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Resumo

Circuitos fotônicos integrados (PICs) fornecem uma plataforma eficiente e escalável para pro-
cessamento e transmissão de informação. Esses circuitos se baseam na manipulação de ondas
eletromagnéticas, em geral através da interação com materiais dotados de propriedades es-
pecíficas. O niobato de lítio é particularmente apropriado para essa tarefa. Seus coeficientes
eletro-óptico e não-linear elevados viabilizam processos de mistura de frequências e modu-
lação de alta velocidade, com aplicações essenciais em telecomunicações e sensoreamento, e
fazem desse material um candidato promissor para tecnologia de informação quântica baseada
em fotônica. Niobato de lítio em filme fino (TFLN) em particular permite o forte confinamento
dos campos eletromagnéticos, e disponibiliza novos graus de liberdade para o design de dis-
positivos. Diversos avanços importantes ocorreram na última década, como a demonstrações
de perdas ultra-baixas e a geração de estados não-clássicos essenciais, tais como estados de
fótons únicos, estados emaranhados e estados comprimidos. Neste trabalho, desenvolvemos
uma receita para microfabricação de dispositivos fotônicos em niobato de lítio apropriada para
infraestrutura local de sala limpa. Inversão periódica de domínios (periodic poling) foi imple-
mentada e um sistema de acoplamento de baixa perda foi construído e testado.



Abstract

Photonic Integrated Circuits (PICs) provide an efficient and scalable platform for process-
ing and transmitting information. Such circuits rely on the manipulation of electromagnetic
waves, often achieved via interaction with materials exhibiting specific properties. Lithium
Niobate (LN) is particularly well-suited for this task. Its large nonlinear and electro-optical
coefficients enable frequency-mixing and high-speed modulation processes, advancing appli-
cations in communications and sensing, and making it a promising candidate for photonics-
based quantum information technology. Thin-Film Lithium Niobate (TFLN) in particular al-
lows for tight confinement of the interacting fields and unlocks additional degrees of freedom
for device design. Substantial progress has been made over the past decade, demonstrating
ultra-low optical losses and the generation of key nonclassical states of light such as single-
photon, entangled, and squeezed states. In this work, we develop a microfabrication recipe
for photonic devices in thin-film lithium niobate suitable for local cleanroom infrastructure.
Periodic poling of TFLN for quasi-phase-matching is successfully implemented, and a low-loss
edge coupling setup is demonstrated and tested.
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Chapter 1

Introduction

The central goal of this project is the microfabrication of integrated optical cavities in thin-film

lithium niobate (TFLN), aiming at applications in quantum information technology. Optical

cavities are widely used in photonic integrated circuits for signal amplification and spectral

filtering. Here, we seek to prepare cavities suitable for photon-pair generation via optical-

parametric oscillation, an important building block for integrated quantum photonics.

Photonic integrated circuits offer a unique platform for the implementation of quantum in-

formation technology. Their environmental stability, scalability, and compatibility with well-

established fabrication techniques make them stand out among alternatives in the field [1,

2, 3]. Great progress has been achieved in the last decade towards the integration of quan-

tum photonics experiments, including the generation of single-photon [4], entangled [5] and

squeezed [6, 7, 8] states of light. Yet, the on-chip generation and manipulation of quantum

states of light remains a huge scientific challenge, with major technological implications for

communication, simulation, computation, metrology, and sensing. [9].

This promise has motivated several materials to be considered as platforms for quantum

photonic integrated circuits [10]. Among these, Lithium niobate stands out for its excellent

material properties, including a wide bandgap, large refractive index, second and third-order

optical nonlinearities, Pockels electro-optic coefficient, and piezoelectricity. In the classical

domain, these properties have already consolidated lithium niobate as a central material for

telecommunications, especially in the form of electro-optic modulators (EOMs) and surface

acoustic wave devices (SAWs) [11]. These same properties also make it a promising workhorse

for quantum photonics [12], as they enable efficient nonlinear optical processes, fast modula-

tion, and low-loss transmission.
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High-quality microfabrication of photonic devices on TFLN is crucial to achieve practical

applications. In this project, optical resonators in TFLN are designed, fabricated, andmeasured

using a complete microfabrication process developed from scratch in local cleanroom facilities.

Periodic poling of TFLN for quasi-phase-matching is successfully studied and implemented,

and a low-loss edge coupling setup is constructed and tested. The final process yields, to the

best of our knowledge, the first TFLN integrated optical cavities fabricated in Latin America

and paves the way for further optimization in the near future.

1.1 Outline

The first three chapters are concerned with the theoretical foundations for the project. In

Chapter 2, I will present the foundation for a theoretical description of nonlinear optical in-

teractions in integrated photonic devices, culminating in a description of second-harmonic

generation in thin-film lithium niobate. In chapter 3, I will describe key concepts of quantum

optics necessary to describe nonclassical states of light, form the quantization of the elec-

tromagnetic field to the definition of squeezed states. Finally, in Chapter 4, I will provide a

theoretical description of Fabry-Perot optical cavities, which work as a model for the optical

properties of ring resonators fabricated in this project. This will be combined with considera-

tions in nonlinear optics to reach a theoretical description of the optical parametric oscillator,

a central element of quantum photonic integrated circuits.

In Chapter 5, I will discuss the main experimental choices of the project. I will present

a review of the properties, applications and important results in lithium niobate photonics,

aiming to justify its use in the project. Next, the tools of microfabrication used in the project

will be listed and briefly discussed. Finally, balanced homodyne detection will be presented

and described as a tool to measure nonclassical light.

In Chapter 6, I will show key computational results that help set the necessary benchmarks

for fabrication. Chapter 7 contains the heart of the experimental work in this project, where

the development process for the microfabrication recipe is described in detail. Finally, Chapter

8 discusses the challenges and strategies for fiber-to-chip coupling of light, and presents the

optical measurement of the fabricated devices.
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Chapter 2

Nonlinear Optical Interactions in

Photonic Devices

In this chapter, we will introduce the basic formalism to model and optimize nonlinear optic

interactions in integrated photonic devices. The first section describes the basic principles of

nonlinear optics, and how they arise from specific material properties. The second section

will introduce the physics of integrated photonic devices such as dielectric waveguides, and

combine it with the preceding results to model on-chip nonlinear interactions. Finally, the last

section will discuss how quasi-phase-matching can be used to overcome material limitations

and achieve efficient nonlinear conversion.

2.1 Interactions between light and matter

Nonlinear optics always deals with interactions between light and matter. When light en-

counters material media, the fields that make up the electromagnetic wave accelerate charges

bound to atoms in the material. This gives rise to induced electric dipole moments. At suffi-

ciently high intensities, this polarization will respond nonlinearly to the incident field. This

mechanism lies at the heart of nonlinear optics and is the central concern of this section.
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2.1.1 Maxwell’s equations in matter

It is possible to clarify the influence of amaterial medium in the propagation of light bymaking

modifications in Maxwell’s Equations in vacuum [13]

∇ ⋅ E =
𝜌
𝜖0
, ∇ × E = −

𝜕B
𝜕𝑡

, ∇ ⋅ B = 0, ∇ × B = 𝜇0J + 𝜇0𝜖0
𝜕E
𝜕𝑡

. (2.1)

In this form, by setting the charge (𝜌) and current (𝐽 ) densities to zero, Maxwell’s Equations

can be manipulated to obtain wave equations for both the electric and magnetic fields,

∇2E − 𝜇0𝜖0
𝜕E
𝜕𝑡2

= 0, ∇2B − 𝜇0𝜖0
𝜕B
𝜕𝑡2

= 0, (2.2)

which predict electromagneticwaves propagatingwith the speed of light, given by 𝑐 = (𝜇0𝜖0)−1/2.

In a material medium, additional sources of electric field will appear in the form of charge

densities. These contributions can be considered separately by rewriting the charge density

as

𝜌 = 𝜌𝑓 + 𝜌𝑏 = 𝜌𝑓 − ∇ ⋅ P, (2.3)

where the first term corresponds to free charges that may exist in the material in the form of

moving electrons or ions. The second term corresponds to the “bound” charges arising due

to the push and pull on electron clouds, inducing a dipole moment density along the path of

light. Such polarization density P is the source for bound-charge density (𝜌𝑏) and lies at the

heart of nonlinear optics. 1. In the linear regime, it is related to the electric field by the electric

susceptibility 𝜒𝑒 of the material, which is set as zero for the vacuum, such that

1
𝜖0
P = 𝜒 (1)E + 𝜒 (2)E2 + 𝜒 (3)E3 + … (2.4)

Once this separation of sources is established, it becomes natural to use Equation 2.3 to rewrite

Gauss’s Law by defining D = ∇ ⋅ (𝜖0E + P), such that

∇ ⋅ D = 𝜌𝑓 , (2.5)
1The dipole moment points away from negative charges, therefore a diverging P indicates an accumulation

of negative charges, which is why ∇ ⋅ P appear with a negative sign on Equation 2.3.
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where D is the electric displacement field, whose divergence is null in the absence of free

charges in a material.

To complete the rewriting of Maxwell’s Equations, a similar transformation can be done

for the magnetic field. Here, we separate the current contributions as

J = J𝑓 + J𝑏 + J𝑝 = J𝑓 + ∇ ×M +
𝜕P
𝜕𝑡

. (2.6)

The first term accounts for the free currents that may be present in the material. The second

term arises due to the induction of magnetic dipoles in matter, resulting in a magnetic dipole

densityM. The circulation of this density gives rise to the bound currents. The last term relates

to the changes in the bound electric charges modeled by the polarization P.

Once again, this separation of sources in Equation 2.6 motivates the definition of a “new”

field, and a magnetic susceptibility 𝜒𝑚,

H def= (
1
𝜇0
B −M) =

1
𝜇0(1 + 𝜒𝑚)

B =
1
𝜇
B, (2.7)

such that Ampère’s Law can be rewritten as

∇ ×(
1
𝜇0
B −M) = J𝑓 +

𝜕
𝜕𝑡

(P + 𝜖0E) ⇒ ∇ ×H = J𝑓 +
𝜕D
𝜕𝑡

. (2.8)

Leading to the following final form to write Maxwell’s Equations in matter

∇ ⋅ D = 𝜌𝑓 , ∇ × E = −
𝜕B
𝜕𝑡

, ∇ ⋅ B = 0, ∇ ×H = J𝑓 +
𝜕D
𝜕𝑡

. (2.9)

From which we can also write wave equations for both electric and magnetic fields. By us-

ing the definitions of Equations 2.5 and 2.7, it is clear that they can be made identical to the

previous wave equations, except for the change from 𝜇0 and 𝜖0 to 𝜇 and 𝜖 (respectively, the

magnetic permeability and the electrical permittivity of a given medium), such that the phase

velocity of the electromagnetic wave changes to

𝑣 =
1

√𝜇𝜖
, (2.10)
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and the ratio to the phase velocity in a vacuum defines the refractive index

𝑛 =
𝑐
𝑣
=
√
(1 + 𝜒𝑚)(1 + 𝜒𝑒).. (2.11)

Notice that this simple, dimensionless quantity arises naturally from the modifications

introduced to Maxwell’s Equation. In this linear, dispersionless regime, the refractive index

completely describes the changes imposed on the propagation of light by the presence of a

material medium. Just from direct comparison to the vacuum wave equations, we see that the

phase velocity is changed from 𝑐 to 𝑐/𝑛 and the wavelength is changed from 𝜆 to 𝜆/𝑛. Other

phenomena related to interactions with material media, such as refraction and reflection, can

also readily be studied with reference to 𝑛 by closer inspection of the equations given above.

Furthermore, the dependence of the material’s properties 𝜒𝑒 and 𝜒𝑚 on the frequency of the

optical signal will lead to material dispersion.

However, in order to account for nonlinear optical phenomena, we must consider a more

complete picture of the interactions of light and material media. At sufficiently high intensi-

ties, higher-order terms of the electric field must be considered to compute the polarization,

giving rise to frequency-mixing. At this point, it is helpful to consider in greater detail the

physical mechanism behind the interaction of electromagnetic fields with the bound charges

it encounters in materials.

2.1.2 The nonlinear polarization

Lorenz’s oscillator model for the atom [14] is an intuitive and powerful description of the

optical response of bound charges in a material medium. Here, we will briefly use it as a

smooth introduction to the nonlinear optical responses of materials, and to the tensorial nature

of the nonlinear optical susceptibility.

In Lorenz’s model, electrons are treated as if they were bound to the atomic nucleus by

“springs“ with specific strengths. Thus, the system consists of a damped-driven harmonic

oscillator, governed by an equation like

�̈�(𝑡) + 2𝛾�̇�(𝑡) + 𝜔2
0𝑥 + 𝑎𝑥2 = −

𝑒𝐸(𝑡)
𝑚

, . (2.12)
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Notice that we introduced a nonlinearity simply by adding a quadratic term to the restoring

force. As a consequence, if an optical field of the form

𝐸(𝑡) = 𝑒−𝑖𝜔1𝑡 + 𝑒−𝑖𝜔2𝑡 + c.c. (2.13)

is applied, then solving equation 2.12 by perturbation methods will yield one linear solution

of the form

𝑥(1)(𝑡) = 𝑥(1)
1 𝑒−𝑖𝜔1𝑡 + 𝑥(1)

2 𝑒−𝑖𝜔2𝑡 + c.c., (2.14)

and a series of second-order solutions whose frequencies can be computed by squaring the

input field. Assuming unit amplitude for all components, this leads to

𝑥(2)(𝑡) = [𝐸(𝑡)]2 = (𝑒𝑖𝜔1𝑡 + 𝑒𝑖𝜔2𝑡 + 𝑒𝑖𝜔2𝑡 + 𝑒−𝑖𝜔2𝑡)(𝑒𝑖𝜔1𝑡 + 𝑒−𝑖𝜔1𝑡 + 𝑒𝑖𝜔2𝑡 + 𝑒−𝑖𝜔2𝑡)

= 4 + 𝑒2𝑖𝜔1𝑡 + 𝑒2𝑖𝜔2𝑡 + 2𝑒𝑖(𝜔1+𝜔2)𝑡 + 2𝑒𝑖(𝜔1−𝜔2)𝑡 + 𝑐.𝑐..
(2.15)

The linear response of the harmonic oscillator corresponds to the polarization P shown in

Equation 2.3. The oscillator is driven by the incident electric field, and “damped” by specific

material properties. The higher-order responses to the driving force, whichwill become signif-

icant once oscillations amplitudes are large enough, correspond to the nonlinear polarization

P𝑁𝐿.

Physically, this nonlinear optical response does in fact give rise to a myriad of phenomena.

Each of the terms in Equation 2.15 models an actual second-order nonlinear process, mixing

the frequencies in the original signal in several of ways. The constant corresponds to the

Optical Rectification (OR) of both fields, the following two terms correspond to Second Har-

monic Generation (SHG), and the last two terms correspond to Sum-Frequency Generation

(SFG) and Difference-Frequency Generation (DFG). A similar solution can be carried out to

obtain third-order processes, which will mix the input frequencies in different ways.2 Thus,

materials exhibiting nonlinear optical responses are capable of mixing the frequencies of the

optical fields that traverse through them.

Translating this back into Maxwell’s Equations, we are motivated to model nonlinear op-

tical phenomena by expanding the “complete” polarization P as a power series in terms of the
2In this case, the restoring force was modeled by a quadratic term, corresponding to a noncentrosymmetric

potential (𝑈 (𝑥) ≠ 𝑈 (−𝑥)). To represent a centrosymmetric potential, a cubic restoring force must be used, and
the first non-vanishing nonlinear terms will be third-order. This simple consideration accounts for the physical
fact that only noncentrosymmetric materials exhibit second-order nonlinear optical susceptibilities.
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electric field. In simplified notation, this gives rise to

1
𝜖0
P = 𝜒 (1)E + 𝜒 (2)E2 + 𝜒 (3)E3 + … , (2.16)

where we have dropped the subscript in 𝜒𝑒 since it is no longer necessary to distinguish be-

tween the optical and magnetic susceptibilities3.

In Equation 2.16, the expansion coefficients are 𝑛-th order susceptibilities corresponding

to (𝑛 + 1)-th-rank tensors. The tensor nature of the coefficients reflects the polarization de-

pendencies and symmetries of the susceptibilities and is, therefore, a consequence of material

properties. In the following subsection, we will show how these tensors act to mix different

polarization components of the interacting fields.

In more precise notation, we may write each frequency component of the nonlinear po-

larization vector, considering terms up to third order, in the following way [15]:

1
𝜖0
𝑃𝑁𝐿,𝑖(𝜔) = ∑

𝛼,𝛽

∑
𝑗 ,𝑘

𝜒 (2)
𝑖𝑗𝑘 (𝜔, 𝜔𝛼 , 𝜔𝛽)𝐸𝑗(𝜔𝛼)𝐸𝑘(𝜔𝛽)+∑

𝛼,𝛽,𝛾

∑
𝑗 ,𝑘,𝑙

𝜒 (3)
𝑖𝑗𝑘𝑙(𝜔, 𝜔𝛼 , 𝜔𝛽 , 𝜔𝛾)𝐸𝑗(𝜔𝛼)𝐸𝑘(𝜔𝛽)𝐸𝑙(𝜔𝛾).

(2.17)

where the indices 𝑖, 𝑗 , 𝑘, 𝑙 will span the three spatial coordinates, and𝑚, 𝑛will span all frequen-

cies such that 𝜔 = 𝜔𝛼 + 𝜔𝛽 (including 𝜔𝛾 ) in the third-order case.

For optical frequencies much smaller than the material’s resonance, Kleinman’s symmetry

can be utilized to neglect the dispersion of the susceptibilities [15], meaning the 𝜔𝑖 depen-

dencies can be dropped, greatly simplifying Equation 2.17. Further simplification arises from

symmetry considerations for the susceptibility tensor 𝜒 (2).

Let us consider an example of practical importance for this work, that of SHG in Lithium

Niobate. Assuming an input optical field of frequency 𝜔 given by

𝐸(𝑡) = 𝐸1(𝑡)�̂� + 𝐸2(𝑡)�̂� + 𝐸3(𝑡)�̂�, (2.18)

We shall use the second-order term in Equation 2.17 evaluated at frequency 2𝜔. For simplicity,

we omit the time and frequency dependence of the field components. The summation over

frequency components is eliminated, as there is only one non-zero contribution at 𝜔, we then
3This is not an arbitrary choice, rather it is due to the typically low values of magnetic susceptibility, as

compared to its electric counterparts.
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sum over all nine combinations of spatial components,

1
𝜖0
𝑃𝑁𝐿,𝑖(2𝜔) = ∑

𝑗 ,𝑘
𝜒 (2)
𝑖𝑗𝑘 𝐸𝑗(𝜔)𝐸𝑘(𝜔)

= 𝜒 (2)
𝑖11𝐸1𝐸1 + 𝜒 (2)

𝑖12𝐸1𝐸2 + 𝜒 (2)
𝑖13𝐸1𝐸3 + 𝜒 (2)

𝑖21𝐸2𝐸1 + 𝜒 (2)
𝑖22𝐸2𝐸2+

+ 𝜒 (2)
𝑖32𝐸2𝐸3 + 𝜒 (2)

𝑖31𝐸3𝐸1 + 𝜒 (2)
𝑖32𝐸3𝐸2 + 𝜒 (2)

𝑖33𝐸3𝐸3.

(2.19)

Major simplifications arise from symmetry considerations for the susceptibility tensor 𝜒 (2)/.

This leads to a contracted notation where the rank-3 tensor 𝜒 (2) can be reduced to a two-

dimensional matrix with elements 𝑑𝑖𝑗 . In the case of Lithium Niobate, we are left with only

three non-vanishing [16], distinct elements, such that

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑃 (𝑁𝐿)
𝑥 (2𝜔)

𝑃 (𝑁𝐿)
𝑦 (2𝜔)

𝑃 (𝑁𝐿)
𝑧 (2𝜔)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 𝑑31 −𝑑22

−𝑑22 𝑑22 0 𝑑31 0 0

𝑑31 𝑑31 𝑑33 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐸2
1

𝐸2
2

𝐸2
3

2𝐸2𝐸3

2𝐸3𝐸1

2𝐸1𝐸2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝑑𝑥𝑑𝑦 (2.20)

This is a general expression for the nonlinear polarization term related to second-harmonic

generation in Lithium Niobate. Thus, we arrive at the main takeaway of this section. Equa-

tion 2.20 demonstrates how the nonlinear susceptibility mixes frequency components in a

polarization-sensitive manner, as determined by material properties.

Once the nonlinear polarization has been computed, it can be plugged intoMaxwell’s Equa-

tions to compute the amplitudes and propagation of the generated waves. We simply follow

the standard procedure to obtain a wave equation from Equation (2.9), thus

∇2E − 𝜇0
𝜕2

𝜕𝑡2
D = 0. (2.21)

Where we have assumed that the term ∇(∇ ⋅E) has a negligible contribution [15]. But now we

write D = 𝜖0E + P(L) + P(NL) = 𝜖E + P(NL), which translates to

∇2E − 𝜇0𝜖
𝜕2

𝜕𝑡2
E = 𝜇0

𝜕2

𝜕𝑡2
P(NL) (2.22)
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which is simply a driven wave equation, where the nonlinear polarization acts as a source term

on the right-hand side. Using the expression for P(NL) given in Equation 2.20, this equation can

be solved in a straight-forward way to obtain a description for so-called free-space nonlinear

optical interactions.

While much insight can be gained from this solution, here we are interested in considering

nonlinear interactions in integrated photonic devices. Thus, we must first solve Maxwell’s

Equations for boundary conditions typical of these systems. Once this is done, we can follow

a very similar procedure to account for nonlinearities.

2.2 Nonlinear photonic devices

The development of nonlinear optics [17] is closely related to the invention of the laser [18].

Indeed, nonlinear optical phenomena only become significant at high optical intensities, such

as those provided by lasers. Integrated photonic devices offer an additional way to enhance

optical intensity in nonlinear media: by confining light in wavelength-sized dielectric devices.

These devices provide miniaturizable, scalable and versatile platforms to fulfill several

tasks of information technology with high efficiency, environmental stability and low power

consumption. These advantages have made such devices ubiquitous in data and telecommu-

nications [19, 20], sensing [21], and increasingly present in quantum information science [1].

Modelling nonlinear optical interactions in integrated devices is a necessary step prior to

design and fabrication. The simplest dielectric integrated device is the idealized slab waveg-

uide as shown in Figure 2.1(a). Most of the key features of “real” waveguides can be understood

and often approximated by these systems. Thus, we begin this section with a short overview

of its solutions and key physical properties.

2.2.1 The dielectric slab waveguide

A dielectric slab waveguide consists of a stacking of three materials: substrate, core and cover,

such that the core has the highest refractive index of all three. A theory of these waveguides

begins by taking Equation 2.21 for the electric field in a material medium,

∇2E − 𝜇𝜖
𝜕2E
𝜕𝑡2

= 0, (2.23)
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Figure 2.1: (a) A diagram representing the dielectric slab waveguide, constituted of substrate,
core, and cover layers. (b) A rectangular ridge waveguide, represented with no cover layer. (c)
A rectangular rib waveguide, where shallow etching of the core layer leads to the formation
of a thin slab-like layer.

note that setting ∇ ⋅ E = 0, as needed to obtain this wave equation, is ensured in the linear

optics regime for an isotropic, source-freemedium. Considering the system described in Figure

2.1(a), we propose an ansatz based on symmetry considerations,

𝐸𝑦(𝑥, 𝑧, 𝑡) = 𝐸𝑦(𝑥)𝑒𝑖(𝜔𝑡−𝛽𝑧). (2.24)

Alternatively, the same can be done for the H-field. By proposing a solution of this form,

we are assuming that the electric field is always polarized along the infinite 𝑦 direction as the

wave propagates. This corresponds to a Transverse Electric (TE) mode, where electric field

component is always zero in the propagation direction. If we do the same for the magnetic

field, the result would be a Transverse Magnetic (TM) mode.

Noting the definition for the refractive index in Equation 2.11, and substituting the ansatz

in Equation 2.24 back in the wave equation, this yields

𝜕2𝐸𝑦

𝜕𝑥2 + (𝑘20𝑛
2
𝑖 − 𝛽2) 𝐸𝑦 = 0. (2.25)
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A physically meaningful guided mode should have an oscillatory solution inside the core, and

exponentially decaying solutions in the substrate and cover. In this case, we define

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝛾𝑖 =
√
𝛽2 − 𝑘20𝑛2𝑖 , ⇒ 𝐸𝑦(𝑥) = 𝐸0𝑒−𝛾𝑖𝑥 , in the cover and substrate

𝜅 =
√
𝑘20𝑛2core − 𝛽2, ⇒ 𝐸𝑦(𝑥) = 𝐸0𝑒±𝑖𝜅𝑥 , in the core.

(2.26)

By demanding that the tangential components of E andH be continuous at the interfaces, we

arrive at two transcendental equations, corresponding to families of TE and TM modes. If ℎ is

the core height for the slab waveguide core, then [22]

tan(ℎ𝜅) =
𝛾𝑐 + 𝛾𝑠

𝜅 [1 −
𝛾𝑐𝛾𝑠
𝜅2 ]

, (TE modes) tan(ℎ𝜅) =
𝜅 [

𝑛2
𝑛2𝑠
𝛾𝑠 + 𝑛2

𝑛2𝑐
𝛾𝑐]

𝜅2 − 𝑛2
𝑛2𝑐𝑛2𝑠

𝛾𝑐𝛾𝑠
(TM modes). (2.27)

All variables in these equations can be parameterized in terms of 𝜅, which in turn can be

plugged into Equations 2.26 to compute the spatial distribution and propagation constant (𝛽)

of each mode. It is common to refer to each mode by its effective refractive index 𝑛eff,

𝑛eff =
𝛽
𝑘0
, 𝑘0 =

2𝜋
𝜆
, (2.28)

which fully characterizes a given slab waveguide mode, apart from boundary conditions and

material properties. Equation 2.28 defines the effective refractive index as the fractional com-

ponent of the wavevector in the propagation direction. Note that this implies that modes with

lower effective refractive index have larger transverse components. It is therefore natural that

higher-order modes have lower effective refractive indices. Throughout this work, the ef-

fective index will be used as a central parameter to characterize optical modes in integrated

devices.

The distinction between TE and TM is of essential for photonic design. In Section 2.1.2 we

showed that the nonlinear susceptibility mixes frequencies in a polarization-sensitive manner,

therefore we can expect TE and TM modes to differ in their efficiency for nonlinear processes

on that basis alone. Furthermore, these modes will also experience waveguide dispersion ef-

fects in distinct ways, meaning that phase-matching conditions will differ for each of them

when considering a nonlinear process.

One key distinction that facilitates the identification of such modes, is the presence of

discontinuities. To obtain Equation 2.27, we assumed that the tangential components of the E
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and H fields were continuous along the material interfaces. However, in the absence of free

charges, the normal components of the D field obey

(D1 − D2) ⋅ �̂�1,2 = 𝜖1𝐸1,⟂ + 𝜖2𝐸2,⟂ = 0, (2.29)

which implies in a discontinuity when the permittivity 𝜖𝑖 = 𝜖0(1+𝜒𝑒) changes between media.

In general, there is no equivalent discontinuity for the magnetic field, since the magnetic per-

meability 𝜒𝑚 does not change between most dielectric medic used in photonics applications.

For rectangular waveguides, the solution can not be computed analytically, and the distinc-

tion between TE and TM modes is not as straightforward. One such system is the rectangular

dielectric waveguide, of major practical interest for integrated photonics.

2.2.2 The rectangular waveguide

Section 2.2.1 has introduced most of the basic vocabulary and notation for the treatment of

optical waveguides. However, experiments will always deal with waveguides with a finite

transverse profile, which the slab waveguide can only approximate.

Consider a rectangular waveguide, as represented in Figure 2.1(b) and (c). In this case, we

are dealing with a system exhibiting only translational symmetry in the 𝑧 direction for the

amplitude, thus we propose a solution of the form

E(𝑥, 𝑦, 𝑧) = E(𝑥, 𝑦)𝑒𝑖(𝜔𝑡−𝛽𝑧), (2.30)

in which no specific polarization direction has been assumed, contrary to the slab waveguide

ansatz (Equation 2.24). Plugging into the wave equation, as shown in Section 2.2.1, we arrive

at

(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2)E(𝑥, 𝑦) + (𝑛2𝑖 𝑘
2
0 − 𝛽2)E(𝑥, 𝑦) = 0. (2.31)

While there are approximation methods to solve Equation 2.31 [23] in certain parameter re-

gions, we rely on the Finite Element Method do obtain a solution, as implemented in COMSOL

Multiphysics ®, as detailed in Chapter 6.

The solution follows a procedure similar to the slab waveguide. We may think of Equation

2.31 as an eigenvalue problem, where the eigenvalues are the propagation constants, and the

field profiles are the eigenvectors. As such, it is useful to write each solution of the rectangular
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waveguide as

E(𝑥, 𝑦, 𝑧, 𝑡) =
√
𝑃𝑚𝐴(𝑧, 𝜔)F𝑚(𝑥, 𝑦) exp (−𝑖 [𝛽𝑚𝑧 − 𝜔𝑡]) . (2.32)

In this notation, the field distribution along the transverse plane is normalized by the total

field power, and denoted by F(𝑥, 𝑦). The 𝐴(𝑧, 𝜔) amplitude has crucial physical significance.

This factor will model changes in the amplitudes of specific modes during propagation. These

changes may arise as a consequence of perturbation to the original set of waveguide modes,

either due to optical nonlinearities, defects in the waveguide geometry, or the presence of

adjacent waveguides.

2.2.3 Perturbation approach for coupled-mode theory

We now come to the most important result of this chapter, a simple and general theory of

perturbations to the polarization in waveguides. We begin by restating the Wave Equation 2.2

for the electric field,

∇2E − 𝜇𝜖
𝜕2E
𝜕𝑡2

= 0, (2.33)

and introducing a notation to address power-normalized mode profiles F(𝑥, 𝑦) and G(𝑥, 𝑦) .

These are defined as

F𝑚(𝑥, 𝑦) =
1

√
𝑃𝑚

E𝑚(𝑥, 𝑦) and G𝑚(𝑥, 𝑦) =
1

√
𝑃𝑚

H𝑚(𝑥, 𝑦). (2.34)

In this framework, considering only linear polarization, the total fields in a waveguide

could be written as

E(r, 𝜔) = ∑
𝑚

𝐴𝑚F𝑚(𝑥, 𝑦)𝑒−𝑖(𝛽𝑚𝑧−𝜔𝑡) and H(r, 𝜔) = ∑
𝑚

𝐴𝑚G𝑚(𝑥, 𝑦)𝑒−𝑖(𝛽𝑚𝑧−𝜔𝑡), , (2.35)

where the amplitudes 𝐴𝑚 = �̃�𝑚
√
𝑃𝑚 have units of square-root power, and �̃�𝑚 are their dimen-

sionless counterparts. Here, if we plug the expansions back into the wave equation, the result

yields the familiar

[(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) + (𝑛2𝑖 𝑘
2
0,𝑚 − 𝛽2

𝑚)]𝐴𝑚F𝑚(𝑥, 𝑦)𝑒−𝑖(𝛽𝑚𝑧−𝜔𝑡) = 0, (2.36)
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which tells the full story of the unperturbed system. To introduce the perturbation, we recover

the wave Equation 2.22, which was obtained by considering

D = 𝜖E + P(NL), (2.37)

except this time we take a more general case of a perturbation to the original polarization.

Accordingly, we replace P(NL) by Ppert and, as in the previous case, arrive at

∇2E − 𝜇0𝜖
𝜕2

𝜕𝑡2
E = 𝜇0

𝜕2

𝜕𝑡2
Ppert. (2.38)

Now, wewill introduce a z-dependency on the amplitudes𝐴𝑚(𝑧) in 2.35 tomodel the effects

of perturbations. As stated earlier, these could be defects in the waveguide geometry, local

changes in refractive index, the presence of adjacent waveguides or, more importantly, the

nonlinear optical response of a material. By adding the z-dependency, it is anticipated that

such perturbations will allow optical power to flow between different modes 𝑚.

With this subtle change, the second-order derivative with respect to 𝑧 will yield many

“new” terms. Thus, the result of plugging the fields in Equation 2.38 is now

∑
𝑚

[
𝜕2

𝜕𝑧2
𝐴𝑚(𝑧) − 2𝑖𝛽

𝜕
𝜕𝑧

𝐴𝑚(𝑧)] F𝑚(𝑥, 𝑦)𝑒−𝑖(𝛽𝑚𝑧−𝜔𝑡)+

∑
𝑚

[(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) + (𝑛2𝑖 𝑘
2
0 − 𝛽2

𝑚)]𝐴𝑚(𝑧)F𝑚(𝑥, 𝑦)𝑒−𝑖(𝛽𝑚𝑧−𝜔𝑡) = 𝜇0
𝜕2

𝜕𝑡2
Ppert,

clearly, the left-hand side term in the bottom row will vanish, as it satisfies the unperturbed

wave equation, therefore

∑
𝑚

[
𝜕2

𝜕𝑧2
𝐴𝑚(𝑧) − 2𝑖𝛽𝑚

𝜕
𝜕𝑧

𝐴𝑚(𝑧)] F𝑚(𝑥, 𝑦)𝑒−𝑖(𝛽𝑚𝑧−𝜔𝑡) = 𝜇0
𝜕2

𝜕𝑡2
Ppert. (2.39)

Note that, physically, all the dependency of the amplitude 𝐴𝑚(𝑧) with respect to the propaga-

tion direction 𝑧 is a consequence of the perturbation Ppert. As in most perturbation theories,

the validity of this assumption hinges on the perturbation being “weak” enough. Thus, we

assume that the amplitudes of the modes vary slowly along the propagation, such that the

second-order derivative with respect to 𝑧 can be neglected. This is often referred to as the
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Slowly Varying Envelope Approximation (SVEA). By doing so, we arrive at

∑
𝑚

2𝑖𝛽𝑚 [
𝜕
𝜕𝑧

𝐴𝑚(𝑧)] F𝑚(𝑥, 𝑦)𝑒−𝑖(𝛽𝑚𝑧−𝜔𝑡) = −𝜇0
𝜕2

𝜕𝑡2
Ppert. (2.40)

Next, we employ a common “trick” to exploit the orthogonality of the modes in the slab

waveguide [24]. Namely, we take the dot product of both sides of the equation with respect to

a different mode profile F∗
𝑛(𝑥, 𝑦), and integrate in the plane perpendicular to the propagation

direction

∑
𝑚

2𝑖𝛽𝑚 [
𝜕
𝜕𝑧

𝐴𝑚(𝑧)] 𝑒
−𝑖(𝛽𝑚𝑧−𝜔𝑡)∬

∞

−∞
F𝑚(𝑥, 𝑦) ⋅ F∗

𝑛(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = −𝜇0
𝜕2

𝜕𝑡2 ∬
∞

∞
Ppert ⋅ F∗

𝑛(𝑥, 𝑦) 𝑑𝑥𝑑𝑦.

(2.41)

So far, this demonstration has been general to both idealized slab waveguides and “real”,

rectangular waveguides. To simplify the orthonormality relation, however, we will now carry

out the integral on the left-hand side assuming that the system behaves as a slab waveguide,

with well-defined pure TE(TM) modes, such that F𝑚 = 𝐹𝑚,𝑗 ĵ and G𝑚 = 𝐺𝑚,𝑖 î. Then, G(x,y) can

be written in terms of F(x,y) using Faraday’s law, such that

1
2 ∬

∞

−∞
F∗
𝑚 × G𝑛 𝑑𝑥𝑑𝑦 = 𝛿𝑚𝑛 ⇒ ∬

∞

−∞
F𝑚(𝑥, 𝑦) ⋅ F∗

𝑛(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =
2𝜔𝜇0
𝛽𝑚

𝛿𝑚𝑛. (2.42)

In the rectangular waveguide, the same orthonormality relation (in terms of a cross-product)

applies, but it cannot be rewritten in terms of a single dot-product, as shown here. However,

a different procedure can be used to arrive at the exact same result obtained in this section

without recourse to the slab waveguide [25], by using a different set of approximations. For

completion, this approach is also carried out in detail in Appendix A.

Now, plugging Equation 2.42 into Equation 2.41 and carrying out the summation, we arrive

at
𝜕
𝜕𝑧

𝐴𝑚(𝑧) =
𝑖
4𝜔

𝑒𝑖(𝛽𝑚𝑧−𝜔𝑡)
𝜕2

𝜕𝑡2 ∬
∞

∞
Ppert ⋅ F∗

𝑚(𝑥, 𝑦) 𝑑𝑥𝑑𝑦. (2.43)

This is the central equation for the theory of coupled modes. It is able to predict how the

amplitude of a given mode 𝑚 will change along the propagation direction 𝑧 given the pres-

ence of a specific perturbation Ppert to the linear polarization of the material where the light is

propagating. Notice that the strength of the coupling betweenmodes is fundamentally propor-
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tional to the spatial overlap between the perturbation source and the mode being considered,

as calculated by the surface integral on the right-hand side.

Specific properties of coupled mode theory will appear for the case of nonlinear optical

effects once the perturbation Ppert is replaced by the nonlinear polarization P(NL) shown in

Equation 2.20. These properties will be central for considerations on device design, and on the

desirable material properties for optimal nonlinear performance.

2.2.4 Second harmonic generation in a TFLN waveguide

In this subsection, we will apply the general Equation 2.43 to the case of second harmonic gen-

eration in a thin-film lithium niobate waveguide. This is a case of great practical interest given

our context. First, because the phase matching conditions for SHG are the same as for De-

generate Parametric Down-Conversion (DPGC), which is a standard process for photon-pair

generation, and a major motivation for this project. Second, SHG is a thresholdless process,

relatively easy to measure optically, requiring a single pump source and with reasonably low

phase mismatch for lithium niobate for the NIR-telecom transition, which makes it an ideal

candidate for testing our first fabricated devices.

In section 2.1.2, the nonlinear polarization up to second orderwas computed for the second-

harmonic frequency 2𝜔, given an input at 𝜔. The final expression in Equation 2.20 contains

three separate components of the second-order nonlinear susceptibility tensor, d22=2.4 pm/V,

d31=−4.52 pm/V and d33=31.5 pm/V [26]. Since the d33 component is significantly larger than

its counterparts, we consider only its contribution, thus looking solely at the crystalline 𝑧-

component4 of the nonlinear polarization,

1
𝜖0
𝑃𝑁𝐿,𝑧(2𝜔) = −𝑑22 (𝐸2

1 − 𝐸2
2 + 2𝐸1𝐸2) + 𝑑31 (𝐸2

1 + 𝐸2
2 + 2𝐸2𝐸3 + 2𝐸1𝐸3) + 𝑑33 (𝐸2

3)

≈ 𝑑33𝐸2
3 .

Therefore, adjusting for the notation developed in the previous section, the perturbation to be

substituted into Equation 2.43 is

Ppert = P(NL) = 𝜖0𝑑33 [𝐴𝜔(𝑧)]2 [𝐹𝜔(𝑥, 𝑦)]2 𝑒−2𝑖(𝛽𝜔𝑧−𝜔𝑡) ẑ0, (2.44)
4Not to be confused with the propagation component, also referred to as 𝑧. Henceforth, only the components

of the field parallel to the 𝑑33 axis are considered.
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such that, once the time derivatives are computed,

𝜕
𝜕𝑧

𝐴2𝜔(𝑧) = −
𝑖𝜔
2 [𝐴2

𝜔(𝑧)] 𝑒
𝑖[𝛽2𝜔−2𝛽𝜔]𝑧𝜖0𝑑33 ∬

∞

∞
[𝐹𝜔(𝑥, 𝑦)]2 [𝐹 ∗

2𝜔(𝑥, 𝑦)] 𝑑𝑥𝑑𝑦. (2.45)

The equation can be integrated from 𝑧 = 0 to 𝑧 = 𝐿 assuming that the initial power at the

second-harmonic frequency is zero, and employing the No Pump Depletion Approximation

(NPDA), where pump power is𝐴(𝑧) = |𝐴𝜔(0)|2 = 𝑃0. As a result, the SHG conversion efficiency

𝜂 is given by

𝜂 =
|𝐴2𝜔|2

|𝐴𝜔(0)|2
=
||||
𝑖𝜔
2
𝜖0𝑑33 ∬

∞

∞
[𝐹𝜔(𝑥, 𝑦)]2 [𝐹 ∗

2𝜔(𝑥, 𝑦)]
||||

2

𝑃0𝐿2sinc2 [(𝛽2𝜔 − 2𝛽𝜔) 𝐿] . (2.46)

This expression summarizes the relevant physics for SHG. The surface integral requires the

original and generated mode to have good spatial overlap, that is, to have similar mode profiles

on the transverse plane. Given that 𝐹(𝑥, 𝑦) represents the normalized fields, this integral is also

largest when the optical modes are confined in a small area, thus representing high optical

intensity, typical of integrated devices.

Finally, efficiency is highly sensitive to the phase mismatch of the interacting modes

Δ𝛽 = 𝛽(2𝜔) − 2𝛽(𝜔), (2.47)

in other words, the waves must maintain a specific phase relation to ensure that the contri-

butions from different parts of the crystal will add up constructively along the propagation

direction. The same condition can also be stated in terms of the conservation of momentum

between the interacting photons.

2.3 Phase matching and quasi-phase-matching

In the presence of phase matching, the efficiency of the nonlinear conversion will increase

monotonically along the propagation direction. However, in the absence of phase matching,

the interacting fields will accumulate a phase difference, causing the optical power to fluctuate

between the interacting modes.
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Figure 2.2: (a) A schematic representation of quasi-phase-matching in terms of propagation
constants. (b) The sinc2(Δ𝛽𝐿) term in the efficiency of SHG as a function of the phasemismatch
for a fixed propagation length. (c) A schematic representation of how the SH field amplitude
changes along the propagation direction under perfect phase matching, quasi-phase-matching
and arbitrary phase-mismatch.

More specifically, once the waves have propagated over a specific coherence length pro-

portional to the phase mismatch,

𝐿𝑐𝑜ℎ =
2𝜋
Δ𝛽

, (2.48)

the inverse process will be favored over the “forward” process. It can be readily seen from

Equation 2.45, that the equation governing the inverse process to SHG differs only by a phase

change [27]. This is shown in Figure 2.2(c).

Notably, if there were no sources of dispersion acting in the system, phase-matching con-

ditions would always be satisfied. After all, the propagation constants would only be linear

functions of the optical frequency, as in

𝛽 = 𝑛eff
𝜔
𝑐
. (2.49)

In reality, however, the effective index must be written as 𝑛eff(𝜔), to indicate its dependence

on the several sources of dispersion that exist in a dielectric waveguide.

In integrated photonics, it is often possible to engineer the device geometry to introduce

new sources of dispersion to compensate for the phase mismatch, thereby achieving “modal”

phase-matching. When this dispersion engineering is either impractical or impossible, the

alternative is to implement quasi-phase-matching.
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In quasi-phase-matching, the material properties of the nonlinear crystal are changed pe-

riodically to guarantee parametric gain. When the interacting fields accumulate a phase dif-

ference of 𝜋, such that the optical power is about to begin flowing back into the pump mode,

the sign of nonlinear optical susceptibility is inverted. This is done by inverting the crystalline

orientation along a given direction, effectively inverting the sign of 𝑑33 in Equation 2.45 [28].

The impact of this periodic modulation in the nonlinear efficiency is shown in Figure 2.2(c).

The net effect on the nonlinear susceptibility is to create an “effective” coefficient 𝑑𝑒𝑓 𝑓 , which

differs from the original 𝑑33 by a factor of roughly 2/𝜋. In this sense, the cumulative quasi-

phase-matching efficiency is limited to around 63% of the phase-matched case. This periodic

inversion is referred to as Periodic Poling [29, 30, 31]. Its experimental implementation is

a major point of interest for this project and will be discussed in detail in the subsequent

chapters.
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Chapter 3

Nonclassical States of Light

The quantum nature of light is the link tying this project together. It is the bridge between

the platform and the application. Both integrated photonics and quantum information tech-

nology exist independently. The applications of integrated photonics go far beyond the use of

nonclassical light, and much has been achieved in quantum information technology without

recourse to photonics-based platforms. Yet, it is the quantum nature of light that allows these

“fields” to intersect to form the subject matter of this project: integrated quantum photonics.

In this chapter, we will introduce the basic formulation for a quantum theory of light and

highlight the key properties of nonclassical states.

3.1 Quantization of the electromagnetic field

The quantization of the electromagnetic field is achieved in a relatively straightforward man-

ner. Here, we will follow a procedure similar to the one often described in the literature [32,

33, 34, 35]. Before a mathematical formulation is introduced, it is useful to describe the process

intuitively. In less rigorous terms, the field will be decomposed into its spectral components,

and placed inside a closed cavity with periodic boundary conditions. Note that the volume of

this cavity can later be taken to infinity to recover a continuous spectrum.

Once this is done, the total field is described as a superposition of modes with specifically

allowedwavevectors, such that the total energy inside the cavity reduces to a sum over the am-

plitude contributions of each mode. By a change of variables, this total energy is shown to be

equivalent to the Hamiltonian of a group of uncoupled harmonic oscillators, whose “position”

and “momentum” phase space quadratures now correspond roughly to real and imaginary
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parts of the electric field amplitude. Finally, the quantization is achieved by imposing canon-

ical commutation relations to these quadratures, which become operators acting on a Hilbert

space.

Nowwe proceed to a more rigorous description of the quantization process. For simplicity,

we will employ Gaussian units, such that Maxwell’s Equations are written as

∇ ⋅ B = 0, ∇ × E = −
1
𝑐
𝜕B
𝜕𝑡

, ∇ ⋅ E = 4𝜋𝜌, ∇ × B =
4𝜋
𝑐
J +

1
𝑐
𝜕E
𝜕𝑡

, (3.1)

and center the discussion on the vector potential A(r, 𝑡). In the Coulomb gauge,

∇ ⋅ A(r, 𝑡) = 0, and Φ = 0 ⇒ E = −
1
𝑐
𝜕A
𝜕𝑡

and B = ∇ × A. (3.2)

In this case each plane wave solution for the vector potential is given by

A(r, 𝑡) = ê𝐴0𝑒𝑖(k⋅r−𝜔𝑘 𝑡) + c.c.. (3.3)

Now, by confining the electromagnetic field to a cube of edge length 𝐿 and volume 𝑉 = 𝐿3,

and imposing periodic boundary conditions, the allowed values for the wavevector become

k = 2𝜋𝑛/𝐿î where 𝑛 is the set of all integers. Accordingly, the expansion for the vector

potential will be given by

A(r, 𝑡) =
1
𝑉
∑
k,𝑠

ê𝐴k,𝑠𝑒𝑖(k⋅r−𝜔𝑡) + c.c., (3.4)

where 𝑠 gives one of two polarizations for each direction k. As stated before, we want to see

the implications of this change to the expression of the total energy. In the general case, the

energy of the electromagnetic field in a volume 𝑉 is given by [36]

𝐻0 =
1
8𝜋 ∫

𝑉
[E2 + B2] 𝑑3𝑟 . (3.5)

by using Equation 3.4 for the confined vector potential and Equations 3.2 to write E and B in

terms of A, the total energy is rewritten as

𝐻 =
𝑉
2𝜋

∑
k,𝑠

𝑘2 |Ak,𝑠 |2 . (3.6)
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This result follows from direct substitution and use of the orthogonality relation between plane

waves. Notice that the “quantization cavity” has given us a system whose energy comes from

a sum over amplitude contributions of specific modes.

A clear physical interpretation arises once we define some additional quantities

𝑝K,𝑠(r, 𝑡) =
√

𝑘𝑉
𝜋ℏ𝑐

Im [Ak,𝑠(r, 𝑡)] , and 𝑞K,𝑠(r, 𝑡) =
√

𝑘𝑉
𝜋ℏ𝑐

Re [Ak,𝑠(r, 𝑡)] (3.7)

Notice that this particular choice of coefficients is such that the final form of the total energy

is

𝐻 = ∑
k,𝑠

ℏ𝜔𝑘

2 [𝑝2
k,𝑠(r, 𝑡) + 𝑞2k,𝑠(r, 𝑡)] (3.8)

which is identical to the Hamiltonian for a set of independent harmonic oscillators, whose

“position” and ”momenta” are given by 𝑝k,𝑠 and 𝑞k,𝑠. The natural consequence here is that the

Hilbert space describing the quantized electromagnetic field is isomorphic to the Hilbert space

of a quantum harmonic oscillator.

Notice that, by direct comparison to Equation 3.6, we can relate the amplitude Ak,𝑠 of each

mode to a corresponding “number of photons” 𝑛, as in

𝑛k,𝑠 ↔
𝜔𝑘

2𝜋ℏ𝑐2
|Ak,𝑠 |2 for 𝑛k,𝑠 ≫ 1 (3.9)

Thus, we may think of photons as excitations to different modes of this quantum harmonic

oscillator. The equivalence is taken further by defining creation and annihilation operators,

which raise or lower the “population of photons” in a given mode, definable in terms of the

quadratures in Equation 3.7, then

�̂�k,𝑠(r, 𝑡) =
1√
2 [

�̂�k,𝑠(r, 𝑡) + 𝑖�̂�k,𝑠(r, 𝑡)] , (3.10)

�̂�†k,𝑠(r, 𝑡) =
1√
2 [

�̂�k,𝑠(r, 𝑡) − 𝑖�̂�k,𝑠(r, 𝑡)] . (3.11)

Note that the “hat” has been added to the notation to communicate that these quantities are

now operators acting on the Hilbert space. Their behavior in this space follows from imposing

the canonical quantization relation to �̂�k,𝑠 and �̂�k,𝑠, and consequently to �̂� and �̂�† as well,

[�̂�k,𝑠, �̂�k′,𝑠′] = 𝑖𝛿kk′𝛿𝑠𝑠′ ↔ [�̂�k,𝑠, �̂�†k′,𝑠′] = 𝛿kk′𝛿𝑠𝑠′ . (3.12)
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From these definitions, it is straightforward to show that the Hamiltonian for the field is

�̂� = ∑
k,𝑠

ℏ𝜔𝑘 (�̂�k,𝑠�̂�†k,𝑠 +
1
2)

. (3.13)

These results conclude the basic quantization of the electromagnetic fields. The state of the

field is now described by a vector in Hilbert space where all the fields Ê, B̂ and Â are operators,

defined in terms of the creation and annihilation operators, as in

A(r, 𝑡) = ∑
k,𝑠

√
2𝜋ℏ𝑐
𝑘𝑉

�̂�k,𝑠ek,𝑠𝑒𝑖(k⋅r−𝜔𝑡) + h.c., (3.14)

E(r, 𝑡) = 𝑖∑
k,𝑠

√
2𝜋ℏ𝜔𝑘

𝑉
�̂�k,𝑠ek,𝑠𝑒𝑖(k⋅r−𝜔𝑡) + h.c., (3.15)

B(r, 𝑡) = 𝑖∑
k,𝑠

√
2𝜋ℏ𝜔𝑘

𝑉
�̂�k,𝑠 (k × ek,𝑠) 𝑒𝑖(k⋅r−𝜔𝑡) + h.c., (3.16)

To further explore theHilbert spacewhere these operators live, it is necessary to define specific

states. In the next section, it will be shown that this search leads us to a new class of states

called “coherent states”, defined by Roy Glauber in two seminal papers published in 1963 [37,

38].

3.2 Coherent states

In Equations 3.15 and 3.16, the E and B fields are defined in terms of the non-hermitian an-

nihilation operator �̂�k,𝑠 and its hermitian conjugate. Following the usual procedure for the

quantum harmonic oscillator, it would be natural to take this as motivation to define a new,

hermitian operator

�̂�k,𝑠 = �̂�†k,𝑠�̂�k,𝑠. (3.17)

Which can act on a vector in Fock space to “count” the number of photons in a given mode.

In other words, if a field defined by 𝑁 modes with 𝑛𝑖 photons in each mode is given by

|{𝑛𝑖}⟩ = ∏
𝑖
(|𝑛1⟩ ⊗ |𝑛2⟩ ⊗… |𝑛𝑁 ⟩) (3.18)

then the mean number of photons in a given mode 𝑗 is given by 𝑛𝑗 = ⟨{𝑛𝑖}| �̂�†𝑗 �̂�𝑗 |{𝑛𝑖}⟩.
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At first sight, it would therefore be natural to claim that the operators defined hitherto live

in Fock space. However, notice that E field in Equation 3.15 is a function of the annihilation

operator �̂�k,𝑠. Yet, if the mean value of 𝑎 is taken with respect to a Fock state, we get

⟨𝑛| �̂�k,𝑠 |𝑛⟩ = 0. (3.19)

Indeed, Fock states are not able to represent fields with classical-like properties, such as well-

defined amplitudes and phases [33]. While they are useful to describe experiments that count

discrete numbers of photons, they are not suitable to represent fields that might be measured

in most experiments.

We are thenmotivated to search for a class of states which fulfills this task. Naturally, given

the expressions for quantized E and B fields, one would expect these states to be eigenstates

of the annihilation operator,

�̂� |𝛼⟩ = 𝛼 |𝛼⟩ . (3.20)

Combining this property alone with a standard expansion of a general coherent state in the

Fock basis,

|𝛼⟩ = ∑
𝑛
⟨𝑛|𝛼⟩ |𝑛⟩ , (3.21)

it is possible to show that [39]

|𝛼⟩ = 𝑒−
1
2 |𝛼|

2 ∑
𝛼𝑛
√
𝑛
|𝑛⟩ . (3.22)

This implies that the mean number of photons in a coherent state is given by

⟨𝛼| �̂� |𝛼⟩ = ∑
𝑛
𝑛𝑝𝑛 ⇒ 𝑝𝑛 = 𝑒−|𝛼|

2 |𝛼|𝑛

𝑛!
. (3.23)

In that sense, the coherent states are a Poissonian superposition of Fock states. In other

words, they are composed of states with discrete numbers of photons.

Considerations about the statistics alone can also be used to define coherent states. Indeed,

understanding this property is essential to motivate one of the central nonclassical states of

interest to quantum information: squeezed states. To achieve this, we must introduce a pair

of phase space variables describing a phase space and discuss their statistical properties.
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3.3 Field Quadratures

So far, we have justified our interest in coherent states for their classical-like nature. As eigen-

states of the annihilation operators, they are easily related to fields with well-defined ampli-

tude and phase, as indicated by Equation 3.15. In fact, we have that,

⟨𝛼| �̂� |𝛼⟩ = 𝛼. (3.24)

Like any other complex quantity, the 𝛼 parameter that completely determines a coherent state

has an in-phase and an out-of-phase component. For any complex number 𝑧, we know that

Re(𝑧) = 1
2
(𝑧 + 𝑧∗) and Im(𝑧) =

1
2
𝑖(𝑧∗ − 𝑧). (3.25)

Thus, simply adjusting to our previous normalization choices, it is natural to define the fol-

lowing operators to “extract” the real and imaginary components of 𝛼 out of a coherent state

�̂� = (�̂� + �̂�†) , and 𝑌 = 𝑖 (�̂�† − �̂�) , (3.26)

which are dimensionless equivalents to the quadrature operators defined in Equation 3.10 and

3.11. These operators will inherit the commutation relation from �̂� and �̂�†, such that, from

Equation 3.12, it follows that

[�̂�k,𝑠, 𝑌k,𝑠] = 2𝑖𝛿kk′𝛿𝑠𝑠′ , (3.27)

as expected for their equivalence to the “position” and “momentum” operators defined earlier.

By taking the mean value of the operators with respect to a coherent state, the result is

⟨𝛼| �̂� |𝛼⟩ = 2Re(𝛼) and ⟨𝛼| 𝑌 |𝛼⟩ = 2Im(𝛼), (3.28)

as expected from their definition.

Equation 3.28 indicates that measuring the field quadratures �̂� and 𝑌 is equivalent to mea-

suring the in-phase and out-of-phase components of 𝛼, thereby completely characterizing the

coherent state. We are therefore motivated to suggest a phase space representation where �̂�

and 𝑌 are the coordinates. However, some considerations still must be made concerning the

irreducible uncertainty of these measurements.
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One can show that, given a pair of �̂� and �̂� observables [40],

⟨(Δ2�̂�)⟩⟨(Δ2�̂�)⟩ ≥
1
4
|||⟨[�̂�, �̂�]⟩

||| . (3.29)

This follows directly from the Schwarz inequality and the definition of hermitian operators.

Applying this to the dimensionless field quadratures using Equation 3.27, then

Δ2�̂�Δ2𝑌 ≥ 1. (3.30)

A coherent state implies in a particular distribution of uncertainty between the two quadra-

tures. The variances of �̂� and 𝑌 with respect to a coherent state can easily be computed to

show that

Δ2�̂� = ⟨𝛼| �̂� 2 |𝛼⟩ − (⟨𝛼| �̂� |𝛼⟩)
2
= 1. (3.31)

In a similar way, it can be shown that Δ2𝑌 = 1.

Thus, coherent states represent a minimum uncertainty state, in which Equation 3.30 be-

comes an equality, and the uncertainty is equally distributed among the two quadratures.

Now, it is natural to represent the coherent field as a region in phase space, as shown

in Figure 3.1. Indeed, it represents the smallest possible region, given that it minimizes the

uncertainty relation. We show in Figure 3.1(b) a state with excess noise, and in Figure 3.1(c) a

squeezed state, which is also a minimum uncertainty state, and will be discussed in the next

section.

A field with excess noise and a squeezed state are also represented in Figure , as its prop-

erties will be discussed in the subsequent section

Figure 3.1: Phase space representation of a single mode of the quantized electromagnetic field.
(a) a coherent state, representing minimum uncertainty displaced vacuum, (b) a state with
excess noise in both quadratures, (c) a squeezed state, exhibiting minimum total uncertainty
distributed unequally among the two quadratures
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The quadratures represent real properties of the electromagnetic field and can bemeasured

experimentally. A more general representation will include a rotation in phase space such that

�̂�𝜃 = �̂�†𝑒𝑖𝜃 + �̂�𝑒−𝑖𝜃, and (3.32)

𝑌𝜃 = 𝑖 (�̂�𝑒𝑖𝜃 − �̂�†𝑒−𝑖𝜃) , (3.33)

indicating that the quadratures can be connected by a simple phase space rotation of 𝜃 = ±𝜋/2.

Nevertheless, it is conventional to refer to �̂� as the amplitude quadrature and to 𝑌 as the phase

quadrature. This will become clearer once we note that, in the limit where the mean number

of photons is much greater than the fluctuations in the quadratures 𝛼 ≫ Δ�̂� , the fluctuations

𝛿�̂� do in fact correspond to fluctuations in the amplitude of a classical field.

3.4 Squeezed States

The manipulation of the statistical properties of quadratures of the electromagnetic field lies

at the heart of continuous-variable quantum information [41, 42]. Squeezed states are a clear

example of how nonclassical states can be defined by the characteristics of their field quadra-

tures.

Conceptually, squeezed states can be understood by referring to Figure 3.1. In a squeezed

state, the variance of one quadrature is decreased at the expense of increasing the variance

of its counterpart [43]. While the total area is preserved, in compliance with the uncertainty

principle stated in Equation 3.30, the amount of noise can be (in principle) arbitrarily reduced

in a given quadrature of interest.

On their own, squeezed states offer important applications in quantum metrology. Re-

duced quadrature noise can increase the sensitivity of high-precision interferometers capable

of detecting gravitational waves [44]. Similarly, squeezed states can enhance error correc-

tion protocols, enabling so-called “quantum limited” error correction and paving the way for

fault-tolerant quantum computing [45, 46].

However, squeezed states are also building blocks in the preparation of other nonclassi-

cal states of light [47]. including entangled states and heralded single-photon sources [48].

This is the case because squeezed light can be generated with high efficiency and control

via photon-pairs generated by Parametric Down Conversion (PDC) in experimental protocols
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well-established since the 1980s [49, 50, 51]. Once these states have been created, additional

“processing” such as linear-optical manipulation, interference, and selective measurement are

sufficient to yield other nonclassical states.

Thus, in addition to being a useful tool on its own, squeezed light generation is also an

indispensable tool for photonics-based quantum information. This project is heavily focused

on the optimization of integrated platforms capable of realizing nonlinear optical processes

suitable for the generation of such states. Naturally, a squeezing operator must “squeeze” the

uncertainty of one quadrature and “stretch” its counterpart. It is possible to show that the

operator

𝑆(𝜉) = exp (𝜉�̂�†2 − 𝜉∗�̂�2) , 𝜉 = 𝑟𝑒𝑖𝜙, (3.34)

where 𝑟 is the squeezing parameter, fulfills this task [48, 33, 35].

By decomposing this exponential using the Baker-Campbell-Hausdorff formula, and using

the fact that �̂� |0⟩ = 0, the action of this operator on a vacuum state is found to be

|𝜉⟩ = 𝑆(𝜉) |0⟩ =
1√

cosh(𝑟)
exp(𝑒

𝑖𝜙 tanh(𝑟)
�̂�†2

2 ) |0⟩ . (3.35)

This result can be combined with the properties of �̂� and �̂�† stated above to calculate the

mean values of field quadratures with respect to this “squeezed vacuum state”. After some

manipulation, we arrive at

Δ2�̂� = 𝑒2𝑟 and Δ2𝑌 = 𝑒−2𝑟 , such that Δ�̂�Δ𝑌 = 𝑒2𝑟𝑒−2𝑟 = 1, (3.36)

thereby preserving the minimum uncertainty property of coherent states, and redistributing

uncertainty among quadratures without violating the uncertainty principle. Notice that the

Hamiltonian describing degenerate Parametric Down-Conversion is [32, 52]

�̂� = 𝜅 (�̂�2 − �̂�†2) , (3.37)

such that the unitary evolution of a state subject to this Hamiltonian will be

�̂� = exp (−𝑖𝜅 (�̂�2 − �̂�†2)) (3.38)

which is identical to the squeezing operator shown above.
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In this chapter we have introduced the basic concepts of quantum optics, culminating in a

description of squeezed states in terms of field quadrature operators. These quadratures are at

the center of continuous variable quantum information, and their manipulation is the central

long-termmotivation for the experimental work described in the following sections. As stated

above, nonlinear optical processes are simply a platform for the experimental implementation

of these transformations. In the following chapter, we will introduce a key resource for the

efficient realization of such processes: the optical resonator, and its application as an optical

parametric oscillator.
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Chapter 4

Optical Parametric Oscillation

The Optical Parametric Oscillator (OPO) has been an important part of the photonics toolbox

since its first demonstration in 1965 [53]. In simple terms, these machines combine the tunabil-

ity, finesse, and power efficiency of optical resonators with the frequency-mixing capabilities

of nonlinear optical processes. As a result, OPOs provide an excellent coherent and tunable

light source for applications in imaging, spectroscopy, and quantum optics, among others.

In this chapter, we will describe the basic physics of optical resonators, culminating in

a classical description of the Optical Parametric Oscillator. Finally, we will briefly discuss

the quantum properties of the optical parametric oscillator, and show how they can lead to

nonclassical states. This theoretical foundation will be used throughout this project in order

to set the goals for microfabrication and to define the figures of merit for optical measurement.

4.1 Optical resonators

An optical resonator is an array of mirrors positioned in such a way that the incoming light is

reflected by all the mirrors and then interacts back with the incoming beam. For all practical

purposes, the terms “optical resonator”, “optical cavity”, and “Fabry-Perot resonator” are being

used interchangeably. In this project, we will only fabricate integrated resonators in the shape

of rings, although the theoretical description can be easily generalized for all shapes of cavities

as long as they fall under the description given above.

Figure 4.1 shows a simple scheme for a general Fabry Perot cavity. The incoming field

is partially transmitted and reflected by the first mirror, characterized by transmission and



Chapter 4. Optical Parametric Oscillation 43

Figure 4.1: Scheme representation for the Fabry-Perot resonator. (a) An idealized system for
modeling purposes, (b) the corresponding variables in the real system of interest, where light
is coupled from a dielectric optical waveguide into a ring resonator.

reflection coefficients 𝑅 and 𝑇 . For this first mirror, transmission is equivalent to light entering

the cavity, while reflected light never enters it.

Once inside the cavity, the light is reflected and transmitted across all the remaining mir-

rors according to coefficients 𝑅′ and 𝑇 ′. The entire array of mirrors can be modeled by a

single pair of coefficients, where 𝑇 ′ now corresponds to light being permanently “lost”. In a

real system, this might refer to the combined effect of scattering losses induced by material

roughness, or absorption losses defined by material properties. The total “reflection” of the

cavity will therefore consist of the interference between a series of fields that have undergone

different numbers of round trips around the cavity.

To describe this systemmathematically, we first note that the incoming and outgoing fields

undergo beamsplitter transformations in the first mirror [54, 55, 56],

𝐸𝑜𝑢𝑡 =
√
𝑇𝐸𝑛−1(𝐿) −

√
𝑅𝐸𝑖𝑛, and 𝐸𝑛(0) =

√
𝑅𝐸𝑛−1(𝐿) +

√
𝑇𝐸𝑖𝑛 (4.1)

where the arguments in parenthesis refer to a unidimensional position along the cavity’s

length.

Wemust study the changes in the field just after entering the cavity and just before leaving

it. That is, to find the coefficient 𝑇 (𝐿) such that 𝐸𝑛(𝐿) = 𝑇 (𝐿)𝐸𝑛(0).

From physical considerations alone, we expect this coefficient to consider: (1) the phase

shift due to propagation according to the wavevector 𝛽 = k ⋅ ẑ, (2) an amplitude attenuation

along the propagation, defined as an exponential decay with coefficient 𝛼, and (3) losses due

to imperfect reflection by the internal mirror. We expect (2) and (3) to be joined together in a
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single term later on. With these considerations, we may write

𝐸𝑛(𝐿) = 𝑒𝑖𝛽(𝜔)𝐿𝑒−
𝛼
2 𝐿
√
1 − 𝑇 ′𝐸𝑛(0). (4.2)

Now, we can expand the function 𝛽(𝜔) as a Taylor series centered on some resonance

frequency 𝜔0 of the optical resonator. If the detuning is written as 𝛿𝜔 = 𝜔 − 𝜔0, then

exp (𝑖𝛽(𝜔)𝐿) = exp
(
𝑖𝐿

∞

∑
𝑛=0

𝛽(𝑛) 𝛿𝜔𝑛

𝑛! )
=

∞

∏
𝑛=0

exp(𝑖𝛽
(𝑛)(𝜔0)

𝛿𝜔𝑛

𝑛! ) . (4.3)

By the very definition of a resonance frequency, we know that 𝛽(𝜔0)𝐿 = 2𝜋𝑛, where 𝑛 ∈ ℤ.

Thus, by assuming that the system is operating near-resonance, we may consider only terms

up to the first order in 𝛿𝜔, such that

exp (𝑖𝛽(𝜔)𝐿) = exp (𝑖𝛽(1)𝛿𝜔𝐿) = (1 + 𝑖𝛽(1)𝛿𝜔𝐿) . (4.4)

If a similar consideration is done to the attenuation coefficient 𝛼 and to the transmission

of the intracavity mirror 𝑇 ′, then Equation 4.2 becomes

𝐸𝑛(𝐿) = (1 + 𝑖𝛽(1𝛿𝜔𝐿)(1 −
𝛼𝐿
2 )(1 −

𝑇 ′

2 ) 𝐸𝑛(0), (4.5)

and if the multiplication is carried out and all second-order terms with respect to 𝛿𝜔, 𝛼 and 𝑇 ′

(or their products) are discarded once again,

𝐸𝑛(𝐿) = (1 + 𝑖𝛽(1)𝛿𝜔𝐿 −
1
2 (

𝑇 ′ + 𝛼𝐿)) 𝐸𝑛(0). (4.6)

Finally, this result must be substituted back into the beam-splitter equation. To do this, we

replace 𝑛 by 𝑛 − 1 in the previous expression, such that

𝐸𝑛(0) =
√
𝑅𝐸𝑛−1(𝐿) +

√
𝑇𝐸𝑖𝑛,

= (1 −
𝑇
2)(1 + 𝑖𝛽(1)𝛿𝜔𝐿 −

1
2
(𝑇 ′ + 𝛼𝐿)) 𝐸𝑛−1(0) +

√
𝑇𝐸𝑖𝑛,

≈ (1 + 𝑖𝛽(1)𝛿𝜔𝐿 −
1
2
(𝑇 + 𝑇 ′ + 𝛼𝐿)) 𝐸𝑛−1(0) +

√
𝑇𝐸𝑖𝑛.

(4.7)
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This expression now allows us to write the total change in the field between two consecutive

round-trips

𝛿𝜔𝐸 = 𝐸𝑛(0) − 𝐸𝑛−1(0),

= (1 + 𝑖𝛽(1)𝛿𝜔𝐿 −
1
2
(𝑇 + 𝑇 ′ + 𝛼𝐿)) 𝐸𝑛−1(0) +

√
𝑇𝐸𝑖𝑛 − 𝐸𝑛−1(0),

= (𝑖𝛽
(1)𝛿𝜔𝐿 −

1
2
(𝑇 + 𝑇 ′ + 𝛼𝐿)) 𝐸𝑛−1(0) +

√
𝑇𝐸𝑖𝑛.

(4.8)

By defining a “total losses” term 𝑙 = (𝑇 + 𝑇 ′ + 𝛼𝐿) /2, then

𝛿𝜔𝐸 = (𝑖𝛽(1)𝛿𝜔𝐿 −
𝑙
2)

𝐸𝑛−1(0) +
√
𝑇𝐸𝑖𝑛. (4.9)

Since 𝛽(1) is the inverse of the group velocity, the factor 𝐿𝛽(1) is equal to the total round-trip

time 𝑡𝑅. By dividing the whole equation by 𝑡𝑅,

𝛿𝜔𝐸
𝑡𝑅

= (𝑖𝛿𝜔 −
𝛾
2𝑡𝑟)

𝐸𝑛−1(0) +
√

𝑇
𝑡𝑅

𝐸𝑖𝑛√
𝑡𝑅
. (4.10)

Now, we consider the limit where the number of round-trips is virtually infinite. We will

redefine the loss terms to their quotients relative to the round-trip time, such that 𝛾 → 𝑙/𝑡𝑅

and 𝛾𝑖𝑛 → 𝑇/𝑡𝑅.

Finally, the intracavity field becomes 𝑑𝐸 and each round-trip time becomes 𝑑𝑡, therefore

𝑑𝐸
𝑑𝑡

= (𝑖𝛿𝜔 −
𝛾
2)

𝐸 +√𝛾𝑖𝑛𝐸𝑖𝑛. (4.11)

We can simplify this notation further by noting that the field intensity can be related to the

average number of photons 𝛼 by some coefficient, as in

𝐸 ∝ ℏ𝜔𝛼 = 𝐾𝛼, (4.12)

while the incoming field is written as

𝛼𝑖𝑛 = lim
𝑡𝑅→0(𝐾

𝐸𝑖𝑛√
𝑡𝑟)

, |𝛼𝑖𝑛|2 =
�̄�
𝑡𝑅

(4.13)
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where �̄� is the mean number of photons. This leads to the final expression for the Fabry-Perot

equation
𝑑𝛼
𝑑𝑡

= (𝑖𝛿𝜔 −
𝛾
2)

𝛼 +√𝛾𝑖𝑛𝛼𝑖𝑛. (4.14)

Most properties of interest arise when we consider the Fabry-Perot to be operating at the

steady state, where 𝑑𝛼/𝑑𝑡 = 0. In this case,

𝛼 =
√𝛾𝑖𝑛𝛼𝑖𝑛

(
𝛾
2 − 𝑖𝛿𝜔)

, (4.15)

and by also defining the total reflected field 𝛼𝑜𝑢𝑡 and using 4.1, the total reflectance of the

Fabry-Perot is

𝑅𝐹𝐵 =
||||
𝛼𝑜𝑢𝑡
𝛼𝑖𝑛

||||

2

= 1 −
𝜇𝛾𝑖𝑛

𝛿𝜔2 + 1
4 (𝛾)

. (4.16)

In the interest of applications, it makes sense to distinguish between internal losses and cou-

pling losses. Therefore, it is useful to separate the total losses term into 𝛾𝑡𝑟 = 𝛾𝑖𝑛 + 𝑇 ′ + 𝛼𝐿 =

𝛾𝑖𝑛 + 𝜇

𝑅𝐹𝐵 = 1 −
𝜇𝛾𝑖𝑛

𝛿𝜔2 + 1
4 (𝛾𝑖𝑛 + 𝜇)

. (4.17)

This is an extremely relevant distinction, as the physical sources of 𝛾𝑖𝑛 and 𝜇 are quite

distinct in real integrated ring resonators, even though their effect on the expression of the

Fabry Perot reflectance is the same. The “coupling losses” 𝛾𝑖𝑛 are related to the strength of the

coupling between waveguide and ring, as shown in Figure 4.1. This strength can be controlled

by adjusting the distance between the two devices, and the phase matching and spatial overlap

between the modes, which can be accurately modeled with Equation 2.43.

On the other hand, the internal losses 𝜇 are typically due to imperfections. Optical ab-

sorption can occur both due to intrinsic material properties, such as the bandgap energy of a

material, and to imperfections in the crystalline structure, which might be mitigated by pro-

cesses such as annealing. Additionally, scattering of the optical field will inevitably occur due

to the roughness of the photonic devices. Both of these will contribute equally to the “total

losses”.

One important result of this section, is that 𝜇 and 𝛾𝑖𝑛 can in principle be measured sepa-

rately. By simple inspection of Equation 4.17, we calculate

𝑅𝑚𝑖𝑛 = (
𝛾𝑖𝑛 − 𝜇
𝑏𝑤 )

2
, and 𝑏𝑤 = 𝛾𝑖𝑛 + 𝜇, (4.18)
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where 𝑅𝑚𝑖𝑛 is the minimum reflectance of the resonator, and 𝑏𝑤 is the full width at half-

maximum. Thus, by measuring 𝑅𝑚𝑖𝑛 and 𝑏𝑤, we can calculate 𝛾𝑖𝑛 and 𝜇, but we can not tell

them apart by just one measurement.

Figure 4.2: The reflectance of the fabry-perot as a function of detuning for different parameter
combinations. The width of the Lorentzian curves depends only on the total losses 𝛾 , while the
extinction ratio 𝑅𝑚𝑖𝑛 depends on the difference between internal losses and coupling losses.

4.1.1 Figures of Merit

For a project focused on microfabrication, optical resonators offer one additional application:

they greatly facilitate the assessment of fabrication quality regarding losses. As shown in the

previous section, simply measuring the transmission of an optical resonator along a spectral

region allows us to estimate losses of all kinds.

To interpret the results of such measurements, and to compare themwith expectations, we

must define a few figures of merit.

The Free Spectral Range (FSR) of the resonator is the spectral separation between adjacent

resonance peaks. Since two consecutive resonances are characterized by

𝛽(𝜔𝑛)𝐿 = 2𝜋𝑛, and 𝛽(𝜔𝑛+1)𝐿 = 2𝜋(𝑛 + 1), 𝑛 ∈ ℤ (4.19)

we can calculate the FSR by subtracting the two equations,

𝜕𝛽
𝜕𝜔

(𝛿𝜔)𝐿 = 2𝜋. (4.20)
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Recalling the definition of the group velocity, and noting that 𝛿𝜔 = 2𝜋FSR

𝛿𝜔
𝑣𝑔

𝐿 = 2𝜋 ⇒ FSR =
𝑐/𝑛𝑔
𝐿

. (4.21)

From then on, the Finesse of the resonator is defined as

 =
FSR
𝑏𝑤

. (4.22)

Notably,  is a measure of the resonator’s ability to “trap” light. High finesse is related to

sharp resonance peaks and consequently low total losses.

A second, more crucial figure of merit in characterizing losses on optical resonators, is the

quality factor 𝑄

𝑄 =
𝑓𝑛
𝑏𝑤

, (4.23)

where 𝑓𝑟 is a specific resonant frequency. The quality factor can also be defined as the ratio

between the energy stored in an oscillator, and the energy dissipated by it per oscillation cycle.

In the regime of low optical loss, the 𝑄 factor can be approximated as [57]

𝑄 =
2𝜋𝑓0
𝛾 ′

𝐿
𝑐/𝑛𝑔

(4.24)

where 𝛾 ′ is the total fractional power loss per oscillation. Current state-of-the-art ring micro-

resonators in lithium niobate, capable of achieving optical parametric oscillations with rea-

sonable power threshold, exhibit intrinsic 𝑄 factor in the range of 6×105. Assuming operation

at 𝜆 =1550nm in a resonator with a 100𝜇m-radius, the necessary fractional loss to achieve this

is 𝛾 ′ ≈0.85%.

4.2 Resonator-enhanced parametric down-conversion

Consider now that a non-centrosymmetric crystal is placed in the interior of the optical res-

onator. This crystal exhibits a second-order optical nonlinearity and may therefore enable

processes such as second harmonic generation and parametric down-conversion, with effi-

ciencies given by the formalism developed in Chapter 2.

In this section, we will briefly follow the procedure in [58] to show how the presence of

this crystal changes the behavior of the optical resonator. The procedure is extremely similar



Chapter 4. Optical Parametric Oscillation 49

to that of the previous section. We will build on the same notation in order to facilitate the

demonstration.

Parametric down-conversion describes an interaction between three optical modes: pump

(𝛼0), signal (𝛼1), and idler (𝛼2). We must write equations for the evolution of all three. The

interaction with the 𝜒 (2) nonlinear crystal will change the fields such that

�̄�0 = 𝛼0 exp (𝑖𝛽0𝐿𝑐) − 2𝜒 ∗
𝑒𝑓 𝑓 𝛼1𝛼2 exp ((𝛽1 + 𝛽2)𝐿𝑐) (4.25)

�̄�1 = 𝛼1 exp (𝑖𝛽1𝐿𝑐) + 2𝜒𝑒𝑓 𝑓 𝛼0𝛼∗
2 exp ((𝛽0 − 𝛽2)𝐿𝑐) (4.26)

�̄�2 = 𝛼2 exp (𝑖𝛽2𝐿𝑐) − 2𝜒𝑒𝑓 𝑓 𝛼0𝛼∗
1 exp ((𝛽0 − 𝛽1)𝐿𝑐) (4.27)

Where 𝜒𝑒𝑓 𝑓 is a coefficient contemplating the efficiency of the nonlinear interaction and 𝐿𝑐 is

the optical length of the crystal. The remaining round-trip will have the same effect on all

fields,
̄̄𝛼𝑖 =

√
𝑅′
𝑖𝑅𝑖 exp(𝑖𝜔𝑖

𝐿 − 𝑛𝑐𝐿𝑐
𝑐 ) �̄�𝑖 +

√
𝑇𝑖𝛼(𝑖𝑛)

𝑖 . (4.28)

As in the previous case, the resonance condition comes down to ̄̄𝛼𝑖 = 𝛼𝑖. To solve this, we

simply plug Equations 4.25,4.26, and 4.27 into Equation 4.28.
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Figure 4.3: (a) An optical parametric oscillator modeled as a Fabry-Perot Cavity with a nonlin-
ear optical crystal in its interior. (b) The total intracavity pump power as a function of detuning
for an OPO. The dashed horizontal line indicates the threshold power. Below the threshold
level, the OPO behaves as a completely linear cavity. Above the threshold, all the resonant
pump power is converted into signal and idler modes. The dashed purple line indicates the
expected behavior in the absence of nonlinear optical effects.

The solution is obtained by expanding the propagation coefficients around a resonance,

and taking terms up to first-order with respect to detuning, total losses, and coupling losses.
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After some manipulation, the equations will be reduced to

𝛼0𝛾0 (1 − 𝑖𝛿𝜔′
0) = −2𝜒 ∗𝛼1𝛼2 +

√
2𝛾𝑖𝑛𝛼(𝑖𝑛)

0 , (4.29)

𝛼1𝛾1 (1 − 𝑖𝛿𝜔′
1) = 2𝜒𝛼0𝛼∗

2 , 𝛼2𝛾2 (1 − 𝑖𝛿𝜔′
2) = 2𝜒𝛼0𝛼∗

1 . (4.30)

Where 𝛿𝜔′
𝑖 = 𝛿𝜔𝑖/𝛾𝑖 are the detunings normalized by total losses.

The last two equations form a linear system that always admits a trivial solution 𝛼1 =

𝛼2 = 0. However, there is a range of values for which nontrivial solutions exists. In these

cases, nonlinear gain supersedes losses at each round-trip, and power is effectively transferred

between optical modes.

Multiplying Equation 4.26 by the complex conjugate of Equation 4.27,

𝛼1𝛾1(1 − 𝛿𝜔′
1)𝛼

∗
2𝛾2(1 + 𝑖𝛿𝜔′

2) = 4|𝜒 |2𝛼1𝛼∗
2 |𝛼0|

2, (4.31)

dividing by 𝛼1𝛼2 (thus assuming |𝛼1|, |𝛼2| ≠ 0), and taking the imaginary part,

(𝛿𝜔′
1 − 𝛿𝜔′

2)𝛾1𝛾2 = 0. (4.32)

Thus, the solution only exists when (𝛿𝜔′
1 − 𝛿𝜔′

2) = 𝛿𝜔′ = 0. That is, the normalized detuning

must be the same for the generated fields in order for oscillation to occur. Now taking the real

part of 4.31

𝛾1𝛾2(1 − 𝛿𝜔′2) = 4|𝜒 2||𝛼0|2. (4.33)

Therefore, when oscillation occurs, the intracavity pump field is given by

|𝛼0|2 =
𝛾1𝛾2(1 + 𝛿𝜔′2)

4|𝜒 |2
. (4.34)

In other words, the power in the pump mode is constant above the threshold. Now, finally, the

threshold can be calculated by plugging this result into Equation 4.25,

|𝛼(𝑖𝑛)
0 |2𝑡ℎ =

𝛾20 𝛾1𝛾2
8|𝜒 |2𝛾0

(1 + 𝛿𝜔2)(1 + 𝛿𝜔2
0). (4.35)

Equation 4.35 gives the threshold of incident pump power above which the oscillation

begins to occur. Since the pump power inside the cavity is constant above this level, we know
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that all additional optical powerwill be converted into signal and idlermodes. These properties

are shown in Figure 4.3, where the total pump power inside the oscillator is shown as a function

of detuning. The oscillation threshold is shown as a dashed horizontal line.

In practical terms, it is relevant to note that the threshold power in Equation 4.35 increases

with the square of the total pump losses. For an integrated optical resonator, this means that

high-loss microfabrication will require the use of high optical powers in order to reach para-

metric oscillation. This power is often limited both by the availability of sources and by the

insertion losses of photonic chips.

Optical Parametric Oscillators have been used since 1965 [53] to enhance optical paramet-

ric processes. As opposed to a “single-pass” system such as an Optical Parametric Amplifier

(OPA), the OPOs allow for the conversion to be finely tuned by adjusting phase matching con-

ditions. Furthermore, the optical resonator allows for higher optical intensity to accumulate

in the nonlinear material, increasing the conversion efficiency.

As a photon-pair source, the Optical Parametric Oscillator has proven to be the “most

efficient source of quadrature squeezed light” [47]. As discussed in section 3.4, this has con-

solidated the OPO as a widely-used nonclassical light source, being implemented for multiple

applications, including quantum random number generation [59], quantum cryptography [60]

and simulation [61, 62].
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Chapter 5

Experimental Methods

In the previous chapter, the use of integrated photonic devices for the generation of nonclassi-

cal states of light has been thoroughly justified, modeled, and explained. Here, I will introduce

the essential experimental methods chosen for our contribution to this major scientific and

technological challenge.

In the first section, the choice of Lithium Niobate as a material platform will be justified,

both by the material properties themselves and by the current state-of-the-art in literature. In

the second section, we present a general overview of the necessary tools for microfabrication

on LiNbO3. Next, we discuss methods for fiber-to-chip coupling of light. Finally, a technique

to measure continuous variables in nonclassical light will be discussed.

5.1 Lithium niobate: the silicon of photonics

Lithium Niobate (LiNbO3) is an artificial ferroelectric crystal, synthesized for the first time in

1949 [63]. In the past decade, it has been described as “the silicon of photonics” [64]. To put it

simply, this is because its material properties enable the efficient implementation of a diverse

set of useful processes for information technology. In this section, we will describe in greater

detail what these properties are, which specific implementations have been enabled by them,

and how they compare to other relevant materials.

An ideal candidate for a material platform for integrated photonics should fulfill several

requirements. Some of themost common properties of interest for photonic integrated circuits,

both for classical and quantum applications, are:
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• Wide transparency window: transparency in key regions enables low loss transmis-

sion of light, due to limited material absorption. Several factors play a role in determin-

ing a material’s transparency, including the presence of defects and impurities, Two-

Photon Absorpition (TPA), the vibrational modes of the crystalline structure, and the

bandgap energy. The latter is often used as a good figure of merit for assessing the

transparency of the material. Large bandgap energy means higher-frequency photons

can propagate in the material without being absorbed to excite electrons to the conduc-

tance band.

• Large refractive index: the refractive index contrast between core and cladding mate-

rials in a dielectric waveguides sets the level of optical confinement. This will enhance

the optical intensity in the nonlinear material, contributing to more efficient nonlinear

optical effects.

• Large 𝜒 (2) and 𝜒 (3) nonlinearities: the 𝜒 (2) coefficient sets the efficiency of second-

order nonlinear processes like SHG, PDC, SFG and DFG. Similarly, 𝜒 (3) coefficients set

the efficiency of third-order nonlinear processes such as Self-Phase Modulation (SPM),

Cross-Phase Modulation (XPM) and Four-wave Mixing (4WM). A material exhibiting

large values for both coefficients can enable for versatile frequency-mixing processes by

combining second and third-order nonlinear effects.

• Large Pockels coefficient: the Pockels coefficients are second-order (𝜒 (2)) properties

which set the efficiency of electro-optic interaction. This is a crucial asset for high-speed

electro-optic modulation of light andmicrowave-optical photon transduction, which are

crucial for applications at the interface between electronics and photonics.

• Large piezoelectric coefficients: this coefficient determines the efficiency of piezo-

electric effects, where an applied electric field induces mechanical strain in a material,

or vice-versa. This is a crucial property for applications in acousto-optics, such as Sur-

face Acoustic Wave (SAW) devices and filters.

• Ease of processing: the effectiveness of standard microfabrication processes will heav-

ily rely on material properties such as chemical reactivity, electrical conductivity, and

endurance to stress and temperature. Compatibility with Complementary Metal-Oxide-
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Semiconductor (CMOS) technology is also extremely attractive for easy integration will

well-established CMOS microelectronic chips and scalable fabrication techniques.

Countless applications can be unlocked by any single one of these properties. However,

a balanced combination of many or all of them will make for a better material for integrated

photonics. Table 5.1 shows the parameter values for a series of common photonic materials.

The data supports the characterization of lithium niobate as a highly versatile and efficient

photonic material.

AlN Si Si3N4 TFLN GaAs

bandgap (eV) 6.2 1.1 5.0 4.0 1.4
refractive index 2.08(e) 3.48 2.00 2.21(e) 3.38
𝜒 (2) (pm/V) 6.2 0 0 54 237
𝜒 (3) (10−19m2/W) 3.5 40 2.4 1.0 260
Pockels coefficient (pm/V) 1.0 0 0 30.9 1.5
piezoelectricity (pC/N) 5.5 0 0 68 2.7

Table 5.1: Table comparing the material properties of common photonic materials [65]. When
applicable, the parameters shown correspond to 1550nm wavelengths and room temperature.

Materials can have countless advantages and disadvantages beyond these parameters. For

instance, III-V materials such as GaAs and InP are compatible with highly-developed semicon-

ductor laser technology, allowing for the integration of electrically-driven pump sources [66].

Likewise, silicon Nitride exhibits excellent CMOS compatibility, both due to its similarity with

standard CMOS materials like silicon and silicon dioxide, and because it can be deposited via

Chemical Vapor Deposition (CVD) processes, such as Plasma Enhanced Chemical Vapor De-

position (PECVD). Thus, a multitude of factors must be taken into account while determining

a suitable material platform for photonic applications.

Nevertheless, lithium niobate has proven to be a widely applicable material for both clas-

sical and quantum applications [12]. Its use can clearly be separated into three major techno-

logical generations: bulk LiNbO3, weakly confining LiNbO3 waveguides, and tightly confining

Thin-Film Lithium Niobate (TFLN) waveguides. These generations were enabled by specific

technological improvements, as described in Table 5.2.

The improvements between each generation are typical of the miniaturization process that

has defined the field of integrated photonics. Namely, increased optical confinement leads
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Generation Years Enabled by Dimensions

Bulk LN 1960s-1970s
synthesis of LiNbO3 [63],
optical grade polishing

1mm-1cm

weakly confining
LN waveguides

1970s-2010s
ion-diffusion [67],
proton exchange [68]

1𝜇m-1mm

tightly confining
TFLN waveguides

2010s-now
crystal ion slicing [69], wafer
bonding, Ar milling [70]

<1𝜇m

Table 5.2: The three major generations of photonic devices in Lithium Niobate. While 680nm
lithium niobate thin-films are fabricated since 2004, most successful results in the current
generation of devices follow the use of Ar ion milling beginning in 2009.

to orders-of-magnitude improvements in nonlinear efficiency and reduces device footprint.

Miniaturization also enables scalable fabrication and great environmental stability compared

to free-space optical setups. Additionally, microfabrication of the devices unlocks additional

degrees of freedom in device geometry, paving the way for highly versatile design through

dispersion engineering.

Benchmark Year

Periodic poling in TFLN 2016 [71]
TFLN electro-optic modulator with CMOS compatible voltage 2018 [72]
On-chip heralded single-photon generation 2020 [4]
On-chip TFLN optical parametric oscillator 2021 [73]
Ultra-low TFLN loss waveguides (<1 db/m) 2022 [74]
Quadrature squeezing in TFLN OPA 2022 [7, 6]

Table 5.3: Major benchmarks in the construction of a toolbox for (3rd generation) Integrated
Photonic Circuits on Thin-Film Lithium Niobate (TFLN). The years presented refer to the first
demonstration of each benchmark, to the best of my knowledge.

Across its generations, Lithium Niobate has found several applications, greatly impacting

both research and industry environments. In the telecommunications industry, it is widely

used for electro-optic modulation in fiber-optics communication [75], enabled by its large

Pockels coefficient. As a piezo-electric material, it is used for surface acoustic wave devices,

acting as filters and resonators in wireless communication systems [76], and as sensors and

actuators in medical and industrial settings [77]. In Table 5.3, it is clear that recent results in

the current generation of TFLN devices are quickly evolving toward a toolbox for integrated
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quantum photonics, thus qualifying Lithium Niobate as a major platform for quantum infor-

mation technology [3, 9].

In this section, I have presented the historical and scientific context justifying the use of

lithium niobate in this project. In the next section, I will briefly address the basic microfabri-

cation tools that define our work with this material.

5.2 Microfabrication tools and techniques

The miniaturization of integrated circuits, famously captured by Gordon Moore’s 1965 predic-

tions [78], has been one of the major technological achievements of the past century. As the

number of devices per microchip has grown by at least six orders of magnitude over the past

five decades, so grew the processing power, scalability, cost-effectiveness, and stability that

define the current generation of information technology. Such remarkable progress has been

enabled by a myriad of innovations in chemistry, materials science, optics, computer science,

and more [79]. The set of processes and techniques arising from these innovations constitute

the field of microfabrication.

Technology Equipment Facility

Electron Beam Lithography Raith eLine CCSNano
LNNano (CNPEM)

Photolithography Microwriter ML3 Pro CTI
Karl Suss MJB3 CCSNano

ICP-RIE Oxford Plasmalab 100 CCSNano
Oxford Plasma Pro NGP80 LNNano

SEM SEM Hitachi S-3400N CCSNano
FEG-SEM Tescan Mira 3 MXU CTI
Jeol JSM 6340 F IQ/Unicamp

Atomic Force Microscopy Nanosurf EasyScan2 Flex Lamult
Thin-film Measurement Filmetrics F54 CCSNano
Surface Profiler Dektak 150 Veeco Lamult

Dektak DXT S Bruker LNNano (CNPEM)
EBPVD AJA ATC2200-HY LFDQ
Dicing Saw DAD3220 CNPEM

Table 5.4: Main microfabrication tools and facilities used in this project. No single facility
possesses all the necessary tools. Acronyms in the table refer to Inductively Coupled Plasma
Reactive Ion Etching (ICP-RIE), Electron Beam Physical Vapor Deposition (EBPVD) and Scan-
ning Electron Microscope (SEM).
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Photonic Integrated Circuits (PICs) have inherited much of the microfabrication technol-

ogy used in microelectronics. In both cases, the process is centered on optical and electron-

beam lithography, dry and wet etching, and chemical and physical deposition. The assessment

of fabrication quality is done with techniques such as scanning electron microscopy, atomic

force microscopy, thin-film measurement, optical microscopy and surface profiling. Finally,

the post-processing of samples generally includes a combination of cleaving, dicing saw cuts,

and Chemical-Mechanical Polishing (CMP).

As a project centered on the development of a TFLN microfabrication recipe from scratch,

a major component of this work lies in adapting established techniques to local cleanroom in-

frastructure. The details of this process and the particularities of each technique are, therefore,

at the core of this project’s contributions, and will be discussed in the subsequent chapters.

The main techniques and tools used for this project are shown in Table 5.4, as well as the

facilities where they are located.

In addition to the facilities of Device Research Laboratory (LPD) (both for cleanroom pro-

cesses and optical setups), the facilities used in this project (and mentioned in Table 5.4) were

the Center for Semiconductor Components (CCSNano), the National Nanotechnology Lab-

oratory (LNNano), Renato Archer Information Technology Center (CTI), Multiuser Labora-

tory at the Gleb Wataghin Physics Institute (Lamult), Physics of Quantum Devices Laboratory

(LFDQ/Unicamp), National Center for Research in Energy and Materials (CNPEM), and the

Institute of Chemistry at the University of Campinas (IQ).
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Chapter 6

Photonic Design with Finite Element

Method Simulations

Computational modeling of electromagnetic fields is a crucial element in the development of

photonic integrated circuits. Dispersion properties, the efficiency of nonlinear optical pro-

cesses, and the flow of optical power through different paths can all be manipulated and fine-

tuned by careful design of device geometry.

As the attention paid to TFLN devices by the scientific community soared, an immense

amount of simulation results were published over the past decade [80, 81, 11]. Consequently,

the basic design features and fabrication requirements for most applications of TFLN devices

are very clear and well-established. Therefore, as a first-generation project in our local con-

text, we have been focused on achieving the basic fabrication capabilities for a wide range of

applications, rather than realizing any specific design.

Nevertheless, in this chapter, we will present some relevant results that independently

verify and set benchmark goals for microfabrication. These results also provide an important

foundation for future group efforts to develop and refine specific applications of TFLN PICs.

6.1 Photonic design with the Finite Element Method

For computational purposes, optical ring resonators will be modeled as bent waveguides with

periodic boundary conditions. The frequency components of the electric and magnetic fields
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are then given by

E(r, 𝜔) = ∑
𝑚

𝐴𝑚(𝜔)F𝑚(𝑥, 𝑦, 𝜔)𝑒𝑖𝛽𝑚(𝜔)𝑧, H(r, 𝜔) = ∑
𝑚

𝐴𝑚(𝜔)G𝑚(𝑥, 𝑦, 𝜔)𝑒𝑖𝛽𝑚(𝜔)𝑧, (6.1)

which can be computed numerically using the Finite Element Method (FEM) as implemented

by the COMSOL Multiphysics software ©. In this case, Maxwell’s Equations (as shown in

Chapter 2) are solved for the specific geometry and material properties 1 of photonic devices,

assuming only linear polarization.

The spatial field modes F(𝑥, 𝑦, 𝜔) andG(𝑥, 𝑦, 𝜔) are the normalized eigenfunctions, and the

propagation modes 𝛽𝑚(𝜔) are the eigenvalues which can be computed to completely describe

the unperturbed system. From then on, well-established models of interactions between op-

tical modes in integrated devices [25, 22, 15] (described in detail in Chapter 2) can be used to

compute the efficiency and characteristics of processes introduced by those perturbations.

These include primarily the nonlinear polarization, but also other perturbations such as

gratings and the presence of adjacent waveguides. These interactions between optical modes

are modeled in Equation 6.1 by the changes in amplitudes 𝐴𝑚(𝜔, 𝑧) along the propagation

direction.

In simple terms, the Finite Element Method is a strategy for solving partial differential

equations [84]. In our case, the time derivatives appearing in wave equations are computed by

reference to frequency components, such that only spatial variables remain. Then, the space

is divided into smaller parts defined by an adjustable mesh, i.e. the “finite elements”. For a

steady-state problem such as the one we are interested in, the partial differential equation is

approximated by an algebraic equation in each of these smaller elements. Later, these equa-

tions are assembled into a larger system of equations that can be solved with well-known

computational methods to model the entire problem 2.
1As a general rule, supplying the program with an analytic expression, such as the Sellmeier equation for the

refractive index as a function of wavelength and temperature, as found in [82, 83] is sufficient.
2In our implementation in COMSOL Multiphysics ©, the boundary conditions are defined by so-called Per-

fectly Matched Layers (PML) [85].
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6.2 Phase-matching conditions

In Figure 6.1, the phase mismatch for second harmonic generation between fundamental TM

modes (TM00) is computed for a series of waveguide widths in a wavelength range of around

1500 nm.

Figure 6.1: Finite Element Method simulation of the necessary poling periods for Second Har-
monic Generation (TM00-TM00 for different waveguide widths. In all cases, we simulate an
air-cladded device, with an etching depth of 300 nm, over a 100 nm lithium niobate layer, and
a 75° sidewall angle (typical value in literature).

Figure 6.2: An example of a simulation to determine the necessary feature resolution for
the microfabrication process. Phase matching between waveguide and ring resonator can be
achieved with gaps larger than 300 nm for waveguide widths larger than 900 nm.
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The phase mismatch values are then used to compute the necessary spatial periodicity of

the ferroelectric domain inversion process (periodic poling). We find that, in the most chal-

lenging scenarios, a spatial resolution of about 4 microns must be achieved in the periodic

poling of lithium niobate.

Figure 6.2 shows a simulation of phasemismatch for several geometries of a ring resonator-

to-waveguide coupler. Here, each of the devices (ring andwaveguide) is simulated as a separate

bent waveguide with a slightly different radius. In order to compute the coupling coefficients,

it is necessary to also calculate the modes when both devices are present, since they act as

perturbations to each other due to the penetration of evanescent fields. Nevertheless, in this

simulation, only the phase mismatch between the two separate devices is computed, in order

to estimate the necessary feature resolution for efficient coupling. In future processes, the

design must be finely tuned to the specific application.

We find that, for waveguide widths larger than 900 nm, efficient coupling can be achieved

with gap sizes larger than 300 nm. Thus setting an upper bound for the desired feature res-

olution to be accomplished in the fabrication process. These results will be used as initial

benchmarks for the optimization of our fabrication recipe. It will be shown that all of these

requirements have been achieved experimentally, thus creating a powerful toolbox for exper-

iments with photonic integrated circuits.
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Chapter 7

Microfabrication of Lithium Niobate

Photonic Devices

In this chapter, I will present the main experimental results of this project, which are centered

on the development of a microfabrication recipe for PICs in thin-film lithium niobate.

As a relatively new and challenging material platform, the fabrication of such devices has

been heavily centered in developed countries. In this sense, the efforts described in this chap-

ter are largely concerned with realizing key benchmarks of TFLN fabrication in local clean-

room infrastructure. Indeed, the devices yielded by the final process are, to the best of our

knowledge, the first of their kind in Latin America. As such, their development has required

extensive adaptation and experimentation, which are not always easily captured in systematic

writing.

7.1 Remarks about developing a recipe from scratch

At first sight, the general techniques for fabrication in Thin-Film lithium niobate are well-

established in the literature [86, 74]. However, identifying the specific parameters of each

technique can be a huge challenge, and several significant limitations of local cleanroom in-

frastructure had to be overcome. As a result, processes reported in the literature can only very

rarely be reproduced with major adaptation.

Furthermore, given a finite amount of time, a pragmatic approach to optimization must be

adopted. Since the validation of the process as a whole requires all steps to reach a minimum

working level, the optimization of each stepmust be truncated at some reasonable point. Thus,
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the “final” process proposed in this project is only final in the sense that it yields working re-

sults and sets a starting point and direction for future improvement. It must not be understood

as an optimal process.

It is also important to note that techniques in microfabrication generally involve interac-

tions between complex systems, which can rarely be modeled precisely. Thus, each iteration

of an optimization process is often reduced to an “informed” trial and error loop, based on

reference to the relevant literature, physical intuition, and direct previous experience.

It must also be noted that the implementation of a process requires a specific sequence

of several tools and steps. In order to optimize a single step, all the preceding ones must be

executed again for every single iterations. There are several consequences to this fact: (1) long

time intervals are often unavoidable between consecutive iterations; (2) samples have to be

transported between different facilities in order to access the necessary tools, as shown in Table

5.4; and (3) reproducibility must be ensured along all preceding steps to allow conclusions to

be drawn from each iteration.

All of these factors ensure that the development of microfabrication recipes from “scratch”

is a highly sinuous and time-consuming process. Given a finite amount of time, external fac-

tors such as equipment malfunction as well as scheduling and resource limitations will often

override technical and scientific considerations for some experimental choices.

Figure 7.1: Timeline and table of main benchmarks in the development of microfabrication
and post-processing recipes. Circled numbers 1-3 indicate cross-references with Table 7.1

Figure 7.1 shows a timeline of the benchmark achievements in the recipe development

process, clearly illustrating its nonlinear nature. Notice that optimization rounds for each

technique progress until specific benchmarks are attained. The specific dates of each of these
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achievements are shown in Table 7.1, which provides a clear picture of how the process un-

folded over a period of seventeen months.

Date Fabrication and Processing Benchmarks
2021 Nov 20th First 30kV EBL round in TFLN sample at CCSNano

Dec 9th First round of ICP-RIE argon based etching of TFLN
2022 Feb 21st First realization of electric-field induced periodic poling of TFLN

May 11th First successful trial of fiber-to-chip coupling setup with Si3N4 chip from foundry
Jun 28th First fabricated TFLN resonator. 80 nm-deep etching achieved at 0.16 selectivity
Aug 24th First sucessful development of 100 nm features with EBL
Aug 29th 120 nm-deep etching achieved at 0.40 selectivity at 0.2 nm/s etch rate (1)
Sep 14th First Au lift-off on TFLN sample using EBL
Nov 11th First execution of aligned dicing saw cuts in TFLN samples for edge coupling

2023 Mar 28th 300 nm-deep etching achieved at 0.63 selectivity and 0.8 nm/s etch rate (2)
Apr 19th First coupling of light into locally fabricated TFLN device
Apr 25th First characterization of TFLN optical resonator (3)

Table 7.1: Table of main benchmarks in the development of the microfabrication recipe during
a seventeen-month period. Circled numbers indicate cross-references with Figure 7.1.

Figure 7.2: A diagram outlining in detail the microfabrication process for integrated photonic
devices in z-cut thin-film lithium niobate. Steps 1-5 relate to the fabrication of the device itself,
6-11 relate to periodic poling of lithium niobate and 12-14 refer to post-processing for edge-
coupling.
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7.2 Process overview

An outline of the full microfabrication process is shown in Figure 7.2. These are the steps

that will be discussed in the remaining sections. The specific sequence of these steps is also

a partial result of this project, and an optimal version could in principle require a different

approach.

The samples used in this project consist of a 500𝜇m-thick substrate layer of silicon, cov-

ered by a 2𝜇m-thick layer of silicon dioxide (SiO2), covered by a layer of z-cut lithium niobate

(LiNbO3) which will vary between 400nm and 500nm. We started from 4-inch wafers (pur-

chased from external supplier), diced into 10x10 mm squares. Our microfabrication process

consists in the following steps (with their corresponding diagrams in Figure 7.2):

• (1-2) Sample preparation and coating: the sample is cleaned and thoroughly dried

to remove organic residues and humidity. An adhesion promoter and a thin layer of

e-beam resist are spin-coated onto the sample.

• (3) Electron Beam Lithography: the sample is exposed to an electron beam which

draws the desired pattern in the resist. For a negative tone resist (as shown in Figure 7.2),

the exposed areas become resistant to the subsequent wet etching step with a developer

solution.

• (4-5) ICP-RIE Plasma Etching: The patterned resist layer is used as a mask for dry

etching of the LiNbO3 substrate. A plasma of chemically inert Argon ions is created

by an RIE power, which accelerates ions toward the sample. High-density plasma is

achieved and maintained by a separately controlled adjustable RF antenna (ICP power).

As a result, the sample is anisotropically etched in the vertical direction. After etching,

the sample must be cleaned to remove redeposition.

• (6-7) Aligned-exposure: A new layer of positive tone photoresist is spin-coated into

the sample, and a second round of aligned lithography is carried out on top of the pre-

viously etched devices, followed by a development step. This can be done with either

optical or e-beam lithography, depending on the resolution requirements. Due to the

use of positive-tone resist, the developed sample will have “holes” aligned with specific

positions where electrodes must be defined.
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• (6-9) Aluminum deposition and lift-off: An electron beam is targeted into an alu-

minum target to evaporate the metal, which is then directed onto the sample. As a result,

a thin layer of aluminum is deposited on top of the sample, such that the lithographi-

cally defined “holes” are filled with metal. The resist layer is then removed with acetone

in the lift-off step, “washing away” the portion of the aluminum layer in direct contact

with the resist.

• (10) Electric field-induced periodic poling: Ahigh-voltage is applied to the deposited

aluminum electrodes to achieve electric-field-induced crystalline domain inversion of

lithium niobate. Due to the periodic nature of the patterned electrodes, this process is

referred to as “periodic poling”.

• (11-14) Post-processing: The aluminum layer is then removed via wet-etching, and

the sample is cleaned again. A protective layer of resist is spin-coated onto the sample,

which is then cut with a diamond blade in a dicing saw to expose facets for fiber-to-chip

coupling;

• (Extra) Silicon dioxide cladding deposition: Ideally, step 12 will be replaced by the

deposition of a silicon dioxide layer via Plasma Enhanced Chemical Vapor Deposition

(PECVD). In this case, for both protection and symmetrical optical isolation with respect

to the original layer of SiO2 underneath the LiNbO3 layer.

All of these processes were carried out and tested for this project and will be discussed in

greater detail in the following sections.

7.3 Electron beam lithography

The microfabrication process begins with Electron Beam Lithography (EBL). This is a stan-

dard technique for high-resolution patterning of resist masks and is widely used in integrated

photonics [79].

EBL generally enables higher resolution compared with optical lithography, as the latter

has its resolution limited by diffraction effects associated with larger wavelengths of optical

photons compared to electrons. However, EBL is generally not used in large-scale foundry

processes due to the very large exposure times associated with direct writing, and more bur-
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densome operation requirements such as high vacuum. Thus, its use is generally restricted to

research settings, and to the fabrication of masks for optical lithography.

The patterns written on the resist layer are transferred to the substrate in a subsequent

etching step. Thus, the correct execution of the EBL step is crucial for device quality. Ideally,

the patterned masks should enable good feature resolution, steep sidewall angles, and sub-nm

roughness.

7.3.1 Goals and limitations

The acceleration voltage is a critical parameter in EBL. Electron beams accelerated by voltages

in the 1-20 kV are generally used for scanning electron microscopy, where the information for

imaging is obtained through secondary electrons, emitted by atoms excited by the original

beam. On the other extreme, accelerating voltages above 100-300 kV are generally used for

Transmission ElectronMicroscopy (TEM), where the accelerationmust be high for the electron

to be transmitted through the sample and detected at the other end to form an image. EBL

lies in an intermediary range of 20-100kV, where electrons should ideally be accelerated with

enough voltage to simply pass through the exposed resist layer, and then be conducted towards

a ground away from the exposed regions.

The best EBL tools, operating at 100 kV voltages with well-calibrated processes and high-

quality resists can reach feature resolutions around 10 nm. The EBL tool employed in this

project (listed in Table 5.4), is limited to 30kV accelerating voltage. Furthermore, the maN-

2400 series resist used is itself limited to a resolution around 30 nm. Several other factors must

be optimized in order to reach the maximum resolution and quality: the exposure doses, sam-

ple preparation, proximity effects, spin-coating of the resist, pattering parameters (writefield

size and alignment, speed, step size, direction and path), electron beam column parameters

(aperture size and alignment, focus and astigmatism), and resist development.

While most applications, even for TFLN QPICs, do not require such extreme feature reso-

lution, scattering losses can be greatly reduced by improvements in sidewall roughness, and

dispersion effects are highly sensitive to sidewall angles. Thus, it is desirable to optimize EBL

across all of these parameters. The final process described in this section reliably defined

features down to 100 nm, yielding sidewall angles around 10° at 500 nm resist thickness. EBL-
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related sidewall roughness can not easily be separated from roughness created by etching1,

but SEM images indicate sub-nm roughness in this process.

7.3.2 Substrate preparation and spin coating

EBL begins with the preparation of the substrate and coating of the resist. It was found that

poor preparation of the resist may lead to poor adhesion of the resist layer and the collapse of

the fabricated device, as shown in Figure 7.3. Similarly, improper coating can lead to inhomo-

geneity in resist thickness, which heavily impacts the quality of the mask.

Figure 7.3: Two common failures in Electron Beam Lithography. On the left, a collapsed resist
pattern due to poor adhesion, related to incorrect substrate preparation. On the right, an
extreme case of poor development.

Before coating, the samples must undergo a standard organic cleaning. We found through

trial and error that the samples should be coarsely cleaned with an electronics-grade cotton

swab, immersed in boiling acetone (>60°C) for 5 minutes, and then sonicated. They must be

immersed in IPA (propan-2-ol) immediately after, rinsed with DI water and dried with N2 gun.

Alternatively, the sample can be cleaned with a standard Piranha process, where the sample

is immersed in a 3:1 mixture of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) at 100°C

for 10 minutes.

After the sample is prepared, the SurPass 4000 ©adhesion promoter can be applied as rec-

ommended by the manufacturer. We also conducted tests with HMDS adhesion promoter,

yielding similar results. In any case, before the resist is applied, the samples must be dried at

200ºC for 10 minutes. Residual humidity in the sample is a major issue for resist coating, and

can generally be detected in the sample through the presence of small, dark resist clots.
1In theory, it would be possible to use an appropriate Atomic Force Microscopy tool to measure the sidewall

roughness directly in the resist layer after development.
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After preparation, the sampleswere spin-coatedwithmaN-2405 negative-tone resist, which

is an easy-to-process, relatively inexpensive resist, with good resolution and etch resistance.

In our 10x10 mm samples, the resist can not easily be made thicker than 500 nmwithout losing

significant homogeneity, as shown in Figure 7.4. Therefore, we spin-coat the samples at 3000

rpm for 30 seconds, pipetting at least 10 droplets per coating with the sample already spinning

at full speed.

Figure 7.4: Resist coating results for different coating methods. Static and dynamic coating
refer to the application of the resist before or after spinning has begun. Edge effects harm
the homogeneity of the resist layer. Lower spinning speeds increase resist thickness, which
reduces the demand for selectivity in etching but creates more uneven layers.

7.3.3 Dose test and proximity corrections

Next, we conducted extensive dose tests to find the best amount of charge per unit area to be

set on the EBL tool. It is crucial to realize that different doses are required for features with

different dimensions and surroundings. We converged on 100𝜇C/cm2 for 20 kV and 170𝜇C/cm2

for 30kV, applicable for waveguides (curved or not) in the range of around 1𝜇m inwidth. These

values work best while using an aperture size of 10𝜇m and the minimum step size of 7.8 nm

for a 500𝜇m square write-field side (limited by maximum EBL frequency).

Dose test images are shown in Figure 7.5 and 7.6. While the first provides a first, coarse,

approximation of the best dose using large features, the second test (combined with high-

resolution imaging) was needed to adjust the dose for our specific purposes.

Proximity effects are a crucial obstacle to high-feature resolution in EBL. While an ideal

EBL tool would expose only one point in the intended pattern at each step, the real tool will

spread around each assigned point in an approximately Gaussian shape, as shown in Figure
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Figure 7.5: Optical microscope images of dose test for a square pattern in 500nm thick maN-
2405 resist layer. The full test was conducted between 80 and 230 𝜇C/cm2 in steps of 10𝜇C/cm2.
The lowest and highest doses are shown, as well as some intermediate steps around the best
results.

Figure 7.6: Scanning Electron Microscope (SEM) images of 1𝜇m-wide resist masks for ring
resonators in the same trial. 150𝜇/cm2 dose leads to a triangular profile, while 180𝜇/cm2 yields
10º sidewall angle. Optimization for smaller features requires more precise testing and finer
parameter variation.

7.7. The dielectric nature of LiNbO3 exacerbates this problem, as charge mobility is reduced,

favoring the concentration of undesired charges in the substrate between exposure steps. Anti-

charging agents are often employed in the literature to deal with this problem [74], but so far

they have not been necessary to achieve our goals.

Proximity Effect Corrections (PECs) are a commonway to address this issue. While we had

access to the software dedicated to automated PECs, we found them to be counterproductive,
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as they introduced new unexpected issues. In our final process, we implement only manual

PECs based on dose adjustments found through trial and error for specific geometries. The

100 nm feature resolution range, which is sufficient for the applications in this project, can be

achieved with no recourse to PECs of any kind.

Figure 7.7: A numerical simulation of the charge distribution during Electron Beam Lithogra-
phy of two 100 nm-wide structures separated by a 30 nm gap. Black vertical lines indicate the
intended boundaries of the lithographically defined structure. The blue plot on the top right
gives an exaggerated contrast curve for the resist. The bottom left plot gives a zoomed-in view
of the gap.

7.3.4 Development

The last crucial step in the optimization of EBL is development. Ideally, development should

completely remove all parts of the resist that were not exposed to the electron beam (or vice-

versa for a positive-tone resist). We experimentedwith developersMIF-300, maD-525 andMIF-

726, all based on Tetramethylammonium hydroxide (TMAH) solutions, with added surfactants

in the case of MIF-726. The optimal development times were found to be 90s (MIF-300), 120s

(maD-525) and 60s (MIF-726). In all cases, room temperature and vigorous manual agitation

followed by 5-minute-long DI water rinsing yielded the best results.

By very far, MIF-726 exhibited the best performance, being the only one capable of realizing

features smaller than 300 nm in the conditions mentioned above. This is most likely due

to the reduced surface tension, which facilitates penetration into small gaps. MIF-726 agent

greatly improved the overall homogeneity and reproducibility of the development process for

all feature sizes.
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Step Details

Sample Preparation
Organic cleaning (acetone + IPA + DI water)
Surpass 4000 spin-coating
Drying at 200ºC for 10 minutes

maN-2405 spin-coating
Spin-coating 30s @3000 rpm (for 500 nm thickness)
Softbake 90s @90ºC

EBL 30kV, 170𝜇C/cm2, 10𝜇m aperture, 7.8 nm step size

Developer
MIF 726 1 min (manual agitation)
Stopper DI water rinse >5 min

Table 7.2: Final EBL recipe for maN-2405 over thin-film lithium niobate. This recipe reliably
yields at least 100 nm feature resolution.

The final results of the EBL process are shown in Figures 7.8 and 7.9, where waveguides

and ring resonators are patterned with the desired characteristics, for multiple different ge-

ometries. Our device designs require upwards of 300 nm gaps between ring resonators and

waveguides, which are reliably defined here. And SEM images (Figure 7.6) show steep side-

walls (<10º) and reasonably low roughness.

Figure 7.8: Post-development optical microscope images of the final results of EBL. The layout
includes waveguides and ring resonators with different geometric features of interest for opti-
cal measurement (gap sizes, coupling lengths, widths, etc.). Devices are aligned in anticipation
of dicing saw cuts.
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Figure 7.9: Post-development optical microscope images of the final results of EBL (only resist
masks are shown, all structures are 1𝜇m wide). 300 nm gaps are shown for different coupling
lengths and a scanning electron microscope image of the coupling region. Although features
down to 100 nm were successfully realized, they are not desirable for device design.

7.3.5 Writing on positive tone resists

The deposition of metals in specific spatial arrangements is an essential tool for microfabri-

cation in integrated photonics. These electrodes are often used for “ad hoc” fine-tuning of

optical devices via the thermo-optic effect. Furthermore, they are necessary for the realization

of on-chip electro-optic modulators, which have been a central application of lithium niobate

devices in the telecommunications industry.

Metal deposition is also an essential technique for integrated nonlinear optics, as they en-

able the realization of on-chip electric-field induced poling for quasi-phase-matched processes

(see Chapter 2). For this particular application, precise spatial ordering and feature resolution

are crucial, since the periodicity of domain inversion must be finely tuned to the specific non-

linear interaction of interest.

The smallest feature that must be resolved for successful deposition is proportional to the

phase mismatch of the nonlinear processes, as in Λ = 𝜋/Δ𝛽. For second-harmonic generation

based on an interaction between fundamental TM modes, we have calculated this value to be

in the range of 4𝜇m (see Figure 6.1), and optimal dispersion engineering can likely be used to

make this width even larger.
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For this process, we experimented with EBL as well as direct-writing optical lithography

using Microwriter ML3 Pro at CTI. For an array of 90 devices similar to the one in Figure

7.10, the writing time is reduced to about 10 minutes, compared to about 4 hours in EBL using

an aperture of 60𝜇m at 30kV. While this is a significant improvement in terms of time, EBL

yielded significantly better results, as optical lithography often failed to realize the smallest

features. Additionally, the high-resolution imaging available in EBL tools allow for far more

precise alignment of the metal electrodes to a previously etched layer of devices.

The recipe used for lift-off is shown in Table 7.3. It was developed by the technical staff

at CCSNano, and only slight dose adjustments were needed to achieve our goals. We experi-

mentedwith the deposition of gold (Au) and aluminum (Al) using EBPVD.While bothmethods

produced good results, as shown in Figure 7.10, we found that aluminum can be easily removed

from lithium niobate by immersion in AZ400K (concentrated) developer for 5 minutes. Gold,

on the other hand, requires a thin layer of titanium (Ti) for proper adhesion, which has to be

removed using hydrofluoric acid, also an etchant of lithium niobate.

(a) (b) (c)

Figure 7.10: Metal electrode deposition via lift-off recipe with MMA/PMMA resist as shown
in Table 7.3. (a) Aluminum electrodes for periodic poling of waveguides (the large rectangle is
250 𝜇m wide). (b) Similar configurations for waveguides and gear-like configurations for ring
resonators (200𝜇m in diameter). (c) Gold deposition test.

The final process can reliably produce aluminum electrodes with spatial resolution above

the requirements for most quasi-phase-matched processes. A much more fundamental limita-

tion for the final resolution of periodic poling is dictated by the actual field-induced crystalline

inversion process, as discussed in the subsequent sections.
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Step Details

MMA Coating (Ar-P 617.06)
Spin-coating 40s @4000 rpm (500 nm thickness)
Softbake 5 min @180ºC

PMMA Coating (Ar-P 679.04)
Spin-coating 40s @4000 rpm (300 nm thickness)
Softbake 5 min @180ºC

EBL 150𝜇C/cm2 @30 kV EHT

Developer
MIBK:IPA (1:3) 1 min
Stopper IPA rinse >30s

Table 7.3: Recipes for EBL of positive-tone resists PMMA andMMA for lift-off. Credits for this
recipe are due to the technical staff at CCSNano, up to a slight dose correction for LiNbO3

7.3.6 Future improvements

As stated in Section 7.1, the time-scale and challenges of this project are not compatible with

ultimate optimization. However, the achieved results leave us with clear indications of paths

to improvement. The following changes should be tested to improve fabrication quality:

1. Implementation of multipass exposure. This technique has been reported to greatly im-

prove line-edge roughness, thus significantly mitigating optical losses induced by scat-

tering. [87].

2. Use of anti-charging agents such as Espacer©to mitigate even local proximity effects.

3. Use of smaller writefield to reduce minimum step size below 7.8 nm.

4. Perfect the implementation of automated PECs, aiming at improving roughness as well

as feature resolution.

5. Experiment with different encoding for layout files besides GDS, as well as the number

of points defining each polygon in the layout.

7.4 Etching of lithium niobate

In the etching step, the pattern defined lithographically using EBL is transferred to the lithium

niobate substrate. The maximum achievable etching depths are determined by the selectivity

of the resist mask, which was found to be highly sensitive to etching parameters. As a hard

and relatively inert material, lithium niobate is notoriously difficult to etch [31], accordingly,
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dry etching of lithium niobate was, by far, the most important hurdle faced during this project.

In addition to achieving the necessary etching depth, an optimal etching process should yield

steep sidewall angles and low sidewall roughness.

7.4.1 Goals and limitations

Dry chemical etching generally requires the use of fluorine-based compounds such as SF6 and

CHF3. These compounds react with LiNbO3 and lead to the redeposition of LiF, which acts as

a soft “micro mask” during etching, leading to significant roughness and unwanted features

[88, 89, 90, 31, 91]. When used for other applications, dry chemical etching with fluorine-

based compounds is preceded by chemical treatment such as Proton Exchange. In this process,

lithium ions are removed from the crystal through long-term, high-temperature immersion in

proton-source acids. Additionally, the etching process is often intercalated with cleaning steps

to remove the redeposited LiF redeposition.

Dry chemical etching is therefore not used in the literature for photonic-grade devices. Dry

physical etching with Argon ions is the standard procedure for microfabrication of integrated

photonic devices in TFLN [11, 92, 93]. Yet, etch rates of TFLN for argon are typically low

(ranging from 4-40 nm/min) compared to most negative-tone high-resolution resists.

As a solution, successful low-loss photonic devices in TFLN invariably employ either ultra-

high selectivity2 Hydrogen Silsesquioxane (HSQ) resists, or silicon dioxide hard masks [94, 95,

74, 73]. In our case, neither of these options were available. HSQ resists were purchased but

only arrived at the very end of this project, and the deposition of high-quality silicon dioxide

relies on the availability of functioning PECVD tools. To the best of our knowledge, there

are three of these PECVD systems in Brazil (including one at CCSNano), but none of them

have been in operation up to May of 2023. Metallic hard masks are also not used for high-Q

applications, as the inherent sidewall roughness of the mask is inevitably transferred to the

device sidewalls [89].

However, as we show in this work, microfabrication of TFLN using only maN series (or-

ganic) resists is indeed feasible. We have found that there is a very narrow range of parameters

at which very good etch rates and selectivity levels can be reached. In this case, the organic

resist offers the advantage of being relatively inexpensive, having long shelf-life, being widely
2Selectivity here is defined as the ratio between the etch rates of thin-film lithium niobate and maN-2400

series resist. In this sense, higher selectivity is always desirable.
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available, and being easy to store and process compared with the most commonly used alter-

natives. HSQ resists, for example, are notoriously hard to store and process [96]. These resists

require doses on average ten times larger than maN-2400 series resists[97], dramatically in-

creasing exposure times.

7.4.2 Overview of plasma-assisted dry etching

The working principle of Inductively Coupled Plasma Reactive Ion Etching is the vertical ac-

celeration of ions in the direction of a target sample. In the case of Argon ions, the etching

mechanism is exclusively physical, as the ions do not reach chemically with the sample. The

parameters available in the main ICP-RIE tool used in this project are shown in Figure 7.11.

ICP Power

Figure 7.11: Characterization of the DC bias of the Oxford Plasmalab tool at CCSNano (data
acquired in collaboration with Frederico Hummel Cioldin). On the right, a table showing the
range of parameters allowed by the equipment. Not all combinations are realizable.

The independent control of ICP and RIE power is a major feature of ICP-RIE tools. RIE

power will control the strength of the field accelerating the ions anisotropically toward the

sample. As shown in Figure 7.11, RIE power is strongly correlated with the resulting DC Bias

voltage measured between the chamber and substrate. ICP power will control the strength

of the RF field used to increase the plasma density. As shown in Figure 7.11, for a fixed RIE

power, ICP power will generally result in a lower DC bias.

As shown in the next section, the ideal range of ICP/RIE power for high-selectivity etching

of Lithium Niobate with maN-2400 series resist mask was found largely through trial and

error. A balance between plasma density and ion accelerating energy must be found to favor

the etching of lithium niobate compared to the resist. Other factors such as chamber cleaning
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and condition and resist hardbake were also tested and optimized. These results are shown in

detail in the subsequent section.

The effect of all parameters in the resulting etch rates and selectivity is extremely hard to

predict. Looking exclusively at etch rates, we found that the lowest pressure yields the greatest

etch rates for lithium niobate. This is likely related to the increase in the mean free path length

of the ions as a function of the vacuum level. This increased etch rate was greater for Lithium

Niobate compared to the maN-2400 series resist. Thus, in the final recipe, minimum achievable

pressure is used.

Physical etching is much less sensitive to temperature compared with chemical etching

[98]. Indeed, we found that temperature has negligible influence on the etch rate of lithium

niobate, while our experiments with the chemical etching of silicon and silicon dioxide showed

great sensitivity to temperature. On the other hand, we found that high temperature decreased

the etch resistance of the resist, a result also reported in the literature [89]. Thus, our final

recipe employs the lowest achievable temperature, which in our case is limited to room tem-

perature.

7.4.3 Characterization of recipes

The most relevant recipes characterized during this project are shown in Table 7.4 in the

chronological order in which they were tested. Changes in the parameters across iterations

were generally motivated by analogous processes in the literature, physical intuition, or direct

experimentation. There is a clear upwards trend in both selectivity and etch rate, culminating

in the optimized recipe L. Amore careful and detailed characterization of this optimized recipe

is shown in Figure 7.12.

Table 7.4 does not exhaust the etching attempts conducted for this project. Due to several

limitations, not all attempts could be fully characterized, and only qualitative assessments

were made to inform the subsequent steps.

The search for high etch rates and selectivity is ubiquitous in microfabrication. The max-

imum achievable etching depth is limited by the selectivity of the resist and the thickness of

the spin-coated layer, as in

maximum etch depth = selectivity × resist thickness. (7.1)
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#
ICP

(W)

RIE

(W)

Bias

(V)

Press.

(mTorr)

Flow

(sccm)

Prebake

temp. (°C)

Etch rate

(nm/min)
Sel.

A 1250 10 24 100 5 none 5.0 -
B 100 70 360 5 20 none 2.7 0.22
C 100 70 340 5 20 none 2 -
D 100 70 185 5 20 100 (5 min) 4.6 0.12
E 100 200 380 15 20 100 (10 min) 10 0.10
F 100 200 370 15 20 110 (10 min) 10 0.07
G 600 210 315 85 5 110 (10 min) <1 0.00
H 150 50 172 15 50 110 (10 min) 12 0.16
I 100 70 190 10 20 135 (10 min) 7.5 0.25
J 100 80 340 10 50 140 (10 min) 7.0 0.40
K 800 105 240 9 50 none 35 0.63
L 800 105 240 9 50 135 (8 min) 35 0.85

Table 7.4: Most relevant characterized recipes for Inductively Coupled Plasma Reactive Ion
Etching (ICP-RIE) of z-cut thin-film Lithium Niobate exclusively using Argon ions. Selectivity
(Sel.) is defined as the ratio between the etch rates of Lithium Niobate and of maN-2405 resist.
All processes were run with the minimum achievable temperature of 25ºC, except for recipe
A, run at 60ºC. The recipes are presented here in the chronological order in which they were
tested.

Figure 7.12: Detailed characterization of the best ICP-RIE process (recipe “L” in Table 7.4. Error
bars ( 10 nm) in the plot are too small to see.
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As we have shown in Figure 7.4, the latter can not be arbitrarily changed for a given resist,

such that selectivity must be increased in order to fabricate deeper devices.

There are several important reasons why a wide range of achievable etch depths is de-

sirable. First, etching depth is an important degree of freedom for photonic design and dis-

persion engineering. Second, deep-etched photonic devices offer higher mode confinement

due to the increased refractive index contrast, enhancing nonlinear optical effects. Third, in a

partially-etched device, the remaining “slab” will have its own set of modes interacting with

the waveguide modes, leading to undesirable effects. Finally, we found that fiber-to-chip edge

coupling of light is extremely challenging in shallow-etched devices, due to huge spatial mode

mismatch between the optical fiber and the transverse section of the waveguide. Not coinci-

dentally, our first successful coupling trials only occurred after substantial improvements to

the etching depth.

Equation 7.1, however, is limited by onemajor caveat. If achieving themaximumetch depth

requires long etching times, the resist is likely to incur significant damage, as demonstrated

in Figure 7.13. Thus, an optimal etching recipe should exhibit both high etch rates and high

selectivity. We found that this problem can be greatly mitigated by adding cooling steps (3

minutes) in between short etching iterations (90s). Nevertheless, the constraint still stands,

Figure 7.13: Failures of dry-etching demonstrate the need for strict optimization. (a) A resist
mask for a 30𝜇m (radius) disk that has been continuously etched in Argon for 40 minutes. The
resist can not withstand long continuous etch times without significant damage. (b) A lithium
niobate ring resonator etched for 40 minutes, in 5-minute intervals. The device becomes wider
than intended and micro-masking effects are visible on the top. (c) A similar ring resonator
after etching in a contaminated ICP-RIE chamber. Regular manual cleaning of the chamber is
crucial.

Figure 7.13 also illustrates the importance of chamber cleaning. In our final process, as

shown in Table 7.4, the conditioning and etching steps are preceded by a 20-minute long O2

based cleaning. It is also crucial for the chamber to be periodically opened and manually
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cleaned, especially for multiuser equipment where multiple different processes are carried

out. In one case, we found that etch rates and device contamination dramatically improved

after a round of manual cleaning.

In addition to the use of organic resist for the physical etching of TFLN, there are sev-

eral other major reasons why the optimization of etching was a significant challenge for this

project:

• Unlike EBL, etching is a destructive process, in the sense that samples can not be reused,

making large-scale trials impractical for costly samples such as TFLN.

• To conduct a single etching trial, a round of EBL must be executed beforehand. EBL is a

very time-consuming process, both due to the nature of the technique, and to scheduling

limitations in multiuser facilities.

• Our main cleanroom facility (CCSNano) does not have the appropriate equipment for

the characterization of etch rates. Namely, contact surface profilers and atomic force

microscopes. Thus, each measurement required the samples to be moved to other fa-

cilities, which also had their own scheduling limitations. Removing samples from the

cleanroom also leads to contamination and reduces reproducibility.

• The Oxford ICP-RIE Plasmalab 100 at CCSNano (Unicamp) was shut down for mainte-

nance for several months, and the processes had to be conducted at the ICP-RIE OXford

Plasma Pro NGP80 at LNNano (CNPEM). We found that the processes are generally not

reproducible between the two machines, such that our processes had to be recalibrated

multiple times.

Post-etching SEM images of our first optically measured photonic integrated devices in

TFLN are shown in Figure 7.14. In this case, sidewall roughness is well above the desired

levels (ideally, roughness should be unnoticeable at this range of magnification). It is crucial

to realize that this is not an inherent limitation of maN-2400 series resist, as indicated by an

extremely recent external pre-print result [94], achieving 4.8×106 intrinsic Q-factor resonators

with maN-2400 series resist.

Thus, the high level of roughness is likely due to a sub-optimal EBL process conducted

during etching and coupling trials in the interest of time efficiency. Although this result is

already satisfactory, fulfills the goals of this research project, and enables important exper-
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imental achievements, future fabrication rounds should already yield significantly superior

results.

Figure 7.14: Scanning Electron Microscope(SEM) images of the first measured lithium niobate
photonic device, also shown in Figure 8.2. In the interests of time efficiency, this device was
etched following a sub-optimal EBL process, which has already been improved, as shown in
the previous section. The improved process is expected to yield much better roughness results,
pending implementation.

7.4.4 Redeposition and cleaning

We found that physical etching leads to the redeposition of a thin layer of lithium niobate

(confirmed via Energy Dispersive X-Ray Spectroscopy) around the device sidewalls, which can

lead to substantial scattering losses. This can be most easily seen as the “snow-like” dust in

Figure 7.15(c). This phenomenon has been reported in the literature [92], and the redeposition

can be removed using a 2:2:1 mixture of hydrogen peroxide (H2O2), ammonium hydroxide

(NH4OH) and DI water.

It is important to note that this mixture is an etchant of lithium niobate. In fact, it was

recently demonstrated that this mixture can be used as a wet-etching alternative for high-Q

TFLN devices, using silicon dioxide as a high-selectivity mask [99]. We independently verified

this result, estimating an etch rate of 1 nm/min in z-cut TFLN, compared to 4 nm/min in [99].

In future processes, enabled by the deposition of silicon dioxide, this constitutes an important

alternative for high-quality and easy fabrication.
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Full LiNbO3 Etching Recipe

First round of cleaning

O2 (50 sccm) and CF4 (5 sccm)
1200 W ICP, 120 W RIE
15 mTorr
average DC bias 292V
20 minutes

Conditioning

Ar (50 sccm)
800 W ICP, 105 W RIE
9 mTorr
average DC bias 240V
10 minutes

Etching

Same parameters
Etch in steps of 90s, with 3 min cooling time between steps
LN etch rate of 0.59(2) nm/s
Selectivity 0.85(5) with respect to maN-2405

Table 7.5: Summary of the complete etching recipe summarized in Figure 7.12, including clean-
ing and conditioning steps

Figure 7.15 shows a demonstration of redeposition cleaning using the H2O2/NH4OH/water

solution at 100ºC. Note that the third round, corresponding to a total cleaning/etching time of

120 minutes 3, clearly shows the undesired effect of etching. Here, the redeposited layer acts

as a soft mask for the etching solution, adding significant roughness to the device sidewalls.

The cleaning procedure should therefore be limited to about 60 minutes, and checked in an

SEM.

7.4.5 Etched facets

Additional etching tests were also carried out for deep-etching of silicon dioxide and silicon.

Here, the goal is to add an alternative to the post-processing steps 12 and 13 in Figure 7.2.

In this case, the dicing of the sample would be replaced by direct dry etching of the facets,

eliminating the need for dicing saw cuts and potentially yielding higher-quality facets.

A recipe for silicon dioxide etching was characterized and optimized, as shown in Figure

7.6. Here, the main challenge is to have the resist withstand the 20 minutes of etching time

required to etch 2𝜇m of silicon dioxide, plus any remaining lithium niobate from the first
3The solution must be replaced and restarted periodically ( 20 minutes) due to evaporation of the solvents.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.15: Post-etching cleaning of redeposition in TFLN waveguides using 2:2:1 mixture
of ammonium hydroxide, hydrogen peroxide and DI water at 100ºC. The results shown are
SEM images after (a)-(C) 0 min; (d)-(f) 60 min; (g)-(i) 120 min. The last case shows a clear
“overcleaning” of the redeposited material, and extreme roughness induced by the softmask
effect of the redeposited material under the etchant mixture.

etching step. We found that AZ3312 fulfills this requirement once the chamber is properly

cleaned (with a standard O2 cleaning and periodic manual cleaning) and cooling steps are

added after every five minutes of etching.

While this process can, in principle, make high-quality facets for fiber-to-chip coupling,

this has not yet been realized experimentally, as good results were obtained using dicing saw

cuts. Once the silicon dioxide layer is removed, the silicon layer is exposed and can bemanually

cleaved with good precision.

7.5 Periodic poling of Thin-Film Lithium Niobate

Periodic poling has become a well-established and widely implemented technique to achieve

quasi-matching in thin-film lithium niobate PICs. [100, 31].
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SiO2 Etching Recipe

Composition and flow O2 (3 sccm) and CHF3 (52 sccm)
ICP/RIE power 1200 W / 45 W
Average DC bias 53 V
Temperature/Pressure 25ºC / 10 mTorr
Average etch rate 100 nm/min (∼1.62 selectivity relative to AZ3312)

Table 7.6: ICP-RIE etching recipe for silicon dioxide.

(a) (b)

Figure 7.16: Deep consecutive etching of lithium niobate and silicon dioxide with photoresist
mask using 2𝜇m-thick AZ3312 resist. Each of the squares in the image is 500𝜇m in side. (a)
After 15 minutes of etching, (b) after 20 minutes of etching. The image shows a very good
tolerance of the resist to long etching, making the process suitable for the fabrication of optical-
grade facets. Images acquired by group member Dr. Melissa Mederos Vidal.

In the electric-field-induced periodic poling of lithium niobate, a high coercive field of

around 20kV/mm (corresponding to a high-voltage pulse of around 600 V for our z-cut sam-

ples) is applied to invert the orientation of ferroelectric domains in the crystal. In order to

ensure quasi-phase matching, the inversion must occur in a spatially periodic fashion along

the propagation direction. This process is facilitated by raising the sample to high tempera-

tures (in our case, we found that 250°C was sufficient for the parameters mentioned).

As shown in Figure 6.1, this inversion must have a period equal to 2𝜋/2Δ𝛽, where Δ𝛽

is the phase mismatch between the interacting waves. Each electrode must therefore have a

width of 𝜋/2Δ𝛽, with an equally sized interval separating it from the adjacent electrode. The

microfabrication step was successfully implemented and shown in Figure 7.10. In this section,

we will discuss the field-induced crystalline inversion process. Periodic poling in TFLN was

achieved in close collaboration with Ph.D. candidate Rafael Carbat Miranda.



Chapter 7. Microfabrication of Lithium Niobate Photonic Devices 86

100 um (a) (b) (c)

Figure 7.17: First round of results in Periodic Poling of TFLN.(a) An example of a gold electrode
pattern used for poling trials (in this case, third-party fabricated), (b)-(c) SEM images of the
poled region after electrode removal andHF acid etching, the apparent contrast defines regions
with a height difference around 100 nm.

A setup (partially shown in Figure 7.18) was constructed to generate pulses with adjustable

duration and shape, including a custom-made high-voltage amplifier circuit and a precision

contact probe. The high-voltage is supplied by an arrangement of eight 8 DC power sources

in series, each supplying up to 120 volts. A maximum temperature of 250ºC is maintained

by a hotplate and monitored with a thermocouple. Pulse shape parameters were extensively

tested to identify a procedure capable of yielding the necessary spatial control of the inverted

domains.

Figure 7.18: (a) Setup for implementation of field-induced periodic poling using high-voltage
pulses at elevated temperatures; (b) optical microscope image of a TFLN sample after periodic
poling followed by hydrofluoric acid etching, demonstrating good spatial control of the poled
regions; (c) picture of a sample after gold electrode deposition using EBL and lift-off.

The results of the first round of periodic poling trials is seen in Figure 7.17. Here, Hydroflu-

oric Acid (HF) etching is used as a technique to verify the realization of domain inversion. The

etch rate of lithium niobate with respect to HF is highly anisotropic, such that etch rates in the
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z-direction are much larger than the original z+ orientation (which is exposed in the original,

“unpoled” sample). Thus, if a sample is immersed in HF after periodic poling, the inverted

regions will be etched much faster.

The specific value of the z+ and z- etch rates in HF is not clear or consistent in the litera-

ture, as some details about the precise composition of the acid solution and the TFLN sample

are often omitted [101]. Furthermore, periodic poling is more often verified via direct mea-

surement of nonlinear optical phenomena, which had not yet been achieved during this stage

of the project.

(a) (b)

(c) (d)

Figure 7.19: (a)-(b) Phase-information of piezoresponse atomic force microscopy over peri-
odically poled regions in TFLN, demonstrating spatial resolution of a few microns (Images
acquired by group member Rafael Miranda). In an optical microscope, this corresponds to a
completely plain image, with no visible topographic features. (c) Optical microscope image
of a periodically poled region after HF etching using the optimal poling recipe. (d) A similar
structure, with a pulse amplitude above the optimal value.
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An often-cited reference inHF etching of LN [102] reports an etch rate ratio of 1:20 between

z+ and z-, thus predicting around 483 nm/min for z- and 17 nm/min for z+. However, this is

based on an “ad hoc” correction, not a direct measurement. We have found that the etch ratios

for z+ and z- in our samples are around 17 nm/min and 43 nm/min, respectively.

While this may have initially suggested a failure to achieve domain inversion, the experi-

ment was validated using Piezoresponse Atomic Force Microscopy (PAFM) in our poled sam-

ples. This is also a method commonly used in the literature to verify the periodic poling of

ferroelectric materials[103].

Within the explored range, we found that the best results (in terms of spatial resolution)

were obtained by applying 6 voltage pulses with an amplitude of 550V and duration of 160ms,

with a 10ms rise time, and separated by 2000ms each. The PAFM results for the Periodically

Poled Lithium Niobate (PPLN) samples yielded by our final process are shown in Figure 7.19,

demonstrating an achieved spatial resolution in the order of a few microns, which fulfills our

benchmark for all intended applications.
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Chapter 8

Coupling Light into Photonic Chips

The linking of integrated photonic circuits to off-chip systems is an essential requirement for

the practical use of PICs. Integrated light sources and photodetectors are often unsuitable or

impractical for specific materials and applications, such that external lasers and detection or

transmission schemesmust be used. External coupling systems often imposemajor limitations

on the environmental stability and performance of photonic integrated circuits and are there-

fore a major point of interest for current research [104, 105, 106]. In this chapter, we discuss a

series of post-processing steps conducted to prepare our fabricated samples for fiber-to-chip

coupling of light.

8.1 Fiber-to-chip edge coupling of light

The fundamental challenge of coupling light from external sources into photonic chips is

shown in Figure 8.1, which represents an “edge coupling” scheme (also called “butt-coupling”).

The optical fibers used to transmit light from sources or toward detectors have mode-field di-

ameters in the order of approximately 10𝜇m, while integrated waveguides have cross sections

in the range of 500nm to a few microns. The coupling efficiency is therefore limited by the

spatial mode mismatch between waveguide and optical fiber.

A simple model for the coupling efficiency can be derived by applying a continuity condi-

tion for the transverse electric and magnetic fields at an interface. If the two fields are approx-

imated by Gaussian profiles with beam radii given by 𝑤𝑖, and effective indices given by 𝑛𝑖𝑒𝑓 𝑓 ,



Chapter 8. Coupling Light into Photonic Chips 90

Figure 8.1: A representation of the fundamental challenge of fiber-to-chip coupling. SiO2 slab
thickness is not to scale. On the right, an approximate calculation of coupling efficiency based
on Equation 8.1.

the coupling efficiency (in terms of transmitted power) will be [22]

𝜂 =
2𝑛𝑖𝑒𝑓 𝑓 𝑛𝑡𝑒𝑓 𝑓

(𝑛𝑖𝑒𝑓 𝑓 + 𝑛𝑡𝑒𝑓 𝑓 )2 (
4

𝑤2
1𝑤2

2

(𝑤2
1 + 𝑤2

2)2)
. (8.1)

A plot of equation 8.1 is shown in Figure 8.1. For example, we can calculate that a waveguide

with 𝑤1=500 nm and 𝑛1𝑒𝑓 𝑓 =2.3, and an optical fiber with 𝑤2=5𝜇m and 𝑛2𝑒𝑓 𝑓 =1.46 will have a

maximum coupling efficiency of 1.8% (∼17 db loss at the interface). Notice that propagation

losses in TFLN devices can be as low as 0.002 dB/cm [74], such that total losses are often

dominated by those related to the insertion process. Crucially, several techniques have been

implemented to increase the efficiency of edge coupling.

In inversely tapered waveguides, the cross-section width is slowly reduced as the waveg-

uide approaches the coupling edge. The inverse taper usually extends along several tens of

micrometers, as the width is reduced to a few hundred nanometers. As the width is reduced,

the mode-field diameter of the waveguide will increase, and the mode will become less con-

fined in thewaveguide core, improving themodal overlap betweenwaveguide and fibermodes.

This technique has been employed at least since 2003 for silicon-on-insulator devices, yielding

losses as low as 3dB/facet [107].

Similar results have been demonstrated for TFLN, with 200 nm-inverse tapers resulting in

losses as low as 6 dB/facet at 1550 nm [104, 108]. More complex schemes combining inverse

tapers with ultra-high numerical aperture fibers [109] and passive mode size converters based

on tapered LN bilayers [110] have achieved coupling losses below 2dB/facet for TFLN. In the
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absence of such specific design, typical values reported in the literature still range between 8

and 11dB/facet [111]. For competing photonic materials like aluminum nitride (AlN), silicon

nitride (Si3N4), silicon-on-insulator (SOI), and aluminum gallium arsenide on insulator (Al-

GaAsOI), the typical edge coupling insertion losses are also on the range of 2-3dB/facet [112,

113].

8.2 Facet preparation

For this project, we optimized a series of post-processing steps to enable efficient edge cou-

pling, as shown in Figure 7.2. In order to expose the waveguide facets, we investigated four

main methods: (1) cleaving of the sample with a diamond-tip scriber; (2) Cutting with a

diamond-blade dicing saw; (3) Deep dry etching with ICP-RIE equipment preceded by aligned

photolithography; (4) Mechanical polishing usingmicrometer-roughness sandpaper, generally

used for polishing of optical fibers.

We found that cleaving the samples often leads to undesired cracking of the lithium niobate

layer, for which the cleaving direction often does not follow a straight line. Thus, the process

has very low reproducibility and a high risk of compromising samples. This problem could be

mitigated by fabricating very long couplingwaveguides, such that the designwould be tolerant

to uneven cleaving. However, this solution requires very precise alignment of neighboring

write-fields during EBL, and is likely to introduce major losses.

The development of a process for the fabrication of etched facets was discussed in Section

7.4.5. A process capable of fully etching the 2 𝜇m-thick silicon dioxide layer was developed,

using optical lithography and dry etching. Processes of this kind are well known to produce

high-quality facets with very low roughness, greatly limiting losses induced by scattering

[114]. To enable edge coupling, it is still necessary to remove the silicon layer underneath,

making room for the optical fiber, either by manual cleaving or further etching. Therefore, the

full development of a coupling method via etched facets was not completed for this project, as

it imposes additional fabrication steps compared to dicing-saw cutting. As multiple methods

were developed in parallel for this project, the latter was chosen as a priority for its simplicity

and effectiveness.

We found that efficient edge coupling could be achieved by exposing the waveguide facets

using diamond-blade dicing saw cuts. We found that cutting through the waveguides leads
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to major shattering of the facets and makes optical coupling unattainable. Through extensive

trial and error, we found that an offset distance of approximately 3𝜇mmust be left between the

cut direction and waveguide entrance. Then, a lensed optical fiber can be used to efficiently

couple light into the photonic chip, as shown in Figure 8.2. Using this setup, we achieved

coupling losses as low as 9dB/facet when using a 300 nm inversely tapered waveguide, which

rises to 12dB/facet in the absence of inverse tapering (1𝜇m wide waveguide). An image of

the alignment marks used for such dicing saw cuts, as well as an SEM image of an inversely-

tapered waveguide tip are shown in Figure 8.3.

Figure 8.2: Fiber-to-chip edge coupling of light into a lithium niobate chip. (a) Optical micro-
scope view of the final coupling scheme; (b) picture of the 10x10mm sample immediately after
dicing with the DAD3220 dicing saw; (c) a single strip of the diced sample, with both edges
exposed; (d) a larger view of the setup, with lensed fibers placed on each side of the sample,
and positioned on precise motor stages for fine alignment.

It is important to stress that successful couplingwas only achieved once the optimization of

plasma etching processes enabled etching depths above 200 nm. This is likely due to the very

large spatial mode mismatch between optical fibers and shallow-etched waveguides of this

kind. Additionally, shallow-etching implies a relatively thick leftover LN layer, which can act

as a “slab” waveguide whose modes will interact undesirably with the fabricated rectangular

waveguide.

Mechanical polishing of the sample edges was also extensively tried, both as a stand-alone

process and as a complementary one to the dicing-saw cuts. Here, the samples are glued to

an aluminum holder using thermally sensitive crystal wax, such that the facet to be etched

faces upward. The sample is then pressed against fiber-polishing sandpaper (with micrometer



Chapter 8. Coupling Light into Photonic Chips 93

roughness) by∼1kg aluminum cylinders placed on top of the holder. The sandpaper is attached

to a rotation motor, thereby achieving the mechanical polishing and etching of the sample. We

found that this process does not lead to measurable improvement in coupling efficiency, and

very often damages the sample.

Figure 8.3: Optical microscope image of a photonic device, where highlighted alignment marks
are used as a reference for dicing saw cuts. On the right, an SEM image of the diced waveguide
(visible contamination is due to the protective resist layer coated prior to dicing, an additional
cleaning step is required before optical measurement).

8.3 Measuring Q-factors

The results of this first measurement are shown in Figure 8.5, where a frequency sweep was

conducted with a TOPTICA diode laser between 1530 nm and 1550 nm. The image shows the

expected Lorentzian resonances associated with the ring resonators. Lorentzian curves were

fitted to the results to obtain estimates for the quality factor of the optical cavities, which

range from 2 to 6×103. These are plotted as functions of geometrical features in Figure 8.4.

As expected, smaller gap sizes are associated with smaller quality factors, due to increased

coupling between ring resonator and waveguide. So far, the highest quality factor measured

in one of our devices has been Q≈2.0×104.

By itself, the measurement shown in Figure 8.5 is not sufficient to separate the contribu-

tions of internal and coupling losses to the quality factor. Nevertheless, the results in Fig-

ure 8.4, where the quality factor reliably increases as the gap size (between waveguide and
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Figure 8.4: Estimated quality factor of a subset of the characterized ring resonators as a func-
tion of the gap size (defined as the distance between the outer radius of the ring and the closest
waveguide sidewall in the coupler region).

ring) increases, strongly indicate that the optical resonators measured so far are strongly over-

coupled. Indeed, these devices were fabricated with very large coupling regions (subtending

a 40° arc along the ring), such that the coupling strength can greatly be reduced by simple

design adjustments.

Thus, the Q=2.0×104 value must be seen as a lower bound for the quality factor yielded

by this process. In addition to the over-coupling indicated by the measurements in Figure 8.4,

it must also be stressed that the devices measured do not correspond to the fully optimized

recipe. 1 Nevertheless, even the lower bound levels achieved, combined with the developed

processes of metal deposition and periodic poling, already enable important demonstrations

in nonlinear photonics, such as second harmonic generation.

Furthermore, assuming a worst-case scenario of intrinsic Q=2.0×104, we estimate a thresh-

old power around 27mW[73] to demonstrate on-chip optical parametric oscillation. Assuming

coupling losses of 9dB/facet, a pump source of approximately 214 mW would be necessary to

complete the demonstrations. This pump power value is reduced to a more achievable 34mW

(4.3 mW threshold) for Q=5.0×104, which is most likely well within reach.

1This is due to the fact that, as shown in the previous chapters, multiple steps are required before a sample
is ready to be measured. Thus, not all modifications to the fabrication process could be translated to optical
measurement in a timely manner.
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Figure 8.5: Optical Measurement of our first ring resonator in z-cut thin-film lithium niobate,
fabricated at LPD (IFGW/Unicamp), CCSNNano (Unicamp) and LNNano (CNPEM). This device
consisted in a 100𝜇m-radius ring with 1𝜇m width and 300nm height, coupled to a waveguide
with the same dimensions, separated by a distance of 800 nm along a coupling length of ap-
proximately 70𝜇m, subtending a 40º arc concentric to the ring.
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Chapter 9

Conclusions and Outlook

In this project, we have worked on the design, microfabrication, and optical measurement of

integrated photonic devices in thin-film lithium niobate. A complete microfabrication recipe

was developed from scratch and multiple processes for TFLN were extensively characterized,

enabling high feature resolution, deep-etching of the lithium niobate film, and the preparation

of facets for edge coupling. In collaboration with group members, a setup for fiber-to-chip

coupling was constructed and tested, and a recipe for periodic poling of lithium niobate with

high spatial resolution was optimized. The process is validated by the successful optical mea-

surement of integrated ring resonators, with coupling losses of 9dB/facet and quality factors

around 2.0×104 in the worst-case scenario. Several complementary cleanroom processes were

also developed, including the fabrication of lensed fibers, deep etching of silicon and silicon

dioxide, several cleaning procedures, and metal deposition.

These results constitute a robust toolbox for the realization of a wide range of devices and

experiments. And in many cases, such experiments correspond to results achieved only very

recently in the literature, as seen in Table 5.3. Most notably, on-chip second harmonic gener-

ation can be readily implemented in a periodically-poled lithium niobate waveguide using the

processes shown in this text.

Subsequent rounds of fabrication are likely to yield significantly higher quality factors,

either by implementing the fully optimized fabrication process or simply by removing the

devices from the over-coupled regime. In such a scenario, the threshold power for the demon-

stration of optical parametric oscillation will sit comfortably within reach. Finally, below-

threshold operation of the OPO is a benchmark requirement for the on-chip generation of

squeezed states of light.
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Appendix A

Perturbative Nonlinear Rectangular

Waveguide

We begin by considering a mode propagating in a waveguide not exhibiting nonlinearity and

write it as

E(0) = E𝑚(𝑥, 𝑦) exp(−𝑖𝛽𝑚𝑧) and H(0) = H𝑚(𝑥, 𝑦) exp−𝑖𝛽𝑚𝑧 (A.1)

ignoring the normalization for now. Additionally, we consider the guided modes

E(r) = ∑
𝑚

𝐴𝑚(𝑧, 𝜔)E𝑚(𝑥, 𝑦) exp−𝑖𝛽𝑚𝑧 and H(r) = ∑
𝑚

𝐴𝑚(𝑧, 𝜔)H𝑚(𝑥, 𝑦) exp−𝑖𝛽𝑚𝑧 (A.2)

where the 𝐴(𝑧, 𝜔) is a dimensionless factor used to account for the 𝑧 dependence of the elec-

tric and magnetic fields, since we anticipate that the presence of the nonlinearity will cause

different modes to become coupled.

The set of equations obeyed by these quantities is similar to the previous example, but now

we add the polarization, such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ × E(0)∗ = 𝑖𝜔𝜇0H(0)∗

∇ ×H(0)∗ = −𝑖𝜔𝜖0𝜖E(0)∗

∇ × E = −𝑖𝜔𝜇0H

∇ ×H = 𝑖𝜔 (𝜖0𝜖E + P𝑁𝐿)

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H ⋅ (∇ × E(0)∗) = 𝑖𝜔𝜇0H(0)∗ ⋅H

E ⋅ (∇ ×H(0)∗) = −𝑖𝜔𝜖0𝜖E(0)∗ ⋅ E

H(0) ⋅ (∇ × E) = −𝑖𝜔𝜇0H ⋅H(0)

E(0) ⋅ (∇ ×H) = 𝑖𝜔 (𝜖0𝜖E + P𝑁𝐿) ⋅ E(0)

(A.3)
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A quick comment is due on the 𝑃𝑁𝐿 notation. Note that

D = 𝜀0E + P = 𝜀0(1 + 𝜒𝑒)E = 𝜀0𝜀E s.t. P = 𝜀0 (𝜒 (1)E(𝑡) + 𝜒 (2)E2(𝑡) + … ) (A.4)

which is to say that one may either write

D = 𝜀0E + P OR D = 𝜀0𝜀E + P𝑁𝐿 (A.5)

And following the same procedure as before, we get to

∇ ⋅ (E ×H(0)∗ + E(0)∗ ×H) = −𝑖𝜔E(0)∗ ⋅ P𝑁𝐿. (A.6)

Integrating this result in a volume parallel to the 𝑥𝑦 plane with infinitely small thickness and

infinite area, we get

∭
𝑉
∇ ⋅ (E ×H(0)∗ + E(0)∗ ×H) 𝑑𝑉 = −𝑖𝜔∭

𝑉
E(0)∗ ⋅ P𝑁𝐿 𝑑𝑉 (A.7)

Separating the divergence in two terms,

∭
𝑉 [

∇(𝑥,𝑦) ⋅ (E ×H(0)∗ + E(0)∗ ×H)(𝑥,𝑦)] +∭
𝑉

𝜕
𝜕𝑧 (

E ×H(0)∗ + E(0)∗ ×H) ⋅ ẑ 𝑑𝑉 =

= −𝑖𝜔∭
𝑉
E(0)∗ ⋅ P𝑁𝐿 𝑑𝑉

And applying the divergence theorem to the integral containing the (𝑥, 𝑦) components,

∯
𝜕𝑉 [

(E ×H(0)∗ + E(0)∗ ×H)(𝑥,𝑦)] ⋅ 𝑑S +∭
𝑉

𝜕
𝜕𝑧 (

E ×H(0)∗ + E(0)∗ ×H) ⋅ ẑ 𝑑𝑉 =

= −𝑖𝜔∭
𝑉
E(0)∗ ⋅ P𝑁𝐿 𝑑𝑉

Since the guided modes go to zero at infinity, the first integral will vanish, for the same reason

as before. And considering infinitely small thickness, we may rewrite the equation as

∬
𝑆

𝜕
𝜕𝑧 (

E ×H(0)∗ + E(0)∗ ×H) ⋅ ẑ 𝑑𝑆 = −𝑖𝜔∬
𝑆
E(0)∗ ⋅ P𝑁𝐿 𝑑𝑆 (A.8)
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The only fields that will contribute to the cross product so as not to get a zero projection on ẑ

will be transverse, so

∬
𝑆

𝜕
𝜕𝑧 (

E𝑇 ×H(0)∗
𝑇 + E(0)∗

𝑇 ×H𝑇) ⋅ ẑ 𝑑𝑆 = −𝑖𝜔∬
𝑆
E(0)∗ ⋅ P𝑁𝐿 𝑑𝑆 (A.9)

Notice that 𝑇 subscript is just a short notation for the (𝑥, 𝑦) argument. And by substituting

the definitions of the fields, denoting the non-perturbed mode by 𝑛 and the perturbed mode

by 𝑚,

∑
𝑚

𝜕
𝜕𝑧 (

𝐴𝑚(𝑧, 𝜔)𝑒−𝑖(𝛽𝑚−𝛽𝑛)𝑧 ∬ [(E𝑇 ,𝑚 ×H∗
𝑇 ,𝑛 + E∗

𝑇 ,𝑛 ×H𝑇 ,𝑚) ⋅ ẑ] 𝑑𝑥 𝑑𝑦) =

= −𝑖𝜔∬
𝑆
E∗
𝑚(𝑥, 𝑦)𝑒

𝑖𝛽𝑚𝑧 ⋅ P𝑁𝐿 𝑑𝑆 (A.10)

and using the mode orthogonality condition, all terms in the summation will vanish, except

for when 𝑚 = 𝑛,

𝜕
𝜕𝑧

𝐴𝑚(𝑧, 𝜔) = −
𝑖𝜔
4𝑃𝑚

𝑒𝑖𝛽𝑚𝑧 ∬
𝑆
E∗
𝑚(𝑥, 𝑦, 𝜔) ⋅ P𝑁𝐿(𝑥, 𝑦, 𝜔) 𝑑𝑥 𝑑𝑦 (A.11)
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