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Resumo
Nesse trabalho, revisamos os conceitos necessários para entender resultados recentes
relacionados ao sistema heterótico G2. Lembramos alguns fatos sobre geometria G2, em
particular relacionados à torção de uma G2-estrutura e a G2 instantons. Seguimos com a
exploração de uma classe de 7-variedades Sasakianas chamadas de Calabi-Yau de contato,
que são realizadas por fibrações por círculos sobre variedades Calabi-Yau, e admitem uma
G2-estrutura cocalibrada natural.

Em sequência, mostramos alguns aspectos de teoria das cordas heteróticas, e como sua
compactificação em 7d leva ao sistema heterotico G2. Então, revisamos um método recente
de calcular o espaço de moduli infinitesimal do sistema heterotico G2 desenvolvido por de
la Ossa, Larfors and Svanes (2017), e soluções aproximadas deste sistema encontradas por
Lotay and Sá Earp (2021) em variedades Calabi-Yau de contato.

Finalmente, mostramos dois resultados originais relacionados a propriedades destas soluções
aproximadas: que a diferencial extendida definida por tais soluções não define a cohomologia
necessária para as contas da de la Ossa, e que estas soluções são incompativeis com a
estrutura de fibrado Sasakiano holomorfo do espaço tangente da variedade base.

Palavras-chave: Geometria G2, systema Heterótico G2, Calabi-Yau de contato



Abstract
In this work, we give an overview of the necessary concepts to understand recent results
related to the heterotic G2 system. We recall some facts of G2 geometry, in particular
related to the torsion of G2-structures and to G2 instantons. Then, we survey a class of
Sasakian 7-manifolds called contact Calabi-Yau manifolds, which are realized as circle
fibrations over Calabi-Yau threefolds, and admit a natural cocalibrated G2-structure.

Following this, we show some aspects of heterotic string theory, and how its 7d compactifi-
cation leads to the heterotic G2 system. We then review a recent method of calculating
the infinitesimal moduli space of the heterotic G2 system developed by de la Ossa, Larfors
and Svanes (2017), and approximate solutions found by Lotay and Sá Earp (2021) on
contact Calabi-Yau manifolds.

Finally, we show two original results related to the properties of these approximate solutions:
that the extended differential defined by these solutions don’t define the cohomology
necessary for de la Ossa’s calculations, and that these solutions aren’t compatible with
the Saskian holomorphic bundle structure for the tangent space of the base manifold.

Keywords: G2 Geometry, Heterotic G2 system, contact Calabi-Yau.
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Introduction
We give a general overview of G2 geometry, in particular a class of 7-manifolds

known as contact Calabi-Yau, and its application to Heterotic string theory. This fits into
a larger context of gauge theories in higher dimensions and special geometries. We assume
knowledge of manifolds, bundles and connections (LEE, 2013).

Gauge theory is, in the most general terms, the study of connections on bundles,
and equations involving them. Probably the most famous gauge-theoretic equation is the
Yang-Mills equation

d ∗ F = 0, (.1)

where F is the curvature of a connection A, ∗ is the Hodge star, and d is the covariant
exterior derivative associated to A. This equation determines the critical points of the
Yang-Mills functional

SY M(A) =
∫

X
tr(F ∧ ∗F ), (.2)

and is of great interest to physics. Furthermore, it has shown to be very fruitful to
mathematics as well. In particular, Donaldson showed (DONALDSON, 1983) that, for
4-manifolds, we can construct a topological invariant using the moduli of anti-self-dual
connections, i.e., connections that satisfy

−F = ∗F. (.3)

These anti-self-dual connections are known as instantons, and are solutions to the Yang-
Mills equation.

The success of Donalson’s theory inspired the search for analogous constructions
on higher dimensions, as proposed by Donalson and Thomas (DONALDSON; THOMAS,
1998). These higher dimensional instantons require special geometric structure, and so are
related to special geometries and holonomy. For example, in dimension 7 we can define
instantons when the manifold has G2-holonomy through the equation

∗F = φ ∧ F. (.4)

where φ is the associative form of the G2 structure. Even still, the respective moduli space
has been only recently and scarcely studied (SÁ EARP, 2009; de la OSSA; LARFORS;
SVANES, 2016), which is due to the difficulty of constructing G2 holonomy manifolds. An
abundance of examples and applications in physics leads to the study of instantons on
manifolds with G2-structures with torsion.
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A class of torsional G2-structure manifolds that has garnered recent attention is
contact Calabi-Yau manifolds (Definition 15), first introduced in (TOMASSINI; VEZZONI,
2007) as manifolds with a transverse Calabi-Yau structure, and so transverse SU(n) holon-
omy. Soon it was shown that these manifolds admit a natural co-calibrated G2-structure
in dimension 7, and so G2 instantons were studied over them (CALVO-ANDRADE; DíAZ;
Sá EARP, 2020).

Gauge theory has its origins in physics, where it was noted that the potentials in
Maxwell’s equations for electromagnetism had a certain internal (not spacial or temporal)
symmetry, which came to be known as a gauge symmetry. It was eventually noticed
that these potentials could be described as a U(1)-connection over spacetime, then the
gauge symmetries were simply a change of coordinates and Maxwell’s equations were
the critical points of the Yang-Mills functional. This allowed the development of theories
using other, non-Abelian structure groups, and today the standard model of particle
physics uses a SU(3) × SU(2) × U(1)-connection, and describes the strong, weak and
electromagnetic forces. For a more thorough review on the history of gauge theory in
physics, see (O’RAIFEARTAIGH; STRAUMANN, 2000).

Note that the standard model does not describe gravity, which leads to many
proposals to unify general relativity and particle physics (KIEFER, 2006). One such
attempt, called string theory, substitutes the basic point-like particles from the standard
model with strings, and requires extra, compact dimensions. Since this still has gauge
symmetries, string theory is closely related to gauge theory in higher dimensions and
special geometries. In fact, many of the studies of G2-structure manifolds, with and
without torsion, has been motivated by string and M-theory, e.g. (HARVEY; MOORE,
1999; FRIEDRICH; IVANOV, 2003b; de la OSSA; LARFORS; SVANES, 2016). This forms
a plentiful source of gauge-theoretic problems, which can be inspiring for mathematics.

One particular type of string theory is heterotic string theory, which has both
bosonic and fermionic chiral coordinates, was developed Gross et al. in the 1980’s (GROSS
et al., 1985a) and gives rise to a N = 1 effective supergravity theory in dimension 10.
The compactification of this theory to R1,9−d ×Md requires special structure on M . The
case of d = 6 has been extensively studied (STROMINGER, 1986; BECKER et al.,
2003; BECKER et al., 2004; GOLDSTEIN; PROKUSHKIN, 2004; FU; YAU, 2006), and
gives rise to Kähler with torsion1 manifolds (GILLARD; PAPADOPOULOS; TSIMPIS,
2003). Our interest is in d = 7, which gives rise to integrable G2-structures (FRIEDRICH;
IVANOV, 2003a; GAUNTLETT; MARTELLI; WALDRAM, 2004).

The moduli space of such compactifications have been shown to describe the
massless state spectrum (de la OSSA; HARDY; SVANES, 2016) in dimension 6, and
1 Kähler with torsion is not a commonly used term, but we are using it here to adhere to the notation

in the reference (GILLARD; PAPADOPOULOS; TSIMPIS, 2003), where it is defined in the appendix.
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this moduli space can be studied from the point of view of G2 geometry (de la OSSA;
LARFORS; SVANES, 2014). This lead to the recent interest of the moduli space of the
G2 compactification by de la Ossa et al. (de la OSSA; LARFORS; SVANES, 2016; de
la OSSA; LARFORS; SVANES, 2017; de la OSSA et al., 2020), in which a method to
compute the infinitesimal moduli space through G2 Dolbeault cohomology (Theorem 9) of
an extended differential has been constructed.

There also has been a construction of approximate solutions to the heterotic
G2 system (Definition 25) over contact Calabi-Yau manifolds (LOTAY; SÁ EARP, 2021).
Given the recent advances on the study of instantons over contact Calabi-Yau manifolds,
and on the construction of a method of computing the infinitesimal moduli of a G2

compactification, it seems natural to try to calculate the moduli for these new solutions.

The main purpose of this work is to show the original theorems 28 and 30.
Theorem 28 shows that the extended differential (III.4) defined by these approximate
solutions fails to be a G2 instanton, and thus we cannot define the G2 Dolbeault cohomology
and compute the infinitesimal moduli through de la Ossa et. al.’s method. Theorem 30
shows that these solutions are also not integrable in the Sasakian holomorphic sense
(Definition 20), so this avenue is also not available.

In section 1, we recall the basic facts about G2 geometry, since its definitions
from vector cross products, the 16 classes of torsion and G2 instantons. Then we define
contact Calabi-Yau manifolds and Sasakian holomorphic bundles, showing their relation
to G2 geometry.

In section 2, we look at heterotic string theory, its supersymmetric conditions
and equations of motion, and how the G2 compactification restricts the geometry of the
manifold.

Finally, in section 3 we show the results related to the heterotic G2 system.
First we go over the infinitesimal moduli space, then we show the construction of the
approximate solutions. Lastly, we prove the original results of this work, theorems 28 and
30.

We gathered facts about spinors and supersymmetry in appendix I, as they
aren’t the focus of the work, but are necessary for certain calculations.

I Gauge theory on Special Geometries

A) G2 geometry

The name G2 can refer to three related simple Lie Groups, though we will
generally only use it to talk about the compact real group. This group has the smallest
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exceptional simple Lie algebra, and is one of the two sporadic special holonomy groups
in Berger’s list along with Spin(7). These facts make this group particularly interesting
both to mathematics and theoretical physics. The group G2 is also related to vector cross
products in dimension 7, which is a good way to introduce and define this group.

Vector products

We define a binary vector cross product as follows:

Definition 1. A vector cross product is a non-trivial bilinear operator in Rd such that
for any v1, v2 ∈ Rd,

⟨v1 × v2, vi⟩ = 0, i = 1, 2; (I.1)

||v1 × v2||2 =||v1||2||v2||2 − ⟨v1, v2⟩2 . (I.2)

It is easy to check that this definition is consistent with the standard vector
cross product in R3. In fact, any vector cross product in R3 differs from the standard one
by at most a a factor of −1: Let {e1, e2, e3} be the coordinate orthonormal basis for R3,
and × be any vector cross product. Then, from (I.1), we know e1 × e2 must be orthogonal
to both of these, so it must be a multiple of e3, so e1 × e2 = λ3e3. From (I.2) we can deduce
that λ3 = ±1. Similarly, e2 × e3 = λ1e1 and e3 × e1 = λ2e2. Take v1 = e1 + e2 + e3, and
v2 = vi

2ei be generic. Then, from (I.1), we have

0 = ⟨v1 × v2, v1⟩ =
3∑

i,k=1
vj

2 ⟨ei × ej, ek⟩

=v1
2(⟨e2 × e1, e3⟩ + ⟨e3 × e1, e2⟩) + v2

2(⟨e1 × e2, e3⟩ + ⟨e3 × e2, e1⟩)+

+ v3
2(⟨e1 × e3, e2⟩ + ⟨e2 × e3, e1⟩)

=v1
2(−λ3 + λ2) + v2

2(λ3 − λ1) + v3
2(−λ2 + λ1).

Since v2 is generic, we have that λ1 = λ2 = λ3, so either they’re all +1, which
is the standard cross product, or they are all −1.

A reasonable question is in what other dimensions does such a cross product
exist.

Theorem 2. (GRAY; BROWN, 1967) Let × be a vector cross product in Rd, then, d = 3
or d = 7.

Proof. Assume Rd has a vector cross product. Define a multiplication on Rd+1 = Rd ⊕ {e}
by

(a+ αe)(b+ βe) = a× b− ⟨a, b⟩ e+ βa+ αb+ αβe, a, b ∈ R7, α, β ∈ R. (I.3)



13

This gives Rd+1 the structure of a composition algebra. However, composition
algebras only exist in dimension 1, 2, 4 and 8 (JACOBSON, 1989). That would mean d is
0, 1, 3 or 7. Clearly, the 0 and 1 dimensional case are identically null, so we are left with
d = 3 and d = 7. ■

An example of such a 7d cross product can be found using octonions.

Definition 3. Let {e0, ..., e7} be the coordinate orthonormal basis for R8. We add a division
algebra structure to it by the following multiplication rule:

eiej =


ei, if j = 0;

ej, if i = 0;

−δije0 + ϵijkek, else

(I.4)

where δij is the Kronecker delta, and ϵijk is a totally antisymmetric tensor that is 1 when
ijk = 123, 145, 176, 246, 257, 347, 365.

The division algebra defined by this process is called the Octonions and is noted
O.

Define a cross product on R7 = ImO by a× b = ab+ ⟨a, b⟩ e0

We know that the 3 dimensional cross product is unique up to sign, so what
about the 7 dimensional case? To answer this question, we will show again that the 3d
case is unique through a 3-form: Given a cross product ×, define a 3-form ϕ× by

ϕ×(v, u, w) = ⟨v × u,w⟩ . (I.5)

It is easy to check that ϕ× is multilinear, and that it is alternating, therefore it is in fact
a 3-form. In 3d, ϕ× is the volume form, so if the transformations that preserve it are all
those in SO(3). Since we are using the inner product to define this form, it only makes
sense to deform it by elements in SO(3), so we conclude that the cross product is unique.

However, in 7d this is not the case. The 3-form defined by the cross product
above is

ϕ0 = e123 + e145 − e176 + e246 − e257 − e347 + e365, (I.6)

and we have that
G2 = {A ∈ SO(7);A∗ϕ0 = ϕ0}. (I.7)

Since G2 is a proper subgroup of SO(7), the cross product is not unique in dimension 7.

Decomposition of forms into G2 representations

The group G2 — as we defined here — is the 14 dimensional compact Lie group
with Lie algebra g2, the smallest exceptional simple Lie algebra (FULTON; HARRIS, 1991,
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Section 21.2). A historical overview on the study of this group, see (AGRICOLA, 2008).
Its fundamental representations have dimensions 7 and 14.

As a subset of SO(7), G2 has a natural action on R7, which extends to an
action on k-forms. This defines different representations of G2, which can be decomposed
into its irreducible components, giving rise to additional structure on each ΛkR7:

Proposition 4. Each Λk can be decomposed into irreducible G2-modules Λk
d of dimension

d as follows:

Λ0 =Λ0
1; Λ7 =Λ7

1;

Λ1 =Λ1
7; Λ6 =Λ6

7;

Λ2 =Λ2
7 ⊕ Λ2

14; Λ5 =Λ5
7 ⊕ Λ5

14;

Λ3 =Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27; Λ4 =Λ4

1 ⊕ Λ4
7 ⊕ Λ4

27;

Notice that the decomposition of Λk and Λ7−k are identical. This is because the
Hodge star is an isomorphism and preserves this decomposition. With this, we only need
to describe the decomposition of 2 and 3-forms, as the rest are trivial or dual to these:

Λ2
7 ={α ∈ Λ2; ∗(α ∧ ϕ0) = −2α}; Λ3

1 ={fϕ0; f ∈ Λ0}

Λ2
14 ={α ∈ Λ2; ∗(α ∧ ϕ0) = α}; Λ3

7 ={X⌟ ∗ ϕ0;X ∈ TR7}

Λ3
27 ={γ ∈ Λ3; γ ∧ ϕ0 = 0 = γ ∧ ∗ϕ0}

Other than the Hodge star, there are other natural isomorphisms between these
spaces given by the 3-form ϕ0 defined in (I.6) and its dual ∗ϕ0:

Proposition 5. (KARIGIANNIS, 2005, Proposition 2.2.1) The map α 7→ ϕ0 ∧ α realizes
the following isomorphisms:

Λ0
1 ≃ Λ3

1 Λ1
7 ≃ Λ4

7

Λ2
7 ≃ Λ5

7 Λ2
14 ≃ Λ5

14

Λ3
7 ≃ Λ6

7 Λ4
1 ≃ Λ7

1.

The map α 7→ (∗ϕ0) ∧ α realizes the following isomorphisms:

Λ0
1 ≃ Λ4

1 Λ1
7 ≃ Λ5

7

Λ2
7 ≃ Λ6

7 Λ3
1 ≃ Λ7

1.
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G2-structures on manifolds

Recall that the frame bundle PGL(M) of a manifold Mn is a GL(n,R)-bundle
whose fibers are the linear isomorphisms from TxM to Rn, i.e. the local frames of the
tangent bundle. Given a Lie subgroup H ⊂ GL(n), a H-structure on M is reduction to a
H-subbundle PH(M) ⊂ PGL(M). For most cases, and in particular for the ones of interest
to this work, a H structure can be equivalently defined by a collection of tensors (ξ1, ..., ξn)
such that H is the stabilizer of all ξi, e.g., an orientable Riemannian manifold is a manifold
with a metric g and a compatible volume form M , or equivalently a SO(n) structure, since
locally Stab(g) ∩ Stab(vol) = O(n) ∩ SL(n) = SO(n). For a review on general geometric
structures, see (JOYCE, 2000; FADEL et al., 2023).

Following this, a G2-structure on M is a G2-reduction of the frame bundle.
Since we know G2 is the stabilizer of ϕ0 (I.6), this is equivalent to

Definition 6. A G2-structure on a 7-manifold M is a 3-form φ ∈ Ω3(M), called the
associative form, such that for each p ∈ M , there is a frame fp : TpM → R7 such that
φp = f ∗

pϕ0.

Since G2 ⊂ SO(7), we find that if M admits a G2-structure, then it is orientable
and admits a Riemannian metric. The metric induced by φ is given by

6gφ(a, b) volφ = (a⌟φ) ∧ (b⌟φ) ∧ φ, (I.8)

where volφ
loc= dx1234567 in the frames fp from the definition above.

The existence of a metric and a volume form permits us to define the Hodge
operator ∗φ in these manifolds, which in turn is used to define the coassociative 4-form
ψ = ∗φφ. We will usually omit the φ subscript for a cleaner notation, though it is worth
keeping in mind this dependence.

It can be shown that a 7-manifold admits a G2-structure if and only if it is
orientable and spinnable (Theorem 43). In the appendix, we explore a bit more the relation
between G2-structures and spinors.

Everything discussed for k-forms on R7 extends to differential k-forms on M ,
with Ωk

d denoting the sections of Λk
d.

Any H ⊂ SO(n)-structure has an intrinsic torsion, which lives in the orthogonal
complement to h in so(n). For our purposes, we can consider the torsion of a G2-structure
to be ∇gφ, where ∇g is the Levi-Civita connection induced by gφ.

Proposition 7. (FERNáNDEZ; GRAY, 1982) The tensor ∇gφ lives in the space

W = {α ∈ T ∗M ⊗ Ω3;α(X, Y ∧ Z ∧ (Y ∧ Z)) = 0, X, Y, Z ∈ Γ(TM)},
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that can be decomposed as W = W1 ⊕ W14 ⊕ W27 ⊕ W7, where Wd is a d-dimensional
irreducible G2-module.

These are the torsion components of the G2-structure. A more tractable de-
scription of the torsion is in terms of the torsion forms:

Proposition 8. Let φ be the G2 associative form of a 7 manifold, and ψ = ∗φ. The
following decomposition exists:

dφ =τ0ψ + 3τ1 ∧ φ+ ∗τ3

dψ =4τ1 ∧ ψ + τ2 ∧ φ,

where τ0 ∈ Ω0
1, τ1 ∈ Ω1

7, τ2 ∈ Ω2
14, τ3 ∈ Ω3

27 are the torsion forms of φ.

This result is simply the decomposition of dφ and dψ into the irreducible
G2-modules, with the only surprise being the agreement of τ1 in both. This is due to there
only being one 7 component in the torsion of φ.

Given a G2 structure φ, we can calculate the torsion forms by

τ0 =1
7 ∗ (φ ∧ dφ); τ1 = 1

12 ∗ (φ ∧ ∗dφ);

τ2 = − ∗(dψ) + 4 ∗ (τ1 ∧ ψ); τ3 = ∗ dφ− τ0φ− 3 ∗ (τ1 ∧ φ).

We can classify any G2-structure into one of 16 types depending on which
torsion forms vanish, such as:

(i) Torsion free: τ0 = τ1 = τ2 = τ3 = 0 (this is equivalent to ∇gφ = 0);

(ii) Nearly parallel: τ1 = τ2 = τ3 = 0;

(iii) Closed: τ0 = τ1 = τ3 = 0;

(iv) Coclosed: τ1 = τ2 = 0;

(v) Integrable: τ2 = 0.

Dolbeault cohomology

We have a particular interest in the integrable case. This is due to the
possibility of defining a Dolbeault like differential complex as follows:

Theorem 9. (FERNÁNDEZ; UGARTE, 1998) Let (M,φ) be a manifold with a G2-
structure and consider the following sequence:

0 −→ Ω0 ď0−→ Ω1 ď1−→ Ω2
7

ď2−→ Ω3
1 −→ 0, (I.9)
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where ď0 = d, ď1 = π7 ◦ d, ď2 = π1 ◦ d, and π7 : Ω2 → Ω2
7, π1 : Ω3 → Ω3

1 are the natural
projections.

Then, (I.9) is a differential complex (i.e. im ďi ⊂ ker ďi+1) if and only if φ is
integrable, that is, τ2 = 0.

To prove this we will need the following Lemma:

Lemma 10. If M is an integrable G2-manifold and β ∈ Ω2
14, then dβ ∈ Ω3

7 ⊕ Ω3
27.

Proof. Notice that since · ∧ ψ is an isomorphism from Ω2
7 to Ω6

7, β ∧ ψ = 0.

dβ ∧ ψ =d(β ∧ ψ) − β ∧ dψ

= − 4β ∧ τ1 ∧ ψ

=0.

Similarly, the isomorphism Ω3
1 ≃ Ω7

1 implies dβ ∈ Ω3
7 ⊕ Ω3

27. ■

Proof. (Theorem 9) Note first that d1 ◦ d0 = π7 ◦ d ◦ d = 0, since d2 = 0, so we only need
to check that d2 ◦ d1 = 0.

Given α ∈ Ω1, we can write ď1α = π7 ◦ dα = dα + β, for some β ∈ Ω2
14, then

we have

ď2 ◦ ď1α =ď2(dα + β)

=π1(d2α + dβ)

=π1(dβ)

=0.

The last equality is due to Lemma 10. ■

As a differential complex, we can define a cohomology with classesHk
ď

= ker ďk

im ďk−1
.

This complex has also been shown to be elliptic.

In fact, if E → M is a vector bundle with a connection A such that FA ∈
Ω2

14(End(E)) (as we will see, this is to say A is a G2 instanton: Definition 12), then this
complex extends to bundle valued forms as well (de la OSSA; LARFORS; SVANES, 2017,
Theorem 2).

Compatible connections

In the torsion-free case, we have that ∇gϕ = 0. This is equivalent to saying
that the holonomy of g is contained in G2. We will not discuss holonomy in depth here,
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but it is worth noting that this is one of the seven possible special holonomy groups in
Berger’s list (BERGER, 1955):

Theorem 11. (JOYCE, 2000, Theorem 3.4.1) Suppose (M, g) is a simply-connected
Riemannian manifold of dimension n, that is irreducible and non-symmetric. Then the
holonomy of g is exactly one of these:

i) SO(n);

ii) U(m), with n = 2m;

iii) SU(m), with n = 2m;

iv) Sp(m), with n = 4m;

v) Sp(m)Sp(1), with n = 4m;

vi) G2, with n = 7;

vii) Spin(7), with n = 8.

In the general case, the Levi-Civita connection isn’t compatible with the G2-
structure, but other connections are. In fact, in (BRYANT, 2005, Remark 8) Bryant shows
there is a two parameter family of connections that preserve φ, and is only unique if the
G2-structure is closed or nearly parallel.

For integrable G2-structures, one important G2-compatible connection in het-
erotic string theory is the Bismut connection, which is the unique metric connection
which makes φ parallel and has totally skew-symmetric torsion (LOTAY; SÁ EARP, 2021,
Remark 3.14). A thorough exploration on the existence of connections with totally skew-
symmetric torsion on general G-structures is done in (FRIEDRICH; IVANOV, 2003b).
Though not G2-compatible, the connection with opposite sign torsion to the Bismut
connection is called the Hull connection, and is also useful for physics. We will denote the
Bismut connection as ∇+, and the Hull connection as ∇−.

G2 instantons

Another class of special connections are instantons

Definition 12. A connection A on a G2 manifold is called a G2 instanton when its
curvature FA is in the 14 dimensional submodule of 2-forms, i.e., FA ∈ Ω2

14 ≃ g2.

This concept originates from the critical points to the Yang-Mills functional

SY M(A) =
∫

M
tr(FA ∧ ∗FA), (I.10)

where A is a connection on a bundle over M , and FA is its curvature. These are the focus
of study in Gauge Theory. Using variational principles, we can show that the critical points
of this functional are those that satisfy
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dA ∗ FA = 0, (I.11)

known as the Yang-Mills equation. For compact Riemannian 4-manifolds, there is a class
of solutions known as instantons, which are solutions to the equation

∗FA = ±FA, (I.12)

and have been used to understand the geometry of such manifolds (DONALDSON;
KRONHEIMER, 1997).

Since the curvature is a 2-form, this equation doesn’t make sense in the context
of higher dimensions. However, there is a generalization of the instanton equation for
d dimensional manifolds, which depends on the choice of a (d − 4)-form σ. This is the
eigenvalue equation

λFA = ∗(σ ∧ FA). (I.13)

For an overview on gauge theory in higher dimensions, see (FADEL; Sá EARP,
2019). Thus, we want to look at connections A that satisfy the equation

λFA = ∗(φ ∧ FA). (I.14)

It is clear that if φ is closed, or indeed torsion-free, then these connections will
always satisfy the Yang-mills equation (I.11), since

dA ∗ FA =dA
1
λ

(φ ∧ FA)

= 1
λ

(dφ ∧ FA − φ ∧ dAFA)

=0,

by dφ = 0 and the Bianchi Identity. We will see, however, that there are non closed
G2-structures that also have this property.

Recall that Λ2 = Λ2
7 ⊕ Λ2

14 (Proposition 4), with

Λ2
7 ={α; ∗(φ ∧ α) = −2α}

Λ2
14 ={α; ∗(φ ∧ α) = α} ≃ g2,

so the only possible λ are −2 and 1. We call A a G2 instanton if it curvature
lies in the Lie algebra of G2, i.e, when λ = 1.

Theorem 13. Let A be a connection on a vector bundle E over a G2-manifold. Then the
following are equivalent:
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i) A is a G2 instanton;

ii) ∗(φ ∧ FA) = FA;

iii) FA ∧ ψ = 0;

iv) FA ∈ g2.

B) Contact Calabi-Yau and Sasakian holomorphic bundles

First studied in (TOMASSINI; VEZZONI, 2007), contact Calabi-Yau (cCY)
manifolds are a generalization of Calabi-Yau structures for odd dimensions. The study
of these manifolds from the point of view of Calabi-Yau foliations was done in (HABIB;
VEZZONI, 2013) where it was shown that such manifolds have transverse SU(n) holon-
omy. Habib and Vezzoni also showed that certain links are examples of cCY manifolds;
subsequently, (CALVO-ANDRADE; DíAZ; Sá EARP, 2020) studied gauge theory over
these links.

Recall the definition of a Sasakian manifold:

Definition 14. A Sasakian manifold is a quintuple (M, η, ξ, g,Φ) where (M, g) is a
Riemannian manifold, (M, η) is a contact manifold with Reeb field ξ, and Φ ∈ EndTM is
a transverse almost complex structure, satisfying:

(i) g(ξ, ξ) = 1;

(ii) Φ2 = −IT M + η ⊗ ξ;

(iii) g(ΦX,ΦY ) = g(X, Y ) − η(X)η(Y );

(iv) ∇g
Xξ = −ΦX;

(v) (∇g
XΦ)Y = g(X, Y )ξ − η(Y )X.

On Sasakian manifolds, we may use the transverse complex structure Φ to
decompose the complexified tangent bundle TCM similarly to how it’s done on complex
manifolds in even dimensions:

TCM = T
(1,0)
H ⊕ T

(0,1)
H ⊕ TV , (I.15)

where TV = ker Φ = span ξ is the vertical space, and T
(1,0)
H and T

(0,1)
H are the i and −i

eigenspaces of Φ respectively, and together form the horizontal or transverse space TH .
This decomposition can, of course, be extended to differential forms. On TH , we have
that Φ is a complex structure, ω = dη is a symplectic 2-form, g is a metric, and they
are compatible in the Kähler sense. This can be understood as M having a transverse
U(n) holonomy, or transverse Kähler structure. Naturally, we may ask when is there a
transverse Calabi-Yau structure:
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Definition 15. A contact Calabi-Yau manifold (M, η, ξ, g,Φ,Ω) is a Sasakian manifold
(M, η, ξ, g,Φ) with a nowhere vanishing transverse form Ω of type (n, 0) such that

Ω ∧ Ω̄ =(−1)n(n+1)/2inωn,

dΩ =0.

It is known (HABIB; VEZZONI, 2013) that cCY manifolds have transverse
SU(n) holonomy, and in dimension 7 (n = 3) they admit a co-calibrated G2-structure

φ =η ∧ dη + Re(Ω), (I.16)

ψ =1
2dη ∧ dη + η ∧ Im Ω (I.17)

This makes cCY 7-manifolds appropriate for interpolations of Calabi-Yau 3-fold and G2

geometries.

cCY example: Y × S1

The trivial example of a cCY manifold is to take a Calabi-Yau manifold (Y, J, h),
and consider the product M = Y × S1. Using t as the coordinate on S1, we can construct
a metric g = dt2 + h, define η = dt and ξ = ∂t, extend the complex structure to Φ|Y = J

and Φ(ξ) = 0, and a similar extension of Ω. Thus, (M, η, ξ, g,Φ,Ω) is a contact Calabi-Yau
manifold. If dimR Y = 6, the G2-structure on M defined as in (I.16) is torsion-free (JOYCE,
2004).

Calabi-Yau links

Another class of examples of cCY manifold can be found in the theory of
singular hypersurface links:

Definition 16. (CALVO-ANDRADE; DíAZ; Sá EARP, 2020, Definition 5) Let f :
Cn+1 → C be weighted homogeneous polynomial with degree d and weights w = (w0, ..., wn)
with an isolated critical point at 0, so that each sphere Sn+1 = ∂Bϵ(0) intersects V := f−1(0)
transversely. Then Kf = V ∩ Sn+1 is called a weighted link of degree d and weight w.

These links admit a Sasakian structure (BOYER; GALICKI, 2008), and under
certain circumstances, they are cCY.

Proposition 17. (HABIB; VEZZONI, 2013, Proposition 6.7) Let Kf be a weighted link
of degree d and weight w. Assume

n∑
i=0

wi = d, (I.18)

then Kf admits a contact Calabi-Yau structure.
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We call these Calabi-Yau links. These examples can be understood as gen-
eralizations of our Y × S1, as every Calabi-Yau link is a non-trivial S1 fibration over a
Calabi-Yau orbifold.

Sasakian holomorphic bundle

The existence of a transverse complex structure allows us to define an ana-
logue of holomorphic bundles over Sasakian manifolds, first introduced in (BISWAS;
SCHUMACHER, 2010). We will follow the construction made on (PORTILLA; Sá EARP,
2019).

Definition 18. Let S ⊂ TCM be an integrable sub-bundle, and E → M a complex vector
bundle. Then, a partial connection in the direction of S is an operator D : Γ(E) →
Γ(S∗) ⊗ Γ(E) satisfying the Leibniz rule

D(fs) = fD(s) + qS(df) ⊗ s,

where qS : T ∗
CM → S∗ is the dual of the inclusion map.

By extending a partial connection D to act on bundle valued differential forms
in the usual way, we can define the curvature of D as D2. We know that both TV and
T 0,1

H ⊕ TV are integrable sub-bundles, so we can define a complex Sasakian structure as
follows:

Definition 19. A complex Sasakian vector bundle on a Sasakian manifold M is a pair
E = (E,D0) where E → M is a complex vector bundle and D0 is a partial connection in
the direction of TV .

And a Sasakian holomorphic structure:

Definition 20. A Sasakian holomorphic vector bundle on M is a pair E = (E, ∂̄),
where E = (E,D0) is a complex Sasakian bundle and ∂̄ is a flat partial connection in the
direction of T 0,1

H ⊕ TV whose restriction to TV is D0.

With this, we can do gauge theory analogously to how it’s done in the complex
holomorphic case.

Gauge theory on Sasakian holomorphic bundles

A connection A on E is called integrable if its restriction to T 0,1
H ⊕ TV is the

Sasakian holomorphic structure partial connection. Since the partial connection needs to
be flat, we find that FA cannot have components in Ω(0,2)

H ⊕ Ω2
V . A hermitian structure

on E is a hermitian metric h that is compatible with D0. If A is compatible with h, it is
called unitary. This leads naturally to the notion of a Chern connection:
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Proposition 21. (PORTILLA; Sá EARP, 2019, Proposition A.6) Let E be a holomorphic
Sasakian bundle with Hermitian structure h. Then there is a unique unitary and integrable
connection Ah ∈ A(E) called the Chern connection.

The notion of Hermitian Yang-Mills (HYM) is also adapted to the Sasakian
case by satisfying

(F, ω) = 0, F 0,2 = 0, (I.19)

with ω = dη.

Theorem 22. (PORTILLA; Sá EARP, 2019) Let A be the Chern connection of a Sasakian
holomorphic bundle E over a 7-dimensional closed cCY manifold. Then A is a G2 instanton
if and only if it is HYM.

Proof. Assume A is HYM.

FA ∧ ψ =FA ∧ (1
2ω ∧ ω + η ∧ Im(Ω))

=1
2(FA, ω) + η ∧ FA ∧ Im Ω

Since A is HYM, (FA, ω) = 0, and since A is Chern, FA ∈ Ω1,1 and so FA ∧ Im Ω = 0. We
conclude that FA ∧ ψ = 0, i.e., A is a G2 instanton.

Assume now that A is a G2 instanton. Since A is Chern, F 0,2
A = 0. But

(FA, ω) = 0 for the equality of the last case, so we conclude A is HYM.

■

Theorem 23. (CALVO-ANDRADE; DíAZ; Sá EARP, 2020) Over a contact Calabi-Yau
manifold with the natural cocalibrated G2-structure, G2 instantons are absolute minimizers
of the Yang-Mills functional.

Proof. First, define a charge
κ(A) =

∫
M
TrF 2

A ∧ φ. (I.20)

It is shown in (CALVO-ANDRADE; DíAZ; Sá EARP, 2020) that κ(Ah) for
the chern connection does not depend on the choice of Hermitian structure h. This then
defines a topological charge κ(E).

We can decompose FA = F7 + F14. Since this decomposition is orthogonal, we
get

SY M(A) = ||FA||2 = ||F7||2 + ||F14||2. (I.21)
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Similarly, we have

κ(E) =
∫

M
Tr(FA ∧ (F7 ∧ φ+ F14 ∧ φ))

=
∫

(Tr(FA(−2 ∗ F7 + ∗F14))

= − 2||F7||2 + ||F14||2

Therefore, SY M |A(E)(A) = κ(E) + 3||F7||2, and so, if the charge is positive, SY M

is minimum at F7 = 0, which is the G2 instanton condition. If the charge is negative,
instantons cannot exist, since SY M ≥ 0. ■

II Heterotic string theory
A fundamental issue with modern physics is the incompatibility of General

Relativity and the Standard Model of particle physics. There have been many attempts to
try to create a unified field theory that could describe all of physics. One of the earliest
and most notorious of these unified theories is String Theory (ST), which describes the
fundamental particles of nature as vibrating strings instead of being point-like. The first
version of this theory only included bosonic strings, and required 26 dimensions. With
the invention of supersymmetry, fermionic strings became possible and the number of
dimensions required fell to 10. Consistency conditions for the cancelation of fermionic
anomalies restricted known possibilities to three types of superstring theories (sST): Type
I, with open and closed strings, and Types IIA and IIB, with only closed strings.

Every sST is required to reduce to a theory of supergravity. This leads to the
possibility of gravitational anomalies, which Gaumé and Witten believed they showed
obstructed 10-dimensional N = 1 supergravity, so Type I sST was inconsistent. However,
Green and Schwarz showed that there is an anomaly cancelation mechanism when the
gauge group is SO(32) or E8 × E8. Only SO(32) is consistent with Type I sST, but this
also led to two new types of sST.

Heterotic string theory is a sST developed in the 1980’s by Gross et al. (GROSS
et al., 1985a; GROSS et al., 1985b; GROSS et al., 1986) with gauge group SO(32) or
E8 × E8. The heterotic theory contains a combination of the 10-dimensional superstring
and the 26-dimensional bosonic string, which leads to a N = 1 supergravity theory in
D = 10.

A) Equations of motion and Supersymmetry

Heterotic string theory has four bosonic fields, the metric g, a scalar field Φ ∈ Ω0

called the dilaton, a 3-form H ∈ Ω3 called the NS field strength, and the connection A on
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a gauge bundle E over a manifold X. The effective bosonic action up to quartic terms is
deduced in (BERGSHOEFF; DE ROO, 1989), and can be written as (IVANOV, 2010)

S = 1
2k2

∫
X
d10x

√
−ge−2Φ

[
Scalg + 4(∇gΦ)2 − 1

2 |H|2 − α′

4
(
Tr|F |2 − Tr|R|2

)]
, (II.1)

Where F is the curvature of A on E and R is the curvature of a connection θ

on TX (Remark 1).

The equations of motion up to two-loops are (GILLARD; PAPADOPOULOS;
TSIMPIS, 2003):

Ricg
ij − 1

4HimnH
mn
j + 2∇g

i ∇g
jΦ − α′

4
[
FimabF

mab
j −RimnqR

mnq
j

]
+O(α′2) = 0 (II.2a)

∇g
i (e−2ΦH i

jk) +O(α′2) = 0 (II.2b)

∇+
i (e−2ΦF i

j) +O(α′2) = 0 (II.2c)

Notice that the first equation reduces to the Einstein equation for supergravity
when α′ = 0.

The Green-Schwarz anomaly cancelation mechanism requires that the 3-form
H is globally defined and satisfies the heterotic Bianchi Identity (BI)

dH = α′

4 (Tr(R ∧R) − Tr(F ∧ F )) +O(α′2). (II.3)

Remark 1. There is a controversy in the choice of connection θ on the tangent bundle.
In (HULL, 1986), Hull showed that any connection that differs from the Levi-Civita by a
covariant contorsion tensor would cancel the anomalies, so it might seem that ∇+ would be
the natural connection to consider, as it has reduced holonomy, however Hull argues that
the connection with opposite sign torsion ∇− can have useful symmetries in the H ̸= 0
case. On the other hand, since the Hull connection ∇− doesn’t satisfy the equations of
motion exactly, some, like de la Ossa et al. (de la OSSA; LARFORS; SVANES, 2017),
choose an instanton connection, which will be the choice we follow in this work.

In order for the theory to preserve supersymmetry, certain variations must
vanish. This condition is equivalent to the existence of at least one Majorana-Weyl
(appendix B)) spinor ϵ such that the following equations hold:(

∇g
M + 1

4HMNP ΓNP
)
ϵ = ∇+ϵ+O(α′2) =0 (II.4a)

(dΦ − 1
2H) · ϵ+O(α′2) =0 (II.4b)

F · ϵ+O(α′2) =0, (II.4c)
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where Γ1, ...,Γ10 are the (1,9) gamma matrices for the metric g10, i.e. ΓP ΓN +ΓNΓP = 2gNP ,
and ΓNP = [ΓN ,ΓP ].

The first equation (II.4a) restricts the holonomy of the torsion connection ∇+,
while (II.4c) restricts F to the Lie algebra of the stabilizer of ϵ, and thus restricts the
connection A.

From now on, we will only consider the terms up to first order in α′. Notice
that this makes it so that the SUSY conditions (II.4) are of zeroth order, while the BI
(II.3) and the equations of motion (II.2) have first order terms.

When we compactify the theory to X = R1,9−d × Md, we get the following
relation between the SUSY conditions and the equations of motion

Theorem 24 ((IVANOV, 2010)). The heterotic supersymmetry equations (II.4) together
with the anomaly cancellation (II.3) imply the heterotic equations of motion (II.2) on a
manifold in dimensions five, six, seven and eight if and only if the connection θ on TM

with curvature R is an SU(2), SU(3), G2 and Spin(7) instanton in dimension five, six,
seven and eight, respectively.

B) G2 compactification

At a macroscopic level, we clearly do not experience 10 spacetime dimensions.
The solution to this, inspired by Kaluza-Klein theory (KLEIN, 1926), is that the extra
dimensions are compact with a small radius. Usually, we take the ansatz that this com-
pactification is of the form X10 = R1,9−d ×Md, for a compact manifold M of dimension d.
Since we usually want to consider a 4 dimensional spacetime, the most commonly studied
case is d = 6. However, there has been some interest in other dimensions as well, which
might give broader insights into the theory, and are of mathematical interest in their own
right. Here we are interested in the case of d = 7, which can give insights into d = 7
compactifications in the 11 dimensional M -theory, but is also closely related to the 6d
case.

Following the technique used in (STROMINGER, 1986), we can take the metric
of X to decompose as

g10 =
g3 0

0 g7

 (II.5)

into the metric of R1,2 and M7. Assuming all fields vanish in the directions of R1,2, we can
follow the 7d compactification done in (POLYDOROU; ROCéN; ZABZINE, 2017) and
conclude that the SUSY conditions on M7 have the same form as for the full space, i.e.
substitute ϵ by η in equations (II.4) (see appendix II for details).

The existence of a ∇+-parallel spinor (II.4a) in dimension 7 implies Hol(∇+) ⊂
G2, so M admits a G2-structure. More than that, since the torsion of ∇+ is skew-symmetric,
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(FRIEDRICH; IVANOV, 2003a) shows the G2-structure must be integrable, and the torsion
of ∇+ is

T = H = − ∗ dφ+ 1
6(dφ, ψ)ψ + ∗(4τ1 ∧ φ). (II.6)

In this same paper, it shows that (II.4b) further implies τ1 = −1
2dΦ, and the

torsion simplifies to

H = − ∗ dφ− 2(dΦ ∧ φ). (II.7)

Finally, the last SUSY equation implies F is a stabilizer of ϵ, i.e., F ∈ g2, so A
is a G2-instanton.

III Heterotic G2 system
As we see from the last section, the heterotic equations of motion for a G2

compactification is determined by a set of geometric conditions. This means that we
can rephrase them in terms of geometric constraints, analogously to the Hull-Strominger
system in dimension 6 (GARCIA-FERNANDEZ, 2018), which we call the Heterotic G2

system, and is defined as follows:

Definition 25. (de la OSSA; LARFORS; SVANES, 2017) A heterotic G2 system is a
quadruple ([Y, φ], [V,A], [TY, θ̃], H), where

(i) Y is a 7-manifold with an integrable G2-structure φ ∈ Ω3(Y );

(ii) θ̃ is a G2 instanton connection on the tangent bundle TY , i.e., R̃θ ∧ ψ = 0;

(iii) A is a G2 instanton connection on a vector bundle V over Y , i.e. FA ∧ ψ = 0;

(iv) H is a 3-form on Y uniquely determined by φ through2

H = 1
6τ0φ− τ1⌟ψ − τ3, (III.1)

where τi are the torsion forms of φ (Proposition 8), and satisfies the heterotic Bianchi
identity, also known as the anomaly-free condition

dH = α′

4 (tr(FA ∧ FA) − tr(R̃θ ∧ R̃θ)). (III.2)

Since this system implies the heterotic equations of motion (Theorem 24), it is
of physical interest, but it is also a interesting geometrical condition in its own right.
2 The 1/6 term differs from the previous result due to a difference in normalization of the volume form
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A) The infinitesimal moduli space

The study of the moduli space of solutions to the heterotic system is motivated
by the fact that it describes the massless spectrum of the theory (de la OSSA; HARDY;
SVANES, 2016). A method of computing the infinitesimal moduli space (i.e. the tangent
space of the moduli space) of the heterotic G2 system was developed in (de la OSSA;
LARFORS; SVANES, 2017), which we will recall here.

Given a heterotic G2 system, we want to construct a bundle Q over Y , and a
connection D such that

0 −→ Ω0
1(Q) Ď−→ Ω1

7(Q) Ď−→ Ω2
7(Q) Ď−→ Ω3

1(Q) −→ 0 (III.3)

is a differential complex, i.e Ď2 = 0 where Ď is the projection of D, as is done in theorem
9, and the infinitesimal deformations of the system is contained in the first cohomology
group Ȟ1

D(Q).

Following (de la OSSA; LARFORS; SVANES, 2017), we take Q = T ∗Y ⊕
End(TY ) ⊕ End(V ), and

D =


dθ R −F
R dθ̃ 0
F 0 dA

 , (III.4)

where θ is the Hull connection on T ∗Y , dθ and dθ̃ are the covariant exterior derivatives
associated to these connections, F is defined as

F : Ωp(T ∗Y ) ⊕ Ωp(End(V )) → Ωp+1(End(V )) ⊕ Ωp+1(T ∗Y )y
α

 7→

F(y)
F(α)

 =

 (−1)pgabya ∧ Fbce
c

(−1)pα
′

4 tr(α ∧ Fabe
b)dxa


where e1, ..., en is a local frame for V . R is defined similarly, switching End(V ) for End(TY ),
and F for R:

R(y) = (−1)pgabya ∧Rbcdx
c,

R(κ)a = (−1)pα
′

4 tr(κ ∧Rabdx
b)

This choice in fact defines a differential complex:

Theorem 26. (de la OSSA; LARFORS; SVANES, 2017, Theorem 6) For the differential
defined above, we have Ď2 = 0.

The proof of this theorem is a specific case of theorem 28 when R̃ ∧ ψ = 0.
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We may note that, using theorem 9, we have that if ([Y, φ], [V,A], [TY, θ̃], H) is
a heterotic G2 solution, then D is a G2 instanton. The reciprocal is true up to an expansion
in orders of α′.

Having a differential complex allows us to use the cohomology to compute
moduli spaces, and in fact, as is shown in (de la OSSA; LARFORS; SVANES, 2017, Section
5.4), the infinitesimal moduli of heterotic solutions is given by the first cohomology Ȟ1

D(Q).

B) Approximate solutions

For physical theories, we normally can get away with approximate (up to terms
in higher order of α′) solutions to the equations of motion. With this in mind Lotay and
Sá Earp constructed a family of heterotic G2 systems on contact Calabi-Yau manifolds
(LOTAY; SÁ EARP, 2021) in which θ̃ is only a G2 instanton up to higher orders of α′, i.e.,
R̃ ∧ ψ = O((α′)N), for any choice of N ∈ N. In this section, we describe these solutions.

Let (Y, η, ξ, J,Ω) be a contact Calabi-Yau 7-manifold, then we know Y is a S1

bundle over a Calabi-Yau 3-orbifold (X,ω,Ω), with connection 1-form η and curvature
dη = ω. For any ϵ > 0, we can define a S1-invariant cocalibrated G2-structure on Y by

φϵ =ϵη ∧ ω + Re(Ω),

ψϵ =1
2ω

2 − ϵη ∧ Im(Ω).

Lemma 27. For each ϵ > 0, the torsion forms of the G2-structure φϵ are

τ0 = 6
7ϵ, τ1 = 0

τ2 = 0 τ3 = 8
7ϵ

2η ∧ ω − 6
7ϵRe Ω.

The flux is then
Hϵ = −ϵ2η ∧ ω + ϵRe Ω.

Proof. First, remember that dψ = 4τ1 ∧ ψ + ∗τ2, and

dψϵ = 1
2(dω ∧ ω + ω ∧ dω) − ϵω ∧ Im Ω + ϵη ∧ Im dΩ.

Since dω = d2η = 0, the first term is zero; the second term is also zero, since ω is of
transverse type (1, 1), and Im Ω is (3, 0) + (0, 3), so their product is of type (4, 1) + (1, 4),
which is a null space; finally, we know that Im dΩ = 0, so we have dψϵ = 0, and τ1 = 0 = τ2.

On the other hand, dφ = τ0ψ + ∗τ3, and

dφϵ = ϵω2 + Re dΩ = ϵω2;
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this means dφ ∧ φ = τ0ψ ∧ φ + ∗τ3 ∧ φ = τ07 volϵ, since ψ ∧ φ = 7 vol and ∗τ3 ∈ Ω4
27 so

it’s product with φ is zero. So

7τ0 volϵ =ϵω2 ∧ (ϵη ∧ ω + Re(Ω))

=6ϵ(ϵη ∧ ω3

3! )

=6ϵ volϵ,

therefore, τ0 = 6
7ϵ. Now,

∗τ3 = dφ− τ0ψ,

which gives us the result.

Since H = 1
6τ0φ− τ1⌟ψ − τ3, we get the expected result.

■

Let π : Y → X be the circle fibration over the Calabi-Yau base. Then taking
the vector bundle V = π∗TX over Y with connection A = π∗∇LC the pullback of the
Levi-Civita connection on X, we know by (CALVO-ANDRADE; DíAZ; Sá EARP, 2020,
Section 4.3) that A is a G2-instanton since it is the pullback of a Hermitian Yang-Mills
connection.

To have a solution to the heterotic G2 system, we only need an instanton
connection on TX such that the heterotic Bianchi Identity (II.3) is satisfied.

Taking an orthonormal coframe compatible with the Sasakian structure {e0 =
ϵη, e1, e2, e3, Je1, Je2, Je3}, and consider the connection on TY

θδ,k
ϵ,m = A+ kϵ

2 B + kϵδ

2 C + kmϵ

2 e0I, (III.5)

where

B =


0 JeT −eT

−Je 0 −e0I3

e e0I3 0

 , C =


0 JeT −eT

−Je −[e] [Je]
e [Je] [e]

− e0I, I =


0 0 0
0 0 −I3

0 I3 0

 ,
(III.6)

and

[e] =


e1

e2

e3

 =


0 e3 −e2

−e3 0 e1

e2 −e1 0

 . (III.7)

Then θδ,k
ϵ,m can be an approximate instanton on TY up to higher orders of α′, but never

exactly (LOTAY; SÁ EARP, 2021, Proposition 3.24), i.e., we can choose parameters such
that Rδ,k

ϵ,m ∧ ψϵ = O(α′N) for any N > 1.
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As for the anomaly cancelation condition (II.3), it can be shown (LOTAY; SÁ
EARP, 2021, Section 4.4) that it is satisfied if

−ϵ2ω2 = −α′

8 λ0ϵ
2ω2 (III.8)

for
λ0 = k2ϵ2(k2δ2(1 + δ)2 + (1 − δ +m)(k2(4δ2 − (1 + δ)2) − 3)), (III.9)

so we get an approximate solution to the heterotic G2 system for appropriate choices of
ϵ, δ, k and m.

C) Extended differential for approximate solutions

The approximate nature of these solutions should not be an issue for the
underlying physics, however, this poses a difficulty for the infinitesimal moduli space
calculation, as the extended differential D defined no longer satisfies Ď2 = 0, so we can’t
define Ȟ1

D(Q).

Theorem 28. Let (Y, φ) be a manifold with an integrable G2 structure, V → Y a vector
bundle, θ̃ be a generic connection on End(TY ) with curvature R̃, θ the Hull connection on
T ∗Y with curvature R, and A a G2-instanton on End(V ) with curvature F .

Then, the covariant derivative defined in (III.4) satisfies

D2 ∧ ψ =


(11) (12) 0
(21) (22) (23)

0 (32) 0

 (III.10)

where

((11)y)a = − α′

4 y
b ∧ tr(R̃baR̃ ∧ ψ);

((22)κ) =R̃ ∧ ψ ∧ κ− κ ∧ R̃ ∧ ψ − α′

4 g
ac tr(κ ∧ R̃abe

b) ∧ R̃cde
d ∧ ψ;

((12)κ)a =α
′

4 tr(κ ∧ ∇θ̃
a(R̃ ∧ ψ));

((21)y) =ya ∧ ∇θ̃
a(R̃ ∧ ψ);

((32)κ) = − gacα
′

4 tr(κ ∧ R̃abe
b) ∧ Fcde

d ∧ ψ;

((23)α) =gacα
′

4 tr(α ∧ Fabe
b) ∧ R̃cde

d ∧ ψ.

(III.11)

Proof. We will consider the action of
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D2 =


dθ + R2 − F2 dθR + Rdθ̃ −dθF − FdA

Rdθ + dθ̃R R2 + d2
θ̃ −RF

Fdθ + dAF FR −F2 + d2
A

 (III.12)

on a section

s =


y

κ

α

 ∈ Ωp(Q) (III.13)

term by term. Many of the identities used in these calculations were proven in section 2.2
and appendix A of (de la OSSA; LARFORS; SVANES, 2017). We will begin by the terms
that we know should be 0:

(13): −(dθF + FdA) acting on α ∈ Ωp(End(V )).

F(dAα)a =(−1)p+1α
′

4 tr(dAα ∧ Fabe
b);

dθF(α)a =(−1)pα
′

4 (d tr(α ∧ Fabe
b) − θb

a ∧ tr(α ∧ Fbce
c))

=(−1)pα
′

4 tr(dA(α ∧ Fabe
b) − θb

a ∧ α ∧ Fbce
c)

=(−1)pα
′

4 tr(dAα ∧ Fabe
b + (−1)pα ∧ (dAFabe

b − θb
a ∧ Fbce

c));

F(dAα)a + dθF(α)a =α
′

4 tr(α ∧ (dAFabe
b − θb

a ∧ Fbce
c))

Using dAFabe
b = −(dAF )a + ∂AaF and ∂AaF − θb

a ∧ Fbce
c = ∇A

a F , we have

((12)α)a =α
′

4 tr(α ∧ ∇A
a F ∧ ψ)

=α
′

4 tr(α ∧ (∇A
a (F ∧ ψ) − F ∧ ∇aψ))

=0.

(31): Fdθ + dAF acting on y ∈ Ωp(T ∗Y ).

dAF(y) =(−1)pdAiy(F )

=(−1)p ([dA, iy]F + iydAF )

=(−1)p
(
(−1)pya ∧ ∇A

a F + idθyF
)

=ya ∧ ∇A
a F − F(dθy)

Therefore, we have

(dAF(y) + F(dθy)) ∧ ψ = ya ∧ ∇A
a (F ∧ ψ) = 0
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(33): −F2 +d2
A acting on α ∈ Ωp(End(V )). A is a G2 instanton, so d2

A ∧ψ = 0. This leaves
us with

F2(α) = −α′

4 g
ac tr(α ∧ Fabe

b) ∧ Fcde
d.

Since Fab is in the 14 representation of G2, F2 is in the 14×14 = 1+14+27+77+77′

(FEGER; KEPHART; SASKOWSKI, 2020, Table A.121), so it cannot have a
component on 7. Since F2 ∈ Ω2 = Ω2

7 ⊕ Ω2
14, we conclude that F2 ∈ Ω2

14.

(11): d2
θ + R̃2 − F2 acts on y ∈ Ωp(T ∗Y ).

d2
θyc = −Ra

c ∧ ya = −ya ∧Rca;

F2(y)c = − α′

4 y
a ∧ tr(Fabe

b ∧ Fcde
d);

R̃2(y)c = − α′

4 y
a ∧ tr(R̃abe

b ∧ R̃cde
d);

The Heterotic Bianchi Identity can be written as

(dH)abcde
bd = α′ tr(Fabe

b ∧ Fcde
d − FacF − R̃abe

b ∧ R̃cde
d + R̃acR̃)

So the (11) term is

((11)y)c =ya ∧
(

−Rca + 1
4(dH)abcde

bd + α′

4
[
tr(FabF ) − tr(R̃abR̃)

])
∧ ψ

=ya ∧ tr(R̃abR̃ ∧ ψ),

where we used F ∧ψ = 0 and (−Rca + 1
4(dH)abcde

bd) ∧ψ = 0. This second condition
can be shown using (de la OSSA; LARFORS; SVANES, 2017, Proposition 6), which
shows Rab⌟φ = −1

4(dH)cdabφ
cd
e e

e, so

−Rca⌟φ+ 1
4(dH)abcde

bd⌟φ =1
4(dH)bdcaϕ

bd
e e

e + 1
4(dH)abcdϕ

bd
e e

e

=1
4(−(dH)abcd + (dH)abcd)ϕbd

e e
e

=0

(22): R2 + d2
θ̃ acts on κ ∈ Ωp(End(TY )).

R2(κ) = − α′

4 g
ac tr(κ ∧ R̃abe

b) ∧ R̃cde
d

(d2
θ̃κ)µ

ν =R̃µ
λ ∧ κλ

ν − R̃λ
ν ∧ κµ

λ

(22)κ =R̃ ∧ ψ ∧ κ− κ ∧ R̃ ∧ ψ − α′

4 g
ac tr(κ ∧ R̃abe

b) ∧ R̃cde
d ∧ ψ
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(12): dθR + Rdθ̃ acts on κ ∈ Ωp(End(TY )).

R(dθ̃κ)a =(−1)p+1α
′

4 tr(dθ̃κ ∧ R̃abe
b);

dθR(κ)a =(−1)pα
′

4 (d tr(κ ∧ R̃abe
b) − θb

a ∧ tr(κ ∧ R̃bce
c))

=(−1)pα
′

4 tr(dθ̃(κ ∧ R̃abe
b) − θb

a ∧ κ ∧ R̃bce
c)

=(−1)pα
′

4 tr(dθ̃κ ∧ R̃abe
b + (−1)pκ ∧ (dθ̃R̃abe

b − θb
a ∧ R̃bce

c));

R(dθ̃κ)a + dθR(κ)a =α
′

4 tr(κ ∧ (dθ̃R̃abe
b − θb

a ∧ R̃bce
c))

Using dθ̃R̃abe
b = −(dθ̃R̃) + ∂θ̃aR̃ and ∂θ̃aR̃ − θb

a ∧ R̃bce
c = ∇θ̃

aR̃, we have

((12)κ)a =α
′

4 tr(κ ∧ ∇θ̃
aR̃ ∧ ψ)

=α
′

4 tr(κ ∧ (∇θ̃
a(R̃ ∧ ψ) − R̃ ∧ ∇aψ))

Since ∇ψ = 0, we get what we wanted.

(21): Rdθ + dθ̃R acts on y ∈ Ωp(T ∗Y ).

dθ̃R(y) =(−1)pdθ̃iy(R̃)

=(−1)p
(
[dθ̃, iy]R̃ + iydθ̃R̃

)
=(−1)p

(
(−1)pya ∧ ∇θ̃

aR̃ + idθyR̃
)

=ya ∧ ∇θ̃
aR̃ − R(dθy)

Therefore, we have

(dθ̃R(y) + R(dθy)) ∧ ψ = ya ∧ ∇θ̃
a(R̃ ∧ ψ)

(32): FR acts on κ ∈ Ωp(End(TY )).

F(R(κ)) = −α′

4 g
ac tr(κ ∧ R̃abe

b) ∧ Fcde
d

(23): −RF acts on α ∈ Ωp(End(V )).

−R(F(α)) = α′

4 g
ac tr(α ∧ Fabe

b) ∧ R̃cde
d

■

This means that, up to an expansion in orders of α′, D is a G2 instanton if and
only if θ̃ is one as well. This is evident in the term (22) in which the only zeroth order
α′ term is R̃ ∧ ψ ∧ κ− κ ∧ R̃ ∧ ψ, which is only zero for all κ if R̃ ∧ ψ = 0. We know the
solutions from (LOTAY; SÁ EARP, 2021) are not instantons, so we have
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Corolary 29. Let θ̃ be the connection induced by θδ,k
ϵ,m, and A induced from the HYM

connection. Then, since θ̃ is not an exact G2-instanton, the constructed D isn’t either.

Note however that if R̃ ∧ ψ = O(α′N), then D2 ∧ ψ = O(α′N).

With this, we find this solution isn’t appropriate for computing the moduli
using the methods described in (de la OSSA; LARFORS; SVANES, 2017). Even still, we
can try to replicate the results in d = 6 that use integrable connections to construct the
differential on the extended bundle (de la OSSA; SVANES, 2014). This could be possible
due to the Sasakian holomorphic bundle structure that is possible for contact Calabi-Yau
manifolds. Alas, the connections we have are not appropriate for this either

Theorem 30. If θδ,k
ϵ,m is an integrable connection in the Sasakian holomorphic sense, then

it cannot satisfy the Bianchi Identity.

Proof. As we know, θ̃ = θδ,k
ϵ,m and (LOTAY; SÁ EARP, 2021, Proposition 3.21)

Rδ,k
ϵ,m = FA + kϵ2(1 − δ +m)

2 ωI + k2ϵ2

4 Qδ
m,

where

Qδ
m = (1 − δ +m)Qδ

− + (1 + δ)Qδ
+ + δ2Q0.

If we want θ̃ to be integrable, we want its curvature to be in the Ω(1,1)
H . FA and

ω are of type (1, 1), so we only need to adjust Qδ
m.

Q0 = 1
2


0 0 0
0 −[e× e+ Je× Je] −2([e] ∧ [Je] − [Je] ∧ [e])
0 2([e] ∧ [Je] − [Je] ∧ [e]) −[e× e+ Je× Je]


Lemma 2.8 of the same paper shows −[e× e+Je×Je] and [e] ∧ [Je] − [Je] ∧ [e]

are of type (1, 1) so this term isn’t a problem.

Qδ
+ =


0 2δ(e× Je)T δ(e× e− Je× Je)T

−2δ(e× Je) −(1 + δ)(Je ∧ JeT ) (1 + δ)(Je ∧ eT )
−δ(e× e− Je× Je)T (1 + δ)(e ∧ JeT ) −(1 + δ)(e ∧ eT )


The same lemma tells us e× Je and e× e− Je× Je are of type (2, 0) + (0, 2).

Since Qδ
− is a vertical form, we need to eliminate both these terms separately, which can

be done by setting m = δ − 1 and δ = 0 or δ = −1.
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However, the condition for the heterotic bianchi identity is

−ϵ2ω2 = −α′λ0

8 ω2,

where λ0 = k2ϵ2(k2δ2(1 + δ)2 + (1 − δ+m)(k2(4δ2 − (1 + δ)2) − 3)). Notice that for θ̃ to be
integrable, λ0 = 0. Since ϵ > 0 and ω is non zero, this means we cannot solve the Bianchi
identity in this condition.

■

From physics, perhaps this is not surprising, as the solutions of (LOTAY;
SÁ EARP, 2021) preserve N = 1 supersymmetry (τ0 ≠ 0), but imposing an integrable
holomorphic structure on the full solution would indicate extended supersymmetry (N = 2).

IV Conclusions and further work
The objective of this dissertation was to summarize the necessary concepts

to understand the heterotic G2 system, in particular the results on the infinitesimal
moduli described in (de la OSSA; LARFORS; SVANES, 2017) and the approximate
solutions constructed in (LOTAY; SÁ EARP, 2021). For this, we recalled some concepts
on G2 geometry, with a focus on the effects of torsion of G2-structures on connections, in
particular for instanton connections. Then, we introduced the notion of contact Calabi-Yau
manifolds, a geometric structure studied only relatively recently, and that is the basis on
which we build the approximate solutions to the heterotic system. Following this, we give
an introduction to heterotic string theory, and describe the conditions the compactification
to 7d imposes on the manifold.

In the last section, we describe in detail the main results, such as the construction
of the extended differential D used to compute the infinitesimal moduli and the connections
θδ,k

ϵ,m used to construct the approximate solutions. Finally, the author showed, as an original
contribution, that the solutions of (LOTAY; SÁ EARP, 2021) aren’t compatible with the
methods used in (de la OSSA; LARFORS; SVANES, 2017) to compute the moduli, nor
are they compatible with a Sasakian holomorphic generalization of the methods used in
(de la OSSA; SVANES, 2014).

This work leads well to further research. One route is to try this computation
for actual solutions of the system, such as the ones described in (CLARKE; GARCIA-
FERNANDEZ; TIPLER, 2020) for T 3-bundles over K3 surfaces. Another route is to
construct a new differential D that doesn’t count the θ degrees of freedom, as is done in
(MCORIST; SVANES, 2022) for dimension 6. One could also use the tools developed here
to study other dimensions of compactifications, or other base theories.
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I Spinors and Supersymmetry
Our main references for this section are (LAWSON; MICHELSOHN, 1990;

HARVEY, 1990) and (VAN PROEYEN, 1999; WEINBERG, 2005).

A) Clifford Algebra

Definition 31. Let V be a vector space over a field K, and q is a quadratic form on V .
Then the Clifford algebra Cl(V ) is defined by

Cl(V ) =
⊗

V/I(V ),

where
⊗

V is the tensor algebra of V and I(V ) is the ideal generated by the elements of
the form v ⊗ v + q(v) for v ∈ V .

From here on out, we will always use q as the norm squared induced by an
inner product on V , and the field K as R or C.

The first thing we may notice is, since for any v ∈ V , v⊗ v + ⟨v, v⟩ ∈ I(V ), for
we have that, in the Clifford algebra, v · v + ⟨v, v⟩ = 0, i.e.,

v · v = − ⟨v, v⟩ = −||v||2, (I.1)

which in turn, means for any v, w ∈ V ,

v · w + w · v = −2 ⟨v, w⟩ . (I.2)

This property actually characterizes the Clifford algebra, in the sense of the
following Lemma:

Lemma 32. [Fundamental Lemma of Clifford Algebras] Let A be an associative algebra
with unit and ϕ : V → A a linear map satisfying

ϕ(v)ϕ(v) = −||v||21, ∀v ∈ V.

Then, ϕ admits a unique extension to an algebra homomorphism Cl(V ) → A.

We use this lemma to define the canonical automorphism u 7→ ũ for u ∈ Cl(V )
as the unique extension of the linear map v 7→ −v for v ∈ V . Clearly, this operator squares
to the Identity, so we can decompose Cl(V ) into the ±1 eigenspaces of the canonical
automorphism, Cl0(V ), Cl1(V ) called the even and odd subspaces. This provides a Z2

grading to Cl(V ).

As an algebra, we can look at the multiplicative group of units Cl∗(V ), given
by all elements of Cl(V ) that have a multiplicative inverse. First, notice that v ∈ V with
||v||2 ̸= 0 is in Cl∗(V ), since v−1 = −v/||v||2. The group generated by all v ∈ V such that
||v||2 = ±1 is called the Pin group Pin(V ).
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Lemma 33. The center cenCl(V ) = {x ∈ Cl(V ); xv = vx ∀v ∈ V } and the twisted
center twcenCl(V ) = {x ∈ Cl(V );xṽ = vx ∀v ∈ V } of Cl(V ) are given by:

• if dim V = n is even:

cenCl(V ) = Λ0V, twcenCl(V ) = ΛnV ;

• if dim V = n is odd:

cenCl(V ) = Λ0V ⊕ ΛnV, twcenCl(V ) = {0}.

Proposition 34. The map Ãd : Pin(V ) → O(V ) defined by Ãdy(v) = ỹvy−1, ∀y ∈
Pin(V ), v ∈ V is a double cover.

Proof. For v, w ∈ V , with v non-null, we have Ãdv(w) = −vwv−1 = vwv/||v||2 = (−v2w−

v2 ⟨v, w⟩)/||v||2 = w− 2 ⟨v, w⟩
||v||2

v, which is the reflection in the direction of v. Since Ãdvu =

ÃdvÃdu, Pin(V ) acts though composition of reflections, that is, it acts by orthogonal
transformations on V . Since all orthogonal transformations can be achieved as a composition
of reflections, we have that this mapping is onto. Now, if we show that ker(Ãd) = Z2, we
will have shown this is a double cover.

Suppose that x ∈ Pin(V ) and Ãdx = I, then we have that x̃vx−1 = v, ∀v ∈ V .
If x is odd, we have −xa = ax ⇐⇒ xã = ax, that is, x is in the twisted center of Cl(V ),
which can’t have odd elements by the previous lemma. If x is even, then xa = ax, and so
x ∈ cenCl(V ), which implies x ∈ Λ0V = R. Since x ∈ Pin(V ) =⇒ ||x|| = ±1, we have
x ∈ {1,−1} = Z2.

■

Similarly, we can define Spin(V ) = Pin(V ) ∩ Cl0(V ), and we will have that
Spin(V ) is a double cover of SO(V ). This covering is, in fact, the universal cover of SO(V )
when dim V ≥ 3.

B) Spinor representations and Gamma Matrices

Since Cl(V ) only depends on the dimension and signature of V , we will denote
Clp,q = Cl(Rp+q), where Rp+q is the (p + q)-dimensional real vector space with inner
product signature (p, q). For ease, Cln = Cln,0 as well.

We are interested in the representations of the spin group. We remind the
general case of a representation of the Clifford algebra

Definition 35. A K-representation of Clp,q is an algebra homomorphism

ρ : Clp,q → Hom(W ),
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where W is a vector space over K.

We often simplify notation by writing ρ(ϕ)w = ϕ ·w, and we call this operation
the Clifford product. We are interested in real and complex representations of Clp,q, and
remark that any complex representation extends to a representation of Clp,q ⊗ C = Clp+q.
Representations are said to be equivalent if they are related by a linear isomorphism, and
they are said to be irreducible if W has no proper invariant subspaces.

Proposition 36. For n even, there is a single inequivalent complex representation of Cln,
with dimension 2n/2.

For n odd, there are two inequivalent complex representations of Cln, with
dimension 2(n−1)/2.

Since Spinp,q ⊂ Cl0p+q ≡ Clp+q−1, we’ll find that the parity relations of the
representations of the spin group are flipped.

Definition 37. The complex spinor representation of the spin group Spinn,

∆n : Spinn → GLC(S),

is given by the restriction of a irreducible representation Cln → HomC(S) to Spinn ⊂
Cl0n ⊂ Cln;. S is then called the space of spinors.

Proposition 38. For n odd, this representation is irreducible and independent of the
choice of irreducible representation of Cln.

For n even, this representation is reducible, with S = S+ ⊕ S− leading to two
irreducible representations.

The fact that, in even dimensions, the spinor space is reducible leads to the
concept of Weyl spinors, sometimes known as chiral spinors, which is when a spinor is in
one of S±. These representations can be realized with gamma matrices, a very important
tool for doing calculations involving spinors.

We say a set of d×d matrices {γ1, γ2, ..., γn} are gamma matrices if they satisfy
the following relations:

γµγν + γνγµ = 2ηµν =

±1, µ = ν

0, µ ̸= ν
,

where the sign of ±1 is determined by the signature of the inner product used.

From lemma 32, it is easy to see that the map eµ 7→ γµ, where eµ is a basis
for Cn, extends to a representation of Cln. When d is the appropriate dimension, this is
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the irreducible representation. For n = 3, the gamma matrices are the well known Pauli
matrices,

σ1 =
0 1

1 0

 , σ2 =
0 −i
i 0

 , σ3 =
1 0

0 −1

 . (I.3)

In fact, for any n, there is a way to explicit construct gamma matrices using
Pauli matrices:

γ1 = σ1 ⊗ I ⊗ I ⊗ · · ·

γ2 = σ2 ⊗ I ⊗ I ⊗ · · ·

γ3 = σ3 ⊗ σ1 ⊗ I ⊗ · · ·

γ4 = σ3 ⊗ σ2 ⊗ I ⊗ · · ·

γ5 = σ3 ⊗ σ3 ⊗ σ1 ⊗ · · ·
...

For even dimensions, this representation has dimension d = 2n/2, and for odd
dimensions, we can ignore the final σ1, and so we have d = 2n−1/2, so this is a irreducible
representation. For other signatures, multiply the first q matrices by i and we get the
(n− q, q) signature matrices. There are other possibilities of gamma matrices, and these
might not be the most appropriate for a specific application.

For even dimensions, we can also define the chirality element γn+1 = λγ1γ2 · · · γn,
where λ is a normalization so that γn+1γn+1 = 1. Since γn+1 squares to 1, we can decom-
pose the spinor space into the ±1 eigenspaces with S = S+ ⊕S−. As the notation suggests,
this is in fact the Weyl decomposition into irreducible spinor representations described
earlier.

Another decomposition we can look at is the Majorana condition. In any
dimension, there will be at least one matrix C satisfying Ct = −ϵC and γµt = −ηCγµC−1,
for ϵ, η = ±1 called the charge conjugation matrix. For euclidean metrics, the Majorana
condition is expressed as s† = stC, for other signatures, we must modify the left hand
side a bit (VAN PROEYEN, 1999). However, if the gamma matrices are all real or purely
imaginary (known as a Majorana representation), the Majorana condition becomes that
the spinor s must be real.

The existence of spinors that are both Majorana and Weyl only happens when
p− q ≡ 0 (mod 4).
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Spinor Bundles

Let M be a manifold with an orientable vector bundle E of dimension n.
Consider then the SO(n)-bundle of orthonormal frames PSO(E).

Definition 39. Suppose n ≥ 33, then a spin structure on E is a Spin(n)-bundle
PSpin(E) with a 2-covering

ξ : PSpin(E) → PSO(E) (I.4)

such that ξ(pg) = ξ(p)Ãd, p ∈ PSpin(E), g ∈ Spin(n) and Ãd is the universal covering
defined in proposition 34.

The condition for the existence of a spin structure on E is topological, as it
exists if and only if the second Stiefel-Whitney class of E is zero.

When TM admits a spin structure, we say M is a spin manifold. Similar to the
construction of spinors from the representation of the spin group, we can make a spinor
bundle from a bundle with spin structure.

Definition 40. A real spinor bundle of E is the associated bundle

S(E) = PSpin(E) ×µ L, (I.5)

where L is a left module of Cln and µ : Spin(n) → SO(L) is the left multiplication of
Spin(n) ⊂ Cl0.

Analogously, a complex spinor bundle is constructed using Cln.

Spin connection

With spinor bundles, we can now talk about spinor fields over a manifold as
sections of such bundles, and with this comes the question of how what is a constant
spinor field, or more generally, how do we differentiate spinor fields. In particular, we are
interested in a covariant derivative on S(E) induced by a covariant derivative on E.

Definition 41. Let A be a SO(n) connection on E. Then, the induced spin covariant
derivative ∇s on S(E) is defined by

∇sσ = dσ + A · σ, (I.6)

where · is the Clifford multiplication.

This definition is sound since A ∈ Ω1(so(n)), so the 1-form acts through the
Clifford multiplication, and so = spin are the standard structure preserving endomor-
phisms.

In coordinates, this can be expressed as:
3 We can define a spin structure for n = 1 and 2 with a slight modification.
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Proposition 42. Let ω ∈ Ω1(so(n)) be the connection 1-form on PSO(E). Then, the spin
covariant derivative in coordinates is given by

∇sσN = 1
2
∑
i<j

ω̃jieiej · σN , (I.7)

for E = {e1, ..., en} a section of PSO(E), ω̃ = E∗ω, and {σ1, ..., σN} a local section of
PSO(S(E) determined by E.

The existence of parallel (∇sσ = 0) and Killing (∇s
Xσ = λX · σ) spinors is

strongly tied to the geometry of the underlying manifold.

G-Structures and Holonomy

The existence of sections of particular spinor bundles is directly associated to the
topological reduction of the structure group of a manifold, and in particular, the existence
of parallel spinors is associated to the reduction of the holonomy group (MICHELSOHN,
1987). Here we will show the case of G2-structures, but a similar construction can be done
for other G-structures and holonomy reductions.

Take S the irreducible real spinor space over R7, we know that dimS = 8. For
each non-trivial spinor σ ∈ S, we can define a 3-form ϕσ by the relation

ϕσ(X, Y, Z) = (X · Y · Z · σ, σ), (I.8)

where · is the Clifford multiplication and (·, ·) is a inner product on S. We can also define
a vector cross product on R7 by

ϕσ(X, Y, Z) = ⟨X × Y, Z⟩ . (I.9)

This means ϕσ is in fact a G2-structure on R7.

If we consider the spinor bundle S(M) over a 7-manifold M , the existence of a
global nowhere vanishing section σ ∈ Γ(S(E)) defines a 3-form φσ pointwise by (I.8). It is
clear then that φσ is a G2-structure for M .

Theorem 43. A 7-manifold M admits a G2-structure if and only if it is orientable and
spinnable.

Proof. Let M be a G2 manifold. Since its structure group is G2, which is connected, it is
orientable. Since G2 is simply connected, M is admits a spin structure.

Now assume M admits a spin structure. Then it’s spinor bundle S(M) is
8-dimensional, and dimS(M) > dimM guarantees the existence of a global non-vanishing
section of S(M), which we just saw defines a G2-structure on M . ■
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The torsion ∇σ is directly related to the torsion of φσ. A complete spinorial
description of the G2 torsion classes is done in (AGRICOLA et al., 2015). We will only
summarize the results for the classes we are interested in. Let T ∈ End(TM) be the
endomorphism such that

∇Xσ = T (X) · σ, (I.10)

then φσ is

i) torsion-free iff T ≡ 0;

ii) nearly parallel iff T = λI, λ ∈ C∞(M);

iii) closed iff T ∈ g2;

iv) coclosed iff T is symmetric;

v) integrable iff T ∈ g⊥
2 .

C) Supersymmetry

It is useful to remember a few facts about regular symmetries, henceforth known
as bosonic symmetries. In dimension 4, bosonic symmetries are generated by the spacetime
transformations Pµ (translations) and Mµν (Lorentz boosts), forming the Poincare algebra,
and internal symmetries generated by Tµ. This algebra can be described by its commutation
relations

[Pµ, Pν ] = 0, [Mµν ,M
ρσ] = −2δ[ρ

[µM
σ]
ν] , [Pµ,Mνρ] = ηµ[νPρ],

and the commutation of Tµ depends on the internal symmetry algebra. The Colemann-
Mandula theorem guarantees that, for certain types of quantum field theories, these are
all the symmetries possible and that T commutes with the spacetime symmetries trivially.

Supersymmetry adds a new type of symmetry, called fermionic symmetries,
one whose coefficients anticommute. The most important fact for us is that these fermionic
symmetries are generated by spinors, which will allow us to do the necessary calculations
in the next section.

A more formal description of supersymmetries can be done using Lie superal-
gebras instead of Lie algebras.

Definition 44. A Lie superalgebra A is a Z2 graded vector space equipped with a Lie
superbracket [, } satisfying

[x, y} = (−1)|x||y|[y, x},

(−1)|x||z|[x, [y, z}} + (−1)|y||x|[y, [z, x}} + (−1)|z||y|[z, [x, y}} = 0,
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where |x| = 0, 1 is the degree of x.

In this language, bosonic symmetries are those generated by degree 0 elements,
and fermionic symmetries are those generated by degree 1 elements. These are sometimes
called even and odd respectively. The possibilities for the bracket of bosonic symmetries are
described by the Coleman-Mandula theorem, and the possible brackets between fermionic
elements, and mixed brackets are described by the Haag–Lopuszański–Sohnius theorem.
Although the details of these relations are not relevant for us, these are important results,
and so are worth mentioning.

II 7d compactification
Let X10 = M7 ×R1,2 be 10-manifold with Lorentzian metric g10 = g7 ⊕ g3, and

{Γ1, ...,Γ10} the 10d gamma matrices with respect to the metric g10. We know the spinor
space S has dimension 32, but can be decomposed into Cl10 modules as S = S+ ⊕ S−,
with dimension 16 each. This induces a block matrix structure for ΓM as

ΓM =
 0 ΓM

−

ΓM
+ 0

 , (II.1)

where ΓM
+ ΓN

− + ΓN
+ ΓM

− = 2gMN
10 and ΓM

− ΓN
+ + ΓN

− ΓM
+ = 2gMN

10 . Similarly, a spinor
σ ∈ S can be decomposed as

σ =
ϵ+
ϵ−

 . (II.2)

Now, let γ1, ..., γ7 be a set gamma matrices for g7 on M . Then we can construct
ΓM

± by

Γm
+ =

 0 iγm

−iγm 0

 , Γ8
+ =

 0 I8

I8 0

 , Γ9
+ =

I8 0
0 −I8

 , Γ10
+ = I16, (II.3)

and ΓM
+ = ΓM

− for M = 1, ..., 9 and Γ10
+ = −Γ10

− . Then, given we can write ϵ+ with two 7d
spinors η1, η2

ϵ+ =
η1

η2

 (II.4)

Now, a Weyl spinor is one that only lives in S+ or S−, and, if ΓM are all real
or all imaginary, a Majorana spinor is one that is real. If γm are purely imaginary, we get
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that ΓM are purely real, so a Majorana spinor η in M7 defines a Majorana-Weyl spinor in
X10 by

σ =


η

η

0
0

 , (II.5)

which we will just call ϵ as a 16 component spinor. Then ΓMσ = ΓM
+ ϵ.

Notice that the Levi-Civita spinor connection acts on ϵ by

∇g10ϵ =
∇g7η

∇g7η

 , (II.6)

since the connection symbols ω̃K
MN = 1

2g
KL(∂MgLN + ∂NgLM − ∂LgMN). But since g3 is

Minkowski, ω̃µN = 0 for µ = 8, 9, 10. Then the derivative is

∇gϵK =1
2
∑

M<N

ω̃NMΓMΓNϵK

=1
2
∑

m<n

ω̃nm

 0 iγm

−iγm 0

 0 iγn

−iγn 0

η
η



=


1
2
∑

m<n

ω̃nmγ
nγmη

1
2
∑

m<n

ω̃nmγ
nγmη


=
∇g7η

∇g7η


since ω̃nm only depends on g7, and so is the connection symbols for the 7d metric. Now,
consider that the heterotic fields Φ, H, A vanish in the directions of R1,2, then

H · ϵ = HMNP ΓMNP
+ ϵ

= HmnpΓmnp
+ ϵ

=
 0 iHmnpγ

mnp

−iHmnpγ
mnp 0

η
η


=
−iH · η
iH · η

 ,
and similar results for the other fields. With this, is is clear that the SUSY conditions
(II.4a,II.4b,II.4c) are written as
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∇+η = 0 (II.7)

(dΦ −H) · η = 0 (II.8)

F · η = 0, (II.9)

on M7.
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