi-
dade reduzida, mas também desafios como complexidade de operação e manutenção. O
monitoramento da qualidade do software é crucial para evitar aplicações com baixa coesão
e altamente acopladas. Métricas podem ajudar a medir a manutenibilidade, mas preci-
sam de ampla validação empírica antes de serem usadas para tomar decisões. Métricas
de manutenibilidade específicas para MSA são desconhecidas, e métricas propostas para
Arquitetura Orientada a Serviços (SOA) não foram avaliadas para o contexto de MSA.
OBJETIVO: Dadas essas questões e a evidência empírica limitada, o problema abor-
dado neste trabalho é a validação empírica das métricas projetadas para SOA aplicadas
para medir a coesão de MSA. MÉTODO: Realizamos dois estudos principais. Primeiro,
revisamos a literatura para identificar métricas para medir coesão em aplicações com ar-
quitetura MSA. No segundo estudo mineramos repositórios de software, incluindo vários
microsserviços e suas versões estáveis. Para isso, selecionamos o repositório a ser mine-
rado; escolhemos uma aplicação MSA de código aberto para avaliar o procedimento de
análise proposto. Em seguida, desenvolvemos uma ferramenta de apoio à coleta e análise
de dados. Por fim, realizamos uma análise quantitativa (baseada em séries temporais) e
qualitativa (baseada em código fonte). RESULTADOS: Nossos resultados sugerem que
é possível visualizar a evolução da coesão em arquiteturas de microsserviços usando as
métricas SOA selecionadas. No entanto, identificamos que diferentes perspectivas (con-
troladores x microsserviço) usando as mesmas métricas podem apresentar resultados di-
ferentes. O procedimento seguido em nosso método de pesquisa apoiou o monitoramento
e a análise da coesão durante a evolução dos microsserviços, que as equipes de software
podem usar para rastrear problemas de manutenibilidade durante todo o ciclo de vida
do desenvolvimento de software. CONCLUSÃO: Nosso estudo indica que as métricas
SOA (SIDC1, LOCmessage e SIIC) podem ser usadas para analisar a evolução de aplica-
ções MSA. Quando aplicadas a controladores, essas métricas geralmente exibem um nível
estável de coesão, mas a coesão diminui ao avaliar microsserviços inteiros.

Abstract

CONTEXT: Microservices Architecture (MSA) offers benefits like reduced structural
complexity and maintainability and operational complexity challenges. Monitoring soft-
ware quality is crucial to prevent low-cohesion and highly coupled applications. Metrics
can help assess maintainability but need wide empirical validation before using them
in decision-making. Maintainability metrics specific to MSA are unknown, and metrics
proposed for Service-Oriented Architecture (SOA) have not been evaluated for MSA. OB-
JECTIVE: Given these issues and the limited empirical evidence, the problem addressed
in this work is the empirical validation metrics designed for SOA applied to measure MSA
cohesion. METHOD: We conducted two major studies. First, we reviewed the literature
to identify metrics for assessing cohesion in MSA applications. Second, we mined software
repositories, including various microservices and their releases. For that, we selected a
repository to be mined; we chose an open-source MSA application to assess the proposed
analysis procedure. Then, we developed a tool to support data collection and analysis.
Finally, we performed a quantitative (based on time series) and qualitative analysis (based
on source code). RESULTS: Our results suggest it is possible to visualize the evolution
of cohesion in microservices architectures using the selected SOA metrics. However, we
identified that different perspectives (controllers vs. microservice) using the same metrics
may present different results. Generally, the procedure followed in our research method
supported the monitoring and analysis of cohesion during microservices’ evolution, which
software teams may use to track maintainability issues during the whole software de-
velopment life cycle. CONCLUSION: Our study indicates that SOA metrics (SIDC1,
LOCmessage, and SIIC) can be used to analyze the evolution of MSA applications. When
applied to Web controllers, these metrics generally exhibit a stable level of cohesion, but
cohesion decreases when evaluating entire microservices from a higher-level perspective.

List of Figures

3.1 Selection Criteria and Resulting Metrics 29
3.2 Spinnaker’s system dependencies. 31
3.3 Peak and Valley Example . 34

4.1 Aegeus Architecture . 36
4.2 Gate Controllers Evolution . 37
4.3 V2PipelineTemplatesController code changes. 38
4.4 Capabilities controller from Orca . 38
4.5 CapabilitiesController code changes. 39
4.6 Clouddriver Controllers Evolution . 39
4.7 Igor Microservice Controllers’ Evolution 40
4.8 ArtifactController code changes. 41
4.9 Microservices’ Cohesion Evolution . 45

List of Tables

2.1 Literature on MSA and SOA cohesion metrics. 27

3.1 Target versions for each microservice. 32

4.1 Clouddriver Microservice Controllers . 41
4.2 Fiat Microservice Controllers . 41
4.3 Front50 Microservice Controllers . 42
4.4 Gate Microservice Controllers . 42
4.5 Halyard Microservice Controllers . 42
4.6 Igor Microservice Controllers . 42
4.7 Orca Microservice Controllers . 42
4.8 Rosco Microservice Controllers . 42
4.9 Cohesion Assessment per Microservice . 46

Contents

1 Introduction 12
1.1 Context . 12
1.2 Research Problem . 13
1.3 Research Goals and Question . 14
1.4 Contributions . 14
1.5 Organization . 15

2 Background and Related Work 16
2.1 Service-Oriented Architecture (SOA) . 16
2.2 Microservices Architecture (MSA) . 16
2.3 Software Quality Attributes . 18
2.4 Software Evolution, Maintainability and Cohesion 19

2.4.1 Cohesion in Microservices . 19
2.4.2 Cohesion Metrics . 21
2.4.3 Related Work . 26

3 Research Method 28
3.1 Literature Review . 28
3.2 Repository Mining . 29

3.2.1 Repository Selection . 29
3.2.2 Execution . 33
3.2.3 Analysis . 33

4 Results and Discussion 35
4.1 Supporting Tool . 35
4.2 The Controller Perspective . 36
4.3 Results per Metric . 43

4.3.1 LOCmessage Results . 43
4.3.2 SIDC1 Results . 43
4.3.3 SIIC Results . 43

4.4 The Microservice Perspective . 44
4.5 Controller vs. Microservice Perspective . 46
4.6 Threats to validity . 47

4.6.1 Internal Validity . 47
4.6.2 External Validity . 47
4.6.3 Construct Validity . 48
4.6.4 Reliability . 48

5 Conclusion 49

Bibliography 53

12

Chapter 1

Introduction

1.1 Context

The adoption of Microservices Architecture (MSA) has witnessed significant growth in
recent years [19]. This architectural style can reduce application complexity by decom-
posing functionalities into small, independent units known as microservices [36, 34]. A
microservice is an autonomous application with lightweight access interfaces, source code,
database, and an independent lifecycle [23, 36, 16]. One of the MSA’s claimed benefits is
providing highly cohesive modules (i.e., microservices).

Microservices offer several advantages, including technology diversity, improved scal-
ability, enhanced productivity, and simplified deployment [1, 25]. However, they also
bring challenges such as maintainability and operational complexity during their evolu-
tion [36, 16, 7].

One of these challenges was experienced in the Industry by Amazon Prime Video. The
Amazon Prime Video Team published a white paper with an interesting case this year1

that describes how they achieved a significant cost reduction of 90% in their monitoring
service. They improved this by transitioning from a microservice-based architecture to a
monolithic application. Such a shift allowed them to achieve greater scale and resilience.
This case highlights the classic Brook’s statement "no silver bullet" [9], clarifying that no
software technology, including microservices, fits all solutions. Hence, it is still challenging
to study and understand the various software attributes in microservices and how they
interact to support business goals.

The increasing adoption of Microservices Architecture brings both benefits and chal-
lenges. It is crucial to conduct research and analysis to characterize the software attributes
within microservices better, enabling organizations to harness the full potential of this ar-
chitectural style while effectively managing its complexities. Organizations in the Industry
can make informed decisions and effectively address the challenges associated with MSA.

1Available online: https://www.primevideotech.com/video-streaming/
scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90

https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90

13

1.2 Research Problem

Software architects often rely on manual practices such as code reviews to ensure the
evolvability of their microservices [6]. However, these practices can be error-prone and re-
liant on decentralized teams exchanging knowledge [6], potentially impeding the practical
evolution of microservices and leading to maintenance issues. The demand for swift and
dependable software product evolution has intensified. Hence, it becomes imperative to
consistently monitor maintainability throughout the process to avert rising maintenance
costs and to deliver valuable software products.

Software maintenance constitutes a significant portion of the overall software develop-
ment effort. Furthermore, the inability to achieve rapid and dependable software evolu-
tion might result in missed business opportunities [5]. Therefore, it is essential to measure
maintainability throughout the software evolution. To assess and monitor software main-
tainability, metrics such as size, complexity, coupling, and cohesion can be employed [7].

This dissertation assesses the cohesion property to evaluate microservices’ proper ar-
chitectural design and evolution. Cohesion, a crucial software attribute, significantly
impacts software maintainability [8, 15]. t quantifies the degree to which the elements
within a module are interconnected and logically belong together [32]. n the literature,
there are service-level cohesion metrics [7, 27, 28, 3]. However, none of these proposed
metrics identified in the literature consider microservices principles and characteristics or
even evaluate them empirically in the context of MSA [7]. This lack of specific metrics
for microservices makes tracking software maintainability evolution in MSA applications
more difficult.

The effectiveness of software metrics depends on their proper characterization and
validation. According to Pressman and Maxim [30], certain principles should be followed
when creating metrics:

• A metric should have desirable mathematical properties (theoretical validity).

• When a metric represents a software characteristic that increases when positive
traits occur or decreases when undesirable traits are encountered, the metric’s value
should increase or decrease similarly.

• Each metric should be validated empirically in many contexts before being published
or used to make decisions.

Numerous software metrics have been proposed, but not all are useful for software
engineers [30]. Some require overly complicated measurement procedures, while others
are too esoteric for real-world professionals to learn. Additionally, some metrics go against
the basic intuitive principles of what constitutes high-quality software. Given these issues,
the literature limitation, and their unresolved problems, the problem addressed in this
work is the empirical validation metrics designed for service-oriented architecture applied
to microservices cohesion and how to assess cohesion metrics during the software evolution.

14

1.3 Research Goals and Question

Our main goal is to provide empirical evidence that cohesion metrics, initially proposed for
SOA applications, can be used in MSA applications, considering an evolution perspective.
Reaching this primary goal, software practitioners can track and analyze maintainability
issues in microservices during their evolution, avoiding those before deployment. More
specifically, our study aims to empirically explore the practical applicability of well-known
cohesion metrics for Service-Oriented Architecture (SOA) in real-world MSA applications
in the context of their evolution. We propose the following research question: Can SOA
cohesion metrics be used to track maintainability issues during the evolution of MSA
applications?

1.4 Contributions

We have selected and evaluated a set of cohesion metrics through empirical research,
which can be used to measure cohesion in MSA. Additionally, we have devised a method2

to evaluate cohesion throughout the evolution of a microservice.
Our research focused on cohesion metrics for Service-Oriented Architecture (SOA)

in the Microservices Architecture (MSA) context. To accomplish this, we created an
empirical method that tracks and analyzes cohesion as microservices progress.

Our analysis concentrated on a specific group of cohesion metrics (found in Section
2.4). These metrics included SIDC1, LoCmessage, and SIIC. We then assessed their practi-
cal effectiveness in a real-world scenario by studying how microservices’ cohesion changed
over time. We assessed the metrics in Spinnaker - an open-source project.

Our methodology is grounded in Mining Software Repositories (MSR), a widely ac-
knowledged empirical technique in Software Engineering research [17]. We have also cre-
ated a tool to support this methodology that automatically evaluates metrics from REST
controllers. This tool can help developers identify areas for enhancement and improve
cohesion.

The first results of our analysis were published in: Analysis of microservice evolution
using cohesion metrics by Mateus Gabi Moreira and Breno Bernard Nicolau De França.
In Proceedings of the 16th Brazilian Symposium on Software Components, Architectures,
and Reuse, SBCARS ’22, page 40–49, Uberlândia, MG, Brazil, 2022.

Another contribution is the software that supports the methodology of this work:

• Aegeus: library to measure cohesion for a microservice using the metrics selected in
this paper. This tool supports Spring applications with Rest Controllers, gRPC ap-
plications, and a generic microservice descriptor. Writing plug-ins to translate from
source code to the generic descriptor can support other languages and frameworks.
Available in: https://github.com/MateusGabi/Aegeus

• Aegeus Scripts: library with a set of scripts automatically measures the cohesion
of a microservice for the n latest versions. This library comprises the download of a

2In this dissertation, the ‘method’ is used in our research for exploratory investigation purposes and
needs additional studies and tailoring to be transferred to practitioners.

https://github.com/MateusGabi/Aegeus

15

repository (main branch); downloading nth latest versions using git tags; assessing
cohesion metrics for each version (using Aegeus library); reading logs and storing
metric assessments on CSV file; generating graphics using R Script and Python.
Available in https://github.com/MateusGabi/Aegeus-scripts

These contributions can be used in Academia and, with some limitations, in Industry.
This study expands our understanding of cohesion measurement in modern software ar-
chitectures by evaluating the applicability of service-oriented architecture (SOA) metrics
in real-world MSA applications. The study also highlights the need for further research
and refinement of cohesion metrics tailored to MSA applications. The selected SOA
metrics (SIDC1, LoCmessage, and SIIC showed potential and provided insights into the
cohesion dynamics of microservices. This opens up future research to refine existing met-
rics and propose new ones that better address MSA applications’ specific challenges and
characteristics.

Furthermore, the study offers practical importance for software development teams
working with microservices. The methodology developed in this study allows software
engineers to analyze the cohesion of their microservices and identify potential improvement
areas. The study supports the maintenance of microservices to ensure the long-term
quality of the software. Software teams can proactively track and manage cohesion by
using the metrics in this work and addressing the identified problems, leading to more
maintainable microservices.

1.5 Organization

This thesis is structured as follows. Chapter 2 delves into the theoretical foundation
necessary to understand the main concepts used within this dissertation, such as Service-
Oriented Architecture (SOA), Microservices Architecture (MSA), software quality at-
tributes, and the relationship between cohesion in Microservices and cohesion metrics for
SOA, as well as it discusses related works. Chapter 3 outlines the research method used
to analyze the applicability of SOA cohesion metrics in the context of an MSA application
evolution. Chapter 4 presents the results found by this work, including insights gained
from the results and how we mitigated threats to validity. Chapter 5 summarizes the
findings of this work, its impact on Academia and the Industry, and future work.

https://github.com/MateusGabi/Aegeus-scripts

16

Chapter 2

Background and Related Work

Bass et al. [4] define software architecture as a realization of early-design decisions
made regarding decomposing the system into parts (i.e., modules, services, and compo-
nents.), allowing organizations to meet their business goals. Concrete or actual software
architecture also results from conscious and unconscious decisions made throughout the
application life cycle. One of the leading architectural styles in the literature and industry
is Service-Oriented Architecture (SOA), and in recent years, Microservices have increased
relevance as an extension of SOA. This chapter discusses the primary concepts and associ-
ated literature. It discusses SOA and MSA pros and issues, the quality attributes related
to this architectural style, the cohesion property in the context of SOA, and its metrics
found in the literature.

2.1 Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) is a software system architecture style that enables
providing services to client users or other services through a public interface [26]. SOA of-
fers a collection of independent and reusable functionalities packaged into services. These
services work together to create a more complex system, reducing complexity and costs
while increasing flexibility and operational efficiency [26]. However, the implementation
of SOA can be challenging and introduces some disadvantages as the system grows [26].

One of the significant drawbacks is the large size of the services’ code base and their
undesired complexity. Debugging, fixing issues, and developing new functionalities re-
quire considerable effort through the code base, making maintenance difficult [16]. The
second challenge is the “dependency hell” problem when adding or updating services or
external libraries, resulting in inconsistent systems [16] due to many internal or external
dependencies.

2.2 Microservices Architecture (MSA)

Microservices Architecture (MSA) is an architectural style that provides a set of indepen-
dently deployable applications called microservice [36, 34, 7]. Each microservice is loosely
coupled and isolated in a small coherent and autonomous unit, running in its process [23]

17

and communicates through lightweight interfaces [23, 16]. As microservices are indepen-
dently deployable [23, 36, 16], they can be written by different and distributed teams and
using different technologies [23]. There are some discussions in academia and industry
about the relationship of microservices with SOA [16, 23]. Bogner et al. [7] state that
MSA is a specialization of SOA. We discuss the following typical characteristics that most
microservice architectures exhibit.

• Componentization [23]. The primary way of componentization is decomposing
the application into (micro)services. The main reason for using services is that
services are independently deployable. It means that many single changes require
redeploying of just a few services. Nevertheless, some changes will impact the ser-
vice interface, but an exemplary microservice implementation minimizes these cases
through cohesive boundaries and service contracts. Most programming languages
do not have an efficient mechanism for defining component interfaces. Thus, only
documentation and discipline avoid tight coupling between components. Services
prevent these problems by explicit remote call mechanisms, but remote calls are
more expensive than in-process calls.

• Business Capabilities [23]. Microservice teams are organized around business
capability. This service implementation requires a broad-stack implementation of
software. Consequently, the teams are cross-functional, including a broad range
of skills: user experience, database, development, and project management. Such
teams are responsible for building and operating their products. Monolith applica-
tions can always be decomposed around business capabilities, which is not typical.

• Products fit to user needs [23]. The project-oriented development aims to deliver
some piece of software to users, then considered to be solved. With microservices, a
team should own a product over its lifetime, which means that a development team
takes full responsibility for the software in production. Besides, the main goal of
a software team is to assist its users in enhancing business capability. The smaller
granularity of services makes the personal relationship between developers and their
users easier.

• Smart endpoints and dumb pipes [23, 16]. The biggest issue in breaking down
a monolith application into a set of microservices is changing the communication
pattern. In monolith applications, components communicate via in-memory method
invocation or function call. An application with microservice architecture aims to
be as decoupled and cohesive as possible. A microservice receives a request, applies
business logic, and produces a response. Two protocols are most common for this:
(i) HTTP request-response and (ii) messaging over a lightweight message bus like
RabbitMQ and ZeroMQ. The smart endpoints are because the endpoints in the
services produce and consume messages, and dumb pipes are because the messaging
bus works as a message router to the microservices.

• Decentralization [23]. By breaking the monolith into services, we can choose the
stack that solves the problem better. A monolithic team generally writes down its

18

standards on a document, but microservices teams prefer to produce useful tools
that other developers can use to solve similar problems. A company shares these
tools via open-source repositories. For instance, Netflix follows this internal open-
source philosophy of sharing internal tools as libraries on its GitHub repositories.
These tools commonly focus on data storage, inter-process communication, and
infrastructure automation.

• Intense Automation [23] [18]. Many software products have introduced infras-
tructure automation to reduce the operational complexity of the building, testing,
and deployment to production. Besides that, automation leads teams to reduce the
delivery time and the time to collect feedback from users. Typically, a monolithic
application is built, tested, and deployed to production quickly for each new version.
Conversely, as we commented on the Business Capabilities characteristic, a microser-
vice application is quite different since each may have a broad stack. Nevertheless,
each microservice is built, tested, and deployed to production in isolation.

2.3 Software Quality Attributes

Software quality attributes help the architecture to achieve the requirements [4]. Some
quality attributes can be observed through the system execution (Performance, Secu-
rity, Availability, Functionality, Usability). Still, others may need to keep their internal
structures (Maintainability, Portability, Reusability, Integrability, Testability) [4].

• Performance refers to the system’s responsiveness, For example, the time required
to respond to events or the number of events processed in some time interval.

• Security measures the system’s ability to resist unauthorized attempts to service
while still providing its services to authorized users.

• Availability measures the time the system is up and available to users. It is mea-
sured by the time between failures and how quickly the system can resume operation
in the event of failure.

• Functionality is the ability of the system to do the work for which it was intended.

• Usability refers to the ability of the system to make it quick and easy for a user to
learn how to use it while the system responds fast and prevents user errors.

• Portability is the ability of the system to run in different environments.

• Reusability relates to software architecture in that architectural components are
units of reuse. How reusable a component is depends on how tightly coupled it is
with other components.

• Integrability is the ability to make the separately developed components of the
system work correctly together.

19

• Testability refers to the ease with which software can demonstrate its faults through
testing.

• Modifiability is making changes quickly and cost-effectively. It may be the at-
tribute most closely aligned with the architecture of a system. A widespread change
is more costly than making a change into a single component. Sometimes, it is called
maintainability, but the ISO/IEC SQuaRE [21] defines it as a sub-characteristic
for Maintainability.

2.4 Software Evolution, Maintainability and Cohesion

Over the years, software practitioners have referred to software maintenance as Swan-
son’s [33] typology based on three classifications: perfective maintenance, where the sys-
tem in terms of its performance, processing efficiency, or maintainability, adaptive mainte-
nance to adapt the system to changes in its data environment or processing environment
and corrective maintenance to correct processing, performance or implementation failures
of the system.

Chapin et al. [10] proposed a more detailed classification of Software Evolution and
Software Maintenance. Software Maintenance applies activities and processes to existing
software to modify its operations or contribute to the system’s business. It includes
quality assurance activities and management and is often done in the context of software
evolution [10]. Software Evolution refers to applying software maintenance activities and
processes to create a new version of operational software with modified functionality or
properties experienced by the customer [10]. The term is sometimes used interchangeably
with software maintenance.

Maintainability, as defined by the ISO/IEC SQuaRE standard, signifies the degree of
effectiveness and efficiency for maintainers responsible for modifying a product or sys-
tem [21]. The impact of low maintainability on costs and business opportunities has
been well-documented [5], rendering its management a significant challenge for software
engineers. There are several metrics used for controlling maintainability during the soft-
ware evolution. One strategy to define maintainability metrics is measuring the software
attributes. In this context, software cohesion emerges as a pivotal software attribute,
contributing to a comprehension of internal quality and maintainability [8, 15]. Stevens
et al. [32] defined cohesion as the degree of the elements that belong together inside a
module.

2.4.1 Cohesion in Microservices

Cohesion refers to how components within a microservice are related and focused on a
single responsibility or specific functionality. With high cohesion, a microservice has a
more well-defined and isolated scope. So the benefits of using microservices increase,
such as the separation of functionalities, ease of maintenance since the size of the code
is generally smaller, facilitates modification or the implementation of new functionalities,

20

and scalability as the demand for the functionalities increases, which reduces the cost of
hardware.

The high level of componentization is an achievement when a Microservice Application
is well designed and aligned with the cross-functional teams distributed around business
capabilities. This way, teams are responsible for the entire lifestyle of their microser-
vices. They commonly work in only one set of microservices and keep them healthy in
maintainability, improving product and business requirements agility.

Thus, using microservices favors the development of independent functionalities with
low coupling and high cohesion. However, the natural increase of cohesion does not inhibit
the creation of highly coupled and low cohesion applications if software practitioners do
not have the interest and tools that help them design, implement, and evolve their appli-
cations. The team should track their quality continuously because of the 7th Lehman’s
Law: “programs will be perceived as declining quality unless rigorously maintained and
adapted to a changing operational environment” [22].

Currently, some metrics are available in the literature but not empirically evaluated,
limiting their practical application in the industry. Meanwhile, in the industry, several
architecture problems are addressed as technical debts without specializing and applying
a solution to the issue, specifically, making the solutions experience-based or ad-hoc from
the software practitioners themselves [6].

Cohesion is crucial to maintainability and design quality in software architectures.
While several studies have explored cohesion in the context of Service-Oriented Architec-
ture (SOA), exploring cohesion in Microservices remains scarce. Many researchers have
studied cohesion metrics in SOA applications to predict maintainability issues and assess
system qualities. For instance, Perepletchikov et al. [27] developed a set of cohesion
metrics for early maintainability issue prediction, while Shim et al. [31] proposed a design
quality model for SOA systems. However, their chosen metric was deemed unsuitable for
cohesion assessment. Athanasopoulos et al. [3] also introduced metrics to assess cohesion
in service interfaces, enabling service decomposition for SOA applications. However, these
studies do not explicitly address cohesion in Microservices.

A literature review by Bogner et al. [7] encompassed metrics for maintainability in
both SOA and Microservices Architecture (MSA). Notably, the authors encountered chal-
lenges in studying cohesion and suggested the possibility of employing metrics defined
by Perepletchikov et al. after empirical studies in real-world applications. Despite these
efforts, the explicit investigation of cohesion in Microservices remains largely unexplored.

Given the lack of metrics specifically created for Microservices, it is possible that
metrics used in Service-Oriented Architecture can be adapted and applied to assess the
cohesion in Microservices. The premise is that, although the characteristics and challenges
of Microservices are distinct from other architectures, classic metrics may provide relevant
insights into the cohesion of the potential of services in a Microservices-based architecture.
However, conducting empirical studies and careful evaluations are essential to verify the
effectiveness and relevance of these classic metrics in a Microservices context. Using these
metrics may offer an initial approach to assess the cohesion of Microservices until more
specialized metrics are developed and validated for this architecture in future works. For a
more detailed understanding of the related work in the literature, Section 2.4.3 discusses

21

the studies as mentioned earlier and their implications.

2.4.2 Cohesion Metrics

Chidamber and Kemerer’s [12] work on software metrics is considered prominent. They
developed a suite of metrics based on theoretical evaluation. One of the metrics developed
is Lack of Cohesion in Methods (LCOM1), which calculates the number of pairs of methods
in a class that do not use any attribute in common. Later on, Chidamber and Kemerer [13]
developed and implemented LCOM2. LCOM2 is calculated as the number of pairs of
methods in a class that do not use any attributes in common minus the number of pairs
of methods that do. If this difference is negative, LCOM2 is set to zero.

Hitz and Montazeri [20] proposed two metrics: LCOM3 and LCOM4. They defined
an undirected graph G, where the vertices represent the methods of a class. An edge
is created between two vertices if the corresponding methods use at least one attribute
in common. LCOM3 is the count of the connected components of G. LCOM4 is similar
to LCOM3. Still, additionally, the graph G has an edge between vertices representing
methods m and n if method m invokes n or vice versa.

As we move forward, this section will explore cohesion metrics in microservices. In this
context, it’s worth noting that we can gain valuable insights from the works of Chidamber
and Kemerer as well as Hitz and Montazeri in the context of object orientation.

Bogner et al. [7] presents a literature review that includes the metrics presented in this
section. We excluded the cohesion metric in [31] as, from our point of view, it is a metric
for coupling instead of cohesion since it focuses on the interaction between services. Every
metric below goes from 0 to 1.

Perepletchikov et al. [27] expanded the notions of cohesion to SOA and developed a
set of design-level cohesion metrics to assess different aspects of cohesion at the service
level, as follows:

• Service Interface Data Cohesion (SIDC1): this metric quantifies the cohesion
of a service based on the cohesiveness of the operations exposed in its interface,
which means operations are sharing the same type of input parameter [27]. SIDC2
evolves from SIDC1 by considering both in/out parameter types. Formal definition:

SIDC(s) = (Common(Param(SOp(sis)))

+ Common(returnType(SOp(sis))))/

(Total(SOp(sis)) ∗ 2), where

– SOp(sis) is the set of all operations exposed in the interface sis of service s.

– (Common(Param(SOp(sis))) returns the number of service operations pairs
that have at least one input parameter type in common.

– Common(returnType(SOp(sis)))) returns the number of service operations
pairs that have the same return type.

– Total(SOp(sis)) returns the number of combinations of operation pairs for the
service interface sis.

22

• Service Interface Usage Cohesion (SIUC): This metric quantifies the client
usage patterns of service operations when a client invokes a service. Formal defini-
tion:

SIUC(s) = Invoked(clients, SOp(sis))/

(|clients| ∗ |SOp(sis)|), where

– clients is the set of all service clients s.

– Invoked(clients, SOp(sis)) returns the number of used operations per client.

• Service Sequential Usage Cohesion (SSUC): This metric quantifies the cohe-
sion of a service based on the cohesiveness of the operations exposed in its interface
client usage, taking into consideration the dependencies between service operations.
Formal definition:

SSUC(s) = InvokedSequence(clients, SOp(sis))/

(number(clients) ∗ |SOp(sis)|), where

– InvokedSequence(clients, SOp(sis)) returns the sum of all the sequentially
used operations per client.

– number(clients) is the number for clients of service s.

• Service Interface Sequential Cohesion (SISC): SISC evolves from SSUC [27].
It quantifies sequential properties of dependencies between service operations in the
client usage patterns [28]. Formal definition:

SISC(s) = SeqConnected(SOp(sis))/

Total(SOp(sis)), where

– SeqConnected(SOp(sis)) returns the number of service operations pairs with
sequential operations calls.

– Total(SOp(sis)) returns the number of all possible combinations operation
pairs.

• Strict Service Implementation Cohesion (SSIC): This metric quantifies the
cohesion of a service based on the cohesiveness in the implementation of the opera-
tions. Formal definition:

SSIC(s) = |IC(s)| /
(|(Cs

⋃
Is

⋃
Ps

⋃
Hs

⋃
BPSs)| ∗ |SO(sis)|), where

– Cs
⋃
Is

⋃
Ps

⋃
Hs

⋃
BPSs is the set of all implementation elements of service s

(classes, interfaces, procedural packages, package headers, and business process
scripts).

23

– IC(s) is the set of all common service implementation elements shared by the
service operations.

• Loose Service Implementation Cohesion (LSIC): This metric is a variation of
SSIC, but the same implementation elements can implement services or have been
indirectly connected via implementation elements. SSIC and LSIC were revised and
became SIIC - Service Interface Implementation Cohesion where SIIC is exactly
the same as SSIC. Formal definition:

LSIC(s) = |CC(s)| /
(|(Cs

⋃
Is

⋃
Ps

⋃
Hs

⋃
BPSs)| ∗ |SO(sis)|)

SIIC(s) = |IC(s)| /
(|(Cs

⋃
Is

⋃
Ps

⋃
Hs

⋃
BPSs)| ∗ |SO(sis)|), where

– Cs
⋃
Is

⋃
Ps

⋃
Hs

⋃
BPSs is the set of all implementation elements of service s

(classes, interfaces, procedural packages, package headers, and business process
scripts).

– IC(s) is the set of all common service implementation elements shared by the
service operations.

– CC(s) is the set of all, directly and indirectly, service implementation elements
shared by the service operations.

• Total Interface Cohesion of a Service (TICS) This metric is a normalized sum
of all values of the previous cohesion metrics. Formal definition:

TICS(s) = (SIDC(s) + SIUC(s) + SIIC(s) + SISC(s))/4

Consider an example service named EnrollStudent with three operations:

• getLibraryClearance(int libraryMemberId): bool

• checkPrerequisiteCourses(string studentId, Course): bool

• enrollStudentIntoCourse(string studentId, Course): bool

The service consumer Student will call operations in a strict sequence:

getLibraryClearance→ checkPrerequisiteCourses→ enrollStudentIntoCourse

In this way, we have the following results:

• SIDC (EnrollStudent) = 2/3 = 0.67;

• SIUC (EnrollStudent) = 3/3 = 1;

• SSUC (EnrollStudent) = 3/3 = 1;

24

• SSIC (EnrollStudent) = 6/(3*9) = 0.22;

• The value of TICS (EnrollStudent) will then be equal to: (0.67+1+1+0.22)/4 =
0.72 indicating stronger then average overall cohesion of a service.

Another set of metrics is presented in [3], in which the authors propose an approach
that enables the cohesion-driven decomposition of web services interfaces without analyz-
ing the interface implementation. This approach defines the following cohesion metrics:

• Lack of Domain-level Cohesion (LoCdom): it measures the cohesion in a service
interface given the terms of its operation that correspond to concepts of the targeted
domain [3], i.e., service is highly cohesive when its operations share common domain-
level terms. Formal definition:

G∗si = (Vsi, Esi, OpS∗)

– G∗si is an interface-level graph for a service interface, si, and a similarity func-
tion, OpS∗, which reflects the degree to which the operations of si are related.
Nodes are the operations of si, Vsi; the edges are the interface-level relations
between pairs of operation, Esi, if: OpS∗(opi, opj) > 0;

LoCdom(si) = LoC∗(si, OpSdom), where

– OpSdom is a similarity function of two operation names, opi, opj ∈ si, where
Topi and Topj are the sets of the domain terms, as follow:

OpSdom(opi, opj) =
|Topi∩Topj |
|Topi∪Topj |

– LoC∗(si, OpS∗) is the relative difference between the ideal and the interface-
level graph, as follows:

LoC∗(si, OpS∗) =
|Eideal|−

∑OpS∗(opi,opj)
(opi,opj)∈Esi

|Eideal|
, and

|Eideal| = |Vsi|∗(|Vsi|−1)
2

• Lack of Conversation-level Cohesion (LoCconv): it measures the cohesion in a
service interface given two sequential messages. Two operations are similar (high
cohesion) when the latter operation input is similar (has common data types) to the
output of the first operation. So, this metric analyzes the behavior of client usage.
Formal definition:

LoCconv(si) = LoC∗(si, OpSconv), where

25

– OpSconv is a similarity function of two operations, opi, opj ∈ si, where is the
average of the similarity between the input of opi and the output of opj; and
the similarity between the output of opi and the input of opj, as follows:

MsgS(mi,mj) =
|Vmi∩mj |
|Vmi∪mj |

OpSconv(opi, opj) =
MsgS(opi.in,opj .out)

2
+

MsgS(opi.out,opj .in)

2

• Lack of Message-level Cohesion (LoCmessage): it measures the cohesion of an
interface given its input and output. An interface is highly cohesive when its oper-
ations share standard parameters and return types. LoCmessage uses the similarity
between two operations (input and output). The similarity is the common data
types between two operations inputs (and output). Formal definition:

LoCmessage(si) = LoC∗(si, OpSmessage), where

– OpSmessage is a similarity function of two operations, opi, opj ∈ si, being the
average of the similarity between the input of opi and the input of opj; plus
the similarity between the output of opi and the output of opj, as follows:

OpSmessage(opi, opj) =
MsgS(opi.in,opj .in)

2
+ MsgS(opi.out,opj .out)

2

Example on AWS MessageQueue service, where have thirteen operations:

• DeleteQueue(string ForceDeletion): ResponseStatus

• SetQueueAttributes(AttributedValue): ResponseStatus

• GetQueueAttributes(string Attribute): ResponseStatus, AttributedValue

• SendMessage(string MessageBody): ResponseStatus, string MessageId

• ReceiveMessage(int NumberOfMessages, int VisibilityTimeout): ResponseStatus, Mes-
sage

• PeekMessage(string MessageId): ResponseStatus, Message

• DeleteMessage(string MessageId): ResponseStatus

• ChangeMessageVisibility(string MessageId, int VisibilityTimeout): ResponseStatus

• AddGrant(Grantee, string Permission): ResponseStatus

• RemoveGrant(Grantee, string Permission): ResponseStatus

• ListGrants(Grantee, string Permission): ResponseStatus, GrantList

• GetVisibilityTimeout(int VisibilityTimeout): ResponseStatus, int VisibilityTimeout

• SetVisibilityTimeout(int VisibilityTimeout): ResponseStatus

26

In this way, we have the following results:

• LoCmessage = 0.98

• LoCconv = 0.98

• LoCdom = 0.81

2.4.3 Related Work

In recent years, different authors have defined and explored the cohesion of SOA and
MSA [27, 31, 3, 7, 2, 24]. In their study, Perepletchikov et al. [27] expanded upon existing
concepts of cohesion in object-oriented systems and procedural design to suit the unique
qualities of SOA better, thus enabling early prediction of the maintainability of SOA
applications. To assess the level of cohesion in service-oriented design constructs, metrics
were created. However, these metrics have not been tested empirically to determine
their accuracy in predicting service cohesion levels and, more importantly, their ability
to forecast maintainability. Our research addresses this gap in empirical validation by
examining the feasibility of these metrics for microservices.

Shim et al. [31] established a model for assessing the quality of SOA systems in their
early stages. They defined desirable quality attributes and identified the metrics necessary
to measure them, creating an assessment model for identifying metrics at different levels of
abstraction. The proposed model was tested by applying it to an information management
system to verify its ability to deduce the correct set of metrics for estimating changes to
system design. However, the authors acknowledge that the metrics derived from the model
are in their initial stages and require further testing to validate their accuracy across a
broader range of systems.

The authors defined cohesion as the degree of relationships between operations defined
in a service. They also created a metric called the average used message factor, which is
the inverse number of service operations. However, we believe this metric is unsuitable
for measuring cohesion, as it does not consider the internal relationships between the
elements of a module (service). Instead, it is closer to measuring the coupling property.

In their study, Athanasopoulos et al. [3] created metrics to evaluate the cohesion
of service interfaces to suggest service decomposition. They defined service cohesion
as the extent to which service interface operations are related. Using this approach,
the authors devised a technique to gradually break down a particular interface without
addressing the implementation. The authors did not directly evaluate maintainability but
concentrated on clustering interface operations. As a result, the metrics they developed
were designed for a different objective, and it may not be feasible to use them for assessing
maintainability. Our research investigates the applicability of these metrics for evaluating
maintainability in the context of microservices evolution.

Bogner et al. [7] performed a literature review to find metrics for maintainability for
SOA and MSA. The authors mapped those metrics into four design properties: size, com-
plexity, coupling, and cohesion. In the cohesion property, the authors note the difficulty
of measuring cohesion automatically because of its subjective nature and the literature not

27

widely covered it. The authors highlight the metrics outlined by Perepletchikov et al. [27]
to shed light on the insufficient cohesion studies in the literature. Bogner et al. have
identified a need for more research on cohesion studies for microservices. There is a lack
of sufficient research on this topic, emphasizing the importance of further exploration.
Our study aims to provide valuable insights and contribute to a better understanding of
cohesion for microservices.

Apolinario and França [2] developed a method to monitor the evolution of MSA cou-
pling. They conducted an experiment to study the behavior of coupling metrics using
artificially generated data. The experiment revealed the metric’s behavior in different
scenarios, providing insights into identifying architectural degradation. The method col-
lects coupling metrics during runtime and monitors them during software evolution. An
upward trend in coupling metrics could indicate architectural degradation. This work
is similar to ours, but we focus on cohesion instead of coupling. We believe that both
coupling and cohesion are important for maintaining software quality.

Table 2.1: Literature on MSA and SOA cohesion metrics.

Reference Metrics for ContextInterface Implement.

Perepletchikov et al. [27] X X Early prediction of
maintainability issues

Shim et al. [31] X Design of quality model to
assess SOA systems

Athanasopoulos et. al. [3] X Service decomposition
Bogner et al. [7]. X X Literature Review

Table 2.1 summarizes the literature on MSA and SOAmetrics for cohesion. In this way,
this study does not consider the metrics defined by Apolinario and França [2]. Section 2.4.2
defines the metrics from works in Table 2.1. Due to a lack of research on the cohesion
property in MSA [7], one may wonder if SOA metrics can be used to evaluate MSA.
To address this, we conducted a non-systematic literature review and analyzed cohesion
metrics in a real-world MSA application as part of this Master’s dissertation [24]. We
identified metrics that can automatically assess cohesion and aid software practitioners in
detecting maintainability issues early on.

Working in software development, it can be challenging to maintain cohesion across
a myriad of microservices. This is primarily due to the complex nature of software sys-
tems, which often comprise multiple microservices, technologies, and their dependencies.
Assessing cohesion can be subjective, but several resources are available in the literature
to guide practitioners in addressing cohesion concerns for SOA, such as metrics, meth-
ods, quality models, tools, and frameworks. However, currently, there are no equivalent
resources for MSA.

Our Master’s is dedicated to assisting software practitioners in overcoming their chal-
lenges. Specifically, we aim to explore the feasibility of utilizing SOA Metrics to evaluate
cohesion throughout the evolution of microservices. Through our research, both academia
and industry can yield benefits.

28

Chapter 3

Research Method

This chapter describes the research method adopted to analyze the applicability of Service-
Oriented Architecture (SOA) cohesion metrics in Microservice Architecture (MSA) appli-
cations, focusing on software evolution. Our method is divided into two major studies.
First, we reviewed the literature to find metrics used to assess cohesion in Microservice
Architecture (MSA) applications. Second, we mined software repositories, including vari-
ous microservices and their releases. For that, we selected the repository to be mined; we
chose an open-source MSA application to assess the proposed analysis procedure. Then,
we developed a tool to support data collection and analysis. Finally, we performed a
time-series quantitative and qualitative analysis.

3.1 Literature Review

Our ad-hoc literature review aims to identify metrics to assess cohesion in Microservices.
For that, we followed a process similar to a systematic mapping study, and we searched
for works using the following keywords: software cohesion, software maintainability, met-
rics, monitoring, microservices, microservice architecture, and service-oriented architec-
ture. We included service-oriented architecture considering the possibility to test whether
SOA metrics can be applied to MSA applications, which was an a priori assumption.

As sources, we adopted three search engines: IEEE Xplore, ACM Digital Library, and
Scopus. We only included peer-reviewed papers published in English. In addition, we
excluded papers unrelated to the research goals, such as those focused solely on non-SOA
or non-MSA applications.

Later, we extracted metrics definitions from the selected studies. After the extraction,
we ended up with twelve (12) service cohesion metrics (cf. Section 2.4). All of those
metrics were proposed in the context of services-oriented approaches. Then, we analyzed
all the definitions to understand them in full. Therefore, we choose to work only with
SIDC1, LOCmessage, and SIIC, as shown in Figure 3.1. In the following, we explain the
criteria used to select these metrics.

First, we excluded metrics assuming an external perspective about client service usage
that contradicts our notion of cohesion as a module characteristic based on its internal
properties. As a result, we did not analyze the following metrics: SIUC, SSUC, SISC,

29

Figure 3.1: Selection Criteria and Resulting Metrics

and LOCconversation. These metrics try to infer cohesion characteristics based on external
information, e.g., service methods usage patterns or sequence by its clients. We consider
these characteristics may even be correlated with cohesion but they are not measuring
cohesion. Second, we excluded duplicate or obsolete metrics, keeping only the most recent
versions recommended by the authors. Thus, we excluded the following metrics from our
analysis: SSIC, LSIC, and SIDC2. Third, we did not analyze the TICS metric because it
is a composite metric that aggregates other metrics. So, we decided to keep only the base
metrics and, if necessary, to start working with derived metrics. Fourth, we excluded
metrics that require knowing developer’s patterns, such as naming conventions. Our
study is an exploratory analysis conducted independently of the authors who proposed the
metrics and developed the case application. Therefore, we cannot anticipate the specific
patterns implemented in the analyzed case. Consequently, we excluded the LOCdomain

metric because it depends on patterns for operation names, parameters, and results.

3.2 Repository Mining

This section describes the procedure for mining Spinnaker repositories using our support-
ing tool Ageus (presented in Section 4.1). This section follows the guidelines proposed
in [35]. As previously stated, the objective of this study is to verify the practical applica-
bility of the selected metrics in the literature review (SIDC1, LOCmessage, and SIIC) in
a real-world application.

3.2.1 Repository Selection

As our study concerns software evolution, we needed to find a microservices application
with a history of its version releases. Thus, we searched for active repositories hosting

30

open-source microservices applications with many contributors and contributions. Re-
garding the source, GitHub is recognized for its many open-source software development
projects.

We searched for repositories using the GitHub Search API and two keywords (microser-
vices and Java). As a result, we found 716 repositories. We only included repositories
developed with Java or JVM support (which also includes Kotlin projects). Furthermore,
we excluded demos/examples or applications without stable releases and sorted them by
stars and the number of commits.

Finally, we chose the Spinnaker project as our case because of its significant code
base of thousands of historical changes and releases. Additionally, a large community
actively supports Spinnaker, with about eight thousand stars on GitHub. Furthermore,
its technical oversight committee includes reputable companies such as Salesforce, Armory,
Google, AWS, and Netflix.

Spinnaker is a multi-cloud continuous delivery platform. Its organization on GitHub
has over 50 repositories, but not all contain microservices. Therefore, we filtered the
repositories to identify microservices. We included microservices written in Java or JVM
languages. We excluded archived repositories, demo code, microservices with no releases,
documentation repositories, installation scripts, tools, front-end-only repositories, and
those developed using non-JVM languages. We also excluded microservices with recent
unstable releases.

Spinnaker architecture adopts the API Gateway Design Pattern and comprises a set of
twelve microservices. Figure 3.2 illustrates the relationship between these microservices.

• Deck is the browser-based UI. It is developed using Nodejs1. We did not analyze the
Deck microservice because it uses Nodejs, which is not a JVM-based programming
language.

• Gate is the API Gateway that establishes communication between the front-end
application, Deck, and other Spinnaker’s internal microservices.

• Orca is an orchestration service that coordinates the pipeline stages, tasks, and
executions.

• Clouddriver microservice connects to Cloud Providers (such as AWS, CloudFoundry,
and Azure) and indexes all deployed resources.

• Front50 is used to persist the metadata of applications, pipelines, projects, and
notifications.

• Rosco produces immutable VM images (or image templates) for various cloud providers.
It produces machine images (for example, GCE images, AWS AMIs, and Azure VM
images). It currently wraps the packer but will be expanded to support additional
image production mechanisms.

1https://nodejs.org

https://nodejs.org

31

Figure 3.2: Spinnaker’s system dependencies.

32

• Igor triggers pipelines via continuous integration jobs. Igor is used to triggering
pipelines via continuous integration jobs in systems like Jenkins and Travis CI, and
it allows Jenkins/Travis stages to be used in pipelines.

• Echo is the Spinnaker’s event bus. It supports sending notifications (e.g., Slack,
email, SMS) and acts on incoming webhooks from services like GitHub.

• Fiat is Spinnaker’s authorization service. It is used to query a user’s access permis-
sions for accounts, applications, and service accounts.

• Kayenta provides automated canary analysis for Spinnaker.

• Keel powers managed delivery by giving software practitioners shared configurations
in the delivery process. It was still under development during the analysis; thus, we
excluded it.

• Halyard is Spinnaker’s configuration service.

We ultimately selected Clouddriver, Echo, Fiat, Front50, Gate, Halyard, Igor, Kayenta,
Orca, and Rosco from all the microservices. These microservices have more than four
thousand releases together, and each release is labeled using the Semantic Versioning
pattern2.

We selected only the major and minor releases and excluded patch releases as they
usually only fix bugs, which is unlikely to impact service cohesion. Furthermore, the
Spinnaker project adopts the approach of one repository per microservice, where each
has its own life cycle. Therefore, the versions of the microservices may differ at the same
time. For instance, during the software evolution, one microservice may be in version 10
while the other is in version 8 or 3. Hence, we collected the latest 100 versions of each
microservice as a sample—Table 3.1 shows which microservice versions we mined.

Table 3.1: Target versions for each microservice.

Microservice version
from to

Gate 4.59.1 6.52
Orca 7.43 8.19
Clouddriver 5.23.4 5.75.0
Igor 2.1 4.5
Echo 1.528 2.29
Fiat 0.52 1.28
Front50 1.124 2.24
Halyard 0.0.1 0.37
Rosco 0.105 1.7

2https://semver.org

https://semver.org

33

3.2.2 Execution

As mentioned in Section 3.2.1, Spinnaker has an extensive source code base, including
pull requests, commits, and issues, which makes mining the repository a challenging task.
Therefore, we have created a tool to assist with repository mining.

We develop the Aegeus3 tool to extract data from the microservices repository for each
version (Table 3.1) that the interface must be annotated with Spring @RestController.
Aegeus finds these classes and extracts: URL, HTTP Method, interface objects, parame-
ters, implementation elements (objects, functions, etc.), and output objects. Section 4.1
describes in more detail Aegeus.

3.2.3 Analysis

This section describes the procedure for analyzing and the results. First, we examined
two perspectives: controller and microservice. This separation of perspectives was im-
portant as services are usually defined as a collection of methods or end-points, which
are defined in the context of controllers. So, ultimately, we can understand a service as
a collection of exposed methods (operations) organized into controllers. Then, for each
perspective, we performed both quantitative and qualitative analyses. Finally, we sepa-
rated those perspectives to understand the difference between analyzing the microservice
and its controller.

Controller Perspective

To quantitatively analyze controllers, we sequentially analyzed the versions of each con-
troller for each metric. Then, we removed controllers with no changes in the target metrics
during the observed frame interval from the analysis. Finally, we plotted a sequence of
run charts with the cohesion metrics across the releases of each controller. We visually in-
spected each chart for peaks and valleys to identify potential degradation or improvement.
Figure 3.3 illustrates a peak and a valley.

To qualitatively analyze controllers, we manually examined the source code for those
identified changes to validate and explain the behavior of the metrics. For example, if
the metric SIDC1 has a value of 1, and after a new version, its value changes to 0.5, we
looked into this release to determine what sort of changes were implemented.

Microservice Perspective

This analysis is based on the premise that a microservice can be viewed as a collection of
interconnected and semantically cohesive controllers where each controller exposes a set of
objects and operations. By considering the overall set of controllers and their associated
entities and operations, it is possible to evaluate the cohesion of the microservice as a

3Aegeus, the King of Athens, is noted for being the father (or not) of Theseus, the fearless hero who
defeated the Minotaur in the Labyrinth of Crete. Upon Theseus’ return to Athens, Aegeus believed he had
lost his son and threw himself into the sea in sorrow. This event gave the name to the Aegean Sea. Aegeus’
tale is marked by themes of destiny, courage, and the disastrous consequences of misinterpretation.

34

Figure 3.3: Peak and Valley Example

single module. We used this perspective to assess how objects and operations within a
microservice are interrelated and work together toward a common goal.

This analysis aggregates the operations and objects of all publicly available controllers
for each metric. For instance, let us consider a microservice denoted as m, comprising two
controllers, namely c1 and c2. In turn, c1 contains an object o1 and an operation p1, while
c2 has the objects o1, o2, and o3, and the operation p2. In the analysis of the microservice
m, the objects o1, o2, and o3, as well as the operations p1 and p2, are evaluated altogether,
and only one value for each metric is calculated.

35

Chapter 4

Results and Discussion

4.1 Supporting Tool

This section describes the first result of this work: a tool for evaluating cohesion metrics
in repositories. Our tool, Aegeus, allows developers to analyze microservices and provides
them indicators of the degree of cohesion in their microservices using the selected metrics
(SIDC1, LOCmessage, and SIIC) for REST controllers in a Git repository.

To use Aegeus, users must provide four input parameters: i) the Git repository address
of the microservice, ii) the path address to service controllers, iii) the technology (currently
limited to Java Spring MVC framework, annotated with @RestController), and iv) the
number of releases to analyze (with the option to analyze only the latest version by
providing a value of 1).

Figure 4.1 presents the Aegeus architecture, based on the Pipes-and-Filters style, in
which a component is triggered immediately after the previous one finishes. The archi-
tecture is divided into two major components: ControllerRetriever and MetricCalculator.

The ControllerRetriever detects and retrieves controllers and is composed of two
subcomponents: ReleaseRetriever and ControllerFinder. ReleaseRetriever downloads re-
leases from the Git repository and sorts them using the semantic versioning pattern com-
monly used with Git tags. Then, ControllerFinder identifies REST Controllers for each
version.

The MetricCalculator calculates the metrics for each controller identified by the pre-
vious component. It comprises three components: the Reader, the Calculator, and the
Exporter. The Reader reads a controller file and parses it into an IServiceDescriptor in-
stance. The Calculator receives the instance and calculates the metrics, IMetricResult.
Finally, the Exporter writes the results into a CSV file.

The tool is available on GitHub1 and is implemented using Java, Python, and Shell
to support the select metrics. It supports Spring MVC applications with an extensible
interface for other application frameworks.

1https://github.com/mateusgabi/aegeus

https://github.com/mateusgabi/aegeus

36

Figure 4.1: Aegeus Architecture

4.2 The Controller Perspective

This section provides an overview of the outcomes of each microservice from the con-
trollers’ perspective. Our study focused on nine Spinnaker application microservices,
including 138 controllers and a total of 776 releases. To assess the cohesion of each
microservice, we conducted both quantitative and qualitative analyses from both the con-
troller and the microservice viewpoint.

From Table 4.1 to Table 4.8, we present an overview of the quantitative results obtained
for main controllers for each microservices. All these controllers are present from the first
measured release until the latest one.

We have observed a decrease in cohesion for all three metrics in the Concourse con-
troller of the Gate microservice and in the Artifact controller of the Igor microservice.
However, other controllers exhibited varying results in the metrics for interface (SIDC1
and LoCmessage) and for implementation (SIIC). For instance, the GoogleCloudBuild con-
troller’s interface metrics showed increased cohesion for the Igor microservice, while the
implementation metric suggested reduced cohesion. This outcome does not imply a de-
crease in the cohesion of the entire controller but only in their interface implementation,
which can be improved through refactoring to enhance cohesion and maintain the con-
troller’s sustainability.

• Controllers of the Gate Microservice. The evolution of the Concourse, Google-
CloudBuild, and V2PipelineTemplates controllers from version 4.59 to 6.51 is illus-
trated in Figure 4.2. The LoCmessage metric indicates a lack of cohesion when its

37

value is close to 1 and high cohesion when it is close to 0. In the case of SIDC1 and
SIIC, a value closer to 1 indicates lower cohesion of the microservice.

All metrics in the Concourse controller exhibited a decrease in cohesion. This could
be attributed to the creation of several operations that lacked common output types
and architectural elements, such as classes and functions in their implementation.

Regarding the GoogleCloudBuild controller, we observed that the metrics LoCmessage

and SIIC remained stable, indicating low cohesion. However, there was a consid-
erable decrease in the SIDC metric, suggesting the new operations added did not
share common input types.

In the case of the V2PipelineTemplates controller, the LoCmessage metric decreased
by 0.02, and the SIIC metric decreased by 0.02, which can be considered stable
results. However, SIDC1 improved to its maximum value of 1. This improvement
could be explained by the possibility that we captured a transitional moment when a
new operation was being created to replace another one in the future (see Figure 4.3).
The other 26 controllers remained stable throughout the analyzed period.

(a) Concourse (b) GoogleCloudBuild (c) V2PipelineTemplates

Figure 4.2: Gate Controllers Evolution

• Controllers of the Orca Microservice. Figure 4.4 shows the evolution of this
controller from version 7.43.1 to version 8.19.0. The figure indicates the interface
cohesion for SIDC1 decreased while the cohesion in LoCmessage increased. Further-
more, there was a constant lack of cohesion in the implementation (SIIC) throughout
the analyzed period.

Figure 4.5 presents the observed changes in the source code of the Capabilities con-
troller across releases. A new operation named getExpressionCapabilities was added,
introducing a new attribute called orcaCapabilities. However, other operations did
not share this attribute, resulting in an SIIC value equal to zero.

The other eight controllers remained stable.

• Controllers in the Clouddriver Microservice

Figure 4.6 illustrates the evolution of the EcsCluster, Function, and Manifest con-
trollers from version 5.23 to version 5.75.

38

Figure 4.3: V2PipelineTemplatesController code changes.

Figure 4.4: Capabilities controller from Orca

39

Figure 4.5: CapabilitiesController code changes.

The metrics reveal a decrease in cohesion in the EcsCluster controller. In contrast,
the SIIC metric for the Function controller increased, indicating an improvement
in implementation cohesion. For the Manifest controller, we observed an increase
in interface cohesion and a slight decrease in implementation cohesion. This can be
attributed to creating operations that share output types in the Function controller
while using non-shared types in the Manifest controller. The other 35 controllers
remained stable.

(a) EcsCluster (b) Function (c) Manifest

Figure 4.6: Clouddriver Controllers Evolution

• Controllers of the Igor Microservice

Figure 4.7 displays the evolution of several controllers in the Igor microservice from
version 2.1 to Version 4.5. It should be noted that some controllers were introduced

40

in earlier versions, such as the AwsCodeBuild controller in version 4.0, CI in version
4.1, GoogleCloudBuild in version 2.15, and Nexus in version 3.6. Nevertheless, all
controllers were analyzed until version 4.5.

Concerning the Artifact controller, a new parameter type (List) was added to the
input, as shown in Figure 4.8. Unfortunately, this change led to a decrease in
cohesion.

In the AwsCodeBuild controller, cohesion decreased due to adding new operations
with new elements and output types. For the CI controller, introducing new oper-
ations that share elements and input types increased both SIIC and SIDC metrics.
Finally, the Concourse controller improved interface cohesion by introducing new
operations that share output types. However, implementation cohesion decreased
because these new operations do not share element types.

TheGoogleCloudBuild controller’s cohesion increased due to the sharing of input and
output types. However, implementation cohesion decreased because the elements
were not shared with other operations. On the other hand, implementation cohesion
was slightly improved in the Nexus controller because new operations share elements
such as classes, functions, and scripts.

The other four controllers remained stable during the analyzed period.

(a) Artifact (b) AwsCodeBuild (c) CI

(d) Concourse (e) GoogleCloudBuild (f) Nexus

Figure 4.7: Igor Microservice Controllers’ Evolution

41

Figure 4.8: ArtifactController code changes.

Table 4.1: Clouddriver Microservice Controllers

LoC SIDC1 SIIC
Controller 1st meas. lst. meas. state 1st meas. lst meas. state 1st meas. lst meas. state

GoogleNamedImageLookup 0.940 0.940 stable 0.429 0.429 stable 0.077 0.077 stable
CloudFoundryImage 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable

EcsImages 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
EcsCloudMetric 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable

EcsCluster 1.000 1.000 stable 1.000 0.000 decrease 0.000 0.500 increase
EcsServiceDiscovery 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable

EcsSecret 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
EcsServerGroup 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable

Role 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
CloudFormation 1.000 1.000 stable 0.000 0.000 stable 0.667 0.667 stable
AppengineStorage 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable

Image 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
ServiceBroker 0.625 0.625 stable 1.000 1.000 stable 1.000 1.000 stable

Manifest 0.250 0.630 decrease 0.667 0.667 stable 0.400 0.291 decrease
EntityTags 1.000 1.000 stable 0.000 0.000 stable 0.333 0.333 stable
Artifact 0.861 0.867 decrease 0.500 0.500 decrease 0.222 0.160 decrease

ServerGroupManager 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
Function 1.000 0.500 increase 1.000 1.000 stable 0.000 1.000 increase

EntityTagsAdmin 0.583 0.583 stable 1.000 1.000 stable 0.400 0.400 stable

Table 4.2: Fiat Microservice Controllers

LoC SIDC1 SIIC
Controller 1st meas. lst. meas. state 1st meas. lst meas. state 1st meas. lst meas. state
Authorize 0.730 0.730 stable 1.000 1.000 stable 0.074 0.074 stable
Roles 0.583 0.583 stable 0.667 0.667 stable 0.312 0.333 increase

42

Table 4.3: Front50 Microservice Controllers

LoC SIDC1 SIIC
Controller 1st meas. lst. meas. state 1st meas. lst meas. state 1st meas. lst meas. state

PipelineTemplate 0.859 0.867 decrease 0.800 0.800 stable 0.076 0.071 decrease

Table 4.4: Gate Microservice Controllers

LoC SIDC1 SIIC
Controller 1st meas. lst. meas. state 1st meas. lst meas. state 1st meas. lst meas. state

PubsubSubscription 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
V2PipelineTemplates 0.792 0.821 decrease 0.750 1.000 increase 0.200 0.182 decrease

EntityTags 0.729 0.729 stable 0.200 0.200 stable 0.364 0.364 stable
PipelineTemplates 0.817 0.817 stable 0.571 0.571 stable 0.150 0.150 stable
StorageAccount 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
OidcConfig 1.000 1.000 stable 1.000 1.000 stable 1.000 1.000 stable

GoogleCloudBuild 1.000 1.000 stable 1.000 0.000 decrease 0.000 0.000 stable
Artifact 0.736 0.807 decrease 0.500 0.500 stable 0.400 0.333 decrease

Concourse 0.250 0.525 decrease 1.000 0.500 decrease 0.667 0.200 decrease
Executions 0.433 0.433 stable 0.400 0.400 stable 0.556 0.500 decrease
Artifactory 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable

ServerGroupManager 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
BatchEntityTags 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable

Version 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
Cleanup 0.733 0.733 stable 1.000 1.000 stable 0.400 0.400 stable
Gremlin 0.000 0.000 stable 1.000 1.000 stable 1.000 1.000 stable

Table 4.5: Halyard Microservice Controllers

LoC SIDC1 SIIC
Controller 1st meas. lst. meas. state 1st meas. lst meas. state 1st meas. lst meas. state

Config 0.500 0.833 decrease 0.000 0.000 stable 1.000 0.333 decrease
Deployment 0.722 0.644 increase 1.000 0.444 decrease 0.400 0.077 decrease
Versions 1.000 0.750 increase 1.000 1.000 stable 0.000 0.500 increase
Account 0.455 0.570 decrease 1.000 1.000 stable 0.400 0.257 decrease
Provider 0.642 0.565 increase 1.000 0.750 decrease 0.485 0.324 decrease
Features 0.625 0.625 stable 0.750 0.750 stable 0.417 0.333 decrease

Table 4.6: Igor Microservice Controllers

LoC SIDC1 SIIC
Controller 1st meas. lst. meas. state 1st meas. lst meas. state 1st meas. lst meas. state

AbstractCommit 0.722 0.806 decrease 0.167 0.250 increase 0.133 0.143 increase
Commit 0.800 0.800 stable 0.500 0.500 stable 0.125 0.111 decrease
Admin 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable

Table 4.7: Orca Microservice Controllers

LoC SIDC1 SIIC
Controller 1st meas. lst. meas. state 1st meas. lst meas. state 1st meas. lst meas. state

V2PipelineTemplate 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
CorrelatedTasks 0.750 0.750 stable 0.500 0.500 stable 0.167 0.167 stable

Concourse 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable
Capabilities 1.000 0.500 increase 1.000 0.000 decrease 0.000 0.000 stable

Table 4.8: Rosco Microservice Controllers

LoC SIDC1 SIIC
Controller 1st meas. lst. meas. state 1st meas. lst meas. state 1st meas. lst meas. state
V2Bakery 1.000 1.000 stable 1.000 1.000 stable 0.000 0.000 stable

43

4.3 Results per Metric

4.3.1 LOCmessage Results

This metric indicates that an interface is highly cohesive when its value is closer to 0 and
low cohesion when it is closer to 1.

• Gate Microservice. In Figure 4.2, there was a decrease in the cohesion of Concourse
and V2PipelineTemplates controllers. In the microservice perspective, Figure 4.9,
we can observe an increase in the lack of cohesion.

• Orca Microservice, Figure 4.4, Capabilities Controller cohesion was increased. In
the microservice perspective, Figure 4.9, we can observe a decrease in the lack of
cohesion.

• Clouddriver Microservice. In Figure 4.6, there was a decrease in the cohesion of
Manifest and an increase in the Function controller. In the microservice perspective,
Figure 4.9, we can observe an increase in the lack of cohesion.

• Igor Microservice. In Figure 4.7, there was a decrease in the cohesion of Abstract-
Commit, Artifact, and AwsCodeBuild. Concourse and GoogleCloudBuild increase.
In the microservice perspective, Figure 4.9, we can observe an increase in the lack
of cohesion.

4.3.2 SIDC1 Results

This metric indicates high cohesion as close to 1 and low cohesion as close to 0.

• Gate Microservice. In Figure 4.2, we plot the cohesion assessment of the controllers:
Concourse, GoogleCloudBuild, and V2PipelineTemplates. Thus, we can affirm that
V2PipelineTemplates cohesion has improved, and Concourse and GoogleCloudBuild
decreased.

• Orca Microservice, Figure 4.4, have decreased to zero, meaning a huge loss of cohe-
sion in CapabilitiesController.

• Clouddriver Microservice. In Figure 4.6, we can affirm that the EcsCluster has
decreased to zero, which means a huge loss of cohesion.

• Igor Microservice. In Figure 4.7, we can affirm that Artifact and Nexus decreased
and AbstractCommit, CI, and GoogleCloudBuild have improved.

4.3.3 SIIC Results

This metric indicates high cohesion when its value is closer to 1 and low cohesion when
it is closer to 0.

• Gate Microservice. In Figure 4.2, there was a decrease in the cohesion of Concourse
and V2PipelineTemplates controllers.

44

• Orca Microservice, Figure 4.4, Capabilities Controller cohesion was still lacking of
cohesion.

• Clouddriver Microservice. In Figure 4.6, there was a decrease in the cohesion of
Manifest and an increase in the Function and EcsCluster controller.

• Igor Microservice. In Figure 4.7, there was a decrease in the cohesion of Arti-
fact, AwsCodeBuild, Concourse, and GoogleCloudBuild. AbstractCommit, CI, and
Nexus increase.

In general, controllers’ cohesion is stable under the perspective of the selected metrics.

4.4 The Microservice Perspective

This section provides an overview of the results obtained from analyzing Spinnaker’s
microservices, focused on examining the cohesion metrics for each microservice.

The idea of emergent properties in systems engineering [11], where the whole entity is
more than the sum of its parts, is relevant in cohesion analysis in software applications.
While studying the individual parts of a system, such as controllers in a microservice-
based application, it is important not to overlook the context and environment in which
these parts operate. The concept of emergent properties highlights the need to consider
the cohesion of the application as a whole rather than focusing solely on the cohesion of
its constituent microservices.

In microservices, the idea of layered structures, as described by Peter Checkland [11],
can be applied. Microservices can be seen as autonomous parts within a larger whole,
similar to departments within a university or subsystems within a larger system. These
microservices exhibit emergent properties, and studying their cohesion can provide valu-
able insights into the overall system behavior.

The metrics defined for studying cohesion in Service-Oriented Architecture (SOA) ap-
plications, such as controllers in the case of microservices, can still be applicable in the
context of Microservice Architecture (MSA). However, it is important to consider the
granularity of the cohesion in this study. The results indicate that studying the cohesion
of an MSA application at the microservice level, rather than individual controllers, using
the metrics defined for SOA applications can provide meaningful insights into the sys-
tem’s behavior and maintainability. For example, in Cloudriver Microservice (Table 4.1),
from 57 assessments of cohesion (19 controllers and 3 metrics), only 6 assessments in 3
controllers were decreasing. In the first analysis, due to a large number of controllers
stables or increased cohesion, 16 of 19 in total, the software engineer may be guided to a
misinterpretation of the stability in the cohesion while the measurement of the microser-
vice shows a consensus for the decrease in cohesion (Table 4.9). In summary, the result
indicates that controllers remain stable but do not contribute to the single responsibility
of a microservice.

Notably, one meaningful observation is the general decay in cohesion across the mi-
croservices evolution (Table 4.9), although the cohesion assessment in the controller per-
spective remains stable (Table 4.1, 4.2, 4.4, 4.7, 4.8). This decay is only evident

45

(a) Clouddriver (b) Echo

(c) Igor (d) Front50

(e) Gate (f) Halyard

(g) Fiat (h) Orca (i) Rosco

Figure 4.9: Microservices’ Cohesion Evolution

46

Table 4.9: Cohesion Assessment per Microservice

Microservices Metric Result Is consensus?LoC SIDC1 SIIC
Clouddriver decrease decrease decrease yes
Echo increase increase decrease no
Fiat stable stable increase no
Front50 decrease decrease decrease yes
Gate decrease decrease decrease yes
Halyard increase decrease decrease no
Igor decrease decrease decrease yes
Orca increase decrease stable no
Rosco stable stable stable yes

when considering the cohesion of the entire microservice, indicating a decline in its overall
quality. The charts corresponding to each microservice demonstrate this trend.

Table 4.9 and Figure 4.9 aggregates the results, and we can observe: a general and
consensual decrease of cohesion in Clouddriver, Front50, Gate, and Igor considering all
metrics; For Echo, the interface increased, but the implementation decreased; For Fiat,
the interface stability and implementation increased; Halyard and Orca had mixed results;
and, for Rosco, everything remains stable. The reason why each microservice decreased
is described in Section 4.2.

4.5 Controller vs. Microservice Perspective

This section discusses the results found in Section 4.2 and Section 4.4, respectively, for
Controller and Microservice perspectives. We evaluated the metrics from each controller’s
perspective to begin our analysis. We examined each controller separately, as this is the
prevalent method for measuring cohesion in service-oriented applications. Essentially,
we determined how well each controller fulfilled its responsibilities. Following this, we
assessed the cohesion of each microservice by considering it as a “single controller”. It
allowed us to measure how effectively the entire microservice fulfilled its designated re-
sponsibility.

In our initial analysis, we observed that controllers exhibit a stable level of cohesion
due to their singular responsibility. However, in our second analysis, where we evalu-
ated the entire microservice as a single controller, we noted a decrease in cohesion (as
seen in Table 4.9). This occurred because additional features were added to the applica-
tion without introducing new microservices, resulting in larger services, taking on more
responsibilities than before, and consequent decay in cohesion.

One important insight is that creating a new microservice for a simple feature may be
more costly than adding a method to the service layer. This high cost of creating small
features could hinder the creation of new microservices. Initially, the negative impact may
not be noticeable since a single method does not appear to be problematic. However, if
this occurs repeatedly, it can gradually degrade software maintainability.

47

A second insight is that software practitioners should avoid unnecessary coupling.
Considering why a new microservice should be introduced if it will only serve one single
client is crucial. This kind of decision can significantly impact the future of the applica-
tion. Introducing a new microservice that serves only one client can lead to unnecessary
complexity and dependencies within the application, making it more difficult to oper-
ate, maintain, and scale. Considering both benefits and drawbacks is essential before
introducing a new microservice.

In their research, Curtis and Walz [14] propose a layered behavioral model for software
development. This model takes into account individual, team, and organizational factors.
At the individual level, software engineering psychology focuses on the problem to be
solved. At the team and project levels, team dynamics, structures, and social factors are
crucial to success. Both individual skills and effective group communication, collaboration,
and coordination are essential. At the highest level, organizational behaviors determine
a company’s actions and response to the business environment.

At the individual level in Spinnaker, the task may be developed using top-notch pat-
terns and tools to support the delivery of new versions. At the team and project level,
there may be cultural differences among the software engineers from different companies
involved in the Spinnaker project, leading to potential conflicts that may need to be
resolved as the project progresses. These conflicts could potentially be reflected in the
project’s source code, resulting in maintainability issues, particularly in terms of cohesion.

4.6 Threats to validity

This assessment is limited to the metrics set and the quantitative and qualitative analysis.
In this way, this Section discusses threats to our observations, possibly impacting the
conclusions, under a pragmatist worldview [29].

4.6.1 Internal Validity

Internal Validity refers to factors affecting the cause-and-effect relationships for metrics
assessment and changes in source code. The authors performed a systematic and openly
available evaluation of the metrics and the quantitative analysis using scripts developed by
the authors. We analyzed the source code qualitatively to explain the quantitative results
successfully, mitigating this threat. External researchers may review to corroborate the
results.

4.6.2 External Validity

External Validity refers to which the results can be generalized to other applications. The
results of this research cannot be generalized. Each microservice application can be devel-
oped using different design patterns, data structures, and other technologies. Therefore,
we intend to allow practitioners to compare our findings and discuss the applicability of
our methodology to their applications.

48

4.6.3 Construct Validity

Construct Validity refers to the investigated concepts and their operational measures
according to the research goals. The set of cohesion metrics was collected as defined
in the literature. According to the results, those metrics provide a good perspective of
cohesion in the microservice context.

4.6.4 Reliability

Reliability concerns the extent to which the data and the analysis depend on the specific
researchers [29]. The metrics were assessed using a systematic tool available on Github 2,
the case analysis is entirely independent of the authors and publicly available on Github.
Furthermore, the code was analyzed quantitatively using the compare feature available
for free on GitHub. Thus, researchers can perform the same quantitative and qualitative
observations using procedures, tools, and source code.

2Available online: https://doi.org/10.5281/zenodo.6897830

https://doi.org/10.5281/zenodo.6897830

49

Chapter 5

Conclusion

This study conducted a comprehensive analysis to assess the feasibility of utilizing the
cohesion metrics proposed in the literature for Service Oriented Architecture (SOA) ap-
plications in real-world Microservice Architecture (MSA) applications.

To do so, we designed a method to evaluate SOA metrics in a real-world MSA applica-
tion. This method consists of five steps. The first step was conducting a literature review
to find metrics used to measure cohesion in Microservice Architecture (MSA) applica-
tions. The selected metrics were: Lack of Message-level Cohesion (LoCmessage), Service
Interface Data Cohesion (SIDC1), and Service Interface Implementation Cohesion (SIIC).
LoCmessage measures the cohesion of an interface given its input and output. SIDC1 quan-
tifies the cohesion of a service based on the cohesiveness of the operations exposed in its
interface, which means operations share the same type of input parameter. Finally, SIIC
quantifies the cohesion of a service based on the cohesiveness in the implementation of
the operations.

Second, we developed a tool called Aegeus to help developers analyze microservices
and provide them with an indicator of the degree of cohesion in their microservices.
Third, we selected the repository to be mined. We chose Spinnaker, an open-source
Microservice Architecture. Spinnaker is a multi-cloud continuous delivery platform with
a large code base of thousands of historical changes and releases. Fourth, we mined
Spinnaker repositories. We mined Spinnaker’s microservices: Clouddriver, Echo, Fiat,
Front50, Gate, Halyard, Igor, Kayenta, Orca, and Rosco. These microservices have more
than four thousand releases together. Finally, we evaluated the latest stable versions of
every controller during a frame interval using the metrics.

Finally, the quantitative and qualitative analysis showed the Spinnaker project is stable
primarily in terms of cohesion because from 138 controllers, 124 controllers remain stable,
and only 14 significantly change the values of the metrics.

The metrics indicate a decrease in cohesion when some design and implementation
issues happen: (i) new operations or parameter types are added into the interface; (ii)
their operation implementations change without sharing internal elements (attributes,
methods, functions, etc.), (iii) use of meaningless types in the interface (Map and Object
from Java API). On the other hand, if a new operation shares input and output types,
the cohesion increases, which means the controller elements belong together. However,
some metrics can be reformulated or added to improve some inherent characteristics of

50

MSA applications.
These results have shown that it is possible to visualize the evolution of cohesion in

microservices architectures using the selected SOA metrics. Our methodology supports
the monitoring and analysis of cohesion during microservices’ evolution, helping software
teams track maintainability issues during the whole software development life cycle.

Also, the Ageus tool can work as a valuable resource for evaluating the level of cohesion
in microservices. The tool automatically collects the metrics for each REST controller,
making it easier for developers to find improvements to increase cohesion. Furthermore,
the tool supports multiple application frameworks and can be used in various contexts.

We understand that methods and tools to support the monitoring and analysis of
cohesion during the evolution of microservices are required so that software teams can
easily track maintainability issues as soon as they appear in the software life cycle.

The answer for RQ1 is positive, i.e., the cohesion metrics SIDC1, LOCmessage, and
SIIC for SOA applications can be applied in MSA applications, as we could verify the
evolution of cohesion inside the Spinnaker. Furthermore, although there are some differ-
ences between SOA and MSA, the analyzed metrics use common elements in both (i.e.,
interfaces, operations, input and output parameters, classes, and functions), making it
possible to apply them in MSA applications. Also, it is possible to reformulate or add
other metrics to better attend to some inherent characteristics of MSA applications.

Our observations show the lack of sharing new elements in past implementations of
operations, inputs, or outputs is the most common problem. This leads to a rapid decrease
in cohesion, as internal elements within a module are not shared to achieve a single goal.
In conclusion, we can affirm that SOA metrics, specifically the SIDC1, LOCmessage, and
SIIC metrics, can be applied to MSA applications.

Regarding applying these metrics in the controller or the microservice, we found that
controllers generally exhibit a stable level of cohesion, owing to their specific responsibili-
ties. However, when evaluating the entire microservice as a single controller, cohesion may
decrease due to adding new features without introducing new microservices. This high-
lights the importance of carefully managing microservice boundaries and responsibilities
to maintain cohesion for microservice.

Considering the layered behavioral model proposed by Curtis and Walz [14], we rec-
ognize the significance of individual, team, and organizational factors in effective software
development. Addressing these factors can influence cohesion and overall software quality.
The Spinnaker project’s involvement with diverse software engineers from various cultures
underscores the significance of managing cultural conflicts and their potential impact on
the project’s evolution and is reflected in the source code.

The results and method presented in this study have several implications for academia
and the industry. From an academic perspective, this study contributes to the research
on cohesion metrics in the context of Microservice Architecture (MSA) applications. The
study expands our understanding of cohesion measurement in modern software architec-
tures by evaluating the applicability of Service Oriented Architecture (SOA) metrics in
real-world MSA applications. The method developed for assessing these metrics provides
valuable guidance for future research in the field. The study also highlights the need for
further research and refinement of cohesion metrics tailored to MSA applications. While

51

the selected SOA metrics (SIDC1, LoCmessage, and SIIC) showed potential and provided
insights into the cohesion dynamics of microservices, there is room for the development
of additional metrics that capture the unique characteristics of MSA architectures. This
opens up future research to refine existing metrics and propose new ones that better
address MSA applications’ specific challenges and characteristics.

From an industry perspective, the study offers practical implications for software devel-
opment teams working with microservices. The Aegeus tool developed in this study allows
developers to analyze their microservices’ cohesion and identify potential improvement ar-
eas. By automatically collecting and calculating the metrics for each REST controller,
the tool simplifies the process of evaluating cohesion and facilitates the identification of
maintainability issues. The study results indicate that maintaining and improving cohe-
sion in microservices is crucial for ensuring the long-term maintainability and quality of
the software. The observed decrease in cohesion when design and implementation issues
occur highlights the importance of considering cohesion during the software development
life cycle. Software teams can proactively track and manage cohesion by using the met-
rics in this work and addressing the identified problems, leading to more maintainable
microservices.

Overall, the study’s findings contribute to academia and the industry by providing
insights into cohesion measurement in MSA applications, offering a practical tool for co-
hesion evaluation, and emphasizing the importance of maintaining and improving cohesion
for microservices. In addition, the study sets the stage for further research in this area and
guides software development teams seeking to enhance the quality and maintainability of
their microservices. We want to emphasize the cohesion measurement in terms of the mi-
croservice instead of each controller; observing the cohesion at a microservice level helps
the software architect determine whether a microservice has more responsibility than it
should, as observed in Spinnaker’s microservices.

In future works, we aim to expand our understanding of the scope and boundaries
of our methodology by implementing it in various application patterns that impact the
decision-making process for architecture. These patterns may include client-side discovery,
back-ends for front-ends, service registry, and other microservices decomposition strategies
based on business capabilities, subdomains, or teams. Furthermore, it is essential to
include the metrics not selected in this work, Lack of Domain-level Cohesion LoCdomain

and Total Interface Cohesion of a Service (TICS) or others not found in the literature
proposed in the future. In this way, to gain a comprehensive perspective on the versatility
and efficacy of our approach in diverse scenarios.

Furthermore, it is necessary to explore the connection between cohesion and coupling.
Engineers may have been influenced by a fear of increased coupling, which could have im-
pacted their decision-making process. For instance, they may have attempted to reduce
coupling by grouping various objects into a single microservice to avoid extra HTTP calls
or discovery overhead. Then it is crucial to investigate why coupling is still prioritized de-
spite a decrease in cohesion, as it is possible that the engineers have not yet acknowledged
this decline.

In the evolution of microservices, numerous controllers have been developed and sub-
sequently terminated. Examining these temporary controllers may uncover signs of both

52

advantageous and disadvantageous architectural decisions. Analyzing these “fossils” would
enable us to establish metrics that measure instances of premature termination and an-
ticipate or recommend strategies to address them.

53

Bibliography

[1] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping study in
microservice architecture. In 2016 IEEE 9th International Conference on Service-
Oriented Computing and Applications (SOCA), pages 44–51. IEEE, 2016.

[2] Daniel RF Apolinário and Breno BN de França. A method for monitoring the cou-
pling evolution of microservice-based architectures. Journal of the Brazilian Com-
puter Society, 27(1):1–35, 2021.

[3] Dionysis Athanasopoulos, Apostolos V. Zarras, George Miskos, Valerie Issarny, and
Panos Vassiliadis. Cohesion-driven decomposition of service interfaces without access
to source code. IEEE Transactions on Services Computing, 8(4):550–562, July 2015.

[4] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Addison-Wesley Professional, 2003.

[5] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evolution: A
roadmap. In Proceedings of the Conference on The Future of Software Engineer-
ing, ICSE ’00, page 73–87, New York, NY, USA, 2000. Association for Computing
Machinery.

[6] Justus Bogner, Jonas Fritzsch, StefanWagner, and Alfred Zimmermann. Assuring the
evolvability of microservices: Insights into industry practices and challenges. In 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 546–556, 2019.

[7] Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Automatically measuring
the maintainability of service- and microservice-based systems: A literature review.
In Proceedings of the 27th International Workshop on Software Measurement and
12th International Conference on Software Process and Product Measurement, IWSM
Mensura ’17, page 107–115, New York, NY, USA, 2017. Association for Computing
Machinery.

[8] Lionel C. Briand, Jürgen Wüst, John W. Daly, and D. Victor Porter. Exploring
the relationships between design measures and software quality in object-oriented
systems. Journal of Systems and Software, 51(3):245–273, 2000.

[9] Frederick P Brooks Jr. The mythical man-month: essays on software engineering.
Pearson Education, 1995.

54

[10] Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-Gee Tan.
Types of software evolution and software maintenance. Journal of Software Mainte-
nance and Evolution: Research and Practice, 13(1):3–30, 2001.

[11] Peter Checkland. Systems thinking, pages 45–56. Oxford University Press, 1999.

[12] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite for object
oriented design. SIGPLAN Not., 26(11):197–211, nov 1991.

[13] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

[14] Bill Curtis and Diane Walz. Chapter 4.1 - the psychology of programming in the large:
Team and organizational behaviour. In J.-M. Hoc, T.R.G. Green, R. Samurçay, and
D.J. Gilmore, editors, Psychology of Programming, pages 253–270. Academic Press,
London, 1990.

[15] M. Dagpinar and J. H. Jahnke. Predicting maintainability with object-oriented met-
rics -an empirical comparison. In 10th Working Conference on Reverse Engineering,
2003. WCRE 2003. Proceedings., pages 155–164, Nov 2003.

[16] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fab-
rizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yesterday, Today,
and Tomorrow, pages 195–216. Springer International Publishing, Cham, 2017.

[17] Michael Felderer and Guilherme Horta Travassos. The evolution of empirical methods
in software engineering. In Contemporary Empirical Methods in Software Engineer-
ing, pages 1–24. Springer, 2020.

[18] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering: A roadmap
and agenda. Journal of Systems and Software, 123:176–189, 2017.

[19] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. Research on architecting
microservices: Trends, focus, and potential for industrial adoption. In 2017 IEEE
International Conference on Software Architecture (ICSA), pages 21–30, 2017.

[20] Martin Hitz and Behzad Montazeri. Measuring coupling and cohesion in object-
oriented systems. 10 1995.

[21] ISO/IEC. SO/IEC 25010:2011 Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and software
quality models. ISO/IEC, 2011.

[22] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, and W.M. Turski. Metrics
and laws of software evolution-the nineties view. In Proceedings Fourth International
Software Metrics Symposium, pages 20–32, 1997.

[23] James Lewis and Martin Fowler. Microservices. https://martinfowler.com/
articles/microservices.html, 2019. Accessed: 2019-11-15.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

55

[24] Mateus Gabi Moreira and Breno Bernard Nicolau De França. Analysis of microservice
evolution using cohesion metrics. In Proceedings of the 16th Brazilian Symposium on
Software Components, Architectures, and Reuse, SBCARS ’22, page 40–49, New
York, NY, USA, 2022. Association for Computing Machinery.

[25] S Newman and Building Microservices. O’reilly media inc. Building Microservices,
2015.

[26] Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.
Service-oriented computing: a research roadmap. International Journal of Coopera-
tive Information Systems, 17(02):223–255, 2008.

[27] Mikhail Perepletchikov, Caspar Ryan, and Keith Frampton. Cohesion metrics for
predicting maintainability of service-oriented software. In Seventh International Con-
ference on Quality Software (QSIC 2007), pages 328–335, 2007.

[28] Mikhail Perepletchikov, Caspar Ryan, and Zahir Tari. The impact of service cohesion
on the analyzability of service-oriented software. IEEE Transactions on Services
Computing, 3(2):89–103, 2010.

[29] Kai Petersen and Cigdem Gencel. Worldviews, research methods, and their relation-
ship to validity in empirical software engineering research. 2013.

[30] Roger S Pressman and Bruce R Maxim. Software Engineering: A Practitioner’s
Approach. McGraw-Hill Professional, New York, NY, 8 edition, January 2014.

[31] Bingu Shim, Siho Choue, Suntae Kim, and Sooyong Park. A Design Quality Model
for Service-Oriented Architecture. 2008 15th Asia-Pacific Software Engineering Con-
ference, pages 403–410, 2008.

[32] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM Syst.
J., 13(2):115–139, June 1974.

[33] E Burton Swanson. The dimensions of maintenance. In Proceedings of the 2nd
international conference on Software engineering, pages 492–497, 1976.

[34] Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu. Identifying Mi-
croservices Using Functional Decomposition. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 10998 LNCS:50–65, 2018.

[35] M. Vidoni. A systematic process for mining software repositories: Results from a
systematic literature review. Information and Software Technology, 144:106791, 2022.

[36] Eberhard Wolff. Microservices: flexible software architecture. Addison-Wesley Pro-
fessional, 2016.

	Introduction
	Context
	Research Problem
	Research Goals and Question
	Contributions
	Organization

	Background and Related Work
	Service-Oriented Architecture (SOA)
	Microservices Architecture (MSA)
	Software Quality Attributes
	Software Evolution, Maintainability and Cohesion
	Cohesion in Microservices
	Cohesion Metrics
	Related Work

	Research Method
	Literature Review
	Repository Mining
	Repository Selection
	Execution
	Analysis

	Results and Discussion
	Supporting Tool
	The Controller Perspective
	Results per Metric
	LOCmessage Results
	SIDC1 Results
	SIIC Results

	The Microservice Perspective
	Controller vs. Microservice Perspective
	Threats to validity
	Internal Validity
	External Validity
	Construct Validity
	Reliability

	Conclusion
	Bibliography

