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Resumo
Problemas complexos de otimização de grande porte geralmente apresentam uma estru-
tura separável por blocos que permite o uso de técnicas de decomposição. Os métodos
de decomposição lidam adequadamente com acoplamentos nas restrições ou nas variáveis,
para aproveitar essas estruturas separáveis. Essa tese explora algoritmos de decomposição
para problemas de otimização convexos e não convexos que, em cada iteração, primeiro
resolvem subproblemas descentralizados e depois coordenam a informação distribuída.
Nosso objetivo é duplo. Por um lado, propomos uma análise unificadora de convergência
de métodos de descida para otimização não convexa, incluindo taxas de convergência sob
hipóteses fracas de regularidade. Os algoritmos de decomposição fornecem frequentemente
descida para alguma medida de progresso ao longo das iterações, como a redução de al-
guma função de mérito ou a distância ao conjunto de soluções. As abordagens incluídas
em nossa análise são os métodos de feixe proximal e o método de Douglas-Rachford para
otimização fracamente convexa. Por outro lado, estendemos a análise unificadora para
problemas de otimização restritos a um subespaço linear. Isso nos permite desenvolver
técnicas de decomposição que usufruem da separabilidade por cenários de problemas de
otimização estocástica multiestágio, uma vez que as restrições acoplantes desses proble-
mas são representadas por um subespaço linear relacionado à não antecipatividade no
processo de decisões. Para problemas convexos, propomos dois novos métodos que aproxi-
mam o método de Lagrangiano aumentado, ao induzir separabilidade no problema dual.
As restrições acopladoras são modeladas com uma função linear construída usando passos
forward-backward. Esses dois métodos são variantes do algoritmo Progressive Hedging de
Rockafellar e Wets, com a importante diferença de serem convergentes também se o com-
primento de passo varia com as iterações. Os dois métodos propostos diferem na forma
como o progresso ao longo das iterações é avaliado. O primeiro método corresponde a
uma variante do tipo feixe proximal do algoritmo Progressive Hedging, que mede descida
suficiente da função de custo. O segundo método é uma técnica de decomposição que
emprega um teste de aceitação de erro relativo que avalia a inviabilidade e a precisão do
modelo. Ambos os métodos geram sequências primais-duais que convergem a soluções dos
problemas primal e dual, respectivamente, com taxa de convergência linear.

Palavras-chave: métodos de decomposição, métodos de descida, Progressive Hedging,
métodos de feixe, convexidade fraca, error bounds, convergência linear.



Abstract
Complex large-scale optimization problems usually display a block-separable structure
that allows the use of decomposition techniques. Decomposition methods appropriately
handle couplings in the constraints or in the variables in order to exploit the separable
structure. This thesis explores decomposition methods for convex and nonconvex opti-
mization problems, that first solve decentralized subproblems, and then coordinate the
distributed information. Our goal is two-fold. On one hand, we propose a general unify-
ing framework for convergence analysis of descent methods in nonconvex optimization,
including rates of convergence under mild regularity assumptions. Decomposition algo-
rithms frequently provide descent for some improvement measure throughout iterations,
such as reduction of some merit function or the distance to the set of solutions. Approaches
included in this framework are proximal bundle methods, and the Douglas-Rachford split-
ting method for weakly convex optimization. On the other hand, we extend the unifying
analysis to constrained optimization problems over a linear subspace. This allows us to de-
velop decomposition techniques that capitalize on the scenario separability of multistage
stochastic optimization problems, since the linking constraints for these problems are rep-
resented by certain linear subspace, related to nonanticipativity in the decision process.
For convex problems, we propose two novel methods that replace certain Augmented La-
grangian by separable approximations inducing separability in the dual problem. The cou-
pling constraints are modeled with a linear function constructed using forward-backward
steps. These methods are variants of the Progressive Hedging algorithm by Rockafellar
and Wets, with the key difference of being convergent also with varying stepsizes along
iterations. The two proposed methods differ in the way that improvement along iterations
is evaluated. The first method corresponds to a proximal bundle-like adaptation of the
Progressive Hedging algorithm, that measures sufficient descent of the cost function. The
second one is a splitting technique that employs a relative-error acceptance test, assess-
ing infeasibility and model accuracy. Both methods are shown to generate primal-dual
sequences that convergence to solutions to the primal and dual problems, respectively,
with linear speed of convergence.

Keywords: Decomposition methods, descent methods, Progressive Hedging, bundle meth-
ods, weak convexity, error bounds, linear convergence.
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Introduction

Decomposition-coordination methods, or simply decomposition methods, are
used to solve large-scale problems that are difficult or impossible to tackle directly, with
classical techniques. Decomposition methods advantageously exploit certain type of struc-
tural features present in the problem that make it possible to solve instead a sequence of
smaller and simpler subproblems. These subproblems, solved in a decentralized distributed
manner, are subsequently coordinated in order to find a solution. Problems well-suited
for decomposition appear in multiple applications, including signal and image processing,
statistics, energy systems, machine learning, among others. See [1, 2, 3, 4] and references
therein.

Modern real-world problems usually involve numerous constraints and vari-
ables. Decomposition methods are designed to handle complicating constraints and/or
complicating variables, usually presented in a structured way. For instance, in power
systems, mathematical optimization models in generation planning include linkage con-
straints related to different technologies (hydro, wind, thermal). For stochastic formula-
tions, nonanticipativity constraints are incorporated when intermittent sources of energy
play a relevant role in the system. We refer to [5, 6, 7, 8] for more details.

Traditional decomposition approaches require mathematical formulations to
have a block-separable structure, such as Dantzig-Wolfe decomposition [9], Benders de-
composition [10], Douglas-Rachford splitting [11], and the alternating direction method
of multipliers (ADMM) [12]. Other methods, not originally designed for decomposition,
such as bundle methods [13, 14], can be employed to exploit separable structures through
duality.

Many well-known decomposition methods are based on two strategies. These
are the dual decomposition technique [15] and the proximal point algorithm [16, 17]. In
this thesis, we focus on decomposition techniques of proximal type. These methods usually
provide sequential improvement along iterations, in the form of descent of the objective
or a merit function, or reducing the distance to the solution set. The descent condition
not also serves to evaluate the progress of the method, but also helps to define optimality
certificates for the generated sequences.

The classical methods mentioned above were originally devised for linear or
convex programming. The rapid growth of challenging problems urges the development
of theory and algorithms that match modern necessities, usually involving nonconvex
problems. Similarly to the previously mentioned complicating constraints and variables,
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nonconvexity frequently appears in a structured, manageable manner. This feature allows
the extension of existing methods to new settings.

In this work, we analyze techniques to solve convex and nonconvex optimiza-
tion problems, including methods of descent and decomposition. We also design new al-
gorithms for contemporary applications, such as inexact proximal methods for multistage
stochastic optimization problems. We focus on leveraging structures to enhance the per-
formance of algorithms and finding hidden properties of classical methods to understand
them in a more abstract manner.

Our work on descent methods is primarily based on [18] for nonconvex prob-
lems, and [19] of methods of ε´subgradient descent. Our first contribution is a compre-
hensive theory for descent methods for weakly convex optimization, unifying the analysis
of explicit and implicit methods, including for the first time proximal bundle methods in
a framework akin to [18]. Furthermore, under typical regularity assumptions, we prove lin-
ear rates of convergence for methods falling under our unifying approach. Similar general
frameworks for descent sequences with subsequential convergence, and global convergence
with linear rates under extra assumptions can be found in [18, 20, 21]. The associated
published article of our contribution is [22]:

Atenas, F., Sagastizábal, C., Silva, P. J., & Solodov, M. (2023). A uni-
fied analysis of descent sequences in weakly convex optimization, including
convergence rates for bundle methods. SIAM Journal on Optimization, 33(1),
89–115.

We also directly extend this analysis to weakly convex optimization problems with con-
straints in a linear subspace, as shown in [23] and explained below.

Concerning decomposition methods, we work on two frontiers: first, we develop
two scenario-based decomposition methods for stochastic programming, resembling the
progressive hedging algorithm [24], but with varying stepsizes. One of the methods is mo-
tivated by proximal bundle methods, and the other by an inexact relative-error proximal
point method [25]. Both algorithms correspond to extensions of the Progressive Hedging
algorithm [24], incorporating an improvement measure that checks the quality of the ap-
proximation. The two approaches differ in the acceptance test condition: the proximal
bundle sufficient descent condition is at most as strict as the one based on [25]. For both
methods, we prove convergence to solutions in the convex case and provide sufficient con-
ditions to obtain linear convergence rates. The first approach has the following associated
publication [23]:
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Atenas, F., & Sagastizábal, C. (2023). A bundle-like progressive hedging
algorithm. Journal of Convex Analysis, special issue in honor of R. J-B Wets,
30(2) 453–479.

Similar techniques can be found in [26, 27], for an Augmented Lagrangian scenario decom-
position method using separable approximation of the Augmented Lagrangian by fixing
variables.

The second frontier involves splitting methods for nonconvex functions, along
the lines of [28], but in the weakly convex setting. We extend the previously mentioned
ideas of [22] for the Douglas-Rachford method by using a suitable merit function, and
also provide convergence guarantees to critical points and rates of convergence for weakly
convex problems. Numerical experiments suggest that in this setting, it is still possible
to convergence to global minimizers, opening the question of what are the conditions for
which the Douglas-Rachford splitting method avoids saddle points.

This thesis is organized as follows. In Chapter 1, we describe fundamental tools
of variational analysis, and propose an enlargement for the subdifferential of a weakly con-
vex function that can be employed for implementation purposes. In Chapter 2 we present
the central algorithms to solve optimization problems that act as the basis of the ones pro-
posed in this work. We proceed in Chapter 3 to introduce the unifying analysis of descent
methods for weakly convex problems of [22], and an extension for constrained optimization
problems. We continue with another extension for splitting methods in Chapter 4, in par-
ticular, the Douglas-Rachford splitting method for weakly convex optimization problems.
Regarding stochastic optimization, in Chapter 5 we propose a variation of the progressive
hedging algorithm of proximal bundle-type, by adding an extra sufficient descent test
[23]. We develop another variation of the progressive hedging algorithm in Chapter 6, by
introducing a relative-error acceptance test that measures feasibility and approximation
accuracy. We conclude with Chapter 7 with a discussion of some ongoing work and future
research directions.
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1 Variational Analysis tools

In this chapter, we introduce the essential notions of variational analysis and
optimization we use throughout this dissertation. We closely follow the notation of the
book [29].

First, in Section 1.1 we start with elementary properties of functions and op-
erators in the context of optimization. We continue in Section 1.2 stating different subdif-
ferential notions for convex and nonconvex functions, and some algebraic and topological
properties. The concept of weak convexity is examined in Section 1.3, highlighting its
importance in modern optimization. In particular, in Section 1.3.2, we introduce a new
concept of subdifferential, the approximate subdifferential for weakly convex functions,
an extension of the ε´subdifferential of Convex Analysis, and we also study a variational
principle for it. Section 1.3.2 is ongoing work to be submitted. We end this chapter with
a brief survey of error bounds, the Kurdyka-Łojasiewicz inequality and some other regu-
larity properties in the literature in Section 1.4 for convex and nonconvex optimization
problems.

1.1 Basic concepts and notation
In this work, we consider functions f : Rn Ñ R Y t`8u, possibly nonconvex

and nonsmooth. The domain of f is dompfq “ tx P Rn : fpxq ă `8u. When dompfq is
nonempty, f is said to be proper. The graph of f consists of all the points of the form
px, fpxqq for x P dompfq, while the epigraph of f is the set of points px, αq P Rn ˆR such
that fpxq ď α, and is denoted by epipfq.

The study of continuity properties of a function f classically involves the be-
havior of f on convergent (sub)sequences. For the purpose of still capturing the local
properties of a not necessarily continuous function f at a point x̄, we use the notion of
f´attentive convergence, as defined in [29, Chapter 8B, 8(2)]. A sequence txku Ď Rn

is said to converge to x̄ in the f´attentive sense, denoted by xk ÝÑ
f

x̄, if xk Ñ x̄, and

fpxkq Ñ fpx̄q.

A lower semicontinuous (lsc) function f at a point x̄ P Rn is characterized by
the following estimate:

fpx̄q ď lim inf
xÑx̄

fpxq.
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A function f is said to be convex if for all λ P r0, 1s, x, y P Rn,

fpλx ` p1 ´ λqyq ď λfpxq ` p1 ´ λqfpyq. (1.1)

We denote by convpRnq the set of all proper lsc convex functions from Rn to
RY t`8u. Functions in convpRnq can be characterized via their subdifferential. For that,
we first need to introduce the notion of set-valued operator. A set-valued operator is a
mapping T , such that for each x P Rn, T pxq Ď Rm. We denote set-valued operators as
T : Rn Ñ Rm.

For a set-valued mapping T : Rn Ñ Rm, dompT q denotes the domain of T ,
and is defined by dompT q “ tx P Rn : T pxq ‰ Hu. The graph of the operator T is defined
as the set gphpT q “ tpx, gq P Rn ˆ Rn : g P T pxqu. The inverse operator of T , denoted by
T ´1, is the set-valued mapping satisfying

x P T ´1pyq ðñ y P T pxq.

A prime example of a maximal monotone operator is the subdifferential of a function
f P convpRnq, see (1.2).

Continuity properties of operators are common in Variational Analysis, and
they are employed in the convergence analysis of algorithms. In particular, subdifferen-
tials are prominent examples of operators that exhibit some notable continuity properties
defined in [29, Definition 5.4].

We recall two concepts of continuity of set-valued operators. A set-valued op-
erator T : Rn Ñ Rn is

1. outer semicontinuous at a point x̄ P Rn, if for some sequences txku Ď Rn and
tvku Ď Rn, such that xk Ñ x̄ and T pxkq Q vk Ñ v P Rn, it holds v P T px̄q.

2. inner semicontinuous at a point x̄ P Rn, if for any v P T px̄q, and any sequence xk Ñ x̄,
there exists a subsequence tvku indexed by K Ď N, such that T pxkq Q vk Ñ v.

Subdifferentials provide an alternative manner to define convex functions, as
mentioned above, through properties of tangents to the graph of f : f is convex if and only
if all tangent lines to the graph of f are lower estimates of the function. For x P Rn, the
slopes of the tangent in px, fpxqq define the subdifferential Bfpxq of the convex function
f at x:

Bfpxq “ tv P Rn : fpyq ě fpxq ` xv, y ´ xy for all y P Rnu. (1.2)

If x R dompfq, Bfpxq is empty. For subdifferentials defined in more general settings, see
Section 1.2.
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An important example of a convex function is the indicator iC of a set C Ď Rn,
namely, the function that takes the value 0 on C and `8 otherwise. When C is a nonempty
closed convex set, then iC P convpRnq. Furthermore, the subdifferential if iC at a point
x P C is the (convex) normal cone of C at x, denoted NCpxq.

For a nonempty closed set C, we denote the associated (possibly set-valued)
projection mapping by

PCpxq “ arg min
yPC

}y ´ x} ,

while the optimal value of this problem is the distance from x to C:

distpx, Cq “ }x ´ p}, for any p P PCpxq .

For a nonempty closed set C, PC is a nonempty-valued operator. If, in addition, C is
convex, PC is a single-valued operator.

The Fenchel conjugate f˚ : Rn Ñ R Y t˘8u of a function f , is defined as

f˚pwq “ sup
xPRn

txw, xy ´ fpxqu . (1.3)

We also use the biconjugate f˚˚ : Rn Ñ R Y t˘8u of a function f , corresponding to the
conjugate of the conjugate, namely

f˚˚pxq “ sup
wPRn

txx, wy ´ f˚pwqu . (1.4)

When f is a proper function, both f˚, f˚˚ P convpRnq (see [29, Theorem 11.1]). Further-
more, when f P convpRnq, f˚˚ “ f . From the definition of the Fenchel conjugate, we
directly obtain the so-called Fenchel-Young inequality: for all x, w P Rn, it holds

fpxq ` f˚pwq ě xw, xy. (1.5)

The equality in (1.5) characterizes subgradients of f and f˚ (see [29, Proposition 11.3]):

fpxq ` f˚pwq “ xw, xy ðñ w P Bfpxq ðñ x P Bf˚pwq, (1.6)

and

Bfpxq “ arg maxwPRn txx, wy ´ f˚pwqu , Bf˚pwq “ arg maxxPRn txw, xy ´ fpxqu .

In this way, we can think of Bf˚ as the inverse operator of Bf .

One particular case is of interest, since it is used in Chapter 6. The Fenchel
conjugate of the indicator iC of a set C takes the following form

i˚
Cpwq “ sup

xPRn
xw, xy.
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In particular, for a linear subspace M, the indicators of M and its orthogonal complement
MK are closely related: i˚

M “ iMK . This is due to the fact that a point w P Rn satisfies
i˚
Mpwq “ 0 if and only if xw, xy “ 0 for all x P Rn, that is, w P MK (see also [29, Example

11.4]).

Another example of interest is the Fenchel conjugate of a strictly convex func-
tion. We say a function f is strictly convex if inequality (1.1) holds strictly for x ‰ y. In
this case, intpdompfqq ‰ H, and f˚ is continuously differentiable on intpdompfqq. Par-
ticularly, ∇f˚pwq is given by the unique minimizer of fp¨q ´ xw, ¨y. Examples of strictly
convex functions are strongly convex functions. For a constant µ ą 0, we say a function
fµ is µ´strongly convex (cf. Definition 1.3) if fµp¨q ´

µ

2
} ¨ }2 is convex. For this type of

functions, dompf˚q “ Rn, and ∇f˚ is globally 1
µ

´Lipschitz continuous (see [30, Chapter
X, Theorem 4.2.1]), that is, for all u, v P Rn,

}∇f˚puq ´ ∇f˚pvq} ď
1
µ

}u ´ v}.

For elementary calculus rules involving conjugate functions, we refer to [30,
Chapter X, Proposition 1.3.1]. We summarize, without proof, some of these properties in
the next proposition, for future reference.

Proposition 1.1 (Fenchel conjugate calculus rules). Let f P convpRnq, x0, w0 P Rn, and
α ą 0. Then the following properties hold.

(i) pαfq˚pwq “ αf˚pw{αq.

(ii) pfpα¨q˚pwq “ f˚pw{αq.

(iii) pfp¨ ´ x0qq˚pwq “ f˚pwq ` xw, x0y.

(iv) pfp¨q ` xw0, ¨yq˚pwq “ f˚pw ´ w0q.

(v) f “ f˚ if and only if fp¨q “
1
2

} ¨ }2.

Regarding optimization problems, we are interested in problems of the form

min
xPRn

fpxq. (1.7)

For a nonempty closed set C, we also consider constrained optimization problems with
the form

min
xPC

fpxq . (1.8)

Constraints can be modeled using indicator functions. More specifically, problem (1.8) is
equivalent to

min
xPRn

fpxq ` iCpxq.
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1.2 Subdifferential concepts
This section presents a brief review of the literature on subdifferentials for

nonconvex functions, including calculus and topological properties, as well as the relation
of subdifferential with optimization problems.

Consider a function f : Rn Ñ R Y t`8u, and x̄ P dompfq. A point v P Rn is
called a

1. Fréchet/regular/basic subgradient of f at x̄ if

lim inf
xÑx̄
x‰x̄

fpxq ´ fpx̄q ´ xv, x ´ x̄y

}x ´ x̄}
ě 0.

We denote by B̂fpx̄q, the Fréchet/regular/basic subdifferential, the set that contains
all such subgradients. Equivalently, v P B̂fpx̄q if and only if

fpxq ě fpx̄q ` xv, x ´ x̄y ` op}x ´ x̄}q,

where lim
xÑx̄

op}x ´ x̄}q

}x ´ x̄}
“ 0.

2. limiting/general/Mordukhovich subgradient of f at x̄ if there exist sequences txku Ď

Rn and tvku Ď Rn, such that vk P B̂fpxkq, xk ÝÑ
f

x̄, and vk Ñ v. We denote by Bfpx̄q,
the limiting/general/ Mordukhovich subdifferential, the set that contains all such
subgradients.

3. Clarke subgradient of f at x̄ if v can be expressed as the convex combination of
points of the form lim

kÑ`8
∇fpxkq, where D Q xk Ñ x̄, and D is any set of Lebesgue

measure 0. The set of Clarke subgradients of f at a point x̄ is called the Clarke
subdifferential, and denoted Bfpx̄q.

In general, B̂fpxq Ď Bfpxq for x P Rn. For convex functions, the Fréchet,
the limiting, and the Clarke subdifferentials coincide with the subdifferential of Convex
Analysis, that is,

B̂fpx̄q “ Bfpx̄q “ Bfpx̄q “ tv P Rn|fpxq ě fpx̄q ` xv, x ´ x̄y for all x P Rnu.

The subdifferential of Convex Analysis is an outer semicontinuous convex-valued mapping.
Another important example is when f is (locally) smooth, Bfpxq reduces to the gradient
∇fpxq.

For algorithmic purposes, having a convex-valued subdifferential operator rep-
resents an advantage, since convex combinations help us aggregate information of past
iterates. In this way, the Clarke subdifferential is preferred for numerical reasons.
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Furthermore, the Clarke subdifferential is a well-defined object for a family of
functions common in optimization applications. First, recall we say a function f : Rn Ñ

RYt`8u is locally Lipschitz continuous around x̄, if there exists an open neighborhood U

of x̄ on which f is Lipschitz continuous, that is, there exists a constant LU ą 0, such that
for all x, y P U , |fpxq´fpyq| ď LU }x´y}. In this case, we say f is LU ´Lipschitz continuous
on U . When the estimate holds globally, we simply say f is L´Lipschitz continuous. Due
to Rademacher’s theorem [29, Theorem 9.60], any locally Lipschitz function is almost
everywhere differentiable. This property guarantees the Clarke subdifferential to be well-
defined [31, Theorem 2.5.1].

For x P dompfq, the Clarke subdifferential Bfpxq of f at x is a nonempty
compact convex set [31, Proposition 2.1.2]. Moreover, Bf is an upper semicontinuous
mapping; see [31]. Note also that from [32, Proposition 3.1], [32, Theorem 3.6] and Propo-
sition 1.6(iv), the limiting subdifferential Bf and the Clarke subdifferential Bf coincide
for weakly convex functions, the class of interest in Chapter 3.

Figure 1 shows linearizations corresponding to subgradients of different types of
functions. Figure 1a presents a nonconvex differentiable function, so that at any point x P

Rn the subdifferential is the singleton ∇fpxq, although the associated tangent linearization
may or may not intersect the graph of f in more than one point. In this particular case,
the shown affine function is not a lower linearization, because the function is not convex.
Figure 1b shows a convex function nondifferentiable at the origin, and the subgradients
are computed at this point. In this case, the subdifferential of the function at x̄ “ 0 is
non-singleton set, because the function has a kink at x̄ “ 0: Bfpx̄q “ r´1, 0s. In view of the
convexity of the function, any tangent is a lower linearization of the function that locally
approximates it. Figure 1c presents a nonconvex function with (Fréchet) subgradients
computed at a point of nondifferentiability, x̄ “ 1. Once again, due to the existence
of a kink at this point, the subdifferential of the funcion at x̄ “ 1 is not a singleton:
Bfpx̄q “ r´2, 2s. Note that some subgradients may define lower tangent linearizations,
and others may not. More on subdifferentials of this type of functions can be found in
Section 1.3. Finally, Figure 1d exhibits a subgradient of a convex function everywhere
differentiable. In this case, the subdifferential is a singleton at every point, the gradient
of the function at such point, and all the tangent linearizations lie below the graph of the
function.

For convex functions, it is well known that global minimizers can be character-
ized using the subdifferential. More specifically, x̄ is a (global) minimizer of f P convpRnq

if and only if 0 P Bfpx̄q. For nonconvex functions, this inclusion may fail to characterize
global, and even local, minimizers. Nevertheless, zeros of subdifferentials play a central
role in nonconvex optimization, since they extend the notion of optimality. For a function
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(a) Nonconvex differentiable
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(b) Convex nondifferentiable
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(c) Nonconvex nondifferentiable

f

x

y

(d) Convex differentiable

Figure 1 – Subgradients of functions. The continuous red line represents the graph of the func-
tion, and the dashed blue lines are the linearizations associated with a subgradient
at a given point.

f : Rn Ñ RYt`8u, x̄ P Rn is said to be a limiting (resp. Clarke) critical point, or simply
critical point, of f if 0 P Bfpx̄q (resp. 0 P Bfpx̄q). Denote by S :“ pBfq´1p0q the set of all
critical points of f .

In general, 0 P Bfpx̄q is a necessary condition for x̄ to be a local minimizer.
Indeed, if there exists δ ą 0, such that for all x P Bpx̄, δqztx̄u, fpx̄q ď fpxq, then

fpxq ´ fpx̄q ´ x0, x ´ x̄y

}x ´ x̄}
ě 0,

thus 0 is a Fréchet subgradient of f at x̄, and thus, a limiting subgradient of f at x̄.

For convex functions, all critical points/local minimizers are global minimizers.
Therefore, all critical points have the same critical value, the (global) optimal value. The
following property is a local generalization of this idea for the nonconvex case. This prop-
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erty is very natural; we refer the readers to [33] for a discussion and sufficient conditions
for it to hold.

Definition 1.1 (Proper separation of isocost surfaces). A lsc function f : Rn Ñ RYt`8u

has properly separated isocost surfaces if there exists ε ą 0 such that

x̄, ȳ P S, fpx̄q ‰ fpȳq ùñ }x̄ ´ ȳ} ě ε ,

where S “ pBfq´1p0q is the set of critical points of f .

In other words, f satisfies the proper separation of isocost surfaces property if
for sufficiently close critical points x̄ and ȳ, the corresponding critical values are the same,
namely, fpx̄q “ fpȳq.

The Fréchet and the limiting subdifferentials satisfy some essential calculus
rules. These rules are useful in Section 1.3.2, and are excerpted from [29, Exercise 8.8].

Proposition 1.2 (Subdifferential calculus rules). Consider a function f : Rn Ñ R Y

t`8u, a point x̄ P dompfq, and a function g : Rn Ñ R Y t`8u smooth around x̄. Then

Bpf ` gqpx̄q “ Bfpx̄q ` ∇gpx̄q,

and the same holds for the Fréchet subdifferential B̂. In particular, B̂gpx̄q “ Bgpx̄q “

t∇gpx̄qu.

Differently from Convex Analysis, the subdifferential of a nonconvex function
can present a degeneracy in the following sense: for xk ÝÑ

f
x̄, and vk P B̂fpxkq, the sequence

tvku might be unbounded. For instance, consider the non-locally Lipschitz continuous
function f : R Ñ R given by fpxq “ xα, for α P p0, 1q. For x ‰ 0, ∇fpxq “ αxα´1. Given
xk “ k´1 for k P N, fpxkq “ k´α, and thus xk ÝÑ

f
0. On the other hand, vk “ ∇fpxkq “

αk1´α Ñ `8 (cf. Proposition 1.3 3.)

This feature makes it necessary to exclude the recession directions, that is,
those possible unbounded directions in the subdifferential. For that reason, we introduce
the horizon subdifferential.

Definition 1.2 (Horizon subdifferential). For a function f : Rn Ñ R Y t`8u, and
x̄ P dompfq, a point v P Rn is called a horizon/singular subgradient of f at x̄ if there
exists a sequence txku Ď Rn, such that xk ÝÑ

f
x̄, a sequence tvku Ď Rn, such that for

all k P N, vk P B̂fpxkq, and a real sequence tλku Ď R`, such that λk Ó 0, satisfying
λkvk Ñ v. The set B8fpx̄q, called the horizon/singular subdifferential, contains all the
horizon/singular subgradients of f at x̄.
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The following proposition summarizes some of the topological properties of
the horizon subdifferential, extracted from [29, Theorem 8.6, Theorem 8.7, Exercise 8.8,
Theorem 9.3].

Proposition 1.3 (Properties of the horizon subdifferential). Let a function f : Rn Ñ

R Y t`8u, and a point x̄ P dompfq. Then, the following hold.

1. B8fpx̄q is a closed cone in Rn.

2. B8f is an outer semicontinuous operator at x̄ with respect to the f´ attentive con-
vergence.

3. If f is locally Lipschitz around x̄, B8fpx̄q “ t0u.

Additionally, if f0 is a smooth function in a neighborhood of x̄, and g : Rn Ñ R Y t`8u

a function that is finite at x̄, such that f “ f0 ` g, then

4. B8fpx̄q “ B8gpx̄q. In particular, B8f0px̄q “ t0u.

The horizon subdifferential possesses a geometric interpretation in connection
with normal directions to the epigraph of the function, as proven in [29, Theorem 8.9].
First, we introduce the notion of normal cones in the nonconvex case, and their relations
with the previously defined subdifferentials.

Proposition 1.4 (Normal cones through subdifferentials). Let a function f : Rn Ñ

R Y t`8u, and a point x̄ P dompfq. Then,

1. B̂fpx̄q “ tv P Rn|pv, ´1q P N̂epifpfqpx̄, fpx̄qqu, where for any set C Ď Rm, the
Fréchet/regular normal cone to C at ȳ P C is defined as

N̂Cpȳq “

$

&

%

u P Rm
ˇ

ˇ

ˇ
lim sup

yÑȳ
yPCztȳu

xu, y ´ ȳy

}y ´ ȳ}
ď 0

,

.

-

.

2. Bfpx̄q “ tv P Rn|pv, ´1q P Nepifpfqpx̄, fpx̄qqu, where for any set C Ď Rm, the limit-
ing/general normal cone to C at ȳ P C is defined as

NCpȳq “ tu P Rm| DC Q yk Ñ ȳ, N̂Cpxkq Q uk Ñ uu.

If x̄ R C, then N̂Cpx̄q “ NCpx̄q “ H.
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For a nonempty closed convex set C Ď Rn, the normal cone to C at x̄ P C of
Convex Analysis coincides with the Fréchet and limiting normal cones, namely, BiCpxq “

tv P Rn : xv, x ´ x̄y ď 0 for all x P Cu, coincides with the Fréchet and normal cones of iC

at x.

As proven in [29, Theorem 8.9], horizon subgradients correspond to horizontal
normal vectors to the epigraph of the function. For convex functions, the horizon subdif-
ferential takes a special form [29, Proposition 8.12], due to the characterization of normal
cones of convex sets.

Proposition 1.5 (Geometry of horizon subdifferentials). Let a function f : Rn Ñ R Y

t`8u, and a point x̄ P dompfq. Suppose f is locally lsc at x̄, then

B8fpx̄q “ tv P Rn|pv, 0q P Nepifpfq

`

x̄, fpx̄q
˘

u.

If, in addition, f is convex, then B8fpx̄q “ Ndompfqpx̄q.

Note that if x̄ P intpdompfqq, then B8fpx̄q “ t0u. This result is consistent with
the fact that for such x̄, any function f P convpRnq is locally Lipschitz continuous around
x̄ (cf. Proposition 1.3 3.).

One of the applications of the horizon subdifferential is it allows generalizing
constraint qualifications. It also provides suitable conditions for subdifferential calculus
rules to hold. The following result illustrates one of these applications, corresponding to
[29, Theorem 8.15].

Theorem 1.1 (Optimality conditions). For a proper lsc function f : Rn Ñ R Y t`8u,
and a nonempty closed set C Ď Rn, consider problem (1.8). Suppose there exists x̄ P C

satisfying the following linear regularity condition:

B8fpx̄q X ´NCpx̄q “ t0u.

Then, the necessary local optimality condition for x̄ is

0 P Bfpx̄q ` NCpx̄q.

When f and C are convex, the condition is sufficient for global optimality, without the
need for the linear regularity condition to hold.

1.3 The class of weakly convex functions
In this section, we examine the family of weakly convex functions, and pro-

vide some examples. Then, we proceed to define a new subdifferential for weakly convex
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functions, the approximate subdifferential, using the convexification of a weakly convex
function. We end this section proving a variational principle for weakly convex functions,
and a continuity property of the approximate subdifferential as an application of this
principle.

1.3.1 The concept of weak convexity

Weakly convex functions appear naturally in applications. For example, in
phase retrieval problems, where the loss function can be chosen to be the ℓ1´norm [34], or
the ℓ2´norm [35]; and in compressive sensing problems with bilinear/biconvex objectives
[36] with a ℓ1´penalty to induce sparsity. See [37] for more examples.

This subsection on weak convexity is extracted from [22], dealing with the
concept of weak convexity and some basic properties.

Definition 1.3 (Weakly convex functions). We say that f : Rn Ñ RYt`8u is ρ´weakly
convex, for ρ ą 0, if fp¨q `

ρ

2
} ¨ }2 is a convex function.

We denote by w ´ convρpRnq the set of proper lsc ρ´weakly convex functions
from Rn to R Y t`8u. Figure 2 shows the graph of a function f P w ´ convρpRnq and
its “convexification” after adding a quadratic term. In this case, f : R2 Ñ R is given
by fpx, yq “ |x2 ´ 1| ` |y2 ´ 1|. Note that the convexification no longer presents a “hill”
around px, yq “ p0, 0q, because the nonconvexity was “repaired”.

(a) Graph of f . (b) Graph of fp¨q ` pρ{2q} ¨ }2.

Figure 2 – Graph of the weakly convex function fpx, yq “ |x2 ´ 1| ` |y2 ´ 1| and its
“convexification”.

The class of weakly convex functions is contained in some larger classes of
nonsmooth functions, such as the generalized differentiable functions in the sense of Norkin
[38], or the semismooth functions [39]. The following are some equivalent characterizations
of weak convexity; see [40, Theorem 2.1], [41, Theorem 3.1].

Proposition 1.6 (Alternative characterizations of weak convexity). For a proper lsc
function f : Rn Ñ R Y t`8u and ρ ą 0, the following statements are equivalent:
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(i) For any z P Rn, fp¨q `
ρ

2
} ¨ ´z}2 is a convex function.

(ii) For any x, y P Rn, such that B̂fpyq ‰ H, any gpyq P Bfpyq satisfies

fpyq ` xgpyq, x ´ yy ď fpxq `
ρ

2
}x ´ y}2

or, equivalently,
ℓy,gpyqpxq ď fpxq `

ρ

2
}x ´ y}2 ,

where ℓy,gpyqp¨q :“ fpyq ` xgpyq, ¨ ´ yy is the linearization of f at the point y.

(iii) For all x, y P Rn, and λ ą 0,

fpλx ` p1 ´ λqyq ď λfpxq ` p1 ´ λqfpyq `
ρλp1 ´ λq

2
}x ´ y}2 .

Note that in Proposition 1.6(i), by taking z “ 0, we retrieve Definition 1.3,
which means that f is convex up to a quadratic perturbation. Proposition 1.6(i) is com-
pletely equivalent to this way of defining weakly convex functions, since it states that
f is convex up to a quadratic perturbation with a linear term. Regarding some other
notions of nonconvexity in the literature, it is important to note that for a function to be
weakly convex, Proposition 1.6(ii) must hold for all subgradients at all points. By contrast,
for prox-regular functions [29, Definition 13.27], also known as lower-C2 functions, the in-
equality holds only locally for subgradients, points and functional values. As a result, weak
convexity is equivalent to the function being prox-regular everywhere, and the parameter
of prox-regularity being the same for all points, or simply uniformly prox-regular.

As already commented, the class of weakly convex functions is quite broad and
includes many settings of interest, whose nonconvexity is benign, in the parlance of [42].
One example is the class of decomposable functions in [43], that contains max-functions,
maximal eigenvalue functions, and norm-1 regularized functions; see also [44] and [45].
The following definition corresponds to the global version of a decomposable function of
[43].

Definition 1.4 (h ˝ c decomposable functions). Given a continuously differentiable map-
ping c : Rn Ñ Rm such that cpx̄q “ 0, and a finite-valued sublinear function h : Rm Ñ R,
the real-valued function f is h ˝ c decomposable at x̄ P Rn, if for all x P Rn,

fpxq “ fpx̄q ` hpcpxqq .

If c is a C1 function with Lipschitz-continuous Jacobian, then such f is weakly
convex. To see this, apply [46, Lemma 4.2]. Since h is finite-valued and sublinear, it is
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then convex and Lipschitz-continuous (see [30, V(1.2.6)]), while c is C1 with Lipschitz-
continuous Jacobian from the assumptions. Therefore the composition h ˝ c and, hence,
the function fp¨q “ fpx̄q ` h ˝ cp¨q, are weakly convex.

In association with other notions related to weak convexity, we further remark
that all real-valued prox-regular functions (or, in our terminology, real-valued locally
weakly convex functions) can also be locally decomposed as a sum of a convex continuous
function and a concave quadratic function (in line with Definition 1.3), and can also be
expressed as a composition of a convex continuous function with a differentiable function
with locally Lipschitz gradient, see [41, Proposition 3.5, Remark 3.6].

We next give an example of weak convexity for extended real-valued functions,
that will play a role in Section 3.4 to include the class of feasible descent methods of [33]
(for constrained optimization) into the convergence theory developed in Chapter 3.

Proposition 1.7. Let f : Rn Ñ R be a continuously differentiable, such that the gradient
∇f is L´Lipschitz continuous on the nonempty closed convex set X Ď Rn. Then, f ` iX

is a L´weakly convex function.

Proof. Since f has Lipschitz-continuous gradient with constant L on X, then (e.g., from
[47, Lemma A.11]), for all x, y P X it holds that

fpyq ` x∇fpyq, x ´ yy ´
L

2
}x ´ y}2 ď fpxq .

Furthermore, for x P X, and y P Rn such that Bpf ` iXqpyq ‰ H, that is, for y P X, and
for all w P NXpyq, we have that ∇fpyq ` w P Bpf ` iXqpyq, and

pf ` iXqpyq ` x∇fpyq ` w, x ´ yy ´
L

2
}x ´ y}2 ď pf ` iXqpxq .

If x R X, the above inequality holds trivially, because y needs to be an element of X to en-
sure that the subdifferential Bpf ` iXqpyq is nonempty (see Proposition 1.6(ii)). Therefore,
f ` iX is L´weakly convex.

1.3.2 Approximate subdifferentials of weakly convex functions

This subsection introduces a novel concept, an approximate subdifferential for
weakly convex functions. First, we present the definition of the classical ε´subdifferential
of Convex Analysis, the basis of our new concept.

Definition 1.5 (ε´subdifferential – convex case). For f P convpRnq, a point x̄ P dompfq,
and ε ě 0, a vector v P Rn is called an ε´subgradient of f at x̄ if for all x P Rn,

fpxq ě fpx̄q ` xv, x ´ x̄y ´ ε.
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The set comprising all such vectors is called the ε´subdifferential of f at x̄, and denoted
Bεfpx̄q.

We introduce the novel concept of approximate subdifferencial for weakly con-
vex functions. For this purpose, for a ρ´weakly convex function f , denote by F the
“convexification” of f centered at x̄ P dompfq, namely, F x̄

ρ “ fp¨q `
ρ

2
} ¨ ´x̄}2.

Definition 1.6 (Approximate subdifferential – weakly convex case). For a function f P

w ´ convρpRnq, a point x̄ P dompfq, and ε ě 0, the ε´approximate subdifferential of f

centered x̄ is the multivalued operator given by

Bx̄
ρ,εfpxq “ BεF

x̄
ρ pxq ´ ρpx ´ x̄q.

´2

2

ε

Bεfpx̄q

Figure 3 – Approximate subdifferential Bx̄
ε fpx̄q for fpxq “ |x2 ´ 1|, x̄ “ ´1, and varying

ε P r0, 4s.

Figure 3 illustrates the approximate subdifferential of the weakly convex func-
tion fpxq “ |x2 ´ 1|, centered at x̄ “ ´1 and ρ “ 5

2 . Note that Bfpx̄q “ r´2, 2s (ε “ 0).
In this case,

Bx̄
ρ,εfpx̄q “ r´2 ´

a

2εpρ ` 2q, 2 `
a

2εpρ ´ 2qs.

Observe that when ρ ą 2, then Bx̄
ρ1,εfpx̄q is an enlargement of the subdifferential for any

ρ1 ą ρ.

Remark 1.1. This definition is inspired by Proposition 1.2, because BF x̄pxq “ Bfpxq `

ρpx ´ x̄q. Additionally, taking ε “ 0 in Definition 1.6 yields Bx̄
ρ,0fpxq “ BF x̄

ρ pxq ´ ρpx ´ x̄q.

We now drop the subindex ρ to denote the approximate subdifferential of a
ρ´weakly convex function, when there is no confusion from the context.

Note that the approximate subdifferential is just an affine translation of the
ε-subdifferential in Convex Analysis. Therefore, all the topological and calculus rules
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developed for the latter in [30, Ch. XI] are available for the former. Some basic properties
are listed in the following result.

Proposition 1.8 (Properties of the approximate subdifferential). For a function f P

w ´ convρpRnq, a center x̄ P dompfq, and ε ě 0, the following holds.

1. If x P dompfq and ε ě 0, Bx̄
ε fpxq is nonempty closed and convex.

2. If 0 ď ε ď ε1, then Bx̄
ε fpxq Ď Bx̄

ε1fpxq.

3. If x P intpdompfqq and ε ě 0, Bx̄
ε fpxq is bounded.

4. If 0 P Bx̄
ε fpx̄q, then for any ε1 ą ε, x̄ is an ε1´local minimizer of f .

Proof. Let us proof statement 4, since 1 ´ 3 are direct from the definition. If 0 P Bx̄
ε fpx̄q,

then by definition, 0 P BεF
x̄px̄q. Therefore, x̄ is a global minimizer of the convex function

F x̄: for all x P Rn,
fpx̄q ď fpxq ` ε `

ρ

2
}x ´ x̄}2.

In particular, for any δ ą 0 and x P Bpx̄, δq,

fpx̄q ď fpxq ` ε `
ρ

2
δ2,

and the result follows by taking ε1 “ ε `
ρ

2
δ2.

Variational principles seek to characterize properties of a point that can be
extended to a neighborhood. Applications of these principles ca be found in optimization,
partial differential equations, equilibrium problems, among others. For example, one of
the most acclaimed variational principles, Ekeland’s variational principle [29, Proposition
1.43], states that approximate minimizers of functions are close to minimizers of a per-
turbed problem. Along the same lines, we find the Brøndsted-Rockafellar theorem [48],
used in [19] and Chapter 3 to study the convergence of ε´subgradient descent methods.

The next result follows this idea using the concept of approximate subdif-
ferential for weakly convex functions, not only characterizing proximity of points, and
subgradients, but also of function values.

Theorem 1.2 (Variational principle). Given f P w ´ convρpRnq, α ą 0, ε ě 0, consider
x̄ P dompfq, and v P Bx̄

ε fpxq. Then, there exist xε P Rn and vε P Rn such that

vε P Bfpxεq ` ρp
?

ε ` }x ´ x̄}qBp0, 1q. (1.9)
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Furthermore, there exists γ P r´1, 1s, such that

}xε ´ x} ` α|xv, xε ´ xy| ď
?

ε

}vε ´ p1 ` αγ
?

εqv} ď
?

ε

|xvε ´ v, xε ´ xy| ď ε

|xvε, xε ´ xy| ď ε ` α´1?
ε

|fpxεq ´ fpxq| ď p1 ` ρqε ` α´1?
ε `

3ρ

2
}x ´ x̄}2.

(1.10)

Proof. Apply [49, Proposition 1.1] to F x̄ P convpRnq and v P BεF
x̄pxq, obtaining the

existence of a pair pxε, vεq such that vε P BF x̄pxεq, for which the first four estimates in
(1.10) hold, and

|F x̄pxεq ´ F x̄pxq| ď ε ` α´1?
ε. (1.11)

Furthermore, from the definition F x̄

vε P Bfpxεq ` ρpxε ´ x̄q, (1.12)

with
}xε ´ x̄} ď }xε ´ x} ` }x ´ x̄}

ď
?

ε ` }x ´ x̄},

where we use the triangle inequality in the first line, and the first estimate of (1.10) in
the second inequality. Thus, (1.9) follows.

Furthermore, from the triangle inequality, we obtain

|fpxεq ´ fpxq| ´
ρ

2
}xε ´ x̄}2 ´

ρ

2
}x ´ x̄}2 ď

ˇ

ˇ

ˇ
fpxεq ´ fpxq `

ρ

2
}xε ´ x̄}2 ´

ρ

2
}x ´ x̄}2

ˇ

ˇ

ˇ

“ |F x̄pxεq ´ F x̄pxq|

ď ε ` α´1?
ε,

where we use the definition of F x̄ in the second line, and (1.11) in the third line. This
yields

|fpxεq ´ fpxq| ď ε ` α´1?
ε `

ρ

2
}xε ´ x̄}2 `

ρ

2
}x ´ x̄}2.

Moreover, from the triangle inequality, we also have

}xε ´ x̄}2 ď
`

}xε ´ x} ` }x ´ x̄}
˘2

ď
`?

ε ` }x ´ x̄}
˘2

ď 2ε ` 2}x ´ x̄}2,

where the second inequality follows from the first estimate in (1.10). Hence,

|fpxεq ´ fpxq| ď ε ` α´1?
ε ` ρε `

´

ρ `
ρ

2

¯

}x ´ x̄}2.

This last inequality corresponds to the fifth estimate in (1.10).
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The previous variational principle can be employed to prove an outer semicon-
tinuity property for the subdifferential of weakly convex functions.

Corollary 1.1. Given f P w ´ convρpRnq, consider x̄ P dompfq. Then, there exist txku Ď

Rn and tvku Ď Rn, such that vk P Bfpxkq `
ρ

k
Bp0, 1q, xk ÝÑ

f
x̄, and xvk, xk ´ x̄y Ñ 0.

Moreover, any cluster point of the sequence tvku satisfying these properties, whenever
they exist, belongs to Bfpx̄q.

Proof. Similarly as in the proof of [49, Corollary 1.2], for each k P Nzt0u, apply Theo-
rem 1.2 with α “ 1, εk “

1
k2 , and x̄ “ x, to some uk P Bx̄

εn
fpx̄q, obtaining sequences txku

and tvku, such that vk P Bfpxkq `
ρ

k
Bp0, 1q, and

}xk ´ x̄} ` |xuk, xk ´ x̄y| ď
1
k

|fpxkq ´ fpx̄q| ď p1 ` ρq
1
k2 `

1
k

,

|xvk, xk ´ x̄y| ď
1
k2 `

1
k

.

Taking the limit as k Ñ `8 yields the convergence properties. Let v‹ be a
cluster point of tvku. From (1.12), vk P BF x̄pxkq, any x P dompfq,

F x̄pxq ě lim sup
kÑ`8

␣

F x̄pxkq ` xvk, x ´ xky
(

“ lim sup
kÑ`8

␣

F x̄pxkq ` xvk, x ´ x̄y ` xvk, x̄ ´ xky
(

ě lim inf
kÑ`8

␣

F x̄pxkq ` xvk, x ´ x̄y
(

` lim sup
kÑ`8

xvk, x̄ ´ xky

“ lim inf
␣

F x̄pxkq ` xvk, x ´ x̄y
(

ě F x̄pxq ` xv‹, x ´ x̄y,

where in the second inequality we use algebra of lim inf and lim sup, the fact that xvk, x̄ ´

xky Ñ 0 in the second equality, and the identity F x̄px̄q “ fpx̄q, xk ÝÑ
f

x̄, and vk Ñ v‹ (up

to a subsequence, if necessary), in the last line. Therefore, v‹ P BF x̄px̄q “ Bfpx̄q.

1.4 Error bounds and Kurdyka-Łojasiewicz inequality
Error bounds are upper estimates of the distance to solutions (or critical points)

of a given optimization problem. Their role is paramount for various reasons, among which
is convergence rate analyses; see, e.g., [50, 51, 47, 52], also Proposition 2.3, and Chapters
3–6. The Kurdyka-Łojasiewicz inequality establishes that for a certain family of functions,
up to a reparametrization, such functions are sharp around critical points. In optimization,
the Kurdyka-Łojasiewicz inequality plays a similar role as error bounds to shoe rates of
convergence.
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1.4.1 Subdifferential-based error bound

This subsection on error bounds is extracted from the introduction of [22].
Some of the notation is modified in order to comply with the rest of the text.

In this work, we shall mostly employ the following subdifferential-based error
bound. See, however, Definition 1.8 for the so-called natural residual error bound [51] for
constrained problems, and its relation with the subdifferential-based bound.

Definition 1.7 (Subdifferential error bound). We say the subdifferential error bound holds
for problem (1.7) where f : Rn Ñ R Y t`8u is bounded below, if for every f̄ ě inf

xPRn
fpxq,

there exist ϵ, ℓ ą 0 such that whenever x P Rn, fpxq ď f̄ , and w P Bfpxq X Bp0, ϵq, the
following is true:

distpx, Sq ď ℓ}w} ,

where S “ pBfq´1p0q is the set of critical points of f .

The error bound above is related to various other notions that appear in the
literature, such as the Kurdyka-Łojasiewicz inequality [53, 54], and quadratic growth of f

around the set of its critical points [55, 56], or the set of minimizers when the function is
convex [57, 58] (see Section 1.4.3 below). These conditions assure some regularity of the
function near a critical point. Furthermore, the subdifferential error bound is related to
metric subregularity of Bf (see Definition 1.13).

We next turn our attention to constrained smooth optimization problems, the
framework of [33], dealt with in Section 3.4. Consider the problem

min
xPC

fpxq , (1.13)

where C is a closed convex set, and f : Rn Ñ R is finite-valued and smooth. An equivalent
problem is to handle constraints by adding to f the indicator function of the feasible set.
It turns out that these two equivalent formulations are in fact different when it comes to
error bounds, and some subtle issues arise.

Specifically, as is well known, criticality of a point x in the sense of

0 P Bpf ` iCqpxq “ ∇fpxq ` NCpxq

is equivalent to the condition

x ´ PCpx ´ ∇fpxqq “ 0 .

Hence, one can attempt to measure the distance to the set of critical points S by the vio-
lation of the projection equality above, or by the violation of the subdifferential inclusion
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above. It so happens that, at least in general, these are not the same. We next review the
relations between the corresponding error bounds.

The subdifferential error bound would just read exactly the same as in Defini-
tion 1.7, using f `iC instead of f therein (then w P ∇fpxq`NCpxq). The projection-based
error bound states the following.

Definition 1.8 (Projection error bound). We say the projection error bound holds for
problem (1.13) where f : Rn Ñ R is differentiable and bounded below, if for every f̄ ě

inf
xPC

fpxq, there exist ϵ, ℓ ą 0 such that whenever x P C, }x ´ PCpx ´ ∇fpxqq} ď ϵ, and
fpxq ď f̄ , the following is true:

distpx, Sq ď ℓ}x ´ PCpx ´ ∇fpxqq} .

The projection error bound is a natural way to measure violation of stationarity
in convexly-constrained problems, used in many developments; see, e.g., [33, 59, 60].

Clearly, for problem (1.13) with smooth f , Definition 1.7 and Definition 1.8
amount to the same if C “ Rn (or if S is in the interior of C). For constrained problems,
there are two cases when these error bounds are equivalent. The first one is when the
critical point is isolated, see [51, Proposition 6.2.4], [47, Proposition 1.31]. In that case,
the projection error bound means the semistability property [47, Definition 1.29]. The
second one when the two bounds are equivalent is when C is a generalized box in Rn,
i.e., C is defined by bound constraints on the variables (some bounds can be infinite), see
[61, Theorem 2]. To the best of our knowledge, in other settings the relations between
the subdifferential and projection error bounds are not known. However, the following
simple argument shows that when the gradient of f is Lipschitz-continuous, the projection
residual is bounded above by a multiple of distpx, Sq, always. Then, if the subdifferential
error bound holds, the right-hand side of (1.14) is of order no less than the projection
residual. Hence, in principle, the subdifferential error bound can hold when the projection
variant does not. Note that this is meant as merely a side observation, to add to the
discussion of the comparison between the two error bounds.

Lemma 1.1. Let f : Rn Ñ R be a continuously differentiable function with L´Lipschitz
continuous gradient, and C Ď Rn be a nonempty closed convex set. Therefore, for any
x P Rn, the following inequality holds

}x ´ PCpx ´ ∇fpxqq} ď p2 ` Lq distpx, Sq. (1.14)

where S “ pBfq´1p0q is the set of critical points of f.
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Proof. Indeed, for each x let ppxq P PSpxq. Then,

}x ´ PCpx ´ ∇fpxqq} “ }x ´ PCpx ´ ∇fpxqq ´ rppxq ´ PCpppxq ´ ∇fpppxqqs}

ď }x ´ ppxq} ` }PCpx ´ ∇fpxqq ´ PCpppxq ´ ∇fpppxqqq}

ď distpx, Sq ` }x ´ ∇fpxq ´ rppxq ´ ∇fpppxqqs}

ď p2 ` Lq distpx, Sq ,

where in the first equality we use the fact that ppxq “ PCpppxq ´ ∇fpppxqqq, the second
inequality follows from the nonexpansiveness of the projection operator PC , and the last
inequality is by the Lipschitz continuity of the gradient of f .

1.4.2 Kurdyka-Łojasiewicz inequality in optimization

As mentioned in [62], tame functions, and more specifically, definable functions
provide a suitable setting on which the variational analysis theory properly works. The im-
portance of such class of functions lies in the fact that the Kurdyka-Łojasiewicz inequality,
a generalized form of the Łojasiewicz inequality, is satisfied by definable functions.

The Łojasiewicz inequality was used by the author in [63] to study the conver-
gence of bounded trajectories of gradient dynamical systems to critical points of certain
type of C1 functions. It was first proven valid for real-analytic functions in [64]. For an
open set U Ď Rn, a function f : U Ñ R is called real-analytic on U if for every x̄ P U ,
there exists a neighborhood V Ď U of x̄, such that f can be represented as a convergent
power series in V .

Proposition 1.9. Let f : U Ñ R be a real-analytic function defined on a open domain

U Ď Rn. For all x̄ P U there exists θ P

„

1
2

, 1
˙

and a neighborhood V Ď U such that for

all x P V ,
|fpxq ´ fpx̄q|θ

}∇fpxq}
remains bounded.

Kurdyka introduced a generalization of the Łojasiewicz inequality in [53], cur-
rently known as the Kurdyka-Łojasiewicz inequality (KŁ inequality for short).

Before presenting the formal definition of the KŁ inequality, we need to in-
troduce the concept of desingularizing function (see [65]). For that, we use the following
notation: for f P R, the level set of f at level f is defined as rf ď f̄ s :“ tx P Rn :
fpxq ď f̄u. Additionally, for f P R, the slice of f at levels f and f is similarly defined
as rf ď f ď f̄ s :“ tx P Rn : f ď fpxq ď f̄u. The sets rf ă f̄ s and rf ă f ă f̄ s can be
analogously defined.



Chapter 1. Variational Analysis tools 39

Definition 1.9. Given r0 P p0, `8s, a function φ : r0, r0q Ñ R` is said to be a desingu-
larizing function if

• φp0q “ 0,

• φ is continuous on r0, r0q, and continuously differentiable on p0, r0q, and

• for all r P p0, r0q, φ1prq ą 0.

Moreover, for x̄ P Rn and a neighborhood U of x̄, the set

U X rfpx̄q ă f ă fpx̄q ` ηs

is called a Kurdyka-Łojasiewicz neighborhood of x̄.

Originally in [53], the KŁ inequality was formulated for differentiable functions,
and it was then extended in [54] for nonsmooth functions.

Definition 1.10 (KŁ inequality). A proper lsc function f : Rn Ñ R Y t`8u with open
domain is said to satisfy the KŁ inequality around x̄ P dompBfq, if there exist r0 P p0, `8s,
a neighborhood U of x̄ and a desingularizing function φ defined on r0, r0q, such that for
all x P U X rfpx̄q ă f ă fpx̄q ` ηs

φ1pfpxq ´ fpx̄qq distp0, Bfpxqq ě 1.

The parlance desingularizing is related to the fact that the KŁ inequality holds
for any noncritical point [66, Remark 4(b)]. The function φ in the above definition is called
desingularizing because it reparametrizes the function f in such a way that around any
critical point x̄, Bpφ˝fqpx̄q does not contain 0, meaning that x̄ is an isolated critical point
surrounded by nonsingular points.

A noticeable particular case corresponds to taking the desingularizing function
to be φprq “ cr1´θ, for some constants c ą 0 and θ P r0, 1q (cf. Proposition 1.9).

Definition 1.11 (θ´KŁ inequality). A proper lsc function f : Rn Ñ R Y t`8u with
open domain is said to satisfy the KŁ inequality with exponent θ, or simply the θ´KŁ
inequality, around x̄ P dompBfq, if there exist c, η ą 0, θ P r0, 1q, and a neighborhood U

of x̄, such that for all x P U X rfpx̄q ă fpxq ă fpx̄q ` ηs,

distp0, Bfpxqq ě cpfpxq ´ fpx̄qqθ.

A distinguishable class of functions that satisfy the KŁ inequality is the semi-
algebraic family, corresponding to those functions whose graph can be described as the
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solutions of finitely many polinomyal equations and inequalities. This result was originally
proven for a broader class of functions that generalize the semialgebraic family, the class
of functions defined in a o-mininal structure, in the differentiable case in [53], and later
extended to the nonsmooth case in [54].

1.4.3 Relationships between regularity conditions

Historically, different regularity conditions have been used to study properties
of convergent methods, see [67, 33, 19, 68, 18, 69] and references therein. The following
notion, sometimes referred to as zero-order error bound [67], measures the distance to the
set of critical points with the corresponding function values.

Definition 1.12 (Quadratic growth). A proper lsc function f : Rn Ñ R Y t`8u with a
nonempty set of critical points S, is said to have quadratic growth around S, if for any
x̄ P S, there exist a neighborhood U of x̄, and a constant c ą 0, such that for all x P U ,

fpxq ě fpx̄q `
1
c2 distpx, Sq2

Other commonly used notion of regularity involves the subgradients around
a critical point, instead of the function values. The following definition resembles the
subdifferential error bound, although it only involves close points to a given critical point
in the usual sense, and not in the f´attentive sense.

Definition 1.13 (Metric subregularity). A proper lsc function f : Rn Ñ R Y t`8u with
a nonempty set of critical points S, is said to be metrically subregular at x̄ P pBfq´1p0q,
if there exists a neighborhood U of x̄ and a neighborhood V of 0, such that for all x P U

and w P Bfpxq X V

distpx, Sq ď c2}w}

In the literature, Definition 1.13 is called metric subregularity of the subdiffer-
ential at x̄ for 0 P Bfpx̄q. Here, by extension, we say f possesses the property, since we
are mainly interested in optimization problems. The same observation can be made for
Definition 1.14 below.

Regularity assumptions associated with the inverse of the subdifferential can
also be studied. For f P convpRnq, we know pBfq´1 “ Bf˚ (cf. (1.6)). The following notion
establishes a bound for a localization of the inverse of the subdifferential in terms of
subgradients. It is called in [70] as local upper Lipschitz property, used in [71] to deduce rate
of convergence of the proximal point algorithm, and in [19] to obtain rate of convergence
of ε´subgradient methods (referred as inverse growth condition therein).
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Definition 1.14 (Calmness). For a proper lsc function f : Rn Ñ R Y t`8u with
nonempty set of critical points S, we say pBfq´1 is calm at 0 for x̄ if there exist µ ą 0, a
neighborhood U of x̄, and a neighborhood V of 0, such that for all w P V

pBfq´1pwq X U Ď S ` µ}w}Bp0, 1q (1.15)

We first study the relationship between the aformetioned concepts of regularity
in the presence of convexity.

Simplifications in the convex setting

For any function f P convpRnq, employing neighborhoods U of a minimizer x̄

is equivalent to using KŁ neighborhoods of the form U X rfpx̄q ă f ă fpx̄q ` ηs, for some
η ą 0. Indeed, if U is a nontrivial neighborhood of x̄ for nonconstant f , there exists x0 P U

such that fpx̄q ă fpx0q. Setting η “ fpx0q ´ fpx̄q ` 1, then U X rfpx̄q ă f ă fpx̄q ` ηs is a
nontrivial neighborhood of x̄. The KŁ slice rfpx̄q ă f ă fpx̄q ` ηs emerges as a necessity
for nonconvex functions, to capture the local behavior of f around x̄, the same reason for
which the use of the f´attentive convergence is needed.

The following result summarizes the relationships between different regularity
conditions in the convex case. Note that for convex f , the set of critical points corresponds
to the set of global minimizers.

Proposition 1.10. For any function f P convpRnq with a nonempty set of minimizers
S, the following properties are equivalent for a point x̄ P S.

(a) f satisfies the KŁ inequality with exponent θ “ 1{2 around x̄.

(b) f has quadratic growth around S for x̄.

(c) f is metrically subregular at x̄ P S.

(d) Bf˚ is calm at 0 for any x̄ P S.

Proof. First, if f satisfies the KŁ inequality with exponent θ “ 1{2 around x̄, the as-
sociated desingularizing function φprq “ cr

1
2 has the moderate behavior near the origin

property of [67, Lemma 4]. Hence, in view of [67, Theorem 5], (a) and (b) are equivalent.
As mentioned in [68] and proved in [57, Theorem 3.3], (b) and (c) are equivalent. Finally,
the equivalence between (c) and (d) follows from [72, Theorem 3.2].
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Nonconvex case

For the more general case, regularity conditions can be expressed in terms of
the following notion that extends the idea of the norm of the derivative of a differentiable
function, while in the convex case, it corresponds to the minimal subgradient norm (see
[55]).

Definition 1.15 (Slope). For a function f : Rn Ñ R Y t`8u and a point x̄ P dompfq,
the slope of f at x̄ is defined as

|∇f |px̄q “ lim sup
xÑx̄

max
`

fpx̄q ´ fpxq, 0
˘

}x̄ ´ x}

For a function f P w ´ convρpRnq, the slope of the function at x̄ P dompfq

coincides with the minimal subgradient norm [65, Lemma 43], namely

|∇f |px̄q “ distp0, Bfpx̄qq. (1.16)

In view of this identity, the following relations hold for the class of weakly con-
vex functions. Some other relationships between regularity conditions that are commonly
used in the literature can be found in [73, Proposition 2] and [74].

Proposition 1.11. For any function f P w ´ convρpRnq, and a point x̄ P dompfq:

1. The subdifferential error bound of Definition 1.7 is sufficient for the 1{2´KŁ in-
equality to hold around x̄.

2. The θ´KŁ inequality for some θ P p0, 1q implies the following level-error bound: for
some neighborhood U of x̄, constants c1 ą 0 and η1, it holds for all x P U X rfpx̄q ă

f ă fpx̄q ` η1s,
distpx, rf ď fpx̄qsq ď c1 distp0, Bfpxqq

1´θ
θ .

3. Additionally, if x̄ is a local minimizer, then the subdifferential error bound of Defi-
nition 1.7 implies the quadratic growth condition of Definition 1.12.

Proof. The first relation follows from [55, Proposition 3.8]. The θ´KŁ inequality is a suffi-
cient condition for the level-error bound in view of [55, Theorem 3.7]. The final statement
stems from [56, Corollary 3.2].

For structured optimization problems, [75, Theorem 4.1] offers a result showing
a relationship between the projection error bound and the KŁ inequality. The following
proposition is a special case for constrained optimization problems.
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Proposition 1.12. For a continuously differentiable function f : Rn Ñ R with locally
Lipschitz continuous gradient, and a nonempty closed convex set C Ď Rn, consider prob-
lem (1.13). Suppose the set of critical points S “ pBrf ` iCsq´1p0q is nonempty, and the
projection error bound of Definition 1.8, and the proper separation of isocost surfaces prop-
erty of Definition 1.1 hold. Then, the 1{2´KŁ inequality holds true around any critical
point x̄.

As pointed out by a referee of [22], possible extensions when using other
Łojasiewicz exponents different from θ “

1
2

might lead to sublinear or superlinear rates
of convergence guarantees for methods complying with the descent methods described in
Chapter 3, depending on the value of θ, properties of the model function used to construct
the specific algorithm, and possibly other assumptions.

As mentioned in Section 1.4.1 and shown in Chapter 3 below, subdifferential-
based error bounds, or first-order error bounds, are utilized to analyze convergence rates
of algorithms. Zero-order error bounds, that is, error bounds based on function values,
can be used for the same purpose [67, 76]. The following concept can be regarded as a
zero-order error bound that measures the distance to a level set, as introduced in [77].

Definition 1.16 (Epi-metric subregularity). A proper lsc function f : Rn Ñ RYt`8u is
said to be epi-metrically subregular at x̄ P dompfq, if there exist K ą 0 and a neighborhood
U of x̄, such that for all x P U ,

distpx, rf ď fpx̄qsq ď K maxpfpxq ´ fpx̄q, 0q. (1.17)

In the following proposition, Bąfpxq denotes the outer limiting subdifferential
at x̄, given by

Bąfpx̄q “ tv P Rn : Dxk ÝÑ
f

x̄, fpxkq ą fpx̄q, B̂fpxkq Q vk Ñ vu.

Note that Bąfpx̄q Ď Bfpx̄q.

Proposition 1.13. For any f P w ´ convρpRnq, the conditions below are equivalent:

(a) f is epi-metrically subregular at px̄, fpx̄qq with constant K.

(b) K distp0, Bąfpx̄qq ě 1.

(c) K lim inf t|∇f |pxq : }x ´ x̄} ď ε , fpx̄q ă fpxq ă fpx̄q ` Kεu ě 1.

Proof. The equivalence between items (b) and (c) and that item (c) implies item (a) is [78,
Theorem 6.6]. To show the converse, for contradiction purposes, suppose that for K ą 0
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and all x in a neighborhood U of x̄, (1.17) holds, but K distp0, Bąfpx̄qq ă 1. Then, there
exist v P Bąfpx̄q and ε ą 0 such that }v} ď K´1 ´ ε. By definition of Bąfpx̄q, for any
k P N, take xk, vk P Rn such that vk P B̂fpxkq, xk ÝÑ

f
x̄, fpxkq ą fpx̄q, and k0 ě 1 so that

for all k ě k0,
}vk} ď K´1 ´ ε. (1.18)

Let x̄k denote the projection of xk onto the level set rf ď fpx̄qs. We claim x̄k ÝÑ
f

x̄. In

fact, since there exists k1 ě k0 such that for all k ě k1, xk P U , then from (1.17) and
fpxkq ą fpx̄q, it follows for all k ě k1, distpxk, rf ď fpx̄qsq ď Kpfpxkq´fpx̄qq. As xk ÝÑ

f
x̄,

then }xk ´ x̄k} “ distpxk, rf ď fpx̄qsq Ñ 0, and thus x̄k ´ x̄ “ px̄k ´ xkq ` pxk ´ x̄q Ñ 0.
Furthermore, from Proposition 1.6, for any u P B̂fpx̄q,

fpx̄q ´ fpx̄kq ď
〈
u, x̄ ´ x̄k

〉
`

ρ

2
}x̄ ´ x̄k}2,

and using the Cauchy-Schwarz inequality and the fact that x̄k P rf ď fpx̄qs, it follows

|fpx̄kq ´ fpx̄q| ď }u}}x̄ ´ x̄k} `
ρ

2
}x̄ ´ x̄k}2.

Hence, x̄k Ñ x̄ yields |fpx̄kq ´ fpx̄q| Ñ 0, and thus x̄k ÝÑ
f

x̄.

Moreover, by virtue of Proposition 1.6 and vk P B̂fpxkq Ď Bfpxkq,

fpx̄kq `
ρ

2
}x̄k ´ xk}2 ě fpxkq `

〈
vk, x̄k ´ xk

〉
.

As x̄k ´ xk Ñ 0, for sufficiently large k it holds that ρ

2
}x̄k ´ xk} ď

ε

2
, and thus

fpxkq ď fpx̄kq ´
〈
vk, x̄k ´ xk

〉
`

ρ

2
}x̄k ´ xk}2

ď fpx̄kq `

´

}vk} `
ρ

2
}x̄k ´ xk}

¯

}x̄k ´ xk}

ď fpx̄kq `

´

}vk} `
ε

2

¯

}x̄k ´ xk}

ď fpx̄kq `

´

K´1 ´
ε

2

¯

}x̄k ´ xk} ,

where the second inequality follows from the Cauchy-Schwarz inequality, and (1.18) yields
the fourth inequality. Hence, rearranging terms in the above estimate, for all sufficiently
large k,

distpxk, rf ď fpx̄qsq “ }x̄k ´ xk} ě

´

K´1 ´
ε

2

¯´1 ´
fpxkq ´ fpx̄kq

¯

ą K
´

fpxkq ´ fpx̄kq

¯

.

contradicting (1.17).



45

2 Computational optimization tools

In this chapter, we review iterative methods of crucial importance for the
remainder of this work. In particular, we summarize convergence results of algorithms of
proximal type.

In practice, not only convergence guarantees of a method are of interest, but
also how fast the method converges to a solution of the problem to be solved. Of particular
interest is the linear rate of convergence, defined next. Given a sequence txku generated
by some algorithm, and a point x̄ known to be the limit of txku, we say txku converges
to x̄

• Q´linearly, or just linearly, if lim sup
kÑ`8

}xk`1 ´ x̄}

}xk ´ x̄}
“ q P p0, 1q.

• R´linearly if lim sup
kÑ`8

}xk ´ x̄}

qk
“ C, for some q P p0, 1q and C ą 0. Equivalently, for

all sufficiently large k P N, }xk ´ x̄} ď Cqk.

• Superlinearly if lim sup
kÑ`8

}xk`1 ´ x̄}

}xk ´ x̄}
“ 0.

In order to establish linear rates of convergence, common assumptions in the
literature are the properties reviewed in Section 1.4. Examples of how these properties are
used can be found in this section and throughout the subsequent chapters. Usually, super-
linear convergence requires extra assumptions, related to the precision of the computation
of iterates as they approach the limit.

We begin this chapter by examining the proximal point algorithm (PPA) [17]
and some inexact variants in Section 2.1, including proximal bundle methods. The PPA
serves as the basis of a plethora of methods, including the ones in this chapter. We
proceed in Section 2.2 with the study of splitting methods for optimization. In particular,
we focus on the Douglas-Rachford splitting (DRS) method, and the Progressive Hedging
(PH) algorithm for stochastic optimization problems.

2.1 Proximal-type optimization methods
For a function f P convpRnq, the proximal point algorithm finds solutions to

problems of the form (1.7) by iteratively solving a regularized version of the original prob-
lem. Problem (1.8) can be addressed similarly, by modeling the constraint x P C in the
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objective function through the indicator function iC . For the iterative PPA mechanism to
be an implementable alternative to solving directly the problem, the regularized subprob-
lems should be simple. Proximal bundle methods rise as an alternative by approximating
the objective function using polyhedral models, and then solving a regularization of such
models.

2.1.1 The proximal point algorithm

The PPA works in a more general framework than optimization, for maximal
monotone operators. A set valued-mapping T : Rn Ñ Rn is monotone if xg´g1, x´x1y ě 0,
for g P T pxq, g1 P T px1q. The operator T is maximal monotone whenever its graph is
maximal for the inclusion, among the graphs of the class of monotone operators. The
problem of interest in the general setting is to find a point x P Rn such that

0 P T pxq. (2.1)

Equivalently, the problem can be formulated using the inverse operator, namely, x P

T ´1p0q. The PPA generates a sequence of points txku that converges to a zero of T , under
appropriate assumptions. When T is the subdifferential of a function f P convpRnq, such a
limit of txku is a global minimizer of f . All the methods in this dissertation are developed
for the operator T “ Bf , where f P convpRnq or f P w ´ convρpRnq.

The cornerstone of the PPA is a property of maximal monotone operators,
proved in [79]: given a maximal monotone operator T and a scalar t ą 0, for any x P Rn,
there exists a unique x` P Rn, such that x P pI ` tT qpx`q. This defines the resolvent of
T , the map JtT “ pI ` tT q´1, given by x` “ JtT pxq. In other words, for any x P Rn, x` is

uniquely determined by the inclusion x ´ x`

t
P T px`q. Equivalently, given x P Rn, there

exists a unique pair px`, g`q for which g` P T px`q, and x “ x` ` tg`.

For f P convpRnq, the unique x` P Rn such that x P pI ` tBfqpx`q satisfies

0 P Bfpx`q `
1
t

px` ´ xq.

This inclusion is the optimality condition of the optimization problem that regularizes
the original problem of minimizing f . In the optimization setting, the resolvent is usually
called the proximal point operator.

Definition 2.1 (Proximal point operator and Moreau envelope). For a proper lsc function
f : Rn Ñ R Y t`8u and t ą 0, the proximal point operator proxtf : Rn Ñ Rn is defined
as, for all x P Rn,

proxtf pxq “ arg min
yPRn

"

fpyq `
1
2t

}y ´ x}2
*

. (2.2)
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The optimal value of the minimization problem in (2.2) is called the Moreau envelope of
f with stepsize t ą 0, and denoted by etf . More precisely,

etfpxq “ inf
yPRn

"

fpyq `
1
2t

}y ´ x}2
*

.

In the general case, the proximal point operator could be empty-valued and etfpxq might
take the value ´8. If f is proper, lsc, and prox-bounded, that is, when there exists
t ą 0 and x P Rn, such that ef pxq ą ´8, then proxtf pxq is nonempty and compact [29,
Theorem 1.25], and ef is locally Lipschitz continuous at x [29, Example 10.32]. When
f P convpRnq, proxtf is a single-valued mapping [29, Theorem 12.12, Theorem 12.17], and
etf is finite-valued and differentiable, in such a way that

∇petf qpxq “
1
t

`

x ´ proxtf pxq
˘

. (2.3)

In the convex case, etf is also known as the Moreau-Yosida regularization of f . Observe
the same properties above hold for f P w ´ convρpRnq and 0 ă tρ ă 1, see [80].

The proximal point operator takes a simple form when f “ iC for some
nonempty closed convex set C. In this case,

proxtf pxq “ arg min
yPRn

"

iCpxq `
1
2

}y ´ x}2
*

“ arg min
yPC

"

1
2t

}y ´ x}2
*

“ PCpxq,

This identity plays a crucial role in Chapter 6. Observe also in this case

etf pxq “
1
2t

distpx, Cq2,

and thus
∇
`

distpx, Cq2˘ “ 2
`

x ´ PCpxq
˘

.

Exact proximal point algorithm

In the context of maximal monotone operators, for a sequence ttku Ď p0, `8q,
and a starting point x0 P Rn, the sequence of proximal points txku generated by the PPA
is defined as, for all k ě 0,

xk`1 “ JtkT pxkq.

In the special case of optimization, the PPA sequence obeys

xk`1 “ proxtkf pxkq.

The convergence of the PPA has been extensively studied. The first result was provided
in [17] tailored for maximal monotone operators.
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Proposition 2.1 (Convergence of PPA). Let T : Rn Ñ Rn be a maximal monotone
operator, and a sequence ttku Ď p0, `8q bounded away from 0, meaning there exists
tmin ą 0, such that for all k P N, tk ě tmin. Then, any bounded sequence txku generated
by the PPA converges to a solution of problem (2.1).

Remark 2.1. Under the assumptions of the previous proposition, txku is bounded if and
only if the set of zeros of T is nonempty.

Inexact proximal point algorithm: first naive approach

Inexact versions of the PPA have also been comprehensively analyzed, includ-
ing [17]. In inexact variants, the proximal point is approximately computed following
specific accuracy rules. A direct extension of the approximate criteria of [17] is examined

in [71]. Given r ą 0, ttku Ď p0, `8q, tεku Ď r0, `8q such that
`8
ÿ

k“0
εk ă `8, and a starting

point x0 P Rn, txku is generated satisfying the following approximation criteria

}xk`1 ´ proxtkf pxkq} ď εk min
`

1, }zk`1 ´ zk}r
˘

. (2.4)

The following result corresponds to the convergence of the inexact PPA given
by (2.4), and it also provides a condition (cf. Definition 1.13) under which linear/super-
linear convergence is obtained.

Proposition 2.2 (Convergence of an inexact PPA). Let T : Rn Ñ Rn be a maximal
monotone operator, such that the set of zeros is nonempty. Moreover, take a sequence
ttku Ď p0, `8q bounded away from 0. Then, any bounded sequence txku generated by the
inexact PPA of (2.4) converges to a solution of problem (2.1).

In addition, suppose there exist ℓ, δ ą 0, such that whenever x P Rn, w P T pxqX

Bp0, δq, distpx, T ´1p0qq ď ℓ}w}. Then, if ttku is a nondecreasing sequence, distpxk, T ´1p0qq

converges to 0 linearly. Furthermore, if tk Ñ `8, then distpxk, T ´1p0qq Ñ 0 superlinearly.

Remark 2.2. The superlinear convergence result states that, to speed up convergence, it
is necessary to drive tk to `8, meaning we basically require etf pxq « min f , making the
penalization in the proximal point subproblems increasingly neglectable. Additionally, in
(2.4) the right-hand side must be null in the limit (the series

ř

k εk is finite), therefore
forcing the inexact proximal point calculations to become asymptotically exact.

Inexact proximal point algorithm: a hybrid extragradient-proximal point version

Among the jungle of inexact variants of the PPA, the hybrid approximate
extragradient–proximal point algorithm [25] stands out by using a relative-error criteria
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to approximately compute proximal points. This inexact version of PPA employs certain
enlargement of operatorst, somewhat akin to the ε´subdifferential in Convex Analysis.
Given a maximal monotone operator T : Rn Ñ Rn, the ε´enlargement of T , denoted T ε,
is defined for x P Rn as

T εpxq “ tg P Rn| xg1 ´ g, x1 ´ xy ě ´ε, x1 P Rn, g1 P T px1qu.

The enlargement of an operator defines a perturbation of the problem 0 P T pxq, while
staying close to it. In particular, when T “ Bf for f P convpRnq, then T εpxq Ě Bεfpxq for
all x P Rn.

Algorithm 1 presents the hybrid approximate extragradient–proximal point
algorithm. The result that follows presents the convergence of this algorithm. This propo-
sition helps to build the basis of the convergence analysis of the method presented in
Chapter 6. Actually, the analysis in Chapter 6 can be deemed as an extension for the
optimization case of [25] with an extra projection step.

Algorithm 1 A Hybrid Approximate Extragradient–Proximal Point Algorithm
1: Initialization: choose t0 ą 0, σ0 P r0, 1q, ε0 ě 0, and x0 P Rn.
2: for k “ 0, 1, 2, . . . do
3: Acceptance test: find a pair pyk, vkq such that vk P T εkpykq, and

}tkvk ` yk ´ xk} ` 2tkεk ď σ2
k}yk ´ xk}2.

4: Approximal step: set xk`1 “ xk ´ tkvk. Define tk`1 ą 0, σk`1 P r0, 1q, and
εk`1 ě 0.

5: end for

Linear convergence of Algorithm 1 is obtained in [25] by assuming that T ´1 is
locally upper Lipschitzian at 0, a generalization of Definition 1.14 for operators [70]: there
exists some constant L ą 0, and a neighborhood U of 0, such that whenever g P T pxq XU ,
}y ´ x‹} ď L}g}, where x‹ is the (unique) solution to (2.1). We refer to Chapter 3, 4, and
6 for similar applications of this type of condition.

Proposition 2.3 (Convergence of Algorithm 1, [25]). For any maximal monotone opera-
tor T : Rn Ñ Rn, suppose problem (2.1) has a nonempty set of solutions. If the sequence
of stepsizes ttku is bounded away from 0, and the error tolerance σk “ σ P r0, 1q is kept
fixed, then the sequence txku generated by Algorithm 1 converges to a solution to (2.1).
Additionally, if T ´1 is locally upper Lipschitzian at 0, then txku converges linearly to the
unique solution of (2.1)

Remark 2.3. As the authors of [25] mention in a remark after the proof of Theorem
3.2 therein, by taking tk to infinity and allowing σk to tend to 0, the method converges
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superlinearly. Note in passing that driving σk to 0, forces εk to be asymptotically null
too, at a fast rate (the product tkεk tends to 0, with tk going to `8). A more detailed
explanation is given in Chapter 6.

2.1.2 Proximal bundle methods: an implementable form of the proximal point
algorithm

An acceptance test alternative to implement an inexact proximal step in op-
timization can be traced back to [81, 82], see also [83]. The idea is to replace f in (2.2)
with a simpler model function using the information generated along iterations. Proximal
bundle methods construct (polyhedral) models f̌k, and define the next iterate to be the
proximal point of the model at the best candidate generated so far.

Proximal bundle methods correspond to a stabilization of a simpler method
called cutting-planes method. We assume there exists a black-box that, given a point
x P Rn, returns the value fpxq and a subgradient gpxq P Bfpxq. In this way, given the
bundle of information

tpxi, f i, giq : i P Bku,

where f i “ fpxiq, gi “ gpxiq, and Bk “ t1, . . . , ku, the model defined by the end of
iteration k ´ 1 and used in iteration k is

f̌kpxq “ max
iPBk

tf i ` xgi, x ´ xiyu.

Due to convexity, f̌k is a lower estimation of f that is improved in each iteration to better
represent the graph of f , that is, f̌k ď f̌k`1 ď f for all k P N. The advantage of this
approach is the use of past accumulated information to construct an approximation of
the objective function, different from the memoryless gradient method.

The cutting-planes method defines the next iterate xk`1 to be the minimizer
of f̌kpxq over some fixed compact set X sufficiently large to contain at least one solution
of the original problem. Then, the subgradient linearization of the objective function at
xk`1 is attached to the model, and the procedure is repeated. Figure 4 illustrates the
cutting-planes model for fpxq “

1
2

x2 `
5
4

.

Although convergent [84, 30], the cutting-planes method may present a poor
numerical performance, since minimizers of f̌k are difficult to control (see [30, Example
1.1.2]), yielding a non-descent optimization method, possibly unstable, unless the graph of
the objective function has a special structure [85, Chapter 9]. For example, for polyhedral
functions, the cutting-planes model coincides with the function after a finite number of
iterations, and thus the method has finite termination.
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f

f̌k

x

y

Figure 4 – Cutting-planes model f̌k constructed after 3 iterations of the cutting-planes
method applied to fpxq “

1
2

x2`
5
4

, starting from x0 “
1
2

, and using X “ r´2, 2s

as the compact set over which minimization of the models is performed.

One option to stabilize the cutting-planes method is to add a quadratic term
to the model subproblem objective function. More specifically, given tk ą 0, instead of
minimizing f̌k over X, proximal bundle methods solve

min
xPRn

"

f̌kpxq `
1

2tk

}x ´ x̂k}2
*

, (2.5)

where tx̂ku is a sequence of centers representing candidate points of good quality. This
quality is assessed by means of a descent test: given an Armijo-like parameter m ą 0 and
the current center x̂k, once xk`1 is obtained as the solution to problem (2.5), check if

fpxk`1q ´ fpx̂kq ď m
`

f̌kpxk`1q ´ fpx̂kq
˘

. (2.6)

If (2.6) holds, declare a serious step and set x̂k`1 “ xk`1. Otherwise, declare a null step
and set x̂k`1 “ x̂k.

Figure 5 shows the cutting-planes model for fpxq “
1
2

x2 `
5
4

constructed
following the proximal bundle idea. Observe that the cutting-planes model constructed
by the proximal bundle method represents better the function near the minimizer than the
cutting-plane model in Figure 4, due to the fact that proximal bundle methods regularize
and stabilize the iterations with a quadratic perturbation.

The sequence tx̂ku of centers, or serious-step iterates, is a subsequence of txku of those
solutions to (2.5) that provide sufficient descent for the original objective function f

compared to its value at the current center, at least a fraction of the decrease the model
predicts at the candidate point xk`1. Hence, proximal bundle methods are of descent,
since tfpx̂kqu is nonincreasing.
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f
f̌k

x

y

Figure 5 – Cutting-planes model f̌k constructed after 3 iterations of the proximal bundle
method applied to fpxq “

1
2

x2 `
5
4

, starting from x0 “
1
2

, using m “
1
8

and

tk “
1
2

.

Proximal bundle methods can be deemed as an approximation of the PPA.
They differ from the inexact versions of the PPA in Section 2.1.1, inasmuch an exact
proximal step is performed for an approximation of f , whereas the method of (2.4) or Al-
gorithm 1 compute a point close to the true proximal point satisfying some absolute-error
or relative-error condition. See Proposition 6.5 for a relationship between the proximal
bundle descent inequality and the relative-error condition of Algorithm 1 in optimization
mode. Another difference is, since proximal bundle methods are constructive, convergence
of the null steps is provable. In this sense, bundle methods are genuinely implementable,
while the method of (2.4) and Algorithm 1 correspond to abstract patterns.

The parlance implementable form for proximal bundle methods comes from
[83], and refers to the fact that finding the exact proximal point (2.2), and other abstract
frameworks, could be, in principle, as costly as directly solving the original problem, while
problem (2.5) is much simpler.

Proximal bundle methods enjoy an additional feature, namely, implementable
stopping tests. Simply put, whenever the aggregate subgradient and the aggregate error
are smaller than a certain tolerance, the center x̂k is an ε´minimizer of f . More specifically,
at iteration k, we define the aggregate gradient

ĝk “
ÿ

iPBk

αk
i gi,

where αk
i P r0, 1s, satisfying

ř

iPBk
αk

i “ 1, are the simplicial multipliers associated with
the problem in (2.5). We also define the linearization error at x̂k, for each i P Bk, as

ek
i “ fpx̂kq ´

`

f i ´ xgi, x̂k ´ xiy
˘

,
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a nonnegative quantity due to the subgradient inequality for gi P Bfpxiq. In turn, we
define the aggregate error as

êk “
ÿ

iPBk

αk
i ek

i .

Using a transportation argument (see, for instance, [86, Lemma 10.8] or Proposition 3.3
below), ĝk P Bêkfpx̂kq, and thus whenever }ĝk} and êk are sufficiently small, then x̂k is
an approximate solution to min f . We also refer to the discussion pertaining (5.15) for a
similar argument.

The following result presents the convergence results of the basic proximal
bundle method. We refer the readers to [30, Chapter XV] for a detailed proof.

Proposition 2.4 (Convergence of proximal bundle methods). Let f P convpRnq and
consider problem (1.7). Suppose the set of solutions of this problem is nonempty.

(a) Suppose the sequence tx̂ku generated by the proximal bundle method satisfies (2.6)
infinitely many times for indices in a set K. If

ř

kPK tk “ `8, then tx̂ku is a mini-
mizing sequence. Additionally, if ttkukPK is bounded from above, then tx̂ku converges
to a minimizer of problem (1.7).

(b) Suppose the sequence tx̂ku generated by the proximal bundle method satisfies (2.6)
finitely many times, namely, there exists a tail of null steps: for some k̂ P N, for all
k ě k̂, xk does not satisfy (2.6). If ttkukąk̂ is nonincreasing and

ř

kąk̂

t2
k

tk´1
“ `8,

then x̂k̂ is a solution to problem (1.7).

Some adjustments can be made in the proximal bundle method described
above. For instance, the bundle Bk in iteration k can be taken to be a (proper) subset of
t1, . . . , ku, just keeping the active indices at the solution xk`1, that is, those i P t1, . . . , ku

such that f̌kpxk`1q “ f i ` xgi, xk`1 ´ xiy. This would lead to a simpler model, and thus
simpler problems to be solved at each iteration from a computational point of view, and
still preserve convergence (a feature impossible in cutting-planes). Another typical mod-
ification is to aggregate past linearizations, that is, take convex combinations of subgra-
dients gi and function values f i for i P Bk, in order to define the aggregate linearization
f̄k. Indeed, any convex model sandwiched between f̄k and f̌k preserves the convergence
properties of Proposition 2.4.

2.2 Operator splitting methods
We saw in Section 2.1.1 that the PPA can be applied to obtain a solution of the

problem 0 P T pxq, by iteratively solving a perturbation of the problem, namely, finding
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a x` P Rn such that 0 P T px`q `
1
t

px` ´ xq. When T has a block-separable structure,
a further specialized method can exploit this particular features in order to simplify the
iterations.

Suppose T “ A ` B, where A and B are maximal monotone operators. Com-
puting the resolvent of T can be costly, while separately computing the resolvents JtA

and JtB can be more efficient. The Douglas-Rachford (DR) splitting method capitalizes
on this assumption, and approximates one proximal step by performing operations for
each term separately.

2.2.1 Douglas-Rachford splitting

One iteration of DR is rooted in the following expresion [87, Eq. (DR)]:

uk`1 P JtkA

`

JtkBpI ´ tkAq ` tkA
˘

pukq.

Such sequence tuku is sometimes called shadow DR sequence, since uk “ JtkApskq, where
tsku conforms to

sk`1 “
`

JtkBp2JtkA ´ Iq ` I ´ JtkA

˘

pskq.

The DR method amounts to compute separate proximal steps for each term, once per
iteration, and then combine them to generate the next iterate. Algorithm 2 unravels
these operations by defining two copies of the same variable in each iteration, uk and vk,
and then performs a correction/coordination step using the difference vk ´ uk as direction
with unit stepsize.

Algorithm 2 Douglas-Rachford splitting method for monotone operators
1: Initialization: choose t0 ą 0 and s0 P Rn.
2: for k “ 0, 1, 2, . . . do
3: A´proximal step: uk “ JtkApskq.
4: B´proximal step: vk “ JtkBp2uk ´ skq.
5: Coordination step: sk`1 “ sk ` vk ´ uk. Define tk`1 ą 0.
6: end for

The convergence of Algorithm 2 in shown in [87, Theorem 3.15], and essentially corre-
sponds to proving that tsku converges to a fixed point of the operator JtkBp2JtkA ´ Iq `

I ´ JtkA.

Proposition 2.5 (Convergence of DRS). Let A, B : Rn Ñ Rn be two maximal monotone
operators, such that A ` B has a nonempty set of zeros. In the context of Algorithm 2, if
tk “ t for all k P N, then the sequences tuku and tvku converge to a solution u‹ to the
problem 0 P pA ` Bqpxq, while the sequence tsku converges to a point s‹ “ u‹ ` tw‹ such
that w‹ P Apu‹q, and ´w‹ P Bpu‹q.
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In the context of optimization, the DR decomposition approach can be used
to solve problems of the form

$

&

%

min
xPRn

φ1pxq ` φ2pzq

s.t. Mx “ z ,
(2.7)

where φ1 P convpRnq, φ2 P convpRmq, and M P Rmˆn [87]. For this formulation, φ2

usually represents the original objective function, and φ1 is used as a regularization or
penalization function.

In order to apply Algorithm 2, we take A “ Bφ1 and B “ B
`

φ2 ˝ M
˘

. Using
constant tk “ t: starting from s0 P Rn, define u0 “ proxtφ1ps0q. Then, for every k “

0, 1, 2, . . . , define zk as step 4 of Algorithm 2

zk “ arg min
zPRn

"

φ2pMzq `
1
2t

}z ´ p2uk ´ skq}2
*

“ arg min
xPRn

"

φ2pMzq `
1
2t

}z ´ uk}2 `
1
t

xz ´ uk, sk ´ uky `
1
2t

}sk ´ uk}2
*

“ arg min
zPRn

"

φ2pMzq `

B

sk ´ uk

t
, z

F

`
1
2t

}z ´ uk}2
*

,

where the second equality is obtained after expanding squares, and the third equality

yields from discarding constant terms. In the last line, define wk “
sk ´ uk

t
, then line 5

of Algorithm 2 implies

wk`1 “
sk`1 ´ uk`1

t

“
sk ` vk ´ uk ´ uk`1

t

“ wk `
vk ´ uk`1

t
.

Then, we define xk as step 3 of Algorithm 2 in the following iteration, that is,

xk “ uk`1

“ proxtφ1psk`1q

“ proxtφ1psk ` zk ´ ukq

“ proxtφ1pzk ` twkq,

where the third line follows from line 5 of Algorithm 2, and in the last equality we use
the definition of wk.

Algorithm 3 shows DRS applied to the optimization problem (2.7), and sum-
marizes the above calculations. Here, we invert the order of proximal steps in order to first
perform the minimization problem associated with the objective function φ2. and then
the minimization problem corresponding to the regularization/penalization φ1. More on
this change of the order of the proximal steps will be discussed in Section 2.2.2.
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Algorithm 3 Douglas-Rachford splitting method: optimization mode
1: Initialization: choose t ą 0 and z´1 P Rn, w0 P Rn.
2: for k “ 0, 1, 2, . . . do

3: φ2´proximal step: zk “ arg min
zPRn

"

φ2pMzq `
@

wk, z
D

`
1
2t

}z ´ xk´1}2
*

.

4: φ1´proximal step: xk “ arg min
xPRn

"

φ1pxq `
1
2t

}x ´ pzk ` twkq}2
*

.

5: Coordination step: wk`1 “ wk `
zk ´ xk

t
.

6: end for

Convergence of Algorithm 3 follows from Proposition 2.5, under mild regularity
assumptions, as shown in [87, Proposition 3.40]. More specifically, we require the following
two conditions:

1. Bpφ1 ` φ2 ˝ Mq “ Bφ1 ` Bφ2 ˝ M : separability of the subdifferential of the sum of
the two involved functions is essential to guarantee that solving 0 P Bφ1pxq ` Bpφ2 ˝

Mqpxq is equivalent to solving problem (2.7), so that the splitting is meaningful.
The subdifferential of the sum can be separated whenever, for instance,

ripdompφ1qq X ripM´1pdompφ2qqq ‰ H. (2.8)

This condition holds, for example, when both φ1 and φ2 are polyhedral functions (cf.
[87, Proposition 3.23]). This assumption generalizes to the transversality condition
B8φ1pxq X ´B8pφ2 ˝ Mqpxq “ t0u of [29, Corollary 10.9].

2. Problem (2.7) needs to have at least one solution, so that the set of zeros of Bpφ1 `

φ2 ˝ Mq is nonempty.

Proposition 2.6 (Convergence of DR in optimization mode: convex case). Consider
problem (2.7) for φ1 P convpRnq, φ2 P convpRmq, such that problem (2.7) has a nonempty
set of minimizers, and condition (2.8) holds. Then, the sequences txku and tzku converge
to a solution x‹ to problem (2.7), and the sequence twku converges to a point w‹ such that
´w‹ P Bφ1px‹q, and w‹ P Bpφ2 ˝ Mqpx‹q.

The DRS method can separately exploit the properties of the functions of
problem (2.7) to compute the proximal steps in Algorithm 3. In particular, for stochastic
optimization problems, the splitting amounts to decouple the problem, since the objective
function has a (further) separable structure, and the constraints couple the constraints.
The next subsection describes DRS for stochastic optimization, also known as Progressive
Hedging.
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2.2.2 Progressive Hedging for stochastic optimization

A general multistage stochastic programming problem can be written as
$

&

%

min
x

F pxq

s.t. x P N ,
(2.9)

where F : Rn Ñ R Y t`8u is a proper lsc function, and N is the linear subspace of
nonanticipative policies. Decisions are made throughout a time horizon divided in T stages,
such that in each stage the underlying uncertainty is partially known and progressively
revealed.

Figure 6 illustrates nonanticipativity in a scenario tree: in the beginning of
stage t “ 1 (first level/row), no uncertain information is known, and after deciding the
policy associated with t “ 1, part of the information is disclosed, that is, the random
variable ξ1 is realized. This means that in the beginning of the time horizon, all scenarios
look alike, since there is no information available to distinguish them. This is represented
with the horizontal dashed line in the first row of Figure 6b: all the connected nodes are
the same root node of Figure 6a. Then, in state t “ 2 (second level/row), it is possible
to differentiate part of the scenarios using the revealed information, and thus a decision
is made taking that into consideration. In Figure 6b we connect with a dashed line those
nodes in the second row that in Figure 6a represent just one. After deciding the policy
of stage t “ 2, the random variable ξ2 is realized, and no uncertain information is left
to revealed. In the third and final stage t “ 3, nonanticipativity does not enforce any
constraint on the decisions variables.

The objective function has the special feature of being decomposable for dif-
ferent scenarios, namely,

F pxq “

S
ÿ

s“1
psFspxsq,

where S is the (finite) number of possible scenarios of the underlying random variable of

the problem, ps ą 0 is the probability of occurrence of scenario s, such that
S
ÿ

s“1
ps “ 1,

and Fs : Rns Ñ RY t`8u are proper lsc functions. The relationship between dimensions

is n “

S
ÿ

s“1
ns.

An extended formulation would be, for instance (5.1), where the scenario-
separable constraint sets Cs are explicitly expressed. In this case, for each scenario s “

1, . . . , S, if Cs is nonempty and closed, and fs : Rns Ñ R Y t`8u is proper and lsc, then
each Fs “ fs ` iCs is proper and lsc, and thus so is F . Therefore, (2.9) is as general as
(5.1).
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(a) Scenario tree

ξ2 ξ2 ξ2

ξ1

ξ2 ξ2

ξ1

(b) Nonanticipativity constraint

Figure 6 – Scenario tree for 3 stages, depicting with dashed lines the nonanticipativity
constraint of stochastic programming.

For stochastic optimization problems, Rn is endowed with a weighted inner
product defined as follows:

xx, zyS “

S
ÿ

s“1
psxxs, zsy,

where x “ pxsqS
s“1, z “ pzsqS

s“1, and x¨, ¨y denotes the usual inner product in Rns (possibly
defined in spaces of different dimension). We equip Rn with the induced weighted norm
} ¨ }S “

a

x¨, ¨, yS, while } ¨ } denotes the usual Euclidean norm of Rns induced by the inner
product x¨, ¨y.

The Progressive Hedging algorithm (PHA) of Rockafellar and Wets [24] is a
scenario-based decomposition method that generates a solution to (2.9). The PHA exploits
the decomposable structure of problem (2.9), by appropriately handling the coupling
constraint x P N . In fact, the PHA executes two levels of decomposition: first, it splits
(in the sense of Section 2.2.1) the separable objective function F and the non-separable
nonanticipativity constraint, and secondly, it further decomposes the objective function
for different scenarios.

In Section 5.2.2 below, it is explained that the PHA iteratively solves a scenario-
separable approximation of the Augmented Lagranian of problem (2.9), and then proceeds
to improve the approximation and guarantee feasibility by projecting onto N . A similar
approach is taken in [27], overcoming the nonseparability of the Augmented Lagrangian
by means of what the authors call a nonlinear Jacobi approach. More precisely, for each
scenario s in parallel, in each iteration the Augmented Lagrangian is minimized over the
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variables associated with the scenario s only, keeping the rest fixed, and then perform
a correction step to improve the approximation. Another approach, called Progressive
augmented Lagrangian method [88], uses an Augmented Lagrangian approach to solve an
inner approximation of an optimization problem with probabilistic constraints. This ap-
proximation is progressively improved throughout iterations, a principle that the method
of Chapter 5 also applies.

Originally, the PHA was shown by Rockafellar and Wets [24] to be a particular
instance of the Spingarn’s splitting method [89]. As shown in [90, Chapter 3], the PHA
is an application of Douglas-Rachford splitting of Section 2.2.1. More specifically, the
splitting occurs between the decomposable function F , and the simple indicator function
iN , in such a way that particular properties of both functions are separately exploited.

Originally, the PHA was derived in [24] by applying the proximal point algo-
rithm to certain maximal monotone operator that captures problem (2.9) in a primal–dual
fashion. The PHA can be deduced directly from Algorithm 2 (cf. [90]) or Algorithm 3, as
follows. First, we reformulate (2.9) in a ready-to-split manner:

min
xPRn

F pxq ` iN pxq.

Then, taking φ2 “ F , φ1 “ iN , and M “ I in (2.7), yields Algorithm 5 below. In fact,
the φ1´step from Algorithm 3 corresponds to a projection step:

xk “ arg min
xPRn

"

iN pxq `
1
2t

}x ´ pzk ` twkq}2
*

“ arg min
xPN

"

1
2t

}x ´ pzk ` twkq}2
*

“ PN rzk ` twks

“ PN rzks ` tPN rwks.

If w0 P N K, by an induction argument, wk P N K for all k P N. Indeed, suppose wk P N K,
then PN rwks “ 0, and xk “ PN rzks. Thus zk ´ xk “ PN Krzks P N K. Therefore, wk`1 “

wk ` t´1pzk ´ xkq P N K. Bearing in mind this observation, Algorithm 4 below states the
Progressive Hedging algorithm of [24] derived from Algorithm 3. Note that in [24] the
proximal parameter is r “

1
t
.

Note that by swapping the order of the proximal steps in Algorithm 3, in
Algorithm 4 we first solve the problem associated with φ2 “ F , and then we perform the
projection step, the step corresponding to φ1.

As explained in [23] (see Chapter 5 below), the projection step 4 of Algorithm 4
is a simple calculation, since it corresponds to a conditional expectation taking into ac-
count the history of the random variable. Furthermore, note that step 3 of Algorithm 4 is
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Algorithm 4 Progressive Hedging Algorithm
1: Initialization: Choose a primal-dual starting point px0, w1q P N ˆ N K.
2: for k “ 1, 2, . . . do
3: Primal subproblems: for each s “ 1, . . . , S, solve

zk
s “ arg min

zsPRns

"

Fspzsq ` xwk
s , zsy `

1
2t

}zs ´ xk´1
s }2

*

. (2.10)

4: Primal projection: xk “ PN rzks.

5: Dual update: wk`1
s “ wk

s `
1
t

pzk
s ´ xk

sq for s “ 1, . . . , S .
6: end for

step 3 of Algorithm 3 after capitalizing on the separable structure of the objective func-
tion, the weighted inner product, and the weighted norm. In principle, the S subproblems
can be solved in parallel, since they are completely decoupled from each other.

The convergence of Algorithm 4 follows from Proposition 2.6, since the usual
Euclidean norm on Rn and } ¨ }S define equivalent topologies.

Proposition 2.7. Consider problem (2.9) for F P convpRnq, such that (2.9) has a
nonempty set of minimizers, and ripdompF qq X N ‰ H. Then, the sequences txku and
tzku converge to a solution x‹ to problem (2.7), and the sequence twku converges to a
point w‹ P ´BF px‹q X N K, such that ´w‹ is a solution to the dual problem of (2.7).

Proof. It only remains to prove the last statement. Since x‹ is a solution to (2.7), and
w‹ is such that w‹ P N K “ BiN px‹q, and ´w‹ P BF px‹q, then in view of [87, Proposition
3.26], strong duality holds and thus w‹ is a solution to the dual problem

min
w

F ˚p´wq ` iN Kpwq. (2.11)

Remark 2.4. Alternatively, we can choose M as the matrix that takes a vector x and
returns Mx with the last-stage decision variables erased. This would lead to an analogous
convergence analysis, bearing in mind that tMzku and txku would have the same limit x‹,
instead of tzku and txku.

An alternative approach that leads to an equivalent formulation of the PHA
is to apply the DRS method to the dual problem (2.11). In Algorithm 3, we choose
φ2 “ F ˚p´¨q, and φ1 “ iN K . Starting from ν0 P N and q´1 P N K, this approach yields
the following problem for F ˚:

min
pPRn

"

F ˚p´pq ` xνk, py `
1
2t

}p ´ qk´1}2
*

,
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with unique solution pk. The problem for iN K is:

min
qPRn

"

iN Kpqq `
1
2t

}q ´
`

pk ` tνk
˘

}2
*

, (2.12)

with unique solution qk. Finally, the coordination step corresponds to

νk`1 “ νk `
1
t

ppk ´ qkq. (2.13)

We now proceed to deduce the primal form of this algorithm. The optimality
condition of this problem reads

0 P ´BF ˚p´pkq ` νk `
1
t

ppk ´ qk´1q.

ðñ νk `
1
t

ppk ´ qk´1q P BF ˚p´pkq

ðñ ´pk P BF

ˆ

νk `
1
t

ppk ´ qk´1q

˙

,

where the last line follows from pBF q´1 “ BF ˚. Define zk :“ νk `
1
t

ppk ´ qk´1q. It thus
holds that

´

ˆ

νk `
1
t

ppk ´ qk´1q

˙

P BF pzkq.

ðñ 0 P BF pzkq ` qk´1 ` tpzk ´ νkq,

meaning that zk is the unique solution to

min
zPRn

"

F pzq ` xqk´1, zy `
t

2
}z ´ νk}2

*

.

With the identifications wk Ð qk´1, xk´1 Ð νk, and 1
t

Ð t, zk coincides with the primal
subproblem step 3 of Algorithm 4.

In order to formalize the identifications above, we need to prove that

νk`1 “ PN rzks, and qk “ qk´1 ` tpzk ´ νk`1q.

We proceed by induction. Suppose νk P N . From the definition of zk, it holds νk “

zk `
1
t

pqk´1 ´ pkq. Substituting this relationship in (2.13) yields PN rνk`1s “ PN rzks. In
order to prove the first claim, it only suffices νk`1 P N . From the assumption νk P N and
(2.13), we would only need to prove that pk ´ qk P N . Since qk solves (2.12), then

qk “ PN Krpk ` tνks

“ pk ` tνk ´ PN rpk ` tνks.
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Therefore,
pk ´ qk “ PN rpk ` tνks ´ tνk

“ PN rpks ` t
`

PN rνks ´ νk
˘

“ PN rpks ´ tPN Krνks

“ PN rpks,

where the last line holds in view of the assumption νk P N . In this way, pk ´ qk P N .
Therefore, (2.13) implies νk`1 P N , and νk`1 “ PN rzks. For the second claim, from the
definition of pk as the projection of pk ` tνk onto N K, and the definition of zk that is
equivalent to pk ` tνk “ qk´1 ` tzk, it holds that

qk “ PN Krqk´1 ` tzks

“ qk´1 ` tPN Krzks

“ qk´1 ` t
`

zk ´ PN rzks
˘

“ qk´1 ` t
`

zk ´ νk`1˘,

(2.14)

where the second line follows from linearity of the projection operator and the fact qk´1 P

N K, the third line corresponds to the Moreau identity for the projection, and the last line
is the first proved claim.

Hence, using the identifications wk Ð qk´1, xk´1 Ð νk, and 1
t

Ð t, apply-
ing the DRS method to the dual problem yields the PHA. An approach working on
the dual problem, in particular, using a proximal bundle-like method to induce scenario-
separability, is developed in Chapter 5, produces a bundle-like PHA.
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3 A unified analysis of descent sequences in
weakly convex optimization, including con-
vergence rates for bundle methods

This chapter is an extract of [22]:

Atenas, F., Sagastizábal, C., Silva, P. J., & Solodov, M. (2023). A uni-
fied analysis of descent sequences in weakly convex optimization, including
convergence rates for bundle methods. SIAM Journal on Optimization, 33(1),
89–115.

The concepts of variational analysis of the introduction of this article were
discussed throughout Chapter 1, and Section 2 and Section 3 of said article are included
in Section 1.3 and Section 1.4, respectively. Furthermore, Section 3.5 is taken from the
appendix of [23]:

Atenas, F., & Sagastizábal, C. (2023). A bundle-like progressive hedging
algorithm. Journal of Convex Analysis, special issue in honor of R. J-B Wets,
30(2) 453–479.

Some parts have been modified in order to follow the notation and structure
of the present work.

Abstract. We present a framework for analyzing convergence and local rates
of convergence of a class of descent algorithms, assuming the objective function is weakly
convex. The framework is general, in the sense that it combines the possibility of explicit
iterations (based on the gradient or a subgradient at the current iterate), implicit iter-
ations (using a subgradient at the next iteration, like in the proximal schemes), as well
as iterations when the associated subgradient is specially constructed and does not corre-
spond neither to the current nor the next point (this is the case of descent steps in bundle
methods). Under the subdifferential-based error bound on the distance to critical points,
linear rates of convergence are established. Our analysis applies, among other techniques,
to prox-descent for decomposable functions, the proximal-gradient method for a sum of
functions, redistributed bundle methods, and a class of algorithms that can be cast in the
feasible descent framework for constrained optimization.
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3.1 Introduction
We consider algorithmically generated descent sequences that aim at solving

problems of the form
min fpxq, x P Rn , (3.1)

where
f : Rn Ñ R Y t`8u is weakly convex.

The class of weakly convex functions is fairly broad and covers many problems of interest.
It includes convex functions, differentiable functions with Lipschitzian gradient, certain
compositions of convex functions with smooth functions, among others. We refer the
readers to the discussion in [91], and Section 1.3. The case of constrained optimization
will be handled by including into the objective function the indicator function of the
feasible set.

Nonsmooth optimization problems like (3.1) arise frequently in applications
involving big data and large-scale decision making. Many popular decomposition schemes
exploit separable structures by resorting to Lagrangian or Fenchel duals. Typically, iter-
ates are defined by means of certain model functions, resulting from some simplification
of the objective function. To ensure convergence, primal and dual objects generated by
nonsmooth methods must be interwined in very special and sound manner. For this rea-
son, model functions build local approximations not only of the objective function, but
also of its subdifferential. The theory presented below establishes a short set of conditions,
on the family of model functions, on the primal and dual objects, and on problem (3.1)
itself, that provides convergence guarantees for a large family of nonsmooth optimization
methods.

More specifically, we are interested in stating conditions that ensure global
convergence and local linear convergence rates for algorithms whose sequence of iterates
txku involves the Clarke’s subgradient information about f , possibly collected along it-
erations. Together with the algorithmically generated sequence txku Ď Rn, we shall also
consider a certain theoretical sequence tzku Ď Rn, with associated perturbation parame-
ters tεku Ď r0, `8q. These objects are introduced to account for the fact that, to compute
the iterate xk, one often minimizes a model/approximation of f . This operation yields a
subgradient of the model, which for some methods in general is not a subgradient of f it-
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self at any point in the sequence txku. We show that model subgradients can, however, be
“transported” to a nearby point, where they are subgradients of f . For convex functions,
this is the well-known transportation formula in [30, Ch.XI, § 4.2]. For weakly convex
functions, a similar result requires a delicate construction, given in Section 3.3 below. In
particular, we think of tzku as a (potential) perturbation, not necessarily computed by
the algorithm, of the actual sequence txku which is computed indeed.

Formally, we shall consider frameworks with the following relations (3.2) valid,
for a fixed along iterations k index i P t0, 1u. The index i P t0, 1u is used to unify the
analysis for explicit and implicit options in (3.2). Specifically, i “ 1 refers to explicit
methods (zk´i “ zk´1, so that gk P Bfpzk´1q), while i “ 0 refers to implicit methods
(zk´i “ zk, so that gk P Bfpzkq). This feature would also be made more clear in comments
and examples that follow (3.2). Again, recall that txku is the generated sequence, while
tzku is a theoretical one.

fpxkq ` ap}xk ´ xk´1}2 ` εk´1q ď fpxk´1q, for a ą 0 ; (3.2a)

Dgk P Bfpzk´iq, }gk} ď b
´

}xk ´ xk´1} ` }xk´i ´ zk´i}

¯

, for b ą 0 ; (3.2b)

both }xk ´ zk} and tεku tend to 0 as k Ñ 8 . (3.2c)

Some remarks are in order. To start with, notice that condition (3.2a) ensures
that the sequence of functional values tfpxkqu is non-increasing. By contrast, the theoret-
ical sequence tfpzkqu is not necessarily non-increasing.

To continue, consider first the simplest instance, with zk “ xk and εk “ 0.
Then the conditions in (3.2c) are automatic, while (3.2b) becomes

}gk} ď b}xk ´ xk´1} ,

for some subgradient gk of f at either xk´1 or xk. In the first case, it is natural to think
of the scheme as being explicit (one obvious example is the gradient descent iteration, if
f is differentiable: xk “ xk´1 ´ tk∇fpxk´1q, with a suitable stepsize tk ą 0). In the second
case, the scheme is in general implicit, and becomes essentially that of [18, § 2.3] if further
gk P Bfpxkq is taken. A prototypical instance is given by the proximal point iteration:

xk P arg min fpxq `
1

2tk

}x ´ xk´1}2, for tk ą 0 , (3.3)

which means that xk “ xk´1 ´ tkgk, for some gk P Bfpxkq.

Next, note that in the nonsmooth case, even the convex one, an explicit scheme
with gk P Bfpzk´1q and zk´1 “ xk´1 in (3.2b) does not guarantee the descent condition
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(3.2a). Indeed, this would be just the basic subgradient method, which is not of descent.
General-purpose algorithms for nonsmooth optimization that build descent sequences are
bundle methods [92, 30, 85]. Other nonsmooth methods can also be of descent, if they
use more specific problem structure. Some examples are the prox-descent method for
composite functions [44] and proximal-gradient methods for sums [93], considered together
with the bundle method in Section 3.3 below. It is precisely for treating those type of
methods that the theoretical iterate zk and associated perturbation εk were introduced in
our framework (3.2). Essentially, such schemes compute the proximal point of a convex
model of the function f . Thanks to our transportation formula for weakly convex functions,
this amounts to performing an explicit step, using a subgradient of f at a perturbed point,
that plays the role of zk in (3.2). This relation holds as long as the model-functions satisfy
general conditions stated in Section 3.3. Therein, the process is developed in full details for
model-based proximal methods, including serious steps of bundle algorithms for weakly
convex functions.

Our convergence analysis recovers, from a unified perspective, various (but
not necessarily all) results in sources like [33, 18, 91]. We also give new results, related
to bundle methods for weakly convex functions. As stated in the concluding section of
[94], developing a convergence theory along the lines of [18] for bundle methods based on
practical oracles was an open question. We close this gap in Section 3.3, most notably by
stating the linear convergence of descent steps of bundle methods with downshifted models
that are typical in the nonconvex setting; we refer to Section 3.3.1 for details. When the
objective in (3.1) is convex, linear rates for bundle-like methods can be traced back to [95]
and [19]; see also the efficiency estimates in [96]. The topic was revisited more recently
in [97] and [98], respectively considering strongly convex functions and multi-cut models,
and the classical proximal bundle method for convex optimization. We should make it
clear that our linear rate of convergence result for bundle methods concerns the descent
iterations only, which themselves are constructed by a subsequence of so-called null steps.
The number of null steps needed to produce descent is not part of our development. For
strongly convex functions and a fixed prox-parameter, [97] shows that the precision of the
solution at null steps is approximately inverse to the number of iterations. Taking into
account null steps in the more general setting considered in this work is a challenging
matter and should be a subject for future research.

The rest of the chapter is organized as follows. In Section 3.2 we discuss some
general global convergence and local linear rate of convergence properties of the framework
given by (3.2). In Section 3.3 these results are applied to model-based algorithms, including
prox-descent for composite functions, proximal-gradient methods for sums, Taylor-based
models, and finally the (serious steps of) bundle methods. In Section 3.4 we show how
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our analysis applies to the class of feasible descent methods for constrained optimization
considered in [33]. Finally, Section 3.5 extends the theory for constrained optimization
problems by adding a projection step, so that constraints are dealt directly.

3.2 General asymptotic relations in the algorithmic pattern
In the sequel, we shall need the following technical result.

Lemma 3.1. Let taku Ď Rn and tbku Ď r0, `8q be two sequences such that for all k it
holds:

}ak ´ ak´1} ď α1bk´1

and
bk ď α2bk´1 ,

where α1 ą 0 and α2 P p0, 1q.

Then, there exists a˚ P Rn such that, for any k̄, there exist r P p0, 1q and c ą 0,
such that for all k ě k̄,

}ak ´ a˚} ď cαk
2

with c “
α1b0

1 ´ α2
. In particular, taku converges to a˚ R-linearly.

Proof. First, by direct induction, for all k it holds that bk ď b0pα2qk. By making a tele-
scopic sum, for all j ě 1,

}ak`j ´ ak} ď

k`j
ÿ

n“k`1
}an ´ an´1} ď

α1b0

α2

k`j
ÿ

n“k`1
α2

n ď

ˆ

α1b0

1 ´ α2

˙

α2
k , (3.4)

where to obtain the last inequality we use that

k`j
ÿ

n“k`1
α2

n “ α2
k

j
ÿ

n“1
α2

n ď α2
k α2

1 ´ α2
,

since α2 P p0, 1q. Therefore, taku Ď Rn is a Cauchy sequence, and thus taku converges to
some a˚. By taking the limit in (3.4) when j Ñ 8, we obtain that }ak ´ a˚} ď cαk

2, as
claimed.

Regarding our problem of interest, if f in (3.1) is bounded below, the monoton-
ically non-increasing sequence tfpxkqu from (3.2) converges, without any further assump-
tions (to some value, not necessarily a critical one). We next show that, for weakly convex
functions satisfying the subdifferential error bound of Definition 1.7 and the isocost sur-
faces condition of Definition 1.1, the sequence of functional values of the projections of
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the theoretical sequence tzku onto S stabilizes at a critical value (value of f at a critical
point).

In the statements (iv) and (v) below, the index i P t0, 1u is used to unify
the analysis for explicit and implicit options in (3.2). Recall that i “ 1 refers to explicit
methods (zk´i “ zk´1, so that gk P Bfpzk´1q), while i “ 0 refers to implicit methods
(zk´i “ zk, so that gk P Bfpzkq).

Lemma 3.2 (Convergence to critical points and technical relations). Let a function f P

w ´ convρpRnq, such that inf f ą ´8. Then for any algorithmic scheme satisfying (3.2),
the following hold:

(i) tfpxkqu monotonically converges to some value f̃ P R.

(ii) xk ´ xk´1 Ñ 0, zk ´ zk´1 Ñ 0 and gk Ñ 0, as k Ñ `8.

Suppose, in addition, that f satisfies the proper separation of isocost surfaces condition
(Definition 1.1) and the subdifferential error bound (Definition 1.7). Then, for any bounded
sequence txku satisfying (3.2),

(iii) tfpzkqu converges to f˚, where f˚ P R is a critical value (i.e., f˚ “ fpxq for some
x P S).

(iv) For i P t0, 1u, defining p̃k´i P PSpzk´iq, for all k sufficiently large the distance from
zk´i to S can be estimated as

}zk´i ´ p̃k´i}2 ď
2ℓ2b2

a
pfpxk´1q ´ fpxkqq ` 2ℓ2b2}xk´i ´ zk´i}2 .

(v) For the functional value errors vk :“ fpxkq ´ f˚, it holds that

vk ď
2ℓb2

a
pvk´1 ´ vkq ` 2ℓb2}xk´i ´ zk´i}2 ` Θk´i ,

where
Θk´i :“ fpxk´iq ´ fpzk´iq `

ρ

2
}p̃k´i ´ zk´i}2 .

Proof. In view of (3.2a) and εk ě 0, tfpxkqu is non-increasing. Since f is bounded below,
item (i) follows immediately. Then also fpxk´1q ´ fpxkq Ñ 0.

As, by (3.2a),

}xk ´ xk´1}2 ď
1
a

pfpxk´1q ´ fpxkqq ´ εk´1 , (3.5)

it follows that xk ´ xk´1 Ñ 0 in item (ii). Then (3.2b) and (3.2c) yield that gk Ñ 0 and,
zk ´ zk´1 “ pzk ´ xkq ` pxk ´ xk´1q ` pxk´1 ´ zk´1q Ñ 0. Item (ii) is proven.
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For the remaining items, we apply the subdifferential error bound at the tail
of the auxiliary sequence tzku. The starting point is (3.2b), for which we use that f is a
ρ´weakly convex function, considering the two possibilities i “ 0 and i “ 1 at the same
time. For the rest of the proof, we fix the index i P t0, 1u.

Since for all k ě 1, gk P Bfpzk´iq, it holds that

fpzk´iq ` xgk, xk ´ zk´iy ď fpxkq `
ρ

2
}zk´i ´ xk}2 .

In view of the fact that fpxkq decreases to f̃ , gk Ñ 0, xk ´ zk Ñ 0, zk ´ zk´1 Ñ 0, and
thus zk´i ´ xk Ñ 0, we have that for all ϵ ą 0, and all sufficiently large k, fpzk´iq ď f̃ ` ϵ

and gk P Bfpzk´iq X Bp0, ϵq. Thus, by the error bound,

}zk´i ´ p̃k´i} “ dpzk´i, Sq ď ℓ}gk} . (3.6)

Since gk Ñ 0, it follows from (3.6) that zk´i ´ p̃k´i Ñ 0, and then zk ´ p̃k Ñ 0
as k Ñ `8. Combining this with the fact that zk ´ zk´1 Ñ 0, yields that p̃k ´ p̃k´1 Ñ 0.
Moreover, the property of separation of the isocost surfaces implies that fpp̃kq “ f˚

eventually, for a critical value f˚ of f . To complete the proof of item (iii), we apply weak
convexity of f for 0 P Bfpp̃kq, obtaining that for all sufficiently large k it holds that

f˚ “ fpp̃kq ` x0, zk ´ p̃ky ď fpzkq `
ρ

2
}zk ´ p̃k}2 .

Hence,
´

ρ

2
}zk ´ p̃k}2 ď fpzkq ´ f˚ . (3.7)

Notice that, in addition, gk P Bfpzk´iq implies that

fpzk´iq ` xgk, p̃k´i ´ zk´iy ď fpp̃k´iq `
ρ

2
}p̃k´i ´ zk´i}2 “ f˚ `

ρ

2
}p̃k´i ´ zk´i}2 , (3.8)

where the last equality holds for all k sufficiently large.

Next, combining (3.7) and (3.8), we obtain that

´
ρ

2
}zk ´ p̃k}2 ď fpzkq ´ f˚ ď xgk`i, zk ´ p̃ky `

ρ

2
}p̃k ´ zk}2 .

Then, taking the limit as k Ñ 8 yields that fpzkq Ñ f˚.

Next, weak convexity implies that for any dk P Bfpxk´iq,

fpxk´iq ` xdk, zk´i ´ xk´iy ď fpzk´iq `
ρ

2
}zk´i ´ xk´i}2 .

Also, as gk P Bfpzk´iq,

fpzk´iq ` xgk, xk´i ´ zk´iy ď fpxk´iq `
ρ

2
}xk´i ´ zk´i}2 .
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Combining the two relations above, we obtain that

xgk, xk´i ´ zk´iy ´
ρ

2
}xk´i ´ zk´i}2 ď fpxk´iq ´ fpzk´iq

ď xdk, xk´i ´ zk´iy `
ρ

2
}zk´i ´ xk´i}2 .

Taking the limit in the last relation as k Ñ `8, Lemma 3.2(ii) and (3.2c) imply that
fpxk´iq ´ fpzk´iq Ñ 0. Since tfpxkqu is a convergent sequence, and fpzkq Ñ f˚, the
sequences tfpxkqu and tfpzkqu both have the same limit. Thus, tfpxkqu is a non-increasing
sequence converging to the critical value f˚, and tvku is a nonnegative sequence.

To show statements (iv) and (v), recall that pa ` bq2 ď 2a2 ` 2b2, for all real
numbers a, b. Then from (3.2b) we obtain that

}gk}2 ď b2p}xk ´ xk´1} ` }xk´i ´ zk´i}q2

ď 2b2}xk ´ xk´1}2 ` 2b2}xk´i ´ zk´i}2

ď
2b2

a
pfpxk´1q ´ fpxkqq ` 2b2}xk´i ´ zk´i}2 ,

(3.9)

where the last inequality follows from (3.5). In this manner, since gk P Bfpzk´iq, from
(3.6) and (3.9) it follows that

}zk´i ´ p̃k´i}2 ď
2ℓ2b2

a
pfpxk´1q ´ fpxkqq ` 2ℓ2b2}xk´i ´ zk´i}2 ,

which is statement (iv).

On the other hand, from (3.8), (3.6), and the fact that for all sufficiently large
k it holds that fpp̃k´iq “ f˚, we obtain that

fpzk´iq ´ f˚ ď }gk}}zk´i ´ p̃k´i} `
ρ

2
}p̃k´i ´ zk´i}2

ď ℓ}gk}2 `
ρ

2
}p̃k´i ´ zk´i}2 .

Therefore, combining this inequality with (3.9), yields

fpzk´iq ´ f˚ ď
2ℓb2

a
pfpxk´1q ´ fpxkqq ` 2ℓb2}xk´i ´ zk´i}2 `

ρ

2
}p̃k´i ´ zk´i}2 .

Hence, as tvku is non-increasing,

vk ď
2ℓb2

a
pvk´1 ´ vkq ` fpxk´iq ´ fpzk´iq ` 2ℓb2}xk´i ´ zk´i}2 `

ρ

2
}p̃k´i ´ zk´i}2 .

This concludes the proof.

The relations in Lemma 3.2 lead to the following result, on the convergence
speed of both the sequence of functional values and of iterates. The respective rates are
linear in the quotient (Q) and root (R) senses, as defined in Chapter 2.

Recall that the index i P t0, 1u unifies the explicit and implicit options in
(3.2).
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Theorem 3.1 (Asymptotic results for weakly convex functions). Let f P w ´ convρpRnq

such that inf f ą ´8. Suppose, in addition, that f satisfies the proper separation of isocost
surfaces condition (Definition 1.1) and the subdifferential error bound (Definition 1.7).

For any bounded sequence txku and tzku satisfying (3.2), consider the sequence
of functional errors tvku, defined in Lemma 3.2(v). If there exist C1 , C2 ą 0, such that,
for all sufficiently large k it holds that

fpxk´iq ´ fpzk´iq ď C1pvk´1 ´ vkq (3.10)

and
}xk´i ´ zk´i}2 ď C2pvk´1 ´ vkq , (3.11)

then there exist r P p0, 1q and c ą 0 such that

(i) For all k sufficiently large,
vk ď rvk´1 ,

where r “ M{p1 ` Mq P p0, 1q, and M “ C1 ` ℓb2p2 ` ρℓqp1{a ` C2q.

(ii) The sequence of functional errors tvku monotonically converges to 0 with Q´linear
rate.

(iii) The sequence txku converges R´linearly to a critical point x˚ of f , such that fpx˚q “

f˚ “ lim
kÑ8

fpxkq. More specifically, for all sufficiently large k,

}xk ´ x˚} ď c
?

r
k

,

where c “

?
v0

?
a p1 ´

?
rq

.

Proof. First, convergence of tfpxkqu follows from Lemma 3.2(iii). The rate of convergence
of tfpxkqu is derived from the technical estimates of Lemma 3.2. Indeed, combining the
definition of Θk´i with Lemma 3.2(iv) and (3.10), for all sufficiently large k it holds that

Θk´i ď C1pvk´1 ´ vkq `
ρ

2

ˆ

2ℓ2b2

a
pvk´1 ´ vkq ` 2ℓ2b2}xk´i ´ zk´i}2

˙

“

´

C1 `
ρℓ2b2

a

¯

pvk´1 ´ vkq ` ρℓ2b2}xk´i ´ zk´i}2 .

Therefore, from Lemma 3.2(v), it further follows that

vk ď

´

C1 `
ℓb2

a
p2 ` ρℓq

¯

pvk´1 ´ vkq ` ℓb2p2 ` ρℓq}xk´i ´ zk´i}2

ď

´

C1 `
ℓb2

a
p2 ` ρℓq

¯

pvk´1 ´ vkq ` ℓb2p2 ` ρℓqC2pvk´1 ´ vkq ,
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where (3.11) is used to obtain the last inequality. Hence, vk ď Mpvk´1 ´ vkq , which gives
item (i) with M specified therein.

Using inductively the inequality of item (i), we conclude that there exists c ą 0
such that for r “ M{p1 ` Mq and all sufficiently large k,

vk ď v0rk.

To see item (iii), the estimate therein follows from Lemma 3.1. More specifically,
there exists a point x˚ such that txku converges to x˚ R-linearly. In particular, from (3.2c),
tzk´iu also converges to x˚, for i P t0, 1u. Note that, since Bf is an upper semicontinuous
multifunction, Lemma 3.2(ii) and (3.2b) imply that Bfpzk´iq Q gk Ñ 0, therefore 0 P

Bfpx˚q, that is, x˚ is a critical point.

Finally, zk´p̃k Ñ 0 implies that p̃k Ñ x˚, that is, x˚ and p̃k are sufficiently close
critical points. Therefore, in view of the proper separation of isocost surfaces property,
fpx˚q “ f˚. Hence, the limit of txku is a critical point x˚ P f´1pf˚q.

In the final two sections, Theorem 3.1 is applied to show the linear convergence
rate of two different families of algorithms, proximal model-based ones akin to (the serious
steps of) bundle methods, and the feasible descent framework of [33].

3.3 Bundle and proximal model-based methods
In nonsmooth optimization, satisfaction of (3.2a) is not straightforward. In

addition to its role in Theorem 3.1, in this section weak convexity is an important ingredi-
ent in showing that iteratively minimizing appropriate approximating models of f indeed
generates sequences that are of descent.

Suppose, for the moment, that f is a convex nonsmooth function. In this case,
neither subgradient nor cutting-plane methods [85, Part II] fit the algorithmic pattern
(3.2), because they do not guarantee the descent condition (3.2a). By contrast, as we
shall show, serious steps within a bundle method do satisfy all the requirements. Bundle
methods provide an implementable alternative for functions whose proximal point com-
putation in (3.3) is difficult (or impossible). Before briefly reviewing the basic bundling
mechanism, we mention that even for smooth functions, computing proximal points of
some approximations of f has proven to be a useful technique to exploit decomposable
structures. This is the basis of a plethora of approaches, including ADMM, as well as the
prox-linear and prox-gradient methods considered below.

Having at hand a family of convex model functions for which computing proxi-
mal points is computationally implementable, in a bundle method [85, Part II] a candidate
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iterate is defined as the proximal point of the model function at xk´1. If the candidate
satisfies a condition of sufficient descent for f , it is labeled a serious step xk, and (3.2a)
holds; otherwise the candidate is declared a null step. At a new iteration, the bundling
process improves the model function and/or adjusts the proximal parameter. By this to-
ken, at serious steps the approximation of the proximal point is sufficiently good to ensure
that errors incurred when replacing f by its model satisfy (3.2c).

For a convex f , a key ingredient in the convergence analysis of bundle methods
is to relate the model subgradient associated with the prox-computation to certain ε-
subgradient of f . The nonconvex setting precludes the use of approximate subdifferentials
in this part of the analysis. For this reason, different ad-hoc approaches have been proposed
in the literature. Rather than singling out some specific approach, below we develop a
general convergence theory that is applicable to weakly convex functions. The key is
to complement the algorithmic pattern of (3.2) with a suitable condition on the model
functions used to approximate the proximal point of f . Our proposal unifies the global
convergence analysis of a wide variety of methods in the literature, and also provides their
linear rate of convergence.

3.3.1 Model function assumptions

Approximating the proximal point scheme (3.3) involves defining a family of
simpler (than f) model functions whose proximal point is computed at each iteration.
Often, a trade-off must be found between simplicity (fast prox-computation) and accuracy
(increased chances of accepting the candidate as a serious step, i.e., satisfying (3.2a)).

Given x P Rn, consider modelling the function f ´ fpxq by a convex function
φx : Rn Ñ R. Note that f might be extended real-valued, while its model is finite
everywhere. The most synthetic model uses the linearization introduced in Proposition 1.6,

φsg
x p¨q “ ℓx,gpxqp¨q ´ fpxq .

Incidentally, computing the proximal point of this model amounts to one subgradient
iteration, with stepsize given by the inverse of the prox-parameter.

A cutting-plane model is richer, as it takes the maximum over several lineariza-
tions, generated with past iterates xi for i P B, the bundle:

φcp
x p¨q :“ max

iPB

␣

ℓxi,gpxiqp¨q ´ fpxq
(

“ max
iPB

t´eipxq ` xgpxiq, ¨ ´ xyu ,

where we define eipxq :“ fpxq ´ ℓxi,gpxiqpxq .

The term eipxq, called linearization error in the bundle terminology, measures the quality
of the linearization with respect to the reference point x. For convex f , the error is
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nonnegative and the cutting-plane model satisfies φcp
x ď f ´ fpxq. But for nonconvex f

this inequality cannot be ensured. To address this problem, a common approach is to
downshift negative linearization errors, making them nonnegative. This can be done in
different ways; typically, the error term

eipxq is replaced by eq
i pxq :“ maxteipxq,

q

2
}xi ´ x}2u for q ą 0 sufficiently large;

see [99, 92] and, more recently, [100, 101, 102, 103]. The approach in [104, 105, 106] differs
from those works, as it handles nonconvexity using redistributed models that, in addition
to downshifting, tilt the slopes, as in Proposition 3.1 below.

In order to account for many alternative models in the literature, we shall
assume that the family of model functions satisfies the following property. In the sequel,
we shall show that it holds for many methods of interest.

Definition 3.1 (Models 1QA ). A convex proper function φx : Rn Ñ R is said to model
f at x with one-sided quadratical accuracy, if

Dq ą 0 : @y P Rn φxpyq ď fpyq ´ fpxq `
q

2
}y ´ x}2 . (3.12)

The property 1QA is a weakened form of the two-sided models considered in
[68] and [55]. Making the condition unilateral is crucial for including bundle methods in
the analysis (even when f is convex; see Figure 7 for an illustration).

The key role of convex 1QA models φx in convergence analyses is that they
allow to transport subgradients, a mechanism that is not available for the nonconvex
function f directly. Also, 1QA models are quite general, as the condition (3.12) can be
satisfied both by cutting-plane-like models, where linearizations are oblivious to possible
further information about f , and also by models that use structure. When a function has
known structure, it is appealing to make the model inherit some of this feature. We next
provide some examples.

3.3.1.1 Models defined using linearizations

For weakly convex functions, the simplest model φsg
x is clearly 1QA , taking q “

ρ, the weak convexity parameter, but as already commented, the descent condition (3.2a)
is not guaranteed for such a model, as it gives just a subgradient iteration. By contrast,
the cutting-plane model with downshifted errors satisfies (3.12), as long as the iterates
remain in a bounded set. The case of the more sophisticated model from [104, 105, 106]
is analyzed below. Note that the model associated with the following result is equivalent
to constructing a cutting-plane model for the “convexified" function fp¨q `

ρ

2
} ¨ ´x}2.
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Proposition 3.1 (Redistributed models are 1QA ). Let f P w ´ convρpRnq and x P

Rn. Given bundle elements xi, fpxiq, gpxiq P Bfpxiq for i P B, consider the downshifted
linearization errors and tilted subgradients, respectively defined by

eρ
i pxq :“ fpxq ´ ℓxi,gpxiqpxq `

ρ

2
}x ´ xi}

2 and gρ
i pxq :“ gpxiq ´ ρpx ´ xiq .

Then the associated model φρ
xp¨q :“ max

iPB
t´eρ

i pxq ` xgρ
i pxq, ¨ ´ xyu is 1QA .

Proof. The model is convex, as the maximum of affine functions.

For any bundle element, weak convexity implies that, for all y,

fpyq `
ρ

2
}y ´ xi}

2 ě ℓxi,gpxiqpyq “ fpxiq ` ⟨gpxiq, y ´ xi⟩ .

Since eipxq “ fpxq ´ ℓxi,gpxiqpxq, rearranging terms, we obtain that

fpyq ´ fpxq ě ´eipxq ` ⟨gpxiq, y ´ x⟩ ´
ρ

2
}y ´ xi}

2 .

Adding ρ

2
}y ´ x}2 to both sides yields

fpyq ´ fpxq `
ρ

2
}y ´ x}2 ě ´eipxq ` ⟨gpxiq, y ´ x⟩ `

ρ

2

´

}y ´ x}2 ´ }y ´ xi}
2
¯

.

As
ρ

2

´

}y ´ x}2 ´ }y ´ xi}
2
¯

“ ´
ρ

2
}x ´ xi}

2 ´ ⟨ρpx ´ xiq, y ´ x⟩ ,

it follows that

fpyq ´ fpxq `
ρ

2
}y ´ x}2

ě ´

´

eipxq `
ρ

2
}x ´ xi}

2
¯

`

〈
´

gpxiq ´ ρpx ´ xiq

¯

, y ´ x
〉

“ ´eρ
i pxq ` ⟨gρ

i pxq, y ´ x⟩ .

Since each of the terms defining the model φρ
x satisfies (3.12), so does the model.

In the redistributed proximal bundle method [105] iterates are generated with
a model φρk

x whose augmentation parameter ρk is updated along the process, without
knowing ρ beforehand. It is shown in [104] that unless xk´1 is critical, the procedure gen-
erates a serious step after a finite number of null iterations for weakly convex functions (f
is uniformly prox-bounded in the language of that work). In [105] the serious step sequence
is shown to be globally convergent under the same assumptions. Thanks to the theory
developed in Section 3.3.2, based in Theorem 3.1, in addition to global convergence, we
can now prove that serious steps converge at the linear rate. To the best of our knowledge,
this is the first result on linear convergence rates for nonconvex bundle methods.



Chapter 3. A unified analysis of descent sequences in weakly convex optimization 76

3.3.1.2 Decomposable functions, prox-descent and composite bundle methods

Recalling Definition 1.4, for decomposable functions f “ h˝ c the ProxDescent
iterates [44, Algorithm 1] are defined by computing the proximal point of the model that
is created by replacing the smooth mapping c with its Taylor expansion:

φlw
x p¨q :“ hpcpxq ` ∇cpxqJp¨ ´ xqq ´ fpxq .

In [55], the associated method is called prox-linear. We next show that the model φlw
x is

1QA under our assumptions (it should be noted that in [44] the outer function h can be
more general, specifically extended-valued prox-regular).

Proposition 3.2 (Models for decomposable functions are 1QA ). Let h : Rm Ñ R be
convex, finite-valued and positively homogeneous, and let c : Rn Ñ Rm be continuously
differentiable with its Jacobian being Lipschitz-continuous.

Then the model φlw
x is 1QA.

Proof. Under the stated assumptions, φlw
x is convex.

As h is convex positive homogeneous and finite, it is the support function of
a compact convex set D (that coincides with its subdifferential at 0), see [30, Chapter V]
or [29, Theorem 8.24]. That is

hpdq “ max
sPD

xs, dy.

Moreover, let L be the Lipschitz constant of the Jacobian of c. It follows that,
for all y, x P Rn,

}cpyq ´ cpxq ´ ∇cpxqJpy ´ xq} ď
L

2
}y ´ x}2.

Hence,

hpcpxq ` ∇cpxqJpy ´ xqq “ hpcpxq ` ∇cpxqJpy ´ xq ´ cpyq ` cpyqq

“ max
sPD

xs, cpxq ` ∇cpxqJpy ´ xq ´ cpyq ` cpyqy

ď max
sPD

xs, cpyqy ` max
sPD

xs, cpxq ` ∇cpxqJpy ´ xq ´ cpyqy

ď max
sPD

xs, cpyqy ` max
sPD

}s}}cpxq ` ∇cpxqJpy ´ xq ´ cpyq}

ď hpcpyqq `
maxsPD }s}L

2
}y ´ x}2.

After adding ´fpxq on both sides, this is (3.12) with q “ max
sPD

}s}L.

When computing the proximal point of φlw
x is computationally expensive, an

alternative is to employ the composite proximal bundle method of [45]. The proposal
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therein is to replace the outer function h by its cutting-plane model hcp, thereby computing
the proximal point of the model

φcs
x p¨q :“ hcppcpxq ` ∇cpxqJp¨ ´ xqq ´ fpxq .

By convexity of h, φcs
x ď φlw

x . This model is also 1QA , by Proposition 3.2.

3.3.1.3 Sum of functions and prox-gradient method

Given a C2-function f1 with Lipschitz-continuous gradient and a convex func-
tion f2, the proximal gradient method [93] minimizes f :“ f1 `f2 computing the proximal
point of f2 at xk ´ tk∇f1pxkq, tk ą 0. This is equivalent to computing the proximal point
of the model that makes a Taylor linearization of f1 and keeps f2:

φpg
x p¨q :“ f1pxq ` x∇f1pxq, ¨ ´ xy ` f2p¨q ´ fpxq .

If f2 is convex, then so is φpg
x . Also, the 1QA property for the model follows directly from

the Lipschitz-continuity of the gradient of f1.

3.3.1.4 Taylor-like models

The theory in [55] uses powerful tools in Variational Analysis, including Eke-
land’s variational principle, to prove convergence of a variety of algorithmic schemes. Like
in this work, the iterates are generated by computing a proximal point of some model. An
important difference, however, is [55, relation (1.4)], which requires the model to approx-
imate f not only uniformly but also bilaterally (from above and from below). Specifically,
with our notation, the theory presented in [55] requires that

Dq ą 0 : @y P Rn fpyq ´ fpxq ´
q

2
}y ´ x}2 ď φxpyq ď fpyq ´ fpxq `

q

2
}y ´ x}2 .

While this condition holds in several situations described in [55] (related to Taylor-like
models), the two-sided quadratic requirement excludes cutting-plane models from the
analysis. The reason is that, even for a convex f , linearizations in the cutting-plane
model φcp

x , the key ingredient in a bundle algorithm, may deviate from below from f in
a non-polynomial manner. Figure 7 illustrates this phenomenon. Note that according to
(3.13b), a lower bound condition for the model actually does hold, but it is related to the
points xk and xk´1 only. In particular, this requirement is weaker than asking for global
quadratic accuracy from below, such as Taylor-like models.

3.3.2 Convergence theory for model-based methods

Using 1QA models φxk approximating f , we shall consider the following algo-
rithmic scheme, that will be shown to fit the framework of (3.2).
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Figure 7 – For the function fpxq “

"

1 ´ x x ď 0
ex x ą 0 plotted with a continuous dark line,

three cutting-plane models are shown in dashed lines. These are all 1QA models,
because they remain under the thick curved line in the top. By contrast, bilat-
eral models with quadratic accuracy considered in [55] must lie in the shaded
region. Even for this simple convex function, none of the cutting-plane models
satisfies the two-sided condition in [55].

Starting from some x0 P Rn, for all k ě 1,

xk “ xk´1 ´ tk´1G
k´1, for Gk´1 P Bφxk´1pxkq , (3.13a)

fpxkq ´ fpxk´1q ď mφxk´1pxkq, for m P p0, 1q . (3.13b)

In particular, the new iterate is obtained computing the proximal point of
the model, and the descent is measured using the value of the model at the new point.
This is one of the characteristics of bundle methods. Other methods can also be recast
in this manner. Below, we show that the sequences associated to the models described in
Section 3.3.1.2 and Section 3.3.1.3 are of descent, both in the original sense of (3.2) and in
the model-based sense of (3.13). Regarding the Taylor-like models in Section 3.3.1.4, the
proposal in [55] does not consider a specific type of problem to be tackled by a particular
method. So, as long as we are able to generate a descent sequence in the sense of (3.13),
the results in Proposition 3.3 below would hold, since Taylor-like models are bilateral,
while 1QA models are one-sided (in this sense, more general).

3.3.2.1 Decomposable functions and prox-descent method

Let f be a decomposable function as in Section 3.3.1.2, and consider the model
φlw

x defined therein. Let txku be a prox-descent sequence as in [44, Algorithm 1].

First, (3.13a) is a direct consequence of the definition of the next iterate in [44,
Algorithm 1] with stepsize tk :“ 1{µ. In order to see this, it suffices to recall that the step
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d :“ xk ´ xk´1 is characterized by the relations

∇cpxk´1qJv `
1

tk´1
d “ 0, v P Bhpcpxk´1q ` ∇cpxk´1qJdq.

Setting Gk´1 :“ ∇cpxk´1qJv, it holds that

xk ´ xk´1 “ d “ ´tk´1G
k´1, Gk´1 P Bφxk´1pxkq,

which is (3.13a). As for (3.13b), it is the same as the acceptance criterion for the step
in [44, Algorithm 1] with m “ σ.

Note also that it is proven in [44, Theorem 5.4] that [44, Algorithm 1] gen-
erates stepsizes tk that are bounded away from zero. Thus, the algorithm satisfies the
assumptions in Proposition 3.3 below.

3.3.2.2 Sum of functions and prox-gradient method

Let f “ f1`f2 be as in Section 3.3.1.3. The proximal gradient method conforms
to the algorithmic pattern of (3.2) if tmin ď tk ď 1{Lf1 , where Lf1 is the Lipschitz constant
of ∇f1. Indeed, (3.2a) with εk´1 “ 0 and a “ Lf1{2 is a direct consequence of the decent
properties of this algorithm; see, e.g., [107, Proposition 6.3.2]. As for (3.2b), we know that
xk minimizes

φpg
x p¨q `

1
2tk

} ¨ ´xk´1}2.

Hence, there is gk
2 P Bf2pxkq such that

0 “ ∇f1pxk´1q ` gk
2 `

1
tk

pxk ´ xk´1q

“ ∇f1pxkq ` gk
2 ` ∇f1pxk´1q ´ ∇f1pxkq `

1
tk

pxk ´ xk´1q.

Defining zk :“ xk, we have gk :“ ∇f1pxkq ` gk
2 P Bfpxkq and

}gk} “

›

›

›

›

∇f1pxk´1q ´ ∇f1pxkq `
1
tk

pxk ´ xk´1q

›

›

›

›

ď pLf1 ` 1{tminq}xk ´ xk´1}.

This is (3.2b) with b “ Lf1 ` 1{tmin. Finally, (3.2c) holds trivially.

3.3.2.3 Convergence of sequences generated by model-based methods

To continue with our analysis, we need to exhibit the errors εk and the theoret-
ical sequence tzku from (3.2) that are associated with the bundle-like scheme (3.13). We
start by transporting subgradients of convex models of nonconvex functions to the convex
function obtained from f , by weak convexity. This relation and Theorem 3.2 below yield
zk as a perturbation of the iterate xk, as desired.
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Proposition 3.3 (Transportation of subgradients and the validity of (3.2a)). Consider
the minimization of a function f P w ´ convρpRnq applying the model-based proximal
scheme in (3.13) with models φx that are 1QA with parameter q ď ρ in Definition 3.1,
and let Gk P Bφxkpxk`1q as in (3.13a). The following holds for all k.

(i) The model aggregate error at xk,

Ek :“ ´tk}Gk}2 ´ φxkpxk`1q ,

satisfies Ek ě 0.

(ii) If for all x P Rn, Fxp¨q denotes the (convex) function fp¨q `
ρ

2
} ¨ ´x}2, then a

subgradient Gk in (3.13a) can be transported to be the convex Ek´subgradient of
Fxk at xk:

Gk P BEkFxkpxkq.

Suppose, in addition, that inf f ą ´8, and the proximal step sizes are bounded:: tmax ě

tk ě tmin ą 0. Then,

(iii) both tGku , tEku converge to 0 as k Ñ 8 , and

(iv) condition (3.13b) is equivalent to (3.2a) written with a “ m{tmax and εk “ tk´1E
k´1.

Proof. Since the models are 1QA , taking x “ y “ xk in (3.12) gives that φxkpxkq ď 0. By
the convexity of the model and the iterate definition in (3.13a), it holds that

0 ě φxk´1pxk´1q

ě φxk´1pxkq `
〈
Gk´1, xk´1 ´ xk

〉
“ φxk´1pxkq ` tk´1}Gk´1}2 “ ´Ek´1 ,

and Ek ě 0 for all k, as stated in item (i).

To show item (ii), because the model is 1QA , we have that

φxk´1pxq ď fpxq ´ fpxk´1q `
ρ

2
}x ´ xk´1}2

“ Fxk´1pxq ´ fpxk´1q .

Combining now the model convexity with (i) yields

Fxk´1pxq ě fpxk´1q ` φxk´1pxq ě fpxk´1q ` φxk´1pxkq `
〈
Gk´1, x ´ xk

〉
“ fpxk´1q `

〈
Gk´1, x ´ xk´1

〉
`φxk´1pxkq `

〈
Gk´1, xk´1 ´ xk

〉
“ Fxk´1pxk´1q `

〈
Gk´1, x ´ xk´1

〉
´ Ek´1 .
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As the last relation is (ii) written with k replaced by k ´ 1, the desired result follows.

To show item (iii), note that the descent condition (3.13b), written using the
aggregate gradient and error definitions, gives

mpEk´1 ` tk´1}Gk´1}2q ď fpxk´1q ´ fpxkq . (3.14)

As tfpxkqu is non-increasing and f is bounded below, this sequence is convergent. Hence,
fpxk´1q ´ fpxkq Ñ 0 as k Ñ 8. Then from (3.14) and tk ě tmin ą 0, it follows that
Ek Ñ 0 and Gk Ñ 0.

Finally, rewriting the descent condition (3.13b) using the aggregate gradient
and error definitions yields (iv), as

fpxkq `
m

tk´1
p}xk ´ xk´1}2 ` tk´1E

k´1q ď fpxk´1q .

Proposition 1.6 shows that for weakly convex functions Clarke’s and proximal
subgradients are equivalent concepts. As noted by one reviewer, the transportation result
in item (ii) of Proposition 3.3 yields an ε-proximal subdifferential for f at x, satisfying
satisfying for all y the inequality

fpyq ě fpxq ` ⟨g, y ´ x⟩ `
ρ

2
}y ´ x}2 ´ ε .

To complete formulating (3.13) in the format of the algorithmic pattern in
(3.2), we show the validity of (3.2b) and (3.2c). This is achieved applying the error bound
inequality in Definition 1.7, noting that it involves the exact (Clarke) subgradients of f .
We have just shown that the transported model subgradient is an Ek´subgradient of the
auxiliary convex function Fxk at xk. The connection with the original function f is done
by means of the following result, reproduced from [19, Theorem 2].

Theorem 3.2 (Brøndsted-Rockafellar’s like relation). Let F P convpRnq. Suppose that
E ě 0 and that G P BEF pxq. Then, for each γ ą 0, there is a unique y “ ypγq such that

G ´
1
γ

y P BF px ` γyq , }y} ď
?

E .

By the above result, any ε´subgradient of a convex function can be perturbed
to obtain an exact subgradient of the same function, at a perturbed point. Since weak
convexity gives an explicit relation between f and the convex function Fx, we shall be
able to relate the respective subgradients, and apply the subdifferential error bound for
f using the perturbed points.
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Lemma 3.3 (Casting (3.13) in the format of (3.2)). Under the assumptions of Propo-
sition 3.3, suppose f satisfies the subdifferential error bound of Definition 1.7 and the
sequence of stepsizes ttku in (3.13a) is bounded: tmax ě tk ě tmin ą 0. Then there exists a
theoretical sequence tzku such that all conditions in (3.2) hold, with }zk ´ xk} ď

?
ℓEk.

Proof. The validity of (3.2a) was already shown in Proposition 3.3(iv).

To derive the expression for zk, apply Theorem 3.2 written with G :“ Gk P

BEkFxkpxkq for the convex function F :“ Fxk , E :“ Ek, taking γ :“
?

ℓ ą 0, where ℓ ą 0
is the constant of the subdifferential error bound in Definition 1.7. It follows that there
exists a unique yk such that

}yk} ď
?

Ek and Gk ´
1

?
ℓ
yk P BFxk

´

xk `
?

ℓyk
¯

“ Bf
´

xk `
?

ℓyk
¯

` ρ
?

ℓyk ,

by the definition of Fxk . Therefore, letting

zk´1 :“ xk´1 `
?

ℓyk´1 it holds that gk´1 :“ Gk´1 ´

ˆ

1 ` ρℓ
?

ℓ

˙

yk´1 P Bfpzk´1q .

To show that condition (3.2c) holds, first notice that

1
?

ℓ
}zk´1 ´ xk´1} “ }yk´1} ď

?
Ek´1 .

Since Ek Ñ 0 by Proposition 3.3(iii), this means that zk´1 ´ xk´1 Ñ 0. The remaining
condition εk Ñ 0 follows from the expression εk´1 “ tk´1E

k´1 in Proposition 3.3(iv),
combined with the boundedness assumption on tk, using once more that Ek Ñ 0.

To show that the sequence tgk P Bfpzk´1qu satisfies condition (3.2b), notice
that

}Gk´1} ď }Gk´1} `

ˆ

1 ` ρℓ
?

ℓ

˙

}yk´1}

“
1
tk

}xk ´ xk´1} `

ˆ

1 ` ρℓ
?

ℓ

˙

1
?

ℓ
}zk´1 ´ xk´1}

ď
1

tmin
}xk ´ xk´1} `

ˆ

1 ` ρℓ

ℓ

˙

}zk´1 ´ xk´1} .

Hence, (3.2b) holds with b :“ maxt1{tmin, p1 ` ρℓq{ℓu .

Thanks to Lemma 3.3, we are now in position of applying Theorem 3.1 to show
that the general scheme based on models considered in this section converges, with a rate
that is R-linear for the iterates and Q-linear for the functional values.

Theorem 3.3 (Global convergence of (3.13) and local linear rate). Let f P w´convρpRnq

such that inf f ą ´8. Suppose, in addition, that f satisfies the proper separation of isocost
surfaces (Definition 1.1) and the subdifferential error bound (Definition 1.7), and that the
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sequence of stepsizes ttku in (3.13a) is bounded: tmax ě tk ě tmin ą 0. The following
holds for the model-based proximal scheme in (3.13), as long as the models φx therein are
1QA (Definition 3.1 with parameter q ď ρ), and the generated sequence txku is bounded.

(i) tfpxkqu monotonically converges to some critical value f˚, such that the sequence
of functional errors tvk “ fpxkq ´ f˚u converges to 0 with Q-linear rate:

Dr P p0, 1q : vk ď qvk´1 for all sufficiently large k.

(ii) The sequence of iterates txku converges to a critical point x˚ of f with R-linear rate:

Dr P p0, 1q and c ą 0 : }xk ´ x˚} ď c
?

qk for all sufficiently large k.

Proof. To see item (i), we apply Theorem 3.1. First, from the definition of the aggregate
error Ek and (3.14), it follows that

Ek´1 ď
1
m

pvk´1 ´ vkq ,

}Gk´1}2 ď
1

mtk´1
pvk´1 ´ vkq .

The first inequality combined with the definition of zk imply that

}xk´1 ´ zk´1}2 ď ℓEk´1 ď
ℓ

m
pvk´1 ´ vkq .

Moreover, combining the last inequalities with Gk´1 P BEk´1Fxk´1pxk´1q, the definition of
zk, and the fact that tk is bounded away from 0, we obtain that

fpxk´1q ´ fpzk´1q ď
ρ

2
}zk´1 ´ xk´1}2 ´ xGk´1, zk´1 ´ xk´1y ` Ek´1

ď
ρℓ

2m
pvk´1 ´ vkq ` }Gk´1}

c

ℓ

m
pvk´1 ´ vkq `

1
m

pvk´1 ´ vkq

ď
1
m

˜

ρℓ

2
`

c

ℓ

tmin
` 1

¸

pvk´1 ´ vkq .

Since (3.10) and (3.11) in Theorem 3.1 hold for

C1 “
1
m

˜

ρℓ

2
`

c

ℓ

tmin
` 1

¸

and C2 “
ℓ

m
,

items (i) and (ii) follow.
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3.4 The theory applied to constrained smooth optimization
Another application of our unified analysis is the feasible descent framework

of [33] (see also [108]). Consider the constrained optimization problem (1.13), where f :
Rn Ñ R is continuously differentiable with Lipschitz-continuous gradient on the nonempty
closed convex set C Ď Rn.

The work [33] considers iterative sequences txku satisfying

xk “ PCpxk´1 ´ tk´1∇fpxk´1q ` Ek´1q , tk´1 ě tmin ą 0 , (3.15a)

}Ek´1} ď α}xk ´ xk´1} , α P p0, 1q . (3.15b)

This setting is quite broad. It includes, of course, the basic gradient projection method,
taking Ek “ 0 for all k. But, depending on the form of the mapping e that gives Ek´1 in
(3.2), it includes many other algorithms for solving problem (1.13). Some examples are
the extragradient method, the proximal point method, coordinate descent, and several
splitting techniques; see [33] and references therein.

We next show that our general analysis of (3.2) is applicable to methods given
by (3.15) as well. We consider (3.2) for the function f ` iC and take, for all k ě 1, εk “ 0
and xk “ zk (note that (3.2c) is then automatic). Under the stated assumptions, f ` iC is
weakly convex; see Proposition 1.7. We next need to show that (3.15) implies (3.2a) and
(3.2b) for f ` iC . Once this is done, we apply Theorem 3.1 for the weakly convex function
f ` iC .

The proof below that the sequence txku from (3.15) satisfies the descent condi-
tion (3.2a) for f ` iC is essentially a similar argument as in [33] for f , because by (3.15a)
it holds that xk P C for all k (and so pf ` iCqpxkq “ fpxkq). We include this part of
the proof here mostly for completeness. Note, however, that the subgradients of f and
of pf ` iCq are not the same. Also, our rate of convergence analysis is different, as our
results are based on the subdifferential error bound (Definition 1.7), while [33] uses the
projection error bound (Definition 1.8). Therefore, our results are new when the error
bounds are different (see the comments in Section 1.4.1 regarding the comparisons of the
error bounds in question).

Proposition 3.4 (The feasible descent framework (3.15) fits (3.2)). Let f : Rn Ñ R

be a continuously differentiable function with L´Lipschitz continuous gradient on the
nonempty closed convex set C Ď Rn. Then any sequence txku satisfying (3.15) is a se-
quence of descent for the function f ` iC in the sense of (3.2). More specifically,

(i) For all k,

fpxkq `

ˆ

1 ´ α

t˚
´

L

2

˙

}xk ´ xk´1}2 ď fpxk´1q ,
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whenever tk ď t˚ ď 2p1 ´ αq{L. I.e., (3.2a) holds for f ` iC (recall that xk P C).

(ii) For all k, there exists uk P NCpxkq such that

}∇fpxkq ` uk} ď

ˆ

1 ` α

tmin
` L

˙

}xk ´ xk´1} ,

i.e., (3.2b) holds for f ` iC.

Proof. From (3.15a) and the characterization of the projection operator, for all y P C it
holds that

xxk´1 ´ tk´1∇fpxk´1q ` Ek´1 ´ xk, y ´ xky ď 0 .

Taking y “ xk´1 in this inequality and rearranging terms, we obtain that

}xk´1 ´ xk}2 ´ tk´1x∇fpxk´1q, xk´1 ´ xky ď xEk´1, xk ´ xk´1y .

Using the Cauchy-Schwarz inequality and (3.15b) on the right-hand side, it holds that

}xk´1 ´ xk}2 ´ tk´1x∇fpxk´1q, xk´1 ´ xky ď α}xk´1 ´ xk}2 .

It follows that
x∇fpxk´1q, xk ´ xk´1y ď

α ´ 1
tk´1

}xk´1 ´ xk}2 .

Since the function is differentiable with Lipschitz-continuous gradient with
constant L, by [47, Lemma A.11] we have that

fpxkq ´ fpxk´1q ď x∇fpxk´1q, xk ´ xk´1y `
L

2
}xk ´ xk´1}2 .

Combining the last two inequalities above gives

fpxkq ´ fpxk´1q ď

ˆ

α ´ 1
tk´1

`
L

2

˙

}xk´1 ´ xk}2 ,

from which item (i) follows.

We next prove item (ii), i.e., condition (3.2b) for f ` iC . Again, from (3.15a)
and the characterization of the projection operator, there exists νk P NCpxkq such that

xk´1 ´ tk´1∇fpxk´1q ` Ek´1 ´ xk “ νk .

Defining uk “ νk{tk´1 P NCpxkq, we have that

tk´1u
k “ xk´1 ´ xk ` Ek´1 ´ tk´1∇fpxk´1q ,

and
tk´1p∇fpxkq ` ukq “ xk´1 ´ xk ` Ek´1 ` tk´1p∇fpxkq ´ ∇fpxk´1qq .
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Define ūk “ ∇fpxkq ` uk P Bpf ` iCqpxkq. We then obtain that

}ūk} ď
1

tk´1
}xk´1 ´ xk ` Ek´1} ` }∇fpxkq ´ ∇fpxk´1q}

ď

ˆ

1 ` α

tmin
` L

˙

}xk ´ xk´1} ,

where the triangle inequality, (3.15b), and the Lipschitz-continuity of the gradient of f

were used. The proof is complete.

Due to Proposition 3.4 and Proposition 1.7, we are now in position to apply our
unified analysis for weakly convex functions to obtain estimates for the rate of convergence
in (3.15).

Theorem 3.4 (Linear rate of convergence of (3.15)). Under the assumptions of Propo-
sition 3.4, if f is bounded from below, the subdifferential error bound (Definition 1.7)
and the proper separation of isocost surfaces condition (Definition 1.1) hold, then for any
bounded iterates txku satisfying (3.15) it holds that:

(i) There exists some critical value f˚ P R of f such that fpxkq Ñ f˚. For vk :“
fpxkq ´ f˚, there exists r P p0, 1q such that for all sufficiently large k,

vk ď rvk´1 .

(ii) txku converges R-linearly to a critical point x˚ of f with fpx˚q “ f˚. More specifi-
cally, there exists c ą 0 such that for all k sufficiently large,

}xk ´ x˚} ď c
?

r
k

Proof. By Proposition 1.7, f ` iC is a weakly convex function. By Proposition 3.4, any
sequence txku satisfying (3.15) conforms to (3.2) and all the conditions of Theorem 3.1,
with xk “ zk, εk “ 0 for all k, and gk P Bpf ` iCqpxkq. Then the assertions follow from
Theorem 3.1, with

r “
M

1 ` M
, M “

2ℓ
´

1`α
tmin`L

¯2

1´α
t˚ ´ L

2 p1 ` Lℓq
, c “

?
v0

b

1´α
t˚ ´ L

2

`

1 ´
?

q
˘

.

Note that while the scheme (3.15) is explicit in our terminology, as it uses the
gradient of f at xk´1, it is cast in our framework (3.2) as being implicit, as the subgradient
of f ` iC is taken therein at xk.
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3.5 Projective variant for constrained optimization
As mentioned in the beginning of the chapter, the following section is extracted

from [23]:

Atenas, F., & Sagastizábal, C. (2023). A bundle-like progressive hedging
algorithm. Journal of Convex Analysis, special issue in honor of R. J-B Wets,
30(2) 453–479.

Given a function h P w ´ convρpRnq and M a nonempty closed convex set,
onto which computing a projection is not costly, we are interested in solving the following
constrained minimization problem

min
wPM

hpwq (3.16)

by means of a bundle-like method. For the multistage program (5.1), the constraints
are given by M “ N K in problem (5.7), but any easy-to-project feasible set could be
considered (for instance a nonnegative orthant, M “ tw ě 0u).

In the setting of problem (3.16), a family of model functions tφk
wku, built along

iterations, is available. Denoting by iM the indicator function of the feasible set, given
wk P M,

the model is a convex function φk
wkp¨q approximating hp¨q ` iMp¨q ´ hpwkq . (3.17)

If the objective function h is convex, a typical construct is to create a cutting-plane
model for the sum h ` iM. For nonconvex h, cutting-plane models need to be tilted
and/or downshifted to be adequate. If the parameter of weak convexity ρ is known, this
is an easy task. Otherwise, estimates of such parameter must be “guessed” and suitably
updated along the iterative scheme, as in the redistributed proximal bundle method from
[104, 105].

In our development, to generate iterates with a special subsequence converging
with linear rate, the following property should be satisfied by the models. Recall from
Section 3.3.1, that a family of finite-valued convex functions φk

wk : Rn Ñ R satisfying
(3.17) is one-sided with quadratic accuracy for h ` iM if there exists q ą 0 such that

@wk P M , @w P Rn , φk
wkpwq ď hpwq ` iMpwq ´ hpwkq `

q

2
}w ´ wk}2 . (3.18)

It is shown in Proposition 3.1 that the redistributed approach from [104, 105],
which defines piecewise linear models for hpwq `

q

2
}w ´ wk}2, satisfies the 1QA property.
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Model functions are useful to define iterates with low computational burden.
Finding a new iterate in our proposal amounts to solving

min
w

"

φk
wkpwq `

1
2tk

}w ´ wk}2
*

, (3.19)

a problem that is a simple quadratic program if the model is piecewise linear. The first-
order optimality condition for problem (3.19),

0 P Bφk
wkpwq `

1
tk

pw ´ wkq,

characterizes the implicit updating rule (3.20a) given below.

Given parameters m P p0, 1q, η ą 0, and some initial w0 P M, for all k ě 0,
our algorithmic scheme defines

wk` 1
2 “ wk ´ tkGk, for some Gk P Bφk

wkpwk` 1
2 q , (3.20a)

uk`1 “ PMpwk` 1
2 q, (3.20b)

if hpuk`1q ´ hpwkq ď mφk
wkpwk` 1

2 q, declare a serious step. Set wk`1 “ uk`1

(3.20c)

and tk`1 ě tmin.

Otherwise, declare a null step. Set wk`1 “ wk

(3.20d)

and choose tk`1 .

In both cases select a new model φk`1
wk`1 .

In this algorithmic pattern, iterates satisfying (3.20a)-(3.20c) form the so-called
serious-step subsequence in bundle methods. As indicated by (3.20c), at serious steps the
objective functional values decrease. Iterates satisfying (3.20a) and (3.20b) but not (3.20c)
form the subsequence of null steps.

Since iterates in bundle methods can be of two types, the convergence theory
splits the asymptotic analysis into two parts, depending on whether the serious step se-
quence is finite or infinite. We state below the corresponding result for the latter. Note that
the result extends the theory of descent methods in Section 3.3, to take into consideration
the extra projective step in (3.20b).

For the next result, by construction (cf. (3.20c)), recall that the stepsizes tk

are bounded from below by tmin ą 0 whenever a serious step is performed.
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Theorem 3.5 (Global convergence and local linear rate of serious subsequence). Consider
problem (3.16) with the following assumptions:

h P w ´ convρpRnq (A1)

M is a nonempty closed convex set; (A2)

h is bounded below on M, that is inf
M

h ą ´8 ; (A3)

h ` iM satisfies the property of Definition 1.1; (A4)

h ` iM satisfies the error bound of Definition 1.7. (A5)

Assume that in the pattern (3.20) the functions φk
wk are 1QA models having

parameter q ď ρ as in (3.12), and that the stepsizes tk are bounded above by tmax ą 0 in
step (3.20c).

If there is an infinite subsequence of serious steps, that is twku satisfying
(3.20a)-(3.20c), the following holds.

(i) The subsequence of functional values thpwkqu monotonically converges to some criti-
cal value h˚ of h` iM, such that the sequence of functional errors tvk “ hpwkq´h˚u

converges to 0 with Q-linear rate: there exists r P p0, 1q such that for all sufficiently
large k,

vk`1 ď rvk .

(ii) The subsequences of iterates twku and intermediate points twk` 1
2 u converge to a

critical point w˚ of h ` iM with R-linear rate: there exists r P p0, 1q, and c ą 0 such
that for all sufficiently large k

}wk ´ w˚} ď c
?

r
k
, }wk` 1

2 ´ w˚} ď cp2 ´
?

rq
?

r
k

Similarly to Section 3.3 the first step is to exploit the model convexity to trans-
port the model subgradient to an approximate subgradient of the “convexified” function
associated to weak convexity. Then, a Brøndsted-Rockafellar’s like relation makes the
connection with the objective function in (3.16). The corresponding results are gathered
in the following statement, listing several technical relations. None of those relations in-
volves the projection step, they can be shown following the arguments in Lemma 3.4 and
Lemma 3.3, applied to the function H “ h ` iM.
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Lemma 3.4 (Transportation of subgradients, descent, theoretical sequence). Let h :
RN Ñ R Y t`8u and M satisfy (A1)´(A2). Consider solving problem (3.16) apply-
ing the model-based proximal scheme in (3.20). If the models φk

wk are of type 1QA with
parameter q ď ρ, as in Definition 3.1, the following holds for all k.

(i) The aggregate error Ek :“ ´tk}Gk}2 ´ φk
wkpwk` 1

2 q satisfies Ek ě 0.

(ii) Gk P BEkHwkpwkq where Hwkp¨q denotes the “convexified” function hp¨q ` iMp¨q `
ρ

2
} ¨ ´x}2

If (A3) holds, and the proximal stepsizes tk are bounded, tk P rtmin, tmaxs, then

(iii) the sequences of model subgradient and errors tGku and tEku converge to 0 as k Ñ

8, and

(iv) condition (3.20c) is equivalent to

hpwk`1q `
m

tmax

´

}wk` 1
2 ´ wk}2 ` tkEk

¯

ď hpwkq . (3.22)

If, in addition, (A5) holds, then

(v) there exists a theoretical auxiliary sequence tzku such that }zk ´ wk} ď
?

ℓEk and

Dgk P Bhpzkq and νk P NMpzkq, }gk ` νk} ď b
´

}wk` 1
2 ´ wk} ` }wk ´ zk}

¯

, for b ą 0 .

(3.23)

Proof. Items (i)´(iv) follow directly from Proposition 3.3(i)-(iv) applied to h ` iM. Item
(v) follows from Lemma 3.3 applied to h ` iM. Indeed, apply [19, Theorem 2] to the
function Hwk and the pair of points pGk, wkq such that Gk P BEkHwkpwkq, it follows that
there exists dk such that }dk} ď

?
Ek and

Gk ´
1

?
ℓ
dk P BHwkpwk `

?
ℓdkq,

where ℓ ą 0 is the constant of condition (A5). Defining zk :“ wk `
?

ℓdk, we have
that }zk ´ wk} ď

?
ℓEk, and BHwkpzkq “ Bph ` iMqpzkq ` ρ

?
ℓdk. Therefore, for gk

M :“
Gk ` p1 ` ρℓq

?
ℓ´1dk, it holds that

gk
M P Bph ` iMqpzkq “ Bhpzkq ` NMpzkq.

Thus, there exists gk P Bhpzkq and νk P NMpzkq such that gk
M “ gk ` νk. Moreover, from

the definition of gk
M, dk, and (3.20a), we also have



Chapter 3. A unified analysis of descent sequences in weakly convex optimization 91

}gk ` νk} ď }Gk} ` p1 ` ρℓq
?

ℓ´1}dk}

“
1
tk

}wk ´ wk` 1
2 } ` p1 ` ρℓqℓ´1}zk ´ wk}

ď
1

tmin
}wk ´ wk` 1

2 } ` p1 ` ρℓqℓ´1}zk ´ wk} ,

then condition (3.23) holds for b :“ maxtt´1
min, p1 ` ρℓqℓ´1u.

Lemma 3.5. Let h : RN Ñ R Y t`8u and M satisfy (A1)´(A3), and that the stepsizes
tk remain in rtmin, tmaxs. Then the following holds:

(i) thpwkqu monotonically converges to some value h̃ P R.

(ii) wk`1 ´ wk Ñ 0, zk`1 ´ zk Ñ 0 and gk ` νk Ñ 0, as k Ñ `8.

Suppose, in addition, (A4) and (A5) hold. Then

(iii) thpzkqu and thpwkqu both converge to f˚, where f˚ P R is a critical value (i.e.,
f˚ “ hpwq for some w P rBph ` iMqs´1p0q).

(iv) Defining p̃k P PSpzkq, for all k sufficiently large, the distance from zk to S can be
estimated as

}zk ´ p̃k}2 ď
2ℓ2b2

a
phpwkq ´ hpwk`1qq ` 2ℓ2b2}xk´i ´ zk´i}

2
.

(v) For the functional value errors vk :“ hpwkq ´ f˚, it holds that

vk`1 ď
2ℓb2

a
pvk ´ vk`1q ` 2ℓb2}xk´i ´ zk´i}

2
` Θk ,

where
Θk :“ hpwkq ´ hpzkq `

ρ

2
}p̃k ´ zk}2 .

Proof. The following proof is an adaptation of the proof of Lemma 3.2, taking into consid-
eration the extra projection step in the present setting. To see item (i), notice that, since
M is convex, then PM is a non-expansive operator, and together with wk P M, imply

}wk`1 ´ wk} “ }PMpwk` 1
2 q ´ PMpwkq} ď }wk` 1

2 ´ wk}

Combined with (3.22), it yields for some constant a ą 0

hpwk`1q ` ap}wk`1 ´ wk}2 ` εkq ď hpwkq (3.24)
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which, in particular, implies that the sequence of function values of twku is non-increasing.
Since h is bounded below on M, monotonicity of thpwkqu implies that hpwkq Ñ h̃, for
some h̃ P R. Note that inequality (3.24) corresponds to (3.2a) for εk “ tminEk.

For item (ii), observe that (3.24) also implies, combined with the fact that
hpwk`1q ´ hpwkq Ñ 0, that wk`1 ´ wk Ñ 0. Note that wk` 1

2 ´ wk Ñ 0 follows similarly
from (3.22). Together with Lemma 3.4(v), imply gk ` νk Ñ 0.

Item (iii) follows directly from Lemma 3.2(iii), because this original result does
not depend directly on (3.23). In particular, since gk ` νk Ñ 0 and hpzkq Ñ f˚, we can
apply the error bound to obtain, for all sufficiently large k,

}zk ´ p̃k} ď ℓ}gk ` νk} . (3.25)

Regarding item (iv), from (3.23) and (3.24), there holds

}gk ` νk}2 ď b2p}wk` 1
2 ´ wk} ` }xk´i ´ zk´i}q2

ď 2b2}wk` 1
2 ´ wk}2 ` 2b2}xk´i ´ zk´i}

2

ď
2b2

a
phpwkq ´ hpwk`1qq ` 2b2}xk´i ´ zk´i}

2
,

(3.26)

and the results follows from (3.25). The final item (v) is just Lemma 3.2(v).

Finally, with the tools constructed above, we prove Theorem 3.5.

Proof. The results of global convergence and local rate of convergence are similar to
Theorem 3.3, now taking into account the projection step (3.20b).

First, let tzku be defined as in Lemma 3.4(v), and consider the sequence of
functional errors tvku, defined in Lemma 3.5(v). Then, there exist constants C1 , C2 ą 0,
such that for all sufficiently large k, there holds

hpwkq ´ hpzkq ď C1pvk ´ vk`1q (3.27)

and
}wk ´ zk}2 ď C2pvk ´ vk`1q . (3.28)

Indeed, these two estimates directly follow from the proof of Theorem 3.3. Estimate (3.28)
comes from the definition of zk, and the descent condition (3.22), while estimate (3.27)
follows from the Ek´subgradient inequality of Hwk for Gk and (3.28).

The proof of item (i) in Theorem 3.5 is exactly the same as for Theorem 3.1(i),
due to the fact that it depends on Lemma 3.5. Indeed, use (3.27), (3.28), and Lemma 3.5(iv)
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in the estimate of Lemma 3.5(v), and then rearrange terms to deduce (i) for r “ M{p1 `

Mq P p0, 1q, and M “ C1 ` ℓb2p2 ` ρℓqp1{a ` C2q.

To deduce Theorem 3.5(ii), we can apply Lemma 3.1, using (3.24) (which is
exactly the same as (3.2a)) and item (i). Therefore, twku converges to some w˚ with a
R´linear rate: for all sufficiently large k,

}wk ´ w˚} ď c
?

r
k

, where c “

?
v0

?
a p1 ´

?
rq

.

The fact that w˚ is critical can be similarly proven as in the original analysis,
using Lemma 3.4(v) and the fact that the subdifferential Bh is an upper semicontinuous
multi-function.

Regarding the sequence of intermediate points, for all k,

}wk` 1
2 ´ w˚} ď }wk` 1

2 ´ wk} ` }wk ´ w˚}

In the right-hand side, the second term is bounded by c
?

r
k, therefore it only remains to

bound the first one. From (3.24) and the fact that εk, vk ě 0, it follows that

}wk` 1
2 ´ wk}2 ď

1
a

phpwkq ´ hpwk`1qq “
1
a

pvk ´ vk`1q ď
1
a

vk

From (ii), it holds that

}wk` 1
2 ´ wk}2 ď

v0

a
rk

Therefore,
}wk` 1

2 ´ w˚} ď cp2 ´
?

rq
?

r
k
,

which concludes the proof of Theorem 3.5.

It remains to analyze the asymptotic behavior of the “tail of null steps”. To do
so, the specific definition of the model functions plays a crucial role. Since this feature is
problem dependent, we consider the particular instance of interest, that is problem (5.1)-
(5.7), and give a complete convergence analysis for the bundle PH algorithm presented in
Chapter 5.

3.6 Final remarks
In this chapter, we presented a framework that merges the analysis of explicit

and implicit methods of descent for weakly convex optimization. First, we provided con-
vergence results for a general abstract scheme as introduced in [22], and then a particular
case of model-based methods, resembling the serious steps of proximal bundle methods.
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The convergence results comprise global convergence to a critical point, and local rates
of convergence by assuming a subdifferential-based error bound. This way of reasoning
bears a resemblance with the seminal work [18] for functions satisfying the KŁ inequality.
However, and differently from our case, the framework considered by the authors prevents
the inclusion of bundle-like methods.

We continued with an extension of [22] for constrained optimization problems,
where the constraints are directly treated by means of an extra projection step onto the
feasible set. This approach corresponds to the appendix of [23], and resembles the basic
idea of the splitting methods: we separately handle the objective function and the con-
straints modeled with an indicator function, since they have different structural properties.
In this case, we retrieved analogous convergence results as the original analysis.

When the projective variant of [22] is applied to the dual formulation of a
stochastic programming problem, it yields a scenario-based decomposition method, which
will be discussed in Chapter 5. Additionally, similar arguments can be carried out on
a merit function capturing the essential properties of the problem, and obtain similar
convergence results. That is the case of the Douglas-Rachford splitting method, examined
in Chapter 4.

It is important to observe that in this work, we use a notion of weak convexity
that is global. In the literature [109, 41, 110], sometimes a weaker and seemingly more
general condition is assumed, namely, that around each point x, there exists a neighbor-
hood U , and a constant ρx, such that fp¨q `

ρx

2
} ¨ }2 is convex on U . When the analysis

is restricted over a compact set C, then this weaker condition is actually equivalent to
Definition 1.3 due to compacity of C, with the same weak convexity parameter ρ over all
C.
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4 Nonconvex Douglas-Rachford splitting via
descent of merit functions

Abstract. We analyze Douglas-Rachford splitting techniques applied to solv-
ing weakly convex optimization problems. Under mild regularity assumptions, and by the
token of a suitable merit function called the Douglas-Rachford envelope, we show conver-
gence to critical points and local linear rates of convergence. The resulting iterates can
be interpreted to be generated by a descent method applied to this merit function. The
Douglas-Rachford envelope plays here an analogous role as the Moreau envelope for the
proximal point algorithm. This feature allows us to extend to the nonconvex nondiffer-
entiable setting arguments employed in the analysis of the gradient descent method in
convex differentiable optimization.

4.1 Introduction and motivation
Decomposition techniques are fundamental to deal with complex systems rep-

resented by large-scale sophisticated model formulations. Decomposition can be achieved
by separating problems in simpler and smaller subproblems, depending on the involved
variables and constraints, and also on the number of possible outcomes. Separability can
also stem from structural properties, for instance, splitting smooth and nonsmooth, or
convex and nonconvex parts, in the objective function of the problem of interest. Split-
ting methods have been successfully applied in signal processing, image processing, and
machine learning, see [111, 112, 113, 12, 114] for a few illustrations of applications.

Operator splitting methods decompose complex structured problems into sim-
pler individual pieces. A solution of the original problem is obtained by iteratively solv-
ing separate subproblems for each involved function, or more generally, operator. Promi-
nent instances suitable for composite optimization are the Douglas-Rachford and the
Peaceman-Rachford (PRS) splittings, the Alternating Direction Method of Multipliers
(ADMM), the Spingarn’s partial inverse and the Forward-Backward methods; we refer
to [11, 115, 87, 12, 116] and references therein for details. When applied to optimization
problems, these methods were originally studied for linear, and more generally, convex
programming.

The cornerstone of most operator splitting methods is the proximal point al-
gorithm, introduced by [16] and thoroughly studied by [17] to find a zero of a maximal
monotone operator, see also Section 2.1.1. In the context of convex optimization, for
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φ1, φ2 P convpRnq, the problem boils down to minimizing the composite function φ1 ` φ2.
As explained in [87] and Section 2.2.1, recall one DRS iteration, given in the scheme (4.2)
below and Algorithm 2, amounts to applying the PPA with constant stepsize equal to 1,
to the auxiliary maximal monotone operator

rproxcφ1 ˝p2 proxcφ2 ´Iq ` pI ´ proxcφ2qs´1 ´ I, with c ą 0,

where I is the identity map, and the notation proxcφ stands for the proximal point operator
of Definition 2.1. Thanks to this reformulation, DRS convergence rates can be derived from
those available for the PPA.

Classical approaches study the sum of two functions or the sum of two mono-
tone operators, corresponding to convex functions in the optimization setting. More re-
cently, extensions to the sum of d ě 2 functions/monotone operators have been proposed,
see [117, 118] for some examples. Our approach is applicable to the sum of two terms in
w ´ convρpRnq. Accordingly, we consider the following minimization problem (cf. (2.7))

min
xPRn

φpxq “ φ1pxq ` φ2pxq, (4.1)

where φ1, φ2 : Rn Ñ R Y t`8u are proper lsc functions, not necessarily convex.

Following [28], we examine relaxed DRS variants. Given a relaxation parameter
λ ą 0, a stepsize γ ą 0, and an initial s0 P Rn, define one iteration of relaxed DRS as
below:

$

’

’

&

’

’

%

uk “ proxγφ1pskq

vk P proxγφ2p2uk ´ skq

sk`1 “ sk ` λpvk ´ ukq.

(4.2)

Note that for λ “ 1, scheme (4.2) reduces to DRS (cf. Algorithm 2), while for λ “ 2 it
corresponds to PRS. As stated, one iteration amounts to performing successively proximal
steps, computed separately for each term in the sum, followed by a gradient step.

The iterative approach (4.2) has a long history. Lions and Mercier in [11] stud-
ied convergence properties and speed of convergence for splitting methods to find a zero of
the sum of two maximally monotone operators defined on a Hilbert space. When applied
to the optimization problem (5.1) for convex proper lower semicontinuous functions φ1

and φ2, the corresponding operators are the subdifferentials of convex analysis, Bφ1 and
Bφ2. Under mild regularity assumptions, the DRS sequence tsku converges to some s‹, for
which u‹ “ proxγφ1ps‹q solves (5.1), and both tuku and tvku converge to u‹ [87, Theo-
rem 3.15,Proposition 3.40]. Additionally, if φ1 is differentiable and strongly convex, with
Lipschitz continuous gradient, then tsku Q´linearly converges to s‹, and tuku Q´linearly
converges to the unique solution to (5.1). For varying stepsizes and inexact proximal eval-
uations, see [119, Theorem 7]. A similar analysis was carried out for the PRS method in
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[87, 11]. More recently, the authors in [120] studied the convergence speed of a relaxed
PRS for convex problems, under the assumption of strong convexity of one of the functions
and Lipschitz continuity of its gradient. Rates of convergence are provided, including the
standard DRS and PRS as special cases. Furthermore, the method applied to the dual
formulation yields convergence rates for a relaxed ADMM. In [121] the authors derive a
global linear rate of convergence for ADMM variants for the convex case, assuming one
of the two functions is strongly convex with Lipschitz continuous gradient.

The aforementioned works are typically based on monotonicity of the sequence
of iterate distances to the solution set. In a DRS, however, functional values are not
monotonically increasing, and for this reason [122] introduced a special merit function,
called Douglas-Rachford envelope (DRE). For convex composite problems with one convex
quadratic function, the DRE is real-valued and continuously differentiable. Furthermore,
one DRS iteration corresponds to one gradient step applied to minimizing the DRE. In
a manner similar to how the Moreau envelope sheds a light on the PPA, the DRE gives
an insight on DRS. In particular, because DRS provides (sufficient) descent for the merit
function DRE, a variable metric gradient method for the DRE yields complexity estimates
and rates of convergence for DRS iterates. A point crucial for this type of analysis is that
DRE critical points are related to minimizers of the original convex problem. For convex
composite objective functions with one L´smooth and strongly convex term, a similar
approach is adopted in [123] to analyze Forward-Backward methods by means of a suitably
defined envelope.

The literature is much more scarce for nonconvex problems, the setting con-
sidered in this work. We can mention the DR splitting proposed in [124, 125] for the
sum of a differentiable function with Lipschitz continuous gradient, and a proper lower
semicontinuous function with an easily computable proximal point. By defining a merit
function related to the DRE, global subsequential convergence to a critical point is ob-
tained, as well as eventual convergence rate under some extra assumptions, namely, that
the functions satisfy the KL inequality [53, 54], a concept related to error bounds [75,
Theorem 4.1]. These two notions are often used in the literature to establish local rates
of convergence [22, 33, 19, 21, 126, 67, 75].

Our contribution refers to deriving local convergence rates for weakly convex
Douglas-Rachford splitting mechanisms. This is achieved by combining the machinery
developed in [28] for the DRE with the unifying framework for descent methods from
Chapter 3. In some sense, we generalize the latter work, since when applying arguments
of the corresponding theory to the DRE merit function, we succeed in showing conver-
gence properties for another sequence of iterates, the DRS method applied to the original
function. Our results resemble the ones briefly referred without proof in [28, page 15] for
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semialgebraic functions.

The remainder of this chapter is organized as follows. We introduce the defi-
nition of the Douglas-Rachford envelope and some properties for convex and nonconvex
functions in Section 4.2. Next, in Section 4.3 we show the necessary components to follow
the ideas of Chapter 3 to obtain convergence and local rate of convergence of nonconvex
Douglas-Rachford. We end this chapter with some preliminary numerical experiments of
the DRS applied to a nonconvex consensus optimization problem.

4.2 Douglas-Rachford envelope
In this section, we examine the Douglas-Rachford envelope, a merit function

that plays the role of the Moreau envelope (or Moreau-Yosida regularization) in the prox-
imal point algorithm. We first discuss the properties of the Douglas-Rachford envelope in
the nonconvex case, and then review the precursor setting, the convex case.

4.2.1 Douglas-Rachford envelope for nonconvex functions

We adopt the assumptions and notation in [28].

Assumption 4.1. For problem (4.1), consider the following conditions:

• φ1 : Rn Ñ R is a L´smooth function, for (known) L ą 0, that is, φ1 is differentiable
and its gradient ∇φ1 is a L´Lipschitz continuous function.

• φ2 : Rn Ñ R Y t`8u is a proper lower semicontinuous function.

• the set of solutions of problem (5.1) is nonempty.

As mentioned in [28, Remark 3.1], due to Assumption 4.1, the scheme in (4.2)
is well-defined for any 0 ă γ ă

1
L

, since for such choice of γ, both

φ1p¨q `
1

2γ
} ¨ }2 and φ2p¨q `

1
2γ

} ¨ }2

are bounded from below. Furthermore, since φ1 is L´smooth, proxγφ1 is a single-valued
operator [28, Proposition 2.3(i)], and from the update rule for uk in (4.2),

uk “ proxγφ1pskq ðñ 0 “ γ∇φ1pukq ` uk ´ sk. (4.3)

Combining this last identity with the update rule for vk in (4.2), vk corresponds to a
solution to the following problem

min
v

"

φ2pvq `
1

2γ
}v ´

`

uk ´ γ∇φ1pukq
˘

}2
*

. (4.4)
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After expanding squares in the last expression, we end up with the original form of the
Douglas-Rachford envelope, used in the analysis of [28] to show DRS convergence results.

Definition 4.1 (Douglas-Rachford envelope). For any s P Rn the DRE function φDR
γ :

Rn Ñ R is defined as

φDR
γ psq “ min

v

"

φ1puq ` x∇φ1puq, v ´ uy ` φ2pvq `
1

2γ
}v ´ u}2

*

, (4.5)

where u “ proxγφ1psq.

Problem (4.5) can be interpreted as yielding an approximate value of proxγφpuq,

and thus yielding an approximation of the Moreau envelope eγφpuq. Namely, in the sum
φ “ φ1 ` φ2, the first term is replaced by a first-order Taylor model of φ1 at u.

Thanks to the DRE, properties of the splitting (4.2) can be analyzed by resort-
ing to techniques of descent methods. To this aim, we first recall some relations between
the DRE and the scheme (4.2) stated in [28, Propositions 3.2, Theorem 3.4].

Remark 4.1. Observe that the definition of the Douglas-Rachford envelope requires, in
principle, the knowledge of the Lipschitz constant L. We refer to [28] for the analysis of
an adaptive variant of the method examined in this chapter, that is, when the constant L

is not assumed to be known.

Proposition 4.1 (General properties of the envelope). For a function φ “ φ1 ` φ2 that
satisfies Assumption 4.1, and φDR

γ defined in (4.5), for any 0 ă γ ă
1
L

the following
holds.

(i) The DRE satisfies the relation for all s P Rn

φDR
γ psq “

`

φγ
2 ˝ pId ´ γ∇φ1q ˝ proxγφ1

˘

psq,

and is a real-valued and locally Lipschitz function.

(ii) inf
xPRn

φpxq “ inf
sPRn

φDR
γ psq.

(iii) arg min φ “ proxγφ1parg min φDR
γ q.

Proof. To prove item (i), in [28, Proposition 2.3] is shown that proxγφ1 is a Lipschitz
continuous operator. Additionally, φγ

2 is locally Lipschitz [29, Example 10.32], and so is
Id ´ γ∇φ1 due to Assumpption 4.1(i), and the result follows. Items (ii) and (iii) are [28,
Theorem 3.4].
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The Lipschitz continuity of the envelope is useful not only to be able to com-
pute subgradients (by applying the chain rule to the expression in item (i) above), but
also in the convergence analysis, since the DRE is thus a continuous function. Moreover,
items (ii) and (iii) in Proposition 4.1 explicitly relate φDR

γ with the original objective
function φ, through the proximal mapping of the first term φ1. In particular, whenever φ

is bounded below, so is the envelope φDR
γ .

The next result, corresponding to [28, Proposition 3.3], relates the objec-
tive function φ with its regularization φDR

γ , by using the definition of the DRE, and
L´smoothness of φ1. These relations are crucial to prove convergence of function values
in Theorem 4.3. We include a proof for the sake of clarity.

Proposition 4.2 (Relations between DRS and DRE iterates). For a function φ “ φ1`φ2

that satisfies Assumption 4.1, φDR
γ defined in (4.5), and tpuk, vk, skqu generated by (4.2),

for any 0 ă γ ă
1
L

it holds

(i) φDR
γ pskq ď φpukq.

(ii) φpvkq ď φDR
γ pskq ´

1 ´ γL

2γ
}uk ´ vk}2.

Furthermore, any limit point ps‹, u‹, v‹q of the sequence tpuk, vk, skqu, whenever they exist,
satisfy

(iii) φDR
γ ps‹q ď φpu‹q, and φpv‹q ď φDR

γ ps‹q ´
1 ´ γL

2γ
}u‹ ´ v‹}2.

Proof. Item (i) directly follows from (4.5), by evaluating φDR
γ at s “ sk, and the mini-

mand at v “ uk. Item (ii) follows similarly as [127, Proposition 4.3(ii)]. Indeed, since vk

minimizes the problem in (4.5) for s “ sk,

φDR
γ pskq “ φ1pukq ` x∇φ1pukq, vk ´ uky ` φ2pvkq `

1
2γ

}vk ´ uk}2.

The right-hand side can be bounded using the descent lemma [128, Proposition A.24],
namely,

|φ1pvkq ´ φ1pukq ´ x∇φ1pukq, vk ´ uky| ď
L

2
}uk ´ vk}2. (4.6)

This yields φDR
γ pskq ě φ1pvkq ´

L

2
}vk ´ uk}2 ` φ2pvkq `

1
2γ

}vk ´ uk}2, giving the desired
result.

Let tpskj , ukj , vkj quj be a subsequence such that pskj , ukj , vkj q Ñ ps‹, u‹, v‹q

as j Ñ `8. Since ∇φ1 is continuous, then taking the limit in (4.3), it holds that 0 “
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γ∇φ1pu‹q ` u‹ ´ s‹, which is equivalent to u‹ “ proxγφ1ps‹q. Therefore, it follows from
(4.5) that

φDR
γ ps‹q ď φ1pu‹q ` x∇φpu‹q, u‹ ´ u‹y ` φ2pu‹q `

1
2γ

}u‹ ´ u‹}2 “ φpu‹q.

Furthermore, since φ is lower semicontinuous, and φDR
γ is continuous (Proposition 4.1(i)),

it follows from Proposition 4.2(ii)

φpv‹q ď lim inf
jÑ`8

φpvkj q

ď lim inf
jÑ`8

"

φDR
γ pskj q ´

1 ´ γL

2γ
}ukj ´ vkj }2

*

“ φDR
γ ps‹q ´

1 ´ γL

2γ
}u‹ ´ v‹}2.

4.2.2 Gradient method applied to the Douglas-Rachford envelope: convex
case

For the smooth convex case, the authors in [122] provide an alternative analysis
of the Douglas-Rachford splitting method as a variable-metric gradient method applied to
the DRE. More specifically, we momentarily assume φ1 is twice continuously differentiable
strongly convex with L´Lipschitz continuous gradient, and φ2 is convex. Under this
hypothesis,

}∇2φ1puq}2 ď L,

where ∇2 denotes the Hessian matrix, and } ¨ }2 is the operator norm induced by the
ℓ2´norm in Rn. Furthermore, for γ P p0, 1{Lq, the Hessian of eγφ1 exists everywhere and

∇2peγφ1qpsq “ γ´1
´

I ´
`

I ` γ∇2φ1pproxγφ1psqq
˘´1

¯

.

In this manner, the DRE is differentiable and

∇φDR
γ psq “

`

I ´ 2γ∇2peγφ1qpsq
˘`

∇peγφ1qpsq ` peγφ2qpsq ´ 2γ∇peγφ1qpsqq
˘

,

where, as stated in (2.3),

∇peγφ1qpsq “ γ´1`s ´ proxγφ1psq
˘

.

Starting from s0, one iteration of DRS (4.2) for λ “ 1 is equivalent to one
iteration of the following variable-metric gradient step on φDR

γ

sk`1 “ sk ´ Dk∇φDR
γ pskq, (4.7)
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where
Dk “ γ

`

2rI ` γ∇2φ1
`

proxγφ1pskq
˘

s´1 ´ I
˘´1

.

The key observation in the current convex setting is that u‹ is a solution to
(4.1) if and only if u‹ “ proxγφ1ps‹q for some s‹ such that

proxγφ2

`

2 proxγφ1ps‹q ´ s‹
˘

´ proxγφ1ps‹q “ 0. (4.8)

When φ1 is additionally convex quadratic, then for any γ P p0, 1{Lq, φDR
γ is

strongly convex with L´Lipschitz continuous gradient. Hence, from the classical conver-
gence results of the gradient descent method, the sequence tuku defined by the u´step of
(4.2) with λ “ 1, and tsku generated by (4.7), converges to some minimizer u‹ of φ, and
tφpvkqu converges to min φ. The convergence properties are deduced from the following
estimate:

φDR
γ pskq ´ φDR

γ ps‹q ď
1

p2γλqk
}s0 ´ s‹}2.

In view of Proposition 4.2(ii)–(iii), it thus holds

φpvkq ´ min φ ď
1

p2γλqk
}s0 ´ s‹}2

Under the more general nonconvex Assumption 4.1, it is still possible to ob-
tain descent for φDR

γ along the DRS iterations, resembling gradient descent, but in a
nondifferentiable setting.

4.3 Convergence of nonconvex Douglas-Rachford splitting
In order to obtain convergence properties of DRS using arguments for descent

methods under Assumption 4.1, we make use of the DRE. The work in [28] constructs
the tools to employ the analysis in Chapter 3.

4.3.1 Convergence analysis as a descent method for the Douglas-Rachford
envelope

For the purpose of using the properties of φ1 and φ2 of Assumption 4.1, note
that φDR

γ can be computed directly using the iterates of (4.2), by first reformulating
problem (5.1) as follows

min
u,vPRn

φ1puq ` φ2pvq s.t. u ´ v “ 0.

The augmented Lagrangian of this reformulation is, for β ą 0 :

Lβpu, v, yq “ φ1puq ` φ2pvq ` xy, u ´ vy `
β

2
}u ´ v}2,
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where y P Rn is a Lagrange multiplier associated with the constraint u´v “ 0. Therefore,
due to (4.5), it holds

φDR
γ pskq “ Lγ´1

`

uk, vk, γ´1puk ´ skq
˘

. (4.9)

Following Chapter 3, the first main ingredient is to prove that DRS is a descent
method for the Lagrangian evaluated at the primal-dual point

σk :“
`

uk, vk, γ´1puk ´ skq
˘

.

The following result states that tφDR
γ pskqu satisfies a condition of sufficient decrease with

respect to both }sk ´ sk`1}2 and }uk ´ uk`1}2, proven in [28, Theorem 4.1] for tφDR
γ pskqu.

Theorem 4.2 (Descent properties of DRS). Suppose that φ “ φ1 ` φ2 satisfies Assump-
tion 4.1. For λ P p0, 2q, and 0 ă γ ă

2 ´ λ

2L
, the iterates tpuk, vk, skqu generated by (4.2)

satisfy,

φDR
γ pskq ´ φDR

γ psk`1q ě c max
"

1
p1 ` γLq2 }sk ´ sk`1}2, }uk ´ uk`1}2

*

, (4.10)

where
c “

2 ´ λ

2λγ
´

L

λ
ą 0.

Furthermore, for σk “
`

uk, vk, γ´1puk ´ skq
˘

, it holds

gk :“
`

γ´1puk ´ vkq, 0, uk ´ vk
˘

P BLγ´1pσkq, (4.11)

and
}gk} “ λ´1

a

γ´2 ` 1}sk`1 ´ sk}. (4.12)

Proof. First, the estimate (4.10) for }sk ´ sk`1}2 corresponds to [28, (4.2)] after using the
identity (4.9), for σφ1 “ ´L. The estimate for }uk ´ uk`1}2 appears in the proof of [28,
Theorem 4.1].

Furthermore, the subdifferential of Lγ´1 at σ “ σk can be computed taking
partial derivatives with respect to the different components of the primal-dual vector σ,
as follows:

• Since φ1 is differentiable, BLγ´1

Bu
pu, v, yq “ ∇φ1puq`y`γ´1pu´vq. Then, evaluating

this last identity at pu, v, yq “ σk, and using (4.3), it follows that

BLγ´1

Bu
pσkq “ ∇φ1pukq ` γ´1puk ´ skq ` γ´1puk ´ vkq

“ γ´1puk ´ vkq.
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• From the optimality condition of vk for problem (4.5),

0 P Bφ2pvkq ` ∇φ1pukq ` γ´1pvk ´ ukq,

it holds that

BLγ´1

Bv
pσkq “ Bφ2pvkq ´ γ´1puk ´ skq ` γ´1pvk ´ ukq Q 0.

• Since Lγ´1 only depends on y linearly, then BLγ´1

By
pσkq “ γ´1puk ´ skq.

Therefore, from BLγ´1pσkq “
BLγ´1

Bu
pσkq ˆ

BLγ´1

Bv
pσkq ˆ

BLγ´1

By
pσkq, identity

(4.11) follows. To prove (4.12), note that due to the update rule for tsku in (4.2), it
follows

}gk}2 “ γ´2}uk ´ vk}2 ` }uk ´ vk}2

“ pγ´2 ` 1q}uk ´ vk}2

“ pγ´2 ` 1qλ´2}sk ´ sk`1}2.

Our result is not a straightforward application of the general scheme in Chap-
ter 3. As made clear in the proof, in our setting, the DRE functional decrease is measured
only in terms of some components of the primal-dual term }σk ´ σk`1}2. This feature
prevents us to directly apply the unifying convergence theory of Chapter 3.

We now give an alternative proof of [28, Theorem 4.3], based on the develop-
ments in Chapter 3. The result states subsequential convergence of the iterates to critical
points of φ, and convergence of φDR

γ pskq to a critical value of φ.

Theorem 4.3 (Subsequential convergence of DRS). Suppose that φ “ φ1 ` φ2 satisfies
Assumption 4.1. For λ P p0, 2q, and 0 ă γ ă

2 ´ λ

2L
, then for any bounded sequence

tpuk, vk, skqu generated by (4.2),

(i) The sequence tφDR
γ pskqu monotonically converges to a critical value φ‹ of φ, and

the sequence tφ1pukq ` φ2pvkqu converges to the same value φ‹.

(ii) uk ´ vk Ñ 0, uk ´ uk`1 Ñ 0, vk ´ vk`1 Ñ 0, and sk ´ sk`1 Ñ 0, as k Ñ `8.

(iii) All cluster points of tuku and tvku coincide, and are also critical points of φ, with
same critical value φ‹ “ lim

kÑ8
φDR

γ pskq “ lim
kÑ8

φ1pukq ` φ2pvkq.
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Proof. First, Assumption 4.1(iii) implies that φ is bounded from below. Then, from Propo-
sition 4.1(ii), φDR

γ is also bounded from below, and so is the sequence tφDR
γ pskqu. Fur-

thermore, the descent condition (4.10) implies that tφDR
γ pskqu is a non-increasing real

sequence. Thus, there exists φ‹ P R such that φDR
γ pskq Ñ φ‹. In turn, (4.10) then yields

sk ´ sk`1 Ñ 0, and uk ´ uk`1 Ñ 0. These results have a couple of consequences:

• uk ´ vk Ñ 0, due to the update rule for tsku in (4.2), and thus tuku and tvku have
the same limit points.

• From (4.12), it follows that gk Ñ 0.

• Furthermore, vk ´ vk`1 “ vk ´ uk ` uk ´ uk`1 ` uk`1 ´ vk`1 Ñ 0.

As for item (ii), let u‹, v‹, and s‹ be limit points of the sequences tuku, tvku,
and tsku, respectively. Note that v‹ “ u‹, because tuku and tvku have the same limit
points, and thus φpv‹q “ φpu‹q. Then, up to a subsequence, vk Ñ v‹, and following the
arguments in [28]:

φpv‹q ď lim inf
kPK

φpvkq Assumption 4.1(i)-(ii)

ď lim sup
kPK

φpvkq

ď lim sup
kPK

φDR
γ pskq Proposition 4.2(ii)

“ φDR
γ ps‹q Proposition 4.1(i)

ď φpu‹q Proposition 4.2(iii)
“ φpv‹q

Therefore, φpvkq Ñ φpv‹q, and Lγ´1pσkq “ φDR
γ pskq Ñ φpv‹q through the same subse-

quence, with φpu‹q “ φpv‹q “ φDR
γ ps‹q “ φ‹. Note that since tuk ´ sku is bounded, and

uk ´ vk Ñ 0 as k Ñ `8, then xγ´1puk ´ skq, uk ´ vky `
1

2γ
}uk ´ vk}2 Ñ 0, and thus

φ1pukq ` φ2pvkq “ Lγ´1pσkq ´

ˆ

xγ´1puk ´ skq, uk ´ vky `
1

2γ
}uk ´ vk}2

˙

Ñ φ‹.

Furthermore, from the definition of the augmented Lagrangian,

Lγ´1pu‹, u‹, γ´1pu‹ ´ s‹qq “ φ1pu‹q ` φ2pu‹q ` xγ´1pu‹ ´ s‹q, u‹ ´ u‹y `
1

2γ
}u‹ ´ u‹}2

“ φpu‹q,

that is, tLγ´1pσkqu (subsequentially) converges to Lγ´1pu‹, u‹, γ´1pu‹ ´ s‹qq, as σk Ñ

pu‹, u‹, γ´1pu‹ ´ s‹q. Therefore, taking the limit in (4.11) (passing through a subsequence
if necessary) gives

0 P BLγ´1pu‹, v‹, γ´1pu‹ ´ s‹qq,
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which is equivalent to the following criticality conditions
$

’

’

&

’

’

%

0 “ ∇φ1pu‹q ` γ´1pu‹ ´ s‹q ` γ´1pu‹ ´ v‹q

0 P Bφ2pv‹q ´ γ´1pu‹ ´ s‹q ` γ´1pu‹ ´ v‹q

0 “ v‹ ´ u‹

Adding the first two relations, and using that v‹ “ u‹, the final result follows, as we obtain
0 P ∇φ1pu‹q ` Bφ2pu‹q.

Remark 4.2. Some comments about Theorem 4.3 are in order.

• By items (i) and (ii), the sequence of DRE functional values φDR
γ pskq converges

monotonically to a critical value of φ. By contrast, the sequence of functional val-
ues φ1pukq ` φ2pvkq converges to the same critical value, but not necessarily in a
monotone manner.

• Boundedness of the iterates tpuk, vk, skqu generated by (4.2) is usually ensured by
assuming φ has bounded level sets [28, Theorem 4.3(iii)], which is equivalent to
φDR

γ having the same property [28, Theorem 3.4(iii)].

4.3.2 Rate of convergence for nonconvex Douglas-Rachford splitting

The analysis of rate of convergence requires additional assumptions. This sec-
tion is an extension of [28], by applying the machinery of Chapter 3 to (4.2) through the
envelope φDR

γ and the augmented Lagrangian Lγ´1 .

We recall two concepts related to criticality and the study of rates of con-
vergence in the following, namely Definition 1.7 and Definition 1.1. We say a function
φ : Rn Ñ R Y t`8u satisfy a local error bound, if for any φ̄ ě inf φ ą ´8, there exists
ε ą 0, ℓ ą 0, such that whenever φpvq ď φ̄,

dist
`

x, pBφq´1p0q
˘

ď ℓ dist
`

0, Bφpvq X Bp0, εq
˘

. (4.13)

Furthermore, we say a function φ : Rn Ñ R Y t`8u satisfy the proper sepa-
ration of isocost surfaces property if there exists δ ą 0, such that if

@u, v P pBφq´1p0q, }u ´ v} ď δ ùñ φpuq “ φpvq. (4.14)

The next result relates the sequences generated by (4.2) with the error bound
condition (4.13), resulting in an estimate crucial to obtain a local rate of convergence.
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Proposition 4.3. Suppose that φ “ φ1 ` φ2 satisfies Assumption 4.1, as well as a local
error bound (4.13). For λ P p0, 2q, and 0 ă γ ă

2 ´ λ

2L
, then for any bounded sequence

tpuk, vk, skqu generated by (4.2), and any ε, ℓ ą 0, there exists φ̄ ą 0, and a sequence tg̃ku,
such that g̃k P Bφpvkq X Bp0, εq, φpvkq ď φ̄, and

dist
`

vk, pBφq´1p0q
˘

ď ℓ}g̃k}. (4.15)

Proof. First, since tφDR
γ pskqu monotonically converges to φ‹, then for any ϵ ą 0, and

for any sufficiently large k, Lγ´1pσkq “ φDR
γ pskq ď φ‹ ` ϵ. From the definition of the

augmented Lagrangian, we then have

φ1pukq ` φ2pvkq ` γ´1xuk ´ sk, uk ´ vky `
1

2γ
}uk ´ vk}2 ď φ‹ ` ϵ. (4.16)

Furthermore, from the bounded assumption of the generated sequences, t∇φ1pukqu is
bounded, that is, there exists M1 ą 0, such that for all k, }∇φ1pukq} ď M1. From (4.6)
and Theorem 4.3(ii), for any η ą 0, and for all sufficiently large k,

|φ1pvkq ´ φ1pukq| ď M1η `
L

2
η2.

Therefore, φpvkq ď φ1pukq ` φ2pvkq ` M1η `
L

2
η2. Combining this last inequality with

(4.16), it holds

φpvkq ď φ‹ ` ϵ ´ γ´1xuk ´ sk, uk ´ vky ´
1

2γ
}uk ´ vk}2 ` M1η `

L

2
η2

ď φ‹ ` ϵ ` γ´1}uk ´ sk}}uk ´ vk} ` M1η `
L

2
η2

Since the generated sequences are bounded, then there exists M2 ą 0 such that }uk ´sk} ď

M2. Therefore, for all sufficiently large k,

φpvkq ď φ‹ ` ϵ ` γ´1M2η ` M1η `
L

2
η2 “: φ̄.

Furthermore, from the optimality conditions of (4.4) (as shown in the proof of [28, Theo-
rem 4.3]), it follows that g̃k :“ γ´1puk ´ vkq ´ p∇φ1pukq ´ ∇φ1pvkqq P Bφpvkq. Since ∇φ1

is L´Lipschitz continuous, then

}g̃k} ď γ´1p}uk ´ vk} ` γL}uk ´ vk}q “ γ´1p1 ` γLq}uk ´ vk}. (4.17)

In this manner, from Theorem 4.3(ii), g̃k Ñ 0. Then, for any sufficiently large k, g̃k P

Bφpvkq X Bp0, εq, and φpvkq ď φ̄. This allow us to apply (4.13) to obtain (4.15).

Before giving the most important result, first we need some technical estimates
deduced from Proposition 4.3.
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Lemma 4.1. Suppose the conditions of Proposition 4.3 hold. For any pk
v P projpBφq´1p0qpv

kq,

define
pk “ ppk

v , pk
v , γ´1ppk

v ´ skqq.

Then, there exists C ą 0, such that for all k,

}pk ´ σk}2 ď CpφDR
γ pskq ´ φDR

γ psk`1qq. (4.18)

Proof. From the definition of pk and σk, we have

}pk ´ σk}2 “ }pk
v ´ uk}2 ` }pk

v ´ vk}2 ` }γ´1ppk
v ´ skq ´ γ´1puk ´ skq}2

“ p1 ` γ´2q}pk
v ´ uk}2 ` }pk

v ´ vk}2.

From (4.15), it follows that }pk
v ´ vk}2 ď ℓ}g̃k}. As for }pk

v ´ uk}, it holds that

}pk
v ´ uk}2 ď p}pk

v ´ vk} ` }vk ´ uk}q2

ď 2}pk
v ´ vk}2 ` 2}vk ´ uk}2

ď 2ℓ2}g̃k}2 ` 2}vk ´ uk}2

“ 2ℓ2}g̃k}2 ` 2λ´2}sk ´ sk`1}2

where for the first inequality we apply the triangle inequality, for the second inequality
we use the estimate pa ` bq2 ď 2pa2 ` b2q, for the third inequality }pk

v ´ vk}2 ď ℓ}g̃k} is
used, and for the last equality we use the update rule for tsku in (4.2). Therefore,

}pk ´ σk}2 ď 2p1 ` γ´2qpℓ2}g̃k}2 ` λ´2}sk ´ sk`1}2q ` ℓ2}g̃k}2.

Now, we bound the terms in the right-hand side of the above estimate.

• First, note that the descent condition (4.10) implies

}sk ´ sk`1}2 ď
p1 ` γLq2

c
pφDR

γ pskq ´ φDR
γ psk`1qq. (4.19)

• Furthermore, (4.17) together with (4.2) and (4.19) imply

}g̃k}2 “ γ´2p1 ` γLq2}uk ´ vk}2

“ pλγq´2p1 ` γLq2}sk ´ sk`1}2

ď pλγq´2p1 ` γLq2 p1 ` γLq2

c
pφDR

γ pskq ´ φDR
γ psk`1qq

Hence, follows (4.18) for

C “
p1 ` γLq2

cλ2

ˆ

`

2p1 ` γ´2q ` 1
˘

p1 ` γLq2ℓ2

γ2 ` 2p1 ` γ´2q

˙

.
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In order to relate an error bound for φ with the descent properties of Theo-
rem 4.2, we need the following assumption for φ2.

Assumption 4.4. Assume that φ2 P w ´ convρpRnq.

The use of weakly convex regularizers can present an advantage by reducing
the bias introduced by, for example, the ℓ1´norm, meaning that nonzero entries of the
computed solution are not underestimated, as pointed out in [129]. On the other hand,
allowing weakly convex objective functions broadens the applicability of splitting methods
with convergence guarantees.

Under Assumption 4.4, both φ1, φ2 P w ´ convρpRnq for ρ ě L, due to Propo-
sition 1.7. Hence, φ is locally Lipschitz on its domain and weakly convex. Therefore, as
mentioned before, limiting (or Clarke) subgradients of φ can be characterized as proximal
subgradients in the whole space, and B̂φ “ Bφ “ Bφ. This particular form of subgradients
allows us to take full advantage of Lemma 4.1.

Theorem 4.5 (Rate of convergence of nonconvex DRS). Suppose that φ “ φ1 ` φ2

satisfies Assumptions 4.1 and 4.4, a local error bound (4.13), and property (4.14). Then,
for λ P p0, 2q, 0 ă γ ă

2 ´ λ

2L
, and any bounded sequence tpuk, vk, skqu generated by (4.2),

(i) The sequence tφDR
γ pskqu Q´linearly converges to a critical value φ‹ of φ, and the

sequence tφ1pukq ` φ2pvkqu R´linearly converges to the same value φ‹.

(ii) The sequences tuku and tvku R´linearly converge to a critical point u‹ of φ, and
tsku R´linearly converges to a point s‹, such that u‹ “ proxγφ1ps‹q.

Proof. First, from Proposition 4.3, g̃k Ñ 0 implies vk ´ pk
v Ñ 0, which in turn implies

pk
v ´pk`1

v Ñ 0, in view of Theorem 4.3(ii). Then, applying the proper separation of isocost
surfaces property (4.14), for all sufficiently large k, φppk

vq “ φppk`1
v q, and thus φppk

vq “ φ‹,

for some critical value φ‹ of φ. From Theorem 4.3(iii), up to a subsequence, vk Ñ u‹, for
a critical point u‹ of φ. Therefore, pk

v Ñ u‹ and φppk
vq Ñ φpu‹q, for the same subsequence.

Thus φ‹ “ φpu‹q.

Furthermore, from the definition of the augmented Lagrangian, Lγ´1ppkq “

φppk
vq. Moreover, in view of (4.11)

φDR
γ pskq ´ φDR

γ ppk
vq “ Lγ´1pσkq ´ Lγ´1ppkq

ď ´xgk, pk ´ σky `
ρ

2
}pk ´ σk}2.

In particular, for all sufficiently large k,

φDR
γ pskq ´ φ‹ ď }gk}}pk ´ σk} `

ρ

2
}pk ´ σk}2. (4.20)
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Note that from (4.12) and (4.19),

}gk}2 “ λ´2p1 ` γ´2q}sk ´ sk`1}2

ď λ´2p1 ` γ´2q
p1 ` γLq2

c
pφDR

γ pskq ´ φDR
γ psk`1qq

Combining the last estimate with (4.20) and (4.18), yields

φDR
γ pskq ´ φ‹ ď

´

C̃ ` C
ρ

2

¯

pφDR
γ pskq ´ φDR

γ psk`1qq (4.21)

for C̃ “ λ´1
a

1 ` γ´2p1 ` γLq

c

C

c
. Set Ĉ :“ C̃ ` C

ρ

2
, r “

Ĉ

1 ` Ĉ
P p0, 1q, and V k :“

φDR
γ pskq ´ φ‹. Note that monotonicity of tφDR

γ pskqu implies V k`1 ď V k. Thus, from
(4.21), for all sufficiently large k,

V k`1 ď ĈpV k ´ V k`1q ðñ V k`1 ď rV k,

from which the first part of item (i) follows.

For item (ii), suppose that above estimate holds for all k ě k0. Then,

V k`1 ď pV k0r1´k0qrk,

or equivalently, for q “ V k0r´k0 and all k ě k0 ` 1

V k ď qrk. (4.22)

From the descent condition of Equation (4.10), it follows

}sk ´ sk`1} ď
1 ` γL

?
c

?
V k, and }uk ´ uk`1} ď

1
?

c

?
V k. (4.23)

Therefore, from Lemma 3.1, there exists m ą 0, α P p0, 1q, s‹ P Rn such that for all
sufficiently large k

}sk ´ s‹} ď mαk, }uk ´ u‹} ď mαk.

Note that tuku converges to the critical point u‹, since tuku and tvku have the same
limit points. Observe that since φ1 is L´smooth, then prox

γφ1
is Lipschitz continuous [28,

Proposition 2.3(ii)], therefore uk “ proxγφ1pskq Ñ proxγφ1ps‹q, and thus u‹ “ proxγφ1ps‹q.

In addition, the rate of convergence of tvku can be deduced as follows. Using
the triangle inequality, the update rule for tsku in (4.2), and (4.23), it holds

}vk ´ vk`1} ď }vk ´ uk} ` }uk ´ uk`1} ` }uk`1 ´ vk`1}

“ λ´1}sk ´ sk`1} ` }uk ´ uk`1} ` λ´1}sk`1 ´ sk`2}

ď λ´1 1 ` γL
?

c

?
V k `

1
?

c

?
V k ` λ´1 1 ` γL

?
c

?
V k`1.
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Since tV ku is nonincreasing, then

}vk ´ vk`1} ď

ˆ

2λ´1p1 ` γLq ` 1
?

c

˙

?
V k.

Then, from Lemma 3.1 it follows that for all sufficiently large k,

}vk ´ v‹} ď m̄ᾱk.

for some m̄ ą 0 and ᾱ P p0, 1q.

Finally, to obtain the rate of convergence of tφ1pukq ` φ2pvkqu, first note that
since φDR

γ psk`1q ě φ‹, then from (4.10), (4.22), and (4.2), it follows

λ2}uk ´ vk}2 “ }sk ´ sk`1}2 ď

„

p1 ` γLq2q

c

ȷ

rk. (4.24)

Furthermore, in view of (4.9),

|φ1pukq ` φ2pvkq ´ φ‹| ď φDR
γ pskq ´ φ‹ `

1
γ

}uk ´ sk}}uk ´ vk} `
1

2γ
}uk ´ vk}2.

By assumption, tuku and tsku are bounded sequences, therefore there exists M2 ą 0, such
that for all k, }uk ´ sk} ď M2. Substituting this estimate, (4.22) and (4.24) in the above
inequality, yields

|φ1pukq ` φ2pvkq ´ φ‹| ď qrk `

ˆ

M2p1 ` γLq

γλ

c

q

c

˙

?
r

k
`

ˆ

p1 ` γLq2q

2γcλ2

˙

rk.

Since r P p0, 1q, then r ď
?

r, and thus

|φ1pukq ` φ2pvkq ´ φ‹| ď K̃
?

r
k
,

where
K̃ “ q `

M2p1 ` γLq

γλ

c

q

c
`

p1 ` γLq2q

2γcλ2 .

This proves the second part of item (i).

4.4 Numerical results
The numerical experiments are performed for the phase retrieval problem de-

scribed in [37, §5.1]. The goal of the phase retrieval problem is to find a point x‹ that
(approximately) simultaneously solves the equations xai, xy2 “ bi, for i “ 1, . . . , N , ai P Rn

and bi ě 0. As an optimization problem, we seek to find a point x‹ that solves

min
xPRn

1
N

N
ÿ

i“1
|xai, xy2 ´ bi|. (4.25)



Chapter 4. Nonconvex Douglas-Rachford splitting via descent of merit functions 112

Note that each x ÞÑ |xai, xy2 ´ bi| is a weakly convex function, as the composition of the
Lipschitz continuous convex function | ¨ | with the smooth function x ÞÑ xai, xy2 ´ bi with
Lipschitz continuous derivative (see [46, Lemma 4.2]).

For the numerical examples, we draw the slopes ai from a standard Gaussian
distribution in Rn, for i “ 1, . . . , N . We choose a target x̄ P Rn, and define bi “ xai, x̄y2.
Since problem (4.25) has a decomposable structure, we create N copies xi of the variable
x, and define N “ tpxiq

N
i“1 : x1 “ ¨ ¨ ¨ “ xN u, corresponding to a 1´stage nonanticipative

subsapce from the perspective of a stochastic optimization problem. Therefore, problem
(4.25) can be reformulated as the following consensus optimization problem:

$

’

’

&

’

’

%

min 1
N

N
ÿ

i“1
|xai, xiy

2 ´ bi|

s.t. pxiq
N
i“1 P N .

(4.26)

Since DRS applies to problems with objective functions expressed as a sum of
two functions, we rewrite problem (4.26) accordingly. One possibility, explored in [23], is
to add the indicator function iC to the objective. Being non-differentiable, having a term
φ1 given by the indicator function escapes the framework of the present chapter. Instead,
inspired by the approach [124] for nonconvex feasibility problems, we consider the squared
distance to the feasible set as a penalty function. Namely, given a scaling/penalty factor
µ ą 0, we work with the following formulation

min
xPRn

1
N

N
ÿ

i“1
|xai, xiy

2 ´ bi| `
µ

2
d2

N pxq. (4.27)

Hence, we take

φ1pxq “
µ

2
d2

N pxq and φ2pxq “

N
ÿ

i“1
|xai, xiy

2 ´ bi|

in (5.1). Since

PN rpxiq
N
i“1s “

1
N

N
ÿ

i“1
xi,

in view of [130, Corollary 12.30], the derivative of the penalty function can be explicitly
computed as

∇
´µ

2
d2

N

¯

“ µpI ´ PN q, (4.28)

and the first two conditions in our blanket Assumption 4.1 hold, with L “ µ.

The battery of randomly generated problems parses the three settings de-
scribed in [37, §5.1]:

pN, nq P tp30, 10q, p150, 50q, p300, 100qu,
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for 15 uniformly randomly generated initial points in the unit sphere. We also define 5000
as the maximum number of iterations, with a target accuracy of 10´6 for the objective

function value to stop iterations. We set the scaling parameter µ “

?
N

2
, since it provides

the best performance out of the tests we run. We use 20 equally spaced values of λ between

0.05 and 1.95, and 5 equidistant values of γ, from 0.01 to 0.99
ˆ

2 ´ λ

2µ

˙

.

Furthermore, the objective function φ2 is separable, and in view of (4.4)–(4.5),
at DRS iteration k the proximal subproblem to be solved for component i “ 1, . . . , N is

min
xiPRn

|xai, xiy
2 ´ bi| ` xwk

i , xiy `
1

2γ
|xi ´ uk

i |2, (4.29)

where wk “ µ
`

uk ´ PN ruks
˘

, and

uk “

ˆ

1
1 ` γµ

˙

sk `

ˆ

γµ

1 ` γµ

˙

PN rsks.

The optimality conditions of subproblems (4.29) yield four explicit critical points for each
i “ 1, . . . , N , that are candidates to subproblem solutions, namely,

uk
i ´ γ

ˆ

wk
i ´ 2

„

γxwk
i , aiy ´ xuk

i , aiy

2γ}ai}
2 ˘ 1

ȷ

ai

˙

,

and
uk

i ´ γ

ˆ

wk
i ´

„

γxwk
i , aiy ´ xuk

i , aiy ˘
?

bi

}ai}
2

ȷ

ai

˙

.

Note that when the dual iterate wk
i “ 0, we retrieve the solutions obtained by

applying the stochastic proximal point method of [37, Section 5.1].

Table 1 shows the accuracy achieved for the objective function of problem
(4.27) by the DRS iterates. It is clear that all problems were solved at best with a low
accuracy of 10´1, while nearly 38% of them reached the target accuracy of 10´6 or better.
These results include all the values of λ and γ we tested, that is, various possible methods
(by varying λ) and several stepsizes. Observe that despite being a weakly convex problem,
the method does approach a global minimizer. Similar behavior has been reported for a
proximal-type method in [44] for weakly convex problems.

accuracy ă 10´1 ă 10´2 ă 10´3 ă 10´4 ă 10´5 ă 10´6

% 100 99.365 68.254 62.857 53.016 37.778

Table 1 – Percentage of problems solved by DRS for different levels of accuracy, and dif-

ferent values of λ P p0, 2q, and γ P

ˆ

0,
2 ´ λ

2µ

˙

.

As a rule of thumb, better accuracies are obtained whenever λ and γ in-
crease within their bounds. For instance, Table 2 shows the results for λ “ 1.95 and
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γ “ 0.99
ˆ

2 ´ λ

2µ

˙

. Observe that in this case, almost 96% of the problems attained the

target accuracy of 10´6 or beyond. Choosing the best pair of parameters pλ, γq could be
a problem-dependent issue, and further investigation is required.

accuracy ă 10´1 ă 10´2 ă 10´3 ă 10´4 ă 10´5 ă 10´6

% 100 100 100 100 100 95.556

Table 2 – Percentage of problems solved by the DRS method for different levels of accu-

racy, λ “ 1.95, and γ “ 0.99
ˆ

2 ´ λ

2µ

˙

.

The benchmark in Figure 8 shows the performance of DRS for problem (4.26),
the Elicited Progressive Decoupling method [131, 132] for problem (4.26), and the stochas-
tic prox-linear method described in [37], applied to problem (4.25). The two latter methods
only require setting a stepsize γ. For our numerical tests, we use 100 equally distributed
stepsizes in the interval p10´4, 1q, as in [37]. For the Elicited Progressive Decoupling, we
set the elicitation parameter e “ 0, following the numerical results and suggestions of
the authors in [132], in order to accelerate convergence. The starting points, maximum
number of iterations, and target accuracy are the same as described before.

10-6 10-4 10-2 100
0

20

40

60

80

100

Figure 8 – Performance profile of the accuracy of the best objective function value found
along iterations, for DRS using different values of λ and γ, corresponding to
Table 1, Elicited Progressive Decoupling (e-PD), and stochastic prox-linear
(SPL) method.

We observe that, on the considered battery of functions and accuracies, the
Douglas-Rachford splitting method and the Elicited Progressive Decoupling method al-
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ways outperform the prox-linear method, the one that provided the best results in [37].
This can be explained by the fact that the latter method does not inherently exploit
the structure of the problem. The nonconvex version of DRS, for different values of λ,
can solve approximately 40% of the problems with an accuracy of order 10´6, while the
Elicited Progressive Decoupling solve around 55% of the problems with this accuracy.
Contrast these results with the best performance found for our proposal inTable 2.

For accuracy of order between 10´4 and 10´1, our proposed method shows a
better behavior than the Elicited Progressive Hedging. This is because the latter presents
a relatively polarized performance, since it solves approximately half of the problems with
an accuracy of 10´6 or better, and the other half just achieved an accuracy worse than
10´2. In this sense, the nonconvex DRS method possesses a more distributed performance,
achieving different levels of accuracy.

4.5 Final remarks
In this chapter, we presented the convergence analysis of the Douglas-Rachford

splitting method in the context of optimization of weakly convex objective functions.
Originally, the authors of [28] showed subsequential convergence of the DRS method in
a nonconvex setting, where one of the functions of the sum is continuously differentiable
with Lipschitz continuous gradient, and the other just lsc.

The fundamental feature of the analysis is that one DRS iteration can be
interpreted as applying some descent method to the Douglas-Rachford envelope, which
in the smooth convex setting coincides with the gradient descent method. Two properties
conform the pillars of the analysis: a sufficient descent estimate for the Dogulas-Rachford
envelope, and an estimate of a subgradient. This configuration makes it possible to apply
the reasoning of [22], and thus we obtained global convergence of the iterates to critical
points of the original objective function. Furthermore, when the problem displays more
structure, namely, when it is weakly convex, then a subdifferential error bound allowed
us to prove local linear rates of convergence to critical points.

One of the properties of the DRE is that there is a direct relation between
global minimizers of the envelope and the original objective function, and their respective
minimal values. However, for nonconvex problems, it is most common and less restrictive
to characterize critical points as either local minimizers or saddle points. As shown in [133],
smoothness conditions of the objective function, namely, the behavior of the Hessian of
the objective function in a neighborhood of critical points, guarantee that DRS iterates
converge to local minimizers almost surely. It would be more desirable to follow the
pathway of more recent works of saddle point avoidance for simpler methods, as the
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proximal point algorithm [134] or the subgradient method [135], where it is proven that
the methods themselves naturally lead the iterates to a manifold where the objective
function behaves nicely, that is, the objective function restricted to the manifold has
fitting properties alongside the iterates that allow the avoidance of saddle points. It is
hypothesized that the DRS method enjoy analogous properties, since it is described as a
sequence of proximal steps.

Regarding the numerical experiments, the penalization term µ in problem
(4.27) could be dynamically updated in order to control the weight of the penalization
throughout the iterations. However, this would update the objective function in every
iteration, a feature not supported by our analysis. Two lines of research could be explored
in this case.

The first option would be to consider the epi-smoothing approach of [136],
where a family of models approximates the objective function of our problem in the epi-
convergence sense. In particular, these models can handle variable penalization parameters
µk when the objective function is smooth, and defines a sequence tφDRE

k u of Douglas-
Rachford envelopes parametrized by the sequence of penalization parameters tµku. This
approach generates a sequence that subsequentially converges to critical points. We still
need to investigate if these results can be generalized under Assumption 4.1.

Another alternative would be to use the notion of exact penalty representation
of [29, Definition 11.60]. As long as the parameter µ ą 0 is sufficiently large, under regu-
larity conditions akin to strong duality, solving problem (4.27) is equivalent to solving the
original problem (4.26). In this case, the DRS method generates a sequence that converges
to a global minimizer, which initially could be considered a bit restrictive. Nonetheless,
as we saw in practice with the phase retrieval problem, weak convexity is seemingly a
manageable form of nonconvexity that could allow optimization methods to obtain global
minimizers.
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5 A bundle-like progressive hedging algo-
rithm

This section corresponds to [23]:

Atenas, F., & Sagastizábal, C. (2023). A bundle-like progressive hedging
algorithm. Journal of Convex Analysis, special issue in honor of R. J-B Wets,
30(2) 453–479.

Some parts have been modified in order to follow the notation and structure
of this thesis.

Abstract. For convex multistage programming problems, we propose a variant
for the Progressive Hedging algorithm inspired from bundle methods. Like in the original
algorithm, iterates are generated by first solving separate problems for each scenario, and
then performing a projective step to ensure non-anticipativity. An additional test checks
the quality of the approximation, splitting iterates into two subsequences, akin to the
dichotomy between bundle serious and null steps. The method is shown to converge in
both cases, and the convergence rate is linear for the serious subsequence. Our bundle-like
approach endows the Progressive Hedging algorithm with an implementable stopping test.
Moreover, it is possible to vary the augmentation parameter along iterations without im-
pairing convergence. Such enhancements with respect to the original Progressive Hedging
algorithm are obtained at the expense of the solution of additional subproblems at each
iteration, one per scenario.

5.1 Introduction and motivation
Multistage stochastic programs represent an important source of large-scale

optimization problems. This is because the number of variables and constraints needed
to formulate the problem grows with the number of scenarios. As illustrated by energy
applications in [6], decomposition methods are essential for solving effectively this type
of problems; see also [137].

A very popular approach that deals with scenario decomposition is the Pro-
gressive Hedging algorithm (PHA), introduced in [24] and later extended to handle risk
measures in [138]. The setting is such that the problem uncertainty, represented by a set
of S scenarios, reveals progressively, in T stages. For each scenario s, the decision variable
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is xs P Rn, the convex objective function is fs : Rn Ñ R and a nonempty convex compact
feasible set Cs Ď Rn is given. Consider the following stochastic multistage optimization
problem,

$

’

’

’

’

’

&

’

’

’

’

’

%

min
x

Erfpxqs :“
S
ÿ

s“1
psfspxsq

s.t. xs P Cs, for all s “ 1, . . . , S,

x P N ,

(5.1)

where, in the last inclusion, the linear subspace N gathers the so-called non-anticipativity
constraints. Such constraints ensure that, at each stage t, the decision making process
depends only on information of the uncertainty that is available at time t.

Non-anticipativity constraints couple decisions along scenarios in a structured
manner. The PHA decouples those constraints so that, at each iteration, individual sub-
problems can be solved separately for each scenario. This makes the approach very suitable
for parallel implementations. The parallel phase of separate scenario subproblems is fol-
lowed by a synchronization step that yields a non-anticipative vector by projecting onto
the linear subspace N .

The PHA is in fact a Douglas-Rachford splitting, in a space endowed with
a weighted scalar product; see for example [139] and Section 2.2.2. Early work on split-
ting methods, dealing with the classical problem of finding a zero of a sum of maximal
monotone operators, can be traced back to [11, 87, 140]. The more recent family of pro-
jective splitting methods [141, 142, 143, 117] expanded significantly the reach of Douglas-
Rachford approaches. The projective hedging algorithm [139], in particular, can operate
in block-iterative and partially asynchronous manner. For a randomized asynchronous
variant of the PHA, we refer to [144].

Another important advance of projective splitting methods is the ability to
dynamically update certain proximal parameter involved in the calculations. Along itera-
tions, the PHA also generates a dual sequence, that lies in N K, the orthogonal complement
of the non-anticipative space. The update of the dual variable amounts to maximizing cer-
tain dual function, by applying a gradient method with fixed stepsize (related to the afore-
mentioned proximal parameter). Empirically, splitting methods are generally observed to
converge linearly, but at a rate that becomes asymptotically slow and is heavily dependent
on the parameter choice. In order to speed up the process, practitioners resort to various
heuristic techniques that can be computationally expensive and may not always prove
successful [145, 146, 147]. This difficulty is not a surprise as, for the specific PHA context,
the parameter in question must strike a good balance between optimality and feasibility.
Clearly, such a goal is not easy to attain with a value that is kept fixed along iterations.



Chapter 5. A bundle-like progressive hedging algorithm 119

Our proposal is to employ, instead, a proximal bundle method [85, Part II],
tailored to maximize the dual function over N K. To this aim, we consider a more general
setting, the constrained minimization of weakly convex functions. For tackling such prob-
lems, assuming that projecting onto the feasible set is an easy operation, we propose to
apply a bundle algorithm of projective type.

This chapter is organized as follows. After introducing some notation and def-
initions, we recall the PHA and formulate a problem dual to (5.1). This dual problem is
a particular instance of a constrained weakly convex problem considered in Section 3.5.
Therein, the subspace N K is replaced by a general constraint set M, onto which project-
ing points is assumed to be easy. The general methodology developed in Section 3.5 is
particularized to (5.1) in Section 5.2. The resulting Bundle Progressive Hedging algorithm
(BPHA) is formulated in both primal and dual forms. Convergence to solutions of (5.1)
and (5.7) is shown in Section 5.3, using the dual form. An equivalent primal formulation
is useful to compare our new approach with the original PHA. The final Section 5.4 dis-
cusses similarities and differences between the original Progressive Hedging algorithm and
our proposal.

Notation and some definitions

Our notation is standard, following mainly [29], [30] and Section 2.2.2. Given
S scenarios, for a certain scenario realization s P t1, . . . , Su, the probability of occurrence
is denoted by ps ą 0. Without loss of generality, we can assume that the dimension of

the decision variable of scenario s “ 1, . . . , S is ns “ n, and thus
S
ÿ

s“1
ns “ nS. For a

vector v P RnS with components vs P Rn for all s “ 1, . . . , S, the expected value and the
conditional expectation at stage t are respectively denoted by

Ervs “

S
ÿ

s“1
psvs, and Ert´1srvs ,

where the uncertainty realization at stages 1, . . . , t ´ 1 is known.

Considering that all vectors are column vectors, the inner product employed
in the space of decision variables is

@u, v P RnS : xu, vyS “

S
ÿ

s“1
psxus, vsy .

Note that this inner product uses the (nonnegative) probability of each scenario as a
weight, a crucial feature in the analysis. Recall we denote by } ¨ }S its corresponding
induced norm in RnS, while } ¨ } stands for the usual Euclidean norm in Rn. Throughout
the text, the symbol x¨, ¨y refers to any either inner product (with or without weights),
and similarly for the corresponding norms, when it is clear from the context.
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On non-anticipativity.

In the stochastic setting, decisions have to be taken progressively, as uncer-
tainty is revealed: at stage t, decisions should only depend on the information that became
available in stages 1, . . . , t ´ 1. Accordingly, if xt,s denotes the decision made in stage t for
scenario s, the following relations, called of non-anticipativity, need to hold for all t and
s:

xt,s “ Ert´1srxts .

In particular, for the first stage, this constraint states that x1,s are equal for all scenario
s. Non-anticipativity constraints define a linear subspace N of decision variables charac-
terized by conditional expected values. In a manner similar, the projection operator PN

onto N is characterized by the following simple algebraic relations:

for each stage t, PN rxst “ Ert´1srxts.

Being a self-adjoint operator, the following relation holds for the projection: PN K “ I´PN .

Primal and dual formulations of the multistage program

To induce separability, the PHA relaxes the non-anticipativity constraint in
(5.1), namely

x P N ðñ x “ PN rxs ,

by means of the following Lagrangian:

Lpx, wq “ Erfpxqs ` xw, x ´ PN rxsyS .

Because of the identity PN K “ I ´ PN , the Lagrangian multiplier w “ pwsqS
s“1 P RnS can

be assumed to satisfy
w P N K ðñ PN rws “ 0 . (5.2)

Furthermore, by perpendicularity, the linear term in the relaxation can be simplified:

xw, x ´ PN rxsyS “ xw, xyS ´ xw, PN rxsyS “ xw, xyS.

Therefore, the Lagrangian

Lpx, wq “ Erfpxqs ` xw, xyS

is decomposable along scenarios. More specifically,

Lpx, wq “

S
ÿ

s“1
psLspxs, wsq , (5.3)
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where for each scenario s “ 1, . . . , S, we defined the s´Lagrangian

Lspxs, wsq “ fspxsq ` xws, xsy . (5.4)

Throughout our development, subindices s refer to scenario components (of
functions, sets, or vectors). To ease the understanding, Table 3 below summarizes the
main elements in our notation and clarifies their dimensionality.

In Algorithm 5, with the PHA, the s-Lagrangians (5.4) are used to construct
separate subproblems in the primal space, one per scenario. Algorithm 5 is Algorithm 4
written with the notation of this chapter.

Algorithm 5 Progressive Hedging Algorithm
1: Initialization: Choose a primal-dual starting point px0, w0q P N ˆ N K.
2: for k “ 0, 1, . . . do
3: Primal subproblems: solve for s “ 1, . . . , S,

x
k` 1

2
s “ arg min

xsPCs

Lspxs, wk
s q `

tk

2
}xs ´ xk

s}2. (5.5)

4: Primal projection: xk`1 “ PN rxk` 1
2 s.

5: Dual update: wk`1
s “ wk

s ` tkpx
k` 1

2
s ´ xk`1

s q for s “ 1, . . . , S .
6: end for

Notice that, by (5.4) and (5.5), the dual updating rule can be interpreted as
an approximate gradient step for maximizing an augmented s-dual function.

A notable feature of the PHA is that feasibility is achieved both in the primal
and dual iterates by performing simple calculations. On the primal space, the vector
formed by collecting the subproblem solutions is projected onto N . On the dual space,
the difference xk` 1

2 ´ xk`1, which measures primal feasibility, lies in N K. As a result,
dual feasibility is guaranteed throughout the iterative process, as long as the starting
dual point belongs to N K. The Bundle Progressive Hedging algorithm proposed in this
work preserves this characteristic, introducing some modifications in the PHA scheme by
resorting to duality. More precisely, consider the convex dual function derived from the
Lagrangian, that is

hpwq “

S
ÿ

s“1
pshspwsq , where hspwsq “ max

xsPCs

p´Lsqpxs, wsq . (5.6)

With this notation, the problem dual to (5.1) has the expression
$

&

%

min
w

hpwq

s.t. w P N K
(5.7)
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Since the multistage stochastic program (5.1) is convex with a linear constraint, there is
no duality gap. As a result, a convergent dual method applied to (5.7) yields solutions to
the original problem. Note that in view of weak duality and the fact that the feasible set
of the primal problem is compact and the primal objective function is continuous, then
inf
N K

h ą ´8.

vector in RnS scenario s subvector in Rn

primal variable x xs

dual variable w ws

full function scenario s subfunction
primal objective f : RnS Ñ R fs : Rn Ñ R

Lagrangian L : RnS ˆ RnS Ñ R Ls : Rn ˆ Rn Ñ R

dual objective h : RnS Ñ R hs : Rn Ñ R

Table 3 – Notation and dimensionality of variables and functions.

5.2 Bundle Progressive Hedging
Our motivation to consider algorithmic schemes of the form (3.20a)-(3.20c) is

to exploit decomposable structures in the objective function in (3.16). The challenge is
to define model functions that inherit h’s structure and, at the same time, incorporate
information on the feasible set M without destroying separability. We now explain how
to build suitable model functions for (5.7) and present the bundle variant of the PHA.

5.2.1 Building separable models

As mentioned, usually bundle methods define linearizations for the sum h`iN K ,
but such model functions are not separable. To illustrate this difficulty, consider the
following simple instance of (3.16), where w1, w2 P R are decision variables:

#

min
w1,w2

h1pw1q ` h2pw2q

s.t. w1 ` w2 “ 0 .

The equality constraint represents pw1, w2q P N K for a uniformly distributed random
variable with two scenarios. A classical model for this problem takes cutting-plane ap-
proximations for each term, say qhspwsq for s “ 1, 2, and adds the indicator function:

φk
wkpw1, w2q :“ qh1pw1q ` qh2pw2q ´ h1pwk

1q ´ h2pwk
2q ` iN Kpw1, w2q .

With such a model, problem (3.19), whose solution yields (3.20a), is not separable:

min
w1`w2“0

$

&

%

φk
wkpw1, w2q `

1
2tk

›

›

›

›

›

˜

w1

w2

¸

´

˜

wk
1

wk
2

¸›

›

›

›

›

2

S

,

.

-

.
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By contrast, if a separable model function was available for the indicator function iN K

evaluated at pw1, w2q, the calculations required in (3.20a) could be performed separately,
by solving, for s “ 1, 2,

min
ws

"

φk
wk

s
pwsq `

1
2tk

}ws ´ wk
s }2

*

. (5.8)

When the objective function h involves the sum of more than two terms, as in the case of
multistage programs with many scenarios, using separable models improves significantly
the computational performance (the solution to (5.8) can be computed in parallel for the
different scenarios).

Following the espirit of Table 3, and because the ability of defining separable
models depends on the constraints M under consideration, we recall in Table 4 the feasible
sets involved in the primal and dual problems.

space nature notation
general framework of Section 3.5 - M
nonanticipative primal N
nonanticipative orthogonal dual N K

Table 4 – Spaces involved in the general framework of Section 3.5, and in the BPHA
analysis.

Regarding the PHA setting, that is when (3.16) has the format (5.6)´(5.7),
the feasible set therein is given by the non-anticipativity constraints written in dual form.
Hence, as in (5.2),

M “ N K “ tw : PN rws “ 0u .

This subspace has a favorable structure, in particular, the projection step (3.20b) is
straightforward:

PMrws “ w ´ PN rws .

Recall that, by (5.6), hpwq “

S
ÿ

s“1
pshspwsq. Our proposal is to work with the weighted sum

of special model functions, defined for each scenario and derived from (5.5).

Proposition 5.1 (Separable 1QA models). Given pxk, wkq P N ˆ N K, for s “ 1, . . . , S

consider the approximate s-Lagrangian

Lk
spxs, wsq “ fpxsq ` xws, xs ´ xk

sy “ Lspxs, wsq ´ xws, xk
sy , (5.9)

and the individual functions

φk
wk

s
pwsq :“ max

xsPCs

p´Lk
sqpxs, wsq ´ hspwk

s q . (5.10)
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The corresponding weighted sum

φk
wkpwq “

S
ÿ

s“1
psφ

k
wk

s
pwsq “ hpwq ´ hpwkq `

〈
w, xk

〉
S

defines a model for ph ` iN Kq pwq at wk that is separable, convex and of type 1QA with
q “ 0.

Proof. First, the model φk
wk is separable by construction, and convex, since each φk

wk
s

is
the maximum of affine functions ´Lspxs, wsq ´ hspwk

s q in ws. From (5.10) it follows that

φk
wk

s
pwsq ď hspwsq ` xws, xk

sy ´ hspwk
s q.

After multiplying by ps and adding all scenarios, this means that

φk
wkpwq ď hpwq ` xw, xkyS ´ hpwkq.

Note that since xk P N , then xw, xkyS ď iN Kpwq for all w. Indeed, if w P N K, xw, xkyS “

0 ď 0 “ iN Kpwq. On the other hand, if w P N zt0u, xw, xky is a finite value, thus xw, xkyS ă

`8 “ iN Kpwq. Therefore,

φk
wkpwq ď hpwq ` iN Kpwq ´ hpwkq.

Hence, φk
wk is a 1QA model for h ` iN K at wk with q “ 0.

The approximate s-Lagrangians put together build a 1QA model for h ` iN K .
In fact, as

Lk
spxs, wwq “ Lspxs, wsq ´ xxk

s , wsy ,

the term xxk, wyS corresponds to a lower linearization of the indicator function iN K . Using
the wording from [148], the models φk

wk are of lower type; see also [149].

5.2.2 Comparison with subproblems in the Progressive Hedging algorithm

To understand the given definition for the individual models, first recall we
are interested in dealing with separate subproblems (5.8). Plugging (5.10) therein yields

min
ws

"

max
xsPCs

p´Lk
sqpxs, wsq ´ hspwk

s q `
1

2tk

}ws ´ wk
s }2

*

“ min
ws

"

max
xsPCs

p´Lsqpxs, wsq ` xxk
s , wsy ´ hspwk

s q `
1

2tk

}ws ´ wk
s }2

*

.
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For this (convex-concave) saddle-point problem it is equivalent to solve

max
xsPCs

min
ws

"

p´Lsqpxs, wsq ` xxk
s , wsy ´ hspwk

s q `
1

2tk

}ws ´ wk
s }2

*

“ ´hspwk
s q ` max

xsPCs

"

min
ws

„

´fspxsq ´ xws, xs ´ xk
sy `

1
2tk

}ws ´ wk
s }2

ȷ*

.

The expression between brackets is minimized at ws “ wk
s ` tkpxs ´ xk

sq. Therefore,

(5.8) is equivalent to max
xsPCs

"

´fspxsq ´ xwk
s ` tkpxs ´ xk

sq, xs ´ xk
sy `

tk

2
}xs ´ xk

s}2
*

“ max
xsPCs

"

´fspxsq ´ xwk
s , xs ´ xk

sy ´ tk}xs ´ xk
s}2 `

tk

2
}xs ´ xk

s}2
*

“ ´ min
xsPCs

"

fspxsq ` xwk
s , xs ´ xk

sy `
tk

2
}xs ´ xk

s}2
*

“ xwk
s , xk

sy ´ min
xsPCs

Lk
spxs, wk

s q `
tk

2
}xs ´ xk

s}2 .

(5.11)
This last minimization problem is practically identical to the PHA original subproblem
(5.5). The difference is that the stepsize tk, in this case, can be dynamically updated, as
in a bundle method.

Additionally, note that the Lagrangian Lk
s is an approximation of the original

Lagrangian obtained when relaxing the non-anticipativity constraint. More specifically,
the Lagrangian

Lpx, wq “

S
ÿ

s“1
ps pfspxsq ` xws, xs ´ PN rxssyq

is approximated with

Lkpx, wq “

S
ÿ

s“1
ps

`

fspxsq ` xws, xs ´ xk
sy
˘

, xk
s P N .

Consequently, the non-separable augmented Lagrangian subproblems
S
ÿ

s“1
ps min

xsPCs

"

fspxsq ` xws, xs ´ PN rxssy `
tk

2
}xs ´ PN rxss}2

*

are approximated (in both PHA and BPH) by the separable subproblems

S
ÿ

s“1
ps min

xsPCs

"

fspxsq ` xws, xs ´ xk
sy `

tk

2
}xs ´ xk

s}2
*

The difference is that, with our approach, the quality of this approximation is measured
by means of the serious/null step test (3.20c). Performing the descent test is not free, as
it requires an extra dual function evaluation, that is, solving another set of subproblems
in parallel. This is made clear in the descent test in Algorithm 6 given below.
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5.2.3 Statement of the algorithm in dual form

Recall that the PHA keeps separate subproblems for each scenario, performing
afterwards a coordination step, projecting the primal candidates onto the linear subspace
of non-anticipative constraints. The Bundle Progressive Hedging Algorithm 6 maintains
those features, adding a descent test to measure the quality of the model approximation.
The main steps of the algorithm are as follows.

– Iteration k starts by solving, for each scenario s “ 1, . . . , S, a dual subproblem,
yielding dual intermediate iterates.

– Intermediate primal points are derived from the dual intermediate solutions. As
shown in Lemma 5.1(i), such primal points actually correspond to minimizing an
augmented s-Lagrangian in the primal space.

– The projection of the dual intermediate points onto the orthogonal subspace of the
non-anticipativity ensures dual feasibility.

– The projected dual iterates are evaluated, to determine if there was some decrease
in the dual function h:

– if there is sufficient descent, a serious step is made. This point then becomes
the best candidate point generated so far, or

– if there is no sufficient descent, a null step is made.

The Bundle Progressive Hedging Algorithm 6 results from applying the scheme
(3.20) with the 1QA model in Proposition 5.1, to the dual problem (5.7). Being a particular
instance of the general algorithmic pattern given in Section 3.5, convergence of the serious
dual subsequence generated by BPHA in therefore ensured by Theorem 3.5.

Table 5 compares the notation employed in Algorithms 6 and 7 to generate,
respectively, the primal and dual sequences of the bundle approach.

vector in RnS scenario s subvector in Rn

intermediate primal xk` 1
2 x

k` 1
2

s

projected primal xk xk
s

intermediate dual wk` 1
2 w

k` 1
2

s

projected dual uk uk
s

dual serious step wk wk
s

minimizer of Lsp¨, uk
sq over Cs yk yk

s

Table 5 – Notation for primal and dual sequences generated by Algorithms 6 and 7.
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Algorithm 6 Bundle Progressive Hedging Algorithm in dual form
1: Initialization: Given a stopping tolerance TOL ě 0 and parameters m P p0, 1q and

tmin ą 0, choose a primal-dual starting point px0, w0q P N ˆN K and an initial stepsize
t0 ą 0.
Compute the dual value hspw0

sq “ ´Lspŷ0
s , w0

sq, by finding

ŷ0
s P arg min

xsPCs

Lspxs, w0
sq for s “ 1, . . . , S .

2: for k “ 0, 1, . . . do
3: Dual subproblems: given φk

wk
s
pwsq “ max

xsPCs

p´Lk
sqpxs, wsq ´ hspwk

s q, solve

w
k` 1

2
s “ arg min

ws

"

φk
wk

s
pwsq `

1
2tk

}ws ´ wk
s }2

*

for s “ 1, . . . , S . (5.12)

The nominal decrease φk
wk

s
pw

k` 1
2

s q is available.
4: Primal projection: xk`1 “ PN rxk` 1

2 s, where

x
k` 1

2
s “ xk

s `
1
tk

pw
k` 1

2
s ´ wk

s q for s “ 1, . . . , S . (5.13)

5: Stopping test: if ´φk
wkpwk` 1

2 q ď TOL, stop and return pxk, wkq.

6: Dual projection: uk`1 “ PN Krwk` 1
2 s “ wk` 1

2 ´ PN rwk` 1
2 s .

7: Descent test: Compute the dual value hspuk`1
s q “ ´Lspyk`1

s , uk`1
s q, by finding

yk`1
s P arg min

xsPCs

Lspxs, uk`1
s q for s “ 1, . . . , S .

If ´Lpyk`1, uk`1q ď ´Lpŷk, wkq ` mφk
wkpwk` 1

2 q declare a serious step:
$

&

%

wk`1 “ uk`1

ŷk`1 “ yk`1

tk`1 ě tmin

Otherwise, declare a null step: set wk`1 “ wk, ŷk`1 “ ŷk and choose
tk`1 ě tmin.

8: end for

Before passing to Section 5.3, with BPHA’s convergence analysis, some remarks
are in order.

– Notice that the descent test is performed with the full Lagrangian L, and not the
individual s-Lagrangians.

– In (3.20), consider h to be the dual function defined in (5.6), the linear subspace
M “ N K, and N “ nS. First, the optimality conditions of the problem in (5.12)
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correspond to (3.20a), for
Gk “ ´pxk ´ xk` 1

2 q, (5.14)

according to (5.13). Furthermore, step 6 of Algorithm 6 is exactly (3.20c), while the
descent test in step 7 of Algorithm 6 is equivalent to (3.20c), by using the definition
of the dual function h in (5.6), the construction of yk`1, and the definition of ŷk.

Barring the stopping test, Algorithm 6 is a particular instance of the pattern in
(3.20).

– The stopping test of step 5 in Algorithm 7 yields indeed approximate solutions. To
see this, recall that the BPHA stops when the aggregate error and the aggregate
subgradient defined in Lemma 3.4(i) are sufficiently small. Since, see Lemma 3.4(ii),
Gk P BEkφk

wk
s
pwk

s q for Ek ě 0, and φk
wk

s
pwk

s q “ 0, this means that for all w

hpwq ´ hpwkq `
〈
w, xk

〉
S

ě
〈
Gk, w ´ wk

〉
S

´ Ek , where tk}Gk}2
S , Ek ď TOL.

In particular, for all w P N K the linear term in the left-hand side vanishes, and wk

is an approximate minimizer of the dual problem (5.7), for η “ max
"

TOL,

c

TOL
tmin

*

:

hpwq ě hpwkq ´ η}w ´ wk}S ´ η . (5.15)

5.2.4 Relation with Progressive Hedging and primal formulation

The BPHA in Algorithm 6 differs from the PHA in Algorithm 5 in the imple-
mentation of the descent test. Notwithstanding, both methods also share some features.
As shown in (5.11), for each scenario, the subproblem (5.12) solved by BPHA is dual to
the subproblem of the PHA in Algorithm 5. In both PHA and BPHA, primal points are
projected onto the set of non-anticipativity constraints; and the nature of the dual update
is the same, projecting onto N K to guarantee dual feasibility.

The resemblance between the two methods becomes more apparent after formu-
lating Algorithm 6 in primal terms, exploiting in addition to (5.11), primal-dual relation
stated in Lemma 5.2.2. The primal formulation of the Bundle Progressive Hedging given in
Algorithm 7 allows a straightforward comparison with the PHA in Algorithm 5. However,
the dual form Algorithm 6 is more handy for the convergence analysis.

Lemma 5.1 (From dual to primal BPHA formulations). Consider the approximate s-
Lagrangian Lk

s defined in (5.9), and the model φk
wk of (5.10) that defines subproblems

(5.12) in Algorithm 6. The following holds.
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(i) For all scenario s “ 1, . . . , S, the intermediate step x
k` 1

2
s defined in (5.13) can be

equivalently computed as follows

x
k` 1

2
s P arg min

xsPCs

"

Lk
spxs, wk

s q `
tk

2
}xs ´ xk

s}2
*

.

In particular, x
k` 1

2
s P Cs.

(ii) The dual projection rule uk`1 “ wk` 1
2 ´ PN rwk` 1

2 s can be equivalently performed by
doing

uk`1 “ wk ` tkpxk` 1
2 ´ xk`1q.

(iii) The dual model φk
wk evaluated at the dual intermediate point wk` 1

2 can be written in
primal-dual terms as follows

φk
wkpwk` 1

2 q “ Lpŷk, wkq ´ Lkpxk` 1
2 , wk` 1

2 q.

Proof. To show item (i), recall the relations (5.11). Since w
k` 1

2
s minimizes φk

wk
s
pwsq `

1
2tk

}ws ´ wk
s }2, and it also has the form w

k` 1
2

s “ wk
s ` tkpx

k` 1
2

s ´ xk
sq, then x

k` 1
2

s minimizes
over Cs

fspxsq ` xwk
s , xs ´ xk

sy `
tk

2
}xs ´ xk

s}2 “ Lk
spxs, wk

s q `
tk

2
}xs ´ xk

s}2 .

Regarding item (ii), since wk` 1
2 “ wk ` tkpxk` 1

2 ´ xkq, and wk P N K, then

wk` 1
2 ´ PN rwk` 1

2 s “ wk ` tkpxk` 1
2 ´ xkq ´ PN rwk ` tkpxk` 1

2 ´ xkqs

“ wk ` tkpxk` 1
2 ´ xkq ´ tkpxk`1 ´ xkq

“ wk ` tkpxk` 1
2 ´ xk`1q,

where in the second equality we use xk`1 “ PN rxk` 1
2 s.

Finally, note that (5.13) and (5.12) imply that x
k` 1

2
s solves

max
xsPCs

p´Lk
sqpxs, w

k` 1
2

s q.

Therefore, from the definition of φk
wk

s
, it holds that

φk
wk

s
pw

k` 1
2

s q “ p´Lk
sqpx

k` 1
2

s , w
k` 1

2
s q ´ hspwk

s q.

Moreover, by construction, ŷk
s solves max

xsPCs

p´Lsqpxs, wk
s q, then

φk
wk

s
pw

k` 1
2

s q “ p´Lk
sqpx

k` 1
2

s , w
k` 1

2
s q ` Lspŷs, wk

s q.

Taking the expected value in this last formula gives item (iii).
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By Lemma 5.1, the intermediate primal point x
k` 1

2
s can be computed as either

a minimizer over Cs of the augmented approximate s-Lagrangian

Lk
spxs, wk

s q `
tk

2
}xs ´ xk

s}2,

evaluated at the serious dual point ws “ wk
s , or as a minimizer over Cs of the Lagrangian

Lspxs, w
k` 1

2
s q,

evaluated at the intermediate dual point ws “ w
k` 1

2
s . Together with the primal updating

rule (5.13), this means that the dual subproblems of Algorithm 6 can be written in primal
terms, followed by a dual updating rule for w

k` 1
2

s deduced from (5.13). Algorithm 7, given
next, is the primal version of Algorithm 6.

Algorithm 7 Bundle Progressive Hedging Algorithm in primal form
1: Initialization: Given a stopping tolerance TOL ě 0 and parameters m P p0, 1q and

tmin ą 0, choose a primal-dual starting point px0, w0q P N ˆ N K. Compute

ŷ0
s P arg min

xsPCs

Lspxs, w0
sq for s “ 1, . . . , S .

2: for k “ 0, 1, . . . do
3: Primal subproblems: solve

x
k` 1

2
s “ arg min

xsPCs

"

fspxsq ` xwk
s , xsy `

tk

2
}xs ´ xk

s}2
*

, for s “ 1, . . . , S. (5.16)

4: Primal projection: xk`1 “ PN rxk` 1
2 s.

5: Dual update: Compute w
k` 1

2
s “ wk

s ` tkpx
k` 1

2
s ´ xk

sq for s “ 1, . . . , S .
6: Stopping test: if Lkpxk` 1

2 , wk` 1
2 q ´ Lpŷk, wkq ď TOL, stop and return pxk, wkq.

7: Dual projection: uk`1 “ wk ` tkpxk` 1
2 ´ xk`1q.

8: Descent test: Compute

yk`1
s P arg min

xsPCs

Lspxs, uk`1
s q for s “ 1, . . . , S .

If Lpŷk, wkq ´ Lpyk`1, uk`1q ď mpLpŷk, wkq ´ Lkpxk` 1
2 , wk` 1

2 qq, declare a serious
step: set wk`1 “ uk`1, ŷk`1 “ yk`1, and take tk`1 ě tmin.
Otherwise, declare a null step: set wk`1 “ wk, ŷk`1 “ ŷk and choose tk`1 ě tmin.

9: end for

We now show that Bundle Progressive Hedging algorithm finds primal and
dual solutions, in the case of finite termination, infinite number of serious steps or when
there is a tail of null steps.
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5.3 Convergence analysis of the Bundle Progressive Hedging
The primal and dual versions of the Bundle Progressive Hedging algorithm are

equivalent because:

– Steps 3 and 4 of Algorithm 6 are equivalent to steps 3 and 4 of Algorithm 7, due to
Lemma 5.1(i).

– Step 5 of Algorithm 6, the stopping test in dual terms, is equivalent to step 5 of
Algorithm 7, due to Lemma 5.1(iii).

– Step 6 of Algorithm 6 is equivalent to step 6 of Algorithm 7, due to Lemma 5.1(ii).

– Step 7 of Algorithm 6 is equivalent to step 7 of Algorithm 7. Indeed, the descent test
is exactly the same by using Lemma 5.1(iii). As for the construction of the model,
in the dual version of the algorithm (Algorithm 6) it is explicitly done by using the
serious step wk`1, while in the primal case, Algorithm 7, it is implicitly performed
by using the projection xk`1 in the quadratic term of the primal subproblem, and
using wk`1 as the cost of the linear term of the objective of the subproblem.

Throughout this section, we assume the stopping tolerance is set to TOL “ 0.
By the stopping test in Algorithm 6, this means that when the test is triggered, it must
hold that

0 ď ´φk
wkpwk` 1

2 q ď TOL “ 0 ,

by Lemma 3.4(i). With this setting, either Algorithm 6 stops after a finite number of
iterations with φk

wkpwk` 1
2 q “ 0, or the algorithm runs indefinitely. In this case, two more

options arise: either the serious subsequence is infinite (after each serious iterate, only a
finite number of null iterations occur), or a last serious iterate is generated at iteration
k̂ ´ 1, say ŵ “ wk̂, and afterwards all iterates are declared null steps.

5.3.1 Cases of finite termination and infinite number of serious steps

We first consider the case of a finite termination. To this aim, it is useful to
characterize the subdifferential of the dual function h in terms of primal information.
Specifically, given a scenario s P t1, . . . , Su, each function hspwsq defined in (5.6) is the
maximum of a family of affine functions of ws, therefore it is convex [30, Chapter I,
Proposition 2.1.2]. Furthermore, letting

Cspwsq “ txs P Cs : ´Lspxs, wsq “ hspwsqu ,
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then according to [30, Chapter VI, Theorem 4.4.2],

Bhspw̄sq “ co

˜

ď

x̄sPCspw̄sq

Bp´Lsqpx̄s, w̄sq

¸

.

Moreover, since Ls is differentiable with respect to ws, then Bwp´Lsqpx̄s, w̄sq “ t´x̄su, for
any x̄s P Cspw̄sq, that is, any x̄s P Cs that solves the problem in (5.6) for ws “ w̄s. In
other words, Cspw̄sq is exactly the set of maximizers of the problem in (5.6) for ws “ w̄s.
Therefore,

Bhspw̄sq “ cot´x̄s : x̄s solves the problem in (5.6) for ws “ w̄su . (5.17)

Theorem 5.1 (Finite termination of BPHA). Let h : RnS Ñ R in (5.6) be the dual
function associated with the primal problem (5.1). If Algorithm 6 stops after finitely many
iterations, then xk and xk` 1

2 are equal and both are a solution of primal problem (5.1),
and wk and wk` 1

2 are equal, and both are a solution of dual problem (5.7).

Proof. If the algorithm stops, then φk
wkpwk` 1

2 q “ 0. Thus, the aggregate error and gradient
defined in Lemma 3.4 (stated in Section 3.5) are null: Ek “ 0 and Gk “ 0. In particular,
we also have that wk “ wk` 1

2 and xk “ xk` 1
2 . Then, from Lemma 3.4(ii), we have that

0 P Bph ` iN Kqpwkq, that is, wk “ wk` 1
2 P N K is a dual solution.

Furthermore, since Gk P Bφk
wkpwk` 1

2 q, we have that Gk ´ xk P Bhpwk` 1
2 q. Thus

´xk P Bhpwk` 1
2 q, because Gk “ 0. It follows from (5.17) that for all s “ 1, . . . , S, xk

s P Cs

and it also solves min
xsPCs

Lspxs, wk` 1
2 q. Note that this means that xk is primal feasible. Hence,

since wk` 1
2 is a dual solution, then xk “ xk` 1

2 is a primal solution, as stated.

We continue with the analysis of an infinite serious subsequence, and show the
generated primal and dual points asymptotically solve the primal and dual problems (5.1)
and (5.7). Recall that the dual form of the BPHA fits the framework (3.20). In this case,
the proper separation of isocost surfaces (1.1) is trivially satisfied because the function
H :“ h ` iN K is convex. Regarding the error bound (1.7), the condition is equivalent to
requiring that, for every v ě inf

wPN K
hpwq, there exists ε, ℓ ą 0, such that whenever w P N K,

hpwq ď v, and x P RnS, with }x ´ PN rxs}S ă ε, and the s´component xs solves the
problem in (5.6), there holds that

dpw, Sq ď ℓ}x}S, (5.18)

where S is the set of minimizers of the dual problem.

Theorem 5.2 (Convergence of serious steps). Let h : RnS Ñ R in (5.6) be the dual func-
tion associated with the primal problem (5.1). Suppose, in addition, that the subdifferential
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error bound (5.18) is valid. In Algorithm 6, let

Kser :“ tk : wk`1 was declared a serious stepu

and recall that, by construction ttkuKser is bounded below by tmin ą 0. Assume, additionally,
that ttkuKser is bounded above by tmax ą 0.

If the set Kser is infinite, the following hold.

(i) thpwkquKser monotonically converges to the dual optimal value h˚, such that the
sequence of functional errors tvk “ hpwkq ´ h˚uKser converges to 0 with Q-linear
rate: there exists r P p0, 1q, such that for all sufficiently large k P Kser,

vk`1 ď rvk.

(ii) The sequence of serious-step iterates twkuKser, as well as the intermediate points
twk` 1

2 uKser, converge to a minimizer w˚ of the dual problem (5.7) with R-linear
rate: there exists r P p0, 1q, and c ą 0 such that for all sufficiently large k P Kser,

}wk ´ w˚}S ď c
?

r
k
, }wk` 1

2 ´ w˚}S ď cp2 ´
?

rq
?

r
k
.

(iii) The primal sequences txkuKser and txk` 1
2 uKser sub-sequentially converge to a solution

of the primal problem (5.1). The functional values tfpxkquKser and tfpxk` 1
2 quKser

sub-sequentially converge to the optimal value of problem (5.1).

Proof. Throughout, iterations parse k P Kser. Items (i) and (ii) follow from Theorem 3.5,
applied to the convex function h, which is 0´weakly convex, and M “ N K. For item (iii),
note that from Lemma 3.4(iii), Gk Ñ 0. Therefore, the primal update in Algorithm 6 and
(3.20a) imply xk ´ xk` 1

2 Ñ 0. Since both sequences are bounded, because txk` 1
2 u belongs

to a compact set and PN is continuous, then both sequences txku and txk` 1
2 u have the

same accumulation points. In particular, any accumulation point x˚ of these sequences
belongs to N , and for all scenario s “ 1, . . . , S, x˚

s P Cs, from Lemma 5.1(i).

Furthermore, (3.20a) implies Gki ´ xki P Bhpwki` 1
2 q, where txkiu is a subse-

quence that converges to x˚. Therefore, since Bh is outer semicontinuous, ´x˚ P Bhpw˚q.

In particular,

´fpxki` 1
2 q ´ xwki` 1

2 , xki` 1
2 yS “ hpwki` 1

2 q ě hpw˚q ` x´x˚, wki` 1
2 ´ w˚yS.

Taking the limit when i Ñ `8, it follows that ´fpx˚q ě hpw˚q, because px˚, w˚q P

N ˆ N K. Therefore, weak duality implies ´fpx˚q “ hpw˚q, with x˚ being primal feasible.
Hence, x˚ is primal optimal.

Finally, sub-sequential convergence of tfpxkqu and tfpxk` 1
2 qu to the optimal

primal value fpx˚q follows from continuity.
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To conclude, we show that when there are finitely many serious steps, the
generated sequences also provide solutions for problems (5.1) and (5.7).

5.3.2 Tail of null steps

It remains to analyze the case when there is a last serious step ŵ, performed
at iteration k “ k̂ ´ 1. Accordingly, we let Knull :“ tk ą k̂ : wk was declared a null stepu

denote the corresponding iteration index set. Note that for all k P Knull, wk “ ŵ. We
will also assume that the stepsizes eventually stabilize along the tail of null steps. The
next result shows that the last serious step is a solution of the dual problem, and that
the accumulation points of the primal sequences are solutions of the primal problem.

Theorem 5.3 (Convergence of null steps). Let h : RnS Ñ R in (5.6) be the dual function
associated with the primal problem (5.1). Assume there is a last serious step ŵ, followed
by a tail of nulls steps. If the corresponding stepsizes eventually stabilize (tk “ t̄ ě tmin

for k P Knull sufficiently large), the following holds for Algorithm 6.

(i) Both twk` 1
2 uKnull and tukuKnull converge to ŵ, which is also a solution for the dual

problem (5.7). Furthermore, the sequences thpwk` 1
2 quKnull and thpukquKnull converge

to the optimal value of the dual problem (5.7).

(ii) The primal sequences txkuKnull and txk` 1
2 uKnull subsequentially converge to a solu-

tion of the primal problem. The corresponding functional values tfpxkquKnull and
tfpxk` 1

2 quKnull subsequentially converge to the optimal value of problem (5.1).

Proof. Throughout, consider k P Knull for which tk “ t. We claim that txku is the result
of applying a projected gradient method with constant stepsize 1

t
to the following problem

#

min F pxq

s.t. x P N
for F pxq “ min

yPX

"

fpyq ` xŵ, y ´ xyS `
t

2
}y ´ x}2

*

. (5.19)

By convexity of f , the objective function in (5.19) is strongly convex with modulus 1
t
, and

thus F has a Lipschitz continuous gradient with modulus t. In particular, when x “ xk,
by Lemma 5.1(i),

xk` 1
2 “ arg min

yPX

"

fpyq ` xŵ, y ´ xkyS `
t

2
}y ´ xk}2

S

*

,

and
F pxkq “ ´ŵ ` t

´

xk ´ xk` 1
2

¯

.
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Combined with the identity ∇F pxkq “ ´wk` 1
2 from (5.13), we see that

xk ´
1
t
∇F pxkq “ xk `

1
t
wk` 1

2 “ xk` 1
2 `

1
t
ŵ.

Projecting over N and recalling that ŵ P N K yields the claim, because

PN

„

xk ´
1
t
∇F pxkq

ȷ

“ PN rxk` 1
2 s `

1
t
PN rŵs “ PN rxk` 1

2 s “ xk`1 .

By compacteness of X, the sequence txku is bounded and the assumptions in [150, The-
orem 4.1.3], stating convergence properties of gradient projected methods, are satisfied.
Thus, xk`1 ´ xk Ñ 0, and all accumulation points of txku are solutions to (5.19). Passing
to limit as k Ñ `8 in the identity PN rwk` 1

2 s “ tpxk`1 ´ xkq ensures that PN rwk` 1
2 s Ñ 0.

In turn,
uk`1 ´ wk` 1

2 “ PN Krwk` 1
2 s ´ wk` 1

2 “ ´PN rwk` 1
2 s Ñ 0.

The sequence twk` 1
2 “ ŵ ` tpxk` 1

2 ´ xkqu is bounded and so is tuk`1u. Being convex and
finite, h is Lipschitz continuous in any compact set that contains uk`1 and wk` 1

2 , therefore

|hpuk`1q ´ hpwk` 1
2 q| ď L}uk`1 ´ wk` 1

2 }S Ñ 0, as k Ñ `8.

Non-satisfaction of (3.20c) amounts to hpuk`1q´hpŵq ą m
`

hpwk` 1
2 q`xxk, wk` 1

2 yS ´hpŵq
˘

,
which is equivalent to hpuk`1q ´ hpwk` 1

2 q ´ mxxk, wk` 1
2 y ąS pm ´ 1q

`

hpwk` 1
2 q ´ hpŵq

˘

.

On the left-hand side, the inner product satisfies the relations

xxk, wk` 1
2 yS “ xxk, PN rwk` 1

2 syS Ñ 0, (5.20)

because PN rwk` 1
2 s Ñ 0 and txku is bounded. Passing to the limit,

0 ě pm ´ 1q lim inf
k

!

hpwk` 1
2 q ´ hpŵq

)

ðñ hpŵq ď lim inf
k

hpwk` 1
2 q, (5.21)

because m P p0, 1q. On the other hand, by definition of wk` 1
2 ,

hpwk` 1
2 q ` xxk, wk` 1

2 yS `
1
2t

}wk` 1
2 ´ ŵ}2

S ď hpŵq.

Passing once again to the limit, using (5.21) and (5.20),

hpŵq ď lim inf
k

hpwk` 1
2 q ď lim inf

k

"

hpwk` 1
2 q ` xxk, wk` 1

2 yS `
1
2t

}wk` 1
2 ´ ŵ}2

S

*

ď hpŵq.

Take any accumulation point w‹ of the bounded twk` 1
2 u and consider a subse-

quence wkj` 1
2 Ñ w‹, whenever j Ñ `8. Then hpw‹q `

1
2t

}w‹ ´ ŵ}2
S “ hpŵq. Moreover,

from (5.21) it also holds that hpŵq ď hpw‹q, and thus hpw‹q`
1
2t

}w‹ ´ŵ}2
S ď hpw‹q, which

necessarily implies w‹ “ ŵ. This means that any accumulation point of twk` 1
2 u is equal
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to the last serious step ŵ, and thus twk` 1
2 u converges to ŵ, and since uk`1 ´ wk` 1

2 Ñ 0,

then tuku also converges to ŵ.

To prove that ŵ solves the dual problem, note that from (5.14) and (5.13),

Gk “ xk` 1
2 ´ xk “

1
t

pwk` 1
2 ´ ŵq Ñ 0, as k Ñ `8.

By continuity of h and (5.20), φk
ŵpwk` 1

2 q Ñ 0. Lemma 3.4(i) ensures that Ek Ñ 0 and
Lemma 3.4(ii) yields in the limit that 0 P Bph ` iN Kqpŵq, which means that ŵ minimizes
h ` iN K .

As for the primal problem, since xk` 1
2 ´ xk Ñ 0, both sequences txku and

txk` 1
2 u have the same accumulation points. The remaining assertions follow as in the

proof of Theorem 5.2(iii), now taking k P Knull.

5.4 Final remarks
We have introduced a new projective bundle method that, when applied to

multistage programs, exploits parallelism and generates a serious subsequence converging
with linear rate. The resulting Bundle Progressive Hedging, both in primal (Algorithm 7)
and dual (Algorithm 6) forms, preserves the main features of the Progressive Hedging
algorithm by T. Rockafellar and R. Wets, [24]. In particular, both methods solve separate
scenario subproblems per iteration. These subproblems are strongly convex, thanks to
the addition of a quadratic term related to an approximate augmented Lagrangian of the
problem. Furthermore, the PHA and its bundle BPHA variant both use projections onto
N and N K to respectively ensure feasibility in the primal and dual spaces.

Besides these similarities, our proposal adds features typical from the bundle
methodology to measure the quality of the approximation of the augmented Lagrangian
of the full problem. By contrast, the original Progressive Hedging method uses the dual
information obtained with an approximate Lagrangian without further ado.

Thanks to the bundle techniques, it is possible to dynamically adjust the aug-
mentation parameter in the PHA without impairing its convergence. Figure 9 gives a
simple, yet illustrative, instance of a randomly generated linear problem with 50 scenar-
ios. The impact of keeping tk fixed along the iterative procedure is clear. With tk “ t0,
the PHA approach only reaches a good accuracy if the parameter is sufficiently large
(t0 “ 100, named “very large t” in the figure). The Bundle Progressive Hedging method,
with its adaptive adjustment of stepsizes, seems less sensitive to the initial value of t0.
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Figure 9 – Accuracy in the primal solution for the PHA and the BPHA (the ordinate
reports the negative of the number of digits obtained at a given iteration).
Both methods were run for the same random instance with 50 scenarios, taking
initial proximal stepsizes t0 P t1, 10, 100u, being small t, large t, and very large t,
respectively. The values of tk are maintained fixed to t0 with the PHA variant,
yielding good accuracy only for the largest value t0 “ 100. With BPHA, tk

varies according to the serious/null step rules and the performance is more
stable.

With the bundle approach, optimality primal and dual certificates are available,
based on the aggregate information constructed along iterations (the PHA, by contrast,
measures distance to the primal-dual set of minimizers). However, those enhancements
require additional evaluations of the dual functions at each iteration. This involves a new
set of computations, that can be done in parallel and are similar to the PHA subproblems,
barring the quadratic term in (5.8).

The projective bundle method in Section 3.5 is general and can be used to
extend existing approaches to the weakly convex setting. As often in bundle methods, the
crucial point is the ability to show that, when the method enters an infinite loop of null
steps, the family of model functions drives iterates to the last generated serious point.
The stumbling block lies in the suitable definition of the models, as it was done in [45] for
Taylor models in composite optimization, or in Section 5.2 for the particular dual function
(5.6).



138

6 A dual-embedded forward-backward sce-
nario decomposition method for convex
stochastic programming

Abstract. We investigate convergence properties of new decomposition meth-
ods for large-scale optimization problems, combining a generalized approximate proximal
point algorithm with forward-backward steps for a dual version of the augmented La-
grangian subproblem that allows decomposition for different scenarios of the random vari-
able of a stochastic optimization problem. The resulting analysis can be compared with
convergence rate frameworks for descent methods and operator splitting from previous
chapters. In particular, we study convergence guarantees for a variant of the progressive
hedging algorithm, and also conditions to obtain linear and superlinear convergence with
varying stepsizes.

Introduction
A considerable amount of problems of interest involve the minimization of the

sum of compositions of a convex function and a linear operator, including applications in
machine learning and industrial applications of stochastic programming. The functions
utilized in such problems may not necessarily be differentiable, and the number of vari-
ables involved might be exceedingly large. A variety of methods referred to as splitting
methods have been developed to solve these problems; see [140, 11, 87, 137, 6] for some
founding contributions and examples. These methods solve a sequence of simpler sub-
problems, each one of them related to a single term from the sum comprising the original
problem formulation. An important family of such methods is made up of proximal split-
ting methods, based on the proximal point algorithm [17], including Douglas-Rachford
splitting [140] of Section 2.2.1 and Chapter 4, and its common special case, the alternat-
ing direction method of multipliers (ADMM) [151, 152]. This family of algorithms has
spawned numerous variants that exploit specific structural attributes of different types of
problems.

However, operator splitting methods exhibit some practical limitations. Specif-
ically, it has been empirically and theoretically observed that they typically demonstrate
slow rates of linear convergence. Despite this shortcoming, these methods have gained
widespread popularity in recent decades, primarily due to the escalating demand to tackle



Chapter 6. A dual-embedded forward-backward method for convex programming 139

large-scale problems for which low-accuracy solutions are deemed sufficient. To enhance
their performance and broaden their applicability, improving these methods’ tail conver-
gence could potentially yield significant practical advantages. The importance of better
convergence rates for such methods would be reflected by higher numerical accuracy, fewer
subproblems to solve to achieve a specified accuracy, and more potential applications.

The algorithm proposed in this chapter is strongly related to the classical
augmented Lagrangian method, but adds two new features: a relative-error criterion to
either accept or reject a candidate subproblem solution, and also a systematic way to
construct such candidate solutions using forward-backward steps, even when the original
problem would not appear amenable to forward-backward algorithms. As a by-product, we
propose a scenario-decomposition method for convex stochastic programming, resembling
the PH of Section 2.2.2, and actually corresponding variant of the bundle-like progressive
hedging algorithm of Chapter 5. We also prove that our method enjoys local linear rates
of convergence, and also superlinear rates when the stepsizes increase with no bound and
the error tolerance is driven to 0. The new method we have developed has the potential to
be applied in a more general context, namely minimizing an extended-real-valued function
constrained to a linear subspace. We first describe the method in this general setting.

6.1 Embedded forward-backward method applied to dual-type prob-
lems

We closely follow the notation of Chapter 5. In particular, for a finite-valued
function h P convpRnq, and a linear subspace M Ď Rn, consider the following constrained
minimization problem

$

&

%

min
w

hpwq

s.t. w P M.
(6.1)

We assume that problem (6.1) has a nonempty set of solutions, denoted by W ‹.

Note that (6.1) corresponds to the dual problem (5.7) in the stochastic opti-
mization setting. More on this observation is discussed in Section 6.2.

The idea of our method is to iteratively solve problems involving surrogate
models of h ` iM. The original idea can be found in Chapter 5, used to develop the
bundle-like progressive hedging algorithm. The “approximations” of h`iM take the simple
form

hkpwq “ hpwq ` xxk, wyS, (6.2)

where xk P MK is computed in each iteration of the algorithm. Note that hk : Rn Ñ R
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shares the separability attributes of h (cf. equation (5.6)):

hkpwq “

S
ÿ

s“1
psh

k
spwsq, where hk

spwsq “ hspwsq ` xxk
s , wsy.

Moreover, it is important to observe that the linear map w ÞÑ xxk, wys is a loose approxi-
mation of the indicator iM: since xk P MK, then for any w P Rn,

xxk, wyS “ xxk, PMrws ` PMKrwsyS “ xxk, PMKrwsyS.

If w P M, then xxk, wyS “ 0 “ iMpwq, but if w P MK, xxk, wyS ă `8 “ iMpwq. In this
way, roughly speaking, the close w is to M, the better w ÞÑ xxk, wyS approximates iM,
which is the case of our interest for problem (6.1).

Using this family of models, we propose Algorithm 8, which we call the Dual
Embedded Forward-Backward (DEFB) method. Each iteration of this method solves a
proximal subproblem for the model hk, and then performs a projection step, like the
Bundle Progressive Hedging method of Chapter 5 does. To assess the quality of the sub-
problem solution, a relative-error condition evaluates model accuracy and the violation of
the subspace constraint, instead of the bundle-like descent condition (3.20c) of the model-
based scheme of Section 3.5. At the end of each iteration, a new model is constructed
following a projected-gradient rule.

For notational simplicity and to emphasize its resemblance to bundle methods,
the algorithm is presented as having a single loop, indexed by k. However, it can also
be viewed as having two nested loops, with (6.5) being the termination condition for the
inner loop. The inner loops consist of the steps (6.3), uk`1 “ PMrwk`1{2s, and (6.4)-(6.7),
until condition (6.5) holds. At this point, the proximal center wk`1 is updated and an
iteration of the outer loop can be considered to occur.

The following result summarizes properties that Algorithm 8 share with Algo-
rithm 6 and Algorithm 7, and some other new features.

Proposition 6.1. The following holds for Algorithm 8.

(i) The convex model function hk defined in (6.2) is a lower estimate of h ` iM.

(ii) The error defined in (6.4) satisfies εk ě 0.

(iii) There exists txk` 1
2 u such that for all k P N, ´xk` 1

2 P Bhpwk` 1
2 q, and

wk` 1
2 “ wk ` tkpxk` 1

2 ´ xkq. (6.8)

Proof. First, item (i) can be similarly proven as Proposition 5.1, since it is the same
type of model, and here we provide an alternative proof. From line 4 of Algorithm 8,
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Algorithm 8 Dual Embedded Forward-Backward method
1: Initialization: choose w0 P Rn, x0 P MK and σ0 P r0, 1q, tmin ą 0, t0 ě tmin, and a

stopping tolerance TOL ą 0.
2: for k “ 0, 1, ... do
3: Subproblem: for each s “ 1, . . . , S, compute w

k` 1
2

s as the unique solution of

min
wsPRns

"

hk
spwsq `

1
2tk

}ws ´ wk
s }2

*

, (6.3)

and define wk` 1
2 “ pw

k` 1
2

s qS
s“1.

4: Projection: define uk`1 “ PMrwk` 1
2 s.

5: Acceptance test: Define

εk “ hpuk`1q ´ hkpwk` 1
2 q ´

1
tk

xwk ´ wk` 1
2 , uk`1 ´ wk` 1

2 yS. (6.4)

If
}wk` 1

2 ´ uk`1}2
S ` 2tkεk ď σ2

k}uk`1 ´ wk}2
S, (6.5)

execute an outer step: that is, let wk`1 “ uk`1 and choose tk`1 ě tmin and
σk`1 P r0, 1q. Otherwise, execute an inner step: set wk`1 “ wk, tk`1 “ tk, and
σk`1 “ σk.

6: Stopping test: if }wk` 1
2 ´ wk}S ď tkTOL and εk ď TOL, stop and return uk`1.

7: Model update: define

xk`1 “ xk `
1
tk

pwk` 1
2 ´ uk`1q, (6.6)

and define the function

hk`1 : w ÞÑ hpwq ` xxk`1, wyS. (6.7)

8: end for

wk` 1
2 ´ uk`1 “ PMKrwk` 1

2 s P MK, and since x0 P MK, then xk P MK in view of (6.6).
Thus

iMpw̄q ` xxk, w ´ w̄yS,

is a lower linearization of iM at any w̄ P M, because MK “ NMpw̄q “ BiMpw̄q. Further-
more, due to orthogonality, xk P MK and w̄ P M imply

iMpw̄q ` xxk, w ´ w̄yS “ xxk, wyS,

and thus w ÞÑ xxk, wyS is a lower subgradient estimate of iM at any w̄ P M. To prove
(ii), note that the optimality condition of (6.3) reads

0 P Bhkpwk` 1
2 q `

1
tk

pwk` 1
2 ´ wkq. (6.9)
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Therefore, there exists gk P Bhkpwk` 1
2 q, such that 0 “ tkgk ` wk` 1

2 ´ wk, or equivalently

wk` 1
2 “ wk ´ tkgk. (6.10)

The subgradient inequality for gk evaluated at w “ uk`1 gives

hkpuk`1q ´
`

hkpwk` 1
2 q ` xgk, uk`1 ´ wk` 1

2 yS

˘

ě 0.

Since uk`1 P M, then hkpuk`1q “ hpuk`1q, and thus it follows from (6.4) and (6.10) that
εk ě 0. Finally, since gk P Bhkpwk` 1

2 q, there exists xk` 1
2 P Rn such that ´xk` 1

2 P Bhpwk` 1
2 q,

and gk “ ´xk` 1
2 ` xk. Thus, (6.9) implies item (iii) holds.

Remark 6.1. Proposition 6.1 gathers common properties of the DEFB method and the
BPHA: as mentioned in the proof, Proposition 6.1(i) is Proposition 5.1, Proposition 6.1(ii)
is analogous to Lemma 3.4(i), and Proposition 6.1(iii) corresponds to (3.20a) and (5.14).

A key feature of Algorithm 8 is that the model update is equivalent to a
forward-backward step, similarly as in the proof of Theorem 5.3 of Section 5.3.2, since the
model is updated using the same rule of the BPHA: see (5.13) of Algorithm 6, and line
4 of Algorithm 7. More precisely, a direct application of the proximal point algorithm to
problem (6.1) amounts to solve

min
wPRn

"

hpwq ` iMpwq `
1

2tk

}w ´ wk}2
S

*

“ min
wPRn

"ˆ

hpwq `
1

2tk

}w ´ wk}2
S

˙

` iMpwq

*

,

where the second line is obtained by regrouping terms. The Fenchel dual of the problem
in the last line can be written as

min
xPRn

"ˆ

hp¨q `
1

2tk

} ¨ ´wk}2
S

˙˚

p´xq ` i˚
Mpxq

*

“ min
xPRn

"ˆ

hp¨q `
1

2tk

} ¨ ´wk}2
S

˙˚

p´xq ` iMKpxq

*

,

where we use the fact that i˚
M “ iMK , since M is a linear subspace. Therefore, the Fenchel

dual problem is equivalent to solving
$

’

&

’

%

min
xPRn

ˆ

hp¨q `
1

2tk

} ¨ ´wk}2
S

˙˚

p´xq

s.t. x P MK.

(6.11)

The following result states that the update rule of the slopes xk in Algorithm 8
is actually a step of the forward-backward method (also known as proximal-gradient)
applied to problem (6.11).
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Proposition 6.2. The slope xk`1 of Algorithm 8 defined in (6.6) is the result of applying
one step of the forward-backward method to (6.11), using tk as stepsize and xk as starting
point.

Proof. Observe that the objective function of this problem is the convex conjugate of

hp¨q `
1

2tk

} ¨ ´wk}2
S,

and thus differentiable with tk´Lipschitz gradient, since the argument function is strongly
convex. Starting from xk, applying the forward-backward method stepsize tk to (6.11)
yields

x` “ proxiMK

„

xk ´
1
tk

ˆ

´∇
ˆ

h `
1

2tk

} ¨ ´wk}2
S

˙˚

p´xkq

˙ȷ

“ PMK

„

xk ´
1
tk

ˆ

´∇
ˆ

h `
1

2tk

} ¨ ´wk}2
S

˙˚

p´xkq

˙ȷ

,

where

∇
ˆ

h `
1

2tk

} ¨ ´wk}2
S

˙˚

p´xkq “ arg maxw

"

x´xk, wyS ´ hpwq ´
1

2tk

}w ´ wk}2
S

*

“ arg min
w

"

hpwq ` xxk, wyS `
1

2tk

}w ´ wk}2
S

*

“

!

wk` 1
2

)

.

Therefore,

x` “ PMK

„

xk `
1
tk

wk` 1
2

ȷ

“ xk `
1
tk

PMK

”

wk` 1
2

ı

“ xk `
1
tk

`

wk` 1
2 ´ uk`1˘,

where in the second equality we inductively assume that xk P MK, and use the linearity of
the projection operator PMK , and in the last equality we use the Moreau identity for pro-
jections. This proves that the model update for xk`1 in Algorithm 8 is a projected-gradient
step applied to the Fenchel dual of the proximal point objective function associated with
h ` iM.

Algorithm 8 constructs in each iteration an approximate subgradient of the
function h ` iM, that helps to define the stopping test of the algorithm. This observation
is based in the following result.

Lemma 6.1. Consider tgku defined in (6.10). For any k, gk “
1
tk

pwk ´ wk` 1
2 q, and

gk P Bεkph ` iMqpuk`1q.
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Proof. The first identity follows from (6.10). Moreover, for all w P Rn

ph ` iMqpwq ě hkpwq

ě hkpwk` 1
2 q ` xgk, w ´ wk` 1

2 y

“ hpuk`1q ` xgk, w ´ uk`1y ´ phpuk`1q ´ hkpwk` 1
2 q ´ xgk, uk`1 ´ wk` 1

2 yq

“ hpuk`1q ` xgk, w ´ uk`1y ´ εk,

where in the first inequality we use that hk is a lower model of h ` iM, the second line
follows from the subgradient inequality for gk P Bhkpwk` 1

2 q, and the last line is obtained
from the definition of εk in (6.4). It follows that gk is an εk subgradient of h ` iM at uk`1.

The precise form of problem (6.11) at iteration k`1 depends on the type of step
performed in the previous iteration. This divides the convergence analysis of Algorithm 8
in two cases, determined by the two types of steps:

• An inner step: the solution wk` 1
2 of subproblem (6.3) does not satisfy the relative-

error condition (6.5), which means that the point is far from being dual feasible or
that the model is not accurate enough at the projection of the calculated solution.
The center wk is not updated and the model of iM is improved.

• An outer step: a solution wk` 1
2 of subproblem (6.3) that satisfies the relative-error

condition (6.5) is found, therefore a new center wk`1 is defined as the projection of
wk` 1

2 onto M. The linear model of iM is also updated.

Note the resemblance with the serious/null steps analysis of bundle methods,
in particular, of the method in Chapter 5.

6.1.1 Convergence of the dual-embedded forward-backward method

In this section, we prove the convergence of Algorithm 8 in three different
cases. We commence by examining the finite termination case, in order to establish that
the output of the method is a solution of the problem when the tolerance is null, and that
it is an approximate solution whenever the tolerance is positive. We then continue with
the case of a tail of inner steps, where the vital idea is that we keep the parameters fixed
and thus convergence follows from the theory of forward-backward methods. We finally
proceed to investigate the convergence of the outer loop iterates by using a relative-error
approximate proximal point algorithm.
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6.1.1.1 Finite termination case

We first address the case of finite termination of Algorithm 8, that is, when at
some iteration k,

}wk` 1
2 ´ wk} ď tkTOL, and εk ď TOL.

This stopping test serves as an approximate optimality certificate, similarly to the case
of the bundle-like progressive hedging algorithm of Chapter 5. Using Lemma 6.1, the
stopping test is equivalent to

}gk} ď TOL, εk ď TOL, gk P Bεkph ` iMqpuk`1q.

If TOL “ 0, then uk`1 is an exact global solution to problem (6.1), because in this case
0 P Bph ` iMqpuk`1q. Otherwise, if TOL ą 0, then uk`1 is an approximate solution to (6.1),
similarly to (5.15) for the bundle-like progressive hedging algorithm of Chapter 5. More
specifically, the inequality of the proof of Lemma 6.1 implies for all w P M

hpwq ě hpuk`1q ´ TOL}w ´ uk`1} ´ TOL.

6.1.1.2 Convergence: infinite loop of inner steps

In this section, we consider the case in which the outer loop is executed finitely
many times, meaning that there exists k̂ P N such that for all k ą k̂, the acceptance test
(6.5) is not satisfied, and the last time it is satisfied is in iteration k “ k̂. Therefore,
the center, the stepsize, and the error tolerance are not updated: for all k ą k̂, one has
wk “ ŵ :“ wk̂, tk “ t̂ :“ t

k̂
, and σk “ σ̂ :“ σ

k̂
. In this situation, one has for all k ą k̂:

›

›wk` 1
2 ´ uk`1›

›

2
` 2t̂εk ą σ̂2}uk`1 ´ ŵ}2. (6.12)

Furthermore, problem (6.11) takes the following fixed form
$

’

&

’

%

min
x

ˆ

hp¨q `
1
2t̂

} ¨ ´ŵ}2
˙˚

p´xq

s.t. x P MK,

(6.13)

The following result presents the convergence results of the inner loop of Al-
gorithm 8 (cf. Theorem 5.3).

Theorem 6.1. Suppose there exists a last outer step in Algorithm 8 at iteration k “ k̂.
Then

(i) The sequence of slopes txku
kąk̂

converges to a solution x‹ of problem (6.13).

(ii) The sequence twk` 1
2 u

kąk̂
is asymptotically feasible, that is, tPMKrwk` 1

2 su
kąk̂

con-
verges to 0.



Chapter 6. A dual-embedded forward-backward method for convex programming 146

Proof. As shown in Proposition 6.2, xk`1 can be viewed as one forward-backward step
performed for problem (6.13). Under the assumption of a tail of inner steps of Algorithm 8,
the function for which the forward-backward step is performed does not vary throughout
iterations, and thus [93, Theorem 10.24] implies that item (i) follows. Moreover, from
(6.6), there holds

PMKrwk` 1
2 s “ PMKruk`1 ` t̂pxk`1 ´ xkqs

“ PMKruk`1s ` t̂PMKrxk`1 ´ xks

“ t̂PMKrxk`1 ´ xks

“ t̂pxk`1 ´ xkq,

(6.14)

where in the second line we use the linearity of the projection operator, in the third line
the fact that uk`1 P M, and in the last line xk`1 ´ xk P M, since xk P M for all k and M
is a linear subspace. Thus, in view of item (i), xk`1 ´ xk Ñ 0, and item (ii) follows.

When problem (6.1) corresponds to the dual of a problem, we will show in the
next section that txku actually converges to a solution of the primal problem. Regardless,
in the general case, twk` 1

2 u not only is asymptotically feasible, but also converges to a
solution to (6.1). The following result closely follows Theorem 5.3 of Chapter 5, and we
give a proof for completeness. We need a mild extra assumption, and in the following
section we explain why it does not pose a restriction in the analysis.

Theorem 6.2 (Convergence to a solution – inner loop). Consider problem (6.1), such
that the conjugate h˚ of the objective function has compact domain. Suppose there exists
a last outer step in Algorithm 8 at iteration k “ k̂. Then both tuku

kąk̂
and twk` 1

2 u
kąk̂

converge to the last center ŵ, which in turn is a solution of (6.1).

Proof. Note that when the inner loop executes indefinitely, equation (6.8) reads

wk` 1
2 “ ŵ ` t̂pxk` 1

2 ´ xkq. (6.15)

Due to Proposition 6.1(iii), ´xk` 1
2 P domph˚q, and thus the assumption on h˚ implies

txk` 1
2 u is bounded. Therefore, in view of (6.15) and Theorem 6.1(i), twk` 1

2 u is also a
bounded sequence, and so is tPMrwk` 1

2 su. Since h convex and finite, then it is locally
Lipschitz continuous. Hence, h is Lipschitz continuous on a compact set that contains
wk` 1

2 and PMrwk` 1
2 s. Therefore, there exists a constant L ą 0 such that

|hpPMrwk` 1
2 sq ´ hpwk` 1

2 q| ď L}PMrwk` 1
2 s ´ wk` 1

2 }S,

which implies hpPMrwk` 1
2 sq ´ hpwk` 1

2 q Ñ 0, by using Theorem 6.1(ii), and the identity
PMKrwk` 1

2 s “ wk` 1
2 ´ PMrwk` 1

2 s.
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Furthermore, using again Theorem 6.1, MK Q xk Ñ x‹ and PMK

”

wk` 1
2

ı

Ñ 0

imply xxk, wk` 1
2 yS “ xxk, PMKrwk` 1

2 syS Ñ 0. Therefore,

εk “ hpPMrwk` 1
2 sq ´ hpwk` 1

2 q ´ xxk, wk` 1
2 yS ´

1
t̂

xŵ ´ wk` 1
2 , PMrwk` 1

2 s ´ wk` 1
2 yS Ñ 0,

where in the right-most inner product we use that twk` 1
2 u is bounded. In this way, the

left-hand side of (6.12) converges to 0, thus PMrwk` 1
2 s “ uk`1 Ñ ŵ, and

wk` 1
2 “ wk` 1

2 ´ PMrwk` 1
2 s ` uk`1 “ PMKrwk` 1

2 s ` uk`1 Ñ ŵ.

Finally, by definition, wk` 1
2 minimizes hp¨q ` xxk, ¨yS `

1
2t̂

} ¨ ´ŵ}2
S. Then, for

all w P M, since xk P MK

hpwq `
1
2t̂

}w ´ ŵ}2
S ě hpwk` 1

2 q ` xxk, wk` 1
2 yS `

1
2t̂

}wk` 1
2 ´ ŵ}2

S.

Taking the limit as k Ñ `8, there holds for all w P M, as h is continuous and ŵ P M:

ph ` iMqpwq `
1
2t̂

}w ´ ŵ}2 ě ph ` iMqpŵq,

which means that ŵ “ proxt̂ph`iMq
pŵq. Hence, ŵ is a global minimizer of h ` iM.

6.1.1.3 Convergence: infinite loop of outer steps

In this subsection, we assume the outer loop is executed an infinite number of
times, meaning that the acceptance criterion (6.5) fails to hold only a finite number of
tries after each outer step. In other words, the algorithm sets wk`1 “ uk`1 infinitely many
times. In this situation, twku is an infinite sequence, and thus we consider the infinite set
of indices

KO “ tk P N : uk`1 satisfies (6.5)u.

For all k P KO, uk`1 “ wk`1.

The convergence analysis of the outer loop is an application of the inexact prox-
imal point method for finding zeros of a maximal monotone set-valued operator presented
in [25], corresponding to Algorithm 1 described in Section 2.1.1.

The following result defines the sense in which the approximate proximal steps
are performed in each iteration of the outer loop, in terms of the analysis in [25]. Loosely
speaking, the outer loops of Algorithm 8 correspond to approximately solve the inclusion

0 P Bph ` iMqpwq `
1
tk

pw ´ wkq,

which corresponds to applying the proximal point algorithm to the maximal monotone
operator T “ Bph ` iMq with a relative-error criterion, since we seek to minimize h ` iM.
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Proposition 6.3. Consider uk`1 defined in line 4 of Algorithm 8, and gk defined in
Lemma 6.1. For k P KO, the pair puk`1, gkq is an approximate solution with error tolerance
σk of 0 P tkBhp¨q ` p¨ ´ wkq, in the sense that for εk ě 0,

(i) gk P Bεkph ` iMqpuk`1q,

(ii) there exists rk P Rn, such that tkgk ` uk`1 ´ wk “ rk, and

(iii) }rk}2 ` 2tkεk ď σ2
k}uk`1 ´ wk}2.

Proof. First, item (i) corresponds to Lemma 6.1. Moreover, applying the projection oper-
ator PM to both sides of (6.10), it follows

uk`1 “ PMrwk ´ tkgks

“ PMrwks ´ tkPMrgks

“ wk ´ tkPMrgks

“ wk ´ tkgk ` rk,

where in the second equality we use the linearity of the projection operator, in the third
equality we use the fact wk P M, and in the last equality we use the identity gk “

PMrgks ` PMKrgks, and define rk “ tkPMKrgks.

The third of the relations follows directly from [25, Definition 2.1], using the
relations in Table 6 and the fact that KO gathers all the steps at which the acceptance
test (6.5) holds.

Notation in [25] Progressive Hedging notation
T Bph ` iMq

yk uk`1

vk gk

xk wk

Table 6 – Relations between notations in Algorithm 1 and in Algorithm 8.

Remark 6.2. The analysis for Algorithm 1 in [25] is performed for a generalization
of the ε´subdifferential, the ε´enlargement of a maximal monotone operator. Since h P

convpRnq and M a linear subspace, then Bph ` iMq is a maximal monotone operator. The
εk´enlargement operator of Bph ` iMq at uk`1 contains Bεkph ` iMqpuk`1q, although in
this case we avoid working with the enlargement of the subdifferential, since the use of the
ε´subdifferential suffices for the optimization case.
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To establish convergence of the generated sequences, we prove that twkukPKO

is Fejér monotone with respect to the set of dual solutions W ‹, a classic property in the
literature.

Lemma 6.2. For any w‹ P W ‹, and k P KO, it holds

}wk`1 ´ w‹}2 ď }wk ´ w‹}2 ´ p1 ´ σ2
kq}uk`1 ´ wk}2.

Proof. First, [25, Lemma 4.1] implies for all k P N,

}wk` 1
2 ´ w‹}2 ď }wk ´ w‹}2 ´ p1 ´ σ2

kq}uk`1 ´ wk}2. (6.16)

Furthermore, for k P KO, it holds that wk`1 “ PMrwk` 1
2 s, and since the projection

operator is nonexpansive and W ‹ Ď M, then

}wk`1 ´ w‹} “ }PMrwk` 1
2 s ´ PMrw‹s}

ď }wk` 1
2 ´ w‹}.

Substituting this last inequality in the above estimate gives the desired result.

Based on Féjer monotonicity, the following proposition shows convergence prop-
erties for the candidate solutions tuku, the centers twku, the aggregate subgradients tgku,
and the errors tεku.

Proposition 6.4. Assume the outer loop of Algorithm 8 is performed infinitely many
times. The following hold.

(i) twk`1ukPKO
is bounded.

(ii)
ÿ

kPKO

p1 ´ σ2
kq}uk`1 ´ wk}2 ă `8.

In addition, if tσkukPKO
Ď r0, 1q stays bounded away from 1, then

(iii) tuk`1ukPKO
, and uk`1 ´ wk Ñ 0 as KO Q k Ñ `8.

(iv)
ÿ

kPKO

t2
k}gk}2 ă `8.

(v)
ÿ

kPKO

tkεk ă `8.

Proof. This result corresponds to [25, Corollary 4.2], using Lemma 6.2, a varying error
tolerance σk and the relations in Table 6. Indeed, since Lemma 6.2 implies that t}wk ´
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w‹}ukPKO
is a nonincreasing sequence for any w‹ P W ‹, item (i) holds. Moreover, for any

n P N
n
ÿ

k“0
kPKO

p1 ´ σ2
kq}uk`1 ´ wk}2 ď

n
ÿ

k“0
kPKO

}wk ´ w‹}2 ´ }wk`1 ´ w‹}2

“

n
ÿ

k“0
}wk ´ w‹}2 ´ }wk`1 ´ w‹}2

“ }w0 ´ w‹}2 ´ }wn`1 ´ w‹}2

ď }w0 ´ w‹}2,

where in the first inequality we use Lemma 6.2, in the first equality we use that
for any k R KO, wk`1 “ wk, and in the third line we use the telescopic sum. Therefore,
item (ii) follows by taking KO Q n Ñ 8. As for item (iii), note that the assumption
implies that 1 ´ σ2

k stays bounded away from 0, thus
ÿ

kPKO

}uk`1 ´ wk}2 ă `8. In turn,

this implies uk`1 ´ wk Ñ 0 as KO Q k Ñ 8, and in particular, in view of item (i),
tuk`1ukPKO

stays bounded. Furthermore, using the triangle inequality, the definition of rk,
Proposition 6.3(iii), and the fact that σk ă 1, it holds that for k P KO

tk}gk} ď }tkgk ` uk`1 ´ wk} ` }uk`1 ´ wk}

“ }rk} ` }uk`1 ´ wk}

ď pσk ` 1q}uk`1 ´ wk}

ď 2}uk`1 ´ wk}.

Hence,
ÿ

kPKO

t2
k}gk}2 ă `8. Finally, item (v) follows similarly from Proposition 6.3(iii).

The key to prove global convergence of the iterates is noting that by taking
the limit KO Q k Ñ `8 in the inclusion

gk P Bεk
ph ` iMqpuk`1q,

implies that any accumulation point of tuk`1ukPKO
is a critical point of h ` iM, that

is, a solution to the convex problem (6.1). Observe that, by construction, Algorithm 8
guarantees ttkukPKO

is bounded away from 0: tk ě tmin for all k P KO.

Theorem 6.3. Assume the outer loop of Algorithm 8 is performed infinitely many times,
and tσkukPKO

Ď r0, 1q is bounded away from 1. Then, the sequences twk`1ukPKO
and

twk` 1
2 ukPKO

converge to a minimizer of h ` iM, and thpwk`1qukPKO
and thpwk` 1

2 qukPKO

converge to the optimal value of this minimization problem.

Proof. Let w̄ be any limit point of twk`1ukPKO
. Such a point exists by virtue of Proposi-

tion 6.4(i). Let twkj`1u be a subsequence of twk`1ukPKO
such that wkj`1 Ñ w̄ as j Ñ `8.
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Since kj P KO, then ukj`1 Ñ w̄ as well. From Proposition 6.4 (iv) and (v), tk}gk} Ñ 0 and
tkεk Ñ 0 as KO Q k Ñ `8. Moreover, in view of tk ě tmin for all k P KO, then gk Ñ 0
and εk Ñ 0. Therefore, we have

gkj P Bεkj ph ` iMqpukj`1q ùñ 0 P Bph ` iMqpw̄q.

Therefore, any limit point of twk`1ukPKO
is a solution to problem (6.1). Next, we prove

that twk`1ukPKO
has a unique accumulation point, following the reasoning of [17]. We

include the proof here for completeness. Indeed, let w1, and w2 be two limit points of
twk`1ukPKO

. Therefore, w1, w2 P W ˚, and thus Lemma 6.2 implies for all k P KO,

}wk`1 ´ wj}2 ď }wk ´ wj}2, for j “ 1, 2.

Hence, t}wk ´ wj}ukPKO
, for j “ 1, 2, is a monotone bounded sequence. Thus,

lim
kPKO

}wk ´ wj} “ µj

exists for j “ 1, 2. Fix j “ 1, 2, and denote by i “ 3 ´ j the other index. Then

}wk ´ wj}2 “ }wk ´ wi ` wi ´ wj}2

“ }wk ´ wi}
2 ` 2xwk ´ wi, wi ´ wjy ` }wi ´ wj}2.

Therefore, by taking the limit, we obtain

µ2
j “ µ2

i ` 2 lim
kPKO

xwk ´ wi, wi ´ wjy ` }wi ´ wj}2.

Since wi is an accumulation point of twkukPKO
, then the limit above needs to vanish, and

thus
µ2

j ´ µ2
i “ }wi ´ wj}2 ą 0.

Switching indexes, it also holds

µ2
i ´ µ2

j “ }wj ´ wi}
2 ą 0,

a contradiction. Hence, there exists a unique accumulation point, the limit of twk`1ukPKO
,

which is also a solution to problem (6.1) as proven above. Note that Proposition 6.4(ii),
since uk`1 “ wk`1 for k P KO, implies twkukPKO

converges to w as well.

Finally, with respect to the sequence of intermediate points twk` 1
2 ukPKO

, note
that (6.16) holds for w‹ “ w. Thus, taking the limit as KO Q k Ñ `8 in that estimate, and
using Proposition 6.4(ii), it follows that wk` 1

2 Ñ w as KO Q k Ñ `8. The convergence
of thpwk`1ukPKO

and thpwk` 1
2 qukPKO

follows from the continuity of h.
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Local rate of convergence: infinite loop of outer steps

In order to establish linear rates of convergence, an extra assumption is needed,
in this case, an error bound (cf. Section 1.4). Specifically, we use a generalization of the
condition in [25, Theorem 3.2]: assume that for any h ě inf

wPM
hpwq, there exists some

L ą 0 and δ ą 0 such that whenever w P M, and hpwq ď h,

g P
`

Bhpwq ` MK
˘

X Bp0, δq ùñ distpw, W ‹q ď L}g}. (6.17)

This estimate actually corresponds to the subdifferential-based error bound of Defini-
tion 1.7 applied to h ` iM, and as such, it is used to prove the speed of convergence of
the proposed method. Recall that Algorithm defines ttkukPKO

bounded away from zero by
construction.

Theorem 6.4. Assume the outer loop of Algorithm 8 is performed infinitely many times,
tσkukPKO

Ď r0, 1q is bounded away from 1, and the error bound condition (6.17) holds.
Then

(i) If ttkukPKO
is bounded above, then tdistpwk, W ‹qukPKO

converges linearly to 0.

(ii) If tk Ñ `8 and σk Ñ 0 as KO Q k Ñ `8, then tdistpwk, W ‹qukPKO
converges

superlinearly to 0, and for k P KO,

distpwk`1, W ‹q2 ď

ˆ

1 ´
1 ´ σk

p1 ` Lt´1
k q2p1 ` σkq

˙

distpwk, W ‹q2.

Proof. We follow the proof of [25, Theorem 3.2]. In fact, from Proposition 6.4(iii) and (iv),
we know that

tk}gk} Ñ 0, and wk`1 ´ wk “ uk`1 ´ wk Ñ 0, as KO Q k Ñ `8.

Since ttkukPKO
is bounded away from 0, then gk Ñ 0. Denote zk “ proxtkph`iMqpw

kq, then
[25, Lemma 2.2] implies for k P KO,

}zk ´ uk`1} ď σk}wk ´ uk`1}. (6.18)

Therefore, using the triangle inequality and (6.18), it follows for k P KO

}zk ´ wk} ď }zk ´ uk`1} ` }uk`1 ´ wk}

ď p1 ` σkq}uk`1 ´ wk}.
(6.19)

From the definition of zk, it also holds zk P M and

1
tk

pwk ´ zkq P Bph ` iMqpzkq.
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This subgradient satisfies the following inequality, due to (6.19):
›

›

›

›

1
tk

pwk ´ zkq

›

›

›

›

ď
1 ` σk

tk

}uk`1 ´ wk} ď
2

tmin
}uk`1 ´ wk},

where the second inequality follows from σk P r0, 1q, and tmin ď tk. Therefore, uk`1 ´wk Ñ

0 as KO Q k Ñ `8 implies

Bph ` iMqpzkq Q
1
tk

pwk ´ zkq Ñ 0 as KO Q k Ñ `8. (6.20)

Additionally, from the definition of zk, it holds

hpzkq `
tmin

2

›

›

›

›

1
tk

pzk ´ wkq

›

›

›

›

2

ď hpzkq `
1

2tk

}zk ´ wk}2 ď hpwkq. (6.21)

In view of Theorem 6.3, since wk`1 ´ wk Ñ 0 as KO Q k Ñ `8, then wk Ñ w and
hpwkq Ñ inf

wPM
hpwq. Hence

inf
wPM

hpwq ď lim inf
kPKO

hpzkq

“ lim inf
kPKO

hpzkq `
tmin

2

›

›

›

›

1
tk

pzk ´ wkq

›

›

›

›

2

ď lim sup
kPKO

hpzkq `
tmin

2

›

›

›

›

1
tk

pzk ´ wkq

›

›

›

›

2

ď lim
kPKO

hpwkq

“ inf
wPM

hpwq,

where the first inequality follows from the fact zk P M, the first equality follows from
(6.20), and (6.21) yields the fourth line. Moreover, (6.20) also implies

lim sup
kPKO

hpzkq `
tmin

2

›

›

›

›

1
tk

pzk ´ wkq

›

›

›

›

2

“ lim sup
kPKO

hpzkq.

Then, the chain of estimates above yields

inf
wPM

hpwq ď lim inf
kPKO

hpzkq ď lim sup
kPKO

hpzkq ď inf
wPM

hpwq,

meaning hpzkq Ñ inf
wPM

hpwq.

In this manner, for any h ą inf
wPM

hpwq and δ ą 0 from (6.17), for all sufficiently
large k P KO, hpzkq ď h, zk P M, and

1
tk

pwk ´ zkq P Bph ` iMqpzkq X Bp0, δq.

The error bound (6.17) gives

distpzk, W ‹q ď
L

tk

}wk ´ zk}. (6.22)
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Next, we use the triangle inequality, (6.22), and (6.19) to obtain for all sufficiently large
k P KO

distpwk, W ‹q ď distpzk, W ‹q ` }wk ´ zk}

ď

ˆ

1 `
L

tk

˙

}wk ´ zk}

ď

ˆ

1 `
L

tk

˙

p1 ` σkq}uk`1 ´ wk}

(6.23)

Moreover, Lemma 6.2 implies for k P KO

distpwk`1, W ‹q2 ď distpwk, W ‹q2 ´ p1 ´ σ2
kq}uk`1 ´ wk}2.

Taking squares in (6.23) and multiplying by ´1, then we can bound }uk`1 ´ wk}2 for all
sufficiently large k P KO in the last inequality to obtain

distpwk`1, W ‹q2 ď

¨

˚

˚

˚

˝

1 ´
1 ´ σ2

k
ˆ

1 `
L

tk

˙2

p1 ` σkq2

˛

‹

‹

‹

‚

distpwk, W ‹q2

“

¨

˚

˚

˚

˝

1 ´
1 ´ σk

ˆ

1 `
L

tk

˙2

p1 ` σkq

˛

‹

‹

‹

‚

distpwk, W ‹q2.

This estimate is the cornerstone of the rate of convergence of Algorithm 8. To prove (i),
since σk P r0, 1q, and tmin ď tk, then

1 ´
1 ´ σk

ˆ

1 `
L

tk

˙2

p1 ` σkq

ď 1 ´
1

2
ˆ

1 `
L

tmin

˙2 ă 1.

In this way, for all sufficiently large k P KO

distpwk`1, W ‹q2 ď

¨

˚

˚

˚

˝

1 ´
1

2
ˆ

1 `
L

tmin

˙2

˛

‹

‹

‹

‚

distpwk, W ‹q2,

and thus
lim sup

kPKO

distpwk`1, W ‹q2

distpwk, W ‹q2 ă 1.

To prove (ii), note that when tk Ñ `8, and σk Ñ 0, then

1 ´
1 ´ σk

ˆ

1 `
L

tk

˙2

p1 ` σkq

Ñ 0,

therefore,

lim sup
kPKO

distpwk`1, W ‹q2

distpwk, W ‹q2 “ 0.
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6.1.2 Comparison between the dual-embedded forward-backward and Bundle
Progressive Hedging methods

Algorithm 8 bears some resemblance to PH and the progressive-hedging-like
method proposed in Chapter 5. Algorithm 6 and DEFB present some key differences
with the classical PH, the most important one being the capacity of changing the step-
size parameter along iterations. PH keeps the stepsize fixed, making it difficult to obtain
(empirical) superlinear convergence results. The method presented in this section, by con-
trast, adjusts xk using a forward-backward step, and does not alter tk when the surrogate
model function of h ` iM appears to be too inaccurate. This difference makes it at least
theoretically possible to attain a form of superlinear convergence.

The main difference between DEFB and the algorithm proposed in Chapter 5 is
the acceptance test. After solving all the proximal subproblem, DEFB checks the accuracy
of the iterates in terms of their feasibility (how far they are from being an element of
M), and the accuracy of the model, using a relative-error criteria. Therefore, DEFB
directly addresses feasibility and the quality of the approximations. On the other hand,
the progressive-hedging-like algorithm of Chapter 5 checks descent of the iterates, that is,
it verifies sufficient objective improvement compared to the last solution candidate, with
a fixed Armijo-like parameter. The following result shows that DEFB actually provides
descent for the objective function, satisfying a sufficient descent estimate with a varying
Armijo-like parameter.

Proposition 6.5 (Sufficient descent of DEFB). The sequence twk`1ukPKO
generated by

Algorithm 8 satisfies the following sufficient descent estimate:

hpwk`1q ´ hpwkq ď

ˆ

σ2
k ´ 1
2tk

˙

}wk`1 ´ wk}2. (6.24)

Proof. By expanding squares, for all k,

}wk` 1
2 ´ uk`1}2 “ }wk` 1

2 ´ wk}2 ` }wk ´ uk`1}2 ` 2xwk` 1
2 ´ wk, wk ´ uk`1y.

In this way, the left-hand side of the acceptance test (6.5) can be written as

}wk` 1
2 ´ uk`1}2 ` 2tkεk “ }wk` 1

2 ´ wk}2 ` }wk ´ uk`1}2 ` 2xwk` 1
2 ´ wk, wk ´ uk`1y

`2tkεk

“ }wk` 1
2 ´ wk}2 ` }wk ´ uk`1}2 ` 2xwk` 1

2 ´ wk, wk ´ uk`1y

`2tk

`

hpuk`1q ´ hkpwk` 1
2 q
˘

` 2xwk` 1
2 ´ wk, uk`1 ´ wk` 1

2 y

“ }wk` 1
2 ´ wk}2 ` }wk ´ uk`1}2 ` 2xwk` 1

2 ´ wk, wk ´ wk` 1
2 y

`2tk

`

hpuk`1q ´ hkpwk` 1
2 q
˘

“ ´}wk` 1
2 ´ wk}2 ` }wk ´ uk`1}2 ` 2tk

`

hpuk`1q ´ hkpwk` 1
2 q
˘

.
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Therefore, (6.5) is equivalent to

hpuk`1q ´

„

hkpwk` 1
2 q `

1
2tk

}wk` 1
2 ´ wk}2

ȷ

ď

ˆ

σ2
k ´ 1
2tk

˙

}wk ´ uk`1}2.

By construction, since wk` 1
2 solves (6.3), thus

hkpwk` 1
2 q `

1
2tk

}wk` 1
2 ´ wk}2 ď hkpwkq,

yielding

hpuk`1q ´ hkpwkq ď

ˆ

σ2
k ´ 1
2tk

˙

}wk ´ uk`1}2.

The result follows from the fact uk`1 “ wk`1 whenever k P KO.

Remark 6.3. The estimate in (6.24) holds for k R KO as well, since in this case wk`1 “

wk, and thus the left-hand side vanishes.

Unlike DEFB, the method in Chapter 5 also requires bounded stepsizes tk (cf.
Theorem 5.2), precluding the use of standard arguments for demonstrating a superlinear
rate of convergence (cf. [17, Theorem 2]). On the other hand, DEFB allows the stepsizes to
be driven to infinity, which leads to superlinear convergence. In practice, this means that
once DEFB is close to a solution, one can increase its stepsizes to accelerate the rate at
which it gains accuracy, by paying the cost of having to solve a problem close to the original

one. Furthermore, (6.24) allows the term mk “
σ2

k ´ 1
2tk

to vary along iterations, while the

classical proximal bundle acceptance test hpwk`1q ´ hpwkq ď m
`

hkpwk`1q ´ hpwkq
˘

keeps
the parameter m P p0, 1q fixed.

6.2 Dual embedded forward-backward method for stochastic pro-
gramming

The method presented in Section 6.1 can be viewed as a splitting method to
individually exploit the properties of the objective function h of (6.1), and the feasible set
M, a linear subspace. This configuration materializes in the dual formulation of a convex
stochastic programming problem.

In the outer-loop convergence case of Algorithm 8, the iterations conform to
a form of proximal point algorithm for problem (6.1). When proximal point algorithms
are applied to dual problems, they lead to augmented Lagrangian methods, as established
in [153]. Thus, when Algorithm 8 is applied to a dual problem, it leads to a type of aug-
mented Lagrangian algorithm. We call such methods “Dual-embedded forward-backward
Augmented Lagrangian” (DEFBAL) algorithms.
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In this section, we apply the theory of Section 6.1 to obtain a method resem-
bling the progressive hedging algorithm for convex stochastic optimization problems. We
follow the notation of Section 2.2.2 and Chapter 5.

We introduce some extra notation in order to directly treating last-stage vari-
ables, as in [139]. Recall we consider S possible T -stage scenario realizations for the under-
lying stochastic process of the problem. For each scenario s “ 1, . . . , S, let pxs, xsT q P Rn1

s

denote the scenario-s decision variable vector, including all stages, in which xs P Rns

covers stages t “ 1, . . . , T ´ 1, and xsT denotes the decision variable for the last stage T .
Furthermore, x “ pxsqS

s“1 P Rn represents the vector that gathers decision variables for
all scenarios and all stages, except the last stage t “ T, while xT P Rn1´n denotes the
vector of decision variables at stage t “ T and all scenarios.

For each s “ 1, . . . , S, let ps ą 0 denote the probability of scenario s, hence
S
ÿ

s“1
ps “ 1. Moreover, for each s “ 1, . . . , S, let fs P convpRn1

sq, and

fpx, xT q “

S
ÿ

s“1
psfspxs, xsT q,

be the objective function to be minimized.

Consider the problem
$

’

’

&

’

’

%

min fpx, xT q

s.t. pxs, xsT q P Cs, s “ 1, . . . , S,

x P N ,

(6.25)

where Cs Ď Rn1
s is a nonempty compact convex set, and N denotes the nonanticipative

subspace. We denote C “ ΠS
s“1Cs.

Define, for each scenario s “ 1, . . . , S, the marginal function Fs : Rns Ñ

R Y t`8u as
Fspxsq “ inf

xsT
tfspxs, xsT q : pxs, xsT q P Csu . (6.26)

Additionally, define the function F : Rn Ñ R Y t`8u as

F pxq “

S
ÿ

s“1
psFspxsq, (6.27)

allowing problem (6.25) to be equivalently reformulated as (cf. (2.9))
$

&

%

min
x

F pxq

s.t. x P N .
(6.28)
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The solution of problems (6.28) and (6.25) can be easily related, as the follow-
ing simple result shows.

Proposition 6.6. Suppose x‹ is a solution to (6.28), and x‹
T satisfies

F px‹q “ fpx‹, x‹
T q, px‹, x‹

T q P C.

Then, px‹, x‹
T q is a solution to (6.25).

Proof. For all x P N , and all xT such that px, xT q P C, there holds

fpx‹, x‹
T q “ F px‹q ď F pxq ď fpx, xT q.

Our main goal is to take advantage of the separable structure of f. For that,
we relax the constraint x P N , obtaining the separable Lagrangian (cf. (5.3)–(5.4))

Lpx, wq “

S
ÿ

s“1
psLspxs, wsq, where Lspxs, wsq “ Fspxsq ` xxs, wsy,

with the corresponding dual function given by (cf. (5.6))

hpwq “

S
ÿ

s“1
pshspwsq, where hspwsq “ ´ inf

xs
Lspxs, wsq. (6.29)

The corresponding dual problem is defined as (cf. (6.1))
$

&

%

min
w

hpwq

s.t. w P N K.
(6.30)

Note that problem (6.30) is problem (6.1) for M “ N K. This relationship goes beyond
solely the feasible sets. The following result states some basic properties that the objective
functions of the primal and dual problems satisfy.

Proposition 6.7. Consider function F : Rn Ñ R Y t`8u and h : Rn Ñ R Y t`8u

defined in (6.26)–(6.27) and (6.29), respectively. The following hold.

(i) F P convpRnq and is finite.

(ii) h P convpRnq and is finite, such that for each s “ 1, . . . , S,

hspwsq “ ´

$

&

%

min
xs,xsT

fspxs, xsT q ` xxs, wsy

s.t. pxs, xsT q P Cs
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Proof. From (6.26), the s´dual function can be equivalently formulated as

hspwsq “ ´ inf
xs

´

inf
xsT

tFspxs, xsT q : pxs, xsT q P Csu ` xxs, wsy

¯

“ ´ inf
xs,xsT

tFspxs, xsT q ` xxs, wsy : pxs, xsT q P Csu .

In this manner, hs is a convex function, since it is the negative of a function defined as
the infimum of convex functions Fspxs, xsT q ` xxs, wsy. Furthermore, since fs is lsc and Cs

is compact, then from [130, Lemma 1.2], Fs is lsc as a marginal function of fs, and the
problem in (6.26) attains its minimum, which implies that Fspxsq is finite for all xs. From
[130, Proposition 8.26], Fs is convex because fs is convex. Finally, hs is lsc and finite from
[130, Lemma 1.2], since each Cs is compact, and Fspxs, xsT q ` xxs, wsy lsc as a function
of pxs, xsT q.

We now apply the theory of Section 6.1 to the convex dual function h and
M “ N K, observing that problem (6.30) has the same structure of problem (6.1). In this
setting, Algorithm 8 takes the form shown in Algorithm 9, adding the extra feature of
scenario-based decomposition.

The introduction of the marginal function in (6.27) is crucial in (6.31), since in
this way the last-stage decision variables xsT are not carried to the linear term associated
with the multiplier, nor the quadratic penalization term. In practice, this means that the
vacuous nonanticipative constraint on the last state does not impact the formulation of
the problem.

The direct relationship between Algorithm 9 and Algorithm 8 is stated in the
following result.

Proposition 6.8. Consider Algorithm 8 and Algorithm 9. The following hold.

(i) For each s “ 1, . . . , S, defining w
k` 1

2
s via solving (6.3) is equivalent to perform

(6.31)–(6.32) to obtain px
k` 1

2
s , xk`1

sT q, where x
k` 1

2
s coincides with the primal point of

Proposition 6.1(iii).

(ii) The formulas (6.4) and (6.35) are two identical ways to define the error εk.

(iii) The acceptance tests (6.5) and (6.36) are equivalent.

(iv) The stopping tests (6.5) and (6.33) are equivalent.

(v) The rules (6.6) and (6.33) to update xk are equivalent.
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Algorithm 9 A progressive-hedging-like algorithm derived from DEFBAL
1: Initialization: choose x0 P N , w0 P N K and σ0 P r0, 1q, tmin ą 0, and t0 ě tmin. Set

TOLą 0, and ε0 ąTOL.
2: for k “ 0, 1, ... do
3: Primal subproblems: for each scenario s “ 1, . . . , S, compute px

k` 1
2

s , xk`1
sT q as

the unique solution of

min
pxs,xsT qPCs

"

fspxs, xsT q ` xwk
s , xsy `

tk

2
}xs ´ xk

s}2
*

. (6.31)

4: Dual update: Define

w
k` 1

2
s “ wk

s ` tkpx
k` 1

2
s ´ xk

sq for s “ 1, . . . , S, (6.32)

and
uk`1 “ PN Krwk` 1

2 s.

5: Center update: define
xk`1 “ PN rxk` 1

2 s. (6.33)

6: Stopping test: }xk` 1
2 ´ xk} ď TOL and εk ď TOL, stop and return pwk, xkq.

7: Acceptance test: For each s “ 1, . . . , S, find

yk`1
s P arg min

zs

Lspzs, uk`1
s q. (6.34)

and define

εk “ ´Lpyk`1, uk`1q`Lpxk` 1
2 , wk` 1

2 q´xxk, wk` 1
2 yS ´tkxxk ´xk` 1

2 , xk ´xk`1yS. (6.35)

If
}xk ´ xk`1}2

S ` 2t´1
k εk ď σ2

k}xk` 1
2 ´ xk`1}2

S, (6.36)

perform an outer step: define wk`1 “ uk`1 and choose tk`1 ě tmin and
σk`1 P r0, 1q. Otherwise, perform an inner step: set wk`1 “ wk, tk`1 “ tk, and
σk`1 “ σk.

8: end for

Proof. Item (i) follows by using classic primal-dual arguments, as the one provided in
Section 5.2.2. Here, we give an alternative proof. First, problem (6.31) is equivalent to

min
xs

"

Fspxsq ` xwk
s , xsy `

tk

2
}xs ´ xk

s}2
*

in view of (6.26). The Fenchel dual of the problem above is

min
ws

"

F ˚
s p´wsq `

ˆ

xwk
s , ¨y `

tk

2
} ¨ ´xk

s}2
˙˚

pwsq

*

.
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Each one of the terms in the sum can be rewritten as follows:

F ˚
s p´wsq “ sup

xs

␣

x´wk
s , xsy ´ Fspxsq

(

“ ´ inf
xs

␣

Fspxsq ` xwk
s , xsy

(

“ hspwsq,

(6.37)

and by using the rules in Proposition 1.1:
ˆ

xwk
s , ¨y `

tk

2
} ¨ ´xk

s}2
˙˚

pwsq “

ˆ

tk

2
} ¨ ´xk

s}2
˙˚

pws ´ wk
s q

“

ˆ

tk

2
} ¨ }2

˙˚

pws ´ wk
s q ` xxk

s , ws ´ wk
s y

“ tk

ˆ

tk

2
} ¨ }2

˙˚ ˆ 1
tk

pws ´ wk
s q

˙

` xxk
s , ws ´ wk

s y

“
tk

2

›

›

›

›

1
tk

pws ´ wk
s q

›

›

›

›

2

` xxk
s , ws ´ wk

s y

“
1

2tk

}ws ´ wk
s }2 ` xxk

s , ws ´ wk
s y.

In this way, after discarding constant terms, the Fenchel dual problem is equivalent to
(6.31). Relationship (6.32) is obtained via duality as well: from the optimality condition
(6.9) of problem (6.3), there exists x˚

s P Rns such that ´x˚
s P Bhspw

k` 1
2

s q, and

0 “ ´x˚
s ` xk `

1
tk

pw
k` 1

2
s ´ wk

s q.

Since F ˚
s p´wsq “ hspwsq, then ´x˚

s P Bhspw
k` 1

2
s q is equivalent to ´w

k` 1
2

s P BFspx˚
s q. There-

fore, the above identity implies

0 “ ´w
k` 1

2
s ` wk

s ` tkpx˚
s ´ xk

sq

P BFspx˚
s q ` wk

s ` tkpx˚
s ´ xk

sq,
(6.38)

corresponding to the optimality condition of problem (6.31). From the uniqueness of the
solution of this problem (due to strong convexity of the objective function), x˚

s “ x
k` 1

2
s ,

and thus (6.32) follows.

Moreover, from (6.29) and (6.34), hspuk`1
s q “ ´Lspyk`1

s , uk`1
s q. In view of (6.38)

and (6.32), x
k` 1

2
s minimizes Lsp¨, w

k` 1
2

s q, and thus hspw
k` 1

2
s q “ ´Lsp¨, w

k` 1
2

s q. Using again
(6.32), we can see that the following primal-dual relationships hold: tkpxk ´ xk` 1

2 q “

wk ´ wk` 1
2 , and tkpxk ´ xk`1q “ uk`1 ´ wk` 1

2 by applying PN on both sides. Thus, from
(6.35)

εk “

S
ÿ

s“

ps

´

´Lspuk`1
s , uk`1

s q ` Lspx
k` 1

2
s , w

k` 1
2

s q ´ xxk
s , w

k` 1
2

s y ´ tkxxk
s ´ x

k` 1
2

s , xk
s ´ xk`1

s y

¯

“

S
ÿ

s“1
ps

ˆ

hspyk`1
s q ´ hspw

k` 1
2

s q ´ xxk
s , w

k` 1
2

s y ´
1
tk

xwk
s ´ w

k` 1
2

s , uk`1
s ´ wk`1

s y

˙

“

S
ÿ

s“

ps

ˆ

hspyk`1
s q ´ hk

spw
k` 1

2
s q ´

1
tk

xwk
s ´ w

k` 1
2

s , uk`1
s ´ wk`1

s y

˙

,
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from which item (ii) follows.

Regarding the acceptance tests, multiplying (6.36) by t2
k yields

(6.36) ðñ }tkpxk ´ xk`1q}2
S ` 2tkεk ď σ2

k}tkpxk` 1
2 ´ xk`1q}2

S

ðñ }uk`1 ´ wk` 1
2 }2

S ` 2tkεk ď σ2
k}wk ´ wk` 1

2 }2
S,

and thus item (iii) follows. The same primal-dual relationship gives the validity of item
(iv).

Finally, applying PN to (6.32) and using (6.33), yields

xk`1 “ PN

„

xk `
1
tk

pwk` 1
2 ´ wkq

ȷ

“ PN rxks `
1
tk

pPN rwk` 1
2 s ´ PN rwksq

“ xk `
1
tk

PN rwk` 1
2 s

“ xk `
1
tk

pwk` 1
2 ´ PN Krwk` 1

2 sq

“ xk `
1
tk

pwk` 1
2 ´ uk`1q,

where in the second line we use linearity of the projection operator, in the third line we
use the fact xk P N and wk P N K, in the fourth line we use the Moreau identity for the
projection, and the last line follows from the definition of uk`1. This proves item (v).

In order to deduce convergence of Algorithm 9, we capitalize on on the theory
described in Section 6.1. As for primal iterates, we require the following standard result,
for which we provide a short proof.

Lemma 6.3. Let w‹ be a solution to the dual problem (6.30). Then, any x‹ P N is a
solution to primal problem (6.28) whenever ´x‹ P Bhpw‹q.

Proof. First, the Fenchel-Young inequality implies

hpw‹q ` h˚p´x‹q “ ´xx‹, w‹yS, (6.39)

where the right-hand side inner product is 0, since x‹ P N , and w‹ P N K. Furthermore,
note that fue to (6.37), F ˚p´wq “ hpwq, and thus

h˚p´x˚q “ sup
w

txw, ´x˚yS ´ hpwqu

“ sup
w

tx´w, x˚yS ´ F ˚p´wqu

“ sup
w

txw, x˚yS ´ F ˚pwqu

“ F ˚˚px˚q

“ F px˚q,

(6.40)
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where in the third equality we use the change of variables w Ð ´w, in the fourt line
we use the definition of the Fenchel conjugate, and in the last line we use the fact that
F P convpRnq (Proposition 6.7(i)). Substituting this relation in (6.39) gives, for w˚ P N K,

x˚ P N ,
hpw˚q ` F px˚q “ 0.

Hence, the result follows from strong duality.

Now we proceed to show the convergence properties of Algorithm 9, following
the reasoning of Section 6.1.1. We first analyze the case of finite termination, and then
two cases when the algorithm runs indefinitely: the first case corresponds to the tail of
inner steps, and the second one is when an infinite number of outer steps are performed.

Finite termination: primal-dual case

Similarly to the dual finite termination case of Section 6.1.1, when Algorithm 9
stops after finitely many iterations when TOL “ 0, due to Proposition 6.8(iv), then 0 P

Bph`iN Kqpuk`1q, xk` 1
2 “ xk and εk “ 0. In particular, in view of (6.32), wk` 1

2 “ wk P N K,
and thus wk` 1

2 “ uk`1. Therefore, (6.10) implies 0 “ gk P Bhpwkq ` xk. To summarize,
wk “ uk`1 is a dual solution, and ´xk P Bhpwkq X N . In this way, Lemma 6.3 implies xk

is a primal solution.

Convergence of infinite loop of inner steps: primal-dual case

In this section we adopt the assumptions and notation of Section 6.1.1.2. In
particular, let k̂ P N be the last iteration the acceptance test (6.5) is satisfied, and thus
for all k ą k̂, wk “ ŵ, tk “ t̂, σk “ σ̂, and (6.12) holds.

Remark 6.4. The dual convergence of the tail of inner steps of Theorem 6.2 requires
domph˚q to be compact. In view of (6.40), F p´¨q “ h˚p¨q, F has compact domain if and
only if h˚ has compact domain. Furthermore, taking (6.26) into account, F has compact
domain whenever the sets Cs Ă Rns, for all s “ 1, . . . , S, are compact in problem (6.25).
In particular, dompFsq is compact.

The following primal-dual convergence theorem is an extension of Theorem 6.2,
using the primal-dual relationships established in Proposition 6.8.

Theorem 6.5 (Primal-dual convergence – inner loop). Consider the primal problem
(6.28) with its respective dual (6.30). Moreover, consider problem (6.25) such that Cs
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is a nonempty compact convex set for each s “ 1, . . . , S. Suppose there exists a last outer
step in Algorithm 9 at iteration k “ k̂. Then the following hold.

(i) The primal sequences txku
kąk̂

and txk` 1
2 u

kąk̂
converge to a solution of the primal

problem (6.28).

(ii) All accumulation points of the sequences tpxk, xk`1
T qu

kąk̂
and tpxk` 1

2 , xk`1
T qu

kąk̂
are

solutions of primal problem (6.25).

(iii) Both tuku
kąk̂

and twk` 1
2 u

kąk̂
converge to the last center ŵ, a solution of (6.30).

Proof. Dual convergence, that is, item (iii), follows from Theorem 6.2, in view of the
equivalence between Algorithm 8 and Algorithm 9 of Proposition 6.8.

When the inner loop executes indefinitely, equation (6.32) reads

wk` 1
2 “ ŵ ` t̂pxk` 1

2 ´ xkq. (6.41)

Due to (6.41), there holds xk` 1
2 ´ xk Ñ 0. In view of Theorem 6.1, xk Ñ x‹ P N , and

thus dompF q Q xk` 1
2 Ñ x‹, and x‹ P dompF q. It remains to prove for item (i) that x‹ is

a primal solution. From the optimality condition (6.9), gk P Bhkpwk` 1
2 q, then from (6.2),

gk ´ xk P Bhpwk` 1
2 q. In view of (6.10),

gk “
1
t̂

pŵ ´ wk` 1
2 q Ñ 0,

therefore ´x‹ P Bhpŵq for x‹ P N . Then, x‹ is a solution to the primal problem (6.28) by
applying Lemma 6.3 with x‹ and w‹ “ ŵ. This proves item (i).

Regarding item (ii), for each s “ 1, . . . , S, let x‹
sT P Rpn1

s´nsq be a point where
the minimum in (6.26) is attained for xs “ x‹

s, that is, such that Fspx‹
sq “ fspx‹

s, x‹
sT q,

and px‹
s, x‹

sT q P Cs. This point exists because Cs is compact. Note that px‹, x‹
T q is thus a

solution of problem (6.25) due to Proposition 6.6. Furthermore, in view of compactness
of Cs, there exists xsT , and a subsequence tx

kj`1
sT u of txk`1

sT u, such that x
kj`1
sT Ñ xsT as

j Ñ `8. From the definition of pxk` 1
2 , xk`1

T q,

fspx
kj` 1

2
s , x

kj`1
sT q ` xŵs, x

kj` 1
2

s y `
t̂

2
}xkj` 1

2 ´ xkj }2 ď fspx‹
s, x‹

sT q ` xŵs, x‹
sy `

t̂

2
}x‹

s ´ xkj
s }2.

Taking the limit as j Ñ `8, multiplying by ps, summing over s “ 1, . . . , S, and using
pŵ, x‹q P N K ˆ N , xk ´ xk` 1

2 Ñ 0 and xk Ñ x‹ as k Ñ `8, it follows that

fpx‹, xT q ď fpx‹, x‹
T q.

Thus, px‹, xT q is a solution to problem (6.25), because px‹
s, xsT q P Cs for all s “ 1, . . . , S,

and x‹ P N .
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Convergence of loop of outer steps: primal-dual case

Recall that when the acceptance test is satisfied infinitely many times, we
define

KO “ tk P N : uk`1 satisfies (6.5)u,

and thus for all k P KO, uk`1 “ wk`1.

Dual convergence and dual linear rate of convergence follow from Theorem 6.3
and Theorem 6.4, respectively, in view of Proposition 6.8.

We write the error bound (6.17) in primal-dual terms: assume for any h ě

inf
wPM

F ˚pwq, there exists some L ą 0 and δ ą 0 such that whenever w P M, and F ˚pwq ď h,
there exists x P Rn such that

y P Bp0, δq, x ` y P N , w P BF pxq ùñ distpw, W ‹q ď L}y}. (6.42)

This estimate is equivalent to (6.17), because for pw, x, yq satisfying (6.42), we have x P

BF ˚pwq “ ´Bhp´wq, where the equality follows from (6.40), and there exists z P N such
that z “ x ` y, and thus y “ ´x ` z P

`

Bhp´wq ` N
˘

X Bp0, δq. In this manner, we can
apply the change of variables w Ð ´w to retrieve (6.17) for M “ N K.

Theorem 6.6 (Primal-dual convergence – outer loop). Consider the primal problem
(6.28) with its respective dual (6.30). Moreover, consider problem (6.25) such that Cs

is a nonempty compact convex set for each s “ 1, . . . , S. Suppose Algorithm 9 performs
infinitely many outer steps, in such a way tσkukPKO

Ď r0, 1q stays bounded away from 1.
Recall ttkukPKO

is bounded away from 0 by construction. Then the following hold.

(i) All accumulation points of the sequences txk`1ukPKO
and txk` 1

2 ukv are solutions of
the primal problem (6.28).

(ii) All accumulation points of the sequences tpxk`1, xk`1
T qukPKO

and tpxk` 1
2 , xk`1

T qukPKO

are solutions of primal problem (6.25).

(iii) Both twk`1ukPKO
and twk` 1

2 ukPKO
converge to a solution of the dual problem (6.30).

In addition, if (6.42) is satisfied, then the dual linear and superlinear conver-
gence rates of Theorem 6.4 hold.

Proof. Due to Proposition 6.8, Theorem 6.3 is valid: twk`1ukPKO
and twk` 1

2 ukPKO
converge

to a solution w‹ of (6.30).

With respect to the primal sequences, both txk` 1
2 ukPKO

and txk`1ukPKO
Ď

N have nonempty sets of accumulation points. Indeed, in view of Remark 6.4, since
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dompF q Ě txk` 1
2 ukPKO

is compact, then there exists M ą 0, such that for all k P KO,
}xk` 1

2 } ď M , and
}xk`1} ď }xk`1 ´ x1} ` }x1}

“ }PN rxk` 1
2 s ´ PN rx

1
2 s} ` }x1}

ď }xk` 1
2 ´ x

1
2 } ` }x1}

ď }xk` 1
2 } ` }x

1
2 } ` }x1}

ď M ` }x
1
2 } ` }x1},

where in the first and fourth line we use the triangle inequality, in the second line we use
(6.33), and in the third line we use nonexpansiveness of the projection operator. Hence,
both txk` 1

2 ukPKO
and txk`1ukPKO

Ď N are bounded sequences.

Using (6.32), since tk ě tmin and wk` 1
2 ´ wk Ñ w‹ ´ w‹ “ 0 as KO Q k Ñ `8,

then
}xk ´ xk` 1

2 } ď
1

tmin
}wk` 1

2 ´ wk} Ñ 0,

and txk` 1
2 ukPKO

and txkukPKO
have the same accumulation points. Moreover, this also

implies together with (6.8) and (6.10), gk Ñ 0 for KO Q k Ñ `8.

Let x P N and txkj`1uj be a subsequence of txk`1ukPKO
, such that xkj`1 Ñ x̄

as j Ñ `8. From (6.9), gk`1 P Bhk`1pwk` 3
2 q, then from (6.2) it holds

gkj`1 P Bhpwkj` 3
2 q ` xkj`1 ùñ 0 P Bhpw‹q ` x.

Thus, the result in item (i) follows from Lemma 6.3, by taking w “ w‹, and x‹ “ x.

For item (ii), first note that wk` 1
2 ´ wk Ñ 0 as KO Q k Ñ `8 implies

tkpxk` 1
2 ´ xkq Ñ 0. Since tpx

k` 1
2

s , xk`1
sT qu Ď Cs, take any limit point pxs, xsT q P Cs of the

sequence tpx
k` 1

2
s , xk`1

sT qukPKO
, and a subsequence such that px

kj` 1
2

s , x
kj`1
sT q Ñ pxs, xsT q as

j Ñ `8. Next, take the limit (up to the corresponding subsequence) in the optimality
conditions of problem (6.31)

0 P Bfs

´

x
k` 1

2
s , xk`1

sT

¯

` NCs

´

x
k` 1

2
s , xk`1

sT

¯

`

˜

wk
s

0

¸

` tk

˜

xk`1
s ´ xk

s

0

¸

,

to obtain

0 P Bfspxs, xsT q ` NCspxs, xsT q `

˜

ws

0

¸

,

for s “ 1, . . . , S. Therefore, 0 P Bfpx, xT q ` NCpx, xT q ` N K ˆ t0u, and in view of [30, CH.
III, Proposition 5.3.1], 0 P Bfpx, xT q ` NpN ˆt0uqXCpx, xT q. Since f P convpRnq and C is
closed, it follows from Theorem 1.1 that px, xT q is a solution of primal problem (6.25).
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6.3 Final remarks
In this chapter, we investigated a scenario-based decomposition method for

convex multistage stochastic optimization problems. The central idea of the method is
to apply an approximate proximal point algorithm to the dual formulation of the prob-
lem, and use a relative-error criteria to determine the quality of the candidate point. As
in Chapter 5, we model the dual objective function h ` iN K by using a linear surrogate
function for the indicator iN K . The advantage of this simple model is it allows decom-
posing the resulting model hk for different scenario realizations, just as the Progressive
Hedging algorithm. Other common models, such as a linear-by-parts function, prevent
decomposition.

The relative-error acceptance test is verified in every iteration. When it is not
satisfied, inner iterations are performed with constant parameters in order to improve
the linear model of iN K . Such step corresponds to a forward-backward step on the primal
space, applied to the Fenchel dual of the dual proximal point subproblem. The method
is shown to generate primal-dual sequences that converge to solutions to the primal and
dual problem, respectively. When the acceptance test holds infinitely many times, the
dual sequence converges with linear speed.

The relationship between DEFBAL and BPHA of Section 6.1.2 suggests that
the acceptance test of DEFBAL can be viewed as a super serious step of the BPHA. This is
confirmed by the preliminary numerical experiments (not shown in this thesis) performed
for small linear stochastic optimization problems: DEFBAL executes fewer outer steps
than BPH declares serious steps. Further tests will be performed in order to measure any
possible advantage of DEFBAL over PHA/BPHA for problems of large size.

One possible direct extension of DEFBAL and BPHA for convex multistage
stochastic optimization is to risk-averse problems. The formulations we examined were
risk-neutral, meaning the objective function is an expected cost value. For risk-averse
problems that use the conditional value-at-risk (CVaR) risk-measure,

CVaRαrXs “ min
uPR

"

u `
1

1 ´ α
E
“

max
`

0, X ´ u
˘‰

*

, (6.43)

for a random variable X and some level α P p0, 1q. The CVaRα of X, in simple words,
corresponds to the expectation of X over the α´tail of its distribution. For problem (5.1),
a risk-averse formulation would have the following objective function for some λ P r0, 1s:

fobjpxq “ λCVaRαrfpxqs ` p1 ´ λqErfpxqs.

As explained in [138], the objective function can still be decomposed for different scenarios,
by creating S copies of the variable u in (6.43), and interpreting it as a first-stage decision
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variable, that is, attaching to the nonanticipativity space the constraints u “ us for
s “ 1, . . . , S. Therefore,

fobjpxq “

S
ÿ

s“1
ps

„

λ

ˆ

us `
1

1 ´ α
max

`

0, fspxsq ´ us

˘

˙

` p1 ´ λqfspxsq

ȷ

The decomposable feature of the objective function is thus inherited to the proximal
subproblems of Algorithm 6 and Algorithm 7.
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7 Conclusion and future work

In this work, we investigated decomposition methods for stochastic optimiza-
tion problems. More specifically, for a convex multistage stochastic programming problem,
we applied an approximate proximal point algorithm to its dual formulation, by means
of modeling the nonanticipative constraints with a linear term. Using this model allows
us to decompose the problem for different scenarios in the proximal subproblems for the
model function, since the coupling constraints are dealt with a separable model. These
subproblems correspond to minimize a quadratic regularization of the dual model.

We presented two approaches developed for convex problems, which can be
deemed as variants of the Progressive Hedging algorithm. The difference between the two
is how we judge the quality of the generated iterates: in Chapter 5, we proposed a bundle-
like descent condition that measures the descent provided by the iterates when compared
to the decrease predicted by the model, while in Chapter 6 we formulated a relative-error
condition that measures dual feasibility and accuracy of the model at the current iterate.
In both cases, when the acceptance test is satisfied infinitely many times, we proved that
the iterates converge with linear rate to a solution to the problem. Otherwise, when the
acceptance test holds one last iteration, we showed that the tail of iterates converges to
a solution of the problem with linear rate as well. Furthermore, the acceptance condition
of DEFB(AL) in Chapter 6 can be interpreted as a super serious step condition for the
one of BPHA in Chapter 5, meaning that the former is at least as strict as the latter.

The BPHA approach can be extended to a more general setting, based on the
Elicited Progressive Decoupling Algorithm of [132], mentioned in Chapter 4. This method
allows giving different weights to primal and dual progress, by modifying the proximal
parameter using an elicitation parameter. Incorporating the proximal bundle descent test
would also potentially allow extending the BPHA ideas to nonconvex problems.

Regarding DEFBAL, its essential ideas can be applied to a more general setting.
For convex composite optimization problems, ongoing work shows that the DEFBAL
approach leads us to a method resembling the prominent Alternating Direction Method of
Multipliers with a condition to accept or reject candidate points. More precisely, consider
the minimization problem

min
xPRn

fpxq ` gpMxq, (7.1)

for f P convpRnq, g P convpRmq, and a matrix M P Rmˆn, with the corresponding Fenchel
dual problem given by

min
pPRn

f˚p´MJpq ` g˚ppq. (7.2)
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Instead of applying the proximal point algorithm to (7.2), that is, solving

min
pPRn

"

f˚p´MJpq ` g˚ppq `
1

2ck

}p ´ pk}2
*

, (7.3)

we apply the forward-backward method to its Fenchel dual, that is, we iteratively solve

min
xPRn

ˆ

`

f˚ ˝
`

´ MJ
˘˘

p¨q `
1

2ck

} ¨ ´pk}2
˙˚

p´xq ` gpxq. (7.4)

To evaluate the quality of the solution of (7.4) we can either use an absolute-error or a
relative-error acceptance test, creating two possibilities in each iteration: an outer step is
performed, meaning that the acceptance test is satisfied, or an inner step is performed,
that is, the acceptance test is not true for the current iterate. Note that the method
described in Chapter 6 is a special case of (7.1) by taking g “ iN , causing the g´proximal
step to be simpler, it would merely be a projection onto N . This line of research is
currently being developed, and can be compared to [154], where extra acceptance tests
for Douglas-Rachford (and consequently, for ADMM) are examined.

The convergence analysis in the context of stochastic optimization of the seri-
ous steps of the BPHA, and the outer steps of DEFBAL, fit in a more general framework
for methods of descent, the one presented in Chapter 3. Actually, this framework works
beyond convexity: for weakly convex problems, the basic ingredients to achieve conver-
gence to critical points are: (1) a sufficient descent condition for the objective function
throughout the iterates, and (2) an estimate of a subgradient using the step size, namely,
the difference between two consecutive iterates. These two conditions are satisfied by
proximal bundle methods in weakly convex optimization, due to the fact that weak con-
vexity represent a “harmless” form of nonconvexity, still capturing a wide range of modern
applications.

In Chapter 4, we studied the Douglas-Rachford splitting method for weakly
convex optimization, obtaining global convergence to critical points, and local linear rates
of convergence under common regularity assumptions. The analysis is a byproduct of the
unifying framework of Chapter 3, where the sufficient descent condition and the subgra-
dient estimate of the previous paragraph are satisfied by a merit function that represents
the primal objective function in the dual space. Current ongoing work suggests that DRS
can be applied to weakly convex stochastic optimization problems in the primal space,
yielding a variant of the Progressive Hedging algorithm with a relaxed projection step.
This proposal consists of a quadratic penalization method for the nonanticipativity con-
straints, and thus the limit of the generated sequences are critical points of the penalized
problem. We are currently developing a convergence analysis to critical points of the orig-
inal non-penalized problem, and naturally, avoid saddle points to obtain local minimizers,
as observed in the final remarks of Chapter 4.



Chapter 7. Conclusion and future work 171

The methods of ε´subgradient descent for nonconvex optimization complying
with (3.13a)–(3.13b) of Section 3.3 could be considered to define a discretization of a
solution trajectory to a dynamical system in continuous time, such as in [155, 156, 157,
158] and references ibid. The direction that model-based methods Section 3.3 take, given
by (3.13a), is a subgradient of the model function at the next iterate, and thus after
transporting, it is also an ε´subgradient of the convexification of the objective function
at the current iterate, as Proposition 3.3(ii) shows. This fact suggests the study of the
continuous-time version of

xk`1 ´ xk

tk

P ´Bεk
fpxkq,

namely, the dynamical system for the ε´subdifferential

x1ptq P ´Bεptqf
`

xptq
˘

. (7.5)

A fundamental step to study continuous time systems consists on characterizing the func-
tions that strictly decrease alongside the trajectories xptq. In turn, a chain rule for the
subdifferential valid for such trajectories allows proving a sufficient descent property in
continuous time [156]. In this way, we would need a chain rule for the ε´subdifferential
valid for trajectories satisfying (7.5), in order to obtain a similar descent properties for
methods of ε´descent. Research in this direction would need to use the approximate sub-
differential introduced in Section 1.3.2 for the weakly convex case. In particular, we would
analyze proximal bundle methods in continuous time.
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