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Resumo

O objetivo desta tese é estudar os conjuntos de controle dos sistemas de controle linear
em grupos de Lie soltveis nao nilpotentes de dimensao trés. Para fazer isto, dividimos os
sistemas com respeito a seu nil-rank, o posto da derivagao associada ao drift do sistema
restrita ao nilradical da algebra de Lie do espago base. No caso que o nil-rank ¢é dois,
mostramos que um sistema deste tipo é equivalente por difeomorfismo ao produto de um
sistema homogéneo sobre R por um sistema afim sobre R?, assim, estudando os conjuntos
de controle deste sistema afim sobre R?, mostramos que existe um tnico conjunto de
controle sobre o sistema inicial que tem o elemento neutro do grupo no fecho. Para o caso
em que o nil-rank é um, mostramos que o LARC é equivalente a condigao de ad-rank, o
que implica a existéncia de conjuntos de controle com interior nao vazio. Finalmente, no
caso em que o nil-rank é igual a zero, mostramos que a maioria dos sistemas tem uma

quantidade infinita de conjuntos de controle de interior nao vazio.

Palavras-chave: Conjunto de controle. Sistema de controle linear. Grupos de Lie soltuveis
nao nilpotentes. LARC.



Abstract

The purpose of this thesis is to study control sets of linear control systems on solvable,
non-nilpotent Lie groups of dimension three. To achieve this, we divide the systems
according to their nil-rank, the rank of the derivation associated with the system’s drift
restricted to the nilradical of the Lie algebra of the base space. In the case where the
nil-rank is two, we prove that such system is diffeomorphically equivalent to the product of
a homogeneous system on R by an affine system on R?. By examining the control sets of
this affine system on R?, we establish that there exists a unique control set for the initial
system that includes the identity element of the group in its closure. For the case where
the nil-rank is one, we establish that LARC (Lie Algebra Rank Condition) is equivalent
to the ad-rank condition, implying the existence of control sets with non-empty interiors.
Finally, in the case where the nil-rank is zero, we show that the most systems have an

infinite number of control sets with non-empty interiors.

Keywords: Control set. Linear control system. Solvable nonnilpotent Lie groups. LARC.
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Introduction

Control systems have been studied for a long time, in particular, linear control
systems on R™ have many physical applications ((LEITMANN, 1962; PONTRYAGIN et
al., 1962; SHELL, 1968)). Roughly speaking, a control system is a system characterized
by a base space (differentiable manifold) and a dynamics characterized by a family of

differential equations parameterized by functions known as controls.

The first generalization of a linear control system was carried out by L. Markus
in (MARKUS, 1980) for a group of matrices. Subsequently, V. Ayala and J. Tirao in
(AYALA; TIRAO, 1999) introduced the concept of linear control systems on an arbitrary
Lie group. One of the main reasons to study control systems on Lie groups was provided
by P. Juan in (JOUAN, 2010), where it is shown that every affine control system with
complete vector fields that generate a finite-dimensional Lie algebra is diffeomorphically

equivalent to a linear control system on a Lie group or a homogeneous space.

On the other hand, one of the main concepts to be studed in control systems
is controllability: given any two points in the base space, can we connect these points
through solutions of the family of differential equations in positive time? For this question,
there are some answers that depend on the algebra and geometry of the control system.
For instance, in (DA-SILVA, 2016), it is shown that a control system on a nilpotent Lie
group is controllable if and only if the reachable set from the identity is open, and the
eigenvalues of the derivation associated to the drift of the system have zero real part.
Additionally, V. Ayala and A. Da Silva demonstrated in (AYALA; DA-SILVA, 2015) that
Spec(D) n R = 0, where D is the derivation associated to the drift of the system, implies
controllability if the base space of the system has finite semisimple center, i.e any Lie

group admitting a maximal semisimple Lie subgroup with finite center.

Unfortunately, the controllability of a system is a rare property; therefore, it
makes more sense to approach the problem in a more realistic way by considering control
sets — regions in the base space where approximate controllability holds. Thus, in this
direction, one might inquire whether given a control system, there exist control sets. If so,
how many exist, what are its properties and how to make them depend on the geometry of
the base space? For example, in (AYALA; DA-SILVA; ZSIGMOND, 2017), it is shown that
a linear control system on a solvable Lie group has a unique control set with a non-empty

interior.

Motivated by the above contextualization and by the controllability results on
linear control systems on solvables non-nilpotent Lie groups of dimension 3 (see (AYALA;

DA-SILVA, 2019)) in this thesis we study, control sets of linear control systems over
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non-nilpotent solvable Lie groups of dimension 3 are studied and characterized. These
groups are characterized through their Lie algebras, described in (ONISHCHIK; VINBERG,
1994).

This work is organized as follows:

In the chapter 1, we formally define the objects of study for the thesis and
describe the main tools for studying these objects. First we define an affine control system
and control sets, then we describe properties of the control sets. After this, we introduce
LARC and establish conditions under which two affine control systems are conjugate
and equivalent. In this chapter, we also show that given a linear control system on a Lie
group, there exists a unique linear control system on the universal covering group that is
conjugate to it. In other words, we can lift the given control system to a control system
on a simply connected group. Additionally, we show that it is possible to project the
initial linear control system onto a linear control system on a homogeneous space. We also
discuss various results related to lienar control systems oon two-dimensional Lie groups
(abelian and non-abelian cases). Finally, we describe solvable non-nilpotent Lie groups of
dimension 3, following the approach of (ONISHCHIK; VINBERG, 1994), and prove that
under certain conditions on the associated linear vector field, an LCS on these groups is
equivalent to the product of a homogeneous system on R by an affine control system on
R

In the chapter 2, we study LCS with a nil-rank equal to two. This means that
the rank of the derivation associated with the system’s drift, restricted to the nilradical
of the Lie algebra, is 2. This condition, as proved in the previous chapter, allows us to
establish an equivalence between these systems and the product of a homogeneous system
on R by an affine system on R? (Xg,g2). Because of this, we begin the chapter by studying
the properties of control sets for these systems Y, r2. To examine these properties, we
analyze affine control systems on R? that are conjugated to Y2 through the canonical
projection. Finally, we prove that LCS on solvable non-nilpotent Lie groups of dimension
3 have a unique non-empty interior control set containing the group’s identity element at

the closure of the set.

In the chapter 3, we study the cases where the nilrank of a LCS is equal to
zero or one. We show that for nil-rank one control systems, the LARC is enough to assure
existence of control sets with nonempty interior. Moreover, in case of systems with nil-rank

zero, we show that they admit an infinite numbers of control sets with empty interior.

In the chapter 4, we study the LCSs on 3D solvable non-nilpotnet Lie groups
G that are not simply connected. By (ONISHCHIK; VINBERG, 1994, Chapter 7), the
only connected, solvable, nonnilpotent 3D Lie groups are the group of rigid motions, its
n-fold covers and the group Aff(2) x S*.
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Finally, in the chapter 5, we give some examples of control sets in order to

illustrate the results of the work.
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1 Preliminaries

In this section we introduce the basic ideas about affine control systems, control

sets, linear control systems and solvable nonnilpotent Lie groups of dimension 3.

1.1 Affine control systems and control sets

In this subsection we will define the main objects that we will work on this text,
namely, affine control systems and its control sets. The affine control systems are generally
characterized by a base space or state space and a dynamics on this space, determined
by a family of differential equations parameterized by a set of functions that we will call
controls or control functions. On the other hand, control sets are intuitively maximal
regions of the state space in which we have approximate controllability, i.e., from the
system dynamics, we can take an element of this region and bring it as close as we want

to any other point in the same region.

Definition 1. A affine control system on a connected finite-dimensional differential

manifold denoted by M, is a family of ordinary differential equations

z(s) = folz(s)) + Zui(s)fi(x(s))v u=(up,...,up) €U, (Xwm)
i=1
where fo, ..., fm are smooth vector fields on M and U is the set of all piecewise constant

functions such that u(s) € Q where Q < R™ is a compact, convex subset with 0 € int ().

The functions u are called control functions.

Let us assume that, for each u € R™, the map

F,:x— F(x,u) with F(x,u) = fo(x) + iulfl(x)
i=1

from M to TM be a C®-vector field on M. Thus, for each z € M and for each u € €,
the differential equation # = F(x,u) has a locally unique solution s — ¢(s,x,u) with
¢(0,z,u) = 0. In addition to this, we assume that the fields F,, for all u € , are
complete, i.e., the solutions of the associated differential equation exist globally for all

t € R. Therefore, we can define the following map,

¢ RxMxU—>M, (s,xz,u)— ¢(s,z,u)
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that satisfies the cocycle property:

o(s +t,x,u) = @(s, o(t, z,u), Ou)

for all s,t € R, x € M, uel. The map ©,u is known as the shift flow on U defined as
follows:
(O4u)(s) :==u(s +1).

From the cocycle property, it follows that:

e There exists an inverse map of the diffeomorphism ¢(s,-,u), and it is given by

¢(_87 ) @su)
o The fact that for any s > 0, the value ¢(s,z,u) depends only on ul[y ), implies that
¢(527 ¢(817 z, u1)7 u2) = ¢(81 + 82,7, U)

with
u(s) = { u () for 7€ [0,s]

B us(s —s1) for 7€ [s1,81 + sa.

For any x € M, we define the set of points reachable from = and the set of

points controllable to x at time S > 0 as

Of(x) :={y e M| there are, ue U with y = ¢(S,z,u)}
Og(x) := {y € M| there are, ue U with = = ¢(S,y,u)}

respectively. The set of points reachable from z or positive orbit of x and the set of points

controllable to x or negative orbit of = are

O*(x):= | Od(x) and O (2):= | ] O5(x)

S>0 S5>0
respectively.

On the other hand, we say that the system is controllable if for all x € M it
holds that M = O (z).

The next result relates the positive and negative orbits of the system.

Lemma 1. Let us consider the system Xy and its corresponding sets Os, () and Og, ().

Take also the reversed time system

z(s) = —folz(s)) —

NgE

vi(s) fi(z(s)), v.=(v1,...,0,) €U. (=)

i—1
with the corresponding sets O'y, (x) and Oy, (x). Therefore, O%, (z) = Oy, (x) and
Oi}\/j (l.) = OJ—FEM (x)
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Proof. If y € Of, (), then there exists u € I and s; > 0 such that y = ¢(s1,z,u). We

define the curve,

a(s) := ¢(—s,y, O, u), s €0, s1].

It satisfies a(0) = y and by cocycle property a(s;) = ¢(—s1,¢(s1,2,u),04u) = x.

Moreover,

d d

70‘(3) = £¢(—S, Y, @S1u)

(5,1 0(~)~ YO0 ) () fi(6(5.5.0,m) = —fola(s)) - i(s) ().

i=1

where v := ©,u € U. Therefore, O5, (z) < OZ

“s,, (7). The other inclusion follows

analogously. O

Now we define the accessibility properties and the Lie algebra rank condition.

Definition 2. We say that the control system ¥, is

e locally accessible from x if for all S > 0 the sets

Ols(x):= | J Of(z) and Os(x):= | ] O;(x)

0<s<S 0<s<S

have nonempty interior.
e locally accessible if it is locally accessible from every x € M

Definition 3. We say that the control system 3y, satisfies the Lie algebra rank condition
(LARC) if L(z) = T, M for any x € M, where

L is the smallest Lie subalgebra containing any F,, with u € €.

By the general theory of control systems, the LARC implies local accessibility
and these two concepts are actually equivalent if the system is analytic, i.e. system

composed for analytical fields.

In what follows, we formally define the concept of control sets. Such subsets
contain most of the information related with the controllability property of the system

and are the object of study of this thesis.

Definition 4. A subset D of M is called a control set of the system Xy, if it satisfies the

following properties

i) (Weak invariance) For every x € M, there exists a u € U such that ¢(RT,xz,u) = D;
(1) ( Y
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(7i) (Approzimate controllability) D < O+ (x) for every x € D;
(iii) (Mazimality) D is maximal with respect to properties (i) and (ii).

Definition 5. Let L be a subset of M. We say that L is positively invariant if O%(z) < L

for every x € L. Similarly, L is negatively invariant if O~ (x) < L for every x € L.

The following theorem summarizes some of the most important properties of
control sets with nonempty interior. Their proofs can be found in Chapter 3 of (COLONIUS;
KLIEMANN, 2000)

Theorem 1. Let ¥y, be a locally accessible system on M. If D is a control set with

nonempty interior, then

D is connected and int D = D;

o int D < OF(z) for any x € D. For any y € int D

D = O*(y) n O (y).

In particular, controllability holds on int D;

Assume that ¢(s,x,u) is a periodic trajectory, that is, (s + T, z,u) = (s, z,u) for

some 7 >0 and all s € R. If x € int D then ¢(s,z,u) € int D for all s € R;

D is closed iff D is invariant in positive time iff D = OF(x) for any x € D;

D is open iff D is invariant in negative time iff D = O~ (x) for any x € D.

The following result shows that if the positive, or negative, orbit of a point
x € M is open, then z is contained in a control set. Although this result is a direct

consequence of the previous theorem, for the sake of completeness, we prove it here.

Proposition 1. Let us assume that Xy, satisfies the LARC and consider v € M. If OF (x)

or O~ (x) are open sets, then

D =0O%(z) n O (x)

is a control set with nonempty interior.

Proof. Let us show that D satisfies the properties in the definition of control set.
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(i) Weak invariance: For any y € OF (z) n O~ (z), there exists uj,us € U and s, s3 > 0
such that

¢(517 Y, ul) =T and ¢(527 z, u2) =Y.
By considering the (s; + sq)-periodic control function given by

ui(s) 0<s<s
u,(s) = { s

us(s) s1 < s < 89
allows us to conclude that s € R — ¢(s,y,u,) € M is a (s; + s2)-periodic curve that
is contained in D by construction.

Now, for any z € D, the fact that z € O™ (x) implies the existence of u € U and
s > 0 such that (s, z,u) = z. By concatenating this curve with the previous one,

we obtain a trajectory starting in z that is contained in D.

(ii) Approxzimate controllability: For any y € D it holds that

ye O (r) <= 12€0%y) = DcOtx)cOt(y).

(iii) Mazimality: Let us assume that there exists a control set D such that D  D.

Since z € D it holds that D < O~ (x). On the other hand, for any y € D, we get that

reDcOfy) = O (@)nO0"(y#gx8 = yeO ().

As the choosen y € D was arbitrary, we conclude that D = O~ (z) and hence D < D,

concluding the proof.

O
Suppose NN is another smooth manifold, and
i(s) = go(w(s)) + D uil)gi(w(s)),  w=(ur,...,up) €U (Xn)
i=1

is an affine control system on N. If b : M — N is a surjective smooth map, we say that

Y and Xy are i-conjugate if its respective vector fields are 1-conjugate, i.e
Vsfi=giovw, j=0,...m.

If such v exists, we say that X, and X are ¥-conjugate. If ¢ is a diffeomor-

phism, we say that >,,; and Xy are equivalent.

Proposition 2. Let >3, and X be 1-conjugated systems. It holds:
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1. If D is a control set of ¥y, there exists a control set E of ¥y such that (D) c E;

2. If for some y € int E it holds that 1" (yy) < int D, then D = ¢~ *(E).

Proof. 1. For any z € D there exists u € U such that ¢y (R*, z,u) = D. Since 1) conjugate

the systems >, and X, their respective solutions are conjugate and hence

on(RY, ) (2),u) = Y(ou(RT, 2, 1)) = ¢ (D).

On the other hand, the continuity of ¢» and the conjugations property gives us that

D 05(z) — w(D) < v (05,(2)) < OF((x).

showing that (D) satisfies properties (i) and (ii) in the Definition 4. Consequently, there
exists a control set F of ¥y such that /(D) c E, showing the item.

2. Let us show that ¢~ (E) satisfies conditions (i) and (ii) in Definition 4.

(i) Weak invariance: Let x € ¢ ~*(E). Then, ¢(x) € E and there exists u € ¢ such that
on(RT,9(x),u) © E and by the conjugation property

¢(¢M<R+7I7u)) = ¢N(R+,@/J(ZE),H> ckE = ¢M(R+,ZE,U) - ¢_1(E)-

(ii) Approximate controllability: Let us start by showing that controllability holds in
Y '(int E). For this, let z1, 75 € ¢~ ! (int F). Since ¥(x1), ¥ (1), yo € int E there exist,
by controllability, u;, us € U and sq, so > 0 such that

On(s1,Y(21), 1) = Yo = On (=52, ¥ (22), uz).
By the conjugation property, the previous imply that
Omlst,zr,wr) € (yo) and  dar(—S2, 22, u) € ¥ (o).

Since, by hypothesis, 1/~ ' (o) < int D and controllability holds in int D, there exists

ugz € U and s3 > 0 such that
¢M(S3;¢(51,$1,u1),u3) = ¢(—327$2,u2)

= ¢($2,¢M(33,¢(31,$1>U1)7U3),@—52112) = T2,

showing that controllability holds in ¢! (int E). Moreover, by continuity it holds
that

E

||
=
&
l

¢=H(E) = ¢! (int £),
and by the previous

Vv I (E) c Of(x), Vrey '(intE).
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On the other hand, if z € ¢! (E) then +(z) € E and hence
ntEc OF(0(@) — Juclds>0, (éuls.z,u)) = 6(s,b(x),u) € int E,

and hence

ou(s,zu) ey (it E) = ¢ H(E) < Oy (duls,z,n)) = Of(z),
showing that 1~ '(E) satisfies (ii) in Definition 4.
By the previous, ¢ *(E) has to be contained in a control set of ;. Since

Y Y (E) n D # &, we conclude that " '(E) = D and by item 1. the equality actually
holds.

]

Before finishing the section, let us make a simple proposition that will help us
ahead.

Proposition 3. Let f : M — R be a continuous function and g a affine control system
on M. If x,y € M are such that,

(i) f(x) < f(y),
(ii) For allu e U, the function gu(s) == f(P(s,y,n)) satisfies gu(0) < gu(s) for all s > 0.

then x ¢ O*(y). In particular, it cannot exists a control set of ¥y that contains both x

and y, since the condition (ii) of Definition J cannot be satisfied.

Proof. Let us suppose that z € O*(y). In this case, there exists a sequence y,, € O (y)
such that y,, — = as n — +00. Writting,

Yn = O(Sn,y,u,), for s, >0,u,el,
we get, by the continuity of f, that
f(@(sn,y,un)) = fyn) = f(2).
In particular, by considering ¢ = f(y) — f(z) > 0 there exists N € N such that
f(o(sn.y,un)) € (f(x) —¢, f(z) +¢)
and hence,

guN(SN) = f(gb(SN?yqu)) < f(y) = f<¢(07y7un)) = guzv(o)7

showing the result.
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1.2 Linear vector fields and linear control systems on Lie groups

In this chapter, we will define a linear vector field in the context of control
systems on Lie groups, discuss some of its properties, and define a linear control systems.
Furthermore, we will explore the properties satisfied by linear control systems on solvable
Lie groups. Specifically, we will focus on linear control systems on solvable, non-nilpotent
Lie groups of dimension three. We will characterize the linear vector fields in these systems
and determine the general form of the system of ordinary differential equations (ODEs)

that characterizes these systems.

Lastly, we will prove that every linear control system on a solvable, non-nilpotent
Lie group of dimension three, under certain regularity condition on the associated linear
vector field, is equivalent to the product of a homogeneous system on R and a specific

affine control system on R?. The latter one will be studied in the following chapter.

We begin with the definition of a linear vector field on a Lie group.

Definition 6. Let G be a connected Lie group with Lie algebra g, identity element e, and

1 be the normalizer of g in the algebra of all smooth vector fields over G, i.e.,

n = normxc(g) == {Fe X(G) | VWWeg, [FY]eg}
A wvector field X on G is linear if it belongs to n and X(e) = 0.

The following theorem (JOUAN, 2014) establishes equivalent conditions for a

vector field on G to be linear.

Theorem 2. Let X be a vector field on a connected Lie group G. The following conditions

are equivalent:

(1) X is linear;

(2) The flow {ps}ser of X is a one parameter group of automorphisms of G, that is,

Vs e R, ©s(gh) = @s(9)ps(h);

(3) X(gh) = (dLg)nX (h) + (dRp)yX (g) for all g, h e G.

The vector field X' is complete and is uniquely associated to a derivation D of
g defined by
DY = —[X,Y](e), VY eg.

As X is linear, the diffeomorphism ¢, is an automorphism of G for any s € R.

Therefore, d(gs)e is an automorphism of g and hence
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(dps)e = e, VseR. (1.1)

This nice relationship between the flow of X and the derivation D have several
important applications, mainly due to the subgroups/subalgebras associated with them as

we define next.

Let us consider an eigenvalue o € C of the derivation D. The real generalized

eigenspaces of D are the subspaces of g defined as
0o ={Xeg:(D—al)"X =0 forsomen >1}, if aeR and

go = span{Re(v),Im(v); veg,}, if aeC,

where g = g + ¢g stands for the complexification of g, and g, the generalized eigenspace of
the extension D = D + iD of D to g.

By Proposition 3.1 of (SAN-MARTIN, 2010), it holds that

[ﬁm ﬁb’] = ﬁa—&-ﬁa

where go45 = {0} if @ + § is not an eigenvalue of D. Therefore, if we put

g)\ = @ gon

a;Re(a)=X

the previous imply that [gx,, 9x,] < ga,+2, When A\; + Ao = Re(«) for some eigenvalue «v of

D and zero otherwise, where gy = {0} if A € R is not the real part of any eigenvalue of D.

The unstable, central, and stable subalgebras of g are given, respectively, by

g+ = @ Ja; g() = C_D Ja and g = @ Ja-

o:Re(a)>0 o: Re(a)=0 o: Re(a)<0

Since the previous subalgebras are given as sum of all the (generalized)
eigenspaces of D, it holds that g = g™ @ g° ® g~. Moreover, these subalgebras are

invariant by the derivation D with g* and g~ nilpotent subalgebras.

The relationship between the previous subalgebras with the dynamics of the X
are obtained through their subgroups. Let us denote by G, G—, G°, G*°, and G, the
connected Lie subgroups whose associated Lie algebras are given, respectively, by g*, g7,
g, g™ =g ®g" and g7 := g~ @ g°. By Proposition 2.9 of (DA-SILVA, 2016), all of
the previous subgroups are invariant by the flow of X', closed, and their intersection are
trivial, that is,

GtnG =GTnG=...={e}.

Moreover, Gt and G~ are connected, simply connected, nilpotent Lie groups. Analogously
as the algebra level, the subgroups G, GY and G~ are called, respectively, the unstable,

central, and stable subgroups of X .
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Next we define linear control systems. A linear control system (LCS for short)
on (G is determined by the family of ODEs

i(s) = X(g() + D () Vi(g(s)). (So)

i=1

where X is a linear vector field, Y are left-invariant vector fields, and u = (uy, ..., uy,) € U

are control functions as defined previously.

By choosing Y, ..., Y™ left-invariant, the solutions of X satisfy
¢(t, gh,u) = ¢i(g)o(t, h, ), Vg,he G,te Ruell.

A consequence of the previous formula is the following proposition(see (JOUAN, 2014,
Proposition 2))

Proposition 4. For a LCS, it holds that

1. Of . s,(e) = O, (e)ps, (04, (€)), for all S1, 82 > 0;
2. Og (e)  Og,(e), for all 0 < Sy < Ss;

3. OZg(e) = OL(e), for all S > 0.

Also, due to the symmetry present on Lie groups, the LARC for linear control
systems is determined at the origin of the group, in fact, the linear control system >
satisfies the LARC if g is the smallest D-invariant subalgebra containing the vectors
(Yt,...,ym}.

Moreover, we say that Y satisfies the ad-rank condition if g is the smallest
D-invariant subspace containing the vectors {Y'',...,Y™}. The ad-rank condition is much
stronger than the LARC, once that the previous contain all the brackets among the
elements in {Y!,..., Y™} and the former not necessarily. Also, if the system satisfies the

ad-rank condition, it is locally controllable, that is,

eeintOf(e) nint Og(e), VS > 0.

Following (AYALA; DA-SILVA; ZSIGMOND, 2017; DA-SILVA, 2016), there is
a nice relationship between the subgroups G, G® and G~ associated with the drift X of a
LCS X and its dynamics. In fact, the following result holds:

Theorem 3. Let g be a LCS on a connected Lie group G and assume that O (e) is a
netghborhood of the identity element e € G. Then,

G PcOe) and G <O (e).
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Moreover,

Ca=0%(e)n O (e),

is a control set of Y¢ with nonempty interior satisfying G° < int Cq. If G is solvable, Cq
is the unique control set of Y with nonempty interior and, Y¢ is controllable if G = GY

or, equivalently, if the derivation D has only eigenvalues with zero real parts.

We finish this section with a definition that will be useful to divide our analyzes

in cases.

Definition 7. Let ¢ be a LCS on a connected Lie group G with Lie algebra g. We define
the nil-rank of Xq as the rank of the restriction D|,, where D is the derivation associated
with the drift of ¢ and n the nilradical of g.

1.3 Lifting a LCS to simply connected groups

Let GG be a connected Lie group with Lie algebra g and denote by G its simply
connected covering group, choosen in such a way that the canonical projection 7 : G -G
satisfies (dm)z = idy, and hence 7 o exp = exp, where exp and exp stands, respectively, for

the exponential maps of G and G.

Now, if X be a linear vector field on GG and denote by D its associated derivation.
By the previous choice and Theorem 2.2 of (AYALA; TIRAO, 1999), the derivation D is
associate with a unique linear vector field X on G. If we denote by {Ps}ser and {©s}ser,

respectively, the flows of X and X , then for all X € g,s e R,
7 (3,(EDX)) = 7 (&% (¢ X)) = exp (¢DX) = p,(exp X) = i, (m(&KpX)).
By the connectedness of G we conclude that
Vs e R, ToPs =0T,

and hence X and X are 7-related vector fields.

In the same way, the property m o exp = exp implies that
VseR,YeggeG, m(gexpsY) = w(g) exp sY,

which implies that the left-invariant vector fields Y on G and Y on G determined by Y
are m-conjugated. As a consequence, any LCS ¥ on G can be lifted (uniquely) to a LCS

~

Y& on G in such a way that i@ and Y are m-conjugated.
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1.4 Projecting a LCS to homogeneous spaces

Let H < G be a closed subgroup. Following (JOUAN, 2010), a vector field f
on the homogeneous space H\G is said to be linear if it is m-conjugated to a linear vector

field X on G, where 7 : G — H\G is the canonical projection, that is,
fom=meoX.

Moreover, by Proposition 4 of (JOUAN, 2010) the previous is equivalent to the invariance
of the subgroup H by the flow {¢;}er of X. In fact, if

VseR os(H) c H,

the relation,
Os(m(9)) = mlps(9))  Vge G seR,
defines a flow ® : R x H\G — H\G on the homogeneous space H\G, whose associated

vector field
d

f@) = g i),

is m-conjugated to X.

As a consequence, the LCS Y is m-conjugated to a affine control system Y ¢
(also called linear control system), if the subgroup H is invariant by the flow of the drift
X of Zg.

1.5 Low dimensional Lie groups

In this section we introduce the main properties of linear vector fields and
linear control systems on dimensions two and three. As we will see ahead, the dynamics
on the class of the 3D Lie groups we are interested can be recover from their counterpart

on 2D Lie groups and homogeneous spaces.

1.5.1 2D Lie groups

Up to isomorphisms, there are only two possible connected Lie groups of
dimension two, an abelian and a solvable nonabelian. In the following, we briefly comment
the results concerning LCSs on such groups. Some examples of control sets for these

systems can be found at the last section.

The abelian case

Up to isomorphisms, the only connected, simply connected Lie group of di-

mension two (R? +), where the product is the usual sum of vectors in R?. In this case,
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left-invariant vector fields and linear vector fields are given, respectively by
Y(v)=n and X(v)=Av, wvelR?
where 7 € R? is a nonzero vector and A € gl(2,R) a nontrivial 2 x 2 matrix.
A (one-input) linear control system in R? is given by
v =Av +un, uel, (Z(RQ,JF))

with Q = [u7,u"] and v~ < 0 < u™. The LARC in this case, is equivalent to {An, Rn) # 0.
Controllability and control sets of ¥ (g2 1y are very well know (see (COLONIUS; KLIE-
MANN, 2000, Example 3.2.16)) and are summarized in the next result.

Theorem 4. If Xg2 .y satisfies the LARC, it admits a unique control set Cg2 1y containing

the identity element in its interior and satisfying:

1. Cmeq) = R? if A has only eigenvalues with zero real parts;
2. Cwe 4y is open if A has only eigenvalues with positive real parts;

3. Cme,4) is closed if A has only eigenvalues with negative real parts;

The solvable nonabelian case

For the solvable case, we consider the following interpretation: Let us denote
by Aff(R) the Lie subgroup (R?, #) with product given by

(@1, 1) * (22,52) = (21 + 22,91 + " y2).
The Lie algebra aff(R) of Aff(R) is (R?,[-,-]) with bracket given by

[(a1, B1), (a2, B2)] = (0, 182 — o fBy).

A left-invariant vector field and a linear vector field on Aff(R) are given,

respectively, by
Y(z,y) = (a,e"B) and X(x,y)= (0,by + (¢ — 1)a),

where (o, 3), (a,b) € R2.

As a consequence, a (one-input) LCS on Aff(R) is defined by the family of
ODE’s

T = ux
,  where weq, by
{ y="by+ (" — 1)a + ue®p (Fan)
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with €2 as previously. Moreover, Yaqr) satisfies the LARC if and only if a(aa + b5) # 0
(see (AYALA; DA-SILVA, 2020, Section 2.2)). The next result, whose proof can be found
in (AYALA; DA-SILVA, 2020, Section 3.4), summarizes the controllability and control set

of ZAH‘(R).

Theorem 5. If Yagw) satisfies the LARC, it admits exactly one control set Cagmw) con-

taining the identity element in its interior and such that:

2. Cagr) 1 closed if b < 0 and open if b > 0.

1.5.2 3D solvable, nonnilpotent Lie groups

We will consider here only the connected and simply connected Lie groups that
are solvable and non-nilpotent of dimension 3, since from them, we can determine the

connected Lie groups as G' = CNJ/ Z where Z is a central discrete subgroup of G

By (ONISHCHIK; VINBERG, 1994, Theorem 1.4, Chapter 7), the real Lie
algebras of dimension 3 are given as semidirect product of R with R? i.e. g(f) := R x4 R?

where 0(t) := t0, with 6 a 2 x 2 matrix, which can take one of the following forms:
11
o« 0=
01
10
« = with |y] <1
0 ~

—1
.9:(7 )With’YGR
Loy

The bracket of these Lie algebras is defined by
[(t1,v1), (t2, v2)] = (0,0 - (t1vy — tyv1))
which is completely determined by the equation

[(t7 0)7 (07 U)] = (07 t@v)

Up to isomorphism, for the Lie algebra g(f) the unique connected, simply
connected Lie group associated, is given by the semi direct product R x pR2, with p(t) = et

and the product of the group as

(t1,v1)(t2, v2) = (t1 + t2, v1 + p(t1)ve)
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with (t1,v1), (t2,02) € R x, R Therefore, we go to denote the Lie group associate to the
Lie algebra R x4 R? with p(1) = ¢’ as G(6).

In particular, for all (¢,v) € G(f) and w € R?, we have that

(t,0)(0,w)(t,v)™" = (t,v + paw)(—t, —p-w) = (0,0 + prw + pe(—p-rv) = (0, pw). (1.2)

Let us use the previous computations to calculate some homogeneous spaces of
G(0). Precisely, let w € R? be a nonzero vector and consider the subgroup H = R(0, w).

From the above calculations, we get that
H - (t1,v1) = H-(ty,v3) <= t1 =ty and (v, Rw) = (vy, Rw),

T
where R represents the clockwise rotation of 5 radians; implying that the canonical

projection is given by
GO > H\GO),  7lt,v) = (t (v, Ru)),

that is, m coincides with the projection onto the first two components of the basis
{(1,0), (0, Rw), (0,w))}, when G(f) is seen as the vector space R®. Moreover, H\G(f)
is also a Lie group if and only if H is a normal subgroup of G(6) and for (1.2) H is a

normal subgroup of G(#) if and only if w is an eigenvector of 6.

On the other hand, the subgroup S = R(1,0) is such that
(t,0)(t1,v1) = (ta, v2) — t=ty—t; and p; = vy,

and hence

S (ty,v) =S (t2,v2) = p_y U1 = pogyVa.

As a consequence, the homogeneous space S\G(#) is naturally identified with

R? and its canonical projection is given by

m:G0) - S\G(0), w(t,v) = p_w.

In what follows, we define an operator which is closely related with the product
in the group. Such operator appears in the definition of the group exponential and also in

the definition of linear vector fields on the group G(6).

Let A be a 2 x 2 matrix and define

t
AR xR —R? (t,0) — f e*Auds. (1.3)
0
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The previous operator satisfies the following:

d
1) Af=0 () SAM=et (@) AL, = A+ eA

(4) e — AN =Tdge (5) AL = Ale? (6) A = (e —Tdg2) A7V if det A # 0

The first property is clear from the definition of A*. The second one, follows
from the Fundamental Theorem of Calculus. For the third one, derivation of A7}, and
Af + etAA;4 with respect to s, shows that both satisfy the same differential equation. Since

they coincide for s = 0, the equality holds.

Analogously, one obtain the equality in the fourth and fifth items. Now, for
the last one can be obtained from the fourth under the assumption on the determinant of
the matrix A.

Following (AYALA; DA-SILVA, 2019), the left-invariant and linear vector fields

on the groups G(#) are given, respectively, as
YE(t,v) = (a,pm)  and  X(t,v) = (0, Av + AY€), (1.4)

where (a,n) € R x R?, ¢ € R? and A € gl(2,R) satisfies A9 = §A.

For the sake of completeness, we show it here. The follow curve, v(s) =
(ta,v2) + s(t,v) € G(A) satisfies that v(0) = (ty,v5) and 7 (0) = (t,v), therefore, for the

left translation, we have that

d d

d(L(tl,vl))(tQ,vz)(t7v) = %|5=0L(t17v1)<7<8)) = %|s=0(t17 Ul)(tQ + st, vy + SU)»

and since (t1,v1)(ty + st, vy + sv) = (t; + t1 + st, vy + py, (v2 + sv)), we conclude that,

d d
d(L(t17U1)>(t2,v2)(t7 U) = £|S=0L(t1,v1)(’y(s)) = %|5=0(t17 Ul)(tQ + st,vg + SU) = (t7ptlv)'
(15)

Now, let Y be a left-invariant field, then,

YE(t,v) = d(Lgw)e(a,m), with (a,n) e T.G(0),

and by the previous calculations, we have that

YL(ta v) = (o, pen)-

In the same way, for the right translations, we have
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d d
d(R(tl,vl))(tz,v2)(t> U) = %’SZOR(tLM)("Y(S)) = %’520(752 + st vy + SU) (tla ’U1>,

and since (tg + st, vy + sv)(t1,v1) = (tg + st + t1, V2 + SV + py,501), We conclude that

d d
d(R(tLvl))(thz)(tav) = %|S=0R(t1,v1)(7(3)) = £|s=0(t2+3taU2+3U)(tlavl) = (tvv+tept2v1)'
(1.6)

Before continuing with linear fields, follow (AYALA; DA-SILVA, 2019), we note
that for any («,n) € g(6), the exponential map is given that

(0,m), if a=0,
) = 1 1.7
exp(a, ) (a, AZn) , if a #0; .7
a

in fact, we consider («,n) € g(0) and define the curve

(0, sm), if a=0,
I'(s) = 1
(s) (304, aAgan) , i a#0.

since in both cases I'(0) = 0 and

F'(S) — (0777) = d(LF(s))(O,o)(O,77)7 if a=0,
(Oéapsan) = d(LF(Q)(QQ)(Og’77)7 if a#0.

d
On the other hand, d—exp(s(&,n)) = d(Lexp(s(a,n)) 0,0 (a, 1), therefore, for
s

uniqueness, the two curves are equals.

Let X be a linear field on G(6) and D its associated derivation. Because, D
is a derivation and R? is the nilradical of g(f) = R x4 R?, we know that D(g(d)) < R?,
therefore, exist a linear map D* : R? — R? satisfying D(0,v) = (0, D*v) for any v € R*.
Let v be element of R?, it hold that

(0, D*0v) = D(0, v) = D[(1,0), (0, v)] = [D(L,0), (0,v)] + [(1,0),D(0,v)] = (0,6D*),

because, (0,60v) = [(1,0), (0,v)], D is a derivation and [D(1,0), (0,v)] = 0. Now, we can
conclude that D*0 = 0D* and D*p; = p,D* for any t € R.

Finally, since (t,v) = (¢,0)(0, p_v) it follow that

X(tv U) = X<<t7 O) (07 p,tv))

and for the Theorem 2, we have that
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X((t7 0) (07 p—tv)) = d(L(t,O))(()? p—tU)X(Oa p—tv) + d(R(O,p—tv))(t,O)X(t’ O); (18)

from the general form of exponential map, previously calculated it follow that (¢,0) =

exp(t,0) and (0, p_4v) = exp(0, p_,v), therefore,

©s(0, p—¢v) = ps(exp(0, p_4v))

and since, (dg,). = P, VseR.,

s(exp(0, pv)) = exp(e*P(0, p_v)) = exp((0,e*Pp_v)) = (0, p_v)

in the same way

0s(t,0) = ps(exp(t,0)) = exp(e®P(t,0)),

j+1 '
considering D(1,0) = (0,¢), we observed that eP(¢,0) = ¢ [ 1, : (D*Y¢ | by
S0+
definition of D*; and by 1.7, we have that
(.0) IR ) Y Py ppan VI (C-UEP
ps(t,0) =expt | 1, —(D* = | t, —_— *
Z(j+1) S+

. Now, we can calculate X' (0, p_v) and X (t,0).

d E3
X (0, p_yv) = %’s=0@s(07p—tv) = (0,D*p_v)

and

d
X(tv 0) = £|8:090s(t7 0) = (07 At’g)

With the previous and using the formulas 1.5 and 1.6 in 1.8, we get that

X(t,v) = (0, Av + A%¢).

Since the linear vector field X is fully characterized by the matrix A and the
vector £, we will usually write X = (A, §) to represent the linear vector field. The same

holds for a left-invariant vector field, which we usually denote by Y = («, 7).

The flow associated with the linear vector field X = (A, ) can also be explicitly

calculated and is given by
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ws(t,v) = (t,eSAv + AfAff). (1.9)

In fact, derivation of @,(t,v) on s gives us that

olL(t,v) = (0, Ae*Mv + e*AN0€).
However,
Aty + ANV = Aetto + NI — A€ + N0¢ = Aettv + (e — Tdpo )A€ + A%
and using the property (4), we obtain

At + S ANVE = AetAu + ANFNIE + A9¢ = A(e*v + NIALE) + AVE = X(p,(t,0)).

0 0
Furthermore, the associated derivation of X = (A, €) is given by D = ( > ;

£ A
1 0 1 0
o) - ( ple e )' ) ( A et )

and for the relation (1.1), we know that

in fact, we calculate

d(gps)e = GSD Vse R;

therefore,

so, we can conclude that

(23

The next proposition, whose proof can be found at (AYALA; DA-SILVA;
HERNANDEZ, 2023, Proposition 2.2), describes the set of automorphisms of G(6). It will

be very useful when conjugating LCSs.

Proposition 5. For the Lie group G(0), it holds that:
Aut(G(9)) = {w(t,v) = (et, Pv + eAyn), neR* PeGl(2,R), and PO = 6P},

where e =1 iftrf # 0 and ¢ = £1 if tr6 = 0.
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1.6 Linear control systems on G(6)

In this section we define the linear control system on the groups G(6), we will

study, and discuss some of their properties.

Definition 8. A (one-input) linear control system on G(0) is given, in coordinates, by
the family of ODE’s given by

{ = (Yow)

v = Av + A€ + upm
with Q = [u™,u™] andu™ <0 <u™.

In what follows, we calculated the LARC and the ad-rank condition for the
system Y is terms A and £, where X' = (A, §) is the drift of ¥ ).

Proposition 6. For the LCS Y¢ ) it holds:

1. Y satisfies the ad-rank condition if and only if

al A(a€ + An), R(a& + An) )y # 0.

2. Yy satisfies the LARC if and only if

a (<A(a§ + An), R(a€ + An))” + (0(a& + An), R(aé + An)>2> £ 0

T
where R is the clockwise rotation of 5 radians.

Proof. Let us assume that X = (A,&) and Y = («, n) are, respectively, the linear and the

0 0
left-invariant vector fields of ¥ (). The derivation associated with & is then D = ( ¢ A ) )

Therefore,
DY = (0,0 + An), D?Y = (0, A(a€ + An)) and [Y,DY] = (0,a0(af + An)).
1. By definition, ¥¢ ) satisfies ad-rank condition, if and only if,
g(f) = span{Y, DY, D?*Y}.
Therefore, if a1, as, a3 € R are such that

ar(a,m) + az(0, € + An) + a3(0, A(a€ + An)) = 0,
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then, in coordinates,

(6] 0 0 aq
<777 el> <Oé£ + Anv el> <A(Oéf + An)7 e1> Q2 =
<77> e2> <Oé£ + A77> 62> <A(C¥€ + An)a e2> as

Therefore, Y¢(g) satisfies the ad-rank condition, if and only if,

o 0 0
det | (pery (ot + Aner) (Afag+ An)ery | #0,
<7]7 92> <05£ + Ana e2> <A(Oé§ + AT]>7 e2>

if and only if

0 # a{ag + An, e )(A(a + An), e2) — (al + An, e2)(A(ag + An), e)}

= a(A(a€ + An), R(a + An)),
showing the assertion.

2. Calculations as the one previously done, gives us that {Y, DY, [Y, DY} is

linearly independent, if and only if,

« 0 0
det | (n,e1) (& + An,e;) alf(al + An),e;) |#0,
<777 eQ> <O./£ + An: e2> oz<9(oz§ + An)v eQ>

or equivalent, if and only if alf(a& + An), R(a& + An)). Now, Y (g) satisfies the LARC if

and only if it satisfies the ad-rank condition or if
g(0) = span{Y, DY, Y, DY|}.
Therefore, the LARC is equivalent to
o <<A(a§ + An), R(a& + An)Y* + (0(a& + An), R(a& + An)>2> # 0,

as stated. O

The next proposition shows that one can use automorphisms to conjugate a
given LCS to a second one, in order to simplify the expressions of linear or left-invariant

vector fields associated. Such results will be useful ahead.
Proposition 7. Let Xy be a LCS on G(0) with associated linear vector field X = (A, §)
and left-invariant vector field Y = (o, n). Assume that Xqg) satisfies the LARC. It holds:

1. There exists ¥ € Aut(G(0)) conjugating Ya to a LOS ig(g) with left-invariant
vector field Y = (,0);
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2. If det A # 0, there exists 1 € Aut(G(0)) conjugating Xy to a LCS f]g(g) with linear
vector field X = (A,0).

Proof. 1. By the LARC, o # 0 and we can define the map

U G(H) — G(), U(t,v) = (t,v — a TA%).

By Proposition 5, ¢ € Aut(G(6)) and a simple calculation show that its differential is

given by
(d) ) (@, w) = (a,w — ac™" pyn).
Therefore,
(d) )Y (£, 0) = (d) (@, pi) = (0, p — ™" py) = (@, 0) = Y ((t,v)),

and, if X = (A, &+ a ' An), then

(d) (1) X (£, 0) = (d)) (1) (0, Av + AE) = (0, Av + AJE)

= (0,A(v — a™'Afn) + A{(€ + a7 An)) = X(4(t,0)),
showing that Y is Y-conjugated to the system f]g(g) determined by X and Y.
2. Since det A # 0 the map
VGO) > GO),  d(tw) = (to+ AATY),
is a well defined automorphism of G(6) satisfying
V(a,w) € TumyGB),  (dd)w(a,w) = (a,apt A7 + w).

On the other hand,

A =0A implies that Vie R, weR?* AAw = A?Aw,

and hence,

where X(t,v) = (0, Av) and Y = (a, 0 A™'¢ + 1), showing that Y ) is equivalent to the
LCS ZG determined by X and V. O

(d) (X (£,0) = X(p(t,0)) and  (d) )Y (t,0) = Y (1(t,v)),
(a,

For a LCS X¢) with associated linear vector field X = (A, §), the nil-rank
of Xq(g) is exactly the rank of the matrix A. In fact, since the derivation D associated

0 0
to X = (A,€)isD = ¢ A and the nilradical of g(f) is n = {0} x R?, we have that

D|, = A. The next result shows that the dynamics of a LCS on G(6), with nil-rank two, is
the same as the dynamics of the product of a homogeneous system on R with a particular

class of control-affine system on R
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Proposition 8. Let ¥ be a LCS with nil-rank two on G(6). Then, X ) is equivalent

to a control-affine system on R x R? of the form

{ t = ux (ZRXRQ)

0= (A—uab)v+ un

Proof. Since Y g) has nil-rank two, we have that det A # 0 and by the previous proposition
we can assume w.l.o.g. that 3¢ ) is determined by the vectors X = (A,0) and Y = («, 7).

Define the map

Y G(0) > R x R?, Y(t,v) = (t, p_yv).
It holds that ¢ is a diffeomorphism and it satisfies
Y(a,w) € TunG(O),  (di)uw (@, w) = (a,~abp_v + p_yw),

Consequently,

(@)X (t,0) = X)) and  (d)wY (6 v) = Z((Ev)),
where Z(t,v) = (a, —abv + 1).

Therefore, Y¢(g) is equivalent to the control-affine system on R x R? given by

t = ua
, UE€ Q D X

{i}z(A—U@Q)v+un (Zrsze)
concluding the proof. O

Remark 1. Although the subjacent manifold of G(0) is R x R?, the change in notations
made in the previous result is to emphasize the fact that the system Yryg2 is not a linear
control system. When working with such system we will always use the previous change in

notation.

As a direct consequence of the above discussion, we have the following:

Corollary 1. Let X¢p) be a LCS with nil-rank two on G(0), then the induced system on
the homogeneous space S\G(0) is given by

U= (A—wuab)v+un, ueld (Xge)
where S =R - (1,0).
Proof. Let ¥g( be a LCS with nil-rank two and assume w.l.o.g. that X = (A4,0) and

Y = (a,n) are the vector fields of ¢ g). By the previous proposition, the diffeomorphism
Y(t,v) = (t, p—v) conjugates Y g) to the control-affine system

t =ua
, u€e ) YRx
{1)=(A—ua0)v+un (Sre)
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By considering
7yt R x R? — R2, mo(t,v) = v,

the composition my 0 9 is a conjugation between X9y and the control-affine system on R?

given by

U= (A—uab)v+un, ueld (Xge)

However, by the discussion in the beginning of the Section 1.5.2, the map
7(t,v) = p_w is the canonical projection 7 : G(0) — S\G(#), and since ™ = w5 0 ¢, the

result follows. O
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2 LCSs with nilrank two on G(6)

In this part we study the LCSs on the groups G(6) having nilrank-two. In order
to do that, we start with a full investigation of a particular class of control-affine systems

on R?, whose dynamics is intrinsically associated with the LCSs on G/(6).

2.1 A particular class of control-affine systems on R”

In this section, we study the class of control-affine systems on R? given by the

family of differential equations.

0= (A—ub)v+un, uef (Xg2)
where 1 € R? is a fixed nonzero vector, A,6 € gl(2,R), with the restrictions,
det A # 0 and [A, 6] = 0.

A more general study of control-affine systems on higher dimensional Euclidean
spaces was done recently in (COLONIUS; SANTANA; SETTI, 2021). Despite this fact, a
full independent analysis of the system g2 is done here by considering the dynamics of

2 x 2 matrices.

Let us define A(u) := A — uf. If det A(u) # 0, the solutions of ¥g2 are builded

through concatenations of the solutions for constant controls u € €2

o(s,v,u) = AW (v —v(u)) + v(u), where v(u):= —uA(u) 7.

The points v(u) := —uA(u)"'n in R? are called equilibrium points because
they satisfy the equation
A(u)v +un =0, (2.1)

they have this form because det A(u) # 0. However, in general, we can define the set of

equilibrium points & as follows:
E={veR® | Aluv+unp=0 forsome ueQ}

The importance of such a set comes from the fact that any point in £ satisfies

conditions 1. and 2. of Definition 4 and hence, is contained in a control set of Yg2.

Since we are assuming that det A # 0, the subset of 2 given by

Qo := {ueintQ; det A(u) # 0},
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is an open neighborhood of 0 € R. The map v : u € Qy — v(u) = —uA(u)'n e R? is a

smooth regular curve in R

In fact, a simple derivation of the equation 2.1, gives us that

—Ov(u) + Au)'(u) = —n = V'(u) = —A() " (n - Ov(uw)).
Therefore,

v'(u) =0 det A0 n=0v(u) = —uA(u)"'0n

and this last equation is equivalent to

An —ubn = A(u)n = —ubn,

from which we conclude that

Since we are assuming that det A # 0 we conclude that v'(u) # 0, showing the

regularity of the curve.

In what follows, we describe explicitly the solutions of g2

Proposition 9. Let 0 = 50 < 51 < --- < s, and uy,...,u; € o and define
s = Z s; and uweld with u(t)=u; e, tes; s541).
j=0

Then,

O(s,v,u) = eXi-1 %Ay 4 Z XRLier skAlue) (1 i) )y (y)
-1

with s,+1 = 0. Consequently,
d(s,v,u) = eXi=15i4W)y 4 6(5.0,u)
Proof. Let us proceed by induction on the natural n € N. For n = 1, we have that
d(s,v,u) = AW (v —v(u)) + v(u) = AWy + (1 — AW )p(u),

and the result follows. Let us then assume that the result is true for n = N and consider
n = N + 1. Defining

N
Si = S, 221,...,N7 S:Z‘Sk and 11:11‘[078]\]),
j=0
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gives us, by the induction hypothesis, that
N 4 N N+1 4 a
B(8,v,10) = eXim1 i)y 4 2 =it SA) (1 o3 AW)Yy () with Sy = 0.
i=1

Hence,

Qb(S?U?u) = ¢(SN+17 ¢<§7U7 A)7UN+1)

N
= eSN+1A(ukt) <eZlN_1 8iA(ui) + Z GZQLL §kA(Uk)(1 _ egiA(ui)>/U(uZ,)>

=1

+ (1 _ esN+1A(uN+1))U(uN+1)

N
_ oXili siAu)y, 4 3 X WA (1 @AWy () 4 (1 — vt Anen) )y ()
=1
N+1 N+l N+2
= i1 siAui)y 4 Z eZk—ii1 AR (1 oA ) () with sy =0,
i=1

concluding the proof. m

The next result analyses the LARC for the system Yge.

Lemma 2. The system Yg2 satisfies the LARC if and only if n is not a common eigenvector
of A and 6.

Proof. First we calculate the Lie bracket of F,, and F,, with F,(x) := A(u)x + un. By

definition, the Lie bracket between two fields is

(X, Y)(w) = - (1ot (¥ (2()))

where ¢, is the flow of the vector field X. For uy, us € €2, it holds that

A™) 1y = €4 and  Fl, (0 () = Alu2)@¥ (x) + .

—S
Hence,

[FuwFul](I) = i

Is (e_SA(W)[A(M)SOZZ (z) + uﬂl])szo =
= (—A(ug) (e (Awr) @2 (x) + wim)) + e 2 (A(ur)(A(up) 92 () + uam))) ,_,
= —A(ug)(A(ur)x + uin) + A(ur) (A(ug)z + ugn) = (ug — up)An,

where for the last equality we used that A and 6 commutes.

In the same way,
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d

[Fu37 [Fuza Fu1]]<x> = % (e_SA(U3)[(U2 - ul)An])szo = _(UQ - Ul)A(Us)AU,

and inductively
[FUn7 [Funfu [Fun727 U [Fuw Fm] o ]]](.I‘)
= (=1)"(uz = ur) A(un) A(un-1) A(up-2) - - - Auz) An.
Since the product A(u,)A(u,—1)A(u,—g) - A(uz)A only depends on A and 6
and [A, 0] = 0, the result follows. O

2.1.1 The control sets of g

In this subsection we show the existence of control sets with nonempty interior
for the control-affine system Y2 introduced previously. We start with a result concerning

to the positive and negative orbits at equilibrium points of the system.

Proposition 10. It holds that
O*(v(u)) and O (v(u)),

are open sets for any u € Qy with the exception of, at the most, one u* € Qg where
(A(u*)n, Ry = 0.

Proof. The proofs for the positive and negative orbits are analogous, hence, we show only
the positive case. In order to prove the result for this case, we first show that O (v(u)) is

open if, and only if v(u) € intO™ (v(u)) and afterwards, we prove that v(u) € int O* (v(u)).

Claim 1: O (v(u)) is open if, and only if v(u) € intO™ (v(uw)).

We note that intOQ" (v) is positively invariant for all v € R?, in fact, we know
that,

o o(t,intO" (v),u) =« OF(v)

o ¢(t,-,u) is a open map for all £ = 0 and u € ,

hence, we conclude that ¢(¢,intO" (v),u) = intO*(v) for all t = 0 and u € 9, i.e.,
O*(v) < intO* (v) for all v € intO* (v).
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Let us now consider s > 0 and u € )y, and define the map

f:02 o RY f(ug,up) = 4 (eSA(“l) (v(u) — v(w)) + v(wr) — v(u2)) + v(us).

We observe that,

f(uv u) = U(“) and f(uhU?) = gb(S, ¢(S7 v(u)7u1)v UQ)),

implying that
F(Q5) = O (v(u)).
As a consequence, v(u) € int O (v(u)) if the differencial of f is surjective on

u € €. Calculating the partial derivatives of f, we obtain that

of

8u1

(uy, up) = e*A12) (—s@eSA(ul)(v(u) —v(uy)) + (1 — eSA(ul))v’(ul)) and,

L, ua) = =40 (&40 ) — () + () = () + (1= )0 ()

Evaluating at u gives us,

ﬁ _ sA(u) sA(u)\,, ﬁ _ sA(u)\,,
P (u,u) =e (1 —e* N (u) and s (u,u) = (1 —e*")'(u).

Let R be the counterclockwise rotation of 7/2. Then,

< of (u, ), R;{{Q(u, u)> _ <esA(U)(1 _ GSA(H))U,(U), R(1- esA(U))U/<u>>7

ouy

and
<esA(u)(1 o eSA(u))’Ul(u), R(l . eSA(“))v’(u)> _ <(1 . eSA(u))eSA(u)Ul(u), R(l . eSA(u))U/(u)>
since e and (1 — e*4®) commute.

Moreover, since B(z,y) = {x, Ry) is an alternating bi-linear form,
(1 — e Ay (), R(1 — e*4™)0/ (u) ) = det(1 — ™)) (e (1), Rv'(u))

and hence,

< of (u,u) Rﬁ(u, u)> is linearly independent if and only if

aul ’ (?'LLQ
det(1 — ™4™ (e (1), Rv'(u)) # 0. (2.2)
Claim 2: For any u € €, there exists § > 0 such that det(1 — e*A®) % 0 for
all s € (0,).

In fact, if so > 0 and u € Qq are such that det(1 — e**4®) = 0 then we have

two possibilities:
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1. ¢4 » J: In this case, we conclude that one root of the characteristic polynomial

04(w) is 1 and the eigenspace associated with the eigenvalue 1 has dimension 1.

soA(u)

of e

Therefore, there exists a nonzero vector v such that e v =.

Since A(u) and 4™ commute, v is also an eigenvector of A(u). However, A(u)v =

av implies that

esoA(u)

v = v =% — a =0,

contradicting the assumption that det A(u) # 0.

2. ¢4 — J: Since det e04® — 0 AW e obtain in this case that tr A(u) = 0.
Furthermore, the condition det A(u) # 0, allows us to conclude that A(u) has a pair

of purely imaginary eigenvalues.

By the previous, det(1 — esoA(“)) = 0 implies the existence of a # 0 such that
Alu) — (0 —a) . osA) _ (C?SSCL —sinsa>.
a 0 sinsa  cossa
Therefore,
det(1 —e*A®) = 2(1 —cossa) =0 <«  as=2km keZ

and so,

2
det(1 —e*A®) 20, Vse(0,§), forany0<d < —W,
a

showing the claim.

Claim 3: With the exception of, at most, one u € €y, there exists € = €(u)

such that
(e (w), R/ (u)) # 0, Vs e (0,¢).
Let us assume that u € {2y does not satisfies the previous condition. That is,
I(sn)nen = RT,  with s, >0 and  {e™A™/(u), Rv'(u)) = 0. (2.3)

Hence,
1
0= lim — (e (u) — v/ (u), Rv'(u))

n—o0 Sn

_4d
ds 50

e (), Rv' (u) ) = (A(u)' (u), Rv' (u)) .
In particular,

A(u)v'(u) = \'(u),  for some X # 0.
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Since v'(u) = —A(u)"'(n — Ov(u)), the previous gives us that

n—0v(u) = M) ' (n—0v(u) = Au)(n—0v(u) = An — 0v(w)).

Remembering that A(u) = A —uf and A(u)v(u) = —un, allows us to obtain
An = An — ubn + ubn = An — M\v(u),

and, by applying A(u) to the previous equality, we get that

A(u)An = A(u)(An — Nv(u)) AL]=0 AA(u)n = NAn — Aubn + dufn = AAn,

or, equivalently,
A(A(u)n — An) = 0.

Since we are assuming that det A # 0, we get

A(u)n = An  or equivalently  (A(u)n, Rny = 0. (2.4)

Now, if
uw #uz and  (A(w)n, Rn) = (A(uz)n, Rn) = 0,
then, by the definition of A(u), we get that
(An, By = win, Ry and (A, Rn) = uy(On, B,

and hence
0 = (An, Rn) — (An, Rn) = (w1 — uz){n, Rn)
—_—
#£0
implying that
(An, Rn) = {(0n, Rn) = 0.

As a consequence, if (2.3) holds for two differents elements in €2, then necessarily
7 is a common eigenvector of A and 6, which contradicts the assumption that g2 satisfies
the LARC, which implies the claim.

By the claims 2. and 3. for all u € €y, with exception of at most one, there
exists €* = min(d, €), such that

det(1 — e ™) (e (u), Rv'(u)) # 0 Vs e (0,€*),

implying that the differential of f at the point u € )y is surjective. In particular, f is an
open map around such value u € )y, that is, there exists an open neighborhood U < £
with u € U and such that f(U?) is open. Since v(u) = f(u,u) € f(U?) = OF (v(u)) we get
v(u) € int OF (v(u)) which implies that O (v(u)) is open and concludes the proof.

]
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Remark 2. Note that
(A(u*n,Rny =0 <= 1 is an eigenvector of A(u*).

Therefore, if the system satisfies the LARC, the only possibility for the previous is that

A(u*) is an scalar matriz, that is,

(A" )n, Ry =0 <= A(u*) = Mu*)I2.

Next we show the existence of a control set with nonempty interior for the

system Y2 that contains 0 € R? in its closure.

Proposition 11. The system Y2 admits a control set with nonempty interior Crz such
that
v() < int Cpe,

with the exception of, at most, one u* € Qq satisfying (A(u*)n, Rn)y = 0.

Proof. By Propositions 10 and 1, with the exception of at most one u* € €, there exists

a control set C, satisfying

Co=0%(v(u)) O (v(u)) and wv(u) € intC,.

Let us define the sets
Qp ={ueQyu<u} and Qf :={ueQy u>u*}.

Since QF are open intervals their images v(€25) are connected subset of R?. Moreover, the

fact that v(u) € int C, for all u € Qf implies necessarily that
Cuy =Cy, forall wuy,uye (2.5)
In fact, if uy, uy € Qf with u; < uy satisfies
v(ug) € R:\intC,,  then  v([u1,us]) N 0C,, # .
Therefore, there exists u € f such that v(u) € 0C,,. On the other hand,
weQf =  v(weimtC; = CainCy #J

— Ca =Cy, — v(u) € int Cy,,
which is a contradiction, showing that relation (2.5) holds.

In order to conclude the proof, we have to show that

+ —. —
Eluleﬂo,uger, Cul —CUQ.
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By Remark 2 it holds that A(u*) = A(u*)Il;. In particular, the fact that
AMu*)? = det A(u*) # 0, implies the existence of u; < u* < uy such that A(u;) and A(us)
has a pair of eigenvalues with real parts of the same sign as A(u*). Therefore,
o(s,v(ur),ug) > v(ug) and  @(s,v(ug),ur) = v(uy), A(u*)s — —oo.
Since v(u;) € int C,,, the previous allows us to construct a periodic chain passing through

Cy, and C,, which implies C,, = C,, and concludes the proof.

]

Remark 3. The equilibrium v(u™) € € associated with u* € Qy can be in the boundary of
Crz (see Ezample 4).

Proposition 12. Let us assume that det A(u) > 0 for all u € Qy. Then, for the control
set Crz, it holds that:

1. tr A(u) > 0 for all u € Qy and Cg2 is open;
2. tr A(u) < 0 for all u e Qg and Cgz is closed;

3. tr A(u) = 0 for some u € Qy and Cr2 = R?;

Proof. Assume that A(u) has a pair of eigenvalues with negative real parts. Then, for any

v € R? we have that
o(s,v,u) = AW (v —v(u)) +v(u) - v(u), s— +o0.
If O~ (v(u)) is open, there exists sy > 0 such that
¢(s0,v,u) € O~ (v(u)) = V€ P u(O (v(u))) = O (v(u)),
implying that O~ (v(u)) = R?. In same way, if A(u) has a pair of eigenvalues with positive
real parts and O" (v(u)) is open, then O (v(u)) = R2.

Since det A(u) > 0, if tr A(u) # 0 for all u € p, then necessarily A(u) has
a pair of eigenvalues with positive real parts if tr A(u) > 0 and negative real parts if

tr A(u) < 0, which by the previous implies items 1. and 2.

On the other hand, since tr A(u) = tr A + utr 0, if tr A(u) = 0 for some u € Q,

we have the following possibilities:

o trA(up) =0 and tr A(uy) tr A(ug) < 0 for any uy, us € €y satisfying u; <

Uy < Us.

In this case, there exist uy, us € €y such that A(u;) has a pair of eigenvalues
with positive real parts and A(us) has a pair of eigenvalues with negative real parts. As a

consequence,

R* = Ot (v(uy)) and O (v(ug)) = R?,
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implying that
O~ (v(ur)) = O (v(ur)) N O~ (v(w1)) = Cro = OF (v(uz)) N O~ (v(uz)) = OF (v(uz)).

Therefore, Cgz is open and closed in R? which implies Cg2 = R.
o trA(u) =0 for all u e Q;
For this case, for any u € Qp\{u} we have that the solutions of Y2 are given
by concatenations of the curves
u

o(s,v,u) = Reu—wy(v —v(u)) +v(u), where v(u)= —uA(u) "'y = . uRn,

and Ry, stands for the rotation of s(u — u)-degrees. In particular,

[6(s,0,u) = v(w)] = [Rsguw (v = 0(w))| = [0 —v(u)],

shows that the solution curve s — ¢(s, v, u) lies onto the circumference C,,, with radius

|v — v(u)| and center v(u).

Let us show the controllability of g2 by explicitly constructing a periodic

trajectory from an arbitrary point vy € R? to the origin as follows:

(a) Let p > 0 and define the set Q, := [—p, p| satisfying
p¢Q, and €, <,

which is possible since u # 0.

(b) Since the circumference C,,, intersects the line R - Ry in two points, let us denote

by vy the point of this intersection that is closer to v(—p). Consider s; > 0 such that
U1 = ¢(817 v, p)7

(c) If v1 ¢ v(€2,), we do the same of item (a) with the circumference C_, ,,, in order to
obtain a point

vy = ¢(s2,v1,—p) € C_pyy "R R,

(d) Inductively, if a point v, ¢ v(£2,) was obtained, we consider the point v, in the
intersection of the circumference C(_yyn,,, with the line R - Rp. The radius p, of

the circumference C(_yyn,,,, satisfies

o = [ — o(~1)"p)] = [vg — v,| — - diam - v(Q,).

Therefore, for some N € N large enough, we obtain that vy € v(Q2,) "R - Rn.
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(e) Since vy € v(€2,), the continuity of the curve u — v(u) assures the existence of

un € Q, such that |v(uyx)| = |vxn — v(un)|. As a consequence, the circumference
Cuywy contains vy and the origin 0, and hence, there exists sy > 0 such that

o(sn,vn, uy) = 0. By concatenation, we obtain a trajectory from vy to 0 (Figure 1,
blue path).

(f) By choosing the “complementay half" of the circumferences C(_yyn,,, n =0,... N—1
and C

UN,UN

red path).

obtained in the previous items, we obtain a trajectory from 0 to vy (1,

The previous steps shows how to construct a periodic trajectory passing through
vo and 0. By the arbitrariness of vy € R?, the system Yg2 has to be controllable, concluding

the proof.
]

Remark 4. Ezample 3 shows that the control set Cr2 is not necessarily the only one with

nonempty interior.

Figure 1 — Periodic trajectory passing through 0 and vy.

2.2 The control sets of LCSs with nil-rank two on G(0)

In this section we prove our main results characterizing the control sets of LCSs
on G(#) with nil-rank two. The idea is basically use Proposition 8 and the results in the
previous sections. We start with the following result characterizing the control sets of the

system Ypgypr2.



Chapter 2. LCSs with nilrank two on G(6) 48

Proposition 13. Let us consider the control system

t = ua
, e €. sz
{Dz(A—uoﬂ)v—i—un ! (Ersre)

If Yryre satisfies the LARC, then it admits a control set with nonempty interior Cg g2
satisfying
Crxr2 = R X Cpe,

where Cgz is the control set containing v(2y) of the associated control-affine system
v = A(u)v + aun, ue . (Xg2)
Proof. Let us first notice that the solutions of system g, g2 satisfy
(s, (to, vo), u) = (¢1(s, o, ), ¢a(s,v0,u)), Vs € R, (to,v0) € R x R* uell,
and hence, they are given by concatenations of the solutions

o(s, (to,vo),u) = (to + uas, 34w (vo —v(u)) +v(u)),.

Let us assume w.l.o.g. that a = 1, otherwise we change the control range €2 by

af?. Let us show that Cryp2 satisfies the three conditions in Definition 4.

(i) Weak invariance: Let (ty,vg) be a point in Crygz. Then, vy € Crz and there exists
u € U such that

B2(RT, g, 1) — H(RT,v9,u) € R x Crz = Crype.

(ii) Approzimate controllability: Let us start by showing that exact controllability holds in
R x int Cge. Let then (t1,v1), (2, v2) € R x int Cgz and consider v(uy), v(uz) € int Cge

with u; < 0 < us.

Since controllability holds in int Cgz, there exists t],t, € R, uj,us € U and sy, 82 > 0
such that

¢(s1, (tr,v1),w) = (t,0(ur))  and  @(sg, (5, v(ug)), ug) = (2, va).

Analogously, there exists s3 > 0 and uz € U such that
¢(s3, (11, v(ur)), us) = (13, v(u2)).

o If 5 < t, we have that

t/ _ t”
S4 = 2u a? >0 and (s, (15, v(uz), us) = (th + ugasy, v(uy)) = (th, v(usg)).
2
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Hence, by concatenation
¢(827 ¢(S47 ¢(837 ¢(817 (tla Ul>7 111), u3)7 u2)7 uQ) = (t27 U?)'

o If ¢5 > ¢, we have that
t/ _ t//
2 — Uy

aUq

>0

sy =
and
Qb(silv (tlla U(ul)a ul) = (tll + ulasil? v(ul)) = (tll + t/2 - tg, U(Ul))7
implying that
¢<S37 ¢(8£17 (tllv U(“l)? u1)7 LI3) = ¢(837 (tll + t/2 - t/2/7 /U(ul))? 113)
= (ty — 13,0) + ¢(s3, (11, v(u1)), ug) = (ty — 13,0) + (3, v(u2)) = (3, v(u2)).
Therefore, by concatenation,

¢(527¢<537¢(327¢(51, (t1,v1),ur),u1),u3),u) = (t2,v2),

showing that controllability holds inside R x int Cgz (see Figure 2).

As a consequence, we get that

V(t,v) € R x intCrz, R x intCre < OF(¢,v) = R x Crz c OF(t,v).
On the other hand, if v € Cgr2 and vy € int Crz we have that
v E 02_(’00) = Vg € O;(U)

Therefore, for any (t,v) € R x Cgz there exists (tg,v9) € R x Cre such that (tg,v0) €
O*(t,v) implying by the previous that

R x Crz < O*(to,v9) < O*(t,v),
showing that R x Cg2 satisfies condition 2. in the Definition 4.

o Maximality: If D < R x R? is a control set such that R x Cgz = D, then my(D) is
contained in a control set of Yg2. Since Cgr2 < mo(D) we have by maximality that
Cr2 = m2(D) and hence

D c 1y ' (mo(D)) = 15 ' (Cr2) = R x Cpe,

which shows that Cp.gz = R x R? is a control set of Yppe.

Next we state and prove our main result.
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A
(t),v(w)
o(us

o(uy)

(ty v(uz))

Figure 2 — Trajectory connecting points in the interior of R x Cg2.

Theorem 6. Any linear control system Y@y on G(0) with nil-rank two satisfying the
LARC admits a unique control set Cggy containing the identity element in its closure.

Moreover, if X = (A, &) is the associate linear vector field and
Qo ={ueQ; det(A— aud) # 0},

we get that:

1. If det A > 0 and tr(A — au) > 0 for all u € Qq, then Cq) is open;
2. If det A > 0 and tr(A — aub) < 0 for all u € Qy, then Cgp) is closed;

3. If det A > 0 and tr(A — aub) = 0 for some u € €y, then Cq) = G(6).

Proof. Since Y (p) has nil-rank two, we get that det A # 0, and hence, Proposition 7 and
Proposition 8 implies the existence of a diffeomorphism ¢ : G(6) — R x R?, fixing the

identity element e = (0,0), and conjugating X to the control-affine system
t = uo
. , U S Q (ZRXRQ)
U= (A—uab)v+un

By the previous proposition Yr.g2 admits a control set Cryr2 with nonempty interior and

containing v({y), implying that

Cao) = Y (Crxre),

is a control set of ¥ containing the identity element in its closure. Moreover, by
Proposition 12, the properties 1. 2. and 3. hold true. Therefore, it only remains to show

the uniqueness of Cg(g).

If e € intCgg), Theorem 3 together with the solubility of G(#) imply the
uniqueness of Cg(g). Therefore, let us assume that (An, Rn) = 0. If D < R x R? is a control
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set with nonempty interior of g, g2 for any (¢,v) € int D there exists 7 > 0 and u e Y

satisfying
o(r, (t,v),u) = (t,v)  where 71 = Z s; and W . = €Qi=1,...,n

By Proposition 9 we get that

Z siuy =0 and  @o(T,v,u) = =t i)y, 4 ¢2(s,0,u) = v

=1

with s,+1 = 0. Moreover,

isiA(uz Zn:sl A—wf)=17A—- Zsuﬂ—TA
)

i=1 i=1
implies that
Go(T,v,1) = e+ ¢2(1,0,u) = v.

On the other hand, the assumption (An, Rn) = 0 implies that A = Aly (see Remark 2)
and hence,
Go(T,v,1) = €™ v + ¢o(7,0,1).

Let us assume w.l.o.g. that A\ < 0. In this case, the periodicity of (¢,v) implies
that
v = ¢o(nT,v,u) = " + ¢o(nT,0,1),

and since

" 50 = ¢y(n1,0,u) > v.

Since 0 € Cg2, there exists by continuity v; € int Cg2 such that ¢;(n7, vy, u) € 7(int D). On
the other hand, for any u € Qy with u # 0 it holds that

ba(s,v,u) > v(u), s— 400 = (S, v,u) € int Cpe,

for some sy > 0. Since 7 (int D) has to be contained the interior of a control set D' = R?
of Xg2 (see Proposition 2), the previous imply (by exact controllability in int D’) the
existence of an orbit starting and finishing in int Cgz and passing by int D', forcing the

equality D’ = Cge. Therefore,
D c W;lﬂg(D) e 7T71(CR2) =R x C]Rz = CRXR27

showing the uniqueness of Cr.r2 and hence, Cg(g) is the unique control set with nonempty

interior of Yy, concluding the proof. O]

Remark 5. The previous result shows that, even though, the projected system g2 can have
more than one control set with nonempty interior (see Example 3), the control system¥g g2
admits a unique one. Moreover, by Example 4, the identity element of G(0) is not always

in the interior of Cq).
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3 LCSs with nil-rank smaller than two on

G(0)

In this section the cases where the nilrank of a LCS is equal to zero or one. As
we will see, for control systems with nil-rank one, the LARC is enough to assure existence
of control sets with nonempty interior. On the other hand, the dynamics of LCSs with

rank zero strongly depends of the group structure.

3.1 Nil-rank one LCSs

Lemma 3. For a LCS with nil-rank one, the LARC' is equivalent to the ad-rank condition.

Proof. Up to isomorphism, we can consider X¢(g) to be a LCS on G(6) satisfying the
LARC and such that X = (A,¢) and Y = («,0), with a # 0. By Proposition 6,

LARC is equivalent to (A&, RE? + (0€, REY* # 0,
and
ad-rank is equivalent to (A&, RE) # 0.

However, the assumption that () has nil-rank one, implies necessarily that dimker A = 1.

As a consequence, we have the following possibilities:

1. € € ker A which by the commutativity of A and 6 imply that (#¢, R¢) = 0 and hence
LARC holds only if the ad-rank condition holds;

2. € ¢ ker A and hence R¢ is a one dimensional eigenspace of A with R? = RE @ ker A.
Consequently,
(A, RE) =0 = 0§ RE) =0,

showing again that the LARC imply the ad-rank condition.

In both cases the LARC implies the ad-rank condition, proving the result. [J

As a consequence of the previous result and Theorem 3, any LCSs with nil-rank

one admits a unique control set Cg(p) with nonempty interior, such that G° c int Cao)-

On the other hand, the assumption that the nil-rank of ¥4y is equal to one,
implies necessarily that dim ker A = 1 and, by the commutativity of A and 6, the subgroup
H = {0} x ker A < G(6) is a closed normal subgroup. Consequently, we have a well

induced linear control system on the 2D Lie group H\G and the following holds:
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Theorem 7. Any LCS with nil-rank one satisfying the LARC admits a unique control set

with nonempty interior Cq) satisfying
Cay =7 (Cnao) = Crnaeo) * H,

where w : G(0) — H\G(0) is the canonical projection. Moreover, if X = (A,§) is the
drift of the LCS, then Cgg) is open if tr A > 0 and closed if tr A < 0, ortr A = 0 and
Caw) = G(0).

Proof. By the previous discussion, H = {0} x ker A is a one-dimensional normal subgroup
of G(#) and, H\G(#) is a 2-dimensional Lie group.
Since the induced LCS Xy on H\G(0) satisfies the LARC, there exists a

unique control set Ci\g(g) that contains the identity element of H\G() in its interior.
Moreover,
7 'eH) = H = {0} x ker A < int Cp),

since H is contained in the set of fixed points of the flow of X = (A4, ¢). By Proposition 2
we obtain that Cg) = 7 '(Cinge)), proving the first equality.

On the other hand, if w € ker A is an unitary vector, and we consider the basis

{(1,0), (0, Rw), (0,w)}, the canonical projection is given by
m: G(0) — (t, (v, Rw)),

which coincides with projection onto the first two components of the chosen basis. As
a consequence, the control set Cp\g(p) is naturally identified inside G (0) as the subset
Crc(o) x {0} of the plane generated by {(1,0), (0, Rw)}. Since

(0, syw)(t, saRw) = (t, 517w + soRw), Vi, s1,5 € R,

we get that
7 Cmae) = HCmae) x {0} = Cimae) x H,

proving the second equality. Now, since 7 conjugates Xy and Y g(g), it commutes with

the associated derivations, that is,
Dor=mo D,
where D is the derivation associated with the system X (). Since
{0} xkerAckerD and  dimkerD = 2,

we obtain that tr D = tr D = tr A is only possible eigenvalue of D, which by the results in
Section 2.5 implies the result. O
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3.2 Nil-rank zero LCSs

In this section we analyze the LCSs with nil-rank zero. As we will see, for most
of the classes of the groups G(#), the LCSs with nil-rank zero do not admit control sets
with nonempty interior. Instead, they admit an infinite numbers of control sets with empty

interior.

We start with a lemma which will be used in the proof of the results of this

section.

v —1

Lemma 4. Let us assume that 6 # <
Y

) with v # 0. If (B¢, RE) # 0, there exists

ée R? such that
g(t) == (A0€, &) > 0, vVt e R.

Proof. The lemma is proved case by case.

1 0
1.0 = 0 , |7l € (0,1]: In this case, (#¢, RE) # 0 implies that & =
f)/

élel + 6262 with 5152 # 0.

Let us assume that v € (0, 1), since the case v € (—1,0) is analogous. Consider

é = 75{181 — ’ygleg, we obtain
g(t) = (AP€. &) = <(et —1)Srer + i(e” — 1)ey, 76 'er — 765162> =(e' 1) = ("~ 1),
Derivation, implies that ¢'(t) = v(e" — €?*), and hence

g(t)>0,te(0,+0) and ¢'(t) <0,t€e (—,0),

showing that g is strictly decreasing in (—o0,0) and strictly increasing in (0, +o0). Since
g(0) = 0 we obtain that g(¢) > 0 for all t € R.

10
2.0 = ( 00 ): In this case, (0, RE) # 0 implies also that { = {1e1 + &ey

with &€ # 0. Defining é =¢&te) — & Mey gives us
g(t) = (N, &) = (' = 1)&rer + t&rer, & Mer — & leny = (ef —t — 1),

As the case before, deriving the function, we obtain ¢'(t) = e’ — 1, that satisfies

g(t)>0,te(0,+0) and ¢'(t) <0,te(—x0,0),

and because g(0) =0, g(t) > 0 for all t € R.



Chapter 3. LCSs with nil-rank smaller than two on G(6) 55

11
3.0 = < 01 ): In this case, (8¢, R) # 0 implies that £ = e + &ep with

&5 # 0. By considering and we should define é = & 'e; — €165 %e,. By a simple calculation
shows us that
g(t) = (N€,6) = —e' + 1 + te'.

As in the first case, ¢/(t) = te’ and hence
g(t)>0,te(0,+0) and ¢'(t) <0,te(—x0,0),

implying that
g(t) = ¢(0) =0, Vt € R.

0 —1 N
4.0 = ( Lo ): In this case, (A€, R¢) # 0 implies £ # 0. Defining £ =

—&sep + &ep gives us
glt) = (Al &) = <[§2(003t — 1) + & sint] e + [§osint — & (cost — 1)] e, —&ae1 + §1€2>

= — (ff + 53) (cost — 1) = [£]*(1 — cost) = 0,

as required.

Using the previous lemma we are able to show the following:
Theorem 8. Let YXgg) be a LOS with nil-rank zero. It holds:
-1
1. If 6 # ( ;Y ) for all v # 0, then X admits an infinite numbers of control

~y
sets with empty interior

-1
2. 1f 0 = ( Z ) Jor some v # 0, then Ygg) is controllable.
Y

Proof. By Proposition 7 we can assume w.l.o.g. that

f;: U
{ o= Afg ,U € Q. (20(9))

v
such that (AY¢,€) = 0 for all t € R. As a consequence, the smooth function

-1 A
1.1f 6 # < ”1y > for all v # 0, there exists by Lemma 4 a vector ¢ € R?

f:G0) - R, f(t,0) = 0,8,
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is such that, the functions gy(s) = f(¢pa(s, (t,v),u)), satisfies

d A A
g{l(s) = %<¢2<S7 (t’ U)’ u>7§> = <A61(s,(t,v),u)£7§> = 0,

and are nondecreasing. As a consequence,

(tl, Ul), (tg, 112) € G(@), with f(tl, Ul) < f(tg, ?)2),

cannot be in the same control set of Y (g).

On the other hand, the fact that (0,v) € G(#) are fixed points of the drift
X = (0,¢), implies that any such point is contained in a control set of 3¢ g). Therefore,

for any ¢ € R the plane
Pe:=A{(t,v), (v,§)=c},
contains (at least) one control of ¥ (), concluding the proof.

2. Let us start by noticing that the solutions of Y4 satisfy

o(s, (t,v1 + va),u) = ¢(s, (t,v1),u) + vy, Yuel. (3.1)

Let H = R-(0,07%¢) and consider the homogeneous space H\G(#). By the

calculations in Section 2.5.2, the canonical map is given by
m:G(0) > H\G(0), m(t,v) = (t,{v, ROTE)).

Therefore, the induced system on R? = H\G(f) is given by
{ Zlﬁ?ﬁ,%l@ | (Fincto)
Now, the fact that § = ~yIz> + R implies that ' = e ((cost)lg> + (sint)R). As a
consequence,
(AT ROTIE) = (¢ — Ip2)0 '€, ROTIE) = (e"07'¢, ROT'E)
=" cost(G7E, ROTIE) + M sint{ ROTIE, ROTIE) = |67 1¢|*e sint.

The rest of the prove is conclude in XX steps.
Step 1: X\q(p) is controllable;

It is not hard to see that the solutions gzg of Y q(g) satisfy

A A

(1) o1(s, (to, zo),u) =ty + uas, (13) @o(s, (to,x0),0) = xo + 5\9’1§|267t0 sin to,

A

and (i) da(s, (to, x0),u) = da(s, (to,0),u) + 0.
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In particular, property (i) implies that

Vii, o € R, Ju e Q; O(s, {t1} x R,u) = {to} x R.

Therefore, it is always possible to construct a trajectory from any given point
(t, ) to the axis {0} x R in positive and negative time. Hence, ¥ ¢(g) is controllable as

soon as any two points in {0} x R can be connected by a trajectory of the system.

Let us consider z,y € R and assume w.l.o.g. that x < y. Fix ¢, t5 € R satisfying
—m/2 <t; <0<ty <m/2,

and consider 50,1, 52,0, 51,2 € (O, +OO) and Up,1, U2,0, U1,2 € ) such that

$(50,17 {0} x R, up1) = {t1} x R, &(52,07 {ta} x R,ugp) = {0} x R

and

§5<81’2, {tl} X R, ULQ) = {tQ} X R
Take Z;,9;, 1, = 1, 2 satisfying

A A

¢(30,1a (0,91?),U0,1) = (751,531)7 ¢(50,17 (0>y),uo,1) = (tlagl)a

A ~

¢(82,07 (t2,§72),u10) = (0,z) and ¢(S2,07 (t2a3?2)au2,0) = (an)-

Using the third property, it is straightforward to show that there exist z1, 2o satisfying
z <min{2y, 61} 2o < min{da, o}, and  @a(s1a, (t, 21), Ure) = 2.
Furthermore, since sint; < 0 and sinty > 0 there exists sq, S, §1, 82 € [0, +00) such that
B+ 5107 sinty = 2, G + 8107 Pe M sinty = 2,

2 + 8|07 2 sinty = £ and 2 + 8901 E[PeM2 sinty = 1.
Using the previous, a closed trajectory passing through (0,z;) to (0,z) is
obtained as follows:
1. Go from (0,z) to (t1,21) in time sg; with the control g ;
2. Go from (t1,21) to (t1, 21) in time s; with the control 0;

3. Go from (t1,21) to (t2,22) in time s1 o with the control u o;



Chapter 3. LCSs with nil-rank smaller than two on G(6) 58

4. Go from (tq, 22) to (t2,¥2) in time sy with the control 0;

5. Go from (t2,92) to (0,y) in time sy with the control us ;
6. Go from (0,y) to (t1,91) in time sp; with the control u; o;
7. Go from (t1,91) to (t1,21) in time §; with the control 0;

8. Go from (t1,21) to (t2, 22) in time s1 o with the control u o;
9. Go from (t3, 29) to (t2,22) in time 83 with the control 0;

10. Go from (t2,22) to (0,z) in time sy with the control us ;
The previous implies that X g) is controllable.

Step 2: If 50(0,07'¢) € int O (e), there exists s; € R such that

5051 <0 and  51(0,07'¢) € int OF(e).

Let us show the claim only for the positive orbit, since the proof for the negative

orbit is analogous.

By a straightforward calculation we obtain that the second coordinate of the

solutions of Y¢(g), for u # 0, is given by

1
Ga(s, (to, o), u) = metoe(e“a‘sa — uasl — Ip2)07 %€ + sAfoé‘ + .

Let us choose p € R such that +pa~" € Q. Since ¢, (s, (to, vo), u) = to + uas, we get that

¢(3> ¢(57 50(07 9715)7 p&il)a _pail) = (Oa ¢2(57 (b(sa 30(07 0715)7 po‘il)a _p@71>> € {O} X RQ'

Therefore,
1
Pa(s, 9(s,50(0,071), pa™ ), —pa') = ¢y <$> ;(epse — pst — Ig2)072E + so07 ¢, Pa_1>

1 1
= _Eep59<e—p89 + psh — Ip2)07%E + sAZsf + E(e"’sa — psh — Ip2)072E + 5007 1€

2
= == (0726 + psf7'E — e707%¢) + 007
P

Using that e = ((cost)Ig> + (sint)R) and (v* + 1)0 = yIz2 — R, allows us to write
such solution on the orthogonal basis {#7'¢, R{67'¢} as

P2 (s, P(s,50(0,071), pa™), —pa™t) = Hy(s) - 0716 + Hy(s) - ROTE,

where
Hi(s) = p(722+1) [ews(y cos(ps) + sin(ps)) — v — sp(y* + 1)] + S0,
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and
2 P8 (~ 6 _
Hy(s) = D) [e77%(y sin(ps) — cos(ps)) + 1] .

Let us assume here that v > 0 since the other possibility is analogous. Note
that
Hy(s) =0 <= ~e"sin(ps) + 1 = e cos(ps),

implying that )
H,(s) = —e"™sin(ps) — 2s + sg, if  Ha(s)=0.
p

On the other hand, for any k € Z, we get that

2k7r) 2 ok <7T + 2k7r> 2 ok
H = (=74 1)  and H = (72T 4 1),
? ( P p(v? + 1) ? P p(y?+1)

As a consequence, if vk > 0 and £ > 0 is small enough, the function Hy changes signs on

the intervals

2 2k — A 2 2 1) —
Ik::(ﬂk—i—a T+ 271k 5) and  J (7T+ nk+¢e 2n(k+1) 5>‘

= )

k=
p P

Y

P P
Let us denote by s; € I, and 8, € I, zeros of Hy when vk > 0. For |k| — +00, it holds:
1. If s > 0 and v > 0 we choose p > 0 and k € N. In this case,
vk >0, &, — +w, Hy(5)=0 and
. 2 e oA . : A :
H,(3) = —e"°Fsin(p8y) — 28, + so — —oo0,  since  sin(p§y) < —sin(e) < 0.
p
2. If s > 0 and v < 0 we choose p < 0 and —k € N. In this case,
vk >0, s — +0w0, Hy(sy) =0 and
2 : : : :
Hi(sy) = —e"°*sin(psg) — 28k + So — —0,  since  sin(psg) = sin(e) > 0.
3. If sg < 0and vy > 0 we choose p > 0 and k € N. In this case,
vk >0, s, — 40, Hy(sy)=0 and
2 : : : ,
Hi(sg) = —€""Fsin(psy) — 25y, + sop — +0o0,  since  sin(psi) = sin(e) > 0.
p
4. If sp < 0 and v < 0 we choose p < 0 and —k € N. In this case,

vk >0, &, — +0o, Hy(8)=0 and

2 .
H,(8;) = —e"°Fsin(p8g) — 28 + so — +00,  since  sin(pd;) < —sin(e) < 0.
p
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Therefore, in any case, there exists S > 0 such that Hy(S) = 0 and soH,(S) < 0.
Hence, for s; = Hy(S), we get

51(0,071€) = ¢(S, 4(S, 50(0,671€), pa™t), —pat) € ¢(S, ¢(S,int O (e), pa™"), —pa™)

and
¢(S, ¢(S,int OF (e), pa™), —pa™") < int O (e),

which proves the assertion.

Step 3: If for some sy € R, 50(0,07¢) € int OF (e) then,

5(0,071¢) eint OF(e)  if 50 >0

1R > 0; Vs > R = ) . )
—s(0,07°¢) eint O*F(e) if 5o <0

Again, let us show the assertion only for the positive orbit. Since X¢ ) satisfies
the LARC, by (COLONIUS; KLIEMANN, 2000, Lemma 4.5.2) it holds that

50(0,071) eint O (e) = 50(0,07'¢) eint<s O (e) ¢ intg O* (e),

for some S > 0. Consequently, there exists an interval (a,b) — R satisfying sq - (a,b) <
(0, +00) and
Vs e (a,b), s(0,071¢) € int O (e).

On the other hand, the fact that points in {0} x R? are fixed points of the drift, allows us
to obtain, that

(51 +52)(0,071€) = 5(51(0,071€))s2(0,071¢) € intasg O () < int O (e),
and inductively we conclude that
Vn e N, s € (na,nb), 5(0,071¢) e int O* (e).
Since, a, b have the same sign as sg, there exists R > 0 such that

ﬁ(R, +00) U(na, nb),

‘ S0 | neN

the assertion follows.

Step 4: Y) is controllable.
Let us consider (¢,v) € int O* (e), which exists by the LARC. By Step 1. there

exists s > 0 and u € U such that

m(o(s, (t,v),u)) = (ﬁ(s,ﬂ(t,v),u) = (0,0) = m(e) — o(s, (t,v),u) € H.
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Consequently, there exists sp € R such that

50(0,071€) = ¢(s, (t,v),u) < ¢(s,int OF(e),u) < int O (e).
By Step 2., the previous implies the existence of s; € R with sps; < 0 and such that
51(0,071¢) e int O* (e).

Now, Step 3. applied for sy and s; assures the existence of S > 0 great enough,
such that
S(0,07'¢)eintO(e) and  —S5(0,07'¢) eint O (e).

Since, by (COLONIUS; KLIEMANN, 2000, Lemma 4.5.2), there exists S1,S2 > 0 such
that
S(0,671¢) eints, OT(e) and  — S(0,07¢) e intg, O (e),

we conclude that
e = (S(0,671€))(=5(0,071€)) = ¢s,(S(0,071€))(=5(0,071€)) € s, (int OF, (e)) int OF, (e)
2 int 0% g, (e) cint O (e),

which by Theorem 3 implies the controllability of ¥4y, concluding the proof.
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4 Connected nonsimply connected groups

In this section we analyze the LCSs on 3D solvable Lie groups G that are not
simply connected. The analysis is done by using the lift of LCSs from G to its simply

connected cover as commented in Section 2.4.

Due to the characterization present in (ONISHCHIK; VINBERG, 1994, Chapter
7), the only connected, solvable, nonnilpotent 3D Lie groups associated with the Lie algebras

g(0) that are also nonsimply connected, appear when

920_1 or 9210.
1 0 00

In the next sections we consider, separately the possible cases for 6.

4.1 The group of rigid motions and its n-fold covers

If@—(tl) _01 ) then, for each n € N

Zn = {(2knm,0) e G(0),k € Z}

is a discrete central subgroup of G(6). In particular, the quotients G(0)/Z,, are connected
Lie groups associated with the Lie algebra g(6). The group SE(2) := G(0)/Z; is the group
of proper motions of R%. It is the connected component of the group of rigid motions of

R?. For n = 2 the group SE(2), := G(0)/Z, is a n-fold cover of SE(2).
The canonical projection is given by

mu(t,v) = ([t],v), [t] :=t+ 2n7Z.

By the results in Sections 1.4 and 1.5, in order to analyze the behavior of
LCSs on Ygg(2),, it is enough to understand LCSs on G(#) whose flow of the drift let the

subgroups Z,, invariant. However, using the expression (1.9) we have that

©s(2nkm,0) = (2nkm, e A0+ Ay, A2€) = (2nkn,0),  where we used that Aj =0,

2nkmw**s

implying that a linear vector field on SFE(2), is given by
x([t],v) = (0, v+ A%).

On the other hand, if det A # 0, a LCS on G(0) is conjugated to the control-affine system
Yrxr2 through the diffeomorphism

V(t,v) = (&, p-i(v + A{ATIE)).
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By Proposition 13,
Vue Qy, R x{v(u)},

is contained in the interior of the control set Crypz of Yrygr2. As a consequence,

PR x {o(u)}) = {(tpu(o(u) — AATE)), teR) < intCap),  Vue Do

We can now prove our the main result for the control set of LCSs on SE(2),,.

Theorem 9. Let Ygp(2), be a LCS on SE(2), that satisfies the LARC. It holds:

(1) If A# 0 then Xgp(2), admits a unique control set Cgp2), satisfying

T (Cspe).) = Co),

where m, : G(0) — SE(2),, is the canonical projection and Cgg) the unique control
set of the LCS on G(0) that is m,-conjugated to Xgp(), -

(ZZ) If A= 0 then ZSE(Q)

admits an infinite number of control sets with empty interior.

n

Proof. (i) By Proposition 2 there exists a control set Cgg(2), of the system Xgp(9), satisfying

Th (Cg(g)) < Csk(2), and the equality holds if we show that
T (ma(t,v)) < intCgp),  for some  (¢,0) € int Cop).

Since, for all k,n € N we have that po,, = idgz, we get that

VYue Qo  m, (m.(0,v(u)) = {(2nkT,v(u)), k € Z}
= {(2nkT, ponr(v(w) — A ATE)) ke Z} < I (R x {v(u)}) < int Cg ),
implying that 1(CSE(2)n) = Cg(p) and showing the item.

(ii) The function
f:SE@2), — R, ([t 0) = v, &),
where ¢ is given in Lemma 4, is such that the functions gu(s) = (¢(s, ([t],v), u) satisfy

d A N
Ju(s) = £<¢2(37 ([t], 0), 1), &) =AY (o (10 &) = 0,

and are nondecreasing. Therefore, if

([ti],v1), ([t2],v2) € G(0);  satisty  f([t1],v1) < f([t2], v2),

they cannot be in the same control set of Xgg(9), .
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On the other hand, the points ([0],v) € SE(2), are fixed points of the drift
X = (0,¢), and hence, any such point is contained in a control set of Xgp(s),. Therefore,

for any 7 € R the cylinder
Cy = {([t]>v>7 <07£> = 70}7

contains (at least) one control of ¥gg(2),, concluding the proof.

4.2 The group Aff(R) x S'

Ifo = ( (1) 8 ) the group G(0) can be seen as the Cartesian product Aff(R) xR.
In fact, since v € R? is written uniquely as v = ze; + ye,, the map
(t,v) e G(O) — ((t,z),y) € Aff(R) x R, (4.1)
is a diffeomorphims. Moreover,
prv = Tper + ypes = xe'ey + yey,
implies that
(t1,01)(t2,v2) = (t1 + to, 01 + pyyva) = (b + to, (21 + e wa)er + (y1 + y2)es)

= ((t+ o, 21+ €M), yn +2) = (B, 1) (f2, 22), 91+ 92) = (1, 21), 1) (2, 22), 2),
which shows that the map (4.1) is an isomorphisms.

Following (ONISHCHIK; VINBERG, 1994, Chapter 7), up to isomorphisms, the
only central discrete central subgroup of G(0) = Aff(R) x R is Z := {((0,0), 2kn), k € Z}.
Therefore, G(0)/Z = Aff(R) x S* is the unique connected, nonsimply connected, Lie group
with the Lie algebra g(#) = aff(R) x R, where S* = R/Z. The canonical projection is given
by
7 AF(R) x R — Aff(R) x S, ((t,2),y) — ((t,2),[y]).

By Section 1.3, the linear vector fields of Aff(R) x S* are completely determined
by the linear vector fields on G(6) = Aff(R) x R whose flows let the subgroup Z invariant.
Let then & be a linear vector field on G(6) with associated flow {¢s}ser and assume that

©s(0,2kmey) € Z, VseR, ke Z.
Using the expression in (1.9) for ¢, one obtain that,

©s(0, 2kmey) = (0, ZkWeSAeg) e’/ — e, € 2176y — Aey = 0.
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Theorem 10. Any linear control system Xagm)xs1 on Aff(R) x St satisfying the LARC,

admits a unique control set Cagmyxs1 satisfying:

Cag)xst = T (Cagmr)) = Cag®) X S,

where Cagr) is the unique control set of the LCS on Aff(R) that is m -conjugated to
Yasm)xst, where m : Aff(R)x St — Aff(R) is the canonical projection. Moreover, Cas(r) x5!
is open if tr A > 0, closed if tr A < 0 and equal to Aff(R) x S* iftr A = 0.

Proof. Let us assume w.l.o.g. that the left-invariant vector field of Xxgm)xg1 is Y = (o, 0),

with a # 0. In this case, our system in Aff(R) x S, is given by

t. = U
T=Xx+(e—1)& ,ue, (Sam)xst)
ly] = &

and the LARC is equivalent to aé;&; # 0.

If A # 0, the system satisfy the ad-rank condition and hence, there exists

a unique control set Cagmr)xs1 with nonempty interior. Moreover, since the points in
{(0,0)} x S" are fixed by the flow of X = (4, &), we get that {(0,0)} x S' < int Cagr)xs1
(see Theorem 3). On the other hand, the projection

7 : Aff(R) x S* — Aff(R), m((t,x),y) = (t,x),

conjugates Yagmr)xs1 and the linear control system
t = ua
,u € €. by
{ =+ (e — 1) )

Since (0,0) € int Cag and 7; '(0,0) = {(0,0)} xS* = int Cag(r)xs1 we obtain, by Proposition
2, that

Cag®)xst = T (Cag(z) = Cagwr) x S

In particular, Cag(r)xst is open when A > 0 and closed when A < 0 since the same holds

for Cagr) (see Section 1.5.1)

Let us assume now that A = 0. In this case, the canonical projection
7 Aff(R) x ST — Aff(R), ((t,z),y) — (t, ),

conjugates Xagr)xst to the LCS

IEZUOC
,u €, by
{ .CE _ (et _ 1)61 ( AE(R))

on Aff(R). By Theorem 5, we have that Xagr) is controllable.
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Let us consider P € int O" (e), whose existence is assured by the LARC. The
controllability of the projected system Xag(r), implies the existence of uw € U and 7 > 0
such that

7Tl<¢(7-: P, u)) = ¢1(Ta WI(P)uu) = (070)’
and hence

((0,0), [yo]) = o(7, P,u) € ¢, (int OF (€)) < int O (e).

Moreover, the LARC together with (COLONIUS; KLIEMANN, 2000, Lemma
4.5.2) and Proposition 4, imply the existence of S > 0 such that ((0,0), [yo]) € int OF (e).
Since int OF (e) is open, there exists r € Q with ((0,0), [r]) € int O (e). On the other hand,
the fact that points in {(0,0)} x S* are fixed points of the drift, allows us to obtain, that

((0,0), [2r]) = ((0,0), [7])((0,0), [r]) = ((0,0), [r])¢s((0,0),[r]) € int2s O (e),
and, inductively, that
((0,0), [mr]) € intys OF(e),  ¥meN.
Since r € Q, there exists mg € N such that mor € Z implying that
e = ((0,0),[0]) = ((0,0), [mor]) & int O 4(e) < int O (e).

Since the associated derivation D has only eigenvalues with zero real parts, Theorem 3

imply that Yagmr)xst is controllable, concluding the proof. O

Remark 6. Let us note the big difference between 71 -conjugated LCSs on Aff(R) x S* and
on its simply connected covering Aff(R) x R when the associated matriz A = 0. Precisely,
Yagm)xr admits an infinite number of control sets with empty interior, while its projection

Yaf(r)xs1 15 controllable.
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5 Examples

In this section we present some examples of control sets in order to illustrate

the results of the work.

5.1 Control sets of LCSs on 2D groups

Example 1. Let us consider linear control systems on (R?, +)

r=x+u r=x+u
{ . + E%R27+) and { . E%RQ’_;’_)
y=-y+u y=u

where ) = [—1,1]. Their respective control sets, are given, respectively, by (see figure 3).

Clazy = (—1,1) x [-1,1]  and  Chpe,y = (-1,1) xR.

Note that the linear vector field Z%RQHF) has no singularities, and hence its
control set is bounded. In contrast, the existence of a singularity for the linear vector field

of Z?RQ’JF) makes the control set unbounded.

Figure 3 — Control sets of E%R; 4+ and Z%R% +)» respectively.
Example 2. Let us consider
y=—y+ue”

{ v where u € (). (ZAg(R))

9

], the control set of Xag(w) s given

DN | —
DN | —

For this system we have that, if Q) = [—

1
CAH(R) = {(:an) € RQ) —e’ < Y < 3ex} .
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1
On the other hand, if Q = l—l, 2} , the control set of Yagmw) is given by

1
CAH(R) = {(x>y) € R27 Y < 3636} .

The control sets of the previous systems are described in the picture below

(Figure 4).

N

11 1
Figure 4 — Control sets of Xag ) for 2 = l—Q, 2] and ) = l—l, 2], respectively.

5.2 Control sets of the control-affine system 2
Example 3. Let us assume that

10 1 0 1
AZ(Ol)’ 0=<0_1>, n=<1> and  Q=[-2,2].

It is not hard to see that

u —Uu

U(u)=<u_1,u+1> for  wé {—1,1}.

Moreover, Qo = (—1,1) and v(€) is an unbounded set given (see Figure 5). By simple

b

Also, by following the proof of Proposition 10 it is not hard to show that O (v(u)) and

O~ (v(u)) are actually open sets for any u ¢ {—1,1}, and hence, there exists control sets

calculations, one obtains that

DN | —

1
CRQ:{(x7y)7y>_2 or ZL’<

with nonempty interior Cy,Co such that
{v(u) e R*}ue (—2,1)c Q= C  and {v(u)eR?lue(1,2) c Q} cCy,

showing that a control-affine system on R* can admit more than one control set with

nonempty interior (see Figure 5).
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G

Cl

Figure 5 — Control-affine system on R? having three control sets with nonempty interior.

Example 4. The present example shows that the identity element of G(0) is not always in
the interior of the control set. For the details, the reader can consult (AYALA; DA-SILVA;
ROBLES, , Section 3).

Let us consider

1 0 0 —1 1
A:(O 1), 0=<1 0), n=<0) and  Q=[-1,1].

_ 2
Since det A(u) = 1+ u® > 0, all the equilibria are given by v(u) = (HUQ, 112) and
u u

they lie on the circumference with center in = (0,—1/2) and radius 5 Since the eigenvalues

of A are positive, the control set of the previous system is open and is contained in the

open ball B = {w e R?; |w+ ey < 1}.

Since v(0) = (0,0) € 0B, we have that (0,0) € 0Cr2 but (0,0) ¢ int Cge. In fact,
as showed in (AYALA; DA-SILVA; ROBLES, , Proposition 3.8), the singleton {(0,0)} is

a one-point control set of Yigz.
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