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Resumo
O anel de Grothendieck de variedades é uma construção essencial na Geometria Algébrica. É
formado tomando o conjunto de todas as classes de isomorfismo de variedades algébricas e
definindo uma estrutura de anel sobre esse conjunto. Essa estrutura tem implicações significativas
em vários ramos da Geometria Algébrica, em particular, o Anel de Grothendieck pode ser utilizado
para provar teoremas sobre variedades, estudar suas propriedades algébricas e geométricas e
classificar variedades com base em suas propriedades no anel. Além disso, está intimamente
relacionado com a Geometria Birracional e a Teoria das Singularidades, e desempenha um papel
central na Teoria de Integração Motívica. Tendo em vista sua importância, este trabalho tem
como objetivo principal apresentar o anel de Grothendieck de variedades, estudar propriedades e
explorar resultados que permitem o cálculo de classes de variedades neste anel. Mais ainda, a fim
de explicitar a relação entre a Geometria Birracional e o anel de Grothendieck, será mostrado
que a racionalidade estável de uma variedade suave e própria sobre um corpo de característica
zero pode ser detectada na classe da variedade no anel de Grothendieck. Entretanto, para realizar
este estudo, faremos uso de ferramentas básicas de Geometria Algébrica e, por isso, também
serão apresentados conceitos, resultados e exemplos de variedades algébricas e esquemas.

Palavras-chave: Anel de Grothendieck de Variedades. Geometria Algébrica. Geometria Birraci-
onal.



Abstract
The Grothendieck Ring of Varieties is a fundamental construction in Algebraic Geometry. It is
formed by taking the set of all isomorphism classes of varieties and defining a ring structure on
this set. This structure has significant implications in various branches of Algebraic Geometry.
In particular, the Grothendieck Ring can be used to prove theorems about varieties, study their
algebraic and geometric properties, and classify varieties based on their properties in the ring.
Furthermore, it is closely related to Birational Geometry and the Theory of Singularities, and it
also plays a central role in the Theory of Motivic Integration. Given its importance, the main
objective of this work is to present the Grothendieck Ring of Varieties, study its properties, and
explore results that allow for the computation of classes of varieties in this ring. Moreover, to
elucidate the relationship between Birational Geometry and the Grothendieck Ring, it will be
shown that the stable rationality of a smooth and proper variety over a field of characteristic
zero can be detected in the class of the variety in the Grothendieck Ring. However, to achieve
this study, we will employ basic tools of Algebraic Geometry, therefore, we will also introduce
concepts, results, and examples of algebraic varieties and schemes.

Keywords: Grothendieck Ring of Varieties. Algebraic Geometry. Birational Geometry.
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Introduction

Since Ancient Greece, around 400 BC, Geometry and Algebra have been used
together to solve mathematical problems. The challenges faced by Greek mathematicians led
to the development of “Geometric Algebra”, an approach where the most prevalent technique
of resolving algebraic problems was through the intersection of auxiliary curves. In this form
of expression, writing equations was more geometric. A clear example of this is the use of
simple geometric constructions to find roots of equations of the form “𝑥2 = 𝑎𝑏”. Later on, the
connection between these two areas became even more evident with the publication of Book II
of Euclid’s “Elements” in the 3rd century BC, which presented ten propositions dealing with
algebraic identities described through geometric representations.

With the introduction of Analytical Geometry in the 16th century and the works
of René Descartes, the relationship between Algebra and Geometry went beyond assigning
geometric meanings to algebraic expressions. In Descartes’ treatise “La Géométrie”, he sought to
liberate geometry from diagrams through algebraic processes. Descartes used both geometry and
algebra as tools to solve geometric and algebraic problems. This change marked the beginning of
contemporary Algebraic Geometry.

One of the fundamental results in algebraic geometry is the equivalence between the
category of affine varieties over an algebraically closed field 𝑘 and the dual category of commu-
tative reduced 𝑘-algebras of finite type. This result was significantly generalized by Alexander
Grothendieck around 1957 when he undertook a gigantic program aimed at a vast generalization
of algebraic geometry. His objective was to encompass all the previous developments and move
beyond the framework of reduced algebras of finite type over an algebraically closed field, instead
working with the category of all commutative rings. Grothendieck’s groundbreaking contribution
to algebraic geometry came through the development of the theory of schemes. This powerful
framework allowed mathematicians to work with objects at a more abstract level, providing
deeper insights and leading to new discoveries in the field.

Another accomplishment of Grothendieck was the definition of the Grothendieck
ring of varieties, a ring that is additively generated by isomorphism classes of varieties over 𝑘 ,
modulo a “cut and paste” relation with respect to closed subschemes. This is one of the central
objects in the Kontsevich’s theory of motivic integration and is highly useful in various branches
of Algebraic Geometry, especially in Birational Geometry and Singularity Theory. A class of
varieties in the Grothendieck ring hold a wealth of geometric data about the variety, such as the
Hodge polynomials, Euler characteristic, the number of points of the variety in the case where 𝑘
is a finite field, among others.

Thus, the objective of this work is to provide an introduction to algebraic geometry
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by presenting fundamental concepts and results from the field. Part of this study has as the main
focus the Chapters 1 and 2 of “Algebraic Geometry” by Robin Hartshorne, which serve as the
foundational material for this study. In addition to covering the initial concepts of algebraic
geometry, this work explore into the study of the Grothendieck ring of varieties, since it is a
fundamental structure that captures important information about algebraic varieties and their
classes. To achieve these objectives, the study is divided into three chapters.

In Chapter 1, we present the initial objects of this theory and prerequisites that will be
used throughout the work. In this chapter, we review and study concepts from category theory and
commutative algebra. Section 1 provides a brief introduction to category theory, presenting the
initial concepts and some examples. Section 2 is dedicated to a review of commutative algebra,
covering concepts such as modules, monoids, localizations, exact sequences, Noetherian rings,
and important results like the Snake lemma and Hilbert’s Basis theorem.

In Chapter 2, we lay the groundwork for our study of Algebraic Geometry. We
begin by introducing the fundamental concepts of affine and projective algebraic varieties and
delve into the language of schemes. We also explore the properties of abelian varieties and
complex tori. This chapter is divided into three sections, each focusing on different aspects of the
subject. The first section is dedicated to the study of varieties. We cover topics such as affine
varieties, projective varieties, morphisms, and rational maps and lastly we look into important
techniques like blow-ups and showcase the grassmannians as significant examples of varieties.
The second section shifts our attention to the study of schemes. We introduce the notions of
pre-sheaves, sheaves, affine schemes, and schemes themselves. We explore various properties of
schemes and conclude the section with insights into solving singularities. Finally, in the third
section, our focus turns to abelian varieties, complex tori, and specifically elliptic curves. These
examples of schemes serve as illustrative instances that will be utilized throughout our work.
The construction of this chapter is crucial for the development of the subsequent chapter, as it
provides the necessary foundation and tools for further investigations, proofs, and examples.

Finally, Chapter 3 is dedicated to the study of the Grothendieck ring of varieties.
Section 1 focuses on presenting classical properties of the Grothendieck ring of varieties and
some examples that illustrate how to calculate classes, we also provide an exposition of the
generators of the Grothendieck ring and introduce Bittner’s alternative presentations, which
offer alternative perspectives on this ring. In Section 2, we delve into the fascinating connection
between birational geometry and the Grothendieck ring of varieties. We explore the significant
role played by the class [L] and its implications in understanding the relationship between
birational geometry and the algebraic structure of the Grothendieck ring. The chapter concludes
with Section 3, which is dedicated to give two ideas on how to prove that the Grothendieck ring
of varieties is not a domain. The historical information and contexts presented in this introduction
and throughout the paper are sourced from the MacTutor History of Mathematics archive and the
reference (DIEUDONNÉ, 1985).
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1 Preliminaries

1.1 Categories

The theory of Categories, despite its generality, provides very useful concepts in
the study of Algebraic Geometry, simplifying the notation and language of the objects we work
with. With that in mind, the purpose of this section is to present the initial definitions and some
examples. The content presented in this section is based on the reference (VAKIL, 2017).

Definition 1.1.1. A category C consists of:

i) A collection of objects, denoted by 𝑂𝑏 𝑗 C;

ii) For every pair of objects 𝑋,𝑌 P 𝑂𝑏 𝑗 C, a set HomC(𝑋,𝑌 ), whose elements are called
morphisms or arrows from 𝑋 to 𝑌 ;

iii) For every triple of objects 𝑋,𝑌, 𝑍 P 𝑂𝑏 𝑗 C, a composition law for morphisms

HomC(𝑋,𝑌 ) ˆ HomC(𝑌, 𝑍) Ñ HomC(𝑋, 𝑍) ( 𝑓 , 𝑔) ÞÑ 𝑔 ˝ 𝑓 .

Item (𝑖𝑖𝑖) must satisfy the following axioms:

(a) (Identity) For every object 𝑋 P 𝑂𝑏 𝑗 C, there exists a morphism id𝑋 P HomC(𝑋, 𝑋),
called the identity morphism of 𝑋 , such that

𝑓 ˝ id𝑋 = 𝑓 and id𝑋 ˝𝑔 = 𝑔,

for all 𝑓 P HomC(𝑋,𝑌 ) and 𝑔 P HomC(𝑍, 𝑋).

(b) (Associativity) For any 𝑓 P HomC(𝑊, 𝑋), 𝑔 P HomC(𝑋,𝑌 ), and ℎ P HomC(𝑌, 𝑍),
we have

ℎ ˝ (𝑔 ˝ 𝑓 ) = (ℎ ˝ 𝑔) ˝ 𝑓 .

Here are some examples of categories:

Example 1.1.2. The category 𝑉𝑒𝑐𝑡𝑘 of vector spaces over a fixed field 𝑘 . The objects are vector
spaces over 𝑘 , and the morphisms are linear transformations between such spaces.

Example 1.1.3. The category 𝐺𝑟𝑜𝑢𝑝𝑠 of all groups. The objects are groups, and the morphisms
are group homomorphisms.

Example 1.1.4. The category 𝑇𝑜𝑝 of all topological spaces. The objects are topological spaces,
and the morphisms are continuous maps between spaces.
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Example 1.1.5. The dual category C˝. The objects are the same as in the category C, and we
define the set of morphisms as HomC˝ (𝑋˝, 𝑌˝) = HomC(𝑌, 𝑋).

From now on, we will write 𝑋 P C instead of 𝑋 P Obj,C. Let’s also see the definition
of isomorphism between objects.

Definition 1.1.6. Given 𝑋,𝑌 P C, we say that 𝑋 and 𝑌 are isomorphic if there exist 𝜑 : 𝑋 Ñ 𝑌

and 𝜓 : 𝑌 Ñ 𝑋 such that id𝑋 = 𝜓 ˝ 𝜑 and id𝑌 = 𝜑 ˝ 𝜓.

Now that we have defined what a category is, let’s see how categories relate to each
other.

Definition 1.1.7. A (covariant) functor 𝐹 between categories C and D is a rule that associates
to each object 𝑀 P C an object 𝐹𝑀 P D and to each morphism 𝜑 P HomC(𝑀, 𝑁) a morphism
𝐹𝜑 P HomD(𝐹𝑀, 𝐹𝑁), satisfying the following conditions:

i) 𝐹 (id𝑀) = id 𝐹𝑀;

ii) 𝐹 (𝜑 ˝ 𝜓) = 𝐹𝜑 ˝ 𝐹𝜓 for 𝜑 P HomC(𝑀, 𝑁) and 𝜓 P HomC(𝑁, 𝑃).

We say that a functor 𝐹 is contravariant if it satisfies the above conditions, except that 𝐹 reverses
the direction between morphisms, i.e.,

𝜑 P HomC(𝑀, 𝑁) ñ 𝐹𝜑 P HomD(𝐹𝑁, 𝐹𝑀).

The following diagram provides a more visual way to understand the distinction
between a covariant functor and a contravariant functor.

𝐹 : C D

𝑀 𝐹𝑀

𝑀

𝑁

𝐹𝑀

𝐹𝑁

𝜑 𝐹𝜑

An example of a functor is the mapping 𝐹 : 𝑇𝑜𝑝(𝑋) Ñ 𝑅𝑖𝑛𝑔𝑠, where 𝑇𝑜𝑝(𝑋) is
the category of open sets in a topological space 𝑋 , with morphisms being continuous mappings
between the open sets. And 𝑅𝑖𝑛𝑔𝑠 is the category of commutative rings, with morphisms being
ring homomorphisms. The functor 𝐹 associates each open set of the topological space with
the ring of continuous functions on it, and for each continuous function 𝜑 P Hom(𝑈,𝑉), it
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associates the homomorphism 𝐹𝜑 P Hom(𝐹𝑉, 𝐹𝑈), defined as 𝐹𝜑( 𝑓 ) = 𝑓 ˝ 𝜑. Note that 𝐹 is a
contravariant functor.

Now let’s explore a way to generalize the notions of injectivity and surjectivity to
functors.

Definition 1.1.8. A functor 𝐹 : C Ñ D is said to be faithful if, for any two objects 𝑋 and 𝑌 in
C, the mapping 𝐹 : HomC(𝑋,𝑌 ) Ñ HomD(𝐹𝑋, 𝐹𝑌 ) is injective. We say that 𝐹 is full if this
mapping is surjective.

An interesting and useful example of a category is the category of abelian categories.
Let’s present the definition and some examples.

Definition 1.1.9. An abelian category is a category 𝔄 such that: for every 𝐴, 𝐵 P 𝔄, Hom(𝐴, 𝐵)
has the structure of an abelian group; the composition law is linear; finite direct sums exist;
every morphism has a kernel and cokernel; every monomorphism is the kernel of its cokernel;
every epimorphism is the cokernel of its kernel, and every morphism can be factored into an
epimorphism followed by a monomorphism.

As examples of abelian categories, we have:

i) 𝔄𝔟, the category of abelian groups.

ii) 𝔐𝔬𝔡(𝐴), the category of modules over a commutative ring 𝐴 with unity.

1.2 Commutative algebra

In this section, we present a review of commutative algebra, discussing various
concepts like modules, monoids, localizations, exact sequences, Noetherian rings, and significant
results such as the Snake lemma and Hilbert’s Basis theorem. This study is based on the reference
(ATIYAH; MACDONALD, 1969).

The concept of a module over a ring is a generalization of the notion of a vector
space, where instead of a field, we have a ring as the set of scalars. Thus, a module, like vector
spaces, is the product of elements from an abelian group with a ring. In this section, we introduce
the definition and elementary properties of modules. Additionally, we briefly present the notion
of sequences of 𝐴-modules, localization, and graded rings (and modules).

Definition 1.2.1. Let 𝐴 be a ring. An 𝐴-module is a pair (𝑀, 𝜇), where 𝑀 is an abelian group
and 𝜇 : 𝐴 ˆ 𝑀 Ñ 𝑀 maps (𝑎, 𝑚) to 𝑎𝑚, satisfying the following properties:

i) 𝑎(𝑚 + 𝑛) = 𝑎𝑚 + 𝑎𝑛;

ii) (𝑎 + 𝑏)𝑚 = 𝑎𝑚 + 𝑏𝑚;
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iii) (𝑎𝑏)𝑚 = 𝑎(𝑏𝑚);

iv) 1𝑚 = 𝑚;

for all 𝑎, 𝑏 P 𝐴 and 𝑚, 𝑛 P 𝑀 .

Definition 1.2.2. Let 𝐴 be a ring and 𝑀 an 𝐴-module. A submodule 𝑀 1 of 𝑀 is a subgroup of
𝑀 that is closed under multiplication by elements of 𝐴.

The abelian group 𝑀/𝑀 1 inherits an 𝐴-module structure from 𝑀, defined by
𝑎(𝑚 + 𝑀 1) = 𝑎𝑚 + 𝑀 1. Thus, 𝑀/𝑀 1 is defined as the quotient 𝐴-module of 𝑀 by 𝑀 1.

The sum
∑︁

𝑀𝑖 is a submodule of 𝑀 and is the smallest submodule of 𝑀 containing
all 𝑀𝑖. The intersection X𝑀𝑖 and the product 𝐼𝑀 are also submodules of 𝑀 .

If a module 𝑀 =
∑︁

𝐴𝑚𝑖, we say that the 𝑚𝑖’s form a set of generators for 𝑀 . This
means that every element of 𝑀 can be expressed (not necessarily uniquely) as a finite linear
combination of the 𝑚𝑖’s with coefficients in 𝐴. An 𝐴-module is said to be finitely generated if it
has a finite set of generators.

Just as we defined homomorphisms between rings, we now define homomorphisms
between 𝐴-modules.

Definition 1.2.3. Let 𝑀 and 𝑁 be 𝐴-modules. A function 𝑓 : 𝑀 Ñ 𝑁 is called an 𝐴-
homomorphism if for any 𝑚1, 𝑚2 P 𝑀 and 𝑎 P 𝐴, the following conditions hold:

i) 𝑓 (𝑚1 + 𝑚2) = 𝑓 (𝑚1) + 𝑓 (𝑚2);

ii) 𝑓 (𝑎𝑚1) = 𝑎 𝑓 (𝑚1).

Next, we present a way to represent a relationship between homomorphisms of
𝐴-modules using diagrams: exact sequences.

Definition 1.2.4. Let {. . . , 𝑀𝑖´1, 𝑀𝑖, 𝑀𝑖+1, . . . } be a family of 𝐴-modules, and {. . . , 𝑓𝑖+1 : 𝑀𝑖 Ñ

𝑀𝑖+1, . . . } be a family of 𝐴-homomorphisms. The sequence

¨ ¨ ¨ ÝÑ 𝑀𝑖´1
𝑓𝑖

ÝÑ 𝑀𝑖
𝑓𝑖+1

ÝÑ 𝑀𝑖+1 ÝÑ ¨ ¨ ¨

is said to be exact at 𝑀𝑖 if 𝐼𝑚( 𝑓𝑖) = 𝐾𝑒𝑟 ( 𝑓𝑖+1). The sequence is exact if it is exact at each 𝑀𝑖.

Definition 1.2.5. An exact sequence of 𝐴-modules and 𝐴-homomorphisms of the form

0 ÝÑ 𝑀𝑖´1
𝑓𝑖

ÝÑ 𝑀𝑖
𝑓𝑖+1

ÝÑ 𝑀𝑖+1 ÝÑ 0

is called a short exact sequence.

Next, we present an important result known as the Snake Lemma.
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Proposition 1.2.6. Let
0 ÝÑ 𝑀 1 𝑢

ÝÑ 𝑀
𝑣

ÝÑ 𝑀2
ÝÑ 0

Ó
𝑓 1

Ó
𝑓

Ó
𝑓 2

0 ÝÑ 𝑁 1
ÝÑ
𝑢1

𝑁 ÝÑ
𝑣1

𝑁2
ÝÑ 0

be a commutative diagram of 𝐴-modules and homomorphisms, with the rows exact. Then there
exists an exact sequence

0 Ñ Ker
(
𝑓 1
) �̄�

Ñ Ker( 𝑓 ) �̄�
Ñ Ker

(
𝑓 2

) 𝑑
Ñ

Coker
(
𝑓 1
) �̄�1

Ñ Coker( 𝑓 ) �̄�1

Ñ Coker
(
𝑓 2

)
Ñ 0

in which �̄�, �̄� are restrictions of 𝑢, 𝑣, and �̄�1, �̄�1 are induced by 𝑢1, 𝑣1.

Next, we define some more algebraic structures.

Definition 1.2.7. Let 𝑘 be a field and 𝐴 be a vector space over 𝑘 , equipped with a binary
operation ¨ : 𝐴ˆ 𝐴 Ñ 𝐴 called multiplication. Then 𝐴 is a 𝑘-algebra if the following properties
hold for all 𝑥, 𝑦, 𝑧 P 𝐴 and 𝑎, 𝑏 P 𝑘:

i) (𝑥 + 𝑦) ¨ 𝑧 = 𝑥 ¨ 𝑧 + 𝑦 ¨ 𝑧;

ii) 𝑧 ¨ (𝑥 + 𝑦) = 𝑧 ¨ 𝑥 + 𝑧 ¨ 𝑦;

iii) (𝑎𝑥) ¨ (𝑏𝑦) = (𝑎𝑏) (𝑥 ¨ 𝑦).

Definition 1.2.8. Let 𝑀 be a set with a binary operation ¨ : 𝑀 ˆ 𝑀 Ñ 𝑀 . Then 𝑀 is a monoid
if the following properties hold:

i) 𝑎 ¨ 𝑏 P 𝑀 , @𝑎, 𝑏 P 𝑀;

ii) (𝑎 ¨ 𝑏) ¨ 𝑐 = 𝑎 ¨ (𝑏 ¨ 𝑐) = 𝑎 ¨ 𝑏 ¨ 𝑐, @𝑎, 𝑏, 𝑐 P 𝑀;

iii) There exists a unique element 𝑒 such that 𝑎 ¨ 𝑒 = 𝑒 ¨ 𝑎 = 𝑎, @𝑎 P 𝑀 .

Definition 1.2.9. A graded ring 𝐴 is a ring with a family (𝐴𝑛)𝑛PZ of additive subgroups of 𝐴
such that 𝐴 = ‘

𝑛PZ
𝐴𝑛 and 𝐴𝑚𝐴𝑛 Ď 𝐴𝑛+𝑚 for all 𝑛, 𝑚 P Z.

Definition 1.2.10. Let 𝐴 be a graded ring and 𝑀 an 𝐴-module. Then 𝑀 is said to be graded if
there exists a family of additive subgroups (𝑀𝑛)𝑛ě0 of 𝑀 such that

𝑀 = ‘
8
𝑛=0𝑀𝑛 and 𝐴𝑚𝑀𝑛 Ď 𝑀𝑛+𝑚 @ 𝑚, 𝑛 ě 0.

A non-zero element 𝑥 P 𝑀 is called homogeneous of degree 𝑛 if 𝑥 P 𝑀𝑛.
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Definition 1.2.11. Let 𝐴 be a graded ring and 𝐼 an ideal of 𝐴. The ideal 𝐼 is said to be
homogeneous if it is generated by a set of homogeneous elements.

A graded module that is also a graded ring is called a graded algebra.

Example 1.2.12. The ring of polynomials C[𝑥] = ‘𝐴𝑖 is a graded ring where 𝐴𝑖 = {𝑎𝑥𝑖}. The
ideal 𝐼 = ⟨𝑥2⟩ is a homogeneous ideal in C[𝑥]. Similarly, 𝐽 = ⟨𝑥2 + 𝑦2 + 𝑧2, 𝑥𝑦, 𝑦𝑧 + 𝑧𝑥, 𝑧5⟩ is a
homogeneous ideal in C[𝑥, 𝑦, 𝑧].

As a generalization of how we construct the field of fractions of a domain, we can
construct localization in a multiplicative subset of a ring by formally inverting the elements in
this subset.

Definition 1.2.13. Let 𝐴 be a ring. A multiplicative set 𝑆 Ď 𝐴 is a subset that is closed under
multiplication, meaning that if 𝑠, 𝑡 P 𝑆, then 𝑠𝑡 P 𝑆, and such that 1 P 𝑆. Define a relation ” in
𝐴 ˆ 𝑆 as follows:

(𝑎, 𝑠) ” (𝑎1, 𝑠1) ô (𝑎𝑠1
´ 𝑎1𝑠)𝑢 = 0 for some 𝑢 P 𝑆. (1.1)

The relation ” is an equivalence relation.

Let us denote by
𝑎

𝑠
the equivalence class of (𝑎, 𝑠), and let 𝑆´1𝐴 = (𝐴ˆ 𝑆)/” be the

set of equivalence classes. We define addition and multiplication in 𝑆´1𝐴 in the usual way:

𝑎1
𝑠1

+ 𝑎2
𝑠2

=
𝑎1𝑠2 + 𝑎2𝑠1

𝑠1𝑠2
and

𝑎1
𝑠1

¨
𝑎2
𝑠2

=
𝑎1𝑎2
𝑠1𝑠2

. (1.2)

With these addition and multiplication operations, we define the following:

Definition 1.2.14. Let 𝑆´1𝐴 be a commutative ring with zero element
0
1

and identity element
1
1

.

This ring is called the localization of 𝐴 with respect to 𝑆. Associated with 𝑆´1𝐴, there is a ring
homomorphism 𝜌 : 𝐴 Ñ 𝑆´1𝐴 given by 𝑎 ÞÑ

𝑎

1
, called the localization map.

If 𝐴 is a graded ring and 𝔭 is a homogeneous prime ideal in 𝐴, then we denote by
𝐴(𝔭) the subring of degree 0 elements in the localization 𝑇´1𝐴 with respect to the multiplicative
set 𝑇 formed by the homogeneous elements of 𝐴 that are not in 𝔭.

The set 𝑇´1𝐴 has a natural grading given by

𝑑𝑒𝑔𝑟𝑒𝑒( 𝑓 /𝑔) = 𝑑𝑒𝑔𝑟𝑒𝑒( 𝑓 ) ´ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑔), (1.3)

for 𝑓 homogeneous in 𝐴 and 𝑔 P 𝑇 . Thus, 𝐴(𝔭) is a local ring, and the only maximal ideal is the
intersection (𝔭 ¨ 𝑇´1𝐴) X 𝐴(𝔭) . In particular, if 𝐴 is a domain, then for 𝔭 = ⟨0⟩, we obtain the
field 𝐴(⟨0⟩) . Similarly, if 𝑓 P 𝐴 is a homogeneous element, we denote by 𝐴( 𝑓 ) the subring of
degree 0 in the localized ring 𝑆.

Next, we present the universal property of localization.
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Proposition 1.2.15. Let 𝑔 : 𝐴 Ñ 𝐵 be a ring homomorphism such that all elements 𝑔(𝑠) P 𝐵, 𝑠 P

𝑆 are invertible. Then there exists a unique homomorphism ℎ : 𝑆´1𝐴 Ñ 𝐵 such that 𝑔 = ℎ ˝ 𝜌.

𝐴

𝜌
��

𝑔 // 𝐵

𝑆´1𝐴
ℎ

::

Emmy Noether was a German mathematician who made significant contributions to
the fields of theoretical physics and abstract algebra. She is considered one of the most important
women in the history of mathematics and revolutionized theories related to rings, fields and
algebras. In 1921, in her article "Idealtheorie in Ringbereichen," she elegantly employed the
Ascending Chain Condition, and as a tribute to Emmy Noether, objects that satisfy this condition
are called Noetherian. We will now present some of these concepts.

Definition 1.2.16. We say that a ring 𝐴 is a Noetherian ring if every ideal 𝐼 of 𝐴 is finitely
generated, i.e., there exist 𝑟1, . . . , 𝑟𝑘 P 𝐴 such that 𝐼 = ⟨𝑟1, . . . , 𝑟𝑘⟩.

Next, we present results that characterize the above definition.

Theorem 1.2.17. Let 𝐴 be a ring. 𝐴 is a Noetherian ring if, and only if, 𝐴 satisfies the ascending
chain condition, i.e., for any chain of nested ideals 𝐼1 Ď 𝐼2 Ď ¨ ¨ ¨ Ď 𝐼𝑛 Ď . . . , there exists 𝑘 P N

such that 𝐼𝑘 = 𝐼 𝑗 for all 𝑗 ě 𝑘 .

In the following, we present Hilbert’s Basis Theorem.

Theorem 1.2.18. Let 𝐴 be a Noetherian ring. Then the ring of polynomials 𝐴[𝑥] is also
Noetherian.

Theorem 1.2.18 admits a natural generalization as follows.

Corollary 1.2.19. Let 𝐴 be a Noetherian ring and 𝑥1, . . . , 𝑥𝑛 variables. Then the ring of
polynomials 𝐴[𝑥1, . . . , 𝑥𝑛] is Noetherian.
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2 Algebraic geometry

In this chapter, we establish the foundation for our exploration of Algebraic Geometry.
We start by introducing the fundamental concepts of affine and projective algebraic varieties,
and then delve into the language of schemes. Next we present some results about resolution
of singularities. Additionally, we explore the properties of abelian varieties and complex tori.
The chapter is structured into four sections, each dedicated to exploring different aspects of this
fascinating subject.

2.1 Algebraic varieties

This section is based on chapter I of (HARTSHORNE, 1977) and as supplementary
material, we relied on the reference (MUMFORD, 1999).

2.1.1 Affine varieties

In this chapter, we will work with a fixed algebraically closed field denoted by 𝑘 ,
until we introduce the language of schemes in section 2. Rings are assumed to be commutative
with a multiplicative unit 1. The polynomial ring in 𝑛 variables, namely 𝑥1, . . . , 𝑥𝑛, over 𝑘 will
be denoted by 𝑘 [𝑥1, . . . , 𝑥𝑛]. Additionally, we use the notation 𝑓 (𝑃) to represent the value of a
polynomial 𝑓 P 𝑘 [𝑥1, . . . , 𝑥𝑛] at a point 𝑃 = (𝑎1, . . . , 𝑎𝑛) P 𝑘𝑛.

Definition 2.1.1. The set A𝑛𝑘 := {(𝑎1, . . . , 𝑎𝑛) |𝑎𝑖 P 𝑘 for 𝑖 = 1, . . . , 𝑛} of all 𝑛-tuples of elements
of a field 𝑘 is called the affine n-space over 𝑘 . When the field 𝑘 is clear, sometimes we simplify
the notation and use just A𝑛.

Note thatA𝑛𝑘 is just 𝑘𝑛 as a set. However, it is customary to use two different notations
here since 𝑘𝑛 is also a 𝑘-vector space and a ring. The notation A𝑛𝑘 is typically used when we want
to disregard these additional structures. For instance, while addition and scalar multiplication are
defined on 𝑘𝑛, they are not defined on A𝑛𝑘 . We consider the affine space A𝑛𝑘 as the ambient space
for our zero loci of polynomials, which will be defined subsequently.

Definition 2.1.2. If 𝑓 P 𝑘 [𝑥1, . . . , 𝑥𝑛], we define the set of zeros of 𝑓 as

𝑉 ( 𝑓 ) = {𝑃 P A𝑛 | 𝑓 (𝑃) = 0}.

More generally, if 𝑇 is a subset of 𝑘 [𝑥1, . . . , 𝑥𝑛], we define the zero locus of 𝑇 to be the commom
zeros of all the elements of 𝑇:

𝑉 (𝑇) = {𝑃 P A𝑛 | 𝑓 (𝑃) = 0 for all 𝑓 P 𝑇}.

If 𝑇 is a finite set 𝑇 = {[ 𝑓1, . . . , 𝑓𝑙} we will write 𝑉 (𝑇) = 𝑉 ({ 𝑓1, . . . , 𝑓𝑙}) also as 𝑉 ( 𝑓1, . . . , 𝑓𝑙).
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Definition 2.1.3. A subset 𝑋 of A𝑛 is an algebraic set if there exists a subset 𝑇 Ď 𝑘 [𝑥1, . . . , 𝑥𝑛]
such that 𝑋 = 𝑉 (𝑇).

We will begin by defining the algebraic set determined by an ideal, and subsequently,
we will demonstrate that if 𝐼 is an ideal generated by 𝑇 in 𝑘 [𝑥1, . . . , 𝑥𝑛], then 𝑉 (𝑇) = 𝑉 (𝐼). In
other words, algebraic sets correspond to zero loci of ideals.

Definition 2.1.4. For an ideal 𝐼 in a polynomial ring 𝑘 [𝑥1, . . . , 𝑥𝑛], we define

𝑉 (𝐼) = {(𝑏1, . . . , 𝑏𝑛) P 𝑘𝑛 |ℱ𝑜𝑟𝑎𝑙𝑙 𝑔 P 𝐼, 𝑔(𝑏1, . . . , 𝑏𝑛) = 0}. (2.1)

𝑉 (𝐼) is referred to as the algebraic set determined by the ideal 𝐼.

Lemma 2.1.5. If 𝐼 = ⟨ 𝑓1, . . . , 𝑓𝑙⟩ is an ideal in 𝑘 [𝑥1, . . . , 𝑥𝑛] then 𝑉 (𝐼) = 𝑉 ( 𝑓1, . . . , 𝑓𝑙).

Proof. For an arbitrary element 𝑓 in the ideal 𝐼 generated by 𝑓1, . . . , 𝑓𝑙 in the polynomial ring
𝑘 [𝑥1, . . . , 𝑥𝑛] of 𝑛 variables, there exist 𝑔𝛼 P 𝑘 [𝑥1, . . . , 𝑥𝑛], 𝛼 = 1, . . . , 𝑙, such that

𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝑙∑︁

𝛼=1
𝑔𝛼 (𝑥1, . . . , 𝑥𝑛) 𝑓𝛼 (𝑥1, . . . , 𝑥𝑛). (2.2)

Therefore, if (𝑎1, . . . , 𝑎𝑛) P 𝑉 ( 𝑓1, . . . , 𝑓𝑙), it follows that 𝑓1(𝑎1, . . . , 𝑎𝑛) = . . . = 𝑓𝑙 (𝑎1, . . . , 𝑎𝑛) =
0, which implies 𝑓 (𝑎1, . . . , 𝑎𝑛) = 0. Hence, 𝑉 ( 𝑓1, . . . , 𝑓𝑙) Ă 𝑉 (𝐼). We will now show that
𝑉 (𝐼) Ă 𝑉 ( 𝑓1, . . . , 𝑓𝑙). Let (𝑏1, . . . , 𝑏𝑛) P 𝑉 (𝐼), and since 𝑓𝛼 P 𝐼, we have 𝑓𝛼 (𝑏1, . . . , 𝑏𝑛) = 0
for every 𝛼 = 1, . . . , 𝑙. Therefore, 𝑉 (𝐼) Ă 𝑉 ( 𝑓1, . . . , 𝑓𝑙), which completes the proof. □

The Hilbert’s Basis Theorem guarantees that every ideal of the polynomial ring
𝑘 [𝑥1, . . . , 𝑥𝑛] is of the form 𝐼 = ⟨ 𝑓1, . . . , 𝑓𝑙⟩. Therefore, by Lemma 2.1.5, the algebraic set 𝑉 (𝐼)
determined by an ideal is precisely the algebraic set 𝑉 ( 𝑓1, . . . , 𝑓𝑙) determined by the polynomials
𝑓1, . . . , 𝑓𝑙 .

Next, we present some properties that will be essential for establishing the correspon-
dence between ideals and algebraic sets.

Proposition 2.1.6. For ideals 𝐼, 𝐽, and 𝐼𝜆𝜆PΛ in the polynomial ring 𝑘 [𝑥1, . . . , 𝑥𝑛] over a field 𝑘 ,
where 𝜆 P Λ and Λ can be an infinite set, we have:

i) 𝑉 (𝐼) Y𝑉 (𝐽) = 𝑉 (𝐼 X 𝐽);

ii) X𝜆PΛ𝑉 (𝐼𝜆) = 𝑉
(∑︁
𝜆PΛ

𝐼𝜆

)
;

iii) 𝑉 (𝐼) Ą 𝑉 (𝐽) when
?
𝐼 Ă

?
𝐽,

where
∑︁
𝜆PΛ

𝐼𝜆 denotes the ideal in 𝑘 [𝑥1, . . . , 𝑥𝑛] generated by 𝐼𝜆, 𝜆 P Λ and
?
𝐼 = { 𝑓 P

𝑘 [𝑥1, . . . , 𝑥𝑛] | 𝑓 𝑚 P 𝐼 for some integer 𝑚} is the radical of 𝐼.
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Proof. i) From the definition of an algebraic set, we can deduce that 𝑉 (𝐼) Ą 𝑉 (𝐽) for 𝐼 Ă 𝐽.
In fact, if (𝑎1, . . . , 𝑎𝑛) P 𝑉 (𝐽), a zero of all polynomials in 𝐽 is certainly a zero of all
polynomials in 𝐼. Therefore, we have 𝑉 (𝐼 X 𝐽) Ą 𝑉 (𝐼) and 𝑉 (𝐼 X 𝐽) Ą 𝑉 (𝐽). Thus,
𝑉 (𝐼) Y𝑉 (𝐽) Ă 𝑉 (𝐼 X 𝐽).

On the other hand, let (𝑎1, . . . , 𝑎𝑛) P 𝑉 (𝐼 X 𝐽). If (𝑎1, . . . , 𝑎𝑛) ∉ 𝑉 (𝐼), then there
exists a polynomial 𝑓 P 𝐼 such that 𝑓 (𝑎1, . . . , 𝑎𝑛) ≠ 0. Now, for an arbitrary element
𝑔(𝑥1, . . . , 𝑥𝑛) P 𝐽, we have ℎ = 𝑓 ¨ 𝑔 P 𝐼 X 𝐽. Consequently,

ℎ(𝑎1, . . . , 𝑎𝑛) = 𝑓 (𝑎1, . . . , 𝑎𝑛)𝑔(𝑎1, . . . , 𝑎𝑛) = 0. (2.3)

Therefore, 𝑔(𝑎1, . . . , 𝑎𝑛) = 0, which implies that (𝑎1, . . . , 𝑎𝑛) P 𝑉 (𝐽). Thus, 𝑉 (𝐼 X 𝐽) Ă

𝑉 (𝐼) Y𝑉 (𝐽). Hence, 𝑉 (𝐼 X 𝐽) = 𝑉 (𝐼) Y𝑉 (𝐽).

ii) Since 𝐼𝜇 Ă

∑︁
𝜆PΛ

𝐼𝜆 for every 𝜇 P Λ, we have

𝑉 (𝐼𝜇) Ą 𝑉 (
∑︁
𝜆PΛ

𝐼𝜆) ñ

⋂
𝜇PΛ

𝑉 (𝐼𝜇) Ą 𝑉 (
∑︁
𝜆PΛ

𝐼𝜆).

For each 𝜆, let us express 𝐼𝜆 in terms of generators 𝐼𝜆 = ⟨ℎ𝜆1, . . . , ℎ𝜆𝑚𝜆
⟩.

For (𝑎1, . . . , 𝑎𝑛) P X𝜆PΛ𝑉 (𝐼𝜆), we have ℎ𝜆 𝑗 (𝑎1, . . . , 𝑎𝑛) = 0 for 𝑗 = 1, . . . , 𝑚𝜆. On
the other hand, ℎ𝜆 𝑗𝜆 P Λ, : 1 ď 𝑗 ď 𝑚𝜆 generates the ideal

∑︁
𝜆PΛ

𝐼𝜆. Thus, (𝑎1, . . . , 𝑎𝑛) P

𝑉 (
∑︁
𝜆PΛ

𝐼𝜆). Therefore, X𝜆PΛ𝑉 (𝐼𝜆) = 𝑉 (
∑︁
𝜆PΛ

𝐼𝜆).

iii) We just need to show that 𝑉 (
?
𝐼) = 𝑉 (𝐼). Let 𝑓 P

?
𝐼, which means that 𝑓 𝑚 P 𝐼 for

some integer 𝑚. For (𝑎1, . . . , 𝑎𝑛) P 𝑉 (𝐼), we have 𝑓 𝑚 (𝑎1, . . . , 𝑎𝑛) = 0. Consequently,
𝑓 (𝑎1, . . . , 𝑎𝑛) = 0, i.e., (𝑎1, . . . , 𝑎𝑛) P 𝑉 (

?
𝐼), which shows that 𝑉 (𝐼) Ă 𝑉 (

?
𝐼). The

inclusion 𝑉 (
?
𝐼) Ă 𝑉 (𝐼) follows from the fact that 𝐼 Ă

?
𝐼. Therefore, 𝑉 (𝐼) = 𝑉 (

?
𝐼),

which completes the proof.

□

Corollary 2.1.7. For a finite number of ideals 𝐼1, . . . , 𝐼𝑠 in 𝑘 [𝑥1, . . . , 𝑥𝑛], we have

𝑠⋃
𝑗=1
𝑉 (𝐼 𝑗 ) = 𝑉 ©«

𝑠⋂
𝑗=1
𝐼 𝑗
ª®¬ .

Proof. The proof follows by induction on 𝑠 and by Proposition 2.1.6, item (i). □

Note that 𝑉 (∅) = A𝑛 and 𝑉 (1) = ∅. Those equalities along with the properties
presented in Lemma 2.1.6 allow us to define:

Definition 2.1.8. The Zariski topology in A𝑛 is defined by considering the complements of the
algebraic sets as the open subsets.
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The Zariski topology has unique properties that distinguish it from other topologies.
It is non-Hausdorff, meaning that two distinct points may not be separated by disjoint open sets.
This non-separation reflects the inherent algebraic interplay between equations and points. Next
we present an example:

Example 2.1.9. Let’s consider the Zariski topology on the affine line A1. In the ring of polynomials
𝐴 = 𝑘 [𝑥], every ideal is principal, which means that every algebraic set can be described as
the set of zeros of a single polynomial. Since the field 𝑘 is algebraically closed, any nonzero
polynomial 𝑓 (𝑥) can be factored as 𝑓 (𝑥) = 𝑐(𝑥 ´ 𝑎1) ¨ ¨ ¨ (𝑥 ´ 𝑎𝑛), where 𝑐, 𝑎1, . . . , 𝑎𝑛 P 𝑘 .
Consequently, the algebraic set 𝑍 ( 𝑓 ) corresponds to the set {𝑎1, . . . , 𝑎𝑛}. Therefore, the algebraic
sets in A1 consist of finite subsets (including the empty set) and the entire space (corresponding
to 𝑓 = 0). As a result, the open sets are the empty set and the complements of finite subsets.

We introduce some additional notations.

Definition 2.1.10. Given a set 𝑉 in the 𝑛-dimensional affine space 𝑘𝑛 over an algebraically
closed field 𝑘 , we define the ideal 𝐼 (𝑉) determined by 𝑉 as follows:

𝐼 (𝑉) = { 𝑓 P 𝑘 [𝑥1, . . . , 𝑥𝑛] | 𝑓 (𝑏1, . . . , 𝑏𝑛) = 0 for all (𝑏1, . . . , 𝑏𝑛) P 𝑉}.

The following properties demonstrate some of the relationships between ideals and
algebraic sets.

Proposition 2.1.11. For subsets 𝑋 , 𝑌 of 𝑘𝑛 and a subset 𝑆 of 𝑘 [𝑥1, . . . , 𝑥𝑛], we have:

i) If 𝑋 Ă 𝑌 , then 𝐼 (𝑋) Ą 𝐼 (𝑌 ).

ii) 𝐼 (𝑋 Y 𝑌 ) = 𝐼 (𝑋) X 𝐼 (𝑌 ).

iii) 𝐼 (𝑉 (𝑆)) Ą 𝑆 and 𝑉 (𝐼 (𝑋)) Ą 𝑋 .

iv) 𝐼 (𝑉 (𝐼 (𝑋))) = 𝐼 (𝑋). Hence, if 𝐼 is the ideal of an algebraic set𝑊 , then 𝐼 = 𝐼 (𝑉 (𝐼)).

Proof. i) Let 𝑓 P 𝐼 (𝑌 ). We have 𝑓 (𝑃) = 0 for all 𝑃 P 𝑌 . In particular, since 𝑋 Ă 𝑌 , 𝑓 (𝑃) = 0
holds for all 𝑃 P 𝑋 . Therefore, 𝑓 P 𝐼 (𝑋), and we conclude that 𝐼 (𝑌 ) Ă 𝐼 (𝑋).

ii) Since 𝑋 Y 𝑌 Ą 𝑋 and 𝑋 Y 𝑌 Ą 𝑌 , by item (i) we have 𝐼 (𝑋 Y 𝑌 ) Ă 𝐼 (𝑋) and
𝐼 (𝑋 Y 𝑌 ) Ă 𝐼 (𝑌 ). Consequently, 𝐼 (𝑋 Y 𝑌 ) Ă 𝐼 (𝑋) X 𝐼 (𝑌 ).

On the other hand, let 𝑓 P 𝐼 (𝑋) X 𝐼 (𝑌 ). We have 𝑓 P 𝐼 (𝑋) and 𝑓 P 𝐼 (𝑌 ). Hence,
𝑓 (𝑃) = 0 for all 𝑃 P 𝑋 and 𝑓 (𝑃) = 0 for all 𝑃 P 𝑌 . Thus, 𝑓 (𝑃) = 0 for all 𝑃 P 𝑋 Y𝑌 . Therefore,
𝑓 P 𝐼 (𝑋 Y 𝑌 ), and we have 𝐼 (𝑋 Y 𝑌 ) Ą 𝐼 (𝑋) X 𝐼 (𝑌 ). Hence, 𝐼 (𝑋 Y 𝑌 ) = 𝐼 (𝑋) X 𝐼 (𝑌 ).

iii) If 𝑓 P 𝑆, then 𝑓 (𝑃) = 0 for all 𝑃 P 𝑉 (𝑆), by the definition of 𝑉 (𝑆). Hence,
𝑓 P 𝐼 (𝑉 (𝑆)). Similarly, if 𝑃 P 𝑋 , then 𝑔(𝑃) = 0 for all 𝑔 P 𝐼 (𝑋). Thus, 𝑃 P 𝑉 (𝐼 (𝑋)).
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iv) By the second assertion of item (iii), we have 𝑉 (𝐼 (𝑋)) Ą 𝑋 . Therefore, by item
(ii), we obtain 𝐼 (𝑉 (𝐼 (𝑋))) Ă 𝐼 (𝑋). Moreover, by the first assertion of item (iii) with 𝑆 = 𝐼 (𝑋),
we have 𝐼 (𝑉 (𝐼 (𝑋))) Ą 𝐼 (𝑋). This completes the proof. □

It is necessary for 𝑉 (𝐼) to be non-empty for an algebraic set 𝑉 (𝐼) in 𝑘𝑛 to have
geometric meaning. The Weak Nullstellensatz guarantees this condition.

Lemma 2.1.12. A maximal ideal in the polynomial ring 𝑘 [𝑥1, . . . , 𝑥𝑛] over an algebraically
closed field 𝑘 has the following form:

⟨𝑥1 ´ 𝑎1, . . . , 𝑥𝑛 ´ 𝑎𝑛⟩, 𝑎 𝑗 P 𝑘, 𝑗 = 1, . . . , 𝑛.

Proof. Let 𝑚 be a maximal ideal of 𝑘 [𝑥1, . . . , 𝑥𝑛]. We define 𝐽 = 𝑘 [𝑥1, . . . , 𝑥𝑛]/𝑚. So 𝐽 is a
field. We also know that 𝐽 is finitely generated over 𝑘 , i.e., 𝐽 = 𝑘 [𝑥1, . . . , 𝑥𝑛]. Therefore 𝐽 is
algebraic over 𝑘 , and since 𝑘 is algebraically closed, we conclude that 𝐽 = 𝑘 .

Thus, for each 𝑥𝑖, there

exists 𝑎𝑖 P 𝑘 such that 𝑎𝑖 is the residue of 𝑥𝑖, and hence 𝑥𝑖 ´𝑎𝑖 P 𝑚 for all 𝑖 = 1, . . . , 𝑛.
Consequently, ⟨𝑥1 ´ 𝑎1, . . . , 𝑥𝑛 ´ 𝑎𝑛⟩ Ď 𝑚. Then ⟨𝑥1 ´ 𝑎1, . . . , 𝑥𝑛 ´ 𝑎𝑛⟩ is a maximal ideal, and
therefore, 𝑚 = ⟨𝑥1 ´ 𝑎1, . . . , 𝑥𝑛 ´ 𝑎𝑛⟩. □

The next theorem, known as the Nullstellensatz, explains the relationship between
𝐽 and 𝐼 (𝑉 (𝐽)). The Nullstellensatz establishes a fundamental connection between algebra and
geometry and is considered one of the foundations of algebraic geometry. It was discovered and
proved by David Hilbert in his work "Ueber die Theorie der algebraischen Formen" (1893).

Theorem 2.1.13 (Hilbert’s Nullstellensatz). For an ideal 𝐽 in the polynomial ring 𝑘 [𝑥1, . . . , 𝑥𝑛]
over an algebraically closed field 𝑘 , we have

𝐼 (𝑉 (𝐽)) =
?
𝐽.

Proof. According to Definition 2.1.10, we have
?
𝐽 Ă 𝐼 (𝑉 (𝐽)). Indeed, if 𝑔 P

?
𝐽, then 𝑔𝑚 P 𝐽

for some positive integer 𝑚. Therefore, 𝑔(𝑃) = 0 for all 𝑃 P 𝑉 (𝐽), which implies 𝑔 P 𝐼 (𝑉 (𝐽)).
This shows that

?
𝐽 Ă 𝐼 (𝑉 (𝐽)).

It suffices to prove that for 𝑓 P 𝐼 (𝑉 (𝐽)), we have 𝑓 P
?
𝐽.

Let 𝑥0 be a new variable, and let 𝐽 be the ideal generated by 1 ´ 𝑥0 𝑓 (𝑥1, . . . , 𝑥𝑛) and
𝐽, where 𝐽 is considered as an ideal in the polynomial ring 𝑘 [𝑥0, . . . , 𝑥𝑛] with 𝑛 + 1 variables.

Firstly, assume 𝑉 (𝐽) ≠ ∅. Let (𝑎0, . . . , 𝑎𝑛) P 𝑉 (𝐽). Then (𝑎1, . . . , 𝑎𝑛) P 𝑉 (𝐽) since
𝐽 Ă 𝐽. Consequently, 𝑓 (𝑎1, . . . , 𝑎𝑛) = 0 because (𝑎1, . . . , 𝑎𝑛) P 𝑉 (𝐽), and by assumption,
𝑓 P 𝐼 (𝑉 (𝐽)). However, as 1 ´ 𝑥0 𝑓 P 𝐽 and (𝑎0, . . . , 𝑎𝑛) P 𝑉 (𝐽), we obtain the contradiction

0 = 1 ´ 𝑎0 𝑓 (𝑎1, . . . , 𝑎𝑛) = 1. (2.4)
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Therefore, we must have 𝑉 (𝐽) = ∅. Hence, 𝐽 = 𝑘 [𝑥0, . . . , 𝑥𝑛], which means that 𝐽 contains the
identity element 1. We can write

1 = ℎ(𝑥0, . . . , 𝑥𝑛) (1 ´ 𝑥0 𝑓 (𝑥1, . . . , 𝑥𝑛)) +
𝑙∑︁
𝑗=1
𝑔 𝑗 (𝑥0, . . . , 𝑥𝑛) 𝑓 𝑗 (𝑥1, . . . , 𝑥𝑛), (2.5)

where ℎ, 𝑔 𝑗 P 𝑘 [𝑥0, . . . , 𝑥𝑛] and 𝑓 𝑗 P 𝐽. Substituting 𝑥0 with 1/ 𝑓 in the equation and multiplying
both sides by a suitable power 𝑚 of 𝑓 , we obtain

𝑓 𝑚 =

𝑙∑︁
𝑗=1
𝑔 𝑗 (𝑥1, . . . , 𝑥𝑛) 𝑓 𝑗 (𝑥1, . . . , 𝑥𝑛), (2.6)

where 𝑔 𝑗 P 𝑘 [𝑥1, . . . , 𝑥𝑛]. Consequently, 𝑓 𝑚 P 𝐽, which concludes the proof. □

Due to this theorem, to study algebraic sets 𝑉 (𝐽), we can focus only on ideals that
satisfy 𝐽 =

?
𝐽. Ideals with this property are called reduced ideals.

We now introduce the concept of irreducible algebraic sets and present some additional
notations and results. In particular, we will prove that every algebraic set can be decomposed into
irreducible components.

Definition 2.1.14 (Algebraic Variety). An algebraic set 𝑉 in the affine space 𝑘𝑛 over a field 𝑘 is
said to be reducible if 𝑉 can be expressed as the union of algebraic sets 𝑉1 and 𝑉2,

𝑉 = 𝑉1 Y𝑉2, 𝑉 ≠ 𝑉1 and 𝑉 ≠ 𝑉2.

When an algebraic set is not reducible, it is called irreducible. An irreducible
algebraic set is called an algebraic variety.

Proposition 2.1.15. An algebraic set 𝑉 is irreducible if and only if the associated ideal 𝐼 (𝑉) is a
prime ideal.

Proof. The proofs will be by contradiction. Let 𝑉 be an irreducible algebraic set and assume
that 𝐼 (𝑉) is not a prime ideal, i.e., there exist 𝑓1, 𝑓2 ∉ 𝐼 (𝑉) such that 𝑓1 𝑓2 P 𝐼 (𝑉). Then
𝑉 ( 𝑓1 𝑓2) Ą 𝑉 (𝐼 (𝑉)) = 𝑉 , so we have

𝑉 = 𝑉 X𝑉 ( 𝑓1 𝑓2) = 𝑉 X (𝑉 ( 𝑓1) Y𝑉 ( 𝑓2)) = (𝑉 X𝑉 ( 𝑓1)) Y (𝑉 X𝑉 ( 𝑓2)). (2.7)

We have 𝑉 X 𝑉 ( 𝑓𝑖) ⊊ 𝑉 because, otherwise, 𝑉 Ă 𝑉 ( 𝑓𝑖) and 𝐼 (𝑉) Ą 𝐼 (𝑉 ( 𝑓𝑖)), which would
imply 𝑓𝑖 P 𝐼 (𝑉) for 𝑖 = 1, 2. Thus, 𝑉 is reducible, which is a contradiction.

Conversely, if 𝐼 (𝑉) is a prime ideal, suppose that 𝑉 = 𝑉1 Y 𝑉2 with 𝑉𝑖 ⊊ 𝑉 . Then
𝐼 (𝑉𝑖) ⊋ 𝐼 (𝑉). Let 𝑓𝑖 P 𝐼 (𝑉𝑖) with 𝑓𝑖 ∉ 𝐼 (𝑉) for 𝑖 = 1, 2. Since 𝐼 (𝑉) = 𝐼 (𝑉1 Y 𝑉2), we have that
for every 𝑃 P 𝑉 , 𝑃 P 𝑉1 or 𝑃 P 𝑉2. Therefore, 𝑓1 𝑓2(𝑃) = 𝑓1(𝑃) 𝑓2(𝑃) = 0, and thus 𝑓1 𝑓2 P 𝐼 (𝑉).
Consequently, 𝐼 (𝑉) is not a prime ideal, which is a contradiction. □
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As a consequence of Theorem 2.1.13 and Proposition 2.1.15, we have the following
result.

Corollary 2.1.16. If 𝐼 is a prime ideal, then 𝑉 (𝐼) is irreducible. There exists a bĳection between
prime ideals and irreducible algebraic sets. Maximal ideals correspond to points.

The next lemma will be used in the proof of Theorem 2.1.18. We have that any
non-empty collection of ideals in a Noetherian ring has a maximal element. As a consequence of
this result, we have the following lemma:

Lemma 2.1.17. Any non-empty collection of algebraic sets in 𝑘𝑛 has a minimal element.

Proof. Let {𝑉𝑖} be a non-empty collection of algebraic sets in 𝑘𝑛. Consider the collection of
ideals {𝐼 (𝑉𝑖)}. The collection {𝐼 (𝑉𝑖)} has a maximal element 𝐼 (𝑉𝑚). Since 𝐼 (𝑉𝑚) Ą 𝐼 (𝑉𝑖) for
all 𝑖 P N, we have 𝑉𝑚 = 𝑉 (𝐼 (𝑉𝑚)) Ă 𝑉 (𝐼 (𝑉𝑖)) = 𝑉𝑖. Therefore, 𝑉𝑚 is a minimal element of the
collection {𝑉𝑖}. □

The decomposition of an algebraic set into irreducible components is unique and
finite, as stated in the following result.

Theorem 2.1.18. Let𝑉 be an algebraic set in 𝑘𝑛. Then there exist𝑉1, . . . , 𝑉𝑛 irreducible algebraic
sets such that 𝑉 = 𝑉1 Y ¨ ¨ ¨ Y𝑉𝑛, and 𝑉𝑖 ⊈ 𝑉 𝑗 for 𝑖 ≠ 𝑗 . The algebraic sets 𝑉1, . . . , 𝑉𝑛 are unique.

Proof. Let 𝑆 be the set of all algebraic sets 𝑉 in 𝑘𝑛 that are not the union of irreducible algebraic
sets. We want to show that 𝑆 is empty. Suppose 𝑆 is non-empty and let 𝑉 be a minimal element of
𝑆. Since𝑉 P 𝑆, there exist𝑉1, 𝑉2 P 𝑘𝑛 such that𝑉 = 𝑉1 Y𝑉2 with𝑉𝑖 ⫋ 𝑉 for 𝑖 = 1 or 2. As𝑉𝑖 Ă 𝑉

and 𝑉 is a minimal element of 𝑆, we have 𝑉𝑖 ∉ 𝑆. Hence, 𝑉𝑖 is reducible, i.e., 𝑉𝑖 = 𝑉𝑖1 Y ¨ ¨ ¨ Y𝑉𝑖𝑚

with𝑉𝑖 𝑗 irreducible for all 𝑗 . Thus, we conclude that𝑉 = Y𝑖 𝑗𝑉𝑖 𝑗 , which contradicts the assumption
that 𝑉 P 𝑆. Therefore, any algebraic set 𝑉 can be written as 𝑉 = 𝑉1 Y ¨ ¨ ¨ Y𝑉𝑛, 𝑉𝑖 irreducible to
𝑖 = 1, . . . , 𝑛. To obtain 𝑉𝑖 ⊈ 𝑉 𝑗 for 𝑖 ≠ 𝑗 , we discard 𝑉𝑖 such that 𝑉𝑖 Ă 𝑉 𝑗 for 𝑖 ≠ 𝑗 .

We will now show the uniqueness of 𝑉1, . . . , 𝑉𝑛. Let 𝑉 = 𝑊1 Y ¨ ¨ ¨ Y𝑊𝑚 another
decomposition, then

𝑉𝑖 = 𝑉 X𝑉𝑖 =
©«
𝑚⋃
𝑗=1
𝑊 𝑗

ª®¬ X𝑉𝑖 =

𝑚⋃
𝑗=1

(𝑊 𝑗 X𝑉𝑖). (2.8)

So 𝑉𝑖 Ă 𝑊 𝑗 (𝑖) for some 𝑗 (𝑖) and𝑊 𝑗 (𝑖) Ă 𝑉𝑙 for some 𝑙. But 𝑉𝑖 Ă 𝑉𝑙 implies 𝑖 = 𝑙 and therefore
𝑉𝑖 = 𝑊 𝑗 (𝑖) . Analogously, each𝑊𝑖 is equal to some 𝑉𝑖( 𝑗) . □

The sets 𝑉𝑖 are called irreducible components of 𝑉 and 𝑉 = 𝑉1 Y ¨ ¨ ¨ Y 𝑉𝑛 is the
decomposition of 𝑉 into irreducible components.

Finally, we present another notation.
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Definition 2.1.19 (Coordinate ring). For an algebraic variety 𝑉 in the n-dimensional affine space
𝑘𝑛, the quotient ring

𝐴(𝑉) := 𝑘 [𝑥1, . . . , 𝑥𝑛]/𝐼 (𝑉)

is called the coordinate ring of 𝑉 .

Thus, the Proposition 2.1.15 can be rewritten as follows:

Proposition 2.1.20. An algebraic set 𝑉 in 𝑘𝑛 is irreducible if and only if its coordinate ring
𝐴(𝑉) is a domain.

The coordinate ring 𝐴(𝑉) can be seen as the set of polynomial functions defined in 𝑉 .

2.1.2 Projective varieties

To define projective varieties, we follow a similar approach to the definition of affine
varieties, but working in a projective space.

We define the projective space P𝑛 over an algebraically closed field 𝑘 as the set of
equivalence classes of (𝑛 + 1)-tuples (𝑎0, . . . , 𝑎𝑛), where the elements 𝑎𝑖 P 𝑘 are not all zero,
given by the equivalence relation

(𝑎0, . . . , 𝑎𝑛) „ (𝜆𝑎0, . . . , 𝜆𝑎𝑛),

for every non-zero 𝜆 P 𝑘 . An element 𝑃 of P𝑛 is called a point, and any (𝑛 + 1)-tuple in the
equivalence class of 𝑃 is called homogeneous coordinates of 𝑃.

To establish a graded ring, we transform the polynomial ring 𝑆 = 𝑘 [𝑥0, . . . , 𝑥𝑛] by
defining 𝑆𝑑 as the collection of all linear combinations of monomials with a total degree 𝑑 in
𝑥0, . . . , 𝑥𝑛. Due to the non-uniqueness of homogeneous coordinates, it is not possible to directly
employ a polynomial 𝑓 P 𝑆 to define a function on P𝑛. Nevertheless, if 𝑓 represents a homogeneous
polynomial with degree 𝑑, we observe that 𝑓 (𝑖𝑎0, . . . , 𝑖𝑎𝑛) = 𝑖𝑑 𝑓 (𝑎0, . . . , 𝑎𝑛). Consequently,
the determination of whether 𝑓 is zero or non-zero relies solely on the equivalence class of
(𝑎0, . . . , 𝑎𝑛). Thus, 𝑓 gives a function from P𝑛 to {0, 1}, where 𝑓 (𝑃) = 0 if 𝑓 (𝑎0, . . . , 𝑎𝑛) = 0,
and 𝑓 (𝑃) = 1 if 𝑓 (𝑎0, . . . , 𝑎𝑛) ≠ 0.

We can now define the zeros of a homogeneous polynomial, denoted 𝑉 ( 𝑓 ) = {𝑃 P

P𝑛 | 𝑓 (𝑃) = 0}. The zero set of a given set 𝑇 consist of homogeneous elements of 𝑆 is defined as
follows:

𝑉 (𝑇) = {𝑃 P P𝑛 | 𝑓 (𝑃) = 0 for all 𝑓 P 𝑇}.

When considering a homogeneous ideal 𝔞 of 𝑆, we define 𝑉 (𝔞) as 𝑉 (𝑇), where 𝑇
represents the collection of all homogeneous elements in 𝔞. As 𝑆 is a Noetherian ring, it follows
that for any set 𝑇 of homogeneous elements, there exists a finite subset 𝑓1, . . . , 𝑓𝑟 of 𝑇 such that
𝑉 (𝑇) = 𝑉 ( 𝑓1, . . . , 𝑓𝑟).
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Definition 2.1.21. If there exists a set 𝑇 consisting of homogeneous elements of 𝑆 such that
𝑌 = 𝑉 (𝑇), then the subset 𝑌 of P𝑛 is considered an algebraic set.

Note that the empty set 𝑉 (1) = ∅ and the whole space 𝑉 (0) = P𝑛 are algebraic sets.
And we have the following properties.

Proposition 2.1.22. The intersection of any family of algebraic sets is an algebraic set and the
union of two algebraic sets is an algebraic set.

So, similarly to the affine case we can establish a topology.

Definition 2.1.23. The Zariski topology on P𝑛 is defined by considering the open sets as the
complements of algebraic sets.

Next we present an exemple that show us the difference between the affine and the
projective algebraic set.

Example 2.1.24. Consider the homogeneous polynomial 𝑓 = 𝑥2
1 ´ 𝑥2

2 ´ 𝑥2
0 P C[𝑥0, 𝑥1, 𝑥2].

This polynomial’s real component in the affine zero locus 𝑉𝑎 ( 𝑓 ) Ă A3 takes the form of a
2-dimensional cone (see Figure 1). Simultaneously, its projective zero locus 𝑉𝑝 ( 𝑓 ) Ă P2 is the
set of all 1-dimensional linear subspaces contained in this cone.

By considering P2 as an affine plane A2 with additional points at infinity (embedded
in A3 at 𝑥0 = 1), the application of 𝑥0 = 1 in 𝑓 yields an insightful portrayal of 𝑉𝑝 ( 𝑓 ). In this
context,𝑉𝑝 ( 𝑓 ) consists of the hyperbola 𝑥2

1 ´ 𝑥2
2 ´ 1 = 0 together with two points 𝑎 and 𝑏 situated

at infinity (see Figure 1).

In the figure of the cone, the points 𝑎 and 𝑏 correspond to the two 1-dimensional
linear subspaces parallel to the plane at 𝑥0 = 1. In the figure of the hyperbola contained in A2,
the points 𝑎 and 𝑏 can be thought of as points at infinity in the corresponding directions. Notably,
under this latter interpretation, "opposite" points at infinity are the same, as they correspond to
identical 1-dimensional linear subspaces in C3.

Figure 1 – Affine and projective zero locus of 𝑓 . From (GATHMANN, 2022).
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Note that both 𝑉 ( 𝑓 ) Ă A3 and 𝑉 ( 𝑓 ) Ă P2 hold fundamentally identical geometric
information. The distinction lies solely in how we interpret the cone: either as a collection of
individual points or as a union of 1-dimensional linear subspaces in A3.

Now that we have a topological space, we can define the notions of irreducibility and
dimension of a subset in a similar way to the previous section.

Definition 2.1.25. An irreducible algebraic set in P𝑛 with the induced Zariski topology is called
a projective algebraic variety or a projective variety. A quasi-projective variety is an open subset
of a projective variety.

Definition 2.1.26. The dimension of a projective or quasi-projective variety is the dimension of
the variety as a topogical space.

We introduce some additional notations.

Definition 2.1.27. We define the homogeneous ideal of subset 𝑌 Ă P𝑛 in 𝑆 as

𝐼 (𝑌 ) = ⟨{ 𝑓 P 𝑆 | 𝑓 is homogeneous and 𝑓 (𝑃) = 0 for all 𝑃 P 𝑌 }⟩.

Definition 2.1.28. We define the homogeneous coordinate ring of an algebraic set 𝑌 as 𝑆(𝑌 ) =
𝑆/𝐼 (𝑌 ).

The zero set of a linear homogeneous polynomial 𝑓 P 𝑆 is called a hyperplane.
Specifically, we represent the zero set of 𝑥𝑖 by 𝐻𝑖, for 𝑖 = 0, . . . , 𝑛.

We next aim to demonstrate that a projective space of dimension 𝑛 can be covered
by open affine spaces of dimension 𝑛. Which means that every (quasi-)projective variety has an
open covering by (quasi-)affine varieties.

Proposition 2.1.29. Let𝑈𝑖 be the open set P𝑛 ´ 𝐻𝑖. Then P𝑛 is covered by the open sets𝑈𝑖.

Proof. If 𝑃 = (𝑎0, . . . , 𝑎𝑛) is a point, then at least one of the 𝑎𝑖’s is nonzero, hence 𝑃 P 𝑈𝑖. We
define a mapping 𝜑𝑖 : 𝑈𝑖 Ñ A𝑛 as follows: if 𝑃 = (𝑎0, . . . , 𝑎𝑛) P 𝑈𝑖, then 𝜑𝑖 (𝑃) = 𝑄, where the
point 𝑄 has the affine coordinates (

𝑎0
𝑎𝑖
, . . . ,

𝑎𝑛

𝑎𝑖

)
,

disregarding the coordinate 1 = 𝑎𝑖/𝑎𝑖. The map 𝜑𝑖 is well-defined because the quotients 𝑎 𝑗/𝑎𝑖 do
not depend on the choice of homogeneous coordinates. □

2.1.3 Morphisms

Up to this point, we have introduced the concepts of affine and projective varieties;
however, we have not talked about the mappings allowed between them or the notion of
isomorphism. So in this section, we define regular functions on a variety and then present the
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concept of morphisms between varieties. This will provide us with a well-defined category to
work with.

Definition 2.1.30. Let 𝑌 Ă A𝑛 be a quasi-affine variety. A function 𝑓 : 𝑌 Ñ 𝑘 is said to be
regular at a point 𝑃 P 𝑌 if there exists an open neighborhood𝑈 with 𝑃 P 𝑈 Ď 𝑌 and polynomials
𝑔, ℎ P 𝐴 = 𝑘 [𝑥1, . . . , 𝑥𝑛] such that ℎ is nonzero on𝑈 and 𝑓 = 𝑔/ℎ on𝑈. We say that 𝑓 is regular
on 𝑌 if it is regular at every point of 𝑌 .

Lemma 2.1.31. A regular function is continuous when 𝑘 is identified with A1
ℎ in its Zariski

topology.

Proof. It suffices to show that the inverse image of a closed set is closed. In the case of A1
𝑘 ,

where a closed set consists of a finite number of points, it is enough to prove the closedness of
𝑓´1(𝑎) = {𝑃 P 𝑌 | 𝑓 (𝑃) = 𝑎} for any 𝑎 P 𝑘 . We can determine whether 𝑍 is closed by verifying
that 𝑌 can be covered by open sets𝑈 such that 𝑍 X𝑈 is closed in𝑈 for each𝑈. Let𝑈 be an open
set where 𝑓 can be expressed as the ratio 𝑔/ℎ, with both 𝑔 and ℎ belonging to 𝐴 and ℎ ≠ 0 on𝑈.
In this case, we find that 𝑓´1(𝑎) X𝑈 = {𝑃 P 𝑈 | 𝑔(𝑃)/ℎ(𝑃) = 𝑎}. However, 𝑔(𝑃)/ℎ(𝑃) = 𝑎 is
equivalent to (𝑔 ´ 𝑎ℎ) (𝑃) = 0. Consequently, we have 𝑓´1(𝑎) X𝑈 = 𝑍 (𝑔 ´ 𝑎ℎ) X𝑈, which is
closed. □

Now, analogous to Definition 2.1.30, we present the notion of regular function defined
on a quasi-projective variety.

Definition 2.1.32. Let 𝑌 Ď P𝑛 be a quasi-projective variety. A function 𝑓 : 𝑌 Ñ 𝑘 is said
to be regular at a point 𝑃 P 𝑌 if there exists an open neighborhood 𝑈 with 𝑃 P 𝑈 Ď 𝑌 and
homogeneous polynomials 𝑔, ℎ P 𝑆 = 𝑘 [𝑥0, . . . , 𝑥𝑛] of the same degree, such that 𝑓 = 𝑔/ℎ and
ℎ ≠ 0 on𝑈. We called 𝑓 a regular function on 𝑌 if it is regular function at every point 𝑃 P 𝑌 .

Although 𝑔 and ℎ are not functions on the projective space P𝑛, they are both
homogeneous polynomials of the same degree, therefore their quotient is a well-defined function
whenever ℎ is nonzero.

Furthermore, we have that a regular function is continuous, then if 𝑓 and 𝑔 are regular
functions on a variety 𝑋 and they coincide on an open subset𝑈 Ď 𝑋 where𝑈 is non-empty, then
it follows that 𝑓 and 𝑔 are equal everywhere. In fact, the set of points where 𝑓 ´ 𝑔 = 0 is both
closed and dense, so it must be equal to the whole space 𝑋 .

With this preparation we can now introduce the category of varieties.

Definition 2.1.33. The set 𝑋 is called a variety over an algebraically closed field 𝑘 if it is any of
the following: affine, quasi-affine, projective, or quasi-projective variety.

Definition 2.1.34. Let 𝑋 and𝑌 be varieties, a morphism is a continuous map 𝜑 : 𝑋 Ñ 𝑌 such that
for every open set𝑉 Ď 𝑌 and every regular function 𝑓 : 𝑉 Ñ 𝑘 , the function 𝑓 ˝𝜑 : 𝜑´1(𝑉) Ñ 𝑘

is regular.
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If 𝜑 : 𝑋 Ñ 𝑌 and 𝜓 : 𝑌 Ñ 𝑍 are morphisms of varieties, then the composition 𝜓 ˝ 𝜑

is a morphism, which establishes the category structure. Moreover, we define an isomorphism
𝜑 : 𝑋 Ñ 𝑌 of varieties as a morphism that admits an inverse morphism 𝜓 : 𝑌 Ñ 𝑋 with
𝜓 ˝ 𝜑 = id𝑋 and 𝜑 ˝ 𝜓 = id𝑌 .

We informally say that a variety is affine if it is isomorphic to an affine variety. Next
we present some rings of functions associated with a variety.

Definition 2.1.35. Let 𝑌 be a variety. The ring of all regular functions on 𝑌 is denoted by O(𝑌 ) .
The local ring of a point 𝑃 on 𝑌 , denoted as O𝑃,𝑌 or O𝑃, is the ring of germs of regular functions
on 𝑌 that are defined near 𝑃. That is, an element of O𝑃 is a pair ⟨𝑈, 𝑓 ⟩, where 𝑈 is an open
subset of 𝑌 containing 𝑃 and 𝑓 is a regular function on𝑈. Two such pairs ⟨𝑈, 𝑓 ⟩ and ⟨𝑉, 𝑔⟩ are
considered to be the same if 𝑓 = 𝑔 on𝑈 X𝑉 .

Observe that O𝑃 is really a local ring with its maximal ideal 𝑚 defined as the
collection of function germs that vanish at the point 𝑃. In the case where 𝑓 (𝑃) is non-zero, we
have that 1/ 𝑓 is a regular function in a neighborhood of 𝑃. Furthermore, the quotient field O𝑃/𝑚
is isomorphic to 𝑘 .

Definition 2.1.36. Let 𝑌 be a variety. We denote the function field of 𝑌 by 𝑘 (𝑌 ), and it consists of
equivalence classes of pairs ⟨𝑈, 𝑓 ⟩, where𝑈 represents a nonempty open subset of 𝑌 , and 𝑓 is a
regular function defined on 𝑈. Two pairs, ⟨𝑈1, 𝑓 ⟩ and ⟨𝑉, 𝑔⟩, are identified if 𝑓 = 𝑔 on 𝑈 X𝑉 .
The elements of 𝑘 (𝑌 ) are rational functions on 𝑌 .

Note that 𝑘 (𝑌 ) is a field. Indeed, we have that 𝑌 is irreducible, so the intersection
of two nonempty open sets is nonempty. Therefore, we can define addition and multiplication
in 𝑘 (𝑌 ), giving it the structure of a ring. If ⟨𝑈, 𝑓 ⟩ P 𝑘 (𝑌 ) with 𝑓 ≠ 0, we can consider the
restriction of 𝑓 to the open set 𝑉 = 𝑈 ´𝑈 X 𝑍 ( 𝑓 ) where it never vanishes. Hence 1/ 𝑓 is regular
on 𝑉 and ⟨𝑉, 1/ 𝑓 ⟩ is an inverse for ⟨𝑈, 𝑓 ⟩.

Up to this point, we have described the ring of global functions O(𝑌 ), the local
ring O𝑃 at a point 𝑃 and the function field 𝑘 (𝑌 ) for a variety 𝑌 . Considering the restriction of
functions, we have natural injective maps O(𝑌 ) Ñ O𝑃 Ñ 𝑘 (𝑌 ). Thus, we usually consider O(𝑌 )
and O𝑃 as subrings of 𝑘 (𝑌 ).

These rings, O(𝑌 ), O𝑃, and 𝑘 (𝑌 ), are invariants of the variety 𝑌 (and the point 𝑃) up
to isomorphism since they remain unchanged when we replace 𝑌 with an isomorphic variety.

Now, we aim to establish the connections amongO(𝑌 ),O𝑃, 𝑘 (𝑌 ), the affine coordinate
ring 𝐴(𝑌 ) of an affine variety and the homogeneous coordinate ring 𝑆(𝑌 ) of a projective variety.
On further study, we will discover that for an affine variety 𝑌 we have 𝐴(𝑌 ) = O(𝑌 ), therefore
the affine coordinate ring is invariant up to isomorphism. On the other hand, the coordinate ring
𝑆(𝑌 ) of a projective variety 𝑌 is not an invariant, since it relies on the embedding of 𝑌 in the
projective space.
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Theorem 2.1.37. Let 𝑉 Ď 𝑘𝑛 be an algebraic variety, 𝐴(𝑉) be the coordinate ring of 𝑉 , O(𝑉)
be the ring of regular functions on 𝑉 , and 𝑘 (𝑉) be the field of regular functions on 𝑉 . Then:

(1) O(𝑉) » 𝐴(𝑉);

(2) For each point 𝑃 P 𝑉 , let 𝑚𝑃 Ď 𝐴(𝑉) be the ideal of functions vanishing at 𝑃. Then the
correspondence 𝑃 Ø 𝑚𝑃 is a one-to-one correspondence between the points of 𝑉 and the
maximal ideals of 𝐴(𝑉);

(3) For each point 𝑃 P 𝑉 , there exists a ring isomorphism 𝐴(𝑉)𝑚𝑃
» O𝑃 and dimO𝑃 = dim𝑉;

(4) The fraction field of 𝐴(𝑉) is isomorphic to 𝑘 (𝑉), and consequently, 𝑘 (𝑉) is a finitely
generated extension of 𝑘 with 𝑡𝑟 .𝑑𝑒𝑔𝑘 𝑘 (𝑉) = dim𝑉 .

Let’s introduce some notation before stating the next result. Let 𝑆 be a graded ring
and 𝔭 be a homogeneous prime ideal in 𝑆. We denote by 𝑆(𝔭) the subring of elements of degree
0 in the localization of 𝑆 with respect to the multiplicative subset 𝑇 , which consists of the
homogeneous elements of 𝑆 that are not in 𝔭. 𝑆(𝔭) is a local ring and (𝔭 ¨ 𝑇´1𝑆) X 𝑆(𝔭) is its
maximal ideal, furthermore deg( 𝑓 /𝑔) = deg( 𝑓 ) ´ deg(𝑔) gives a natural grade to 𝑇´1𝑆, where
𝑓 P 𝑆 homogeneous and 𝑔 P 𝑇 . We express the subring consisting of elements with degree 0 in
the localized ring 𝑆 𝑓 as 𝑆( 𝑓 ) , when 𝑓 P 𝑆 is a homogeneous element.

Theorem 2.1.38. Consider a projective variety𝑌 contained in P𝑛 with a homogeneous coordinate
ring 𝑆(𝑌 ). Then:

(1) O(𝑌 ) = 𝑘;

(2) For each any point 𝑃 P 𝑌 , let 𝑚𝑃 Ď 𝑆(𝑌 ) be the ideal generated by the set of homogeneous
𝑓 P 𝑆(𝑌 ) vanishing at 𝑃. Then O𝑃 = 𝑆(𝑌 )(𝑚𝑃);

(3) 𝐾 (𝑌 ) � 𝑆(𝑌 )((0)) .

Proposition 2.1.39. Let 𝑋 be a variety and 𝑌 be an affine variety. Then there exists a natural
bĳective mapping of sets

𝛼 : Hom(𝑋,𝑌 ) „
Ñ Hom(𝐴(𝑌 ),O(𝑋)),

where Hom(𝑋,𝑌 ) is the set of morphisms between varieties and Hom(𝐴(𝑌 ),O(𝑋)) the set of
homomorphisms of 𝑘-algebras.

From this proposition, we immediately obtain the following corollary:

Corollary 2.1.40. Given two affine varieties 𝑋 and 𝑌 , we have the following equivalence: 𝑋 and
𝑌 are isomorphic if and only if their respective coordinate rings 𝐴(𝑋) and 𝐴(𝑌 ) are isomorphic
as 𝑘-algebras.
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In categorical language, we can rephrase this result as:

Corollary 2.1.41. The functor 𝑋 ÞÑ 𝐴(𝑋) induces a contravariant equivalence of categories
between the category of affine varieties over 𝑘 and the category of finitely generated integral
domains over 𝑘 .

2.1.4 Rational maps

In this section, we define the concepts of rational maps and birational equivalence,
which play a crucial role in the classification of varieties. The notion of a rational map captures
the idea of a well-defined mapping between varieties even when it may not be defined on the entire
domain. It allows us to study partial correspondences between varieties and is particularly useful
in situations where a regular map may not be defined everywhere or may not be well-behaved.

Lemma 2.1.42. Let 𝜑 and 𝜓 be morphisms between varieties 𝑋 and 𝑌 . If there exists a nonempty
open subset𝑈 Ď 𝑋 such that 𝜑 |𝑈 = 𝜓 |𝑈 , then 𝜑 = 𝜓.

Definition 2.1.43. Let 𝑋 and 𝑌 be varieties. A rational map 𝜑 : 𝑋 Ñ 𝑌 is an equivalence class
of pairs

〈
𝑈1, 𝜑𝑈1

〉
, where𝑈1 is a nonempty open subset of 𝑋 and 𝜑𝑈1 is a morphism from𝑈1 to

𝑌 . Two pairs ⟨𝑈, 𝜑𝑈⟩ and ⟨𝑉, 𝜑𝑉 ⟩ are considered equivalent if 𝜑𝑈 and 𝜑𝑉 agree on𝑈 X𝑉 . The
rational map 𝜑 is said to be dominant if, for some (and hence every) pair

〈
𝑈1, 𝜑𝑈1

〉
, the image of

𝜑𝑈1 is dense in 𝑌 .

Note that if the image of 𝜑𝑈 is dense in 𝑌 for some pair ⟨𝑈, 𝜑𝑈⟩, then it is dense for
every pair. Also observe that a rational map 𝜑 : 𝑋 Ñ 𝑌 is not generally a map from the set 𝑋 to
𝑌 . Furthermore, it is possible to compose dominant rational maps, allowing us to consider the
category of varieties and dominant rational maps. A birational map is an "isomorphism" in this
category:

Definition 2.1.44. A birational map 𝜑 : 𝑋 Ñ 𝑌 is a rational map that admits an inverse, namely
a rational map 𝜓 : 𝑌 Ñ 𝑋 such that 𝜓 ˝ 𝜑 = id𝑋 and 𝜑 ˝ 𝜓 = id𝑌 as rational maps. We say that
𝑋 and 𝑌 are birationally equivalent or birational if there exists a birational map from 𝑋 to 𝑌 ,.

In this section, one of the main conclusions is that the category of varieties and
dominant rational maps is in bĳective correspondence with the category of finitely generated
field extensions of 𝑘 , with the arrows reversed. Before stating this result, we present some results.

Lemma 2.1.45. Let 𝑌 be a hypersurface in A𝑛 given by the equation 𝑓 (𝑥1, . . . , 𝑥𝑛) = 0. Then
A𝑛

´ 𝑌 is isomorphic to the hypersurface 𝐻 in A𝑛+1 defined by 𝑥𝑛+1 𝑓 = 1. In particular, A𝑛
´ 𝑌

is affine and its affine ring is 𝑘 [𝑥1, . . . , 𝑥𝑛] 𝑓 .

Proposition 2.1.46. Every variety 𝑌 has a base for its topology consisting of open affine subsets.
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Now we arrive at the key result of this section. Consider a dominant rational map
𝜑 : 𝑋 Ñ 𝑌 , represented by the pair ⟨𝑈, 𝜑𝑈⟩. Let 𝑓 P 𝑘 (𝑌 ) be a rational function represented by
⟨𝑉, 𝑓 ⟩, where 𝑉 is an open set in 𝑌 and 𝑓 is a regular function on 𝑉 . Since 𝜑𝑈 (𝑈) is dense in
𝑌 , the preimage 𝜑´1

𝑈
(𝑉) is a nonempty open subset of 𝑋 . Thus, 𝑓 ˝ 𝜑𝑈 is a regular function on

𝜑´1
𝑈

(𝑉). This defines a rational function on 𝑋 and establishes a homomorphism of 𝑘-algebras
from 𝑘 (𝑌 ) to 𝑘 (𝑋).

Theorem 2.1.47. Let 𝑋 and 𝑌 be varieties, then there exists a bĳection between the set of
dominant rational maps from 𝑋 to 𝑌 and the set of 𝑘-algebra homomorphisms from 𝑘 (𝑌 ) to
𝑘 (𝑋). Moreover, this correspondence yields a reverse arrow equivalence between the category of
varieties and dominant rational maps, and the category of finitely generated field extensions of 𝑘 .

From this theorem we get the following corollary:

Corollary 2.1.48. Let 𝑋 and 𝑌 be varieties, the following statements are equivalent:

(1) 𝑋 and 𝑌 are birationally equivalent;

(2) There exist open subsets𝑈 Ď 𝑋 and 𝑉 Ď 𝑌 such that𝑈 is isomorphic to 𝑉;

(3) The 𝑘-algebras 𝑘 (𝑋) and 𝑘 (𝑌 ) are isomorphic.

Proposition 2.1.49. Every variety 𝑋 with dimension 𝑟 is birational to a hypersurface 𝑌 P P𝑟+1.

We end the study of rational maps by presenting the concept of blowing-up, which
is a fundamental tool in algebraic geometry, playing a crucial role in the study of singularities
and birational geometry. It provide a way to resolve singularities and refine the geometry of a
variety by introducing new geometric objects called exceptional divisors. The main idea behind
blowing-ups is to replace a singular point or a subvariety with a new space that captures the local
behavior of the variety. This new space is constructed in such a way that it retains the essential
information about the original variety while resolving its singularities.

Proposition 2.1.50. The blowing-up of the point 𝑂 = (0, . . . , 0) in A𝑛 can be constructed as
a closed subset 𝑋 of A𝑛 ˆ P𝑛´1 defined by the equations {𝑥𝑖𝑦 𝑗 = 𝑥 𝑗 𝑦𝑖 | 𝑖, 𝑗 = 1, . . . , 𝑛}. The
blowing-up is a birational map from 𝑋 to A𝑛.

The construction of the blowing-up involves considering the product spaceA𝑛ˆP𝑛´1,
where the closed subsets are defined by homogeneous polynomials in the affine coordinates
𝑥𝑖 of A𝑛 and the homogeneous coordinates 𝑦 𝑗 of P𝑛´1. By restricting the projection map from
A𝑛 ˆ P𝑛´1 to A𝑛, we obtain the blowing-up map 𝜑 : 𝑋 Ñ A𝑛.
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The following diagram represents those maps:

𝑋 A𝑛 ˆ P𝑛´1

A𝑛

Proposition 2.1.51. The properties of the blowing-up are as follows:

(1) If 𝑃 P A𝑛 and 𝑃 ≠ 𝑂, then 𝜑´1(𝑃) consists of a single point. In fact, 𝜑 gives an isomorphism
between 𝑋 ´ 𝜑´1(𝑂) and A𝑛 ´ 𝑂. Moreover, for 𝑃 P A𝑛 ´ 𝑂, there exists an inverse
morphism 𝜓(𝑃) = (𝑎1, . . . , 𝑎𝑛) ˆ (𝑎1, . . . , 𝑎𝑛) that shows the isomorphism;

(2) The preimage 𝜑´1(𝑂) is isomorphic to P𝑛´1;

(3) The points of 𝜑´1(𝑂) correspond to the lines passing through 𝑂 in A𝑛;

(4) 𝑋 is an irreducible variety.

The blowing-up can also be performed on a closed subvariety 𝑌 of A𝑛 by considering
the inverse image 𝑌 of 𝑌 under the blowing-up map 𝜑 : 𝑋 Ñ A𝑛. The blowing-up process "pulls
apart" 𝑌 near 𝑂 according to the different directions of lines through 𝑂.

An example is the blowing-up of a plane cubic curve 𝑌 in A2 defined by the equation
𝑦2 = 𝑥2(𝑥 + 1):

Example 2.1.52. Consider the example of the plane cubic curve 𝑌 given by the equation
𝑦2 = 𝑥2(𝑥 + 1). We will perform the blowing-up of 𝑌 at the point 𝑂 (see Figure 2 below).

Figure 2 – Blow-up of a cubic curve. From (HARTSHORNE, 1977).
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To do this, we introduce homogeneous coordinates 𝑡 and 𝑢 for P1. The blowing-up 𝑋
of A2 at 𝑂 is defined by the equation 𝑥𝑢 = 𝑡𝑦 inside A2

ˆ P1. Geometrically, 𝑋 appears similar
to A2, but with the point 𝑂 replaced by a P1 that represents the slopes of lines passing through
𝑂. We will refer to this P1 as the exceptional curve and denote it as 𝐸 .

To obtain the complete inverse image of 𝑌 in 𝑋 , we consider the equations 𝑦2 =

𝑥2(𝑥 + 1) and 𝑥𝑢 = 𝑡𝑦 in A2
ˆ P1. The P1 space is divided into open sets 𝑡 ≠ 0 and 𝑢 ≠ 0, which

we analyze separately. Assuming 𝑡 ≠ 0, we set 𝑡 = 1 and treat 𝑢 as an affine parameter. This leads
us to the following equations:

𝑦2 = 𝑥2(𝑥 + 1)
𝑦 = 𝑥𝑢

in A3 with coordinates 𝑥, 𝑦, 𝑢. By substituting, we obtain 𝑥2𝑢2
´ 𝑥2(𝑥 + 1) = 0, which can be

factored. Hence, we have two irreducible components: one defined by 𝑥 = 0, 𝑦 = 0, and any value
of 𝑢, denoted as 𝐸 , and the other defined by 𝑢2 = 𝑥 + 1 and 𝑦 = 𝑥𝑢, representing 𝑌 . Notably, 𝑌
intersects 𝐸 at the points 𝑢 = ˘1, which correspond to the slopes of the two branches of 𝑌 at 𝑂.

Analogously, we can verify that the complete inverse image of the 𝑥-axis consists of
𝐸 and another irreducible curve known as the strict transform of the 𝑥-axis (previously described
as �̄�1 corresponding to the line 𝐿 = 𝑥-axis). The strict transform intersects 𝐸 at 𝑢 = 0. By
considering the complementary open set 𝑢 ≠ 0 in A2

ˆ P1, we observe that the strict transform
of the 𝑦-axis intersects 𝐸 at the point 𝑡 = 0 and 𝑢 = 1.

These findings are summarized in Figure 2. The blowing-up operation effectively
separates the branches of curves passing through𝑂 based on their slopes. If the slopes differ, their
strict transforms no longer intersect in 𝑋 . Instead, they meet 𝐸 at distinct points corresponding
to their respective slopes.

2.1.5 Grassmanians

Let us now shift our focus from the general theory to the construction of a fasci-
nating and valuable class of examples: Grassmannians. For this study we use the references
(GATHMANN, 2022) and (GORODENTSEV, 2017).

The motivation behind this construction is quite straightforward. We have already
seen the definition of projective spaces as the collection of 1-dimensional linear subspaces of 𝐾𝑛,
and this concept has proven to be incredibly useful. Now, we aim to generalize this idea further
by considering sets of 𝑘-dimensional linear subspaces of 𝐾𝑛, where 𝑘 can range from 0 to 𝑛.

Definition 2.1.53. Let 𝑛 P Ną0 and 𝑘 P N with 0 ď 𝑘 ď 𝑛. We denote by 𝐺 (𝑘, 𝑛) the set of all
𝑘-dimensional linear subspaces of 𝐾𝑛. This set is called the Grassmannian of 𝑘-planes in 𝐾𝑛.

It is worth noting that 𝑘-dimensional linear subspaces of 𝐾𝑛 (for 𝑘 ą 0) are naturally
in bĳection with (𝑘´1)-dimensional linear subspaces of P𝑛´1. Consequently, we can alternatively
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view𝐺 (𝑘, 𝑛) as the set of such projective linear subspaces. As a result, our Grassmannian𝐺 (𝑘, 𝑛)
from Definition 2.1.67 is sometimes denoted asG(𝑘´1, 𝑛´1) in the literature, as the dimensions
𝑘 and 𝑛 are reduced by 1 in this alternative notation.

Our goal is to turn the Grassmannian 𝐺 (𝑘, 𝑛) into a variety. In fact, we will show that
it can be naturally equipped with a projective variety structure. To achieve this, we will introduce
the algebraic concept of alternating tensor products, which is a slight variation of the ordinary
tensor products commonly used in commutative algebra. Let us provide a brief introduction to
alternating tensor products.

Definition 2.1.54. Let 𝑉 be a vector space over 𝐾, and let 𝑘 P N. A 𝑘-fold multilinear map
𝑓 : 𝑉 𝑘 Ñ 𝑊 to another vector space 𝑊 is called alternating if 𝑓 (𝑣1, . . . , 𝑣𝑘 ) = 0 for all
𝑣1, . . . , 𝑣𝑘 P 𝑉 such that 𝑣𝑖 = 𝑣 𝑗 for some 𝑖 ≠ 𝑗 .

Remark 2.1.55. It is important to note that for an alternating multilinear map 𝑓 : 𝑉 𝑘 Ñ 𝑊 and
𝑣1, . . . , 𝑣𝑘 P 𝑉 , if we exchange two arguments of 𝑓 , the result is multiplied by ´1. This property
can be extended to any permutation of the arguments, and we obtain the following result:

𝑓 (𝑣𝜎(1) , . . . , 𝑣𝜎(𝑘)) = sign(𝜎) ¨ 𝑓 (𝑣1, . . . , 𝑣𝑘 ),

where 𝜎 is a permutation in the symmetric group 𝑆𝑘 and sign(𝜎) denotes the sign of the
permutation.

This concept of alternating multilinear maps will play a crucial role in the construction
of Grassmannians.

Definition 2.1.56. Let 𝑉 be a vector space over 𝐾 and 𝑘 P N. An alternating tensor product of 𝑉
is a vector space 𝑇 equipped with an alternating 𝑘-fold multilinear map 𝜏 : 𝑉 𝑘 Ñ 𝑇 that satisfies
the following universal property: for any 𝑘-fold alternating multilinear map 𝑓 : 𝑉 𝑘 Ñ 𝑊 to
another vector space𝑊 , there exists a unique linear map 𝑔 : 𝑇 Ñ 𝑊 such that 𝑓 = 𝑔 ˝ 𝜏, i. e.,
such that the diagram below commutes.

𝑉 𝑘 𝑊

𝑇

Proposition 2.1.57. For any vector space 𝑉 and any 𝑘 P N, there is a 𝑘-fold alternating tensor
product 𝜏 : 𝑉 𝑘 Ñ 𝑇 as in Definition 2.1.56, and it is unique up to unique isomorphism. We will
write 𝑇 as Λ𝑘𝑉 and 𝜏 (𝑣1, . . . , 𝑣𝑘 ) as 𝑣1 ^ ¨ ¨ ¨ ^ 𝑣𝑘 P Λ𝑘𝑉 for all 𝑣1, . . . , 𝑣𝑘 P 𝑉 .

Alternating tensor products provide an elegant framework for capturing the linear
dependence and linear spans of vectors.
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Lemma 2.1.58. Let 𝑣1, . . . , 𝑣𝑘 P 𝐾𝑛 for some 𝑘 ď 𝑛. Then 𝑣1 ^ ¨ ¨ ¨ ^ 𝑣𝑘 = 0 if and only if
𝑣1, . . . , 𝑣𝑘 are linearly dependent.

Lemma 2.1.59. Let 𝑣1, . . . , 𝑣𝑘 P 𝐾𝑛 and 𝑤1, . . . , 𝑤𝑘 P 𝐾𝑛 both be linearly independent. Then
the alternating tensor products 𝑣1 ^ ¨ ¨ ¨ ^ 𝑣𝑘 and 𝑤1 ^ ¨ ¨ ¨ ^ 𝑤𝑘 are linearly dependent in Λ𝑘𝐾𝑛

if and only if Lin (𝑣1, . . . , 𝑣𝑘 ) = Lin (𝑤1, . . . , 𝑤𝑘 )

We can now use our results to realize the Grassmannian 𝐺 (𝑘, 𝑛) as a subset of a
projective space.

Construction 2.1.60 (Plücker embedding). . Consider the map 𝑓 : 𝐺 (𝑘, 𝑛) Ñ P(
𝑛
𝑘)´1 defined as

follows: for a linear subspace Lin(𝑣1, . . . , 𝑣𝑘 ) P 𝐺 (𝑘, 𝑛), we send it to the class of the alternating
tensor 𝑣1 ^ ¨ ¨ ¨ ^ 𝑣𝑘 P Λ𝑘𝐾𝑛 � 𝐾 (𝑛𝑘) in P(

𝑛
𝑘)´1.

This map is well-defined: 𝑣1 ^ ¨ ¨ ¨ ^ 𝑣𝑘 is non-zero (Lemma 2.1.58), and changing
the basis of the same subspace does not alter the resulting point in P(

𝑛
𝑘)´1 (Lemma 2.1.59).

Furthermore, the map 𝑓 is injective (Lemma 2.1.59). We refer to this map as the Plücker
embedding of 𝐺 (𝑘, 𝑛). For a 𝑘-dimensional linear subspace 𝐿 P 𝐺 (𝑘, 𝑛), the homogeneous
coordinates of 𝑓 (𝐿) in P(

𝑛
𝑘)´1 are known as the Plücker coordinates of 𝐿. These coordinates

correspond to the maximal minors of the matrix whose rows are 𝑣1, . . . , 𝑣𝑘 .

We have successfully embedded the Grassmannian 𝐺 (𝑘, 𝑛) into a projective space.
However, we still need to show that it is a closed subset, or in other words, a projective variety.
By construction, 𝐺 (𝑘, 𝑛) consists of the classes in P(

𝑛
𝑘)´1 that correspond to non-zero alternating

tensors in Λ𝑘𝐾𝑛 and can be expressed as "pure tensors," i.e., of the form 𝑣1 ^ ¨ ¨ ¨ ^ 𝑣𝑘 for some
𝑣1, . . . , 𝑣𝑘 P 𝐾𝑛—not just as linear combinations of such expressions. Therefore, we need to find
suitable equations that describe these pure tensors in Λ𝑘𝐾𝑛. The key lemma that will help us
achieve this is the following.

Lemma 2.1.61. For a fixed non-zero 𝜔 P Λ𝑘𝐾𝑛 with 𝑘 ă 𝑛 consider the 𝐾-linear map

𝑓 : 𝐾𝑛 Ñ Λ𝑘+1𝐾𝑛, 𝑣 ÞÑ 𝑣 ^ 𝜔.

Then rk 𝑓 ě 𝑛´ 𝑘 , with equality holding if and only if𝜔 = 𝑣1 ^¨ ¨ ¨^𝑣𝑘 for some 𝑣1, . . . , 𝑣𝑘 P 𝐾𝑛.

Example 2.1.62. Let 𝑘 = 2 and 𝑛 = 4.

(1) For 𝜔 = 𝑒1 ^ 𝑒2 the map 𝑓 of Lemma 2.1.61 is given by

𝑓 (𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3 + 𝑎4𝑒4) = (𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3 + 𝑎4𝑒4) ^ 𝑒1 ^ 𝑒2

= 𝑎3𝑒1 ^ 𝑒2 ^ 𝑒3 + 𝑎4𝑒1 ^ 𝑒2 ^ 𝑒4

for 𝑎1, 𝑎2, 𝑎3, 𝑎4 P 𝐾 , and thus has rank rk 𝑓 = 2 = 𝑛´ 𝑘 in accordance with the statement
of the lemma.
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(2) For 𝜔 = 𝑒1 ^ 𝑒2 + 𝑒3 ^ 𝑒4 we get

𝑓 (𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3 + 𝑎4𝑒4)
= (𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3 + 𝑎4𝑒4) ^ (𝑒1 ^ 𝑒2 + 𝑒3 ^ 𝑒4)
= 𝑎1𝑒1 ^ 𝑒3 ^ 𝑒4 + 𝑎2𝑒2 ^ 𝑒3 ^ 𝑒4 + 𝑎3𝑒1 ^ 𝑒2 ^ 𝑒3 + 𝑎4𝑒1 ^ 𝑒2 ^ 𝑒4

instead, so that rk 𝑓 = 4. Hence Lemma 2.1.61 tells us that there is no way to write 𝜔 as a
pure tensor 𝑣1 ^ 𝑣2 for some vectors 𝑣1, 𝑣2 P 𝐾4.

The following corollary presents 𝐺 (𝑘, 𝑛) as a projective variety.

Corollary 2.1.63. The Plücker embedding ensures that the Grassmannian 𝐺 (𝑘, 𝑛) is a closed
subset of P(

𝑛
𝑘)´1. Therefore, it can be regarded as a projective variety.

Proof. Considering 𝐺 (𝑛, 𝑛), which is a single point and therefore a variety, we can focus on the
case where 𝑘 ă 𝑛. In this case, a point 𝜔 P P(

𝑛
𝑘)´1 belongs to 𝐺 (𝑘, 𝑛) if and only if it represents

a pure tensor 𝑣1 ^ ¨ ¨ ¨ ^ 𝑣𝑘 . Lemma 2.1.61 establishes that this condition holds if and only if the
rank of the linear map 𝑓 : 𝐾𝑛 Ñ Λ𝑘+1𝐾𝑛, 𝑣 ÞÑ 𝑣 ^ 𝜔 is 𝑛 ´ 𝑘 . Since we know that the rank of
this map is always at least 𝑛 ´ 𝑘 , we can verify this condition by checking the vanishing of all
(𝑛´ 𝑘 + 1) ˆ (𝑛´ 𝑘 + 1) minors of the matrix corresponding to 𝑓 . These minors are polynomials
in the matrix entries and, consequently, in the coordinates of 𝜔. Thus, we conclude that the
condition for 𝜔 to belong to 𝐺 (𝑘, 𝑛) defines a closed subset. □

Example 2.1.64. The proof of Corollary 2.1.63 shows that the Grassmannian 𝐺 (2, 4) is defined
as the set of points in P5 where all sixteen 3 ˆ 3 minors of a 4 ˆ 4 matrix corresponding to a
linear map 𝐾4

Ñ Λ3𝐾4 vanish. In other words, 𝐺 (2, 4) is represented by a system of sixteen
cubic equations in P5.

Surprisingly, a single quadratic equation is sufficient to define the Grassmannian
𝐺 (2, 4) in P5. The condition 𝜔^𝜔 = 0 for 𝜔 =

∑︁
𝑖, 𝑗

𝑎𝑖 𝑗𝑒𝑖𝑒 𝑗 is expressed by the quadratic equation

𝑎12𝑎34 ´ 𝑎13𝑎24 + 𝑎14𝑎23 = 0. More details about the construction of this quadratic equation can
be found in Chapter 4 of (GORODENTSEV, 2017).

Our proof of Corollary 2.1.63 is just the easiest way to show that 𝐺 (𝑘, 𝑛) is a variety,
however this is not the most efficient way to describe 𝐺 (2, 4), as it does not provide a nice
representation of the variety.

Fortunately, there is an alternative approach to describe the Grassmannian using
affine patches, which offers a more convenient perspective. This description allows us to easily
determine the dimension of 𝐺 (𝑘, 𝑛), which is a challenging task when relying solely on the
equations as shown in Corollary 2.1.63.
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Construction 2.1.65. [Affine cover of the Grassmannian]. Consider the affine open subset
𝑈0 Ă 𝐺 (𝑘, 𝑛) Ă P(

𝑛
𝑘)´1 where the 𝑒1 ^ ¨ ¨ ¨ ^ 𝑒𝑘-coordinate is non-zero. We have that a linear

subspace 𝐿 P 𝐺 (𝑘, 𝑛) lies in𝑈0 if and only if it can be expressed as the row span of a 𝑘ˆ𝑛 matrix
of the form (𝐴 | 𝐵), where 𝐴 is an invertible 𝑘 ˆ 𝑘 matrix and 𝐵 is an arbitrary 𝑘 ˆ (𝑛 ´ 𝑘)
matrix.

By multiplying such a matrix by 𝐴´1 from the left, which preserves the row span, we
can see that𝑈0 is the image of the map

𝑓 : A𝑘 (𝑛´𝑘) = Mat(𝑘 ˆ (𝑛 ´ 𝑘), 𝐾) Ñ 𝑈0,

𝐶 ÞÑ the row span of (𝐸𝑘 | 𝐶) ,

where 𝐶 = 𝐴´1𝐵 in the above notation. Since different matrices 𝐶 lead to distinct row spans of
(𝐸𝑘 | 𝐶), we can conclude that 𝑓 is a bĳective map. Furthermore, since the maximal minors of
(𝐸𝑘 | 𝐶) are polynomial functions in the entries of 𝐶, we can see that 𝑓 is actually a morphism.

Conversely, we can reconstruct the (𝑖, 𝑗)-entry of 𝐶 up to sign from 𝑓 (𝐶) by
considering the maximal minor of (𝐸𝑘 | 𝐶) formed by all columns of 𝐸𝑘 except the 𝑖-th column,
along with the 𝑗-th column of 𝐶. This implies that 𝑓´1 is also a morphism, demonstrating that 𝑓
is an isomorphism.

In other words, we have established that 𝑈0 � A
𝑘 (𝑛´𝑘) is isomorphic to an affine

space, not just an affine variety. By a similar argument, the same holds for all other affine patches
where one of the Plücker coordinates is non-zero. Therefore, we can conclude that 𝐺 (𝑘, 𝑛) can
be covered by such affine spaces. As a result, we have the following consequence:

Corollary 2.1.66. 𝐺 (𝑘, 𝑛) is an irreducible variety of dimension 𝑘 (𝑛 ´ 𝑘).

In the next example, we will make use of the concept of open cells. To provide a brief
reminder of the definition: An 𝑛-dimensional open cell, typically denoted as "𝑒𝑛," is a topological
space that is homeomorphic to the open 𝑛-dimensional ball in Euclidean space. In simpler terms,
it is a space that looks like an open ball in 𝑛-dimensional Euclidean space.

Example 2.1.67. Let 𝑝 P 𝑃 be a point in the Plücker quadric 𝑃 = {𝜔 P Λ2𝑉 | 𝜔 ^ 𝜔 = 0} Ă P5

and 𝐻 » P3 a hyperplane complementary to 𝑝 in the tangent plane 𝑇𝑝𝑃 » P4, i.e., 𝑝 ∉ 𝐻 and 𝑝
and the hyperplane 𝐻 together provide a complete set of basis elements for the tangent space at
that point . Then the intersection 𝐶 = 𝑃 X 𝑇𝑝𝑃 is a simple cone with vertex at 𝑝 over a smooth
quadric 𝐺 = 𝐻 X 𝑃 that can be regarded as the Segre quadric in P3 = 𝐻.

Now if we choose a point 𝑝1
P 𝐺 and write 𝜋𝛼, 𝜋𝛽 for planes spanned by 𝑝 and two

lines on 𝐺 passing through 𝑝1. Linked with this information, we can establish a stratification of
the Plücker quadric represented by closed subvarieties, as illustrated in the Figure 3.

First, we have {𝑝} » A0, then we have the projective line (intersection of 𝜋𝛼 and
𝜋𝛽) without 𝑝:

(
𝜋𝛼 X 𝜋𝛽

)
z𝑝 » A1. Next, we consider the pair of projective spaces without this
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Figure 3 – The cone 𝐶 = 𝑃 X 𝑇𝑝𝑃 Ă P4 = 𝑇𝑝𝑃. From (GORODENTSEV, 2017).

line: 𝜋𝛼z
(
𝜋𝛼 X 𝜋𝛽

)
» 𝜋𝛽z

(
𝜋𝛼 X 𝜋𝛽

)
» A2. Also, we have the cone 𝐶 over 𝐺 without the planes

𝜋𝛼 and 𝜋𝛽: 𝐶z
(
𝜋𝛼 Y 𝜋𝛽

)
» A1

ˆ
(
𝐺z

(
𝐺 X 𝑇𝑝1𝐺

) )
. Finally, there are natural identifications

𝐺z
(
𝐺 X 𝑇𝑝1𝐺

)
» A2 and 𝑃z𝐶 » A4.

So we can write Gr(2, 4) as a disjoint union of open cells isomorphic to affine spaces:

Gr(2, 4) = A0
\ A1

\
©«
A2

\

A2

ª®®¬ Y A3
\ A4.

More details about this example can be founded in Chapter 5 of (GORODENTSEV,
2017).

2.2 Schemes

The theory of schemes is a fundamental framework in modern algebraic geometry that
provides a powerful and flexible language for studying geometric objects defined by polynomial
equations. Unlike classical algebraic varieties, which are restricted to being defined by sets of
zeros of polynomials over an algebraically closed field, schemes allow for more general geometric
objects that can be defined over any commutative ring. The key idea behind schemes is to
associate a commutative ring to each open subset of a given space, such that these rings encode
geometric information about the space. Instead of working solely with the points of a variety,
schemes incorporate the structure of the underlying ring into the geometric study. This allows
for a deeper understanding of geometric phenomena, such as singularities and intersections, by
examining the algebraic properties of the associated rings. The main reference used to construct
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this section was chapter II of (HARTSHORNE, 1977) and as supplementary material, we relied
on the references (VAKIL, 2017) and (SHAFAREVICH; REID, 1994).

2.2.1 Presheaves and sheaves

We will define the notion of a presheaf and a sheaf on a topological space. The
concept of sheaves allows us to study local information in a topological space, particularly in an
algebraic variety. Let’s start with the definition of a presheaf.

Definition 2.2.1. Let 𝑋 be a topological space, and 𝑇𝑜𝑝(𝑋) be the category whose objects are
the open sets of 𝑋 and morphisms are the inclusion maps. A presheaf ℱ of abelian groups on 𝑋
is a contravariant functor from the category 𝑇𝑜𝑝(𝑋) to the category of abelian groups.

Similarly, we can define presheaves of commutative rings or any other category.

Definition 2.2.2. A sheaf of abelian groups (or rings, or valued in objects of a certain category)
is a presheaf that satisfies the following additional conditions:

(i) If𝑈 Ă 𝑋 is an open set, 𝑉𝑖 is an open covering of𝑈, and there exists 𝑠 P ℱ(𝑈) such that
𝑠
��
𝑉𝑖
= 0 for all 𝑖, then 𝑠 = 0 (the locality property).

(ii) Let 𝑈 Ă 𝑋 be an open set, 𝑉𝑖 be an open covering of 𝑈, and suppose we have elements
𝑠𝑖 P ℱ(𝑉𝑖) such that for all 𝑖 and 𝑗 , 𝑠𝑖

��
𝑉𝑖X𝑉 𝑗

= 𝑠 𝑗
��
𝑉𝑖X𝑉 𝑗

. Then there exists an element
𝑠 P ℱ(𝑈) such that 𝑠

��
𝑉𝑖
= 𝑠𝑖 for each 𝑖 (the gluing property).

To fix the terminology, if ℱ is a presheaf (or a sheaf) of abelian groups on 𝑋 , the
elements of ℱ(𝑈) are called local sections over𝑈. If 𝑉 Ă 𝑈, then the induced morphism from
ℱ(𝑈) to ℱ(𝑉) is called the restriction map, and we denote the image of a section 𝑠 from ℱ(𝑈)
to ℱ(𝑉) as 𝑠

��
𝑉
.

Example 2.2.3. The canonical example of a sheaf is when 𝑋 is an algebraic variety over an
algebraically closed field 𝑘 , and for each open set 𝑈 Ă 𝑋 , we associate the ring of regular
functions on𝑈. Additionally, we can define sheaves of continuous, differentiable, or holomorphic
functions over a topological, smooth, or complex manifold, respectively.

Example 2.2.4. Let’s consider an example of a presheaf that is not a sheaf. Let 𝑋 = R, and
consider the open cover𝑈𝑖 : |𝑥 | ă 𝑖. Let ℱ be the presheaf of continuous and bounded functions
on 𝑋 .

Suppose that ℱ is a sheaf. Since the section 𝑓𝑖 (𝑥) = 𝑥 is bounded on each 𝑈𝑖, the
function 𝑓 (𝑥) = 𝑥 should be bounded on R, which is not the case.

The following result was proved by Grothendieck and gives us a criterion for when a
presheaf is a sheaf.
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Theorem 2.2.5. Every representable presheaf on an algebraic variety is a sheaf.

The proof of the above theorem can be found in (VISTOLI, 2005).

When defining a new structure, some natural questions arise. For example, what are
the smaller structures found within these objects? Can we relate two different elements of our
structure? We will explore the answers to these questions.

Definition 2.2.6. A sub-sheaf of a sheaf ℱ is a sheaf ℱ1 such that for every open subset𝑈 Ă 𝑋 ,
ℱ

1(𝑈) is a subgroup (subring) of ℱ(𝑈) and the restriction maps of the sheaf ℱ1 are induced by
those of ℱ.

Definition 2.2.7. Given two sheaves ℱ and 𝒢 over the same topological space, a morphism of
sheaves between ℱ and 𝒢 is a functor morphism between the presheaves.

Given a morphism of sheaves 𝜑 : ℱ Ñ 𝒢 over 𝑋 , we can associate a presheaf related
to the kernel of the morphism, where for each open subset 𝑈 Ă 𝑋 , we associate the group
ker 𝜑(𝑈). Similarly, we can construct the presheaves that associate each open subset with the
groups coker 𝜑(𝑈) and im 𝜑(𝑈). The presheaf ker is actually a sheaf, but the presheaves image
and cokernel are sheaves.

Since not every presheaf is a sheaf, a natural question is how we can associate a
presheaf with a sheaf. For this, we need the notion of the stalk of a sheaf at a point in the
topological space where the sheaf is defined, which will give us algebraic information in the
neighborhoods of the point.

Definition 2.2.8. If ℱ is a presheaf on 𝑋 and 𝑃 is a point of 𝑋 , the stalk of ℱ at 𝑃, denoted by ℱ𝑃,
is the set of all ordered pairs (𝑈, 𝑠), equipped with an equivalence relation, where (𝑈, 𝑠) „ (𝑉, 𝑡)
if and only if there exists an open subset𝑊 with 𝑃 P 𝑊 Ă 𝑈 X𝑉 such that 𝑠

��
𝑊
= 𝑡

��
𝑊

.

The following theorem tells us about the local nature of the stalk concept and is an
important technical result. The proof can be found in II.1.1 of the reference (HARTSHORNE,
1977).

Theorem 2.2.9. A morphism of sheaves 𝜑 : ℱ Ñ 𝒢 is an isomorphism if and only if, for every
𝑃 P 𝑋 , the induced map 𝜑𝑃 : ℱ𝑃 Ñ 𝒢𝑃 is an isomorphism.

Now we have the necessary tools to associate a sheaf with a presheaf.

Theorem 2.2.10. Given a presheaf ℱ, there exists a sheaf ℱ+ with the property that for any
sheaf 𝒢 and any morphism 𝜑 : ℱ Ñ 𝒢, there exists a unique morphism 𝜓 : ℱ+

Ñ 𝒢 such that
𝜑 = 𝜓 ˝ 𝜃. Moreover, (ℱ+, 𝜃) is unique up to isomorphisms and is called the sheaf associated to
the presheaf ℱ.
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ℱ

ℱ
+

𝒢

⟲
𝜃 𝜓

𝜑

The proof of the above theorem can be found in (HARTSHORNE, 1977). Therefore,
we can define the sheaf image and cokernel as the sheafification of the presheaf image and
cokernel, respectively.

2.2.2 Ringed spaces and schemes

We will introduce the concept of schemes, beginning with the study of affine schemes
and then extending to projective schemes. This construction is inspired by the idea of algebraic
and projective varieties, which are defined as the solution sets of polynomials and regular
functions on them, respectively. Ultimately, we will discover that a scheme provides a natural
generalization of the notion of an algebraic variety.

Let 𝐴 be a commutative ring with unity. We define the set 𝑆𝑝𝑒𝑐(𝐴) as the set of all
prime ideals of 𝐴. For an ideal 𝐼 Ă 𝐴, we define the subset 𝑉 (𝐼) Ă 𝑆𝑝𝑒𝑐(𝐴) as the set of prime
ideals of 𝐴 that contain the ideal 𝐼.

Lemma 2.2.11. (i) If 𝐼 and 𝐽 are ideals of 𝐴, then 𝑉 (𝐼) Y𝑉 (𝐽) = 𝑉 (𝐼𝐽) = 𝑉 (𝐼 X 𝐽).

(ii) If 𝐼𝛼 with 𝛼 P Λ are ideals of 𝐴, then 𝑉
(∑︁

𝐼𝛼

)
= X𝑉 (𝐼𝛼).

(iii) Let 𝐼, 𝐽 be ideals of 𝐴. Then 𝑉 (𝐼) Ă 𝑉 (𝐽) if and only if
?
𝐽 Ă

?
𝐼.

Proof. The proof of this lemma can be found in (HARTSHORNE, 1977). □

Note that 𝑉 (𝐴) = ∅ and 𝑉 (0) = 𝑆𝑝𝑒𝑐(𝐴). Therefore, we can define a topology on
𝑆𝑝𝑒𝑐(𝐴) by taking the sets 𝑉 (𝐼) as the closed sets that define this topology, known as the Zariski
Topology.

A basis of open sets for this topology can be given by

𝐷 ( 𝑓 ) := {𝑝 P 𝑆𝑝𝑒𝑐(𝐴) : 𝑓 ∉ 𝑝} = 𝑆𝑝𝑒𝑐(𝐴 𝑓 ).

With that in mind, let’s explore a way to define a sheaf on 𝑆𝑝𝑒𝑐(𝐴). Our goal is for
the stalks of this sheaf to satisfy the properties of regular functions on varieties, as we defined
them in the classical sense.

Definition 2.2.12. Let𝑈 Ă 𝑆𝑝𝑒𝑐(𝐴) be an open set. We define 𝒪(𝑈) as the set of functions

𝑠 : 𝑈 Ñ

⊔
𝑝P𝑈

𝐴𝑝
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such that for every 𝑝 in𝑈, 𝑠(𝑝) is in 𝐴𝑝. Furthermore, 𝑠 is locally a quotient of elements of 𝐴,
i.e., for each 𝑝 P 𝑈, there exists an open neighborhood 𝑉 contained in𝑈 and elements 𝑎, 𝑓 P 𝐴

such that for every 𝑞 P 𝑉 , 𝑓 ∉ 𝑞 and 𝑠(𝑞) = 𝑎/ 𝑓 in 𝐴𝑝.

This definition is similar to the definition of the sheafification of a presheaf, and
therefore, the proof that 𝒪 is a sheaf is similar to the proof that the sheafification of a presheaf is
a sheaf.

Definition 2.2.13. A germ of a regular function at 𝑝 P 𝑆𝑝𝑒𝑐(𝐴) is an equivalence class of
pairs (𝑈, 𝑠) such that if𝑈 and𝑈1 are open sets in 𝑆𝑝𝑒𝑐(𝐴) and 𝑠 P 𝒪(𝑈) and 𝑠1

P 𝒪(𝑈1), then
(𝑈, 𝑠) „ (𝑈1, 𝑠1) if and only if there exists 𝑉 Ă 𝑈 X𝑈1 such that 𝑠 and 𝑠1 coincide on 𝑉 .

From this, it follows that the stalk 𝒪𝑝 » 𝐴𝑝.

We observe that the sheaf 𝒪 satisfies the following properties:

Proposition 2.2.14. Let 𝐴 be a ring, and (𝑆𝑝𝑒𝑐(𝐴),𝒪) be its spectrum. Then,

(i) For every 𝑝 P 𝑆𝑝𝑒𝑐(𝐴), we have 𝒪𝑝 » 𝐴𝑝;

(ii) If 𝑓 P 𝐴, then 𝒪(𝐷 ( 𝑓 )) » 𝐴 𝑓 , and in particular, 𝒪(𝑆𝑝𝑒𝑐(𝐴)) » 𝐴.

The proof of this proposition can be found in (HARTSHORNE, 1977).

With these definitions, we associate each commutative ring with unity with a pair
(𝑆𝑝𝑒𝑐(𝐴),𝒪), consisting of a topological space and a sheaf, which we call the Spectrum.

We would like this correspondence to be functorial, but for that, we need a category
whose objects are topological spaces with sheaves of rings on them.

Definition 2.2.15. A ringed space is a pair (𝑋,𝒪𝑋) consisting of a topological space 𝑋 and a
sheaf 𝒪𝑋 on 𝑋 .

Now we desire a morphism between ringed spaces, for which we need the notion of
direct image sheaf, defined as follows.

Definition 2.2.16. Let 𝑋,𝑌 be topological spaces, and let 𝑓 : 𝑋 Ñ 𝑌 be a continuous function.
For any sheaf ℱ on 𝑋 , we define the direct image sheaf 𝑓ℱ on 𝑌 as 𝑓ℱ (𝑉) = ℱ( 𝑓´1(𝑉)) for
any open set 𝑉 Ă 𝑌 .

Definition 2.2.17. A morphism of ringed spaces from (𝑋,𝒪𝑋) to (𝑌,𝒪𝑌 ) is a pair ( 𝑓 , 𝑓 #)
consisting of a continuous map 𝑓 : 𝑋 Ñ 𝑌 and 𝑓 # : 𝒪𝑌 Ñ 𝑓˚𝒪𝑋 a morphism of sheaves of rings
over 𝑌 .

However, for our studies, the category of ringed spaces is too broad, so we need the
following notion:
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Definition 2.2.18. A ringed space is a locally ringed space if 𝒪𝑋,𝑝 is a local ring for every 𝑝 P 𝑋 .

Note that from the previous proposition, if 𝐴 is a local ring, then (Spec(𝐴),O) is
a locally ringed space. Furthermore, let’s recall that if (𝐴,𝔪𝐴) and (𝐵,𝔪𝐵) are local rings
and 𝜑 : 𝐴 Ñ 𝐵 is a ring homomorphism, we say that 𝜑 is a local homomorphism when
𝜑´1(𝔪𝐵) = 𝔪𝐴.

A morphism of locally ringed spaces is a morphism ( 𝑓 , 𝑓 #) of ringed spaces such
that, for each point 𝑝 P 𝑋 , the induced map of local rings 𝑓 #

𝑝 : 𝒪𝑌, 𝑓 (𝑝) Ñ 𝒪𝑋,𝑝 is a local
homomorphism. In other words, for each point 𝑝 P 𝑋 , the morphism of sheaves 𝑓 # : O𝑌 Ñ 𝑓O𝑋

induces a ring homomorphism O𝑌 (𝑉) Ñ 𝑓O𝑋 (𝑉) for every 𝑉 Ă 𝑌 . Let {𝑉} be the collection of
open neighborhoods of 𝑓 (𝑝), then 𝑓´1({𝑉}) forms a collection of open neighborhoods of 𝑝.
Taking the direct limit, we obtain O𝑌, 𝑓 (𝑝) = lim

ÝÑ
𝑉

O𝑌 (𝑉) Ñ lim
ÝÑ
𝑉

O𝑋 ( 𝑓´1(𝑉)). Note that the latter

limit applies to the stalk O𝑋,𝑝. This gives us an induced map 𝑓 #
𝑝 : O𝑌, 𝑓 (𝑝) Ñ O𝑋,𝑝.

An interesting point to note is that we use the pair ( 𝑓 , 𝑓 #) to denote a morphism
between ringed spaces, as the definition does not impose a relationship between 𝑓 and 𝑓 #.
However, given a ring homomorphism 𝜑 : 𝐴 Ñ 𝐵, there is a natural way to induce a morphism
of locally ringed spaces. For this, we define

𝑓 : 𝑆𝑝𝑒𝑐(𝐵) Ñ 𝑆𝑝𝑒𝑐(𝐴)
𝑝 ÞÑ 𝜑´1(𝑝)

The continuity of 𝑓 follows from the fact that 𝑓´1(𝑉 (𝔞)) = 𝑉 (𝜑(𝔞)). If𝑉 Ă Spec(𝐴),
we have a ring homomorphism 𝑓 # : OSpec(𝐴) (𝑉) Ñ OSpec(𝐵) ( 𝑓´1(𝑉)). By the definition ofO
and composing the maps 𝑓 and 𝜑𝑝, we obtain a sheaf morphism 𝑓 # : OSpec(𝐴) Ñ 𝑓˚(OSpec(𝐵)).
Notice that the induced maps on the stalks are local homomorphisms, and therefore ( 𝑓 , 𝑓 #) is a
morphism of locally ringed spaces.

So in the first section of this chapter, we established an equivalence duality between
affine varieties and regular maps to finitely generated 𝑘-algebras with no nilpotents. Interestingly,
the restriction of working only with finitely generated algebras over a field without nilpotents can
be quite problematic and inconvenient. Therefore, it is more convenient to extend our scope to
include all commutative rings, without imposing these three conditions. This extension leads us
to the concept of an affine scheme, which bears the same relationship to commutative rings as
affine varieties have to those special types of commutative rings. Thus, when we study the theory
of affine schemes, it will be similar to the theory of affine varieties, but with the flexibility of
allowing our rings to be more general. Now we are ready to introduce the notion of schemes.

Definition 2.2.19. An affine scheme is a locally ringed space (𝑋,O𝑋) that is isomorphic as a
locally ringed space to the spectrum of a ring. A scheme is a locally ringed space (𝑋,O𝑋) such
that for every point there exists an open neighborhood𝑈 of the point such that (𝑈,O𝑋 |𝑈 ) is an
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affine scheme. In other words, a scheme is a locally ringed space that can be covered by affine
schemes.

Note that, just like algebraic varieties can be covered by affine algebraic varieties, a
scheme can be covered by affine schemes. We say that 𝑋 is the underlying topological space of
the scheme (𝑋,O𝑋), and O𝑋 is its structure sheaf. In situations where the structure sheaf is clear,
we denote the scheme simply by 𝑋 . A morphism of schemes is a morphism of locally ringed
spaces.

The underlying topological space of an affine scheme will be 𝑋 = 𝑉 (𝐼), where 𝐼
is an ideal of the ring of polynomials in 𝑛 variables, and the structure sheaf, which consists of
regular functions on 𝑋 , is precisely 𝑘 [𝑥1, . . . , 𝑥𝑛]/𝐼, where 𝑘 is a field. Let’s see some examples.

If 𝑘 is a field, then Spec(𝑘) is a topological space with a single element, and its
structure sheaf is 𝑘 . We have seen that if 𝑘 is algebraically closed, then by the Nullstellensatz,
the points of A1

𝑘 are in bĳective correspondence with the maximal ideals of 𝑘 [𝑥] and they
are contained in Spec(𝑘 [𝑥]) and are closed, as they correspond to irreducible non-constant
polynomials in 𝑥.

However, (0) P Spec(𝑘 [𝑥]) is a prime ideal that is not maximal. Thus, consider
now the scheme (𝑆𝑝𝑒𝑐(𝑘 [𝑥]),𝒪𝑆𝑝𝑒𝑐(𝑘 [𝑥])) := (A1,𝒪A1). We see that it has an additional point
compared to A1

𝑘 . This point, which is not closed, is called the generic point.

This suggests that an algebraic variety is a scheme and that there can be more points
and, therefore, more information in algebraic varieties if they are thought of as schemes.

An interesting example of a scheme that is not affine is as follows:

Let 𝑋1 = 𝑋2 = A1 and𝑈1 = 𝑈2 = A1
z(𝑥). Let 𝜑 : 𝑈1 Ñ 𝑈2 be the identity map. Let

𝑋 be the scheme obtained by gluing𝑈1 and𝑈2 together via the isomorphism 𝜑. 𝑋 is the affine
line with two origins and is not an affine scheme, but it can be covered by affine opens.

Analogously to the case of algebraic varieties in the classical sense, the next step is
to define a projective scheme. For this purpose, we need to define a topology on a graded ring. In
the case of the spectrum of a ring, we use the Zariski Topology, where the closed sets are sets
of prime ideals containing a certain ideal 𝐼. For a graded ring 𝑆, we consider the topological
space 𝑃𝑟𝑜 𝑗 (𝑆) as the set of homogeneous prime ideals, recalling that a homogeneous ideal is an
ideal generated by homogeneous elements. The closed sets of this topological space are given by
𝑉 (𝐼) := 𝔭 : 𝐼 Ă 𝔭 and 𝔭 P 𝑃𝑟𝑜 𝑗 (𝑆).

To define the structure sheaf on 𝑃𝑟𝑜 𝑗 (𝑆), let’s recall the localization of degree zero
for each 𝔭 P 𝑃𝑟𝑜 𝑗 (𝑆), 𝑆(𝔭) :=

𝑎

𝑏
: 𝑎, 𝑏 P 𝑆 homogeneous elements, 𝑏 ∉ 𝔭, deg(𝑎) = deg(𝑏).

Definition 2.2.20. Let𝑈 Ă 𝑃𝑟𝑜 𝑗 (𝑆) be an open set. We define O(𝑈) as the set of functions
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𝑠 : 𝑈 Ñ

⊔
𝔭P𝑈

𝑆𝔭

such that for every 𝔭 in𝑈, 𝑠(𝔭) is in 𝑆𝔭. And 𝑠 is locally a quotient of homogeneous
elements of 𝑆, i.e., for each 𝔭 P 𝑈, there exists an open neighborhood 𝑉 contained in 𝑈 and
homogeneous elements 𝑎, 𝑏 P 𝑆 such that for every 𝔮 P 𝑉 , 𝑏 ∉ 𝔮 and 𝑠(𝔮) = 𝑎

𝑏
in 𝑆𝔭.

Analogously to the previous case, we obtain the following result.

Proposition 2.2.21. Let 𝑆 be a graded ring. Then:

(i) For every 𝔭 P 𝑃𝑟𝑜 𝑗 (𝑆), the stalk 𝒪𝔭 » 𝑆𝔭.

(ii) For every element 𝑓 P 𝑆+ =
⊕
𝑑ą0

𝑆𝑑 , let 𝐷+( 𝑓 ) = 𝔭 P 𝑃𝑟𝑜 𝑗 (𝑆) : 𝑓 ∉ 𝔭. Then, 𝐷+( 𝑓 )

forms an open category for 𝑃𝑟𝑜 𝑗 (𝑆) such that
(
𝐷+( 𝑓 ),𝒪

��
𝐷+ ( 𝑓 )

)
» 𝑆𝑝𝑒𝑐(𝑆( 𝑓 )).

(iii)
(
𝑃𝑟𝑜 𝑗 (𝑆),𝒪𝑃𝑟𝑜 𝑗 (𝑆)

)
is a scheme.

The proof of the above proposition can be found in (HARTSHORNE, 1977).

If 𝐴 is a ring, we define the 𝑛-projective space over 𝐴 as 𝑃𝑟𝑜 𝑗 (𝐴[𝑥0, . . . , 𝑥𝑛]). In
particular, if 𝐴 = 𝑘 is an algebraically closed field, 𝑃𝑟𝑜 𝑗 (𝑘 [𝑥0, . . . , 𝑥𝑛]) is isomorphic to the
variety P𝑛𝑘 in the classical sense.

Now let’s see that it is possible to define a scheme over another scheme.

Definition 2.2.22. Let 𝑆 be a scheme. A scheme over 𝑆 is a scheme 𝑋 along with a morphism
𝑋 Ñ 𝑆. If 𝑋 and 𝑌 are schemes over 𝑆, a morphism of schemes over 𝑆 is a morphism 𝑓 : 𝑋 Ñ 𝑌

that is compatible with the given morphisms.

We denote by 𝔖𝔠𝔥(𝑆) the category of schemes over 𝑆. If 𝐴 is a ring, then by abuse
of notation, we write 𝔖𝔠𝔥(𝐴) for schemes over the ring 𝐴.

We can now turn our attention to a theorem that demonstrates how every variety
defined as the zeros of polynomials can be viewed as a scheme. This result highlights the fact
that the notion of scheme generalizes the classical definition of an algebraic variety.

Theorem 2.2.23. If 𝑘 is an algebraically closed field, then there exists a full and faithful functor
𝑡 : 𝔙𝔞𝔯(𝑘) Ñ 𝔖𝔠𝔥(𝑘), where 𝔙𝔞𝔯(𝑘) is the category of varieties over 𝑘 .

The proof of this theorem can be found in (HARTSHORNE, 1977).
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2.2.3 Properties of schemes

After defining a mathematical object, a natural step is to characterize it based on
its properties. Therefore, we will now classify different types of schemes and explore some
morphisms between them. As schemes are based on ringed spaces, many properties of schemes
are related to the underlying topological space. Let’s begin with two definitions in this context.

Definition 2.2.24. A scheme is said to be connected if its underlying topological space is
connected. Similarly, we say that a scheme is irreducible if its underlying topological space is
irreducible.

In addition to associating properties of the topological space with the scheme, we
can also associate properties of the rings. Let’s look at two definitions.

Definition 2.2.25. A scheme 𝑋 is reduced if for every open subset𝑈 Ă 𝑋 , O𝑋 (𝑈) does not have
any nilpotent elements. We also say that a scheme 𝑋 is integral if for every 𝑈 Ă 𝑋 , the ring
O𝑋 (𝑈) is an integral domain.

We can observe that in the case where 𝑋 is an affine scheme, there exists a ring 𝐴
such that 𝑋 » Spec(𝐴). Therefore, if 𝑋 is an affine scheme, we have that 𝑋 is irreducible when
𝑛𝑖𝑙 (𝐴), where 𝑛𝑖𝑙 (𝐴) denotes the nilradical of 𝐴. Moreover, 𝑋 is integral if and only if 𝐴 is an
integral domain. We present a result that tells us that two properties of schemes, related to the
topological space, are sufficient and necessary for a result about the rings associated with the
space.

Proposition 2.2.26. A scheme is integral if and only if it is reduced and irreducible.

Proof. The proof can be found in II.3.1 of the reference (HARTSHORNE, 1977). □

Let us recall that a topological space is said to be Noetherian if it satisfies the
ascending chain condition for open subsets, i.e., if 𝑋 is a topological space and𝑈1 Ă 𝑈2 Ă ¨ ¨ ¨

is a sequence of open subsets𝑈𝑖 of 𝑋 , then there exists an integer 𝑛0 such that𝑈𝑛0 = 𝑈𝑛0+1 = ¨ ¨ ¨ .
We will use the definitions of compact and quasi-compact given by Bourbaki in (BOURBAKI,
1966). Recall that according to Bourbaki, a topological space 𝑋 is said to be quasi-compact if for
every open cover of 𝑋 , we can find a finite subcover. And 𝑋 will be compact if it is quasi-compact
and Hausdorff.

Now, to define a Noetherian scheme, we can relate the property to either the
topological space or the associated ring. We will define it based on the ring, and then we will see
that this definition implies that the topological space is Noetherian. However, there is an example
where the converse implication is not always valid.

Definition 2.2.27. A scheme is locally Noetherian if it can be covered by affine opens, 𝑆𝑝𝑒𝑐(𝐴𝑖),
where each 𝐴𝑖 is a Noetherian ring. 𝑋 is Noetherian if it is locally Noetherian and quasi-compact.
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Let’s see that if 𝑋 is Noetherian, then its topological space is also Noetherian. Notice
that 𝑋 is Noetherian if, and only if, every open subset is quasi-compact. Therefore, let’s assume
that 𝑋 is a Noetherian scheme, and consider the chain 𝑈1 Ă 𝑈2 Ă ¨ ¨ ¨ . We define 𝑈 =

⋃
𝑖=1
𝑈𝑖.

Since𝑈 is open, there exists a finite subcover of𝑈 consisting of open sets𝑈𝑖, that is,𝑈 =

𝑛⋃
𝑖=1
𝑈𝑖 for

some 𝑛 P N. Consequently, the chain stabilizes, and we conclude that the underlying topological
space of 𝑋 is Noetherian.

Let’s see an example where the reverse is not true.

Example 2.2.28. Consider 𝐴 = C[𝑥1, 𝑥2, ...]/(𝑥2
1, 𝑥

2
2, ...). Observe that every 𝑥𝑖 is a nilpotent

element and therefore belongs to every prime ideal of 𝐴. Thus, (𝑥1, 𝑥2, ...) is contained in
every prime ideal. However, (𝑥1, 𝑥2, ...) is a maximal ideal, so 𝐴 has only one prime ideal,
meaning that 𝑆𝑝𝑒𝑐(𝐴) is a one-point topological space and therefore Noetherian. However,
(𝑥1) Ă (𝑥1, 𝑥2) Ă ¨ ¨ ¨ is a chain that does not stabilize, so 𝐴 is not Noetherian.

Note that in the definition of a Noetherian scheme, we do not require that every affine
open set is isomorphic to the spectrum of a Noetherian ring. Now let’s consider a result that tells
us that being a Noetherian scheme is a local property.

Proposition 2.2.29. A scheme 𝑋 is locally Noetherian if and only if for every affine open set
𝑈 = 𝑆𝑝𝑒𝑐(𝐴), 𝐴 is a Noetherian ring.

The proof of the above proposition can be found in (HARTSHORNE, 1977).

Now let’s look at a way to characterize morphisms between schemes. The following
two definitions describe properties of a morphism 𝑓 : 𝑋 Ñ 𝑌 that relate to a cover by affine
opens of 𝑌 satisfying certain properties.

Definition 2.2.30. A morphism of schemes 𝑓 : 𝑋 Ñ 𝑌 is locally of finite type if there exists a
cover of𝑌 by affine open sets𝑉𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖) such that for each 𝑖, 𝑓´1(𝑉𝑖) can be covered by affine
open sets𝑈𝑖 𝑗 = 𝑆𝑝𝑒𝑐(𝐴𝑖 𝑗 ), where each 𝐴𝑖 𝑗 is a finitely generated 𝐵𝑖-algebra. The morphism is
of finite type if each 𝑓´1(𝑉𝑖) can be covered by a finite number of𝑈𝑖 𝑗 .

Definition 2.2.31. A morphism of schemes 𝑓 : 𝑋 Ñ 𝑌 is finite if there exists a cover of 𝑌 by
affine open sets 𝑉𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖) such that for each 𝑖, 𝑓´1(𝑉𝑖) = 𝑆𝑝𝑒𝑐(𝐴𝑖), where each 𝐴𝑖 is a
finitely generated 𝐵𝑖-algebra.

Now let’s see how to define substructures of a scheme. Since we have a topological
space, we are interested in open and closed subschemes, as well as the concept of open and
closed immersions.

Definition 2.2.32. An open subscheme of a scheme 𝑋 is a scheme𝑈 such that 𝑠𝑝(𝑈) is open in
𝑠𝑝(𝑋) and the structural sheaf 𝒪𝑈 is isomorphic to the sheaf 𝒪𝑋

��
𝑈

.
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Definition 2.2.33. A closed immersion is a morphism of schemes 𝑓 : 𝑌 Ñ 𝑋 such that 𝑓
induces a homeomorphism from 𝑠𝑝(𝑌 ) to a closed subset of 𝑠𝑝(𝑋). The induced map of sheaves
𝑓 # : 𝒪𝑋 Ñ 𝑓˚𝒪𝑌 on 𝑋 is surjective. A closed subscheme of a scheme 𝑋 is an equivalence class
of closed immersions, where 𝑓 : 𝑌 Ñ 𝑋 and 𝑓 1 : 𝑌 1

Ñ 𝑋 are equivalent if there exists an
isomorphism 𝑖 : 𝑌 1

Ñ 𝑌 such that 𝑓 1 = 𝑓 ˝ 𝑖.

Now let’s see an example. Let 𝐴 be a Noetherian ring and 𝐼 an ideal of 𝐴. Let
𝑋 = Spec 𝐴 and 𝑌 = 𝐴/𝐼. Then, the ring homomorphism 𝐴 Ñ 𝐴/𝐼 induces a morphism of
schemes 𝑓 : 𝑌 Ñ 𝑋 that is a closed immersion. The map 𝑓 is a homeomorphism from 𝑌 to
the closed subspace 𝑉 (𝐼) Ă 𝑋 , and the map of structural sheaves 𝑓 # : 𝒪𝑋 Ñ 𝑓˚𝒪𝑌 is surjective
because it is surjective on the stalks, which are the localizations of 𝐴 and 𝐴/𝐼.

Another important definition is the dimension of a scheme and the codimension of a
subscheme.

Definition 2.2.34. The dimension of a scheme 𝑋 , denoted by dim 𝑋 , is its dimension as a
topological space. And if 𝑍 is an irreducible closed subset of 𝑋 , the codimension of 𝑍 in 𝑋 ,
denoted by codim(𝑍, 𝑋), is the supremum of integers 𝑛 such that there exists a chain

𝑍 = 𝑍0 ă 𝑍1 ă ¨ ¨ ¨ ă 𝑍𝑚

of distinct irreducible closed sets of 𝑋 , starting with 𝑍 . If 𝑌 is an arbitrary closed set, we define

codim(𝑌, 𝑋) = inf
𝑍ď𝑌

codim(𝑍, 𝑋),

where the infimum is taken over the closed irreducible sets of 𝑌 .

Note that in the case where 𝑋 = Spec(𝐴) is an affine scheme, the dimension of the
topological space 𝑋 coincides with the Krull dimension of the ring.

Remember that a regular local ring is a Noetherian local ring having the property
that the minimal number of generators of its maximal ideal is equal to its Krull dimension. So we
can define a regular scheme.

Definition 2.2.35. A scheme 𝑋 is regular if it is a locally Noetherian scheme whose local rings
are regular everywhere.

Every smooth scheme is regular, and every regular scheme of finite type over a
perfect field is smooth.

Now, a natural step would be to define the product of schemes. However, when
defining the product in the usual way, we can encounter some problems. Let’s consider an
example.



Chapter 2. Algebraic geometry 51

Let 𝑋 = 𝑌 = A1
𝑘 = Spec(𝑘 [𝑥]). If we define the cartesian product of sets, we

would obtain 𝑋 ˆ 𝑌 = Spec(𝑘 [𝑥]) ˆ Spec(𝑘 [𝑥]), which is a topological space different from
A2
𝑘 = Spec(𝑘 [𝑥, 𝑦]). In 𝑋 ˆ 𝑌 , the closed sets are finite unions of vertical and horizontal lines

together with points. However, in A2
𝑘 , the line 𝑥 = 𝑦 is a closed set. Therefore, we need a different

way to construct the product of schemes, and for that, we need the definition of fibered product.

Definition 2.2.36. Let 𝑆 be a scheme, and let 𝑋 and 𝑌 be schemes over 𝑆. The fibered product
of 𝑋 and 𝑌 over 𝑆 is the scheme 𝑋 ˆ𝑆 𝑌 together with two morphisms 𝑝1 : 𝑋 ˆ𝑆 𝑌 Ñ 𝑋 and
𝑝2 : 𝑋 ˆ𝑆 𝑌 Ñ 𝑌 that form a commutative diagram with 𝑋 and𝑌 with the morphisms 𝑋 Ñ 𝑆 and
𝑌 Ñ 𝑆. For any scheme 𝑍 over 𝑆 and for any morphisms 𝑓 : 𝑍 Ñ 𝑋 and 𝑔 : 𝑍 Ñ 𝑌 that make
the diagram commute with the morphisms 𝑋 Ñ 𝑆 and 𝑌 Ñ 𝑆, there exists a unique morphism
𝜃 : 𝑍 Ñ 𝑋 ˆ𝑆 𝑌 such that 𝑓 = 𝑝1 ˝ 𝜃 and 𝑔 = 𝑝2 ˝ 𝜃.

The following diagram provides a visual representation of the definition, aiding in a
better understanding of its concept:

𝑍 𝑋 ˆ𝑠 𝑌

𝑋 𝑌

𝑆

If two schemes 𝑋 and 𝑌 are given without specifying the base scheme, we take
𝑆 = SpecZ and define the product of 𝑋 by 𝑌 , denoted 𝑋 ˆ 𝑌 , as 𝑋 ˆSpecZ 𝑌 . The following
theorem states the universal property of the fibered product, i.e., its existence and uniqueness up
to isomorphism.

Theorem 2.2.37. Let 𝑋 and 𝑌 be two schemes over 𝑆. The fibered product 𝑋 ˆ𝑆 𝑌 exists and is
unique up to isomorphism.

The proof of the Theorem 2.2.37 can be found in (HARTSHORNE, 1977).

We know that the Zariski topology gives us either a trivial topological space or a
non-Hausdorff space. However, we would like to find an analogous property that tells us whether
the diagonal is closed or not. Thus, we say that a scheme that possesses this property is a separated
scheme. In the first edition of "Éléments de géométrie algébrique" the term used for what we now
call schemes is "préschéma," while "schéma" is reserved for separated schemes. Although there
are several non-separated schemes, they are somewhat peculiar and not commonly encountered
in practice.

The motivation for classifying separated schemes is that several properties are found
only in schemes that possess this property, such as the fact that the intersection of two affine
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subsets is also an affine subset. With that said, let’s now formally define a separated scheme,
starting with the definition of the diagonal.

Definition 2.2.38. Let 𝑓 : 𝑋 Ñ 𝑌 be a morphism of schemes. The diagonal morphism is the
unique morphism 𝛿 : 𝑋 Ñ 𝑋 ˆ𝑌 𝑋 whose composition with the projection maps is the identity
map.

Definition 2.2.39. We say that the map 𝑓 is separated when the diagonal morphism 𝛿 is a closed
immersion. In this case, we say that 𝑋 is separated over 𝑌 .

Note that when we say that a scheme 𝑋 is separated without specifying the base
scheme, we mean that it is separated over Spec(Z). Let’s consider an example of a non-separated
scheme 𝑋 over 𝑘 . Consider the affine line over 𝑘 with two origins. In this case, 𝑋 ˆ𝑘 𝑋 is the
plane with 4 origins. The image of the diagonal morphism is the usual diagonal with two origins,
but its closure is the diagonal with four origins. Therefore, it is not a closed immersion, which
implies that the scheme is not separated.

A classic example of separated schemes is the affine schemes.

Proposition 2.2.40. If 𝑓 : 𝑋 Ñ 𝑌 is a morphism of affine schemes, then 𝑓 is separated.

Proof. Let 𝑋 = Spec(𝐴) and 𝑌 = Spec(𝐵). Then, 𝐴 is a 𝐵-algebra, and we have that 𝑋 ˆ𝑌 𝑋 =

Spec(𝐴) bSpec(𝐵) Spec(𝐴) is also affine. By construction, the diagonal morphism is induced by
the morphism 𝐴 b 𝐴 = 𝐴 such that 𝑎 b 𝑎1 = 𝑎𝑎1, which gives us a surjective map, and therefore,
the diagonal morphism is a closed immersion. □

Now, let’s recall that in general topology, a function between topological spaces is
said to be proper if the preimage of a compact set is compact. Just as in the case of Hausdorff
spaces, this definition does not fit well in the context of algebraic geometry. Thus, let’s see how
to define an analogous property. But first, we need the concept of closed and universally closed
morphisms.

Definition 2.2.41. A morphism 𝑓 : 𝑋 Ñ 𝑌 is closed if the image of any closed set is closed. And
we say that 𝑓 is universally closed if it is closed and for every morphism 𝑍 Ñ 𝑌 , the morphism
𝑋 ˆ𝑌 𝑍 Ñ 𝑍 is closed.

An important theorem about closed morphisms is the following.

Theorem 2.2.42. For each 𝑛, 𝑚 P N, the projection P𝑛𝑘 ˆ A𝑚𝑘 Ñ A𝑚𝑘 is a closed morphism.

As a direct consequence of the theorem, we obtain the following corollary.

Corollary 2.2.43. If 𝑋 is a projective set, then for every algebraic variety 𝑌 , the projection
𝑋 ˆ 𝑌 Ñ 𝑌 is closed.
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Definition 2.2.44. A morphism 𝑓 : 𝑋 Ñ 𝑌 is proper if it is separated, of finite type, and
universally closed.

After classifying schemes according to their properties, we can generalize the notion
of algebraic variety, and from this point on, the word "variety" refers to an abstract variety as
defined below.

Definition 2.2.45. An abstract variety is a separated, integral, finite-type scheme over an
algebraically closed field 𝑘 . If the scheme is proper, then we say it is a complete abstract variety.

In commutative algebra, a quasi-excellent ring is a Noetherian commutative ring
that behaves well under completion, and an excellent ring is one that is also universally
catenary, meaning that for any pair of prime ideals 𝑝 and 𝑞, any two strictly increasing chains
𝑝 = 𝑝0 Ă 𝑝1 Ă ¨ ¨ ¨ Ă 𝑝𝑛 = 𝑞 of prime ideals are contained in maximal strictly increasing chains
from 𝑝 to 𝑞 of the same finite length.

The concept of excellent rings was introduced by Alexander Grothendieck in 1965 as
a class of rings that are well-behaved. It is conjectured that quasi-excellent rings serve as the
appropriate base rings for which the problem of resolution of singularities can be solved. This
motivates the definition of an excellent scheme.

Definition 2.2.46. A scheme is called excellent if it has a cover by open affine subschemes that
are excellent, which implies that every open affine subscheme has this property.

We conclude this section by providing the definition of scheme stratification and
presenting a result that proves the existence of a refinement when given two stratifications.

Definition 2.2.47. A stratification is a decomposition of a scheme into locally closed regular
subschemes, typically defined based on the constancy of certain local invariants such as dimension.

Proposition 2.2.48. If 𝑋 is a separated scheme of finite type and has two stratifications 𝑋 =
⊔
𝑖P𝐼

𝑋𝑖

and 𝑋 =
⊔
𝑗P𝐽

𝑌 𝑗 , then there exists a stratification 𝑋 =
⊔
𝑘P𝐾

𝑍𝑘 that refines both, meaning that each

𝑋𝑖 and 𝑌 𝑗 can be expressed as a union of some subsets 𝑍𝑘 .

Proof. We begin with some preliminary observations. First, if 𝑋1 Ă 𝑋 is an irreducible component
and we have a locally closed subset 𝐿 that contains the generic point of 𝑋1, then 𝐿 contains an
open subset of 𝑋1. This is because a locally closed subset can be written as the intersection of
a closed subset and an open subset, and any closed subset containing the generic point must
contain all of 𝑋1. Next, we note that our scheme 𝑋 is Noetherian since it is of finite type over a
Noetherian ring. Therefore, 𝑋 has finitely many irreducible components and any locally finite
collection of sets is actually globally finite.
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Now, let’s address the problem at hand. We can write 𝑋 = 𝑋1 Y . . . Y 𝑋𝑛 for the
decomposition of 𝑋 into irreducible components. For any irreducible component 𝑋𝑖, the collection
of points 𝑋˝

𝑖 that belong only to that irreducible component and no others is open.

We find 𝑌 𝑗 and 𝑍𝑘 that contain the generic point of 𝑋𝑖. By our observation above,
each of 𝑌 𝑗 and 𝑍𝑘 contains an open subset of 𝑋𝑖. By taking the intersection of these open sets
and the smooth locus of 𝑋𝑖, we can find a smooth open subset𝑊 Ă 𝑋 that is contained in 𝑋𝑖, 𝑌 𝑗
and 𝑍𝑘 , and its complement inside 𝑋𝑖 consists of a finite number of closed subschemes of strictly
lower dimension. Here, we use the fact that any locally closed subset of a Noetherian scheme is
again locally Noetherian to conclude the finiteness and irreducibility of 𝑋𝑖 and assert that the
dimension must drop.

Observe that in order to provide a stratification of 𝑋 that is a common refinement of⊔
𝑌 𝑗 and

⊔
𝑍𝑘 , it is sufficient to provide a stratification of 𝑋z𝑊 that refines the stratifications⊔

(𝑌 𝑗 X𝑊𝑐) and
⊔

(𝑍𝑘 X𝑊𝑐). This suggests an inductive approach: we consider the collection
of maximal-dimensional irreducible components of 𝑋 and apply the above procedure for each of
them. At each stage, when we go from 𝑋 to 𝑋z𝑊 , we eliminate one top-dimensional irreducible
component at the cost of potentially introducing finitely many more irreducible components of
strictly lower dimension in 𝑋z𝑊 .

By repeating this procedure a finite number of times, we reduce the problem to a
scheme of finite type over 𝐶 with strictly smaller dimension. Eventually, we reach a finite discrete
union of points, and we can simply take the disjoint union of all these points. Therefore, the
proposition holds. □

2.3 Resolution of singularities

The original problem of resolution of singularities aimed to find a nonsingular model
for the function field of a variety 𝑋 , in other words, a complete non-singular variety 𝑋 1 with the
same function field. However, in practice, it is more convenient to consider a slightly different
condition, which can be stated as follows:

Definition 2.3.1. Let 𝑋 be a locally noetherian reduced scheme. A proper birational morphism
𝜋 : 𝑍 Ñ 𝑋 with 𝑍 regular is called a desingularization of 𝑋 . If 𝜋 is an isomorphism at every
regular point of 𝑋 , we say it is a strong desingularization.

The condition that the map is proper is necessary to exclude trivial solutions, such as
taking 𝑋 1 to be the subvariety of non-singular points of 𝑋 . Without the requirement of properness,
one could simply consider the non-singular locus of 𝑋 as the resolution, which does not provide
a substantial improvement. By imposing properness, we ensure that the resolution is a significant
modification of 𝑋 that captures its singularities in a more meaningful way.
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Hironaka showed that there exists a strong desingularization satisfying certain
conditions when 𝑋 is defined over a field of characteristic 0. This result is presented in the
following theorem.

Theorem 2.3.2 (Hironaka). Let 𝑋 be a reduced algebraic variety over a field of characteristic
zero, or more generally, a reduced scheme that is locally of finite type over an excellent scheme of
characteristic zero (i.e., char(𝑘 (𝑥)) = 0 for every 𝑥 P 𝑋), and locally noetherian. Then 𝑋 admits
a strong desingularization.

The main idea of Hironaka’s theorem proof is to perform a sequence of blow-ups
and modifications on the given variety 𝑋 in order to resolve its singularities. This is achieved
by carefully constructing a sequence of smooth varieties that approximate 𝑋 while eliminating
the singularities at each step. The proof involves several steps and can be found on reference
(HIRONAKA, 1964).

Next, we present Chow’s Lemma, an important tool in algebraic geometry that finds
applications in various areas, such as birational geometry and resolution of singularities. This
lemma establishes a connection between proper morphisms and projective morphisms, providing
a way to "compactify" varieties by embedding them into projective spaces.

Lemma 2.3.3 (Chow’s Lemma). For any complete irreducible variety 𝑋 , there exists a projective
variety 𝑋 and a surjective birational morphism 𝑓 : 𝑋 Ñ 𝑋 .

Now, we present Nagata’s Theorem, which provides a method to "complete" a given
variety by embedding it as a dense open subset of a larger, complete variety.

Theorem 2.3.4 (Nagata). Every variety can be embedded as a dense open subset of a complete
variety.

The proof of Nagata’s Theorem involves constructing the complete variety by taking
the closure of the given variety in a suitable projective space. A detailed proof can be found in
Chapter 6 of Shafarevich’s book (SHAFAREVICH; REID, 1994) or in Section 7 of Chapter II of
Hartshorne’s book (HARTSHORNE, 1977).

Finally, the Weak Factorization Theorem is a fundamental result in algebraic geometry
that provides insights into the structure of algebraic varieties. We state it as follows:

Theorem 2.3.5. (1) Let 𝑓 : 𝑋 Ñ 𝑌 be a birational map between smooth complete varieties
over a characteristic zero field 𝐾 . Suppose 𝑓 is an isomorphism over an open set𝑈 Ă 𝑋 .
Then, we can factorize 𝑓 as follows:

𝑋 = 𝑋0
𝑓0

Ñ 𝑋1
𝑓1

Ñ . . .
𝑓𝑛´1
Ñ 𝑋𝑛 = 𝑌,

where each 𝑋𝑖 is a smooth complete variety and 𝑓𝑖 is a blow-up or blow-down at a smooth
center that is an isomorphism over𝑈.
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(2) Furthermore, if 𝑋z𝑈 and 𝑌z𝑈 are divisors with simple normal crossings, then each
𝐷𝑖 := 𝑋𝑖z𝑈 also becomes a divisor with simple normal crossings and the map 𝑓𝑖

corresponds to a blow-up or blow-down at a smooth center that has normal crossings with
the components of 𝐷𝑖.

(3) There exists an index 1 ď 𝑟 ď 𝑛 such that for all 𝑖 ď 𝑟 , the induced birational map 𝑋𝑖
𝑓0

Ñ 𝑋

is a projective morphism. Moreover, for all 𝑟 ď 𝑖 ď 𝑛, the map 𝑋𝑖
𝑓0

Ñ 𝑌 is a projective
morphism.

2.4 Abelian varieties

Abelian varieties, complex tori, elliptic curves, and Albanese varieties are fascinating
objects in algebraic geometry and complex analysis that have deep connections and rich structures.
In this section, we will introduce and discuss these four concepts.

Definition 2.4.1. A complex torus of dimension 𝑛 is obtained by quotienting a complex vector
space 𝑉 of dimension 𝑛 by a complete lattice Λ.

A complex torus can be seen as a particular type of complex manifold 𝑀 whose
underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some
number 𝑛 circles). Furthermore, complex tori can be regarded as a higher-dimensional analogue
of elliptic curves and are closely related to abelian varieties. They provide a fruitful framework
for studying the interplay between algebraic geometry and complex analysis. Particularly, next
we present the one-dimensional complex torus, which is an elliptic curve.

Definition 2.4.2. An elliptic curve is a smooth, projective, algebraic curve of genus one, on which
there is a specified point 𝑂.

In the following, we explore the abelian varieties, which generalize the notion of
elliptic curves to higher dimensions.

Definition 2.4.3. An abelian variety is a complex projective variety that is also an algebraic
group. In other words, it is a variety equipped with a group structure that behaves well with
respect to algebraic operations.

Abelian varieties can be characterized by equations with coefficients in any field, and
such varieties are referred to as being defined over that specific field. The initial focus of study
for abelian varieties was on those defined over the field of complex numbers. Interestingly, these
abelian varieties are precisely the complex tori that can be embedded into a complex projective
space.

A morphism of abelian varieties is a morphism of the underlying algebraic varieties
that preserves the identity element for the group structure. An isogeny is a morphism that is
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surjective and has a finite kernel. For abelian varieties, such as elliptic curves, this notion can
also be formulated as follows:

Definition 2.4.4. An isogeny between abelian varieties 𝐸1 and 𝐸2 of the same dimension over a
field 𝑘 is a dense morphism 𝑓 : 𝐸1 Ñ 𝐸2 of varieties that preserves basepoints. In other words,
the isogeny 𝑓 maps the identity point on 𝐸1 to the identity point on 𝐸2.

Abelian varieties arise naturally as Jacobian varieties, which are the connected
components of zero in Picard varieties, as well as Albanese varieties of other algebraic varieties.

Definition 2.4.5. The Jacobian variety 𝐽 (𝑋) of a ringed space 𝑋 is the group of isomorphism
classes of invertible sheaves 𝐿 (or line bundles) on 𝑋 such that deg(𝐿) = 0, i.e., 𝐽 (𝑋) = Pic0(𝑋).

Albanese varieties represent a distinct type of algebraic variety associated with a
given variety 𝑋 . In the following, we will explore the concept of Albanese variety.

Definition 2.4.6. The Albanese variety of a variety 𝑋 is defined as the universal object that maps
𝑋 to all other abelian varieties. The Albanese variety is dual to the Picard variety.

It captures the geometric and algebraic properties of 𝑋 and plays a fundamental
role in the study of the geometry of 𝑋 . The Albanese variety provides a powerful tool for
understanding the structure and properties of arbitrary varieties.
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3 Grothendieck ring of varieties

The Grothendieck ring of varieties over a field 𝑘 is a ring that is additively generated
by isomorphism classes of varieties over 𝑘 , modulo a “cut and paste” relation with respect
to closed subvarieties, and where the product is cartesian product. This concept was initially
introduced in a letter from Grothendieck in the Serre-Grothendieck correspondence (dated
16/8/64) and it is a fascinating object that lies at the core of the theory of motivic integration.

In this chapter, the main goal is to present the Grothendieck ring, exploring some
properties and alternative presentations of this structure. Furthermore, we will calculate some
classes of varieties in this ring, present the demonstration given by Larsen and Lunts (LARSEN;
LUNTS, 2003) that stable rationality of a smooth and proper variety over a field of characteristic
zero can be detected on the class of the variety in the Grothendieck ring and finally show that
this ring is not an integrity domain. The primary source utilized for constructing this chapter
was (SAHASRABUDHE, 2007) and as supplementary material, we relied on the references
(POONEN, 2002), (KIEFNER, 2016), (NICAISE; SHINDER, 2019) and (LARSEN; LUNTS,
2003).

Definition 3.0.1. The Grothendieck Ring 𝐾0 (Var𝑘 ) is the quotient of the free abelian group
generated by isomorphism classes of 𝑘-varieties by the relation [𝑋z𝑌 ] = [𝑋] ´ [𝑌 ], where
𝑌 is a closed subscheme of 𝑋; the fiber product over 𝑘 induces a ring structure defined by
[𝑋] ¨ [𝑋 1] = [(𝑋 ˆ𝑘 𝑋

1)𝑟𝑒𝑑] .

The relation [𝑋z𝑌 ] = [𝑋] ´ [𝑌 ] is often called scissor relation as we think of cutting
a variety into disjoint subschemes.

Remark 3.0.2. Indeed, 𝐾0(Var𝑘 ) is a commutative ring. We observe that the multiplication is
well-defined. In particular, the fiber product 𝑋 ˆ𝑘 𝑌 of any two varieties 𝑋 and 𝑌 is again a
reduced, separated scheme of finite type over 𝑘 . It is important to note that this is not always true
over a field that is not algebraically closed, as the product of reduced schemes over a non-perfect
field 𝑘 may not be reduced. However, in such cases, the multiplication can be defined by taking
the reduction of the product over 𝑘 .

Furthermore, the fiber product induces a bilinear map 𝐾0(Var𝑘 ) ˆ 𝐾0(Var𝑘 ) Ñ

𝐾0(Var𝑘 ) that is both commutative and associative and the zero is given by the class of the empty
set and the unit is [Spec 𝑘].

Lemma 3.0.3. Let 𝑘 be a field. Then in the Grothendieck ring of varieties, we have:

(1) [H] = 0.
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(2) [Spec(𝑘)] = 1.

(3)
[
P𝑛𝑘

]
= 1 + L + . . . + L𝑛, where L :=

[
A1
𝑘

]
.

Proof. Let [𝑋] P 𝐾0(Var𝑘 ). To demonstrate item (1), let us consider 𝑋 Ď 𝑋 as a closed
subvariety. We have:

[𝑋z𝑋] = [𝑋] ´ [𝑋]
i.e., [H] = 0.

For part (2), observe that Spec(𝑘) ˆ𝑘 𝑌 = 𝑌 ˆ𝑘 Spec(𝑘) = 𝑌 for all 𝑌 P Var𝑘 .
Therefore, Spec(𝑘) = 1.

To prove (3), we use induction. Note that A1
𝑘 Ă P1

𝑘 is an open subvariety with 8 as
its complement. Therefore, by definition, we have:

[
P1
𝑘zA

1
𝑘

]
=

[
P1
𝑘

]
´

[
A1
𝑘

]
ñ

[
P1
𝑘

]
= 1 +

[
A1
𝑘

]
= 1 + L.

Since P𝑛+1
𝑘 zA𝑛+1

𝑘 » P𝑛𝑘 , we have [P𝑛+1
𝑘 ] = [P𝑛𝑘 ] + [A𝑛+1

𝑘 ]. Applying the induction hypothesis
[P𝑛𝑘 ] = 1 + L + ¨ ¨ ¨ + L𝑛, we conclude that [P𝑛+1

𝑘 ] = 1 + L + ¨ ¨ ¨ + L𝑛 + L𝑛+1.

□

3.1 Classical properties

Here are a few important properties of the Grothendieck Ring of Varieties:

Lemma 3.1.1. (1) If 𝑋 is a variety and𝑈 and 𝑉 are two locally closed subvarieties in 𝑋 then,

[𝑈 Y𝑉] + [𝑈 X𝑉] = [𝑈] + [𝑉] .

(2) If a variety 𝑋 is a disjoint union of locally closed subvarieties 𝑋1, 𝑋2, . . . 𝑋𝑛 for some
𝑛 P N, then

[𝑋] = Σ𝑛𝑖=1 [𝑋𝑖] .

(3) Let 𝐶 be a constructible subset of a variety 𝑋 , then 𝐶 has a class in 𝐾0 (Var𝑘 ).

Proof. (1) Note that 𝑉 ´𝑈 X𝑉 = 𝑈 Y𝑉 ´𝑈. If𝑈 and 𝑉 are both open or closed then from the
definition we get that [𝑉] ´ [𝑈 X𝑉] = [𝑉 ´𝑈 X𝑉] = [𝑈 Y𝑉 ´𝑈] = [𝑈 Y𝑉] ´ [𝑈] . Thus,

[𝑈 Y𝑉] + [𝑈 X𝑉] = [𝑈] + [𝑉], (3.1)

if both𝑈 and 𝑉 are either open or closed.
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Now, in general, since 𝑈 and 𝑉 are locally closed, we can express them as the
intersection of an open set and a closed set. Let𝑈 = 𝑈1 X 𝐹1 and 𝑉 = 𝑈2 X 𝐹2, where𝑈1 and𝑈2

are open subsets of 𝑋 , and 𝐹1 and 𝐹2 are closed subsets of 𝑋 . Then, by equation 3.1,

[𝑈1 Y𝑈2] + [𝑈1 X𝑈2] = [𝑈1] + [𝑈2] . (3.2)

Given that𝑈1 X 𝐹1 is a closed subset of𝑈1 (likewise,𝑈2 X 𝐹2 Ă 𝑈2 is closed), we
have

[𝑈1] = [𝑈1 X 𝐹1] +
[
𝑈1z𝑈1 X 𝐹1

]
then [𝑈1] = [𝑈] +

[
𝑈1z𝑈1 X 𝐹1

]
. (3.3)

Similarly, we get

[𝑈2] = [𝑈2 X 𝐹2] +
[
𝑈2z𝑈2 X 𝐹2

]
then [𝑈2] = [𝑉] +

[
𝑈2z𝑈2 X 𝐹2

]
. (3.4)

Adding equations 3.2, 3.3 and 3.4 we obtain

[𝑈1 Y𝑈2] + [𝑈1 X𝑈2] = [𝑈] + [𝑉] +
[
𝑈1z𝑈1 X 𝐹1

]
+

[
𝑈2z𝑈2 X 𝐹2

]
. (3.5)

Again, note that since𝑈1 X𝐹1 is closed in𝑈1 (resp.𝑈2 X𝐹2 is closed in𝑈2), therefore,
𝑈1z𝑈1 X 𝐹1 Ă 𝑈1 is an open subset (resp.𝑈2z𝑈2 X 𝐹2 Ă 𝑈2 is an open subset). Moreover, since
𝑈1 and𝑈2 are open in 𝑋 , it follows that𝑈1z(𝑈1 X 𝐹1) and𝑈2z(𝑈2 X 𝐹2) are also open subsets
of 𝑋 . So by equation 3.1, we get[

𝑈1z𝑈1 X 𝐹1
]
+

[
𝑈2z𝑈2 X 𝐹2

]
=

[ (
𝑈1z𝑈1 X 𝐹1

)
Y

(
𝑈2z𝑈2 X 𝐹2

) ]
+

[ (
𝑈1z𝑈1 X 𝐹1

)
X

(
𝑈2z𝑈2 X 𝐹2

) ]
(3.6)

So by substituting the given equality in 3.6 into equation 3.5:

[𝑈1 Y𝑈2] + [𝑈1 X𝑈2] = [𝑈] + [𝑉] +
[ (
𝑈1z𝑈1 X 𝐹1

)
Y

(
𝑈2z𝑈2 X 𝐹2

) ]
+

[ (
𝑈1z𝑈1 X 𝐹1

)
X

(
𝑈2z𝑈2 X 𝐹2

) ]
then

[𝑈] + [𝑉] =
(
[𝑈1 Y𝑈2] ´

[ (
𝑈1z𝑈1 X 𝐹1

)
Y

(
𝑈2z𝑈2 X 𝐹2

) ] )
+

(
[𝑈1 X𝑈2] ´

[ (
𝑈1z𝑈1 X 𝐹1

)
X

(
𝑈2z𝑈2 X 𝐹2

) ] )
or

[𝑈] + [𝑉] = [𝑈1 X 𝐹1 Y𝑈2 X 𝐹2] + [𝑈1 X 𝐹1 X𝑈2 X 𝐹2]

therefore,
[𝑈] + [𝑉] = [𝑈 Y𝑉] + [𝑈 X𝑉] .
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Hence proved.

(2) By induction, it suffices to prove that if 𝑋 is a disjoint union of two locally closed
subvarieties 𝑋1 and 𝑋2, that is, 𝑋 = 𝑋1 Y 𝑋2, then [𝑋] = [𝑋1] + [𝑋2]. Using property (1), we
have

[𝑋1 Y 𝑋2] + [𝑋1 X 𝑋2] = [𝑋1] + [𝑋2],

but since 𝑋 is a disjoint union of 𝑋1 and 𝑋2, we have

[𝑋1 X 𝑋2] = [H] = 0, therefore [𝑋] = [𝑋1] + [𝑋2] .

(3) Since 𝐶 is a constructible set in 𝑋 , we know that it can be expressed as a finite
disjoint union of locally closed subsets. Thus, we can write 𝐶 = Y

𝑛
𝑖=1𝐶𝑖. This construction does

not depend on choices and therefore, using property (2), we obtain the class [𝐶] in 𝐾0(Var𝑘 ). □

One of the main tools for computations in the Grothendieck ring of varieties is the
concept of Zariski locally trivial fibrations. The following results and examples demonstrate its
usefulness.

Definition 3.1.2. Let 𝑋 and 𝑌 be 𝑘-varieties, and let 𝜋 : 𝑌 Ñ 𝑋 be a morphism of varieties. The
morphism 𝜋 is called a Zariski locally trivial fibration with fiber 𝐹 P Var𝑘 if for every closed
point 𝑥 P 𝑋 , there exists an open set (in the Zariski topology) 𝑈 Ď 𝑋 containing 𝑥, and an
isomorphism 𝜋´1(𝑈) » 𝑈 ˆ 𝐹.

Zariski locally trivial fibrations behave like products in the Grothendieck ring. More
precisely, the following property holds.

Proposition 3.1.3. If the morphism of 𝑘-varieties 𝜋 : 𝑌 Ñ 𝑋 is a Zariski locally trivial fibration
with fiber 𝐹, then

[𝑌 ] = [𝐹] ¨ [𝑋]

in 𝐾0(Var𝑘 ).

Proof. By considering an open neighborhood 𝑈 for any 𝑥 P 𝑋 , as described in Definition
3.1.2, we obtain a covering of 𝑋 . Since 𝑋 is a variety, it is quasi-compact. Therefore, we

can find a finite covering 𝑋 =

𝑛⋃
𝑖=1

𝑋𝑖 consisting of such open subvarieties. This implies that

𝑌𝑖 := 𝜑´1 (𝑋𝑖) � 𝑋𝑖 ˆ 𝐹, and 𝜑 : 𝑌𝑖 Ñ 𝑋𝑖 corresponds to the projection onto 𝑋𝑖 for all 𝑖. We

have 𝑌 =

𝑛⋃
𝑖=1
𝑌𝑖 and [𝑌𝑖] = [𝑋𝑖] [𝐹] for all 𝑖.

Let 𝑌 𝑟 :=
𝑟⋃
𝑖=1
𝑌𝑖 and 𝑋𝑟 :=

𝑟⋃
𝑖=1

𝑋𝑖. Since 𝑋 = 𝑋𝑛 and 𝑌 = 𝑌 𝑛, it suffices to show that

[𝑌 𝑟] = [𝑋𝑟] [𝐹],
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for all 𝑟 P {1, . . . , 𝑛}. We already know this holds for 𝑟 = 1. Let’s assume it is true for some 𝑟.
Since 𝜑 : 𝑌𝑖 � 𝑋𝑖 ˆ 𝐹 Ñ 𝑋𝑖 is the projection for all 𝑖, we have 𝑌𝑟+1 X 𝑌 𝑟 = 𝜑´1 (𝑋𝑟+1 X 𝑋𝑟) �
(𝑋𝑟+1 X 𝑋𝑟) ˆ 𝐹. Therefore,[

𝑌 𝑟+1] = [𝑌 𝑟] + [𝑌𝑟+1] ´ [𝑌𝑟+1 X 𝑌 𝑟]
= [𝑋𝑟] [𝐹] + [𝑋𝑟+1] [𝐹] ´ [𝑋𝑟+1 X 𝑋𝑟] [𝐹]
=

[
𝑋𝑟+1] [𝐹] .

By induction, this proves the proposition. □

Corollary 3.1.4. (1) Consider a proper morphism 𝑓 : 𝑋 Ñ 𝑌 between smooth varieties,
where 𝑓 is a blow-up with a smooth center 𝑍 Ă 𝑌 of codimension 𝑑. Then

[ 𝑓´1(𝑍)] = [𝑍] ¨ [P𝑑´1]

in 𝐾0(Var𝑘 ).

(2) Consider a homogeneous polynomial 𝑓 P 𝑘 [𝑍0, . . . , 𝑍𝑛], where 𝑌 := 𝑉 ( 𝑓 ) is the cor-
responding projective variety in P𝑛, and 𝑋 Ď A𝑛+1 is the affine cone over 𝑌 . In the
Grothendieck ring 𝐾0(Var𝑘 ), we have the following relation:

[𝑋] = (L´ 1) [𝑌 ] + 1.

Note that the second item of Corollary 3.1.4 confirms our intuition: the affine cone
over 𝑌 can be thought of as the origin together with an affine line (excluding the origin) for each
point of 𝑌 .

Proof. Item (1) follows directly from Proposition 3.1.3. To prove item (2) consider the morphism
𝜋 : 𝑋z{0} Ñ 𝑌 , which maps a closed point (𝑎0, . . . , 𝑎𝑛) ≠ 0 to the line [𝑎0 : . . . : 𝑎𝑛] P 𝑌 that
contains this point. It is worth noting that all fibers of this morphism are isomorphic to A1

z{0}.

To simplify the discussion, let us assume that 𝑦 P 𝑌 is contained in the open subset
𝑈 := 𝑌 X {𝑍0 ≠ 0}. We observe that

𝜋´1(𝑈) =
{
𝑎 P 𝑋z{0} | 𝑎0 ≠ 0, 𝑓 (𝑎) = 0

}
�

(
A1

z{0}
)

ˆ {[𝑎] = [1 : 𝑎1 : . . . : 𝑎𝑛] | 𝑓 (𝑎) = 0}

=

(
A1

z{0}
)

ˆ𝑈,

where 𝜋 |𝜋´1 (𝑈) corresponds to the projection onto 𝑈. Thus, 𝜋 is a Zariski locally trivial
fibration. According to Proposition 3.1.3, we conclude that [𝑋z{0}] = (L´ 1) [𝑌 ], and therefore
[𝑋] = (L´ 1) [𝑌 ] + 1.

□
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With the properties established in the previous results, we are now able to compute
some classes. Let 𝑘 be a field. In the Grothendieck Ring of varieties 𝐾0(𝑉𝑎𝑟𝑘 ) we have the
following examples.

Example 3.1.5. Consider the grassmanian 𝐺𝑟 (2, 4), let’s compute its class in the Grothendieck
ring 𝐾0(Var𝑘 ). By Construction 2.1.65 and Example 2.1.67 we can write 𝐺𝑟 (2, 4) as the disjoint
union of open cells that are isomorphic to affine spaces, which are locally closed subvarieties, so
we have:

Gr(2, 4) = A0
\ A1

\
©«
A2

\

A2

ª®®¬ \ A3
\ A4.

So by item (2) of Lemma 3.1.1, we get

[𝐺𝑟 (2, 4)] = L4 + L3 + 2L2 + L + 1.

Example 3.1.6. We claim that

[𝐵𝑙 (P2, 𝑝𝑡)] = (L + 1)2 = [P1
ˆ P1] .

To prove this, consider the blow-up of P2 at a point 𝑝 P P2, denoted by P̃2. We can
write P2 as the union of the affine plane with a line at infinity, i.e., P2 = A2

Y 𝑙8. The blow-up
P̃2 can then be expressed as the union P̃2 = 𝑋 Y 𝑙8, where 𝑋 is the blow-up of A2 at a point 𝑝,
and the exceptional divisor of the blow-up is denoted by 𝐷 and is isomorphic to P1, since the
exceptional divisor 𝐷 corresponds to the projectivization of the tangent plane of P2 at the point
𝑝.

Using Proposition 2.1.51, we have 𝑋z𝐷 = A2
z{𝑝}, which implies [𝑋z𝐷] = [A2] ´

[{𝑝}] = L2
´1. By the definition of classes in the Grothendieck ring, we have [𝑋] = [𝑋z𝐷]+[𝐷] =

L2
´ 1 + L + 1 = L2 + L. And since P̃2 = 𝑋 Y 𝑙𝑖𝑛 𝑓 𝑡𝑦, which is a disjoint union, we get

[P̃2] = [𝑋] + L + 1 = L2 + 2L + 1 = (L + 1)2. It is worth noting that if we were to calculate the
class of the blow-up of P2 at a point using the result on Zariski locally trivial fibrations, the result
would be the same.

Example 3.1.7. Consider 𝐺𝑙𝑛 the general linear group of degree 𝑛, i.e., the set of 𝑛ˆ 𝑛 invertible
matrices. We have

[𝐺𝑙𝑛] = (L𝑛 ´ 1) (L𝑛 ´ L) . . . (L𝑛 ´ L𝑛´1).

Indeed, to compute the class of the algebraic group 𝐺𝑙𝑛, we can intuitively consider matrices
in GL𝑛 corresponding to bases of 𝑘𝑛 (via the columns of the matrix, for example). For the first
column, we can choose any nonzero vector in 𝑘𝑛, which has class (L𝑛 ´ 1). For the second
column, we can choose any vector in 𝑘𝑛 that is not in the span of the first column. This has class
(L𝑛 ´ L). By iterating this process for each subsequent column, we obtain the result. However, it
is important to note that this approach does not give a global product of varieties.
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To formalize the reasoning in this example, we can use Proposition 3.1.3:

Let 𝑉 := 𝑘𝑛 with the standard basis 𝑒1, . . . , 𝑒𝑛. We define 𝑉𝑟 Ă A𝑛ˆ𝑟 to be the set of
𝑟-tuples of nonzero linearly independent vectors in 𝑉 . Specifically, 𝑉1 = A𝑛z{0} and 𝑉𝑛 = GL𝑛.
We want to compute the classes of 𝑉𝑟 in the Grothendieck ring 𝐾0(Var𝑘 ).

We proceed by induction. For 𝑟 = 1, we have [𝑉1] = [A𝑛z{0}] = L𝑛 ´ 1, which
serves as the base case.

Now, consider the projection 𝜋𝑟 : 𝑉𝑟 Ñ 𝑉𝑟´1 that forgets the last vector. We want
to show that 𝜋𝑟 is a Zariski locally trivial fibration with fiber A𝑛zA𝑟´1. To do this, we define

rational functions 𝛽𝑖 as solutions to the 𝑟 ´ 1 equations 𝑣𝑟 𝑗 =
𝑟´1∑︁
𝑖=1

𝛽𝑖𝑣𝑖 𝑗 , where 𝑣𝑟 𝑗 and 𝑣𝑖 𝑗 are the

components of the vectors in 𝑉𝑟 and 𝑉𝑟´1, respectively. It can be shown that the 𝛽𝑖 are regular on
𝜋´1
𝑟 (𝑈), where𝑈 is an open set in 𝑉𝑟´1.

For any (𝑣1, . . . , 𝑣𝑟´1) P 𝑈 and 𝑣𝑟 P 𝑉 , we define a vector 𝑣1
𝑟 P 𝑉 with components

given by

𝑣1
𝑟 𝑗 :=


𝑣𝑟 𝑗 if 𝑗 ď 𝑟 ´ 1

𝑣𝑟 𝑗 ´

𝑟´1∑︁
𝑖=1

𝛽𝑖𝑣𝑖 𝑗 if 𝑟 ď 𝑗 .

It can be shown that 𝑣1
𝑟 is contained in the span of 𝑣1, . . . , 𝑣𝑟´1 if and only if 𝑣𝑟 P ⟨𝑣1, . . . , 𝑣𝑟´1⟩.

Therefore, we obtain an isomorphism 𝜋´1
𝑟 (𝑈) „

Ñ 𝑈 ˆ

(
A𝑛zA𝑟´1

)
given by (𝑣1, . . . , 𝑣𝑟) ÞÑ

(𝑣1, . . . , 𝑣𝑟´1, 𝑣
1
𝑟).

Similarly, the fiber over any 𝑈𝜎 := {(𝑣1, . . . , 𝑣𝑟´1) P 𝑉𝑟´1 | 𝑣𝑖𝜎(𝑖) ≠ 0, @𝑖}, where
𝜎 P 𝑆𝑛, is isomorphic to𝑈𝜎 ˆ

(
A𝑛zA𝑟´1

)
. These sets form an open cover of 𝑉𝑟´1, establishing

that 𝜋𝑟 is a Zariski locally trivial fibration with fiber A𝑛zA𝑟´1.

By using Proposition 3.1.3, we can conclude that [𝑉𝑟] =
𝑟´1∏
𝑖=0

(
L𝑛 ´ L𝑖

)
. This holds

trivially for 𝑟 = 1 and proves the claim for 𝑟 = 𝑛.

Example 3.1.8. Let 𝐹𝑙 (𝑘1, 𝑘2, 𝑉) = {𝐿1 Ă 𝐿2 Ă 𝑉 | dim(𝐿1) = 𝑘1, dim(𝐿2) = 𝑘2} be the flag
variety. Consider the morphism 𝜏 : 𝐹𝑙 (𝑘1, 𝑘2, 𝑉) Ñ 𝐺𝑟 (𝑘2, 𝑉), which is a Zariski locally trivial
fibration. In particular, when 𝑘1 = 1, we have that 𝜏 is a Zariski locally trivial fibration with
fiber P𝑛´1, where 𝑛 = 𝑘2. So by Proposition 3.1.3, we obtain

[𝐹𝑙 (1, 𝑛,𝑉)] = [𝐺𝑟 (𝑛,𝑉)] [P𝑛´1] .

Example 3.1.9. By setting 𝑓 = 0 in the second part of Corollary 3.1.4, we obtain
[
A𝑛+1

z{0}
]
=[

A1
z{0}

]
[P𝑛], even though A𝑛+1

z{0} and
(
A1

z{0}
)

ˆP𝑛 are not isomorphic. This explains why
Zariski locally trivial fibrations are highly valuable for calculations in 𝐾0 (Var𝑘 ): they often
allow us to represent the class of a variety as a product, even if the variety itself is not a product.
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The following result shows us the generators of the Grothendieck ring.

Proposition 3.1.10. Let 𝑘 be a field of characteristic zero. The Grothendieck ring of varieties is
generated by:

(1) the classes of smooth varieties;

(2) the classes of projective smooth varieties;

(3) the classes of projective smooth connected varieties.

Proof. (1) Let 𝑑 = dim(𝑋). By Nagata’s theorem (Theorem 2.3.4), 𝑋 can be embedded as
an open dense subset of a complete variety 𝑋 1. Therefore, we have [𝑋] =

[
𝑋 1

]
´ [𝑍],

where dim(𝑍) ď 𝑑 ´ 1. Next, using Hironaka’s theorem (Theorem 2.3.2), we resolve the
singularities of 𝑋 1 ÝÑ 𝑋 1. This results in an expression of the form

[
𝑋 1

]
=

[
𝑋 1

]
´ ( [𝐶] ´

[𝐸]), where 𝐸 is the exceptional divisor and 𝐶 is the center of the blow-up of 𝑋 1, and 𝐶 is
smooth and both dim(𝐶) and dim(𝐸) are at most 𝑑 ´ 1. Thus, we can express 𝑋 as a finite
union of smooth varieties using induction on the dimension.

(2) This result can also be proven by employing a similar induction argument based on the
dimension 𝑑 of 𝑋 . By using Nagata’s theorem and Chow’s lemma (Lemma 2.3.3), we
can embed 𝑋 into a complete variety that is birational to a projective variety. Then, by
resolving the singularities and applying the same proof as described earlier, we obtain the
desired result.

(3) By using property (2), we can express 𝑋 as a finite union of smooth projective varieties.
Let 𝑋 = Y

𝑛
𝑖=1𝑋𝑖, where each 𝑋𝑖 is smooth and projective. In this case, the connected

components and irreducible components coincide, allowing us to represent each 𝑋𝑖 as a
finite union of its connected components. Therefore, we can express 𝑋 as a finite union of
smooth projective connected varieties.

□

The structure of the Grothendieck ring of varieties remains largely enigmatic. However,
when the base field 𝑘 has characteristic zero, two significant results emerge from Hironaka’s
resolution of singularities and the Weak Factorization theorem. The first result, contributed by
Franziska Bittner (BITTNER, 2004), offers an alternative presentation of the group 𝐾0(Var𝑘 ) in
terms of more convenient generators and relations. This alternative presentation facilitates the
construction of motivic invariants and finds applications in various contexts. In this paper, we
will explore some of these applications. The second notable result, formulated by Larsen and
Lunts, establishes a close connection between the Grothendieck ring of varieties and birational
geometry. This result will be further examined in the subsequent section. Thus, we present
Bittner’s definition:
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Proposition 3.1.11. . The Grothendieck ring of 𝑘-varieties can be alternatively characterized by
the following presentations:

(1) (sm) As the abelian group generated by the isomorphism classes of smooth varieties over 𝑘
subject to the relations [𝑋] = [𝑋 ´ 𝑌 ] + [𝑌 ], where 𝑋 is smooth and 𝑌 Ă 𝑋 is a smooth
closed subvariety.

(2) (bl) As the abelian group generated by the isomorphism classes of smooth complete
𝑘-varieties subject to the relation [∅] = 0 and [Bl𝑌 𝑋] = [𝑋] ´ [𝑌 ] + [𝐸], where 𝑋 is
smooth and complete, 𝑌 Ă 𝑋 is a closed smooth subvariety, Bl𝑌 𝑋 is the blow-up of 𝑋
along 𝑌 and 𝐸 is the exceptional divisor of this blow-up.

Remark 3.1.12. Restricting to quasi-projective varieties in case (sm) or projective varieties in
case (bl) yields the same group. Additionally, we can consider only connected varieties in both
presentations.

Proof. We define the group mentioned in (1) of Proposition 3.1.11 as 𝐾 𝑠𝑚0 (Var𝑘 ). We will now
show that the ring homomorphism

𝜑 : 𝐾 𝑠𝑚0 (Var𝑘 ) ÝÑ 𝐾0 (Var𝑘 )

defined on the generators by
[𝑋]𝑠𝑚 ÞÝÑ [𝑋]

is an isomorphism.

To construct an inverse map, let [𝑋] P 𝐾0(Var 𝑘). We stratify 𝑋 =
⋃
𝑁PN

𝑁 , where 𝑁

is smooth and equidimensional, and �̄� is a union of strata for all 𝑁 P N. Consider the expression
Σ𝑁PN [𝑁]𝑠𝑚 in 𝐾0𝑠𝑚 (Var 𝑘). If 𝑋 is smooth, Σ𝑁PN [𝑁]𝑠𝑚 = [𝑋]𝑠𝑚, as can be shown by induction
on the number 𝑚 of elements in N:

Let 𝑁 P N be an element of minimal dimension. For the case 𝑚 = 1, we have
[𝑋]𝑠𝑚 = [𝑋 ´ 𝑁]𝑠𝑚 + [𝑁]𝑠𝑚. By the induction hypothesis for 𝑚 = 𝑛 ´ 1, we have [𝑋]𝑠𝑚 =

Σ𝑛´1
𝑖=1 [𝑁𝑖]𝑠𝑚. Then, by definition, we have [𝑋 ´ 𝑁𝑛]𝑠𝑚 = [𝑋]𝑠𝑚 ´ [𝑁𝑛]𝑠𝑚, and the induction

hypothesis implies that Σ𝑛´1
𝑖=1 [𝑁𝑖]𝑠𝑚 = [𝑋]𝑠𝑚 ´ [𝑁𝑛]𝑠𝑚.

For two stratifications N and N1 of 𝑋 , we can always find a common refinement
L (see Proposition 2.2.48). The above argument shows that for 𝑁 P N, we get Σ𝑁Ą𝐿PL [𝐿]𝑠𝑚.
Hence, Σ𝐿PL [𝐿]𝑠𝑚 is equal to Σ𝑁PN [𝑁]𝑠𝑚, and analogously, it is equal to Σ𝑁PN1 [𝑁]𝑠𝑚. Therefore,
Σ𝑁PN [𝑁]𝑠𝑚 is independent of the choice of stratification. Thus, we can set 𝑒(𝑋) := Σ𝑁PN [𝑁]𝑠𝑚.

If 𝑌 Ă 𝑋 is a closed subvariety, we can find a stratification in which 𝑌 is a union of
strata, which yields 𝑒(𝑋) = 𝑒(𝑋 ´ 𝑌 ) + 𝑒(𝑌 ). Thus, we have the following diagram:



Chapter 3. Grothendieck ring of varieties 67

Z[𝑉𝑎𝑟𝑘 ] 𝐾 𝑠𝑚0 (Var𝑘 )

𝐾0 (Var𝑘 )
The induced map on 𝐾 𝑠𝑚0 (Var𝑘 ) is obviously an inverse for 𝐾 𝑠𝑚0 (Var𝑘 ) ÝÑ 𝐾0 (Var𝑘 ), which
proves the isomorphism between the two groups: 𝐾 𝑠𝑚0 (Var𝑘 ) and 𝐾0(Var𝑘 ).

We call the group defined in (2) of Definition 3.1.11 as 𝐾𝑏𝑙0 (Var𝑘 ). The proof of the
equivalence between this definition and the others can be found in (SAHASRABUDHE, 2007).

□

3.2 Stable birational geometry

The main result of this section establishes a unique homomorphism between𝐾0(Var𝑘 )
and Z[𝑆𝐵], where 𝑆𝐵 represents the multiplicative monoid of classes of stable birational
equivalence of varieties. This result was originally proven by Larsen and Lunts in their paper
(LARSEN; LUNTS, 2003). Their proof involves induction, where the induction step requires
verification of various constructions and conditions on the image of the map. The proof is
lengthy and complex. So, we present a new proof of the same result using Bittner’s result as
stated in Definition 3.1.11. This proof was developed by Neeraja Sahasrabudhe in her thesis
(SAHASRABUDHE, 2007).

From this point onwards, we assume that 𝑘 is an algebraically closed field of
characteristic zero.

Definition 3.2.1. . We say that (irreducible) varieties 𝑋 and 𝑌 are stably birational if 𝑋 ˆ P𝑘 is
birational to 𝑌 ˆ P𝑙 for some 𝑘, 𝑙 ě 0.

Example 3.2.2. P1
𝑘 and P2

𝑘 are stably birational.

Theorem 3.2.3. Consider an abelian monoid G and its corresponding monoid ring Z[G]. Let 𝔐
be the multiplicative monoid consisting of isomorphism classes of smooth complete irreducible
varieties. We have a monoid homomorphism Ψ : 𝔐 ÝÑ G satisfying the following conditions:

(1) Ψ( [𝑋]) = Ψ( [𝑌 ]) if 𝑋 and 𝑌 are birational.

(2) Ψ [P𝑛] = 1 for all 𝑛 ě 0.

Under these conditions, there exists a unique homomorphism

Φ : 𝐾0 (Var𝑘 ) ÝÑ Z[G]

such that Φ( [𝑋]) = Ψ( [𝑋]) for all [𝑋] P 𝔐.
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Proof. It is worth noting that according to Bittner’s definition, we have 𝐾0(Var𝑘 ) � Z[𝔐]/„,
where the equivalence relation „ is given by [Bl𝑌 𝑋] ´ [𝐸] = [𝑋] ´ [𝑌 ]. Let 𝜌 denote the
quotient map 𝜌 : Z[𝔐] ÝÑ Z[𝔐]/„.

Then we write 𝑍 = 𝐵𝑙𝑌𝑋 and let 𝑋 be a smooth projective variety. Consider the
blow-up map 𝜋 : 𝑍 ÝÑ 𝑋 with 𝑌 as its center, and let 𝐸 = 𝜋´1(𝑌 ) be the exceptional divisor.
With this notation, the equivalence relation „ can be written as [𝑍] ´ [𝜋´1(𝑌 )] = [𝑋] ´ [𝑌 ].

Now, let Ψ : 𝔐 ÝÑ G be a map. From this, we obtain a natural extension
Ψ̂ : Z[𝔐] ÝÑ Z[G]. Therefore, we have the following diagram:

ker 𝑝 ker 𝑝 0

ker𝜓 Z[𝔐] Z[𝐺]

ker𝜓
ker 𝑝

𝐾0 (Var𝑘 ) Z[𝐺]

By applying the Snake Lemma (Proposition 1.2.6), in order to obtain a map Φ :
𝐾0(Var𝑘 ) ÝÑ Z[G], we need to show that Ker(𝜌) Ď Ker(Ψ̂), which means that Ψ̂( [𝑍] ´

[𝜋´1(𝑌 )]) = Ψ̂( [𝑋] ´ [𝑌 ]). To demonstrate this, it is sufficient to show the following:

(1) Ψ( [𝑍]) = Ψ( [𝑋]),

(2) Ψ

(
𝜋´1( [𝑌 ])

)
= Ψ( [𝑌 ]).

Item (1) follows from the fact that blowing up map is a birational map. For item (2), we recall
Corollary 3.1.4, which states that Ψ

(
𝜋´1( [𝑌 ])

)
= Ψ( [𝑌 ])Ψ ( [P𝑟]) for some 𝑟 determined by

the codimension of the center 𝑌 in 𝑋 .

□

Remark 3.2.4. Consider 𝑆𝐵, the multiplicative monoid of stable birational equivalence classes
of varieties. There is a canonical surjective homomorphism Ψ𝑆𝐵 : 𝔐 ÝÑ 𝑆𝐵 which satisfies
conditions (1) and (2) of the Theorem 3.2.3 (with Ψ𝑆𝐵 = Ψ,G = 𝑆𝐵) ). By definition, any
homomorphism Ψ as in the theorem factors through Ψ𝑆𝐵. Denote by Φ𝑆𝐵 the ring homomorphism
from 𝐾0 (Var𝑘 ) to Z[𝑆𝐵], corresponding to Ψ𝑆𝐵 by the theorem.

Note that the multiplication is well-defined: let [𝑋] = [𝑋 1] in 𝑆𝐵, i.e. 𝑋 ˆ P𝑛 and
𝑋 1

ˆP𝑚 are birational for some 𝑛, 𝑚 ě 0. Then for any variety𝑌 also𝑌 ˆ𝑋ˆP𝑛 and𝑌 ˆ𝑋 1
ˆP𝑚
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are birational, and hence one has [𝑌 ˆ 𝑋] = [𝑌 ˆ 𝑋 1] in 𝑆𝐵 if 𝑌 is smooth, projective and
irreducible.

Corollary 3.2.5. Let 𝑋1, . . . , 𝑋𝑘 , 𝑌1, . . . , 𝑌𝑚 be smooth complete connected varieties. Let𝑚𝑖, 𝑛 𝑗 P

Z be such that
Σ𝑚𝑖 [𝑋𝑖] = Σ𝑛 𝑗

[
𝑌 𝑗

]
,

in 𝐾0 (VarC). Then 𝑘 = 𝑚 and after renumbering the varieties 𝑋𝑖 and 𝑌𝑖 are stably birational
and 𝑚𝑖 = 𝑛𝑖.

Proof. Applying the ring homomorphism Φ𝑆𝐵 to the above equality, we obtain the equality in
the monoid ring Z[𝑆𝐵] :

Σ𝑚𝑖Ψ𝑆𝐵 (𝑋𝑖) = Σ𝑛 𝑗Ψ𝑆𝐵
(
𝑌 𝑗

)
and the corollary follows. □

Thus, any variety can be written uniquely (upto stable birational equivalence) as
linear combination (in 𝐾0 (VarC) ) of smooth complete varieties.

Proposition 3.2.6. The kernel of the (surjective)homomorphism Φ𝑆𝐵 : 𝐾0 (VarC) ÝÑ Z[𝑆𝐵] is
the principal ideal generated by the class

[
A1] of the affine line A1.

Proof. Note that the uniqueness of Φ𝑆𝐵 follows directly from the above theorem applied to Ψ𝑆𝐵.
Consequently, we have Φ𝑆𝐵 ( [P𝑛]) = 1 for all 𝑛. In particular, Φ𝑆𝐵

( [
P1] ) = 1. Thus, we obtain

Φ𝑆𝐵

(
[1] +

[
A1] ) = 1 and Φ𝑆𝐵

(
A1

)
= 0.

Now, let 𝑎 P Ker(Φ𝑆𝐵). We can express 𝑎 as a linear combination

𝑎 = [𝑋1] + . . . + [𝑋𝑘 ] ´ [𝑌1] ´ . . . ´ [𝑌𝑙]

where 𝑋𝑖 and 𝑌 𝑗 are smooth, complete, and connected varieties. Since Φ𝑆𝐵 (𝑎) =
∑︁

Ψ𝑆𝐵 (𝑋𝑖) ´∑︁
Ψ𝑆𝐵 (𝑌 𝑗 ) = 0, we deduce that 𝑘 = 𝑙. After renumbering, we can assume that 𝑋𝑖 is stably

birational to 𝑌𝑖. Thus, it suffices to show that if 𝑋 and 𝑌 are smooth, complete, and stably
birational, then [𝑋] ´ [𝑌 ] P 𝐾0(Var𝑘 ) ¨

[
A1] .

We observe that
[
𝑋 ˆ P𝑘

]
´ [𝑋] = [𝑋] ¨

[
A1 + A2 + . . . + A𝑘

]
. Therefore, we can

assume that [𝑋] and [𝑌 ] are birational. Moreover, by the weak factorization theorem, we can
further assume that 𝑋 is a blow-up of 𝑌 with a smooth center 𝑍 Ă 𝑌 and exceptional divisor
𝐸 Ă 𝑋 . Then, [𝐸] =

[
P𝑡

]
¨ [𝑍] for some 𝑡, and

[𝑋] ´ [𝑌 ] = [𝐸] ´ [𝑍] =
( [
A1] + [

A2] + . . . + [
A𝑡

] )
[𝑍] .

□
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Corollary 3.2.7. Let 𝑋 and 𝑋 1 be smooth and proper schemes over a field 𝐹 of characteristic
zero. Then 𝑋 and 𝑋 1 are stably birational if and only if their classes [𝑋] and [𝑋 1] in 𝐾 (𝑉𝑎𝑟𝐹)
are congruent modulo L. In particular, [𝑋] is congruent to an integer 𝑐 modulo L if and only if
each of its connected components is stably rational; in that case, 𝑐 is the number of connected
components of X.

3.3 The Grothendieck ring is not a domain

In this section we give two ideas to prove the fact that Grothendieck Ring is not a
domain. The first one was proved by Poonen (POONEN, 2002) and consists essencially in using
a result about abelian varieties. The second one consists in using a result on elliptic curves that
was published by Tetsuji Shioda (SHIODA, 1977).

Remark 3.3.1. It is worth noting that for any field extension 𝑘 Ď 𝑘 1, there exists a natural ring
homomorphism 𝐾0(Var𝑘 ) ÝÑ 𝐾0(Var𝑘 1) that maps [𝑋] to [𝑋𝑘 1] for any variety 𝑋 . We have
already established in Theorem 3.2.3 and Proposition 3.2.6 that when 𝑘 = C, there exists a
unique ring homomorphism 𝐾0(Var𝑘 ) ÝÑ Z[𝑆𝐵𝑘 ] that maps the class of any smooth projective
integral variety to its stable birational class. Moreover, this homomorphism is surjective, and its
kernel is generated by L = [A1].

Consider the set 𝐴𝑉𝑘 of isomorphism classes of abelian varieties over 𝑘 , which forms
a monoid. The Albanese functor, which assigns to each smooth, projective, geometrically integral
variety its Albanese variety, induces a homomorphism of monoids 𝑆𝐵𝑘 ÝÑ 𝐴𝑉𝑘 . This follows
from the fact that the Albanese variety is a birational invariant, the formation of the Albanese
variety commutes with products, and the Albanese variety of P𝑛 is trivial. Consequently, we
obtain a ring homomorphism 𝑍 [𝑆𝐵𝑘 ] ÝÑ 𝑍 [𝐴𝑉𝑘 ].

The proof uses the above fact and the following lemma:

Lemma 3.3.2. Let 𝑘 be an algebraically closed field of characteristic zero. There exist abelian
varieties 𝐴 and 𝐵 over 𝑘 such that 𝐴 ˆ 𝐴 � 𝐵 ˆ 𝐵 but 𝐴𝑘 � 𝐵𝑘 .

Theorem 3.3.3. Let 𝑘 be an algebraically closed field of characteristic zero. The Grothendieck
ring of varieties 𝐾0 (Var𝑘 ) is not a domain.

Proof. Consider the maps:

𝐾0 (Var𝑘 ) ÝÑ Z [𝑆𝐵𝑘 ] ÝÑ Z [𝐴𝑉𝑘 ]

Let 𝐴 and 𝐵 be as in Lemma 3.3.2. Then, the images of [𝐴] + [𝐵] and [𝐴] ´ [𝐵] are non-zero
under the composition above. In fact, if we call this composition 𝛼 and assume [𝐴] ´ [𝐵] = 0,
we would have 𝛼( [𝐴]) = 𝛼( [𝐵]), and since 𝐴 and 𝐵 are abelian varieties, this implies [𝐴] = [𝐵]
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in Z [𝐴𝑉𝑘 ], which only happens if 𝐴 � 𝐵. Therefore, we have that [𝐴] + [𝐵] and [𝐴] ´ [𝐵] are
non-zero elements, but ( [𝐴] + [𝐵]) ( [𝐴] ´ [𝐵]) = 0.

□

An alternative proof of Theorem 3.3.3 can be based on the following example:

Example 3.3.4. Consider the elliptic curve 𝐶 (𝜏) = 𝐶/Z + 𝜏Z, and let 𝐸 = 𝐶 (𝑖), 𝐸 1 = 𝐶 (3𝑖),
and 𝐸2 = 𝐶

(
´1 + 3𝑖

2

)
, where 𝑖 =

?
´1. We have the following isomorphisms:

𝐸 ˆ 𝐸 1 � 𝐸 ˆ 𝐸2,

but 𝐸 1 � 𝐸2.

This example, which is a result from the study of abelian varieties and can be found
in (SHIODA, 1977), provides a counterexample to the claim that there are no zero divisors in
𝐾0(Var𝑘 ). Now we can proceed with the proof of Theorem 3.3.3:

Proof. Note that [𝐸] ≠ 0, since 𝐸 is non-empty. We also have [𝐸 1
´𝐸2] ≠ 0, because otherwise,

following a similar argument as the previous proof, we would have 𝐸 1 � 𝐸2. Now observe that
[𝐸 (𝐸 1

´ 𝐸2)] = [𝐸𝐸 1
´ 𝐸𝐸2] = 0, which concludes the proof.

□

Remark 3.3.5. We have seen that 𝐾0(𝑉𝑎𝑟𝑘 ) is not an integral domain, this fact was proved by
Poonen in 2002. So a natural question arises: is L a zero-divisor in 𝐾0(𝑉𝑎𝑟𝑘 )?

Although 𝐾0(𝑉𝑎𝑟𝑘 ) is not a domain, it was possible that L is a non-zerodivisor.
This was believed to be true for several mathematicians. However, in 2014, Lev Borisov proved
that L is in fact a zero divisor, he shows that for two smooth derived equivalent non-birational
Calabi-Yau 3-folds 𝑋 and 𝑌 (pfaffian-grassmannian double mirror correspondence) we have

[𝑋] ´ [𝑌 ] (L2
´ 1) (L´ 1)L7 = 0.

For further details and a complete exposition of this result, refer to reference (BORISOV, 2018).
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