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Resumo
O objetivo desta tese é estudar os conjuntos de controle dos sistemas de controle linear
em grupos de Lie solúveis não nilpotentes de dimensão três. Para fazer isto, dividimos os
sistemas com respeito a seu nil-rank, o posto da derivação associada ao drift do sistema
restrita ao nilradical da algebra de Lie do espaço base. No caso que o nil-rank é dois,
mostramos que um sistema deste tipo é equivalente por difeomorfismo ao produto de um
sistema homogêneo sobre R por um sistema afim sobre R2, assim, estudando os conjuntos
de controle deste sistema afim sobre R2, mostramos que existe um único conjunto de
controle sobre o sistema inicial que tem o elemento neutro do grupo no fecho. Para o caso
em que o nil-rank é um, mostramos que o LARC é equivalente à condição de ad-rank, o
que implica a existência de conjuntos de controle com interior não vazio. Finalmente, no
caso em que o nil-rank é igual a zero, mostramos que a maioria dos sistemas tem uma
quantidade infinita de conjuntos de controle de interior não vazio.

Palavras-chave: Conjunto de controle. Sistema de controle linear. Grupos de Lie solúveis
não nilpotentes. LARC.



Abstract
The purpose of this thesis is to study control sets of linear control systems on solvable,
non-nilpotent Lie groups of dimension three. To achieve this, we divide the systems
according to their nil-rank, the rank of the derivation associated with the system’s drift
restricted to the nilradical of the Lie algebra of the base space. In the case where the
nil-rank is two, we prove that such system is diffeomorphically equivalent to the product of
a homogeneous system on R by an affine system on R2. By examining the control sets of
this affine system on R2, we establish that there exists a unique control set for the initial
system that includes the identity element of the group in its closure. For the case where
the nil-rank is one, we establish that LARC (Lie Algebra Rank Condition) is equivalent
to the ad-rank condition, implying the existence of control sets with non-empty interiors.
Finally, in the case where the nil-rank is zero, we show that the most systems have an
infinite number of control sets with non-empty interiors.

Keywords: Control set. Linear control system. Solvable nonnilpotent Lie groups. LARC.
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Introduction

Control systems have been studied for a long time, in particular, linear control
systems on Rn have many physical applications ((LEITMANN, 1962; PONTRYAGIN et
al., 1962; SHELL, 1968)). Roughly speaking, a control system is a system characterized
by a base space (differentiable manifold) and a dynamics characterized by a family of
differential equations parameterized by functions known as controls.

The first generalization of a linear control system was carried out by L. Markus
in (MARKUS, 1980) for a group of matrices. Subsequently, V. Ayala and J. Tirao in
(AYALA; TIRAO, 1999) introduced the concept of linear control systems on an arbitrary
Lie group. One of the main reasons to study control systems on Lie groups was provided
by P. Juan in (JOUAN, 2010), where it is shown that every affine control system with
complete vector fields that generate a finite-dimensional Lie algebra is diffeomorphically
equivalent to a linear control system on a Lie group or a homogeneous space.

On the other hand, one of the main concepts to be studed in control systems
is controllability: given any two points in the base space, can we connect these points
through solutions of the family of differential equations in positive time? For this question,
there are some answers that depend on the algebra and geometry of the control system.
For instance, in (DA-SILVA, 2016), it is shown that a control system on a nilpotent Lie
group is controllable if and only if the reachable set from the identity is open, and the
eigenvalues of the derivation associated to the drift of the system have zero real part.
Additionally, V. Ayala and A. Da Silva demonstrated in (AYALA; DA-SILVA, 2015) that
SpecpDq X R “ 0, where D is the derivation associated to the drift of the system, implies
controllability if the base space of the system has finite semisimple center, i.e any Lie
group admitting a maximal semisimple Lie subgroup with finite center.

Unfortunately, the controllability of a system is a rare property; therefore, it
makes more sense to approach the problem in a more realistic way by considering control
sets – regions in the base space where approximate controllability holds. Thus, in this
direction, one might inquire whether given a control system, there exist control sets. If so,
how many exist, what are its properties and how to make them depend on the geometry of
the base space? For example, in (AYALA; DA-SILVA; ZSIGMOND, 2017), it is shown that
a linear control system on a solvable Lie group has a unique control set with a non-empty
interior.

Motivated by the above contextualization and by the controllability results on
linear control systems on solvables non-nilpotent Lie groups of dimension 3 (see (AYALA;
DA-SILVA, 2019)) in this thesis we study, control sets of linear control systems over
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non-nilpotent solvable Lie groups of dimension 3 are studied and characterized. These
groups are characterized through their Lie algebras, described in (ONISHCHIK; VINBERG,
1994).

This work is organized as follows:

In the chapter 1, we formally define the objects of study for the thesis and
describe the main tools for studying these objects. First we define an affine control system
and control sets, then we describe properties of the control sets. After this, we introduce
LARC and establish conditions under which two affine control systems are conjugate
and equivalent. In this chapter, we also show that given a linear control system on a Lie
group, there exists a unique linear control system on the universal covering group that is
conjugate to it. In other words, we can lift the given control system to a control system
on a simply connected group. Additionally, we show that it is possible to project the
initial linear control system onto a linear control system on a homogeneous space. We also
discuss various results related to lienar control systems oon two-dimensional Lie groups
(abelian and non-abelian cases). Finally, we describe solvable non-nilpotent Lie groups of
dimension 3, following the approach of (ONISHCHIK; VINBERG, 1994), and prove that
under certain conditions on the associated linear vector field, an LCS on these groups is
equivalent to the product of a homogeneous system on R by an affine control system on
R2.

In the chapter 2, we study LCS with a nil-rank equal to two. This means that
the rank of the derivation associated with the system’s drift, restricted to the nilradical
of the Lie algebra, is 2. This condition, as proved in the previous chapter, allows us to
establish an equivalence between these systems and the product of a homogeneous system
on R by an affine system on R2 (ΣRˆR2). Because of this, we begin the chapter by studying
the properties of control sets for these systems ΣRˆR2 . To examine these properties, we
analyze affine control systems on R2 that are conjugated to ΣRˆR2 through the canonical
projection. Finally, we prove that LCS on solvable non-nilpotent Lie groups of dimension
3 have a unique non-empty interior control set containing the group’s identity element at
the closure of the set.

In the chapter 3, we study the cases where the nilrank of a LCS is equal to
zero or one. We show that for nil-rank one control systems, the LARC is enough to assure
existence of control sets with nonempty interior. Moreover, in case of systems with nil-rank
zero, we show that they admit an infinite numbers of control sets with empty interior.

In the chapter 4, we study the LCSs on 3D solvable non-nilpotnet Lie groups
G that are not simply connected. By (ONISHCHIK; VINBERG, 1994, Chapter 7), the
only connected, solvable, nonnilpotent 3D Lie groups are the group of rigid motions, its
n-fold covers and the group Affp2q ˆ S1.
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Finally, in the chapter 5, we give some examples of control sets in order to
illustrate the results of the work.
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1 Preliminaries

In this section we introduce the basic ideas about affine control systems, control
sets, linear control systems and solvable nonnilpotent Lie groups of dimension 3.

1.1 Affine control systems and control sets
In this subsection we will define the main objects that we will work on this text,

namely, affine control systems and its control sets. The affine control systems are generally
characterized by a base space or state space and a dynamics on this space, determined
by a family of differential equations parameterized by a set of functions that we will call
controls or control functions. On the other hand, control sets are intuitively maximal
regions of the state space in which we have approximate controllability, i.e., from the
system dynamics, we can take an element of this region and bring it as close as we want
to any other point in the same region.

Definition 1. A affine control system on a connected finite-dimensional differential
manifold denoted by M , is a family of ordinary differential equations

9xpsq “ f0pxpsqq `

m
ÿ

i“1
uipsqfipxpsqq, u “ pu1, . . . , umq P U . pΣM q

where f0, . . . , fm are smooth vector fields on M and U is the set of all piecewise constant
functions such that upsq P Ω where Ω Ă Rm is a compact, convex subset with 0 P int Ω.
The functions u are called control functions.

Let us assume that, for each u P Rm, the map

Fu : x Ñ F px, uq with F px, uq “ f0pxq `

m
ÿ

i“1
uifipxq

from M to TM be a C8-vector field on M . Thus, for each x P M and for each u P Ω,
the differential equation 9x “ F px, uq has a locally unique solution s ÞÑ ϕps, x, uq with
ϕp0, x, uq “ 0. In addition to this, we assume that the fields Fu, for all u P Ω, are
complete, i.e., the solutions of the associated differential equation exist globally for all
t P R. Therefore, we can define the following map,

ϕ : R ˆ M ˆ U Ñ M, ps, x,uq Ñ ϕps, x,uq
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that satisfies the cocycle property:

ϕps ` t, x,uq “ ϕps, ϕpt, x,uq,Θtuq

for all s, t P R, x P M , u P U . The map Θsu is known as the shift flow on U defined as
follows:

pΘtuqpsq :“ ups ` tq.

From the cocycle property, it follows that:

• There exists an inverse map of the diffeomorphism ϕps, ¨, uq, and it is given by
ϕp´s, ¨,Θsuq.

• The fact that for any s ą 0, the value ϕps, x,uq depends only on u|r0,ss, implies that

ϕps2, ϕps1, x,u1q,u2q “ ϕps1 ` s2, x,uq

with

upsq “

#

u1psq for τ P r0, s1s

u2ps ´ s1q for τ P rs1, s1 ` s2s.

For any x P M , we define the set of points reachable from x and the set of
points controllable to x at time S ą 0 as

O`
S pxq :“ ty P M | there are, u P U with y “ ϕpS, x,uqu

O´
S pxq :“ ty P M | there are, u P U with x “ ϕpS, y,uqu

respectively. The set of points reachable from x or positive orbit of x and the set of points
controllable to x or negative orbit of x are

O`
pxq :“

ď

Są0
O`

S pxq and O´
pxq :“

ď

Są0
O´

S pxq

respectively.

On the other hand, we say that the system is controllable if for all x P M it
holds that M “ O`

pxq.

The next result relates the positive and negative orbits of the system.

Lemma 1. Let us consider the system ΣM and its corresponding sets O`
ΣM

pxq and O´
ΣM

pxq.
Take also the reversed time system

9xpsq “ ´f0pxpsqq ´

m
ÿ

i“1
vipsqfipxpsqq, v “ pv1, . . . , vmq P U . p´ΣM q

with the corresponding sets O`
´ΣM

pxq and O´
´ΣM

pxq. Therefore, O`
ΣM

pxq “ O´
´ΣM

pxq and
O´

ΣM
pxq “ O`

´ΣM
pxq.
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Proof. If y P O`
ΣM

pxq, then there exists u P U and s1 ą 0 such that y “ ϕps1, x,uq. We
define the curve,

αpsq :“ ϕp´s, y,Θs1uq, s P r0, s1s.

It satisfies αp0q “ y and by cocycle property αps1q “ ϕp´s1, ϕps1, x,uq,Θs1uq “ x.
Moreover,

d

ds
αpsq “

d

ds
ϕp´s, y,Θs1uq

´f0pϕp´s, y,Θs1up´sqqq´

m
ÿ

i“1
pΘs1uiqp´sqfipϕp´s, y,Θs1uqq “ ´f0pαpsqq´

m
ÿ

i“1
vipsqfipαpsqq,

where v :“ Θs1u P U . Therefore, O`
ΣM

pxq Ă O´
´ΣM

pxq. The other inclusion follows
analogously.

Now we define the accessibility properties and the Lie algebra rank condition.

Definition 2. We say that the control system ΣM is

• locally accessible from x if for all S ą 0 the sets

O`
ďSpxq :“

ď

0ăsďS

O`
s pxq and O´

ďSpxq :“
ď

0ăsďS

O´
s pxq

have nonempty interior.

• locally accessible if it is locally accessible from every x P M

Definition 3. We say that the control system ΣM satisfies the Lie algebra rank condition
(LARC) if Lpxq “ TxM for any x P M , where

L is the smallest Lie subalgebra containing any Fu, with u P Ω.

By the general theory of control systems, the LARC implies local accessibility
and these two concepts are actually equivalent if the system is analytic, i.e. system
composed for analytical fields.

In what follows, we formally define the concept of control sets. Such subsets
contain most of the information related with the controllability property of the system
and are the object of study of this thesis.

Definition 4. A subset D of M is called a control set of the system ΣM if it satisfies the
following properties

(i) (Weak invariance) For every x P M , there exists a u P U such that ϕpR`, x,uq Ă D;
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(ii) (Approximate controllability) D Ă O`pxq for every x P D;

(iii) (Maximality) D is maximal with respect to properties (i) and (ii).

Definition 5. Let L be a subset of M . We say that L is positively invariant if O`
pxq Ă L

for every x P L. Similarly, L is negatively invariant if O´
pxq Ă L for every x P L.

The following theorem summarizes some of the most important properties of
control sets with nonempty interior. Their proofs can be found in Chapter 3 of (COLONIUS;
KLIEMANN, 2000)

Theorem 1. Let ΣM be a locally accessible system on M . If D is a control set with
nonempty interior, then

• D is connected and intD “ D;

• intD Ă O`
pxq for any x P D. For any y P intD

D “ O`pyq X O´
pyq.

In particular, controllability holds on intD;

• Assume that φps, x,uq is a periodic trajectory, that is, φps ` τ, x,uq “ φps, x,uq for
some τ ą 0 and all s P R. If x P intD then φps, x,uq P intD for all s P R;

• D is closed iff D is invariant in positive time iff D “ O`pxq for any x P D;

• D is open iff D is invariant in negative time iff D “ O´
pxq for any x P D.

The following result shows that if the positive, or negative, orbit of a point
x P M is open, then x is contained in a control set. Although this result is a direct
consequence of the previous theorem, for the sake of completeness, we prove it here.

Proposition 1. Let us assume that ΣM satisfies the LARC and consider x P M . If O`
pxq

or O´
pxq are open sets, then

D “ O`pxq X O´
pxq

is a control set with nonempty interior.

Proof. Let us show that D satisfies the properties in the definition of control set.
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(i) Weak invariance: For any y P O`
pxq X O´

pxq, there exists u1,u2 P U and s1, s2 ą 0
such that

ϕps1, y,u1q “ x and ϕps2, x,u2q “ y.

By considering the ps1 ` s2q-periodic control function given by

u˚psq “

#

u1psq 0 ď s ď s1

u2psq s1 ă s ď s2
,

allows us to conclude that s P R ÞÑ ϕps, y,u˚q P M is a ps1 ` s2q-periodic curve that
is contained in D by construction.

Now, for any z P D, the fact that z P O´
pxq implies the existence of u P U and

s ą 0 such that φps, z,uq “ x. By concatenating this curve with the previous one,
we obtain a trajectory starting in z that is contained in D.

(ii) Approximate controllability: For any y P D it holds that

y P O´
pxq ðñ x P O`

pyq ùñ D Ă O`pxq Ă O`pyq.

(iii) Maximality: Let us assume that there exists a control set D̂ such that D Ă D̂.

Since x P D̂ it holds that D̂ Ă O`pxq. On the other hand, for any y P D̂, we get that

x P D̂ Ă O`pyq ùñ O´
pxq X O`

pyq ‰ H ùñ y P O´
pxq.

As the choosen y P D̂ was arbitrary, we conclude that D̂ Ă O´
pxq and hence D̂ Ă D,

concluding the proof.

Suppose N is another smooth manifold, and

9xpsq “ g0pxpsqq `

m
ÿ

i“1
uipsqgipxpsqq, u “ pu1, . . . , umq P U (ΣN)

is an affine control system on N . If ψ : M Ñ N is a surjective smooth map, we say that
ΣM and ΣN are ψ-conjugate if its respective vector fields are ψ-conjugate, i.e

ψ˚fi “ gi ˝ ψ, j “ 0, . . .m.

If such ψ exists, we say that ΣM and ΣN are ψ-conjugate. If ψ is a diffeomor-
phism, we say that ΣM and ΣN are equivalent.

Proposition 2. Let ΣM and ΣN be ψ-conjugated systems. It holds:
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1. If D is a control set of ΣM , there exists a control set E of ΣN such that ψpDq Ă E;

2. If for some y0 P intE it holds that ψ´1
py0q Ă intD, then D “ ψ´1

pEq.

Proof. 1. For any x P D there exists u P U such that ϕM pR`, x,uq Ă D. Since ψ conjugate
the systems ΣM and ΣN , their respective solutions are conjugate and hence

ϕN pR`, ψpxq,uq “ ψpϕM pR`, x,uqq Ă ψpDq.

On the other hand, the continuity of ψ and the conjugations property gives us that

D Ă O`
M pxq ùñ ψpDq Ă ψ

´

O`
M pxq

¯

Ă O`
N pψpxqq,

showing that ψpDq satisfies properties (i) and (ii) in the Definition 4. Consequently, there
exists a control set E of ΣN such that ψpDq Ă E, showing the item.

2. Let us show that ψ´1
pEq satisfies conditions (i) and (ii) in Definition 4.

(i) Weak invariance: Let x P ψ´1
pEq. Then, ψpxq P E and there exists u P U such that

ϕN pR`, ψpxq,uq Ă E and by the conjugation property

ψpϕM pR`, x,uqq “ ϕN pR`, ψpxq,uq Ă E ðñ ϕM pR`, x,uq Ă ψ´1
pEq.

(ii) Approximate controllability: Let us start by showing that controllability holds in
ψ´1

pintEq. For this, let x1, x2 P ψ´1
pintEq. Since ψpx1q, ψpx2q, y0 P intE there exist,

by controllability, u1,u2 P U and s1, s2 ą 0 such that

ϕN ps1, ψpx1q,u1q “ y0 “ ϕN p´s2, ψpx2q,u2q.

By the conjugation property, the previous imply that

ϕM ps1, x1,u1q P ψ´1
py0q and ϕM p´s2, x2,u2q P ψ´1

py0q.

Since, by hypothesis, ψ´1
py0q Ă intD and controllability holds in intD, there exists

u3 P U and s3 ą 0 such that

ϕM ps3, ϕps1, x1,u1q,u3q “ ϕp´s2, x2,u2q

ùñ ϕps2, ϕM ps3, ϕps1, x1,u1q,u3q,Θ´s2u2q “ x2,

showing that controllability holds in ψ´1
pintEq. Moreover, by continuity it holds

that
E “ intE ùñ ψ´1pEq “ ψ´1pintEq,

and by the previous

ψ´1
pEq Ă O`

M pxq, @x P ψ´1
pintEq.
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On the other hand, if x P ψ´1
pEq then ψpxq P E and hence

intE Ă O`
N pψpxqq ùñ Du P U , s ą 0, ψpϕM ps, x,uqq “ ϕps, ψpxq,uq P intE,

and hence

ϕM ps, x,uq P ψ´1
pintEq ùñ ψ´1

pEq Ă O`
M pϕM ps, x,uqq Ă O`

M pxq,

showing that ψ´1
pEq satisfies (ii) in Definition 4.

By the previous, ψ´1
pEq has to be contained in a control set of ΣM . Since

ψ´1
pEq X D ‰ H, we conclude that ψ´1

pEq Ă D and by item 1. the equality actually
holds.

Before finishing the section, let us make a simple proposition that will help us
ahead.

Proposition 3. Let f : M Ñ R be a continuous function and ΣG a affine control system
on M . If x, y P M are such that,

(i) fpxq ă fpyq,

(ii) For all u P U , the function gupsq :“ fpϕps, y,uqq satisfies gup0q ă gupsq for all s ą 0.

then x R O`pyq. In particular, it cannot exists a control set of ΣM that contains both x

and y, since the condition (ii) of Definition 4 cannot be satisfied.

Proof. Let us suppose that x P O`pyq. In this case, there exists a sequence yn P O`
pyq

such that yn Ñ x as n Ñ `8. Writting,

yn “ ϕpsn, y,unq, for sn ą 0,un P U ,

we get, by the continuity of f , that

fpϕpsn, y,unqq “ fpynq Ñ fpxq.

In particular, by considering ε “ fpyq ´ fpxq ą 0 there exists N P N such that

fpϕpsN , y,uN qq P pfpxq ´ ε, fpxq ` εq

and hence,

guN
psN q “ fpϕpsN , y,uN qq ă fpyq “ fpϕp0, y,unqq “ guN

p0q,

showing the result.
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1.2 Linear vector fields and linear control systems on Lie groups
In this chapter, we will define a linear vector field in the context of control

systems on Lie groups, discuss some of its properties, and define a linear control systems.
Furthermore, we will explore the properties satisfied by linear control systems on solvable
Lie groups. Specifically, we will focus on linear control systems on solvable, non-nilpotent
Lie groups of dimension three. We will characterize the linear vector fields in these systems
and determine the general form of the system of ordinary differential equations (ODEs)
that characterizes these systems.

Lastly, we will prove that every linear control system on a solvable, non-nilpotent
Lie group of dimension three, under certain regularity condition on the associated linear
vector field, is equivalent to the product of a homogeneous system on R and a specific
affine control system on R2. The latter one will be studied in the following chapter.

We begin with the definition of a linear vector field on a Lie group.

Definition 6. Let G be a connected Lie group with Lie algebra g, identity element e, and
η be the normalizer of g in the algebra of all smooth vector fields over G, i.e.,

η :“ normXpGqpgq :“ tF P XpGq | @Y P g, rF, Y s P gu.

A vector field X on G is linear if it belongs to η and X peq “ 0.

The following theorem (JOUAN, 2014) establishes equivalent conditions for a
vector field on G to be linear.

Theorem 2. Let X be a vector field on a connected Lie group G. The following conditions
are equivalent:

(1) X is linear;

(2) The flow tφsusPR of X is a one parameter group of automorphisms of G, that is,

@s P R, φspghq “ φspgqφsphq;

(3) X pghq “ pdLgqhX phq ` pdRhqgX pgq for all g, h P G.

The vector field X is complete and is uniquely associated to a derivation D of
g defined by

DY “ ´rX , Y speq, @Y P g.

As X is linear, the diffeomorphism φs is an automorphism of G for any s P R.
Therefore, dpφsqe is an automorphism of g and hence
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pdφsqe “ esD, @s P R. (1.1)

This nice relationship between the flow of X and the derivation D have several
important applications, mainly due to the subgroups/subalgebras associated with them as
we define next.

Let us consider an eigenvalue α P C of the derivation D. The real generalized
eigenspaces of D are the subspaces of g defined as

gα “ tX P g : pD ´ αIq
nX “ 0 for some n ě 1u, if α P R and

gα “ spantRepvq, Impvq; v P ḡαu, if α P C,

where ḡ “ g ` ig stands for the complexification of g, and ḡα the generalized eigenspace of
the extension D̄ “ D ` iD of D to ḡ.

By Proposition 3.1 of (SAN-MARTIN, 2010), it holds that

rḡα, ḡβs Ă ḡα`β,

where ḡα`β “ t0u if α ` β is not an eigenvalue of D. Therefore, if we put

gλ :“
à

α;Repαq“λ

gα,

the previous imply that rgλ1 , gλ2s Ă gλ1`λ2 when λ1 `λ2 “ Repαq for some eigenvalue α of
D and zero otherwise, where gλ “ t0u if λ P R is not the real part of any eigenvalue of D.

The unstable, central, and stable subalgebras of g are given, respectively, by

g`
“

à

α: Repαqą0
gα, g0

“
à

α: Repαq“0
gα and g´

“
à

α: Repαqă0
gα.

Since the previous subalgebras are given as sum of all the (generalized)
eigenspaces of D, it holds that g “ g`

‘ g0
‘ g´. Moreover, these subalgebras are

invariant by the derivation D with g` and g´ nilpotent subalgebras.

The relationship between the previous subalgebras with the dynamics of the X
are obtained through their subgroups. Let us denote by G`, G´, G0, G`,0, and G´,0, the
connected Lie subgroups whose associated Lie algebras are given, respectively, by g`, g´,
g0, g`,0 :“ g`

‘ g0 and g´,0 :“ g´
‘ g0. By Proposition 2.9 of (DA-SILVA, 2016), all of

the previous subgroups are invariant by the flow of X , closed, and their intersection are
trivial, that is,

G`
X G´

“ G`
X G´,0

“ . . . “ teu.

Moreover, G` and G´ are connected, simply connected, nilpotent Lie groups. Analogously
as the algebra level, the subgroups G`, G0 and G´ are called, respectively, the unstable,
central, and stable subgroups of X .
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Next we define linear control systems. A linear control system (LCS for short)
on G is determined by the family of ODEs

9gpsq “ X pgpsqq `

m
ÿ

i“1
uipsqY

i
pgpsqq, (ΣG)

where X is a linear vector field, Y i are left-invariant vector fields, and u “ pu1, . . . , umq P U
are control functions as defined previously.

By choosing Y 1, . . . , Y m left-invariant, the solutions of ΣG satisfy

ϕpt, gh,uq “ φtpgqϕpt, h,uq, @g, h P G, t P R,u P U .

A consequence of the previous formula is the following proposition(see (JOUAN, 2014,
Proposition 2))

Proposition 4. For a LCS, it holds that

1. O`
S1`S2peq “ O`

S2peqφS1pO`
S1peqq, for all S1, S2 ą 0;

2. O`
S1peq Ă O`

S2peq, for all 0 ă S1 ă S2;

3. O`
ďSpeq “ O`

S peq, for all S ą 0.

Also, due to the symmetry present on Lie groups, the LARC for linear control
systems is determined at the origin of the group, in fact, the linear control system ΣG

satisfies the LARC if g is the smallest D-invariant subalgebra containing the vectors
tY 1, . . . , Y m

u.

Moreover, we say that ΣG satisfies the ad-rank condition if g is the smallest
D-invariant subspace containing the vectors tY 1, . . . , Y m

u. The ad-rank condition is much
stronger than the LARC, once that the previous contain all the brackets among the
elements in tY 1, . . . , Y m

u and the former not necessarily. Also, if the system satisfies the
ad-rank condition, it is locally controllable, that is,

e P int O`
S peq X int O´

S peq, @S ą 0.

Following (AYALA; DA-SILVA; ZSIGMOND, 2017; DA-SILVA, 2016), there is
a nice relationship between the subgroups G`, G0 and G´ associated with the drift X of a
LCS ΣG and its dynamics. In fact, the following result holds:

Theorem 3. Let ΣG be a LCS on a connected Lie group G and assume that O`
peq is a

neighborhood of the identity element e P G. Then,

G´,0
Ă O`

peq and G`,0
Ă O´

peq.
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Moreover,
CG “ O`peq X O´

peq,

is a control set of ΣG with nonempty interior satisfying G0
Ă int CG. If G is solvable, CG

is the unique control set of ΣG with nonempty interior and, ΣG is controllable if G “ G0

or, equivalently, if the derivation D has only eigenvalues with zero real parts.

We finish this section with a definition that will be useful to divide our analyzes
in cases.

Definition 7. Let ΣG be a LCS on a connected Lie group G with Lie algebra g. We define
the nil-rank of ΣG as the rank of the restriction D|n, where D is the derivation associated
with the drift of ΣG and n the nilradical of g.

1.3 Lifting a LCS to simply connected groups
Let G be a connected Lie group with Lie algebra g and denote by rG its simply

connected covering group, choosen in such a way that the canonical projection π : rG Ñ G

satisfies pdπq
re “ idg, and hence π ˝ Ąexp “ exp, where Ąexp and exp stands, respectively, for

the exponential maps of rG and G.

Now, if X be a linear vector field on G and denote by D its associated derivation.
By the previous choice and Theorem 2.2 of (AYALA; TIRAO, 1999), the derivation D is
associate with a unique linear vector field rX on rG. If we denote by trφsusPR and tφsusPR,
respectively, the flows of rX and X , then for all X P g, s P R,

π prφspĄexpXqq “ π
`

Ąexp
`

esDX
˘˘

“ exp
`

esDX
˘

“ φspexpXq “ φspπpĄexpXqq.

By the connectedness of rG we conclude that

@s P R, π ˝ rφs “ φs ˝ π,

and hence rX and X are π-related vector fields.

In the same way, the property π ˝ Ąexp “ exp implies that

@s P R, Y P g, g P rG, πpgĄexp sY q “ πpgq exp sY,

which implies that the left-invariant vector fields rY on rG and Y on G determined by Y
are π-conjugated. As a consequence, any LCS ΣG on G can be lifted (uniquely) to a LCS
rΣ

rG on rG in such a way that rΣ
rG and ΣG are π-conjugated.
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1.4 Projecting a LCS to homogeneous spaces
Let H Ă G be a closed subgroup. Following (JOUAN, 2010), a vector field f

on the homogeneous space HzG is said to be linear if it is π-conjugated to a linear vector
field X on G, where π : G Ñ HzG is the canonical projection, that is,

f ˝ π “ π˚ ˝ X .

Moreover, by Proposition 4 of (JOUAN, 2010) the previous is equivalent to the invariance
of the subgroup H by the flow tφtutPR of X . In fact, if

@s P R φspHq Ă H,

the relation,
Φspπpgqq “ πpφspgqq @g P G, s P R,

defines a flow Φ : R ˆ HzG Ñ HzG on the homogeneous space HzG, whose associated
vector field

fpxq :“ d

ds |s“0
Φspxq,

is π-conjugated to X .

As a consequence, the LCS ΣG is π-conjugated to a affine control system ΣHzG

(also called linear control system), if the subgroup H is invariant by the flow of the drift
X of ΣG.

1.5 Low dimensional Lie groups
In this section we introduce the main properties of linear vector fields and

linear control systems on dimensions two and three. As we will see ahead, the dynamics
on the class of the 3D Lie groups we are interested can be recover from their counterpart
on 2D Lie groups and homogeneous spaces.

1.5.1 2D Lie groups

Up to isomorphisms, there are only two possible connected Lie groups of
dimension two, an abelian and a solvable nonabelian. In the following, we briefly comment
the results concerning LCSs on such groups. Some examples of control sets for these
systems can be found at the last section.

The abelian case
Up to isomorphisms, the only connected, simply connected Lie group of di-

mension two pR2,`q, where the product is the usual sum of vectors in R2. In this case,
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left-invariant vector fields and linear vector fields are given, respectively by

Y pvq “ η and X pvq “ Av, v P R2,

where η P R2 is a nonzero vector and A P glp2,Rq a nontrivial 2 ˆ 2 matrix.

A (one-input) linear control system in R2 is given by

9v “ Av ` uη, u P Ω,
`

ΣpR2,`q

˘

with Ω “ ru´, u`
s and u´

ă 0 ă u`. The LARC in this case, is equivalent to xAη,Rηy ‰ 0.
Controllability and control sets of ΣpR2,`q are very well know (see (COLONIUS; KLIE-
MANN, 2000, Example 3.2.16)) and are summarized in the next result.

Theorem 4. If ΣpR2,`q satisfies the LARC, it admits a unique control set CpR2,`q containing
the identity element in its interior and satisfying:

1. CpR2,`q “ R2 if A has only eigenvalues with zero real parts;

2. CpR2,`q is open if A has only eigenvalues with positive real parts;

3. CpR2,`q is closed if A has only eigenvalues with negative real parts;

The solvable nonabelian case

For the solvable case, we consider the following interpretation: Let us denote
by AffpRq the Lie subgroup pR2, ˚q with product given by

px1, y1q ˚ px2, y2q “ px1 ` x2, y1 ` ex1y2q.

The Lie algebra affpRq of AffpRq is pR2, r¨, ¨sq with bracket given by

rpα1, β1q, pα2, β2qs “ p0, α1β2 ´ α2β1q.

A left-invariant vector field and a linear vector field on AffpRq are given,
respectively, by

Y px, yq “ pα, exβq and X px, yq “ p0, by ` pex
´ 1qaq,

where pα, βq, pa, bq P R2.

As a consequence, a (one-input) LCS on AffpRq is defined by the family of
ODE’s

#

9x “ uα

9y “ by ` pex
´ 1qa ` uexβ

, where u P Ω,
`

ΣAffpRq

˘
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with Ω as previously. Moreover, ΣAffpRq satisfies the LARC if and only if αpaα ` bβq ‰ 0
(see (AYALA; DA-SILVA, 2020, Section 2.2)). The next result, whose proof can be found
in (AYALA; DA-SILVA, 2020, Section 3.4), summarizes the controllability and control set
of ΣAffpRq.

Theorem 5. If ΣAffpRq satisfies the LARC, it admits exactly one control set CAffpRq con-
taining the identity element in its interior and such that:

1. CAffpRq “ AffpRq if b “ 0;

2. CAffpRq is closed if b ă 0 and open if b ą 0.

1.5.2 3D solvable, nonnilpotent Lie groups

We will consider here only the connected and simply connected Lie groups that
are solvable and non-nilpotent of dimension 3, since from them, we can determine the
connected Lie groups as G “ rG{Z where Z is a central discrete subgroup of rG

By (ONISHCHIK; VINBERG, 1994, Theorem 1.4, Chapter 7), the real Lie
algebras of dimension 3 are given as semidirect product of R with R2, i.e. gpθq :“ R ˆθ R2

where θptq :“ tθ, with θ a 2 ˆ 2 matrix, which can take one of the following forms:

• θ “

˜

1 1
0 1

¸

• θ “

˜

1 0
0 γ

¸

with |γ| ď 1

• θ “

˜

γ ´1
1 γ

¸

with γ P R

The bracket of these Lie algebras is defined by

rpt1, v1q, pt2, v2qs “ p0, θ ¨ pt1v2 ´ t2v1qq

which is completely determined by the equation

rpt, 0q, p0, vqs “ p0, tθvq

Up to isomorphism, for the Lie algebra gpθq the unique connected, simply
connected Lie group associated, is given by the semi direct product RˆρR2, with ρptq “ etθ

and the product of the group as

pt1, v1qpt2, v2q “ pt1 ` t2, v1 ` ρpt1qv2q
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with pt1, v1q, pt2, v2q P R ˆρ R2. Therefore, we go to denote the Lie group associate to the
Lie algebra R ˆθ R2 with ρp1q “ eθ as Gpθq.

In particular, for all pt, vq P Gpθq and w P R2, we have that

pt, vqp0, wqpt, vq
´1

“ pt, v ` ρtwqp´t,´ρ´tvq “ p0, v ` ρtw ` ρtp´ρ´tvq “ p0, ρtwq. (1.2)

Let us use the previous computations to calculate some homogeneous spaces of
Gpθq. Precisely, let w P R2 be a nonzero vector and consider the subgroup H “ Rp0, wq.
From the above calculations, we get that

H ¨ pt1, v1q “ H ¨ pt2, v2q ðñ t1 “ t2 and xv1, Rwy “ xv2, Rwy,

where R represents the clockwise rotation of π2 radians; implying that the canonical
projection is given by

π : Gpθq Ñ HzGpθq, πpt, vq “ pt, xv,Rwyq,

that is, π coincides with the projection onto the first two components of the basis
tp1, 0q, p0, Rwq, p0, wqqu, when Gpθq is seen as the vector space R3. Moreover, HzGpθq

is also a Lie group if and only if H is a normal subgroup of Gpθq and for (1.2) H is a
normal subgroup of Gpθq if and only if w is an eigenvector of θ.

On the other hand, the subgroup S “ Rp1, 0q is such that

pt, 0qpt1, v1q “ pt2, v2q ðñ t “ t2 ´ t1 and ρtv1 “ v2,

and hence
S ¨ pt1, v1q “ S ¨ pt2, v2q ðñ ρ´t1v1 “ ρ´t2v2.

As a consequence, the homogeneous space SzGpθq is naturally identified with
R2 and its canonical projection is given by

π : Gpθq Ñ SzGpθq, πpt, vq “ ρ´tv.

In what follows, we define an operator which is closely related with the product
in the group. Such operator appears in the definition of the group exponential and also in
the definition of linear vector fields on the group Gpθq.

Let A be a 2 ˆ 2 matrix and define

ΛA : R ˆ R2
ÝÑ R2, pt, vq ÞÑ

ż t

0
esAvds. (1.3)
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The previous operator satisfies the following:

p1q ΛA
0 “ 0 p2q

d

dt
ΛA

t “ etA
p3q ΛA

t`s “ ΛA
t ` etAΛA

s

p4q etA
´ AΛA

t “ IdR2 p5q esAΛA
t “ ΛA

t esA
p6q ΛA

t “ petA
´ IdR2qA´1 if detA ‰ 0

The first property is clear from the definition of ΛA. The second one, follows
from the Fundamental Theorem of Calculus. For the third one, derivation of ΛA

t`s and
ΛA

t ` etAΛA
s with respect to s, shows that both satisfy the same differential equation. Since

they coincide for s “ 0, the equality holds.

Analogously, one obtain the equality in the fourth and fifth items. Now, for
the last one can be obtained from the fourth under the assumption on the determinant of
the matrix A.

Following (AYALA; DA-SILVA, 2019), the left-invariant and linear vector fields
on the groups Gpθq are given, respectively, as

Y L
pt, vq “ pα, ρtηq and X pt, vq “ p0, Av ` Λθ

t ξq, (1.4)

where pα, ηq P R ˆ R2, ξ P R2 and A P glp2,Rq satisfies Aθ “ θA.

For the sake of completeness, we show it here. The follow curve, γpsq “

pt2, v2q ` spt, vq P Gpθq satisfies that γp0q “ pt2, v2q and γ
1

p0q “ pt, vq, therefore, for the
left translation, we have that

dpLpt1,v1qqpt2,v2qpt, vq “
d

ds
|s“0Lpt1,v1qpγpsqq “

d

ds
|s“0pt1, v1qpt2 ` st, v2 ` svq,

and since pt1, v1qpt2 ` st, v2 ` svq “ pt1 ` t1 ` st, v1 ` ρt1pv2 ` svqq, we conclude that,

dpLpt1,v1qqpt2,v2qpt, vq “
d

ds
|s“0Lpt1,v1qpγpsqq “

d

ds
|s“0pt1, v1qpt2 ` st, v2 ` svq “ pt, ρt1vq.

(1.5)

Now, let Y L be a left-invariant field, then,

Y L
pt, vq “ dpLpt,vqqepα, ηq, with pα, ηq P TeGpθq,

and by the previous calculations, we have that

Y L
pt, vq “ pα, ρtηq.

In the same way, for the right translations, we have
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dpRpt1,v1qqpt2,v2qpt, vq “
d

ds
|s“0Rpt1,v1qpγpsqq “

d

ds
|s“0pt2 ` st, v2 ` svqpt1, v1q,

and since pt2 ` st, v2 ` svqpt1, v1q “ pt2 ` st ` t1, v2 ` sv ` ρt2`stv1q, we conclude that

dpRpt1,v1qqpt2,v2qpt, vq “
d

ds
|s“0Rpt1,v1qpγpsqq “

d

ds
|s“0pt2`st, v2`svqpt1, v1q “ pt, v`tθρt2v1q.

(1.6)

Before continuing with linear fields, follow (AYALA; DA-SILVA, 2019), we note
that for any pα, ηq P gpθq, the exponential map is given that

exppα, ηq “

$

&

%

p0, ηq, if α “ 0,
ˆ

α,
1
α

Λθ
αη

˙

, if α ‰ 0;
(1.7)

in fact, we consider pα, ηq P gpθq and define the curve

Γpsq “

$

&

%

p0, sηq, if α “ 0,
ˆ

sα,
1
α

Λθ
sαη

˙

, if α ‰ 0.

since in both cases Γp0q “ 0 and

Γ1

psq “

#

p0, ηq “ dpLΓpsqqp0,0qp0, ηq, if α “ 0,
pα, ρsαηq “ dpLΓpsqqp0,0qpα, ηq, if α ‰ 0.

On the other hand, d

ds
exppspα, ηqq “ dpLexppspα,ηqqqp0,0qpα, ηq, therefore, for

uniqueness, the two curves are equals.

Let X be a linear field on Gpθq and D its associated derivation. Because, D
is a derivation and R2 is the nilradical of gpθq “ R ˆθ R2, we know that Dpgpθqq Ă R2,
therefore, exist a linear map D˚ : R2

ÞÑ R2 satisfying Dp0, vq “ p0,D˚vq for any v P R2.
Let v be element of R2, it hold that

p0,D˚θvq “ Dp0, θvq “ Drp1, 0q, p0, vqs “ rDp1, 0q, p0, vqs ` rp1, 0q,Dp0, vqs “ p0, θD˚vq,

because, p0, θvq “ rp1, 0q, p0, vqs, D is a derivation and rDp1, 0q, p0, vqs “ 0. Now, we can
conclude that D˚θ “ θD˚ and D˚ρt “ ρtD˚ for any t P R.

Finally, since pt, vq “ pt, 0qp0, ρ´tvq it follow that

X pt, vq “ X ppt, 0qp0, ρ´tvqq

and for the Theorem 2, we have that
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X ppt, 0qp0, ρ´tvqq “ dpLpt,0qqp0, ρ´tvqX p0, ρ´tvq ` dpRp0,ρ´tvqqpt,0qX pt, 0q; (1.8)

from the general form of exponential map, previously calculated it follow that pt, 0q “

exppt, 0q and p0, ρ´tvq “ expp0, ρ´tvq, therefore,

φsp0, ρ´tvq “ φspexpp0, ρ´tvqq

and since, pdφsqe “ esD, @s P R.,

φspexpp0, ρ´tvqq “ exppesD
p0, ρ´tvqq “ exppp0, esDρ´tvqq “ p0, esDρ´tvq

in the same way

φspt, 0q “ φspexppt, 0qq “ exppesD
pt, 0qq,

considering Dp1, 0q “ p0, ξq, we observed that esD
pt, 0q “ t

˜

1,
ÿ

jě0

sj`1

pj ` 1q!pD
˚
q

jξ

¸

by

definition of D˚; and by 1.7, we have that

φspt, 0q “ exp t
˜

1,
ÿ

jě0

sj`1

pj ` 1q!pD
˚
q

j

¸

“

˜

t,
ÿ

jě0

sj`1

pj ` 1q!Λ
θ
t ppD˚

q
jξq

¸

. Now, we can calculate X p0, ρ´tvq and X pt, 0q.

X p0, ρ´tvq “
d

ds
|s“0φsp0, ρ´tvq “ p0,D˚ρ´tvq

and

X pt, 0q “
d

ds
|s“0φspt, 0q “ p0,Λtξq.

With the previous and using the formulas 1.5 and 1.6 in 1.8, we get that

X pt, vq “ p0, Av ` Λθ
t ξq.

Since the linear vector field X is fully characterized by the matrix A and the
vector ξ, we will usually write X “ pA, ξq to represent the linear vector field. The same
holds for a left-invariant vector field, which we usually denote by Y “ pα, ηq.

The flow associated with the linear vector field X “ pA, ξq can also be explicitly
calculated and is given by
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φspt, vq “ pt, esAv ` Λθ
t ΛA

s ξq. (1.9)

In fact, derivation of φspt, vq on s gives us that

φ1
spt, vq “ p0, AesAv ` esAΛθ

t ξq.

However,

AesAv ` esAΛθ
t ξ “ AesAv ` esAΛθ

t ξ ´ Λθ
t ξ ` Λθ

t ξ “ AesAv ` pesA
´ IdR2qΛθ

t ξ ` Λθ
t ξ

and using the property (4), we obtain

AesAv ` esAΛθ
t ξ “ AesAv ` AΛA

s Λθ
t ξ ` Λθ

t ξ “ ApesAv ` Λθ
t ΛA

s ξq ` Λθ
t ξ “ X pφspt, vqq.

Furthermore, the associated derivation of X “ pA, ξq is given by D “

˜

0 0
ξ A

¸

;

in fact, we calculate

dpφsqe “

˜

1 0
ρtΛA

s ξ esA

¸
ˇ

ˇ

ˇ

ˇ

ˇ

e

“

˜

1 0
ΛA

s ξ esA

¸

and for the relation (1.1), we know that

dpφsqe “ esD
@ s P R;

therefore,

d

ds
pesD

q|0 “ D,

so, we can conclude that

D “

˜

0 0
ξ A

¸

The next proposition, whose proof can be found at (AYALA; DA-SILVA;
HERNÁNDEZ, 2023, Proposition 2.2), describes the set of automorphisms of Gpθq. It will
be very useful when conjugating LCSs.

Proposition 5. For the Lie group Gpθq, it holds that:

AutpGpθqq “
␣

ψpt, vq “ pεt, Pv ` εΛεtηq, η P R2, P P Glp2,Rq, and Pθ “ εθP
(

,

where ε “ 1 if tr θ ‰ 0 and ε “ ˘1 if tr θ “ 0.
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1.6 Linear control systems on Gpθq

In this section we define the linear control system on the groups Gpθq, we will
study, and discuss some of their properties.

Definition 8. A (one-input) linear control system on Gpθq is given, in coordinates, by
the family of ODE’s given by

#

9t “ uα

9v “ Av ` Λθ
t ξ ` uρtη

`

ΣGpθq

˘

with Ω “ ru´, u`
s and u´

ă 0 ă u`.

In what follows, we calculated the LARC and the ad-rank condition for the
system ΣGpθq is terms A and ξ, where X “ pA, ξq is the drift of ΣGpθq.

Proposition 6. For the LCS ΣGpθq it holds:

1. ΣGpθq satisfies the ad-rank condition if and only if

α
@

Apαξ ` Aηq, Rpαξ ` Aηq
D

‰ 0.

2. ΣGpθq satisfies the LARC if and only if

α
´

@

Apαξ ` Aηq, Rpαξ ` Aηq
D2

`
@

θpαξ ` Aηq, Rpαξ ` Aηq
D2
¯

‰ 0;

where R is the clockwise rotation of π2 radians.

Proof. Let us assume that X “ pA, ξq and Y “ pα, ηq are, respectively, the linear and the

left-invariant vector fields of ΣGpθq. The derivation associated with X is then D “

˜

0 0
ξ A

¸

.

Therefore,

DY “ p0, αξ ` Aηq, D2Y “ p0, Apαξ ` Aηqq and rY,DY s “ p0, αθpαξ ` Aηqq.

1. By definition, ΣGpθq satisfies ad-rank condition, if and only if,

gpθq “ spantY,DY,D2Y u.

Therefore, if a1, a2, a3 P R are such that

a1pα, ηq ` a2p0, αξ ` Aηq ` a3p0, Apαξ ` Aηqq “ 0,
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then, in coordinates,
¨

˚

˝

α 0 0
xη, e1y xαξ ` Aη, e1y xApαξ ` Aηq, e1y

xη, e2y xαξ ` Aη, e2y xApαξ ` Aηq, e2y

˛

‹

‚

¨

˚

˝

a1

a2

a3

˛

‹

‚

“

¨

˚

˝

0
0
0

˛

‹

‚

.

Therefore, ΣGpθq satisfies the ad-rank condition, if and only if,

det

¨

˚

˝

α 0 0
xη, e1y xαξ ` Aη, e1y xApαξ ` Aηq, e1y

xη, e2y xαξ ` Aη, e2y xApαξ ` Aηq, e2y

˛

‹

‚

‰ 0,

if and only if

0 ‰ α txαξ ` Aη, e1yxApαξ ` Aηq, e2y ´ xαξ ` Aη, e2yxApαξ ` Aηq, e1yu

“ αxApαξ ` Aηq, Rpαξ ` Aηqy,

showing the assertion.

2. Calculations as the one previously done, gives us that tY,DY, rY,DY su is
linearly independent, if and only if,

det

¨

˚

˝

α 0 0
xη, e1y xαξ ` Aη, e1y αxθpαξ ` Aηq, e1y

xη, e2y xαξ ` Aη, e2y αxθpαξ ` Aηq, e2y

˛

‹

‚

‰ 0,

or equivalent, if and only if αxθpαξ ` Aηq, Rpαξ ` Aηqy. Now, ΣGpθq satisfies the LARC if
and only if it satisfies the ad-rank condition or if

gpθq “ spantY,DY, rY,DY su.

Therefore, the LARC is equivalent to

α
´

@

Apαξ ` Aηq, Rpαξ ` Aηq
D2

`
@

θpαξ ` Aηq, Rpαξ ` Aηq
D2
¯

‰ 0,

as stated.

The next proposition shows that one can use automorphisms to conjugate a
given LCS to a second one, in order to simplify the expressions of linear or left-invariant
vector fields associated. Such results will be useful ahead.

Proposition 7. Let ΣGpθq be a LCS on Gpθq with associated linear vector field X “ pA, ξq

and left-invariant vector field Y “ pα, ηq. Assume that ΣGpθq satisfies the LARC. It holds:

1. There exists ψ̃ P AutpGpθqq conjugating ΣGpθq to a LCS Σ̃Gpθq with left-invariant
vector field Ỹ “ pα, 0q;
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2. If detA ‰ 0, there exists ψ̂ P AutpGpθqq conjugating ΣGpθq to a LCS Σ̂Gpθq with linear
vector field X̂ “ pA, 0q.

Proof. 1. By the LARC, α ‰ 0 and we can define the map

ψ̃ : Gpθq Ñ Gpθq, ψ̃pt, vq “ pt, v ´ α´1Λθ
tηq.

By Proposition 5, ψ̃ P AutpGpθqq and a simple calculation show that its differential is
given by

pdψ̃qpt,vqpa, wq “ pa, w ´ aα´1ρtηq.

Therefore,

pdψ̃qpt,vqY
L

pt, vq “ pdψ̃qpt,vqpα, ρtηq “ pα, ρtη ´ αα´1ρtηq “ pα, 0q “ Ỹ pψ̃pt, vqq,

and, if X̃ “ pA, ξ ` α´1Aηq, then

pdψ̃qpt,vqX pt, vq “ pdψ̃qpt,vqp0, Av ` Λθ
t ξq “ p0, Av ` Λθ

t ξq

“
`

0, Apv ´ α´1Λθ
tηq ` Λθ

t pξ ` α´1Aηq
˘

“ X̃ pψ̃pt, vqq,

showing that ΣGpθq is ψ̃-conjugated to the system Σ̃Gpθq determined by X̃ and Ỹ .

2. Since detA ‰ 0 the map

ψ̂ : Gpθq Ñ Gpθq, ψ̂pt, vq “ pt, v ` ΛtA
´1ξq,

is a well defined automorphism of Gpθq satisfying

@pa, wq P Tpt,vqGpθq, pdψ̂qpt,vqpa, wq “ pa, aρtA
´1ξ ` wq.

On the other hand,

Aθ “ θA implies that @t P R, w P R2, AΛθ
tw “ Λθ

tAw,

and hence,

pdψ̂qpt,vqX pt, vq “ X̂ pψ̂pt, vqq and pdψ̂qpt,vqY pt, vq “ Ŷ pψ̂pt, vqq,

where X̂ pt, vq “ p0, Avq and Ŷ “ pα, αA´1ξ ` ηq, showing that ΣGpθq is equivalent to the
LCS Σ̂Gpθq determined by X̂ and Ŷ .

For a LCS ΣGpθq with associated linear vector field X “ pA, ξq, the nil-rank
of ΣGpθq is exactly the rank of the matrix A. In fact, since the derivation D associated

to X “ pA, ξq is D “

˜

0 0
ξ A

¸

and the nilradical of gpθq is n “ t0u ˆ R2, we have that

D|n “ A. The next result shows that the dynamics of a LCS on Gpθq, with nil-rank two, is
the same as the dynamics of the product of a homogeneous system on R with a particular
class of control-affine system on R2.
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Proposition 8. Let ΣGpθq be a LCS with nil-rank two on Gpθq. Then, ΣGpθq is equivalent
to a control-affine system on R ˆ R2 of the form

#

9t “ uα

9v “ pA ´ uαθqv ` uη
pΣRˆR2q

Proof. Since ΣGpθq has nil-rank two, we have that detA ‰ 0 and by the previous proposition
we can assume w.l.o.g. that ΣGpθq is determined by the vectors X “ pA, 0q and Y “ pα, ηq.

Define the map

ψ : Gpθq Ñ R ˆ R2, ψpt, vq “ pt, ρ´tvq.

It holds that ψ is a diffeomorphism and it satisfies

@pa, wq P Tpt,vqGpθq, pdψqpt,vqpa, wq “ pa,´aθρ´tv ` ρ´twq.

Consequently,

pdψqpt,vqX pt, vq “ X pψpt, vqq and pdψqpt,vqY
L

pt, vq “ Zpψpt, vqq,

where Zpt, vq “ pα,´αθv ` ηq.

Therefore, ΣGpθq is equivalent to the control-affine system on R ˆ R2 given by
#

9t “ uα

9v “ pA ´ uαθqv ` uη
, u P Ω pΣRˆR2q

concluding the proof.

Remark 1. Although the subjacent manifold of Gpθq is R ˆ R2, the change in notations
made in the previous result is to emphasize the fact that the system ΣRˆR2 is not a linear
control system. When working with such system we will always use the previous change in
notation.

As a direct consequence of the above discussion, we have the following:

Corollary 1. Let ΣGpθq be a LCS with nil-rank two on Gpθq, then the induced system on
the homogeneous space SzGpθq is given by

9v “ pA ´ uαθqv ` uη, u P Ω pΣR2q

where S “ R ¨ p1, 0q.

Proof. Let ΣGpθq be a LCS with nil-rank two and assume w.l.o.g. that X “ pA, 0q and
Y “ pα, ηq are the vector fields of ΣGpθq. By the previous proposition, the diffeomorphism
ψpt, vq “ pt, ρ´tvq conjugates ΣGpθq to the control-affine system

#

9t “ uα

9v “ pA ´ uαθqv ` uη
, u P Ω pΣRˆR2q
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By considering

π2 : R ˆ R2
ÞÑ R2, π2pt, vq “ v,

the composition π2 ˝ ψ is a conjugation between ΣGpθq and the control-affine system on R2

given by

9v “ pA ´ uαθqv ` uη, u P Ω. pΣR2q

However, by the discussion in the beginning of the Section 1.5.2, the map
πpt, vq “ ρ´tv is the canonical projection π : Gpθq Ñ SzGpθq, and since π “ π2 ˝ ψ, the
result follows.
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2 LCSs with nilrank two on Gpθq

In this part we study the LCSs on the groups Gpθq having nilrank-two. In order
to do that, we start with a full investigation of a particular class of control-affine systems
on R2, whose dynamics is intrinsically associated with the LCSs on Gpθq.

2.1 A particular class of control-affine systems on R2

In this section, we study the class of control-affine systems on R2 given by the
family of differential equations.

9v “ pA ´ uθqv ` uη, u P Ω (ΣR2)

where η P R2 is a fixed nonzero vector, A, θ P glp2,Rq, with the restrictions,
detA ‰ 0 and rA, θs “ 0.

A more general study of control-affine systems on higher dimensional Euclidean
spaces was done recently in (COLONIUS; SANTANA; SETTI, 2021). Despite this fact, a
full independent analysis of the system ΣR2 is done here by considering the dynamics of
2 ˆ 2 matrices.

Let us define Apuq :“ A´ uθ. If detApuq ‰ 0, the solutions of ΣR2 are builded
through concatenations of the solutions for constant controls u P Ω

ϕps, v, uq “ esApuq
pv ´ vpuqq ` vpuq, where vpuq :“ ´uApuq

´1η.

The points vpuq :“ ´uApuq
´1η in R2 are called equilibrium points because

they satisfy the equation
Apuqv ` uη “ 0, (2.1)

they have this form because detApuq ‰ 0. However, in general, we can define the set of
equilibrium points E as follows:

E “ tv P R2
| Apuqv ` uη “ 0 for some u P Ωu

The importance of such a set comes from the fact that any point in E satisfies
conditions 1. and 2. of Definition 4 and hence, is contained in a control set of ΣR2 .

Since we are assuming that detA ‰ 0, the subset of Ω given by

Ω0 :“ tu P int Ω; detApuq ‰ 0u,
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is an open neighborhood of 0 P R. The map v : u P Ω0 ÞÑ vpuq “ ´uApuq
´1η P R2 is a

smooth regular curve in R2.

In fact, a simple derivation of the equation 2.1, gives us that

´θvpuq ` Apuqv1
puq “ ´η ùñ v1

puq “ ´Apuq
´1

pη ´ θvpuqq.

Therefore,

v1
puq “ 0 det Apuq‰0

ðñ η “ θvpuq “ ´uApuq
´1θη

and this last equation is equivalent to

Aη ´ uθη “ Apuqη “ ´uθη,

from which we conclude that

v1
puq “ 0 ðñ Aη “ 0.

Since we are assuming that detA ‰ 0 we conclude that v1
puq ‰ 0, showing the

regularity of the curve.

In what follows, we describe explicitly the solutions of ΣR2

Proposition 9. Let 0 “ s0 ă s1 ă ¨ ¨ ¨ ă sn and u1, . . . , uj P Ω0 and define

s “

n
ÿ

j“0
sj and u P U with uptq “ uj P Ω, t P rsj, sj`1q.

Then,

ϕps, v,uq “ e
řn

i“1 siApuiqv `

n
ÿ

i“1
e
řn`1

k“i`1 skApukq
p1 ´ esiApuiq

qvpuiq

with sn`1 “ 0. Consequently,

ϕps, v,uq “ e
řn

i“1 siApuiqv ` ϕps, 0,uq

Proof. Let us proceed by induction on the natural n P N. For n “ 1, we have that

ϕps, v, uq “ esApuq
pv ´ vpuqq ` vpuq “ esApuqv ` p1 ´ esApuq

qvpuq,

and the result follows. Let us then assume that the result is true for n “ N and consider
n “ N ` 1. Defining

ŝi “ si, i “ 1, . . . , N, ŝ “

N
ÿ

j“0
ŝk and û “ u|r0,sN q,
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gives us, by the induction hypothesis, that

ϕpŝ, v, ûq “ e
řN

i“1 ŝiApuiqv `

N
ÿ

i“1
e
řN`1

k“i`1 ŝkApukq
p1 ´ eŝiApuiq

qvpuiq, with ŝN`1 “ 0.

Hence,
ϕps, v,uq “ ϕpsN`1, ϕpŝ, v, ûq, uN`1q

“ esN`1Apuk`1q

˜

e
řN

i“1 ŝiApuiqv `

N
ÿ

i“1
e
řN`1

k“i`1 ŝkApukq
p1 ´ eŝiApuiq

qvpuiq

¸

` p1 ´ esN`1ApuN`1q
qvpuN`1q

“ e
řN`1

i“1 siApuiqv `

N
ÿ

i“1
e
řN`1

k“i`1 skApukq
p1 ´ esiApuiq

qvpuiq ` p1 ´ esN`1ApuN`1q
qvpuN`1q

“ e
řN`1

i“1 siApuiqv `

N`1
ÿ

i“1
e
řN`2

k“i`1 skApukq
p1 ´ esiApuiq

qvpuiq, with sN`2 :“ 0,

concluding the proof.

The next result analyses the LARC for the system ΣR2 .

Lemma 2. The system ΣR2 satisfies the LARC if and only if η is not a common eigenvector
of A and θ.

Proof. First we calculate the Lie bracket of Fu1 and Fu2 with Fupxq :“ Apuqx ` uη. By
definition, the Lie bracket between two fields is

rX, Y spxq “
d

ds

`

dpφ´sqφspxqpY pφspxqqq
˘

s“0 ,

where φs is the flow of the vector field X. For u1, u2 P Ω, it holds that

dpφu1
´sqφ

u1
s pxqq “ e´sApuq and Fu2pφu1

s pxqq “ Apu2qφu1
s pxq ` u2η.

Hence,

rFu2 , Fu1spxq “
d

ds

`

e´sApu2q
rApu1qφu2

s pxq ` u1ηs
˘

s“0 “

“
`

´Apu2q
`

e´sApu2q
pApu1qφu2

s pxq ` u1ηq
˘

` e´sApu2q
pApu1qpApu2qφu2

s pxq ` u2ηqq
˘

s“0

“ ´Apu2qpApu1qx ` u1ηq ` Apu1qpApu2qx ` u2ηq “ pu2 ´ u1qAη,

where for the last equality we used that A and θ commutes.

In the same way,
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rFu3 , rFu2 , Fu1sspxq “
d

ds

`

e´sApu3q
rpu2 ´ u1qAηs

˘

s“0 “ ´pu2 ´ u1qApu3qAη,

and inductively
rFun , rFun´1 , rFun´2 , ¨ ¨ ¨ rFu2 , Fu1s ¨ ¨ ¨ ssspxq

“ p´1q
n
pu2 ´ u1qApunqApun´1qApun´2q ¨ ¨ ¨Apu3qAη.

Since the product ApunqApun´1qApun´2q ¨ ¨ ¨Apu3qA only depends on A and θ

and rA, θs “ 0, the result follows.

2.1.1 The control sets of ΣR2

In this subsection we show the existence of control sets with nonempty interior
for the control-affine system ΣR2 introduced previously. We start with a result concerning
to the positive and negative orbits at equilibrium points of the system.

Proposition 10. It holds that

O`
pvpuqq and O´

pvpuqq,

are open sets for any u P Ω0 with the exception of, at the most, one u˚
P Ω0 where

xApu˚
qη,Rηy “ 0.

Proof. The proofs for the positive and negative orbits are analogous, hence, we show only
the positive case. In order to prove the result for this case, we first show that O`

pvpuqq is
open if, and only if vpuq P intO`

pvpuqq and afterwards, we prove that vpuq P int O`
pvpuqq.

Claim 1: O`
pvpuqq is open if, and only if vpuq P intO`

pvpuqq.

We note that intO`
pvq is positively invariant for all v P R2, in fact, we know

that,

• ϕpt, intO`
pvq, uq Ă O`

pvq

• ϕpt, ¨, uq is a open map for all t ě 0 and u P Ω,

hence, we conclude that ϕpt, intO`
pvq, uq Ă intO`

pvq for all t ě 0 and u P Ω, i.e.,
O`

pvq Ă intO`
pvq for all v P intO`

pvq.
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Let us now consider s ą 0 and u P Ω0, and define the map

f : Ω2
0 Ñ R2, fpu1, u2q :“ esApu2q

`

esApu1q
pvpuq ´ vpu1qq ` vpu1q ´ vpu2q

˘

` vpu2q.

We observe that,

fpu, uq “ vpuq and fpu1, u2q “ ϕps, ϕps, vpuq, u1q, u2qq,

implying that
fpΩ2

0q Ă O`
pvpuqq.

As a consequence, vpuq P int O`
pvpuqq if the differencial of f is surjective on

u P Ω. Calculating the partial derivatives of f , we obtain that

Bf

Bu1
pu1, u2q “ esApu2q

`

´sθesApu1q
pvpuq ´ vpu1qq ` p1 ´ esApu1q

qv1
pu1q

˘

and,

Bf

Bu2
pu1, u2q “ ´sθesApu2q

`

esApu1q
pvpuq ´ vpu1qq ` vpu1q ´ vpu2q

˘

` p1 ´ esApu2q
qv1

pu2q.

Evaluating at u gives us,
Bf

Bu1
pu, uq “ esApuq

p1 ´ esApuq
qv1

puq and Bf

Bu2
pu, uq “ p1 ´ esApuq

qv1
puq.

Let R be the counterclockwise rotation of π{2. Then,
B

Bf

Bu1
pu, uq, R

Bf

Bu2
pu, uq

F

“
@

esApuq
p1 ´ esApuq

qv1
puq, Rp1 ´ esApuq

qv1
puq

D

,

and
@

esApuq
p1 ´ esApuq

qv1
puq, Rp1 ´ esApuq

qv1
puq

D

“
@

p1 ´ esApuq
qesApuqv1

puq, Rp1 ´ esApuq
qv1

puq
D

since esApuq and p1 ´ esApuq
q commute.

Moreover, since Bpx, yq “ xx,Ryy is an alternating bi-linear form,
@

p1 ´ esApuq
qesApuqv1

puq, Rp1 ´ esApuq
qv1

puq
D

“ detp1 ´ esApuq
q
@

esApuqv1
puq, Rv1

puq
D

and hence,
B

Bf

Bu1
pu, uq, R

Bf

Bu2
pu, uq

F

is linearly independent if and only if

detp1 ´ esApuq
q
@

esApuqv1
puq, Rv1

puq
D

‰ 0. (2.2)

Claim 2: For any u P Ω0, there exists δ ą 0 such that detp1 ´ esApuq
q ‰ 0 for

all s P p0, δq.

In fact, if s0 ą 0 and u P Ω0 are such that detp1 ´ es0Apuq
q “ 0 then we have

two possibilities:
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1. es0Apuq
‰ I: In this case, we conclude that one root of the characteristic polynomial

of es0Apuq is 1 and the eigenspace associated with the eigenvalue 1 has dimension 1.
Therefore, there exists a nonzero vector v such that es0Apuqv “ v.

Since Apuq and es0Apuq commute, v is also an eigenvector of Apuq. However, Apuqv “

av implies that
v “ es0Apuqv “ es0av ùñ a “ 0,

contradicting the assumption that detApuq ‰ 0.

2. es0Apuq
“ I: Since det es0Apuq

“ es0 tr Apuq, we obtain in this case that trApuq “ 0.
Furthermore, the condition detApuq ‰ 0, allows us to conclude that Apuq has a pair
of purely imaginary eigenvalues.

By the previous, detp1 ´ es0Apuq
q “ 0 implies the existence of a ‰ 0 such that

Apuq “

˜

0 ´a

a 0

¸

ùñ esApuq
“

˜

cos sa ´ sin sa
sin sa cos sa

¸

.

Therefore,

detp1 ´ esApuq
q “ 2p1 ´ cos saq “ 0 ðñ as “ 2kπ, k P Z.

and so,
detp1 ´ esApuq

q ‰ 0, @s P p0, δq , for any 0 ă δ ă
2π
a
,

showing the claim.

Claim 3: With the exception of, at most, one u P Ω0, there exists ϵ “ ϵpuq

such that
@

esApuqv1
puq, Rv1

puq
D

‰ 0, @s P p0, ϵq.

Let us assume that u P Ω0 does not satisfies the previous condition. That is,

DpsnqnPN Ă R`, with sn Ñ 0 and
@

esnApuqv1
puq, Rv1

puq
D

“ 0. (2.3)

Hence,
0 “ lim

nÑ8

1
sn

@

esnApuqv1
puq ´ v1

puq, Rv1
puq

D

“
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

@

esApuqv1
puq, Rv1

puq
D

“ xApuqv1
puq, Rv1

puqy .

In particular,

Apuqv1
puq “ λv1

puq, for some λ ‰ 0.
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Since v1
puq “ ´Apuq

´1
pη ´ θvpuqq, the previous gives us that

η ´ θvpuq “ λApuq
´1

pη ´ θvpuqq ðñ Apuqpη ´ θvpuqq “ λpη ´ θvpuqq.

Remembering that Apuq “ A ´ uθ and Apuqvpuq “ ´uη, allows us to obtain

Aη “ Aη ´ uθη ` uθη “ λη ´ λθvpuq,

and, by applying Apuq to the previous equality, we get that

ApuqAη “ Apuqpλη ´ λθvpuqq
rA,Apuqs“0

ðñ AApuqη “ λAη ´ λuθη ` λuθη “ λAη,

or, equivalently,
ApApuqη ´ ληq “ 0.

Since we are assuming that detA ‰ 0, we get

Apuqη “ λη or equivalently xApuqη,Rηy “ 0. (2.4)

Now, if

u1 ‰ u2 and xApu1qη,Rηy “ xApu2qη,Rηy “ 0,

then, by the definition of Apuq, we get that

xAη,Rηy “ u1xθη,Rηy and xAη,Rηy “ u2xθη,Rηy,

and hence
0 “ xAη,Rηy ´ xAη,Rηy “ pu1 ´ u2q

loooomoooon

‰0

xθη,Rηy ,

implying that
xAη,Rηy “ xθη,Rηy “ 0.

As a consequence, if (2.3) holds for two differents elements in Ω, then necessarily
η is a common eigenvector of A and θ, which contradicts the assumption that ΣR2 satisfies
the LARC, which implies the claim.

By the claims 2. and 3. for all u P Ω0, with exception of at most one, there
exists ϵ˚

“ minpδ, ϵq, such that

detp1 ´ esApuq
q
@

esApuqv1
puq, Rv1

puq
D

‰ 0 @s P p0, ϵ˚
q,

implying that the differential of f at the point u P Ω0 is surjective. In particular, f is an
open map around such value u P Ω0, that is, there exists an open neighborhood U Ă Ω0

with u P U and such that fpU2
q is open. Since vpuq “ fpu, uq P fpU2

q Ă O`
pvpuqq we get

vpuq P int O`
pvpuqq which implies that O`

pvpuqq is open and concludes the proof.
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Remark 2. Note that

xApu˚
qη,Rηy “ 0 ðñ η is an eigenvector of Apu˚

q.

Therefore, if the system satisfies the LARC, the only possibility for the previous is that
Apu˚

q is an scalar matrix, that is,

xApu˚
qη,Rηy “ 0 ðñ Apu˚

q “ λpu˚
qI2.

Next we show the existence of a control set with nonempty interior for the
system ΣR2 that contains 0 P R2 in its closure.

Proposition 11. The system ΣR2 admits a control set with nonempty interior CR2 such
that

vpΩ0q Ă int CR2 ,

with the exception of, at most, one u˚
P Ω0 satisfying xApu˚

qη,Rηy “ 0.

Proof. By Propositions 10 and 1, with the exception of at most one u˚
P Ω0, there exists

a control set Cu satisfying

Cu “ O`pvpuqq X O´
pvpuqq and vpuq P int Cu.

Let us define the sets

Ω´
0 :“ tu P Ω0; u ă u˚

u and Ω`
0 :“ tu P Ω0; u ą u˚

u.

Since Ω˘
0 are open intervals their images vpΩ˘

0 q are connected subset of R2. Moreover, the
fact that vpuq P int Cu for all u P Ω˘

0 implies necessarily that

Cu1 “ Cu2 for all u1, u2 P Ω˘
0 (2.5)

In fact, if u1, u2 P Ω`
0 with u1 ă u2 satisfies

vpu2q P R2
z int Cu1 then vpru1, u2sq X BCu1 ‰ H.

Therefore, there exists ū P Ω`
0 such that vpūq P BCu1 . On the other hand,

ū P Ω`
0 ùñ vpūq P int Cū ùñ Cū X Cu1 ‰ H

ùñ Cū “ Cu1 ùñ vpūq P int Cu1 ,

which is a contradiction, showing that relation (2.5) holds.

In order to conclude the proof, we have to show that

Du1 P Ω`
0 , u2 P Ω´

0 ; Cu1 “ Cu2 .
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By Remark 2 it holds that Apu˚
q “ λpu˚

qI2. In particular, the fact that
λpu˚

q
2

“ detApu˚
q ‰ 0, implies the existence of u1 ă u˚

ă u2 such that Apu1q and Apu2q

has a pair of eigenvalues with real parts of the same sign as λpu˚
q. Therefore,

ϕps, vpu1q, u2q Ñ vpu2q and ϕps, vpu2q, u1q Ñ vpu1q, λpu˚
qs Ñ ´8.

Since vpuiq P int Cui
, the previous allows us to construct a periodic chain passing through

Cu1 and Cu2 which implies Cu1 “ Cu2 and concludes the proof.

Remark 3. The equilibrium vpu˚
q P E associated with u˚

P Ω0 can be in the boundary of
CR2 (see Example 4).

Proposition 12. Let us assume that detApuq ą 0 for all u P Ω0. Then, for the control
set CR2, it holds that:

1. trApuq ą 0 for all u P Ω0 and CR2 is open;

2. trApuq ă 0 for all u P Ω0 and CR2 is closed;

3. trApuq “ 0 for some u P Ω0 and CR2 “ R2;

Proof. Assume that Apuq has a pair of eigenvalues with negative real parts. Then, for any
v P R2 we have that

ϕps, v, uq “ esApuq
pv ´ vpuqq ` vpuq Ñ vpuq, s Ñ `8.

If O´
pvpuqq is open, there exists s0 ą 0 such that

ϕps0, v, uq P O´
pvpuqq ùñ v P ϕ´s0,upO´

pvpuqqq Ă O´
pvpuqq,

implying that O´
pvpuqq “ R2. In same way, if Apuq has a pair of eigenvalues with positive

real parts and O`
pvpuqq is open, then O`

pvpuqq “ R2.

Since detApuq ą 0, if trApuq ‰ 0 for all u P Ω0, then necessarily Apuq has
a pair of eigenvalues with positive real parts if trApuq ą 0 and negative real parts if
trApuq ă 0, which by the previous implies items 1. and 2.

On the other hand, since trApuq “ trA` u tr θ, if trApuq “ 0 for some u P Ω0,
we have the following possibilities:

‚ trApu0q “ 0 and trApu1q trApu2q ă 0 for any u1, u2 P Ω0 satisfying u1 ă

u0 ă u2.

In this case, there exist u1, u2 P Ω0 such that Apu1q has a pair of eigenvalues
with positive real parts and Apu2q has a pair of eigenvalues with negative real parts. As a
consequence,

R2
“ O`

pvpu1qq and O´
pvpu2qq “ R2,
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implying that

O´
pvpu1qq “ O`pvpu1qq X O´

pvpu1qq “ CR2 “ O`pvpu2qq X O´
pvpu2qq “ O`pvpu2qq.

Therefore, CR2 is open and closed in R2 which implies CR2 “ R2.

‚ trApuq “ 0 for all u P Ω0;

For this case, for any u P Ω0ztµu we have that the solutions of ΣR2 are given
by concatenations of the curves

ϕps, v, uq “ Rspµ´uqpv ´ vpuqq ` vpuq, where vpuq “ ´uApuq
´1η “

u

µ ´ u
Rη,

and Rspµ´uq stands for the rotation of spµ ´ uq-degrees. In particular,

|ϕps, v, uq ´ vpuq| “ |Rspµ´uqpv ´ vpuqq| “ |v ´ vpuq|,

shows that the solution curve s ÞÑ φps, v, uq lies onto the circumference Cu,v with radius
|v ´ vpuq| and center vpuq.

Let us show the controllability of ΣR2 by explicitly constructing a periodic
trajectory from an arbitrary point v0 P R2 to the origin as follows:

(a) Let ρ ą 0 and define the set Ωρ :“ r´ρ, ρs satisfying

µ R Ωρ and Ωρ Ă Ω0,

which is possible since µ ‰ 0.

(b) Since the circumference Cρ,v0 intersects the line R ¨ Rη in two points, let us denote
by v1 the point of this intersection that is closer to vp´ρq. Consider s1 ą 0 such that
v1 “ ϕps1, v, ρq;

(c) If v1 R vpΩρq, we do the same of item (a) with the circumference C´ν,v1 , in order to
obtain a point

v2 “ ϕps2, v1,´ρq P C´ρ,v1 X R ¨ Rη.

(d) Inductively, if a point vn R vpΩρq was obtained, we consider the point vn`1 in the
intersection of the circumference Cp´1qnρ,vn with the line R ¨ Rη. The radius ρn of
the circumference Cp´1qnρ,vn satisfies

ρn “ |vn ´ vpp´1q
nρq| “ |v0 ´ vρ| ´ n ¨ diam ¨ vpΩρq.

Therefore, for some N P N large enough, we obtain that vN P vpΩρq X R ¨ Rη.
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(e) Since vN P vpΩρq, the continuity of the curve u ÞÑ vpuq assures the existence of
uN P Ωρ such that |vpuN q| “ |vN ´ vpuN q|. As a consequence, the circumference
CuN ,vN

contains vN and the origin 0, and hence, there exists sN ą 0 such that
φpsN , vN , uN q “ 0. By concatenation, we obtain a trajectory from v0 to 0 (Figure 1,
blue path).

(f) By choosing the “complementay half" of the circumferences Cp´1qnρ,vn , n “ 0, . . . N´1
and CuN ,vN

, obtained in the previous items, we obtain a trajectory from 0 to v0 (1,
red path).

The previous steps shows how to construct a periodic trajectory passing through
v0 and 0. By the arbitrariness of v0 P R2, the system ΣR2 has to be controllable, concluding
the proof.

Remark 4. Example 3 shows that the control set CR2 is not necessarily the only one with
nonempty interior.

Figure 1 – Periodic trajectory passing through 0 and v0.

2.2 The control sets of LCSs with nil-rank two on Gpθq

In this section we prove our main results characterizing the control sets of LCSs
on Gpθq with nil-rank two. The idea is basically use Proposition 8 and the results in the
previous sections. We start with the following result characterizing the control sets of the
system ΣRˆR2 .
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Proposition 13. Let us consider the control system
#

9t “ uα

9v “ pA ´ uαθqv ` uη
, u P Ω. pΣRˆR2q

If ΣRˆR2 satisfies the LARC, then it admits a control set with nonempty interior CRˆR2

satisfying
CRˆR2 “ R ˆ CR2 ,

where CR2 is the control set containing vpΩ0q of the associated control-affine system

9v “ Apuqv ` αuη, u P Ω. pΣR2q

Proof. Let us first notice that the solutions of system ΣRˆR2 satisfy

ϕps, pt0, v0q,uq “ pϕ1ps, t0,uq, ϕ2ps, v0,uqq, @s P R, pt0, v0q P R ˆ R2,u P U ,

and hence, they are given by concatenations of the solutions

ϕps, pt0, v0q, uq “ pt0 ` uαs, esApuq
pv0 ´ vpuqq ` vpuqq, .

Let us assume w.l.o.g. that α “ 1, otherwise we change the control range Ω by
αΩ. Let us show that CRˆR2 satisfies the three conditions in Definition 4.

(i) Weak invariance: Let pt0, v0q be a point in CRˆR2 . Then, v0 P CR2 and there exists
u P U such that

ϕ2pR`, v0,uq ùñ ϕpR`, v0,uq Ă R ˆ CR2 “ CRˆR2 .

(ii) Approximate controllability: Let us start by showing that exact controllability holds in
R ˆ int CR2 . Let then pt1, v1q, pt2, v2q P R ˆ int CR2 and consider vpu1q, vpu2q P int CR2

with u1 ă 0 ă u2.

Since controllability holds in int CR2 , there exists t11, t12 P R, u1,u2 P U and s1, s2 ą 0
such that

ϕps1, pt1, v1q,u1q “ pt11, vpu1qq and ϕps2, pt
1
2, vpu2qq,u2q “ pt2, v2q.

Analogously, there exists s3 ą 0 and u3 P U such that

ϕps3, pt
1
1, vpu1qq,u3q “ pt22, vpu2qq.

‚ If t22 ď t12 we have that

s4 “
t12 ´ t22
u2α

ě 0 and ϕps4, pt
2
2, vpu2q, u2q “ pt22 ` u2αs4, vpu2qq “ pt12, vpu2qq.
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Hence, by concatenation

ϕps2, ϕps4, ϕps3, ϕps1, pt1, v1q,u1q,u3q, u2q,u2q “ pt2, v2q.

‚ If t22 ą t12 we have that
s1

4 “
t12 ´ t22
αu1

ą 0

and
ϕps1

4, pt
1
1, vpu1q, u1q “ pt11 ` u1αs

1
4, vpu1qq “ pt11 ` t12 ´ t22, vpu1qq,

implying that

ϕps3, ϕps1
4, pt

1
1, vpu1q, u1q,u3q “ ϕps3, pt

1
1 ` t12 ´ t22, vpu1qq,u3q

“ pt12 ´ t22, 0q ` ϕps3, pt
1
1, vpu1qq,u3q “ pt12 ´ t22, 0q ` pt22, vpu2qq “ pt12, vpu2qq.

Therefore, by concatenation,

ϕps2, ϕps3, ϕps1
4, ϕps1, pt1, v1q,u1q, u1q,u3q,u2q “ pt2, v2q,

showing that controllability holds inside R ˆ int CR2 (see Figure 2).

As a consequence, we get that

@pt, vq P R ˆ int CR2 , R ˆ int CR2 Ă O`
pt, vq ùñ R ˆ CR2 Ă O`pt, vq.

On the other hand, if v P CR2 and v0 P int CR2 we have that

v P O´
2 pv0q ðñ v0 P O`

2 pvq.

Therefore, for any pt, vq P R ˆ CR2 there exists pt0, v0q P R ˆ CR2 such that pt0, v0q P

O`
pt, vq implying by the previous that

R ˆ CR2 Ă O`pt0, v0q Ă O`pt, vq,

showing that R ˆ CR2 satisfies condition 2. in the Definition 4.

• Maximality: If D Ă R ˆ R2 is a control set such that R ˆ CR2 Ă D, then π2pDq is
contained in a control set of ΣR2 . Since CR2 Ă π2pDq we have by maximality that
CR2 “ π2pDq and hence

D Ă π´1
2 pπ2pDqq “ π´1

2 pCR2q “ R ˆ CR2 ,

which shows that CRˆR2 “ R ˆ R2 is a control set of ΣRˆR2 .

Next we state and prove our main result.
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Figure 2 – Trajectory connecting points in the interior of R ˆ CR2 .

Theorem 6. Any linear control system ΣGpθq on Gpθq with nil-rank two satisfying the
LARC admits a unique control set CGpθq containing the identity element in its closure.
Moreover, if X “ pA, ξq is the associate linear vector field and

Ω0 “ tu P Ω; detpA ´ αuθq ‰ 0u,

we get that:

1. If detA ą 0 and trpA ´ αuθq ą 0 for all u P Ω0, then CGpθq is open;

2. If detA ą 0 and trpA ´ αuθq ă 0 for all u P Ω0, then CGpθq is closed;

3. If detA ą 0 and trpA ´ αuθq “ 0 for some u P Ω0, then CGpθq “ Gpθq.

Proof. Since ΣGpθq has nil-rank two, we get that detA ‰ 0, and hence, Proposition 7 and
Proposition 8 implies the existence of a diffeomorphism ψ : Gpθq Ñ R ˆ R2, fixing the
identity element e “ p0, 0q, and conjugating ΣGpθq to the control-affine system

#

9t “ uα

9v “ pA ´ uαθqv ` uη
, u P Ω. pΣRˆR2q

By the previous proposition ΣRˆR2 admits a control set CRˆR2 with nonempty interior and
containing vpΩ0q, implying that

CGpθq :“ ψ´1
pCRˆR2q,

is a control set of ΣGpθq containing the identity element in its closure. Moreover, by
Proposition 12, the properties 1. 2. and 3. hold true. Therefore, it only remains to show
the uniqueness of CGpθq.

If e P int CGpθq, Theorem 3 together with the solubility of Gpθq imply the
uniqueness of CGpθq. Therefore, let us assume that xAη,Rηy “ 0. If D Ă RˆR2 is a control



Chapter 2. LCSs with nilrank two on Gpθq 51

set with nonempty interior of ΣRˆR2 for any pt, vq P intD there exists τ ą 0 and u P U
satisfying

ϕpτ, pt, vq,uq “ pt, vq where τ “

n
ÿ

i“1
si and u|rsi´1,siq “ ui P Ω, i “ 1, . . . , n.

By Proposition 9 we get that
n
ÿ

i“1
siui “ 0 and ϕ2pτ, v,uq “ e

řn
i“1 siApuiqv ` ϕ2ps, 0,uq “ v

with sn`1 “ 0. Moreover,
n
ÿ

i“1
siApuiq “

n
ÿ

i“1
sipA ´ uiθq “ τA ´

n
ÿ

i“1
siuiθ “ τA,

implies that
ϕ2pτ, v,uq “ eτAv ` ϕ2pτ, 0,uq “ v.

On the other hand, the assumption xAη,Rηy “ 0 implies that A “ λI2 (see Remark 2)
and hence,

ϕ2pτ, v,uq “ eτλv ` ϕ2pτ, 0,uq.

Let us assume w.l.o.g. that λ ă 0. In this case, the periodicity of pt, vq implies
that

v “ ϕ2pnτ, v,uq “ enτλv ` ϕ2pnτ, 0,uq,

and since
enτλ

Ñ 0 ùñ ϕ2pnτ, 0,uq Ñ v.

Since 0 P CR2 , there exists by continuity v1 P int CR2 such that ϕ2pnτ, v1,uq P πpintDq. On
the other hand, for any u P Ω0 with u ‰ 0 it holds that

ϕ2ps, v, uq Ñ vpuq, s Ñ `8 ùñ ϕ2ps0, v, uq P int CR2 ,

for some s0 ą 0. Since π2pintDq has to be contained the interior of a control set D1
Ă R2

of ΣR2 (see Proposition 2), the previous imply (by exact controllability in intD1) the
existence of an orbit starting and finishing in int CR2 and passing by intD1, forcing the
equality D1

“ CR2 . Therefore,

D Ă π´1
2 π2pDq Ă π´1

pCR2q “ R ˆ CR2 “ CRˆR2 ,

showing the uniqueness of CRˆR2 and hence, CGpθq is the unique control set with nonempty
interior of ΣGpθq, concluding the proof.

Remark 5. The previous result shows that, even though, the projected system ΣR2 can have
more than one control set with nonempty interior (see Example 3), the control systemΣRˆR2

admits a unique one. Moreover, by Example 4, the identity element of Gpθq is not always
in the interior of CGpθq.
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3 LCSs with nil-rank smaller than two on
Gpθq

In this section the cases where the nilrank of a LCS is equal to zero or one. As
we will see, for control systems with nil-rank one, the LARC is enough to assure existence
of control sets with nonempty interior. On the other hand, the dynamics of LCSs with
rank zero strongly depends of the group structure.

3.1 Nil-rank one LCSs

Lemma 3. For a LCS with nil-rank one, the LARC is equivalent to the ad-rank condition.

Proof. Up to isomorphism, we can consider ΣGpθq to be a LCS on Gpθq satisfying the
LARC and such that X “ pA, ξq and Y “ pα, 0q, with α ‰ 0. By Proposition 6,

LARC is equivalent to xAξ,Rξy
2

` xθξ, Rξy
2

‰ 0,

and
ad-rank is equivalent to xAξ,Rξy ‰ 0.

However, the assumption that ΣGpθq has nil-rank one, implies necessarily that dim kerA “ 1.
As a consequence, we have the following possibilities:

1. ξ P kerA which by the commutativity of A and θ imply that xθξ, Rξy “ 0 and hence
LARC holds only if the ad-rank condition holds;

2. ξ R kerA and hence Rξ is a one dimensional eigenspace of A with R2
“ Rξ ‘ kerA.

Consequently,
xAξ,Rξy “ 0 ùñ xθξ, Rξy “ 0,

showing again that the LARC imply the ad-rank condition.

In both cases the LARC implies the ad-rank condition, proving the result.

As a consequence of the previous result and Theorem 3, any LCSs with nil-rank
one admits a unique control set CGpθq with nonempty interior, such that G0

Ă int CGpθq.

On the other hand, the assumption that the nil-rank of ΣGpθq is equal to one,
implies necessarily that dim kerA “ 1 and, by the commutativity of A and θ, the subgroup
H :“ t0u ˆ kerA Ă Gpθq is a closed normal subgroup. Consequently, we have a well
induced linear control system on the 2D Lie group HzG and the following holds:
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Theorem 7. Any LCS with nil-rank one satisfying the LARC admits a unique control set
with nonempty interior CGpθq satisfying

CGpθq “ π´1
pCHzGpθqq “ CHzGpθq ˆ H,

where π : Gpθq Ñ HzGpθq is the canonical projection. Moreover, if X “ pA, ξq is the
drift of the LCS, then CGpθq is open if trA ą 0 and closed if trA ă 0, or trA “ 0 and
CGpθq “ Gpθq.

Proof. By the previous discussion, H “ t0u ˆ kerA is a one-dimensional normal subgroup
of Gpθq and, HzGpθq is a 2-dimensional Lie group.

Since the induced LCS ΣHzGpθq on HzGpθq satisfies the LARC, there exists a
unique control set CHzGpθq that contains the identity element of HzGpθq in its interior.
Moreover,

π´1
peHq “ H “ t0u ˆ kerA Ă int CGpθq,

since H is contained in the set of fixed points of the flow of X “ pA, ξq. By Proposition 2
we obtain that CGpθq “ π´1

pCHzGpθqq, proving the first equality.

On the other hand, if w P kerA is an unitary vector, and we consider the basis
tp1, 0q, p0, Rwq, p0, wqu, the canonical projection is given by

π : Gpθq Ñ pt, xv,Rwyq,

which coincides with projection onto the first two components of the chosen basis. As
a consequence, the control set CHzGpθq is naturally identified inside Gpθq as the subset
CHzGpθq ˆ t0u of the plane generated by tp1, 0q, p0, Rwqu. Since

p0, s1wqpt, s2Rwq “ pt, s1w ` s2Rwq, @t, s1, s2 P R,

we get that
π´1

pCHzGpθqq “ HCHzGpθq ˆ t0u “ CHzGpθq ˆ H,

proving the second equality. Now, since π conjugates ΣGpθq and ΣHzGpθq, it commutes with
the associated derivations, that is,

D̂ ˝ π “ π ˝ D,

where D̂ is the derivation associated with the system ΣHzGpθq. Since

t0u ˆ kerA Ă ker D and dim ker D “ 2,

we obtain that tr D̂ “ tr D “ trA is only possible eigenvalue of D̂, which by the results in
Section 2.5 implies the result.
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3.2 Nil-rank zero LCSs
In this section we analyze the LCSs with nil-rank zero. As we will see, for most

of the classes of the groups Gpθq, the LCSs with nil-rank zero do not admit control sets
with nonempty interior. Instead, they admit an infinite numbers of control sets with empty
interior.

We start with a lemma which will be used in the proof of the results of this
section.

Lemma 4. Let us assume that θ ‰

˜

γ ´1
1 γ

¸

with γ ‰ 0. If xθξ, Rξy ‰ 0, there exists

ξ̂ P R2 such that
gptq :“ xΛθ

t ξ, ξ̂y ě 0, @t P R.

Proof. The lemma is proved case by case.

1. θ “

˜

1 0
0 γ

¸

, |γ| P p0, 1s: In this case, xθξ, Rξy ‰ 0 implies that ξ “

ξ1e1 ` ξ2e2 with ξ1ξ2 ‰ 0.

Let us assume that γ P p0, 1q, since the case γ P p´1, 0q is analogous. Consider
ξ̂ “ γξ´1

1 e1 ´ γξ´1
2 e2, we obtain

gptq “ xΛθ
t ξ, ξ̂y “

B

pet
´ 1qξ1e1 `

1
γ

peγt
´ 1qe2, γξ

´1
1 e1 ´ γξ´1

2 e2

F

“ γpet
´ 1q ´ peγt

´ 1q.

Derivation, implies that g1
ptq “ γpet

´ eγt
q, and hence

g1
ptq ą 0, t P p0,`8q and g1

ptq ă 0, t P p´8, 0q,

showing that g is strictly decreasing in p´8, 0q and strictly increasing in p0,`8q. Since
gp0q “ 0 we obtain that gptq ě 0 for all t P R.

2. θ “

˜

1 0
0 0

¸

: In this case, xθξ, Rξy ‰ 0 implies also that ξ “ ξ1e1 ` ξ2e2

with ξ1ξ2 ‰ 0. Defining ξ̂ “ ξ´1
1 e1 ´ ξ´1

2 e2 gives us

gptq “ xΛθ
t ξ, ξ̂y “

@

pet
´ 1qξ1e1 ` tξ2e2, ξ

´1
1 e1 ´ ξ´1

2 e2
D

“ pet
´ t ´ 1q,

As the case before, deriving the function, we obtain g1
ptq “ et

´ 1, that satisfies

g1
ptq ą 0, t P p0,`8q and g1

ptq ă 0, t P p´8, 0q,

and because gp0q “ 0, gptq ě 0 for all t P R.
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3. θ “

˜

1 1
0 1

¸

: In this case, xθξ, Rξy ‰ 0 implies that ξ “ ξ1e1 ` ξ2e2 with

ξ2 ‰ 0. By considering and we should define ξ̂ “ ξ´1
2 e1 ´ ξ1ξ

´2
2 e2. By a simple calculation

shows us that
gptq “ xΛθ

t ξ, ξ̂y “ ´et
` 1 ` tet.

As in the first case, g1
ptq “ tet and hence

g1
ptq ą 0, t P p0,`8q and g1

ptq ă 0, t P p´8, 0q,

implying that
gptq ě gp0q “ 0, @t P R.

4. θ “

˜

0 ´1
1 0

¸

: In this case, xθξ, Rξy ‰ 0 implies ξ ‰ 0. Defining ξ̂ “

´ξ2e1 ` ξ1e2 gives us

gptq “ xΛθ
t ξ, ξ̂y “

A

rξ2pcos t ´ 1q ` ξ1 sin ts e1 ` rξ2 sin t ´ ξ1pcos t ´ 1qs e2,´ξ2e1 ` ξ1e2

E

“ ´
`

ξ2
1 ` ξ2

2
˘

pcos t ´ 1q “ |ξ|
2
p1 ´ cos tq ě 0,

as required.

Using the previous lemma we are able to show the following:

Theorem 8. Let ΣGpθq be a LCS with nil-rank zero. It holds:

1. If θ ‰

˜

γ ´1
1 γ

¸

for all γ ‰ 0, then ΣGpθq admits an infinite numbers of control

sets with empty interior

2. If θ “

˜

γ ´1
1 γ

¸

for some γ ‰ 0, then ΣGpθq is controllable.

Proof. By Proposition 7 we can assume w.l.o.g. that
#

9t “ uα

9v “ Λθ
t ξ

, u P Ω.
`

ΣGpθq

˘

1. If θ ‰

˜

γ ´1
1 γ

¸

for all γ ‰ 0, there exists by Lemma 4 a vector ξ̂ P R2

such that xΛθ
t ξ, ξ̂y ě 0 for all t P R. As a consequence, the smooth function

f : Gpθq Ñ R, fpt, vq :“ xv, ξ̂y,
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is such that, the functions gupsq “ fpϕ2ps, pt, vq,uqq, satisfies

g1
upsq “

d

ds
xϕ2ps, pt, vq,uq, ξ̂y “ xΛθ

ϕ1ps,pt,vq,uqξ, ξ̂y ě 0,

and are nondecreasing. As a consequence,

pt1, v1q, pt2, v2q P Gpθq; with fpt1, v1q ă fpt2, v2q,

cannot be in the same control set of ΣGpθq.

On the other hand, the fact that p0, vq P Gpθq are fixed points of the drift
X “ p0, ξq, implies that any such point is contained in a control set of ΣGpθq. Therefore,
for any c P R the plane

Pc :“ tpt, vq, xv, ξ̂y “ cu,

contains (at least) one control of ΣGpθq, concluding the proof.

2. Let us start by noticing that the solutions of ΣGpθq satisfy

ϕps, pt, v1 ` v2q,uq “ ϕps, pt, v1q,uq ` v2, @u P U . (3.1)

Let H “ R ¨ p0, θ´1ξq and consider the homogeneous space HzGpθq. By the
calculations in Section 2.5.2, the canonical map is given by

π : Gpθq Ñ HzGpθq, πpt, vq “ pt, xv,Rθ´1ξyq.

Therefore, the induced system on R2
“ HzGpθq is given by

#

9t “ uα

9x “ xΛθ
t ξ, Rθ

´1ξy
.

`

ΣHzGpθq

˘

Now, the fact that θ “ γIR2 ` R implies that etθ
“ eγt

ppcos tqIR2 ` psin tqRq. As a
consequence,

xΛθ
t ξ, Rθ

´1ξy “ xpetθ
´ IR2qθ´1ξ, Rθ´1ξy “ xetθθ´1ξ, Rθ´1ξy

“ eγt cos txθ´1ξ, Rθ´1ξy ` eγt sin txRθ´1ξ, Rθ´1ξy “ |θ´1ξ|
2eγt sin t.

The rest of the prove is conclude in XX steps.

Step 1: ΣHzGpθq is controllable;

It is not hard to see that the solutions ϕ̂ of ΣHzGpθq satisfy

piq ϕ̂1ps, pt0, x0q, uq “ t0 ` uαs, piiq ϕ̂2ps, pt0, x0q, 0q “ x0 ` s|θ´1ξ|
2eγt0 sin t0,

and piiiq ϕ̂2ps, pt0, x0q, uq “ ϕ̂2ps, pt0, 0q, uq ` x0.
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In particular, property piq implies that

@t1, t2 P R, Du P Ω; ϕ̂ps, tt1u ˆ R, uq “ tt2u ˆ R.

Therefore, it is always possible to construct a trajectory from any given point
pt, xq to the axis t0u ˆ R in positive and negative time. Hence, ΣHzGpθq is controllable as
soon as any two points in t0u ˆ R can be connected by a trajectory of the system.

Let us consider x, y P R and assume w.l.o.g. that x ă y. Fix t1, t2 P R satisfying

´π{2 ă t1 ă 0 ă t2 ă π{2,

and consider s0,1, s2,0, s1,2 P p0,`8q and u0,1, u2,0, u1,2 P Ω such that

ϕ̂ps0,1, t0u ˆ R, u0,1q “ tt1u ˆ R, ϕ̂ps2,0, tt2u ˆ R, u2,0q “ t0u ˆ R

and

ϕ̂ps1,2, tt1u ˆ R, u1,2q “ tt2u ˆ R.

Take x̂i, ŷj, i, j “ 1, 2 satisfying

ϕ̂ps0,1, p0, xq, u0,1q “ pt1, x̂1q, ϕ̂ps0,1, p0, yq, u0,1q “ pt1, ŷ1q,

ϕ̂ps2,0, pt2, x̂2q, u2,0q “ p0, xq and ϕ̂ps2,0, pt2, ŷ2q, u2,0q “ p0, yq.

Using the third property, it is straightforward to show that there exist z1, z2 satisfying

z1 ď mintx̂1, ŷ1u z2 ď mintx̂2, ŷ2u, and ϕ̂2ps1,2, pt1, z1q, u1,2q “ z2.

Furthermore, since sin t1 ă 0 and sin t2 ą 0 there exists s1, s2, ŝ1, ŝ2 P r0,`8q such that

x̂1 ` s1|θ´1ξ|
2eγt1 sin t1 “ z1, ŷ1 ` ŝ1|θ´1ξ|

2eγt1 sin t1 “ z1,

z2 ` ŝ2|θ´1ξ|
2eγt2 sin t2 “ x̂2 and z2 ` s2|θ´1ξ|

2eγt2 sin t2 “ ŷ2.

Using the previous, a closed trajectory passing through p0, x1q to p0, x2q is
obtained as follows:

1. Go from p0, xq to pt1, x̂1q in time s0,1 with the control u0,1;

2. Go from pt1, x̂1q to pt1, z1q in time s1 with the control 0;

3. Go from pt1, z1q to pt2, z2q in time s1,2 with the control u1,2;
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4. Go from pt2, z2q to pt2, ŷ2q in time s2 with the control 0;

5. Go from pt2, ŷ2q to p0, yq in time s2,0 with the control u2,0;

6. Go from p0, yq to pt1, ŷ1q in time s0,1 with the control u1,0;

7. Go from pt1, ŷ1q to pt1, z1q in time ŝ1 with the control 0;

8. Go from pt1, z1q to pt2, z2q in time s1,2 with the control u1,2;

9. Go from pt2, z2q to pt2, x̂2q in time ŝ2 with the control 0;

10. Go from pt2, x̂2q to p0, xq in time s2,0 with the control u2,0;

The previous implies that ΣHzGpθq is controllable.

Step 2: If s0p0, θ´1ξq P int O˘
peq, there exists s1 P R such that

s0s1 ă 0 and s1p0, θ´1ξq P int O˘
peq.

Let us show the claim only for the positive orbit, since the proof for the negative
orbit is analogous.

By a straightforward calculation we obtain that the second coordinate of the
solutions of ΣGpθq, for u ‰ 0, is given by

ϕ2ps, pt0, v0q, uq “
1
uα

et0θ
peuαsθ

´ uαsθ ´ IR2qθ´2ξ ` sΛθ
t0ξ ` v0.

Let us choose ρ P R such that ˘ρα´1
P Ω. Since ϕ1ps, pt0, v0q, uq “ t0 ` uαs, we get that

ϕps, ϕps, s0p0, θ´1ξq, ρα´1
q,´ρα´1

q “ p0, ϕ2ps, ϕps, s0p0, θ´1ξq, ρα´1
q,´ρα´1

qq P t0u ˆ R2.

Therefore,

ϕ2ps, ϕps, s0p0, θ´1ξq, ρα´1
q,´ρα´1

q “ ϕ2

ˆ

s,
1
ρ

peρsθ
´ ρsθ ´ IR2qθ´2ξ ` s0θ

´1ξ, ρα´1
˙

“ ´
1
ρ

eρsθ
pe´ρsθ

` ρsθ ´ IR2qθ´2ξ ` sΛθ
ρsξ `

1
ρ

peρsθ
´ ρsθ ´ IR2qθ´2ξ ` s0θ

´1ξ

“ ´
2
ρ

`

θ´2ξ ` ρsθ´1ξ ´ eρsθθ´2ξ
˘

` s0θ
´1ξ.

Using that etθ
“ eγt

ppcos tqIR2 ` psin tqRq and pγ2
` 1qθ´1

“ γIR2 ´ R, allows us to write
such solution on the orthogonal basis tθ´1ξ, Rtθ´1ξu as

ϕ2ps, ϕps, s0p0, θ´1ξq, ρα´1
q,´ρα´1

q “ H1psq ¨ θ´1ξ ` H2psq ¨ Rθ´1ξ,

where
H1psq “

2
ρpγ2 ` 1q

“

eγρs
pγ cospρsq ` sinpρsqq ´ γ ´ sρpγ2

` 1q
‰

` s0,
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and
H2psq “

2
ρpγ2 ` 1q

reγρs
pγ sinpρsq ´ cospρsqq ` 1s .

Let us assume here that γ ą 0 since the other possibility is analogous. Note
that

H2psq “ 0 ðñ γeγρs sinpρsq ` 1 “ eγρs cospρsq,

implying that
H1psq “

2
ρ

eγρs sinpρsq ´ 2s ` s0, if H2psq “ 0.

On the other hand, for any k P Z, we get that

H2

ˆ

2kπ
ρ

˙

“
2

ρpγ2 ` 1q
p´eγ2kπ

` 1q and H2

ˆ

π ` 2kπ
ρ

˙

“
2

ρpγ2 ` 1q
peγpπ`2kπq

` 1q,

As a consequence, if γk ą 0 and ε ą 0 is small enough, the function H2 changes signs on
the intervals

Ik :“
ˆ

2πk ` ε

ρ
,
π ` 2πk ´ ε

ρ

˙

and Îk :“
ˆ

π ` 2πk ` ε

ρ
,
2πpk ` 1q ´ ε

ρ

˙

.

Let us denote by sk P Ik and ŝk P Îk zeros of H2 when γk ą 0. For |k| Ñ `8, it holds:

1. If s0 ą 0 and γ ą 0 we choose ρ ą 0 and k P N. In this case,

γk ą 0, ŝk Ñ `8, H2pŝkq “ 0 and

H1pŝkq “
2
ρ

eγρŝk sinpρŝkq ´ 2ŝk ` s0 Ñ ´8, since sinpρŝkq ď ´ sinpεq ă 0.

2. If s0 ą 0 and γ ă 0 we choose ρ ă 0 and ´k P N. In this case,

γk ą 0, sk Ñ `8, H2pskq “ 0 and

H1pskq “
2
ρ

eγρsk sinpρskq ´ 2sk ` s0 Ñ ´8, since sinpρskq ě sinpεq ą 0.

3. If s0 ă 0 and γ ą 0 we choose ρ ą 0 and k P N. In this case,

γk ą 0, sk Ñ `8, H2pskq “ 0 and

H1pskq “
2
ρ

eγρsk sinpρskq ´ 2sk ` s0 Ñ `8, since sinpρskq ě sinpεq ą 0.

4. If s0 ă 0 and γ ă 0 we choose ρ ă 0 and ´k P N. In this case,

γk ą 0, ŝk Ñ `8, H2pŝkq “ 0 and

H1pŝkq “
2
ρ

eγρŝk sinpρŝkq ´ 2ŝk ` s0 Ñ `8, since sinpρŝkq ď ´ sinpεq ă 0.
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Therefore, in any case, there exists S ą 0 such that H2pSq “ 0 and s0H1pSq ă 0.
Hence, for s1 “ H1pSq, we get

s1p0, θ´1ξq “ ϕpS, ϕpS, s0p0, θ´1ξq, ρα´1
q,´ρα´1

q P ϕpS, ϕpS, int O`
peq, ρα´1

q,´ρα´1
q

and
ϕpS, ϕpS, int O`

peq, ρα´1
q,´ρα´1

q Ă int O`
peq,

which proves the assertion.

Step 3: If for some s0 P R, s0p0, θ´1ξq P int O˘
peq then,

DR ą 0; @s ą R ùñ

#

sp0, θ´1ξq P int O˘
peq if s0 ą 0

´sp0, θ´1ξq P int O˘
peq if s0 ă 0

.

Again, let us show the assertion only for the positive orbit. Since ΣGpθq satisfies
the LARC, by (COLONIUS; KLIEMANN, 2000, Lemma 4.5.2) it holds that

s0p0, θ´1ξq P int O`
peq ùñ s0p0, θ´1ξq P intďS O`

peq
p4
“ intS O`

peq,

for some S ą 0. Consequently, there exists an interval pa, bq Ă R satisfying s0 ¨ pa, bq Ă

p0,`8q and
@s P pa, bq, sp0, θ´1ξq P int O`

S peq.

On the other hand, the fact that points in t0u ˆ R2 are fixed points of the drift, allows us
to obtain, that

ps1 ` s2qp0, θ´1ξq “ φSps1p0, θ´1ξqqs2p0, θ´1ξq P int2S O`
peq Ă int O`

peq,

and inductively we conclude that

@n P N, s P pna, nbq, sp0, θ´1ξq P int O`
peq.

Since, a, b have the same sign as s0, there exists R ą 0 such that
s0

|s0|
pR,`8q Ă

ď

nPN
pna, nbq,

the assertion follows.

Step 4: ΣGpθq is controllable.

Let us consider pt, vq P int O`
peq, which exists by the LARC. By Step 1. there

exists s ą 0 and u P U such that

πpϕps, pt, vq,uqq “ ϕ̂ps, πpt, vq,uq “ p0, 0q “ πpeq ùñ ϕps, pt, vq,uq P H.
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Consequently, there exists s0 P R such that

s0p0, θ´1ξq “ ϕps, pt, vq,uq Ă ϕps, int O`
peq,uq Ă int O`

peq.

By Step 2., the previous implies the existence of s1 P R with s0s1 ă 0 and such that
s1p0, θ´1ξq P int O`

peq.

Now, Step 3. applied for s0 and s1 assures the existence of S ą 0 great enough,
such that

Sp0, θ´1ξq P int O`
peq and ´ Sp0, θ´1ξq P int O`

peq.

Since, by (COLONIUS; KLIEMANN, 2000, Lemma 4.5.2), there exists S1, S2 ą 0 such
that

Sp0, θ´1ξq P intS1 O`
peq and ´ Sp0, θ´1ξq P intS2 O`

peq,

we conclude that

e “ pSp0, θ´1ξqqp´Sp0, θ´1ξqq “ φS2pSp0, θ´1ξqqp´Sp0, θ´1ξqq P φS2pint O`
S1peqq int O`

S2peq

4
“ int O`

S1`S2peq Ă int O`
peq,

which by Theorem 3 implies the controllability of ΣGpθq, concluding the proof.
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4 Connected nonsimply connected groups

In this section we analyze the LCSs on 3D solvable Lie groups G that are not
simply connected. The analysis is done by using the lift of LCSs from G to its simply
connected cover as commented in Section 2.4.

Due to the characterization present in (ONISHCHIK; VINBERG, 1994, Chapter
7), the only connected, solvable, nonnilpotent 3D Lie groups associated with the Lie algebras
gpθq that are also nonsimply connected, appear when

θ “

˜

0 ´1
1 0

¸

or θ “

˜

1 0
0 0

¸

.

In the next sections we consider, separately the possible cases for θ.

4.1 The group of rigid motions and its n-fold covers

If θ “

˜

0 ´1
1 0

¸

then, for each n P N

Zn :“ tp2knπ, 0q P Gpθq, k P Zu

is a discrete central subgroup of Gpθq. In particular, the quotients Gpθq{Zn are connected
Lie groups associated with the Lie algebra gpθq. The group SEp2q :“ Gpθq{Z1 is the group
of proper motions of R2. It is the connected component of the group of rigid motions of
R2. For n ě 2 the group SEp2qn :“ Gpθq{Zn is a n-fold cover of SEp2q.

The canonical projection is given by

πnpt, vq “ prts, vq, rts :“ t ` 2nπZ.

By the results in Sections 1.4 and 1.5, in order to analyze the behavior of
LCSs on ΣSEp2qn , it is enough to understand LCSs on Gpθq whose flow of the drift let the
subgroups Zn invariant. However, using the expression (1.9) we have that

φsp2nkπ, 0q “ p2nkπ, esA0 ` Λθ
2nkπΛA

s ξq “ p2nkπ, 0q, where we used that Λθ
2nkπ ” 0,

implying that a linear vector field on SEp2qn is given by

X prts, vq “ p0, Av ` Λθ
t ξq.

On the other hand, if detA ‰ 0, a LCS on Gpθq is conjugated to the control-affine system
ΣRˆR2 through the diffeomorphism

ψpt, vq “ pt, ρ´tpv ` Λθ
tA

´1ξqq.
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By Proposition 13,
@u P Ω0, R ˆ tvpuqu,

is contained in the interior of the control set CRˆR2 of ΣRˆR2 . As a consequence,

ψ´1
pR ˆ tvpuquq “ tpt, ρtpvpuq ´ ΛtA

´1ξqq, t P Ru Ă int CGpθq, @u P Ω0.

We can now prove our the main result for the control set of LCSs on SEp2qn.

Theorem 9. Let ΣSEp2qn be a LCS on SEp2qn that satisfies the LARC. It holds:

(i) If A ı 0 then ΣSEp2qn admits a unique control set CSEp2qn satisfying

π´1
n

`

CSEp2qn

˘

“ CGpθq,

where πn : Gpθq Ñ SEp2qn is the canonical projection and CGpθq the unique control
set of the LCS on Gpθq that is πn-conjugated to ΣSEp2qn.

(ii) If A ” 0 then ΣSEp2qn admits an infinite number of control sets with empty interior.

Proof. (i) By Proposition 2 there exists a control set CSEp2qn of the system ΣSEp2qn satisfying
πn

`

CGpθq

˘

Ă CSEp2qn and the equality holds if we show that

π´1
n pπnpt, vqq Ă int CGpθq, for some pt, vq P int CGpθq.

Since, for all k, n P N we have that ρ2nkπ “ idR2 , we get that

@u P Ω0, π´1
n pπnp0, vpuqqq “ tp2nkπ, vpuqq, k P Zu

“
␣`

2nkπ, ρ2nkπpvpuqq ´ Λθ
2nkπA

´1ξq
˘

, k P Z
(

Ă ψ´1
pR ˆ tvpuquq Ă int CGpθq,

implying that π´1
n pCSEp2qnq “ CGpθq and showing the item.

(ii) The function

f : SEp2qn Ñ R, fprts, vq :“ xv, ξ̂y,

where ξ̂ is given in Lemma 4, is such that the functions gupsq “ xϕps, prts, vq,uq satisfy

g1
upsq “

d

ds
xϕ2ps, prts, vq,uq, ξ̂y “ xΛθ

ϕ1ps,prts,vq,uqξ, ξ̂y ě 0,

and are nondecreasing. Therefore, if

prt1s, v1q, prt2s, v2q P Gpθq; satisfy fprt1s, v1q ă fprt2s, v2q,

they cannot be in the same control set of ΣSEp2qn .
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On the other hand, the points pr0s, vq P SEp2qn are fixed points of the drift
X “ p0, ξq, and hence, any such point is contained in a control set of ΣSEp2qn . Therefore,
for any r P R the cylinder

Cr :“ tprts, vq, xv, ξ̂y “ ru,

contains (at least) one control of ΣSEp2qn , concluding the proof.

4.2 The group AffpRq ˆ S1

If θ “

˜

1 0
0 0

¸

the groupGpθq can be seen as the Cartesian product AffpRqˆR.

In fact, since v P R2 is written uniquely as v “ xe1 ` ye2, the map

pt, vq P Gpθq ÞÑ ppt, xq, yq P AffpRq ˆ R, (4.1)

is a diffeomorphims. Moreover,

ρtv “ xρte1 ` yρte2 “ xete1 ` ye2,

implies that

pt1, v1qpt2, v2q “ pt1 ` t2, v1 ` ρt1v2q “ pt1 ` t2, px1 ` et1x2qe1 ` py1 ` y2qe2q

ÞÑ ppt1 ` t2, x1 ` et1x2q, y1 ` y2q “ ppt1, x1qpt2, x2q, y1 ` y2q “ ppt1, x1q, y1qppt2, x2q, y2q,

which shows that the map (4.1) is an isomorphisms.

Following (ONISHCHIK; VINBERG, 1994, Chapter 7), up to isomorphisms, the
only central discrete central subgroup of Gpθq “ AffpRq ˆ R is Z :“ tpp0, 0q, 2kπq, k P Zu.
Therefore, Gpθq{Z “ AffpRq ˆS1 is the unique connected, nonsimply connected, Lie group
with the Lie algebra gpθq “ affpRq ˆR, where S1

“ R{Z. The canonical projection is given
by

π : AffpRq ˆ R Ñ AffpRq ˆ S1, ppt, xq, yq ÞÑ ppt, xq, rysq.

By Section 1.3, the linear vector fields of AffpRqˆS1 are completely determined
by the linear vector fields on Gpθq “ AffpRq ˆ R whose flows let the subgroup Z invariant.
Let then X be a linear vector field on Gpθq with associated flow tφsusPR and assume that

φsp0, 2kπe2q P Z, @s P R, k P Z.

Using the expression in (1.9) for φs, one obtain that,

φsp0, 2kπe2q “ p0, 2kπesAe2q P Z ðñ esAe2 P 2πZe2 ðñ Ae2 “ 0.
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Theorem 10. Any linear control system ΣAffpRqˆS1 on AffpRq ˆ S1 satisfying the LARC,
admits a unique control set CAffpRqˆS1 satisfying:

CAffpRqˆS1 “ π´1
1 pCAffpRqq “ CAffpRq ˆ S1,

where CAffpRq is the unique control set of the LCS on AffpRq that is π1-conjugated to
ΣAffpRqˆS1, where π1 : AffpRqˆS1

Ñ AffpRq is the canonical projection. Moreover, CAffpRqˆS1

is open if trA ą 0, closed if trA ă 0 and equal to AffpRq ˆ S1 if trA “ 0.

Proof. Let us assume w.l.o.g. that the left-invariant vector field of ΣAffpRqˆS1 is Y “ pα, 0q,
with α ‰ 0. In this case, our system in AffpRq ˆ S1, is given by

$

’

&

’

%

9t “ uα

9x “ λx ` pet
´ 1qξ1

9rys “ tξ2

, u P Ω,
`

ΣAffpRqˆS1
˘

and the LARC is equivalent to αξ1ξ2 ‰ 0.

If λ ‰ 0, the system satisfy the ad-rank condition and hence, there exists
a unique control set CAffpRqˆS1 with nonempty interior. Moreover, since the points in
tp0, 0qu ˆ S1 are fixed by the flow of X “ pA, ξq, we get that tp0, 0qu ˆ S1

Ă int CAffpRqˆS1

(see Theorem 3). On the other hand, the projection

π : AffpRq ˆ S1
Ñ AffpRq, π1ppt, xq, yq “ pt, xq,

conjugates ΣAffpRqˆS1 and the linear control system
#

9t “ uα

9x “ λx ` pet
´ 1qξ1

, u P Ω.
`

ΣAffpRq

˘

Since p0, 0q P int CAff and π´1
1 p0, 0q “ tp0, 0quˆS1

Ă int CAffpRqˆS1 we obtain, by Proposition
2, that

CAffpRqˆS1 “ π´1
1 pCAffp2qq “ CAffpRq ˆ S1.

In particular, CAffpRqˆS1 is open when λ ą 0 and closed when λ ă 0 since the same holds
for CAffpRq (see Section 1.5.1)

Let us assume now that λ “ 0. In this case, the canonical projection

π1 : AffpRq ˆ S1
Ñ AffpRq, ppt, xq, yq ÞÑ pt, xq,

conjugates ΣAffpRqˆS1 to the LCS
#

9t “ uα

9x “ pet
´ 1qξ1

, u P Ω,
`

ΣAffpRq

˘

on AffpRq. By Theorem 5, we have that ΣAffpRq is controllable.
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Let us consider P P int O`
peq, whose existence is assured by the LARC. The

controllability of the projected system ΣAffpRq, implies the existence of u P U and τ ą 0
such that

π1pϕpτ, P, uqq “ ϕ1pτ, π1pP q, uq “ p0, 0q,

and hence
pp0, 0q, ry0sq “ ϕpτ, P, uq P ϕτ,upint O`

peqq Ă int O`
peq.

Moreover, the LARC together with (COLONIUS; KLIEMANN, 2000, Lemma
4.5.2) and Proposition 4, imply the existence of S ą 0 such that pp0, 0q, ry0sq P int O`

S peq.
Since int O`

S peq is open, there exists r P Q with pp0, 0q, rrsq P int O`
S peq. On the other hand,

the fact that points in tp0, 0qu ˆ S1 are fixed points of the drift, allows us to obtain, that

pp0, 0q, r2rsq “ pp0, 0q, rrsqpp0, 0q, rrsq “ pp0, 0q, rrsqφSpp0, 0q, rrsq P int2S O`
peq,

and, inductively, that

pp0, 0q, rmrsq P intmS O`
peq, @m P N.

Since r P Q, there exists m0 P N such that m0r P Z implying that

e “ pp0, 0q, r0sq “ pp0, 0q, rm0rsq P int O`
m0Speq Ă int O`

peq.

Since the associated derivation D has only eigenvalues with zero real parts, Theorem 3
imply that ΣAffpRqˆS1 is controllable, concluding the proof.

Remark 6. Let us note the big difference between π1-conjugated LCSs on AffpRq ˆS1 and
on its simply connected covering AffpRq ˆ R when the associated matrix A ” 0. Precisely,
ΣAffpRqˆR admits an infinite number of control sets with empty interior, while its projection
ΣAffpRqˆS1 is controllable.
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5 Examples

In this section we present some examples of control sets in order to illustrate
the results of the work.

5.1 Control sets of LCSs on 2D groups

Example 1. Let us consider linear control systems on pR2,`q

#

9x “ x ` u

9y “ ´y ` u
Σ1

pR2,`q and
#

9x “ x ` u

9y “ u
Σ2

pR2,`q

where Ω “ r´1, 1s. Their respective control sets, are given, respectively, by (see figure 3).

C1
pR2,`q “ p´1, 1q ˆ r´1, 1s and C2

pR2,`q “ p´1, 1q ˆ R.

Note that the linear vector field Σ1
pR2,`q has no singularities, and hence its

control set is bounded. In contrast, the existence of a singularity for the linear vector field
of Σ2

pR2,`q makes the control set unbounded.

Figure 3 – Control sets of Σ1
pR2,`q and Σ2

pR2,`q, respectively.

Example 2. Let us consider
#

9x “ u

9y “ ´y ` uex
, where u P Ω.

`

ΣAffpRq

˘

For this system we have that, if Ω “

„

´
1
2 ,

1
2

ȷ

, the control set of ΣAffpRq is given
by

CAffpRq “

"

px, yq P R2, ´ex
ď y ď

1
3ex

*

.
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On the other hand, if Ω “

„

´1, 1
2

ȷ

, the control set of ΣAffpRq is given by

CAffpRq “

"

px, yq P R2, y ď
1
3ex

*

.

The control sets of the previous systems are described in the picture below
(Figure 4).

Figure 4 – Control sets of ΣAffpRq for Ω “

„

´
1
2 ,

1
2

ȷ

and Ω “

„

´1, 1
2

ȷ

, respectively.

5.2 Control sets of the control-affine system ΣR2

Example 3. Let us assume that

A “

˜

1 0
0 1

¸

, θ “

˜

1 0
0 ´1

¸

, η “

˜

1
1

¸

and Ω “ r´2, 2s.

It is not hard to see that

vpuq “

ˆ

u

u ´ 1 ,
´u

u ` 1

˙

for u R t´1, 1u.

Moreover, Ω0 “ p´1, 1q and vpΩ0q is an unbounded set given (see Figure 5). By simple
calculations, one obtains that

CR2 “

"

px, yq, y ě ´
1
2 or x ď

1
2

*

.

Also, by following the proof of Proposition 10 it is not hard to show that O`
pvpuqq and

O´
pvpuqq are actually open sets for any u R t´1, 1u, and hence, there exists control sets

with nonempty interior C1, C2 such that

tvpuq P R2
|u P p´2, 1q Ă Ωu Ă C1 and tvpuq P R2

|u P p1, 2q Ă Ωu Ă C2,

showing that a control-affine system on R2 can admit more than one control set with
nonempty interior (see Figure 5).
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Figure 5 – Control-affine system on R2 having three control sets with nonempty interior.

Example 4. The present example shows that the identity element of Gpθq is not always in
the interior of the control set. For the details, the reader can consult (AYALA; DA-SILVA;
ROBLES, , Section 3).

Let us consider

A “

˜

1 0
0 1

¸

, θ “

˜

0 ´1
1 0

¸

, η “

˜

1
0

¸

and Ω “ r´1, 1s.

Since detApuq “ 1 ` u2
ą 0, all the equilibria are given by vpuq “

ˆ

´u

1 ` u2 ,
u2

1 ` u2

˙

and

they lie on the circumference with center in “ p0,´1{2q and radius 1
2 . Since the eigenvalues

of A are positive, the control set of the previous system is open and is contained in the
open ball B “ tw P R2; |w ` e2| ă 1u.

Since vp0q “ p0, 0q P BB, we have that p0, 0q P BCR2 but p0, 0q R int CR2. In fact,
as showed in (AYALA; DA-SILVA; ROBLES, , Proposition 3.8), the singleton tp0, 0qu is
a one-point control set of ΣR2.
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