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Resumo

O problema de empacotamento unidimensional (BPP, do inglês Bin Packing Problem)
consiste em alocar um conjunto de items unidimensionais, cada um com um dado com-
primento, na menor quantidade possível de recipientes unidimensionais de uma dada
capacidade. Nesta tese, desenvolvemos algoritmos exatos e heurísticas para as seguin-
tes variantes e generalizações do BPP: o problema de empacotamento colorido, no qual
cada item também possui uma cor e, em cada recipiente, os itens são empacotados em
uma ordem de forma que as cores são alternadas; o problema de empacotamento com
cenários, no qual consideramos a presença de cenários incertos e queremos minimizar o
número de recipientes no pior cenário; e problemas de alocação de energia restritos a uma
limitação de consumo para um esquema de leilão de energia renovável em smart grids.
Embora estes problemas sejam NP-difíceis, eles possuem motivações práticas que nos en-
corajam a abordá-los com modelos matemáticos e heurísticas. Propomos quatro modelos
matemáticos para o problema de empacotamento colorido. Dois deles são baseados na
formulação pseudo-polinomial de fluxo em arcos de Valério de Carvalho, e os outros dois
são modelos exponenciais de particionamento de conjuntos, resolvidos por um algoritmo
de branch-cut-and-price usando o VRPSolver. Propomos vários algoritmos para o pro-
blema de empacotamento com cenários: dois algoritmos de aproximação, um algoritmo
exato de branch-and-price com dual feasible functions, e uma meta-heurística de busca em
vizinhança variável. Por fim, propomos um leilão de energia renovável em smart grids no
qual os sub-problemas de alocação de energia são modelados como diferentes variantes de
um problema de empacotamento multidimensional. Especificamente, consideramos dois
problemas. No primeiro, um consumidor deve calcular seu lance para um dado plano de
uso de energia de acordo com suas preferências. No segundo, o provedor deve acomodar
planos de uso de energia dos consumidores sem ultrapassar a capacidade de geração de
energia da rede. Ambos os problemas são resolvidos com um modelo de programação
linear inteira mista.



Abstract

The bin packing problem (BPP) consists of assigning a set of one-dimensional items,
each with a given length, to the smallest possible number of one-dimensional bins of a
given capacity. In this thesis, we develop exact algorithms and heuristics for the following
variants and generalizations of the BPP: the colored bin packing problem, in which each
item also has a color and, in each bin, the items are packed in an order where the colors
alternate; the bin packing problem with scenarios, in which we consider the presence of
uncertain scenarios and want to minimize the number of bins in the worst scenario; and
energy allocation problems constrained by consumption limiting in an auction scheme
for renewable energy in smart grids. Although these problems are NP-hard, they have
practical motivations that encourage us to approach them with mathematical models and
heuristics. We propose four mathematical models for the colored bin packing problem.
Two of them are based on the pseudo-polynomial arc flow formulation of Valério de
Carvalho and the other two are exponential set-partition models, solved by a branch-cut-
and-price algorithm using the VRPSolver framework. We propose several algorithms for
the bin packing problem with scenarios: two approximation algorithms, one exact branch-
and-price algorithm using dual feasible functions, and a Variable Neighborhood Search
metaheuristic. Finally, we propose an auction for renewable energy in smart grids in which
energy allocation sub-problems are modeled as different variants of a multidimensional
packing problem. Specifically, we consider two problems. In the first one, a consumer
must compute their bid for a given energy usage plan according to their preferences. In
the second one, the provider must accommodate consumers’ energy usage plans without
exceeding the energy generation capacity. Both problems are solved with a mixed-integer
linear programming model.
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Chapter 1

Introduction

Operations Research (OR) is an interdisciplinary field that aims to achieve better decision-
making by applying scientific principles to a variety of problems, providing a quantitative
basis for complex decisions [34]. Such problems are often characterized as Combinatorial
Optimization (CO) problems, that is, one wants to find a solution that either minimizes
or maximizes a given function over a discrete, but usually very large, set of possible so-
lutions. Although simple in their descriptions, these problems often require sophisticated
computational approaches in order to find good solutions in a reasonable time [35].

Among these problems, consider the situation in which a producer must decide how to
cut stocks from a certain material into the smaller pieces necessary to manufacture their
final product while using the least amount of stock possible. Or a transporter who must
find the smallest possible amount of trucks needed to accommodate all boxes that they
must ship. These are some examples of cutting and packing (C&P) problems, a class that
includes some of the oldest CO problems investigated under an OR perspective [39].

C&P problems usually have the following common structure: a set (or subset) of
small objects has to be assigned to a set (or subset) of large objects such that geometric
conditions, such as non-overlapping items and large objects’ boundaries, are satisfied.
Such situations arise in numerous real-life applications, e.g. flat-glass [37], plastic [45], and
paper [25] industries, cloud computing [1], and logistics and transportation [38, 42, 36, 21].
Due to timing constraints and scalability concerns, it is important to develop tailor-made
algorithms that find optimal, or near optimal, solutions for these problems in a reasonable
computing time.

The main C&P problems of interest in this thesis are the one-dimensional bin packing
problem (BPP) and the one-dimensional cutting stock problem (CSP). In the BPP, we
are given a set of items, each with their respective lengths, and we have to pack them
inside the least possible amount of bins of a given maximum length. In the CSP, we are
given a set of material pieces of a given length and have to cut them into smaller pieces
to satisfy the demand for each smaller piece, while minimizing the material used. The
main differences between these problems come from the practical applications of where
they arise. In their typology of C&P problems, Wäscher et al. [47] state that bin packing
problems often present items that are strongly heterogeneous, that is there are only a few
items of the same length. On the other hand, cutting stock problems are usually associated
with a weakly heterogeneous assortment of items. Both problems are NP-hard, that is, it
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is unlikely to exist an efficient algorithm that is guaranteed to find an optimal solution to
them. Hence, we have to find more creative ways to tackle such problems, compromising
some solution quality in exchange for computational efficiency.

There exist many variants of the BPP and CSP. Any algorithmic results for these
problems have the potential to be further developed to the specificities of other variants.
Since some variants often share characteristics, results for a specific variant may unlock
new research opportunities for seemingly unrelated problems. However, C&P problems
are diverse in terms of their difficulty, so deciding which algorithmic approach works best
for each problem is a part of the research challenge [47].

This area has been used as a training ground for novel techniques in mixed-integer
linear programming and approximation algorithms. New developments in algorithmic
design have been introduced in other areas, but just recently have started making their
way to these problems, such as branch-cut-and-price algorithms and adaptive hybrid
metaheuristics. All these reasons motivate the development of effective algorithms for
C&P problems, as explored in this thesis.

Each of the subsequent chapters corresponds to a fairly self-contained article, either
published or submitted to international journals in the field. All chapters present the
concepts necessary to contextualize their results. However, to help guide the unfamiliar
reader, we briefly introduce some common concepts throughout the thesis in Section 1.1.
In Section 1.2 we state the contributions of this work. Finally, in Section 1.3 we describe
the organization for the remainder of the text.

1.1 Background

In this section, we provide some useful concepts that are common throughout the thesis.
These may help guide the unfamiliar reader into the later chapters. We also provide
references that cover each theme in detail for the interested reader.

1.1.1 Cutting and Packing Problems

Cutting and Packing is a class of combinatorial optimization problems that contains
all problems included in this thesis. It is mainly composed of two types of problems:
cutting, in which some material resource must be divided into smaller demanded pieces;
and packing, in which demanded items must be allocated into space-limited containers.
Interestingly enough, these types of problems are strongly correlated in a way that solution
methods for one type can also be applied to the other. The book by Scheithauer [39] offers
a good introduction to the problems, modeling, and solution methods for C&P problems.

In this section, we formally introduce the main C&P problems, contextualizing them
with the content of this thesis. We focus on one-dimensional C&P problems, so all prob-
lems discussed throughout the thesis are assumed to be one-dimensional unless explicitly
stated otherwise. Because of this, we omit the 1D prefix that is often used in the literature
do specify that a problem is one-dimensional.
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Knapsack Problem (KP) In the KP, we are given a knapsack of capacity L ∈ Q+,
and a set of items I = {1, . . . , n}, each i ∈ I having a length li ∈ Q+ and a value vi ∈ Q+.
A solution S is a subset of I such that

∑
i∈S li ≤ L. The objective is to find a solution

that maximizes the sum of the values of the items in it.
This is a classic CO problem that often appears as a substructure in larger problems.

Although the KP is a NP-hard problem, there exists fairly efficient, although super-
polynomial, algorithms for it. The book by Kellerer et al. [27] provides details on the
main algorithms for the KP as well as some of its variants.

Cutting Stock Problem (CSP) In the CSP, we are given an infinite number of iden-
tical stock rolls of length L ∈ Q+, and a set of demanded items I = {1, . . . , n}, each i ∈ I

with a different length li ∈ Q+ and demand di ∈ Z+. A solution S = (S1, . . . , Sm) is an at-
tribution of at least di copies of each i ∈ I into m stock rolls, such that

∑
(i,xij)∈Sj

xijli ≤ L

for all j ∈ {1, . . . ,m}, where xij corresponds to the amount of copies of item i that are
allocated to subset j. The objective is to find a solution that uses the least possible
amount m of stock rolls.

Bin Packing Problem (BPP) In the BPP, we are given an infinite number of identical
bins with capacity L ∈ Q+, and a set of items I = {1, . . . , n}, each i ∈ I with length
li ∈ Q+. A solution S = {S1, . . . , Sm} is a partition of I such that

∑
i∈Sj

li ≤ L for all
j ∈ {1, . . . ,m}. The objective is to find a solution with the least possible amount m of
parts.

Although they focus on different applications, the one-dimensional CSP can be viewed
as a generalization of the BPP. Given an instance of the BPP, we can create an instance
of the CSP by grouping together all items of the same length and turning them into a
single item of the CSP with demand equal to the cardinality of the set of grouped items.
This way, algorithms for one problem can usually be adapted to the other. In Figure 1.1
we provide an example of an instance of the CSP with 3 items and bin capacity 7. Item
lengths are given as {5, 3, 2} and demands {2, 1, 3}. The figure also shows an optimal
solution for the proposed instance.

I =
{

l1 = 5 l2 = 3 l3 = 2

}
L = 7

S =
{ }

Figure 1.1: Simple instance for the CSP with 3 items and one optimal solution

1.1.2 Combinatorial Optimization Approaches

In this section, we give a brief introduction to all the CO approaches considered through-
out the thesis.
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Figure 1.2: Branch-and-bound tree example.

Exact Algorithms

With exact algorithms, we aim to develop algorithms that find proven optimal solutions
by exploring the problem structure and (implicitly) enumerating its search space.

The main strategy considered for exact algorithms is Mixed-Integer Linear Program-
ming (MILP). In MILP, we represent the problem as Linear Program (LP) in which some,
or even all, of the decision variables, must take an integer value. To solve it, a branch-
and-bound algorithm is used to implicitly explore the whole solution space, pruning non-
improving solutions with the use of model-based bounds. This is achieved by starting, at
the root node, with the linear program (with all integrality constraints relaxed), which
is solved with any linear-programming solver (for instance the Simplex algorithm [7]).
After solving the LP, if none of the originally-integer variables has a non-integer value,
then that tree is solved. Otherwise, one of these variables is chosen to be branched on by
creating new nodes on which linear constraints are imposed to make the current solution
infeasible. To illustrate, if the chosen variable xp has a fractional value between 0 and 1,
then we may create two nodes: one forcing that variable to assume a value smaller than or
equal to zero, xp ≤ 0; and the other forcing that variable to assume a value greater than
or equal to one, xp ≥ 1. This branching process is repeated recursively on every node.
Figure 1.2 illustrates this process. If any particular node results in an infeasible LP, or if
it can only result in worse solutions than the current incumbent, the whole subtree under
that node is pruned-off.

The MILP strategy takes advantage of the fact that LP can be solved efficiently, and
since the nodes are very similar, the structure of previous nodes can be used to speed up
the search. Furthermore, lower and upper bounds can be computed at different points
of the exploration process in order to increase the pruning capabilities of the algorithms.
This strategy also makes it possible to integrate large linear programs through column
generation, resulting in branch-and-price methods, or even cut generation, resulting in
branch-and-cut methods. In fact, it is possible to combine these two techniques in order
to achieve very large models with strong bounds, the so-called branch-cut-and-price (BCP)
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methods.
In the following, we briefly discuss the two main models for the BPP and CSP. Al-

though these models are very different in concept and in regard to the number of variables,
they both present the same, very strong, linear relaxation upper bound [43].

The first MILP we discuss is a set-cover-based branch-and-price model based on
the column generation work of Gilmore and Gomory [17] and later implemented using
branch-and-price by Vance et al. [44]. We call a subset P of items such that the sum of its
lengths is at most L a packing pattern. Now, let P be the family of all packing patterns,
and Pi be the set of patterns that include any item i ∈ I. Notice that a feasible solution
for the BPP can be represented as a set of packing patterns such that each item in I
appears in at least one of the patterns. Thus, we can formulate the BPP as the following
MILP in which variable xP indicates whether a packing pattern P ∈ P is in the solution
or not:

(P) minimize
∑
P∈S

xP

subject to
∑
P∈Pi

xP ≥ 1 ∀ i ∈ I (1.1)

xP ∈ {0, 1} ∀P ∈ P, (1.2)

where Constraint (1.1) makes sure that each item appears in at least one packing pattern,
and Constraints (1.2) defines the domain of the integer variables.

We can also write the dual (D) of the linear relaxation of (P) as follows:

(D) maximize
∑
i∈I

νi

subject to
∑
i∈P

νi ≤ 1 ∀P ∈ P

νi ≥ 0 ∀ i ∈ I.

Since the number of packing patterns can be exponential, then so can the number of
variables in (P) and the number of constraints in (D). However, we can solve (P) using
a branch-and-bound method using only a few initial packing patterns, then generating
new patterns through the process of pricing in each node until an optimal solution for
the linear relaxation of (P) is found. In order to generate a new variable to be added
to (P), we must find a constraint that is violated in (D), that is, given a vector ν find
a packing pattern P such that

∑
i∈P νi > 1. This is equivalent to finding a solution to

the Knapsack Problem (in which each item i ∈ I has length li, value νi, and the size of
the knapsack is L) with a total value greater than 1. If no such pattern exists, then the
current set of packing patterns is sufficient to find an optimal solution for the relaxation of
(P). Unfortunately though, depending on how branching is implemented, pricing problems
in lower nodes of the tree might differ from the classical KP and, instead, include new
additional constraints, which might compromise the performance of the algorithm. For
instance, if a branching constraint imposes that a variable xP ≤ 0 for some pattern P ∈ P ,
then we must guarantee that another pattern identical to P will not be generated during
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0 1 2 3 4 5 6 7

l3 l3 l3 l3

loss loss loss loss loss

l2

l1

Figure 1.3: Acyclic digraph corresponding to a simple instance of the CSP with 3 items
and stock roll length 7, adapted from [5].

pricing, resulting in a KP with forbidden patterns as pricing subproblem.

The other MILP discussed in this section is the CSP arc flow formulation of Valério
De Carvalho [43]. In this model, we assume that the lengths of the demanded items and
stock rolls are integer values, for simplicity, since in practice it is always possible to
scale rational lengths into large integers. This way, we can represent the set of items
that can be cut from a single stock roll as the problem of finding a path in a specific
acyclic digraph with L + 1 vertices. Let this graph be G(V,A) with V = {0, 1, . . . , L}
and Aitem = {(i, j) : 0 < j ≤ L,∃u ∈ I : j − i = lu}, that is, there is an arc connecting
two vertices (i, j) if there exists an item in I of size j − i. For completeness’ sake, we
must also consider loss arcs Aloss = {(i, i + 1) : lmin < i ≤ L − 1}, where lmin is the
length of the smallest item in the instance, to represent wastes. This way, we consider
the set of arcs A = Aitems ∪Aloss. Notice that the number of arcs in this graph is O(nL).
Considering this graph, the cutting of any single stock roll can be represented by a path
from 0 to L, with each item arc used in this path representing the cutting of an item
in the position designated by the endpoints of the arc, and each loss arc used represents
wastes in those positions. It is also possible to reduce symmetries in this model by using
the following rule proposed by Valério De Carvalho [43]: Consider only solutions in which
items appear in a fixed non-decreasing order of lengths, consequently reducing the number
of arcs necessary to represent such solutions.

To illustrate, consider the following example: Given an instance of the CSP with
L = 7 and 3 items with lengths 5, 3, 2 and demands 3, 1, 2, respectively. We construct
the acyclic digraph shown in Figure 1.3. All cutting patterns necessary to represent an
optimal solution to the instance in the example can be represented as paths from 0 to L

in the graph of Figure 1.3.
This way, we can formulate the CSP as the problem of determining the minimum

flow departing from 0 and arriving at L, added of side constraints that enforce that the
amount of flow passing through the arcs that correspond to an item u ∈ I is at least du.
We can use a feedback arc connecting vertices L and 0 to count the number of paths used
in the solution. Thus, considering one decision variable xij for each arc (i, j) ∈ A and one
variable z for the feedback arc, we can model the CSP as the following MILP:
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minimize z

subject to
∑

(i,j)∈A

xij −
∑

(j,k)∈A

xjk =


−z

0

z

for j = 0,

for j = 1, . . . , L− 1,

for j = L,

(1.3)

∑
(i,j)∈A:j=i+lu

xij ≥ du ∀u ∈ I (1.4)

xij ∈ Z+ ∀ (i, j) ∈ A,

z ∈ Z+.

in which Constraints (1.3) guarantee flow conservation, that is the flow entering in a
vertex must be equal to flow emanating from the same vertex for all intermediate vertices.
Constraints (1.4) are the demand constraints.

Delorme et al. [11] provide a survey detailing several mathematical models for bin
packing and cutting stock problems as well as computational experiments comparing
them. For further information on mixed linear integer programming, we refer to the
books of Schrijver [40] and Wolsey [49].

Approximation Algorithms

An approximation algorithm for an optimization problem is an algorithm that, for any
given instance, has its execution time growing polynomially with the size of the input,
and produces a feasible solution with objective value within some guaranteed factor of
the optimal value. Although exact algorithms find guaranteed optimal solutions, when
it comes to NP-hard problems, those algorithms usually take exponential time, making
it difficult to use them for solving practical large instances of optimization problems.
In contrast, approximation algorithms are more versatile, compromising some solution
quality in exchange for guaranteed polynomial run-time.

Given a minimization problem, an algorithm A has an approximation factor of α if,
given an instance I, it produces a solution of objective A(I) that is at most α times
greater than the objective value of an optimal solution of I, OPT (I). Such algorithms
are also referred to as α-approximations. In other words, an α-approximation algorithm
A produces a solution such that

A(I) ≤ αOPT (I).

A Polynomial-Time Approximation Scheme (PTAS) is a family of approximation al-
gorithms {Aε} that, for any fixed ε > 0, produces a solution such that

Aε(I) ≤ (1 + ε)OPT (I).

In this case, the execution time of each algorithm is required to grow polynomially with
the size of the input instance, but may grow exponentially with 1/ε. When a PTAS is
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also guaranteed to run in polynomial time with 1/ε, it is called a Fully Polynomial-Time
Approximation Scheme (FPTAS).

Many C&P problems, such as the BPP, are APX-hard, that is, there cannot exist a
PTAS for them, unless P = NP . In these cases, it is possible to consider algorithms with
asymptotic approximation factors, that is an algorithm A and a constant β such that
A(I) ≤ αOPT (I) + β, where α is the asymptotic approximation factor and constant β is
greater than 0. Similarly, we can define an Asymptotic Polynomial-Time Approximation
Scheme as a family of approximation algorithms {Aε} with a constant β, that for any
fixed ε > 0, produces a solution such that

A(I) ≤ (1 + ε)OPT (I) + β.

Perhaps the most influential approximation algorithms for packing problems are the
ones by Fernandez de La Vega and Lueker [14] and Karmarkar and Karp [26] for the
classic BPP. The algorithm of Fernandez de La Vega and Lueker [14] is an APTAS based
on the linear grouping of the items according to their lengths. The one of Karmarkar and
Karp [26] is an approximation algorithm A such that A(I) ≤ OPT (I)+O(log2OPT (I)),
based on the formulation of Gilmore and Gomory [17] and the ellipsoid method for solving
linear programming.

Approximation algorithms are used to solve many different types of packing problems.
Coffman et al. [8] provide a survey covering approximation algorithms for several bin
packing problem variants. For further information on approximation algorithms, we refer
to the books by Vazirani [46] and Williamson and Shmoys [48].

Heuristics e Metaheuristics

Heuristics for an optimization problem are straightforward problem-specific procedures
that look for good solutions without concerns with guarantees in terms of objective value.
Several simple heuristics have been proposed for packing problems, focusing on quickly
finding good solutions. Among these, we have the next fit (NF) for the BPP, in which
items are considered in order and the first one is packed in the first bin. From then on, we
check if the following item can be packed in the same bin as the previous one, closing the
bin and opening a new one for the following item in case it does not. The first fit (FF)
heuristic packs subsequent items in the first open bin in which the item fits, meaning it has
to check, for each item, possibly all previously created bins. Variations of these heuristics
can be obtained by simply re-ordering items in non-increasing order of lengths, obtaining
respectively next fit decreasing (NFD) and first fit decreasing (FFD). In his seminal Ph.D.
thesis, Johnson [24] showed that these algorithms (and others similar to them) guarantee
asymptotical approximation rates, making them approximation algorithms.

Metaheuristics are high-level methods, not necessarily designed for a particular prob-
lem or with well-defined steps, but instead focus on providing a framework to be applied
to a wide range of problems. More specifically, according to Gendreau and Potvin [16],
metaheuristics are “solution methods that orchestrate an interaction between local im-
provement procedures and higher level strategies to create a process capable of escaping
from local optima and performing a robust search of a solution space”.
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The combination of heuristics and metaheuristics is an attractive approach in the
context of solving difficult problems under strict computational time restrictions. For
instance, a heuristic can be used to quickly find an initial solution to be improved by
a more sophisticated metaheuristic that will return the best solution it can find, given
a specific time limit. This same time limit approach cannot be achieved by exact or
approximation algorithms, since they cannot be prematurely interrupted in order to keep
their solution quality guarantees.

There are many metaheuristics for CO problems in the literature. They can usually
be divided into three main groups: neighborhood search procedures such as greedy ran-
domized adaptive search procedures (GRASP) [13], tabu search (TS) [18], variable neigh-
borhood search (VNS) [33], large neighborhood search (LNS) [41] and others; population-
based methods such as genetic algorithms (GA), particle swarm optimization (PSO) [28],
biased random key genetic algorithms (BRKGA) [19] and others; and hybrid metaheuris-
tics, which in addition to combinations of different types of metaheuristics, also include
hybridization with other types techniques, such as matheuristics, that combine meta-
heuristics with mathematical programming [32].

The literature on metaheuristics for C&P problems is vast. Fleszar and Hindi [15]
proposed a VNS algorithm for the BPP based on an initial solution given by a minimal
bin slack algorithm [20]. Loh et al. [31] proposed a weight annealing metaheuristic for the
BPP that was able to solve all the instances proposed by Fleszar and Hindi [15]. Later
on, Buljubašić and Vasquez [6] presented a consistent neighborhood search and Kucukyil-
maz and Kiziloz [29] provided an island-parallel grouping genetic algorithm for the BPP.
Both algorithms performed similarly well in the experiments reported. However, most
metaheuristic-related works on C&P focus on variants with a larger solution space, such
as higher-dimension bin packing problems. Lodi et al. [30] review algorithms and bounds
for the two-dimensional bin packing problem and variants, including many metaheuristics.
Hopper and Turton [22] compare different metaheuristic approaches to a two-dimensional
strip packing problem.

For an overview of the use of metaheuristics, we refer to the book of Gendreau and
Potvin [16].

1.2 Contributions

The objective of this work is to develop techniques in exact, approximation, and heuristic
approaches to different C&P problems, while carefully considering what approach fits best
to what problems. To this extent, we tackle three different projects, each resulting in its
own chapter of this thesis. Each project consists of a different problem approached with
multiple techniques. In this section, we describe the main contributions of each project
as well as some additional products obtained during their development.

1.2.1 Colored Bin Packing Problem

The colored bin packing problem (CBPP) is a generalization of the classical BPP in
which each item also has a color, and no two items of the same color are allowed to be
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packed consecutively in the same bin. For this problem, we focus mainly on exact models.
We provide a characterization of any feasible packing of the CBPP in a way that does
not depend on its ordering. We also propose four exact algorithms for the CBPP. The
first is an adaptation of Valério de Carvalho’s arc flow formulation using a graph with
multiple layers, each representing a color. The second is an improved arc flow formulation
that uses a more compact graph and has the same strong linear relaxation bound as the
first one. Finally, we design two exponential set-partition models based on reductions to a
generalized vehicle routing problem, which are solved by a branch-cut-and-price algorithm
through VRPSolver. To evaluate the proposed models, we present a varied benchmark
set with 574 instances.

The findings of this research were compiled in a journal article that was recently
submitted for publication in an international journal of the field. This article is fully
presented in Chapter 2.

Other Products

Some preliminary results of this project were also published as a four-page extended
abstract at a Brazilian conference in 2020. The paper was titled, in Portuguese, “Modelos
Pseudo Polinomiais para o Problema do Empacotamento Colorido” and appeared in the
annals of the V Encontro da Teoria da Computação [3].

Concurrently with this work, we also collaborated with the undergraduate student
Renan Fernando Franco da Silva to develop heuristic and metaheuristic approaches to
the CBPP. The preliminary results of these efforts also appear as extended-abstracts in
Brazilian conferences. The paper titled “Heurísticas para o Problema do Empacotamento
Colorido” appears in the annals of the VI Encontro da Teoria da Computação in 2021 [9].
A second, and more detailed version of this work, also titled “Heurísticas para o Problema
Do Empacotamento Colorido” appears in the annals of 54o Simpósio Brasileiro de Pesquisa
Operacional in 2022 [10]. These results will be compiled in a full article to be submitted
to an international journal in the field soon, but are outside the scope of this thesis.

1.2.2 Bin Packing Problem with Scenarios

The bin packing problem with scenarios (BPPS) is a generalization of the classical BPP
which considers the presence of uncertain scenarios, of which only one is realized. For this
problem, we propose an absolute approximation algorithm whose ratio is bounded by the
square root of the number of scenarios times the approximation ratio for an algorithm
for the vector bin packing problem. We also show how an APTAS is derived when the
number of scenarios is constant. As a practical study of the problem, we present an exact
branch-and-price algorithm to solve an exponential model and a variable neighborhood
search (VNS) heuristic. To speed up the convergence of the exact algorithm, we also
consider lower bounds based on dual feasible functions. We also consider a version of
the exact algorithm that uses the best solution found by the VNS heuristic as a warm
start. To evaluate the practical study, we present a set of 120 instances adapted from the
literature.
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This project was a collaboration with the then Ph.D. student Vinícius Loti de Lima,
and Professor Lehilton Lelis Chaves Pedrosa from the Institute of Computing at the
University of Campinas, as well as Professor Thiago Alves de Queiroz from the Institute
of Mathematics and Technology at the Federal University of Catalão. The findings were
compiled in a journal article that was recently submitted for publication in an international
journal of the field. This article is fully presented in Chapter 3.

Other Products

A preliminary version of these results, including a sketch of the APTAS was published in
Portuguese as a four-page extended abstract at a Brazilian conference in 2019. The paper
titled “Um esquema de aproximação para um problema de empacotamento com cenários”
appears in the annals of the IV Encontro da Teoria da Computação [2].

1.2.3 Demand-side Management for Smart Grids

We consider energy allocations problems with consumption limiting in the context of an
auction of renewable energy in smart grids. To contextualize, smart grids are electric-
ity networks that can intelligently integrate the actions of all users connected to it [12].
These networks are expected to provide various benefits to society by integrating ad-
vances in power engineering with recent developments in the field of Information and
Communications Technology. One of the advantages is the support of efficient demand-
side management (DSM), e.g. changes in consumer demands for energy based on using
incentives. Indeed, DSM is expected to help grid operators balance time-varying gener-
ation by wind and solar units, and the optimization of their usage. In this context, we
propose an auction for DSM, in which consumers submit bids to renewable energy usage
plans. The main problem consists of allocating these usage plans to consumers according
to their bids while respecting the capacity of generating renewable energy of the grid.
An additional model is introduced to allow consumers to compute their bid for a given
usage plan according to their preferences. Both the energy allocation and usage plan
bidding computation problems are modeled as variants of the vector knapsack problem,
and solved using a mixed-integer linear programming formulation. The models are also
extended to include energy storage devices. The impact of the use of energy storage in
households and in the energy provider is also considered.

This project was a collaboration with the Ph.D. student Lucas Prado Melo, and Pro-
fessor Nelson Luis Saldanha da Fonseca from the Institute of Computing at the University
of Campinas, as well as Professor Fabrizio Granelli from the Department of Information
Engineering and Computer Science at the University of Trento (Italy). The findings were
compiled in a journal article published in International Transactions in Operational Re-
search in 2020 [4]. This article is fully presented in Chapter 4, with the authorization for
its reproduction in the thesis in Appendix A.
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Other Products

A preliminary version of these results was presented in Portuguese as a workshop talk
titled “Precificação Inteligente de Energia para Gerenciamento pelo Lado-da-Demanda
em smart grids de Energia Renovável” at the XX Oficina Nacional de Problemas de
Corte, Empacotamento, Planejamento e Programação da Produção e Correlatos, and the
XIV Workshop de Teses, Dissertações e Trabalhos de Iniciação Científica do Instituto de
Computação da Universidade Estadual de Campinas in 2019.

1.3 Text Organization

This thesis is presented in an alternative format proposed by the University of Campinas
in 2021 [23]. As defined in this format, the text is composed of this introductory chapter,
followed by one chapter per published or submitted article and ending with discussions and
conclusions. In Chapter 2, we present our results for the colored bin packing problem. In
Chapter 3, we present the article on the bin packing problem with scenarios. We present
our published article on demand-side management for smart grids in Chapter 4. At last,
in Chapter 5, we present some general discussions as well as our concluding remarks.
The authorization for reproducing the published article in Chapter 4 can be found in
Appendix A.
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Chapter 2

Mathematical Models and Exact
Algorithms for the Colored Bin Packing
Problem

Abstract This paper focuses on exact approaches for the Colored Bin Packing Problem
(CBPP), a generalization of the classical one-dimensional Bin Packing Problem in which
each item has, in addition to its length, a color, and no two items of the same color can
appear consecutively in the same bin. To simplify modeling, we present a characterization
of any feasible packing of this problem in a way that does not depend on its ordering.
Furthermore, we present four exact algorithms for the CBPP. First, we propose a gener-
alization of Valério de Carvalho’s arc flow formulation for the CBPP using a graph with
multiple layers, each representing a color. Second, we present an improved arc flow for-
mulation that uses a more compact graph and has the same linear relaxation bound as
the first formulation. And finally, we design two exponential set-partition models based
on reductions to a generalized vehicle routing problem, which are solved by a branch-cut-
and-price algorithm through VRPSolver. To compare the proposed algorithms, a varied
benchmark set with 574 instances of the CBPP is presented. Results show that the best
model, our improved arc flow formulation, was able to solve over 62% of the proposed
instances to optimality, the largest of which with 500 items and 37 colors. While being
able to solve fewer instances in total, the set-partition models exceeded their arc flow
counterparts in instances with a very small number of colors.

Keywords bin packing problem; arc flow; VRPSolver; mixed integer linear program-
ming;

2.1 Introduction

The Bin Packing Problem (BPP) consists of packing a set of items, each with a positive
length, into the smallest possible number of bins such that the sum of the lengths of the
items in a bin does not exceed its given capacity. A popular generalization of the BPP
is the Cutting Stock Problem (CSP), in which items have a positive demand value that
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indicates the number of times they must be included in a solution. For generality, we use
the CSP notation for some of the models presented in this work.

Applications of cutting and packing problems have been studied for decades. In the
packing context, there are many problems in production planning and load balancing, in
which one wants to fit a set of boxes into the smallest possible number of containers. On
the other hand, the term cutting has been adopted in the industrial process of cutting rolls
of stock material into smaller pieces in order to satisfy a given demand while minimizing
the number of rolls used, which is often encountered in industries such as paper, metal,
and fabric. These problems can also be encountered as part of bigger optimization prob-
lems found in real-world applications such as capacitated vehicle routing, load balancing
scheduling, and capacitated facility location, among others.

The Colored Bin Packing Problem (CBPP) is a generalization of the BPP in which
each item, in addition to a length and demand, also has a color. The objective is to find
a packing of all items in the smallest number of bins possible, in which no two items from
the same color appear consecutively in the same bin. That is, for every bin in the solution
there must exist at least one permutation of the items in it (considering all their respective
copies in the case with demands) such that adjacent items always have different colors.

One possible application for the CBPP, in the particular case in which there are only
two colors, is when there must be an intercalation of two types of items in a schedule.
Balogh et al. [1] describe the example in which white items can represent blocks of a radio
show and black items represent commercial breaks, with the items’ lengths indicating
their duration. These blocks of content must be scheduled in an alternating form and
respect the shows’ duration, usually a time window of one hour.

When considering multiple colors, the same idea applies: CBPP can model the need
to alternate items of different types. For example, Dósa and Epstein [14] describe an
application where one wants to print batches of flyers on papers with different colors,
and must alternate the colors to make it easy to split the print into the correct batches
afterward. As another example, one can consider alternating different kinds of information
and advertisement on the screen of a smartphone on sites like YouTube and other social
media platforms, as described by Balogh et al. [1].

Notice also that the development of good algorithms for CBPP could lead to the
development of good algorithms for similar problems such as knapsack or scheduling
problems where the items must alternate in some form. In fact, one can consider the
CBPP as part of a larger class of packing problems where there are constraints on pairs
of items, defining how or if they can be packed together.

Probably, the most famous problem in this class is the Bin Packing Problem with
Conflicts, considered by Jansen and Öhring [18] and Jansen [17], where a list of conflicts
between pairs of items is given, and two items can be packed in the same bin only if
there is no conflict between them. This problem appears, for example, as a sub-problem
when solving BPP with a branch-and-price algorithm using a branching rule that either
forces two items to be packed together or creates a conflict between them, as considered
by Vance et al. [28].

Another problem in this class is the Class Constrained Bin Packing Problem [26],
where every item belongs to some class, and there is a limit on the number of different
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classes that can be used in the same bin. One application for this problem is when there
is a limited number of scissors in a machine for cutting metal coils, and the pieces can
be grouped into classes of treatments to be received after the cut (for example, reducing
thickness). Thus, the coils are cut into classes, each class receives its corresponding
treatment, and then the final pieces are cut. This problem also has several applications in
data load balance, such as Video-on-Demand servers [30]. One main difference between
the Class Constrained Bin Packing Problem, when compared with Bin Packing Problem
with Conflicts, is that in the former, there is no direct conflict between items but, instead,
what prevents us from adding a new item to a bin is the whole set of items already packed.
Nonetheless, the ordering of the packing does not matter.

Peeters and Degraeve [22] presented the Co-Printing Problem, a variant of the Class
Constrained Bin Packing Problem where items have the same length, but can be of mul-
tiple classes at the same time. This is done to model a problem when printing Tetra Pak
packages in a printer that can use a limited number of colors at once.

There are other packing problems where the order of the packing matters, such as Bin
Packing with Largest in the Bottom Constraint proposed by Manyem et al. [21], where
the largest items must be packed before the smaller ones in the bin. Notice that the
difficulty of these problems usually arises when the items must be packed in an online
fashion. The CBPP problem lies in a frontier between these kinds of problems. While
the order of each packing matters for the online setting, in the offline setting, which is
the focus of this paper, what matters is only the number of items of each color.

2.1.1 Previous Works

Previous works on CBPP are either from the perspective of approximation or online
algorithms. These works consider three different versions of the problem: the offline
version, where the whole input is known at the beginning of the algorithm; the restricted
offline version, where the input is known at the beginning of the algorithm, but the items
must be packed in the given order; and the online version, where items arrive in an online
fashion and must be packed definitively in a selected bin, without knowledge of what items
will come next. Recall that an online algorithm A for a minimization problem is called an
α-competitive algorithm if, given an instance I, it produces a solution of objective value
A(I) that is at most α times greater than value of an offline (or in our case restricted
offline) optimal solution for instance of I, OPT (I). We also say that α is the competitive
ratio of A.

In 2012, Balogh et al. [1] introduced the Black and White Bin Packing Problem
(BWBPP) as a precursor of the CBPP in which only two colors are considered. They
presented a lower bound of 1.7213 on any online algorithm for the BWBPP, as well as
a 3-competitive algorithm. They also give a 2.5-approximation algorithm and an APTAS
for the offline (unrestricted) version. These results were later published as two full articles
in journals [3, 2].

In 2014, Dósa and Epstein [14] introduced the CBPP. They proved that there is no
optimal online algorithm for the zero-sized items variant of the CBPP, contrasting with
BWBPP where such an algorithm exists. Their main results are a 4-competitive online
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algorithm and a lower bound of 2 on the asymptotic competitive ratio of any online
algorithm. This last result also holds for the BWBPP, thus improving the previous result
by Balogh et al. [1]. Chen et al. [8] studied the special case of the BWBPP where items
have lengths of at most half of the capacity of the bin, and presented a 8/3-competitive
algorithm for it, improving on the result of Balogh et al. [1] which had a competitive ratio
of 3 even for this particular case.

Finally, Böhm et al. [6] considered the case of the CBPP where every item has length
zero. They proved that the restricted offline optimum is always equal to the color discrep-
ancy, a measure of how unbalanced the colors in the instance are. Then, they provided an
asymptotically 1.5-competitive algorithm, which is, in fact, optimal as any deterministic
online algorithm is shown to have at least this competitive ratio. The algorithm also has
an absolute competitive ratio of 5/3. For the general case, that is, items with arbitrary
lengths and at least three colors, they designed a 3.5-competitive algorithm and presented
a lower bound of 2.5 on the competitive ratio of any deterministic online algorithm for
this problem. Interestingly, they also show that classical BPP algorithms First Fit, Best
Fit, and Worst Fit do not present a constant competitive ratio for the CBPP. For the
BWBPP problem on the other hand, they prove that any fit algorithms (such as First
Fit) have an absolute competitive ratio of 3 and that any deterministic online algorithm
has an asymptotic competitive ratio of 2.

More recently, Bilò et al. [4, 5] consider a game-theory version of the problem, where
players control the items and decide where to pack them.

2.1.2 Related Works

In this section, we discuss some previous works that are directly connected to the con-
tributions of this paper. The BPP and CSP have been the birthplace of some crucial
development in mixed integer linear programming in the past. Gilmore and Gomory [15]
modeled the CSP with a set-covering model, in which columns represent all possible cut-
ting configurations of a stock roll. To solve this model, they used the column generation
technique, in which cutting configurations are considered implicitly, that is, columns are
only generated on an on-demand basis in an iterative process. This set-covering model
was shown to have a very strong linear relaxation. Let LP (I) be its linear relaxation
value and OPT (I) be the optimal value for instance I, the instance is said to have the
Integer Round Up Property (IRUP) if OPT (I) = ⌈LP (I)⌉. Similarly, instance I is said
to have the Modified Integer Round Up Property (MIRUP) if OPT (I)− ⌈LP (I)⌉ ≤ 1. It
is conjectured that MIRUP holds for all instances of the CSP and BPP [25].

Later on, Valério De Carvalho [27] proposed the arc flow model for the CSP based on
a previous work of Wolsey [29] that connected integer programming with network flows.
Given a directed graph where each vertex represents a cutting level of a stock roll, and
arcs represent items, with its weight equal to the corresponding item length, a feasible
cutting configuration can be found by computing a shortest path in such a graph. Valério
De Carvalho [27] used this idea as the basis for a branch-and-price algorithm for the
CSP and showed that the arc flow formulation is equivalent to Gilmore and Gomory’s
set-covering model in terms of their linear relaxation.
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Kramer et al. [20] approached a problem of job scheduling on parallel machines with
family setup times, in which an additional setup time was required between two con-
secutive jobs of different families. They proposed an original arc flow formulation that
uses one layer per family of jobs, modeling setup times as arcs crossing between layers.
The authors also proposed another arc flow model that uses a single layer, but divides
arcs into job-arcs, dummy-arcs which are zero-sized and allow for the transition between
jobs from the same family, and setup-arcs which represent the setup time between two
different families. The model requires that any path must alternate job-arcs with either
a setup-arc or a dummy arc.

Recently, Pessoa et al. [24] proposed a generic branch-and-cut-and-price solver that
included several computational optimizations and improvements that have been proposed
in the vehicle routing literature in the past few years. Their model is general enough to be
applied to many combinatorial optimization problems. This was achieved by designing a
generic Vehicle Routing Problem (VRP) variant that can be modeled as a set-cover or set-
partition problem in which columns can be generated by solving a Resource-Constrained
Shortest Path Problem (RCSP). Additionally, several critical algorithmic improvements
were generalized for this variant. Even though the model’s priority is generality, the
authors presented experimental results for the BPP that are very competitive with state-
of-the-art problem-specific algorithms and models at the time.

2.1.3 Our Contributions

First, we provide a characterization of any feasible packing for the CBPP in a way that
does not depend on its ordering, making algorithmic modeling much simpler. This char-
acterization, along with other preliminary concepts and definitions are presented in Sec-
tion 2.2. Afterward, we propose the pseudo-polynomial multilayered arc flow formulation,
which generalizes Valério de Carvalho’s classic CSP model for the CBPP. Furthermore,
we propose the original color-alternating arc flow formulation which works with a much
more compact graph while retaining the same strong linear relaxation. These pseudo-
polynomial formulations are discussed in Section 2.3. Later on, we propose two expo-
nential set-partition models based on reductions to a generalized vehicle routing problem
which are solved by a branch-cut-and-price algorithm through VRPSolver. These models
are detailed in Section 2.4. Finally, we propose a new benchmark set that includes uni-
formly randomly generated instances, instances adapted from the CSP/BPP literature, as
well as randomly generated instances with a Zipf distribution of colors. This benchmark
set, as well as the numerical experiments evaluating all the models introduced in this
work, are presented in Section 2.5. In Section 2.6, we recapitulate the results and provide
our final remarks.

2.2 Preliminaries

In this section, we provide a few definitions to contextualize our contributions. Along the
text, for any k ∈ Z+, we denote {1, 2, . . . , k} by [k].
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Colored Bin Packing Problem (CBPP) An instance of the problem is composed
of an integer bin capacity L > 0, an integer number of colors Q ≥ 2 and a set I = [m] of
items, each with an integer length lu > 0, integer demand value du > 0 and color cu ∈ [Q]

for all u ∈ I. Since each item has a demand, we consider that all pairs of length and
color are unique in I. We also consider an auxiliary set I ′ composed of du copies of each
item u ∈ I. This way, a solution for CBPP is a partition B of I ′, such that for each
part B ∈ B, the total length of the items in B is at most L, and there exists at least
one permutation of B in which no two items of the same color appear consecutively. The
objective is to find a solution that minimizes the number of parts. We consider that for
any S ⊆ I, {S1, S2, . . . , SQ} is a partition of S by color, that is u ∈ Sq if and only if u ∈ S

and cu = q.
Before proceeding, we introduce the following example to better illustrate the problem.

Consider an instance with bin capacity equal to 8 and items as described in Figure 2.1.

items

u lu du cu

1 4 2 1
2 3 1 2
3 3 1 3
4 2 1 3

4 3 3 2

8

Figure 2.1: Example of an instance of the CBPP with 4 items, 3 colors and bin capacity 8.

An optimal solution for the instance in the example would be to pack the first copy
of item 1 with item 2 in a single bin, and the second one with item 3 in another bin.
This would make it necessary to use a third bin to pack item 4 by itself. This solution is
illustrated in Figure 2.2.

Figure 2.2: An optimal solution for the previous example.

We call a packing pattern any subsequence P of items in I ′ such that the sum of the
lengths of the items in P is smaller than or equal to L and, for 1 ≤ k < |P |, the color of
the k-th item of P is different from that of the (k + 1)-th one. With this, we may also
describe a solution for the CBPP as the smallest set of packing patterns that satisfy the
demands exactly for every item u ∈ I. Note that, unlike in the CSP, a solution for the
CBPP cannot contain more than du copies of an item u ∈ I, as otherwise two items of
the same color could be intercalated with an additional differently colored item, possibly
reducing the necessary number of bins.

In the following, we recall the important concept of color discrepancy defined by Balogh
et al. [2] and generalized by Böhm et al. [6]. Let S be a fixed subset of I ′ and let sq,u = 1
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if item u ∈ S is from color q ∈ [Q] and sq,u = −1 if item u is from any color other than q.
The discrepancy between q-items and non-q-items in S is δSq =

∑
u∈S sq,u for all q ∈ [Q],

and the color discrepancy of S is δS = maxq∈[Q] δ
S
q . Finally, we define the critical color

of S as q∗S = argmaxq∈[Q] δ
S
q (choosing arbitrarily in case of a tie). We omit S from the

notation in δ and q∗ unless it is necessary since it is usually clear by context. Theorem 1
gives us simple conditions to determine whether any subsequence of items admits a color-
alternating permutation, i.e. the items in it can be rearranged in such a way that no two
items of the same color appear side-by-side. This allows us to verify, in linear time, if
there exists a permutation of a given subset of items S with

∑
u∈S lu ≤ L that is a valid

packing pattern.

Theorem 1. Let S ⊆ I ′ and
∑

u∈S lu ≤ L. The following are equivalent:

1. S admits a color-alternating permutation;

2. |Sq∗| ≤ ⌈|S|/2⌉;

3. δ ≤ 1.

The proof of this theorem follows from the lemmas below.

Lemma 1. If S admits a color-alternating permutation, then |Sq∗| ≤ ⌈|S|/2⌉.

Proof. We prove that if |Sq∗| ≥ ⌈|S|/2⌉ + 1, then S does not admit a color-alternating
permutation. By the pigeonhole principle, since there are |Sq∗ | q∗-items, there must be at
least |Sq∗ | − 1 non-q∗-items for S to admit a color-alternating permutation. Thus, there
must be at least 2|Sq∗|−1 ≥ 2(⌈|S|/2⌉+1)−1 ≥ |S|+1 items in total, a contradiction.

Lemma 2. If |Sq∗| ≤ ⌈|S|/2⌉, then δ ≤ 1.

Proof. Since δ is the difference of the number of q∗-items and non-q∗-items in S, we can
write it as δ = |Sq∗| − t, where t is the amount of non-q∗-items in S. Also, notice that
if |Sq∗ | ≤ ⌈|S|/2⌉ holds, then t ≥ ⌊|S|/2⌋. Thus, we have

δ = |Sq∗| − t ≤ |Sq∗| − ⌊|S|/2⌋ ≤ ⌈|S|/2⌉ − ⌊|S|/2⌋ ≤ 1.

Lemma 3. If δ ≤ 1, then S admits a color-alternating permutation.

Proof. For this, we give the algorithm Alternate that receives S ⊆ I ′ such that δ ≤
1 and returns a color-alternating permutation of S. We assume that the input set is
partitioned by colors and can be accessed by color index. Also, we assume, without loss
of generality, the items are non-increasing ordered by color frequency.
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Alternate(S,Q)

1 Let L be a list of |S| initially empty sequences
2 k = 0

3 for u ∈ S1

4 k = k + 1 // Counts amount of open sequences

5 Lk = Lk ⌢ (u) // Operator ⌢ means concatenation at the end of the sequence

6 j = 1

7 for q ∈ {2, . . . , Q}
8 for u ∈ Sq

9 Lj = Lj ⌢ (u)

10 j = (j + 1) mod k // Places one item in each of the k sequences before returning to the first

11 return L1 ⌢ · · · ⌢ Lk

First, we argue that the color which has the most items in S is color q∗. For this,
consider a color q with δq and color q′ with δq′ . If δq > δq′ then

|Sq| − (|S| − |Sq|) > |Sq′| − (|S| − |Sq′ |) =⇒ 2|Sq| − |S| > 2|Sq′| − |S| =⇒ |Sq| > |Sq′|.

The first inequality follows from the fact that δq can be computed as the number of
items from color q minus the number of items from the other colors, which can be stated
as |S| − |Sq|. With this, we have that the colors are ordered by their discrepancies in the
input.

Now we show that algorithm Alternate is correct. In the first loop, lines 3-5, each
item from the first color is placed in a separate sequence, and variable k counts the number
of sequences used. Notice that, since δ ≤ 1, there are enough remaining items to put in
each of the k sequences except, possibly, the last one, which in turn would make the
concatenation of these sequences a valid color-alternating permutation.

However, it would still be possible that there are more items from the following colors,
so we alternate the items into k sequences and return to the first sequence after an item
is placed in the k-th one. The main loop, in lines 7-10, uses this method to place all items
in one of the sequences. Now suppose that, with this method, one item is followed by
another one from the same color q in a single sequence, then there must be more than
k items from color q, which means δq > δ resulting in a contradiction. Thus, with this
method, there will be no item followed by another of the same color in a single sequence.

Since each sequence only has one item from each color, and all sequences start with
an item of color 1 but end in an item with a different color (except, possibly the last one),
the algorithm returns a concatenation of the sequences in order, which must be a valid
color-alternating permutation of S.

2.3 Pseudo Polynomial Models

In this section, we propose two new pseudo-polynomial formulations for the CBPP. Be-
fore describing our contributions, we remind the reader about the arc flow formulation
of Valério De Carvalho [27] for the BPP. The concepts of this formulation are crucial to
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the understanding of the models we propose in this section.
In the arc flow model, we consider the directed graph G = (V,A) as follows: V

consists of all possible packing points of a bin, i.e. V = {0, 1, . . . , L}; Aitem is the set
of item-arcs, which connect every i and j such that there exists an item of length j − i,
i.e. Aitem = {(i, j) : j − i = lu for 0 ≤ i < j ≤ L, and u ∈ I}; Aloss is the set of loss-arcs
that connect every pair of adjacent vertices, i.e. Aloss = {(k, k+1) for 0 ≤ k ≤ L−1}; and
A = Aitem ∪Aloss. A path from 0 to L in G corresponds to a valid packing pattern for an
instance of the BPP, in which the presence of an item-arc (i, j) in the path represents the
packing of an item of length j − i, and the presence of loss-arcs represent empty spaces
left in the bin. With this in mind, the BPP can be modeled as the problem of finding a
set of paths in G with the smallest cardinality that covers the demands for all items in the
instance, which is achieved with the arc flow integer programming formulation of Valério
De Carvalho [27].

2.3.1 Multilayered Arc Flow

A straightforward adaptation of the arc flow model for the CBPP is presented in this
section. The idea is based on the construction of a graph in which the vertices are all the
packing points repeated for each color. We can then add arcs that only connect vertices
of different colors, thus enforcing that any paths must alternate colors.

Consider the digraph G(V,A) as follows:

• The set of vertices V is partitioned as {V0, V1, V2, . . . , VQ}:

– V0 is the set with a single source vertex (0, 0),

– Vq = {(1, q), (2, q) . . . , (L, q)} is the set of packing points for color q;

• The set of arcs A is partitioned as {Asource, Aitem, Aloss}:

– Asource = {
(
(0, 0), (j, q)

)
: (j, q) ∈ V and ∃u ∈ I : lu = j, cu = q},

– Aitem = {
(
(i, q), (j, q′)

)
: (i, q) ∈ V, (j, q′) ∈ Vq′ , q ̸= q′ and ∃u ∈ I : lu =

j − i, cu = q′},

– Aloss = {
(
(i, q), (L, q)

)
: (i, q), (L, q) ∈ V for any q ∈ [Q] and 1 ≤ i ≤ L− 1}.

With this, each color has L vertices, resulting in |V | = LQ + 1 and |A| = O(LQ|I|).
An item-arc connects a vertex (i, q) ∈ V to (j, q′) ∈ V where q ̸= q′ and there is an item
in I with color q′ and length j − i, while a loss-arc connects any vertex in Vq to the sink
vertex of that color (L, q) for any q ∈ [Q]. Notice that loss-arcs in this model are different
from those of the original model for the BPP, as they enforce all empty spaces to be placed
at the end of a bin, thus avoiding alternating items with empty spaces. Hence, departing
from any vertex, all arcs emanating from it either arrive at a vertex of a different color
from the one it emanates from or arrive at the sink of that color.

Like with the arc flow formulation, we can model the CBPP as the problem of finding
the smallest number of paths from 0 to L in G such that the demand for each item is
attended to equality. Formulation AFml described below is an adaptation of the arc flow
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model of Valério De Carvalho [27] to work with the graph and notation introduced in this
section. In it, x is a vector of integer variables that indicates the amount of flow passing
through each arc, and z is the integer variable indicating the cumulative amount of flow
passing through all arcs that emanate from the source vertex V0.

AFml =min z (2.1)

s.t.
∑

((i,q′),(j,q))∈A

xiq′jq −
∑

((j,q),(k,q′′))∈A

xjqkq′′ =


−z

0

z

for j = 0, q = 0

for j ∈ [L− 1], q ∈ [Q]

for j = L, q ∈ [Q]

(2.2)∑
((i,q′),(j,q))∈A

j=i+lu,q=cu,q′ ̸=q

xiq′jq = du for u ∈ I (2.3)

z, xiq′jq ∈ Z+ ∀ ((i, q′), (j, q)) ∈ A,

(2.4)

The objective (2.1) is to minimize the number of paths (or patterns) used. Con-
straints (2.2) guarantee the conservation of flow in all vertices of G, except in the source
(0, 0) and sinks (L, q) for any q ∈ [Q]. Constraints (2.3) ensure that the demands be
satisfied to the equality for every item in I. Finally, Constraints (2.4) are the integrality
constraints.

Since there are no arcs in A that connect vertices of the same color, any path must
intercalate vertices of different colors by using arcs representing items of different colors.
The model will find the smallest set of paths that satisfy the demands to equality, which
will also be an optimal solution for the CBPP since any valid pattern can be represented
as a path in G. Figure 2.3 shows a graph representing an optimal solution of AFml for
the example introduced in Figure 2.1.

0

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2

1

11

1

1

1

Figure 2.3: Optimal solution of model AFml for the example of Figure 2.1. Loss-arcs
are represented with dashed lines, and arc labels represent the amount of flow passing
through it in the solution.
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2.3.2 Color-Alternating Arc Flow

Although formulation AFml correctly models the CBPP, it requires a large graph with up
to LQ+ 1 vertices and O(LQ|I|) arcs. Because of this, we propose an alternative model
that requires at most L+1 vertices and O(L|I|) arcs, by using a multi-graph instead. We
describe this model in this section.

Consider a directed multi-graph G(V,A) in which arcs are labeled with a color, that
is, an arc is a tuple (i, j, q) with i and j being its start and end points, and q its color.
We consider the additional color Q+ 1 to indicate the loss-arcs. The graph is defined as
follows:

• The set of vertices V is the packing points {0, 1, . . . , L};

• The set of arcs A is partitioned as {A1, A2, . . . , AQ, AQ+1}:

– Aq = {(i, j, q) : 0 ≤ i ≤ j ≤ L,∃u ∈ I : lu = j − i, cu = q} for q ∈ [Q], and

– AQ+1 = {(i, L,Q+ 1) : 1 ≤ i ≤ L− 1}.

With this, the number of vertices is L + 1 and there is an item-arc of color q ∈ [Q]
between vertices i ∈ V and j ∈ V if there is an item of color q and length j− i in I. There
is also a loss-arc connecting each vertex i ∈ V \ {0, L} to L. However, to guarantee the
color constraints in this graph we must specify that two arcs from the same color cannot
be used consecutively in any path. Additionally, since the loss-arcs can only arrive at
vertex L, we guarantee that empty spaces are always placed at the end of the bin, which
is necessary to avoid items from the same color being alternated with empty spaces.
We propose formulation AFca, in which x is a vector of integer variables that indicate
the amount of flow going through each arc and z is the integer variable that indicates
cumulative the amount of flow passing through all arcs that emanate from the source
vertex 0.

AFca = min z (2.5)

s.t.
∑

(i,j,q)∈A

xijq −
∑

(j,k,q′)∈A

xjkq′ =


−z

0

z

for j = 0,

for j = 1, . . . , L− 1,

for j = L,

(2.6)

∑
(i,j,q)∈A

xijq −
∑

(j,k,q′)∈A:
q′∈[Q+1]\{q}

xjkq′ ≤ 0 for j = 1, . . . , L− 1, q ∈ [Q] (2.7)

∑
(i,j,q)∈A

j=i+lu,cu=q

xijq = du for u ∈ I, q ∈ [Q] (2.8)

z, xijq ∈ Z+ ∀ (i, j, q) ∈ A, q ∈ [Q] (2.9)

The objective (2.5) is to minimize the number of paths used. Constraints (2.6) guar-
antee the conservation of flow. Constraints (2.7) ensure that the amount of flow passing
through arcs of color q ∈ [Q] that arrive in a vertex j ∈ V cannot be greater than the
amount of flow emanating from j through arcs of any color other than q. Constraints (2.8)
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ensure that the demands be satisfied to equality for every item in I. Finally, Con-
straints (2.9) are the integrality constraints. Figure 2.4 shows a graph representing an
optimal solution of AFca for the example introduced in Figure 2.1.

0 1 2 3 4 5 6 7 8

2
1

2

1
1

1

Figure 2.4: Optimal solution of model AFca for the example of Figure 2.1. Arcs are
colored according to the item they represent, loss-arcs are represented with dashed lines,
and arc labels represent the amount of flow passing through it in the solution.

We claim that Constraints (2.7) guarantee the color constraints of the CBPP. The
idea is that if they are satisfied for a vertex j ∈ V , then there must exist a decomposition
of the solution into paths such that any path that passes through j arrives from an arc
of a different color than the one it leaves from. We show that, for each integer point
in the polytope defined by AFca, there exists a feasible solution to the CBPP associated
with it. We enunciate Lemmas 4 and 5, which help achieve this result with Lemma 6.
Furthermore, we show that any CBPP solution can be mapped into an integer point of
AFca with the same objective value, in Lemma 7.

Lemma 4. If any feasible solution (x̄, z̄) of AFca uses arcs from at least two different
colors, say a and b, and satisfy Constraints (2.7) to equality for both these colors at vertex
j ∈ V \ {0, L}, then the only arcs (i, j, q) ∈ A with x̄ijq > 0 have q ∈ {a, b}.

Proof. Since, in vertex j, x̄ satisfy Constraints (2.7) to equality for a and b we have that∑
(i,j,a)∈A

x̄ija =
∑

(j,k,q)∈A
q∈[Q+1]\{a}

x̄jkq =
∑

(j,k,q)∈A

x̄jkq −
∑

(j,k,a)∈A

x̄jka, (2.10)

∑
(i,j,b)∈A

x̄ijb =
∑

(j,k,q)∈A
q∈[Q+1]\{b}

x̄jkq =
∑

(j,k,q)∈A

x̄jkq −
∑

(j,k,b)∈A

x̄jkb. (2.11)
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Now, notice that∑
(i,j,q)∈A

x̄ijq ≥
∑

(i,j,a)∈A

x̄ija +
∑

(i,j,b)∈A

x̄ijb (2.12)

=
∑

(j,k,q)∈A

x̄jkq −
∑

(j,k,a)∈A

x̄jka +
∑

(j,k,q)∈A

x̄jkq −
∑

(j,k,b)∈A

x̄jkb (2.13)

= 2
∑

(j,k,q)∈A

x̄jkq −
∑

(j,k,a)∈A

x̄jka −
∑

(j,k,b)∈A

x̄jkb (2.14)

≥ 2
∑

(j,k,q)∈A

x̄jkq −
∑

(j,k,q)∈A

x̄jkq (2.15)

=
∑

(j,k,q)∈A

x̄jkq. (2.16)

Since any feasible solution must satisfy the flow conservation imposed by Constraints (2.6),
both inequalities above are, in fact, equalities. Thus, there cannot exist arcs arriving at
or emanating from j from any color other than a or b with positive value in x̄.

Corollary 1. For any feasible solution (x̄, z̄) of AFca and vertex j ∈ V \ {0, L}, the
number of colors that satisfy Constraints (2.7) to equality at j and

∑
(i,j,q)∈A x̄ijq > 0 is

at most 2.

We show that if a solution (x̄, z̄) is feasible, then there must exist a way to extract one
color-alternating path from 0 to L from (x̄, z̄) and keep the remaining solution feasible.
Color-alternating paths are those in which no arcs of the same color appear consecutively.
The following definition will help us understand when the removal of a specific pair of
arcs from (x̄, z̄) will result in an infeasible solution.

Definition 1. Given a feasible solution (x̄, z̄) of AFca, a vertex j ∈ V \ {0, L}, and an
arc (i, j, a), an arc (j, k, b) is blocked for (i, j, a) if a = b or there is a color q /∈ {a, b} such
that ∑

(i′,j,q)∈A

x̄i′jq =
∑

(j,k′,q′)∈A
q′∈[Q+1]\{q}

x̄jk′q′ .

Lemma 5. Given a feasible solution (x̄, z̄) of AFca, a vertex j ∈ V \ {0, L}, and an arc
(i, j, a) such that x̄ija > 0, there exists at least one unblocked arc (j, k, b) with x̄jkb > 0.

Proof. Since x̄ija > 0, then, by Corollary 1, the number of colors that satisfy Con-
straints (2.7) to equality for vertex j is either 0, 1, or 2. Thus, we have the following
cases.

If there are no colors that satisfy Constraints (2.7) to equality, then, by Constraint(2.7),
there is an arc (j, k, b) with b ̸= a with x̄jkb > 0, which is unblocked.

In case there is exactly one color c that satisfies Constraint (2.7) to equality, if c = a,
then any arc (j, k, b) with b ̸= a is unblocked and, by Constraint (2.7), there must be such
an arc with x̄jkb > 0. And, if c ̸= a, then, by Constraint (2.6),∑

(i′,j,a)∈A

x̄i′ja +
∑

(i′,j,c)∈A

x̄i′jc ≤
∑

(i′,j,q)∈A

x̄i′jq =
∑

(j,k′,q′)∈A
q′∈[Q+1]\{c}

x̄jk′q′ +
∑

(j,k′,c)∈A

x̄jk′c,
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thus as c satisfies Constraint (2.7) to equality and x̄ija > 0, there is an unblocked arc
(j, k, c) such that x̄jkc > 0.

Lastly, if there are two colors, c and c′, that satisfy Constraints (2.7) to equality, then
by Lemma 4 these are the only colors with arcs of positive flow in j. Therefore, without
loss of generality, c = a and, by Constraint (2.6),∑

(i′,j,a)∈A

x̄i′ja +
∑

(i′,j,c′)∈A

x̄i′jc′ =
∑

(i′,j,q)∈A

x̄i′jq =
∑

(j,k′,q′)∈A
q′∈[Q+1]\{c}

x̄jk′q′ +
∑

(j,k′,c′)∈A

x̄jk′c′ ,

from which we conclude that there is an unblocked arc (j, k, c′) such that x̄jkc′ > 0.

With Lemmas 4 and 5 in place, we can describe an algorithm to decompose a fea-
sible solution into color-alternating paths. Algorithm DecomposeAF takes an integer
feasible solution x̄, and the instance graph G(V,A) as input and produces a set of z

color-alternating paths.

DecomposeAF(x̄, z̄, V, A)

1 if z̄ = 0

2 return ∅
3 in = arbitrary arc (0, j, a) ∈ A with x̄0ja > 0

4 P = {in}
5 while j ̸= L

6 for each arc out = (j, k, b) ∈ A with x̄jkb > 0 and b ̸= a

7 for q = 1 to Q and q ̸= b

8 if
∑

(i,j,q)∈A x̄ijq =
∑

(j,k,q′)∈A:q′ ̸=q x̄jkq′

9 block arc out // Arc out is blocked by color q

10 if arc out is not blocked
11 P = P ∪ {out}
12 in = out , a = b, j = k

13 break
14 ď = min(i,j,q)∈P x̄ijq

15 for each arc (i, j, q) ∈ P

16 x̄ijq = x̄ijq − ď

17 z̄ = z̄ − ď

18 return {(ď, P )} ∪ DecomposeAF(x̄, z̄, V, A)

The idea is that with each call of DecomposeAF for a solution (x̄, z̄) of AFca, one
color-alternating path is removed from x̄ and added to the output while also maintaining
feasibility of the remaining solution. Then, by induction, the same algorithm can be
repeated to the remaining solution until there are no arcs with positive flow left.

Lemma 6. Algorithm DecomposeAF decomposes a solution x̄ of the model AFca into
color-alternating paths from 0 to L in G(V,A) with flow equal to z̄.

Proof. Condition in Line 1 is the base case, for when there is no positive flow in the
solution.
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The main loop, in Lines 5-13, iterates over V starting from the endpoint of the arc
chosen in the previous iteration until it reaches L. Loop in Lines 6-13 iterates over all arcs
with positive flow and color different from a to find an unblocked arc out with positive
flow. From Lemma 5, we know that this loop will always find such an arc, which is then
added to the current path and the loop continues from its endpoint. Line 14 computes
the smallest amount of flow ď, passing through the arcs in the recently formed path. This
is the amount of flow that can be removed from all arcs in the path while maintaining
the remaining solution feasible and setting at least one variable of the new solution (x̄, z̄)

to zero. The loop in Lines 15-17 decrements exactly ď from all variables representing arcs
in the recently formed path. At last, in Line 18, the current path and its multiplicity are
concatenated with the result of a recursive call of the algorithm on the remaining solution.

Notice that before the recursive call, the same amount of flow is removed from a set
of arcs connecting 0 to L, which in turn keeps Constraints (2.6) satisfied. Since none of
the removed pairs of arcs are blocked by any color, the remaining solution before any
recursive call to DecomposeAF is always feasible. Furthermore, since the amount of
flow removed from the arcs in each iteration is guaranteed to set at least one variable to
zero, this procedure is guaranteed to eventually stop (in at most O(|A|) steps).

Notice that, adding ď for every path P the value obtained is precisely z̄.

Lemma 7. Any feasible solution to the CBPP that uses z̄ bins can be represented as a
feasible solution of model AFca with objective value z̄.

Proof. Consider a feasible solution to the CBPP with objective value z̄. This solution
can be described as z̄ packing patterns. We must show that any packing pattern P can
be represented as a color-alternating path from 0 to L. For this, we select the first item u

of P (respecting the given order) and add one unit of flow to the arc corresponding to
that item, i.e. the arc of length lu and color cu emanating from 0, and repeat the process
starting from vertex 0 + lu with sequence P \ {u}. This procedure stops either when the
end of the sequence P or vertex L are reached, with the former being completed with a
loss-arc emanating from the current vertex and arriving in L.

Since P is a packing pattern, at any vertex j ∈ V there is exactly one unit of flow
arriving in j from an arc of color q and one unit of flow emanating from j from an arc of
color q′ ∈ [Q] \ {q}, thus Constraints (2.7) are satisfied to equality for color q in j. This
procedure is done for each packing pattern in the solution, and the resulting paths are
overlapped to form the solution to model AFca. Note that when all paths are overlapped,
although Constraints (2.7) might not be satisfied to equality because the same color q′

can be used for different incoming colors, they still hold. Lastly, for each feasible pattern,
one unit of flow is added only to a set of arcs that connect 0 to L, so Constraints (2.6)
are always satisfied.

With the results of Lemmas 6 and 7, we can finally state the following Theorem.

Theorem 2. The arc flow formulation AFca models the CBPP.
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2.3.3 Comparing AFml and AFca

Although they differ in graph representation, both models proposed in this section use
the same general idea of arc flow. These types of models typically present very strong
lower bounds for bin packing problems. In this section, we develop a correlation between
the linear programming relaxation of both proposed models.

First, we remark that model AFml is similar to the formulation proposed by Valério
De Carvalho [27] for the BPP, although modeled on a different graph to incorporate the
color constraints into the flow paths. The latter formulation has been shown to provide the
same linear programming lower bound as the set-covering model of Gilmore and Gomory
[15] for the BPP, which is the basis for the MIRUP conjecture, that states that the optimal
value of any instance is within one plus this lower bound rounded up [25].

In our case, the lower bound provided by AFml linear relaxation is the same as the lower
bound provided by the linear relaxation of the set-partition model (analogous to Gilmore
and Gomory [15]) in which all color constraints are handled exclusively in the pricing
subproblem.

Lemma 8. Given a feasible solution (x̄, z̄) of the linear relaxation of AFml, it is possible
to compute a corresponding solution (x̄′, z̄) that is feasible for the linear relaxation of the
AFca.

Proof. In this proof, we denote the set of arcs of the graph corresponding to formulation
AFca by A′.

For all (i, j, q) ∈ A′, let us define

x̄′
ijq =



∑
((i,q′),(j,q))∈A

q′ ̸=q

x̄iq′jq, if q ≤ Q,

∑
q′∈[Q]

∑
((i,q′),(j,q′))∈A

x̄iq′jq′ , otherwise,

where the second case corresponds to the loss-arcs, which only exist for j = L. We prove
that (x̄′, z̄) is a feasible solution for AFca.

Since (2.3) is feasible in x̄, for all u ∈ I and considering q = cu, we have that∑
(i,j,q′)∈A

j=i+lu,q′=cu

x̄′
ijq′ =

∑
(i,j,q)∈A
j=i+lu

∑
q′ ̸=q :

((i,q′),(j,q))∈A

x̄iq′jq =
∑

((i,q′),(j,q))∈A :
j=i+lu,q′ ̸=q

x̄iq′jq = du,

and, thus, we conclude that Constraints (2.8) are valid for x̄′.
Now, we can show that Constraints (2.6) hold, as x̄ satisfies Constraints (2.2). In fact,
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for all j ∈ {0, . . . , L}, we have that∑
(i,j,q)∈A′

x̄′
ijq −

∑
(j,k,q′)∈A′

x̄′
jkq′ =

∑
((i,q′),(j,q))∈A

x̄iq′jq −
∑

((j,q),(k,q′′))∈A

x̄jqkq′′

=


−z for j = 0, q = 0

0 j ∈ {1, . . . , L− 1}, q ∈ [Q]

z j = L, q ∈ [Q].

Finally, we can derive the validity of Constraints (2.7) as follows. For fixed j ∈
{0, . . . , L− 1} and q ∈ [Q], we have that∑

(i,j,q)∈A′

x̄′
ijq −

∑
(j,k,q′)∈A′

q′∈[Q+1]\{q}

x̄′
jkq′ =

∑
((i,q′),(j,q))∈A

x̄iq′jq −
∑

((j,q′′),(k,q′))∈A

x̄jq′′kq′ (2.17)

≤
∑

((i,q′),(j,q))∈A

x̄iq′jq −
∑

((j,q),(k,q′))∈A

x̄jqkq′ (2.18)

= 0, (2.19)

where Equation (2.17) follows from the fact that there are no loss-arcs with j < L,
Inequality (2.18) holds as x̄ ≥ 0 and Equation (2.19) follows from the flow conservation
imposed by Constraint (2.2).

Lemma 9. Given a solution (x̄, z̄) to the linear programming relaxation of AFca, it is
possible to compute a corresponding solution (x̄′, z̄) that is feasible for the linear relaxation
of AFml.

Proof. Consider that we run algorithm DecomposeAF with solution (x̄, z̄) and obtain
a set of color-alternating patterns P .

Now, for each path P = ((i0, i1, q1), (i1, i2, q2), . . . , (ik−1, ik, qk)) with i0 = 0 generated
from x̂, we define a path P ′ for AFml such that

P ′ = (((i0, q0), (i1, q1)), ((i1, q1), (i2, q2)), . . . , ((ik−1, qk−1), (ik, q
′)))

where q0 = 0 and q′ = qk−1 if (ik−1, ik, qk) is a loss-arc and q′ = qk otherwise. Finally, we
add ď units of flow to each arc in P ′, where ď is the amount of flow passing through the
path P in x̂, and we obtain a solution (x̄′, z̄) of AFml by combining the flow of every path
in P .

It is easy to see that, by construction, x̄′ is non-negative and satisfies the flow conser-
vation constraints and the demand constraints.

As a consequence of Lemmas 8 and 9, we can state the following theorem about the
strength of the linear relaxation of the proposed models.

Theorem 3. The lower bounds provided by the linear relaxation of formulations AFml

and AFca are the same.
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2.3.4 Graph Reduction

Both models presented in this section represent packing patterns as paths in digraphs
with at least L + 1 vertices. This makes the number of variables (and constraints) of
the models grow pseudo-polinomially with the bin capacity. To mitigate this, we use
a reduction technique known as normal patterns (also known as canonical dissections).
This technique was proposed independently by Herz [16] and Christofides and Whitlock
[9], and it reduces the number of packing points of a bin by showing that there will
always exist an optimal solution in which all items are packed in the leftmost position
available. The points of a bin in which it is possible to pack an item are defined as
{x =

∑
i∈I liπi : 0 ≤ x ≤ L, πi ∈ {0, 1}, for i ∈ I}. This set is computed through

a dynamic programming algorithm [10] before building the graph. The graph is then
created using only vertices that represent points in the normal patterns, thus achieving a
more compact graph while still preserving optimality.

Normal patterns is one of the most generic reduction techniques for packing points in
a bin. Although there exist other more aggressive reductions, such as meet-in-the-middle
proposed by Côté and Iori [10] and reflect proposed by Delorme and Iori [11] (specifically
for arc flow), those require extra investigative work to be adapted for the CBPP since the
order of the packing matters.

2.4 Exponential Models

In this section, we propose set-partition exponential models for the CBPP that represent
all packing patterns implicitly. These models can be solved through branch-and-price
or branch-cut-and-price algorithms, and usually present very strong upper bounds [12].
We use the VRPSolver generic scheme, proposed by Pessoa et al. [23, 24] to design such
models for the CBPP. With this scheme, we reduce the target problem into a variant
of the Vehicle Routing Problem (VRP), which is then solved by a black-box branch-and-
cut-and-price algorithm.

In the remainder of this section, we describe how the VRPSolver works in the context
of the CBPP, and then describe the two models proposed.

2.4.1 VRPSolver

VRPSolver is a generic branch-cut-and-price solver that incorporates several modern al-
gorithmic improvements such as rank-1 cuts with limited memory, path enumeration,
and rounded capacity cuts. It solves a variant of the VRP that is sufficiently general to
model many other variants of the VRP or even other problems such as the BPP and the
Generalized Assignment Problem. A model for the BPP using this framework was pro-
posed by Pessoa et al. [24], and showed remarkable results, overperforming other modern
algorithms designed specifically for the BPP. While we do not go into detail on how the
framework manages to generalize the key elements of the branch-cut-and-price algorithm,
we strongly recommend the paper by Pessoa et al. [24] to the interested reader.

The main concept of VRPSolver is to provide a formulation that can be solved by a



42

branch-cut-and-price algorithm in which the pricing problem is modeled as a Resource
Constrained Shortest Path problem (RCSP). The variables of the resulting paths are
linked to specifically designed objective function and constraints through mappings. These
constraints and objective function are then added to the original master formulation to
be solved by the branch-and-cut-and-price algorithm.

Resource Constrained Shortest Path Problem

An instance of the RCSP is composed of a directed multi-graph G = (V,A), a source
vertex vsource ∈ V , a sink vertex vsink ∈ V , and a set of resources R. For each arc a ∈ A,
there is a cost ca and, for each resource r ∈ R, there is a consumption value qar ∈ R. There
is a finitely accumulated resource consumption interval [lar, uar] for each resource r ∈ R

and arc a ∈ A. A path p = (vsource, a1, v1, . . . , an−1, vn−1, an, vsink) with n ≥ 1 is called
a resource constrained path of G if vi ∈ V , ai = (vi−1, vi) ∈ A (considering v0 = vsource
and vn = vsink) and, for each r ∈ R, the accumulated resource consumption at the j-th
vertex of p, Sj,r = max{laj ,r, Sj−1,r + qaj ,r} and is at most uaj ,r for all 1 ≤ j ≤ n, with
S0,r = 0. Let P be the set of all resource constrained paths of G. The objective is to find
a resource constrained path p ∈ P that minimizes the sum of the costs of the arcs used.

Let p be any resource constrained path of G, hp is a vector of integer variables that
describes which arcs are used in p, so for any arc a ∈ A, hp

a represents the number of times
arc a is used in path p. This concept will be useful for mapping resource constrained paths
to variables in the master formulation.

Modeling and Mappings

The VRPsolver’s restricted master problem formulation has three sets of variables. The
first set of n1 integer variables are mapped to the arcs of the RCSP graphs. The second
set of n2 integer variables are generic and allow modeling different constraints. Finally,
there is a non-negative integer variable λp for each path in the set of resource constrained
paths P considered in the restricted master problem.

For each variable of the first set, xj for j ∈ [n1], there must exist a mapping M(xj)

into a non-empty subset of arcs of the RCSP graph G. While not all arcs of G need to be
mapped into a variable of the model, it is still useful to define M−1(a) = {j|a ∈ M(xj)}.

Although the framework allows for multiple graphs to be used together for the same
model, we omit it from the formulation for simplicity, since this fact is not relevant in our



43

case. With this in mind, we can describe the master formulation as follows.

GMF =min

n1∑
j=1

cjxj +

n2∑
s=1

fsys (2.20)

s.t.
n1∑
j=1

αijxj +

n2∑
s=1

βisys ≥ di ∀ 1 ≤ i ≤ m, (2.21)

xj =
∑
p∈P

( ∑
a∈M(xj)

hp
a

)
λp ∀ 1 ≤ j ≤ n1, (2.22)

L ≤
∑
p∈P

λp ≤ U , (2.23)

λp ∈ Z+ ∀p ∈ P, (2.24)

xj , ys ∈ Z ∀ 1 ≤ j ≤ n1, 1 ≤ s ≤ n2, (2.25)

in which Equation (2.20) is a general linear objective function with c ∈ Rn1 and f ∈ Rn2

being cost vectors, Constraints (2.21) represents m general linear constraints over the
first two sets of variables, with α ∈ Rm×n1 and β ∈ Rm×n2 being the coefficient matrices
for these variables, and d ∈ Rm the right-hand side vector. Constraints (2.22) are the
mapping constraints, and ties variables of the first group to arcs in the RCSP graph.
Constraints (2.23) define lower bounds L and upper bounds U on the number of paths
used in the solution. Constraints (2.24)–(2.25) define the domains of variables.

With a specifically designed RCSP graph and the generic master formulation above,
we can define specific models for several problems in the literature.

Packing Sets

The VRPSolver framework generalizes many concepts used in state-of-the-art branch-
and-cut-and-price algorithms. Such concepts include ng-ranks, path enumeration, limited
memory rank-1 cuts, Ryan-Foster branching rule, branching over accumulated resource
consumption, and others. This is achieved with the introduction of Packing Sets.

Packing Sets of the VRPSolver model are defined as a collection P of mutually disjoint
subsets of arcs A, such that the arcs in each S ∈ P appear at most once in all paths that
are part of some optimal solution (x∗, y∗, λ∗) of the master problem, that is, for all S ∈ P ,∑

p∈P

(∑
a∈S h

p
a

)
λ∗
p ≤ 1. We refer to each element in P as a packing set.

The definition of the Packing Sets does not derive directly from the generic model,
thus it is a modeling task to properly define it and show its validity. Furthermore, some
features of the algorithm depend on the definition of the packing sets, and since some of
these features such as the Ryan-Foster branching rule are necessary for the correctness of
the model, the definition of packing sets becomes mandatory. We refer to Pessoa et al.
[24] for more information on Packing Sets and how they are used to generalize important
algorithmic concepts of this framework.

2.4.2 Color-Resources Partition Model for the CBPP

Consider a graph similar to the one presented by Pessoa et al. [24] for the BPP, that
is G = (V,A), with V = {v0, v1, . . . , v|I′|} with vsource = v0 and vsink = v|I′|, and A =
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{a+i , a−i : i ∈ I ′} where a+i = (vi−1, vi) and a−i = (vi−1, vi) for i ∈ I ′. Figure 2.5 shows a
generic representation of this graph.

As in the model for the BPP consider a resource r̄ ∈ R for the bin capacity L, with
qa+i ,r̄ = li and qa−i ,r̄ = 0 for i ∈ I and lv,r̄ = 0 and uv,r̄ = L for v ∈ V . Consider also,
for each color c ∈ [Q], a resource rc ∈ R with qa−i ,rc

= 0 and, qa+i ,rc
= 1 if ci = c or

qa+i ,rc
= −1 otherwise. Finally, for each color c ∈ [Q] and vertex v ∈ V , the bounds on

the accumulated resources are lv,rc = −|I ′|, and uv,rc = 1 if v = vsink and uv,rc = |I ′|
otherwise. Like in the BPP model, the packing sets are the singletons composed of the
positive arc of each item, that is P = ∪i∈I′{{a+i }}.

In this model, all color constraints are enforced in the pricing problem through the
RCSP graph. Whenever an item of color c is included in a resource constrained path
of G, one unit of resource rc is collected and one unit of resource is dropped for every
other rc′ such that c′ ̸= c. Through this procedure, we have the color discrepancy for the
path at each vertex, so we enforce that such color discrepancy be smaller than or equal
to 1 at the sink vertex for all colors. From Theorem 1, we know that this condition is
necessary and sufficient to guarantee the existence of a color-alternating permutation of
the items in the path. Since all color constraints are modeled in the RCSP, the master
formulation can be described with integer variables x0, x1, . . . , x|I′|, where x0 represents
the number of paths used, while xi indicates whether item i is covered in a path, and
mappings M(x0) = {a+1 , a−1 }, M(xi) = {a+i } for i ∈ I ′. The master formulation is given
by

minx0 (2.26)

s.t. xi = 1 ∀ i ∈ I ′, (2.27)

xi =
∑
p∈P

( ∑
a∈M(xi)

hp
a

)
λp ∀ i ∈ I ′, (2.28)

L ≤
∑
p∈P

λp ≤ U , (2.29)

λp, xi ∈ Z+ ∀ p ∈ P,∀i ∈ I ′ ∪ {0}, (2.30)

in which Equation (2.26) takes the place of Equation (2.20), and represents the objective
of minimizing the number of paths or packing patterns used. Constraints (2.27) takes the
place of the general Constraint (2.21), and enforce that each item appear in exactly one
path used in the solution. The remaining constraints, (2.28)–(2.30) are derived directly
from general master formulation. For the BPP, we can use L = 1 and U = |I ′| as trivial
bounds on the number of paths.

· · ·
v0 v1 v2 v3 v|I′|−1 v|I′|

a+1

a−1

a+2

a−2

a+3

a−3

a+|I′|

a−|I′|

Figure 2.5: RCSP graph for Color-Resources Partition Model.
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2.4.3 Colored-Clusters Partition Model for the CBPP

For our second model, we propose a denser graph, but with only one resource constraint.
Let G = (V,A) be our colored-clusters graph. The set of vertices is V = {vsource, vsink} ∪
{vi : i ∈ I ′} ∪ {vinc , voutc : c ∈ [Q]}. And the set of arcs is A = {asourcei , asinki , aini , aouti : i ∈
I ′} ∪ {ac′c = (voutc , vinc′ ) : c, c

′ ∈ [Q], c ̸= c′} where, for i ∈ I ′, asourcei = (vsource, vi), asinki =

(vi, vsink), aini = (vinci , vi), and aouti = (vi, v
out
ci

).
In this graph, there exists one vertex per item as well as one inbound and one outbound

vertex for each color. Arcs connect items to their respective inbound colors and outbound
colors to all their items. Furthermore, there are arcs connecting each inbound color vertex
to every other outbound color vertex. At last, there are arcs connecting the source to each
item vertex and from each item vertex to the sink. Hence, all paths in G will alternate
between item vertices and color vertices and, since there are only arcs connecting inbound
vertices to outbound vertices of different colors, there can be no consecutive items from
the same color in a path. Thus, all color constraints are modeled in the RCSP. Figure 2.6
shows a representation of this graph for a simple instance with 2 colors and 3 items of
each color.

v1 v2 v3 v4 v5 v6

vin1

vout1

vin2

vout2

src

snk

src

snk

Figure 2.6: RCSP graph for the Colored-Clusters Partition Model for an instance with
2 colors and 3 items of each color. Vertices vsource and vsink appear on both sides of the
graph as src and snk respectively to simplify the drawing.

Since there is only one resource for the capacity L, so we omit the resource index in
the consumption notation. Thus, we have, qasourcei

= qaini = li, and qasink
i

= qaouti
= 0, for

i ∈ I ′, and qac′c = 0 for c, c′ ∈ [Q] with c ̸= c′.
Finally, the bounds on the accumulated resources are lv = 0 and uv = L for all v ∈ V

and the packing sets are defined as P = ∪i∈I′{{asourcei , aini }}. Since each item must be
included exactly once in an optimal solution, we know that such a solution path will either
include an arc from the source to the item vertex vi or an arc from the inbound color
vertex vinci to the item vertex vi for i ∈ I ′.

Since all color constraints are modeled in RCSP, the master formulation can, once
again, be described with integer variables x0, x1, . . . , x|I′|, and mappings M(x0) = {asource1 ,

asource2 , . . . , asource|I′| }, and M(xi) = {asourcei , aini } for i ∈ I ′. With this graph and mappings,
we can use Formulation (2.26)–(2.30) to solve the CBPP.
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2.5 Numerical Experiments

In this section, we discuss numerical experiments used to evaluate all the proposed mod-
els. Since, to the best of our knowledge, there are no benchmarks for the CBPP in the
literature, we propose our own set of instances. In Section 2.5.1, we describe our proposed
benchmark set, and in Section 2.5.2 we discuss the experimental results.

2.5.1 Benchmark Instances

We propose three different sets of instances, with different levels of complexity. Each set
is described below.

Uniform Randomly Generated Instances It is composed of instances with var-
ied item lengths and bin capacities, similar to those proposed by Borges et al. [7] for a
class constrained version of the BPP. This group of instances is represented by a tuple
(M,L,Q,W ). The value of M corresponds to the number of items in the instance, and we
consider M ∈ {300, 500}. The value of L corresponds to the capacity of bins, and we con-
sider L ∈ {500, 750, 1000}. The value of Q corresponds to the number of different colors of
items, and we consider Q ∈ {2, 7, 15}. The value of W corresponds to the range for the
length of items relative to the bin capacity, and we consider W ∈ {[0.1, 0.8], [0.01, 0.25]}.
We generate 10 instances for each tuple, resulting in 360 total instances.

Randomly Generated Instances with Zipf Distribution of Colors It is composed
of randomly generated instances in which the number of items of each color is uneven. In
this set, we have instances in which there are few colors with many items and many colors
with only a few items. This characteristic is useful to model, for instance, the application
of packing content in pages on a social media platform, in which we must alternate
advertisements and other types of content while having most adverts come from only a
few advertisers. The Zipf distribution [19] has been used before to model data placement
applications with such locality properties [30]. Instances in this set are represented by a
tuple (M,L). The value of M represents the number of items, and M ∈ {300, 500}. The
value of L represents the capacity of the bins, and L ∈ {300, 500, 750}. The lengths of
items are generated randomly with a uniform distribution in the interval of [0.01, 0.25],
relative to the bin capacity. All colors are drawn according to a Zipf distribution with
α = 2. We generate 10 instances for each tuple, totaling 60 instances in this set.

Instances Adapted from BPP Literature It is composed of hard instances adapted
from BPPLIB [13]. This group is divided into 94 instances in which the integer round-up
property holds (AI), and 60 instances in which the integer round-up property does not hold
(ANI). We used only instances from which an optimal solution was known. All optimal
solutions used were taken from Delorme and Iori [11]. Given an AI or ANI instance,
for each bin in its optimal solution, the items are sorted in a non-increasing order and
colored the first half with one color and the second half with a different color. This would



47

guarantee that the same configuration of items in that optimal solution would be feasible
in the CBPP (by Theorem 1), thus maintaining the same optimal solution value.

2.5.2 Computational Results

We have implemented all the proposed models to evaluate their performance. The pseudo-
polynomial models of Section 2.3 were implemented in C++11, using Gurobi version 9.03
for solving MILP models. The exponential models of Section 2.4 were implemented in
Julia version 1.2, using VRPSolver beta v0.3, and CPLEX version 12.8 for solving the
underlying LP models. Experiments were run on Intel (R) Xeon (R) CPU E5–2630 v4
with 10 cores at 2.20GHz, 64 GB of RAM, and running on Ubuntu 18.04.2 LTS with
Linux 4.15.0–45–generic.

For the pseudo-polynomial models, we have implemented a simple FF-like heuristic
to obtain a simple initial feasible solution. For the exponential models, VRPSolver has a
diving heuristic that is run periodically during the search in order to find feasible solutions.
None of the models were provided with cutoff values to reduce the solution space. All
models were solved with the single-thread mode of their respective solvers. We consider
a time limit of 1800 seconds for each instance.

Results on Uniform Randomly Generated Instances

We start by evaluating the proposed models on the set of Uniform Randomly Generated
Instances. This is the largest of the proposed sets and covers a wide variety of cases.
Since, for the CBPP, the color constraints are enforced on the adjacency of items, it
makes sense to investigate instances in which many items can be packed in the same bin.
For this reason, half of the instances in this set contain only items with lengths of at most
one-quarter of the bin capacity, thus fitting at least four items in any maximal packing
pattern. This set also tests the relevance of having many different colors, since the number
of colors ranges from 2 to 15.

Tables 2.1 and 2.2 show the results for all models on the first instance set. In Table 2.1
we see the results for instances with item length relative range W = [0.1, 0.8], while
Table 2.2 has the results of all instances with item length relative range W = [0.01, 0.25].

The color-alternating arc flow model of Section 2.3.2 (hereafter referred to as CA-AF)
shows good results for this instance set, optimally solving 231 out of the 360 instances
(65%) with a relatively low average gap on the classes it does not solve completely. All
instances with W = [0.1, 0.8] are solved to optimality in under a minute on average. How-
ever, the results are not as impressive when it comes to instances with W = [0.01, 0.25].
Only 51 out of 180 (28%) of these instances are solved to optimality, with average times
coming closer to the time limit even on classes where half of the instances are solved
optimally. This discrepancy can be explained by the fact that the number of arcs in the
graph increases dramatically with the number of items that can be packed in a single bin,
resulting in a model with many more variables in cases with W = [0.01, 0.25]. The largest
instance in this subset to be solved to optimality by this model has 500 items, 500 of bin
capacity, and 15 colors.
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CA-AF ML-AF CC-partition CR-partition

M L Q opt time gap opt time gap opt time gap opt time gap

300 500 2 10 3 0 10 4 0 10 95 0 10 42 0
300 500 7 10 9 0 10 30 0 10 146 0 10 761 0
300 500 15 10 8 0 10 105 0 9 341 – 10 1118 0
300 750 2 10 9 0 10 6 0 10 85 0 10 82 0
300 750 7 10 9 0 10 60 0 8 589 – 10 712 0
300 750 15 10 16 0 10 235 0 9 419 – 10 1176 0
300 1000 2 10 8 0 10 8 0 10 205 0 10 73 0
300 1000 7 10 16 0 10 81 0 10 251 0 10 982 0
300 1000 15 10 20 0 10 319 0 9 427 0.001 10 1243 0
500 500 2 10 16 0 10 10 0 10 323 0 10 193 0
500 500 7 10 13 0 10 99 0 6 1053 0.002 10 1204 0
500 500 15 10 20 0 10 234 0 6 1167 – 8 1460 0.001
500 750 2 10 23 0 10 18 0 10 593 0 10 262 0
500 750 7 10 45 0 10 140 0 8 938 – 9 1400 0
500 750 15 10 44 0 10 552 0 7 1166 – 7 1721 –
500 1000 2 10 25 0 10 19 0 10 573 0 10 418 0
500 1000 7 10 43 0 10 207 0 7 1060 – 9 1530 –
500 1000 15 10 54 0 9 947 0.1 9 555 – 3 1770 –

Average 10 21.1 0 9.9 170.7 0.006 8.7 554.7 – 9.2 897.1 –

Table 2.1: Results for all models on Uniform Randomly Generated Instances set with
W = [0.1, 0.8]. Columns M,L,Q represent the number of items in the instance, the bin
capacity, and the number of colors respectively. For each of the proposed models, we have
a column opt showing the number of instances of that class (out of 10) that were solved
to proven optimality, time which represents the average time in seconds, and gap which
represents the average of the optimality gap computed as (UB − LB)/UB.

Comparatively, the multilayered arc flow model of Section 2.3.1 (hereafter referred to
as ML-AF) shows milder results. Only 218 out of the 360 instances (60%) are solved
optimally while failing to even find a lower bound before the time limit in several of the
instances it does not solve. When considering only instances with W = [0.1, 0.8], all but
one are solved to optimality in a few hundred seconds on average. On the other hand, for
instances with W = [0.01, 0.25], the model was able to solve only 39 out of 180 (21%).
Also, for this subset, the model is only able to reliably find lower bounds for instances
with 2 colors. This can be explained by the fact that the number of vertices in the graph,
for this model, grows by an order of M for every color considered, making it difficult to
even solve the root node of the MILP for instances with a large enough number of vertices
and colors. The largest instance in this subset to be solved to optimality by this model
has 500 items, 750 of bin capacity, and 2 colors. Since this model has fewer constraints
than the previous one, it may outperform CA-AF in specific cases where the number of
colors is small enough, which can be observed in instances with Q = 2.

For the colored-clusters partition model of Section 2.4.3 (hereafter referred to as CC-
partition) we have the worst results out of the models tested in this set. A total of
158 out of 360 instances (43%) were optimally solved, with none of them being from
the subset with W = [0.01, 0.25]. Even for the subset with W = [0.1, 0.8], it was not
able to find a feasible solution for many cases, resulting in the impossibility of even
computing an optimality gap (shown as “–” in the tables). Since this is a pattern-based
model, the inability to solve instances with W = [0.01, 0.25] can be explained by the fact
that the number of possible patterns considered is comparatively higher for these cases.
Furthermore, each pattern is generated as a resource constrained path, which also grows
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CA-AF ML-AF CC-partition CR-partition

M L Q opt time gap opt time gap opt time gap opt time gap

300 500 2 9 576 0.053 10 733 0 0 1982 – 10 130 0
300 500 7 4 1373 0.045 0 1801 0.508 0 1999 – 0 1023 –
300 500 15 7 1117 0.039 0 1803 1 0 1934 – 0 1024 –
300 750 2 8 1188 0.096 7 970 0.007 0 1991 – 10 195 0
300 750 7 1 1698 0.096 0 1802 1 0 2012 – 0 1034 –
300 750 15 0 1801 0.16 0 1804 1 0 1920 – 0 1037 –
300 1000 2 3 1557 0.304 9 964 0.005 0 1918 – 10 384 0
300 1000 7 1 1791 0.234 0 1803 1 0 2033 – 0 1045 –
300 1000 15 2 1732 0.223 0 1806 1 0 1901 – 0 1048 –
500 500 2 5 1387 0.219 8 926 0.003 0 1847 – 10 462 0
500 500 7 6 1457 0.056 0 1802 1 0 1862 – 0 1069 –
500 500 15 5 1535 0.042 0 1805 1 0 1835 – 0 1071 –
500 750 2 0 1801 0.409 5 1486 0.012 0 1826 – 10 523 0
500 750 7 0 1801 0.307 0 1803 1 0 1851 – 0 1094 –
500 750 15 0 1802 0.282 0 1808 1 0 1821 – 0 1101 –
500 1000 2 0 1801 0.46 0 1801 0.046 0 1829 – 9 834 –
500 1000 7 0 1802 0.316 0 1805 1 0 1835 – 0 1134 –
500 1000 15 0 1803 0.314 0 1810 1 0 1821 – 0 1138 –

Average 2.8 1556.7 0.203 2.1 1585.1 0.643 0 1900.9 – 3.27 852.5 –

Table 2.2: Results for all models on Uniform Randomly Generated Instances set with
W = [0.01, 0.25]. Captions in this table should be interpreted as in Table 2.1.

with the number of items that can be accommodated in the same bin, making the column
generation phase more difficult in these cases.

On the other hand, the color-resources partition model of Section 2.4.2 (CR-partition)
has shown to be very competitive. It was able to solve 225 out of 360 instances (62%)
to optimality, although with a considerably higher average time. In the subset with
W = [0.1, 0.8], 166 out of 180 were optimally solved while failing to find upper bounds for
some of the larger instances. Similarly to ML-AF, this model seems to perform its best in
instances with only a few colors, as observed in cases with Q = 2. In fact, for the subset
with W = [0.01, 0.25], all but one of the instances with Q = 2 were solved to optimality.
For instances with Q > 2 in this subset, the model was interrupted before the time limit
because of memory constraints, so it was not able to produce an optimality gap. The
reason for such problems may be because the color constraints are enforced as resource
constraints in the column generation phase, instead of being represented as special vertices
in the path like in CC-partition. Though this may result in a relative performance gain
for a smaller number of colors, models with a higher number of resource constraints tend
to be significantly more difficult. Furthermore, since branching on accumulated resource
consumption is used, this may result in a very large branch-and-bound tree, possibly
causing memory issues for large enough instances. The largest instance in this subset to
be optimally solved has 500 items, 1000 of bin capacity, and 2 colors.

Results on Randomly Generated Instances with Zipf Distribution of Colors

We evaluate the proposed models on the set of Randomly Generated Instances with Zipf
Distribution of Colors. In this relatively smaller instance set, we investigate the impact
of the color constraints in the models by presenting cases with an unbalanced number
of items for each color as well as a high number of total colors (up to 37). In this set,
all instances have lengths in the interval of [0.01, 0.25] relative to the bin capacity, so
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maximal packings tend to contain several items. Since many items can be of the same
color, it can be extremely difficult to find efficient packings.

CA-AF ML-AF
M L opt time gap opt time gap

300 300 8 509 0.049 3 1732 0.700
300 500 9 539 0.060 0 1805 1
300 750 9 897 0.002 0 1807 1
500 300 10 176 0 0 1806 0.941
500 500 8 1022 0.111 0 1810 1
500 750 4 1665 0.291 0 1816 1

Average 8 801.3 0.085 0.5 1796 0.94

Table 2.3: Results for arc flow models on Randomly Generated Instances with Zipf Dis-
tribution of Colors set. Column M represents the number of items in the instance, and
L is the bin capacity considered. Each model has a set of columns opt, time, and gap
meaning, respectively, amount of instances to be solved optimally (out of 10), average
time in seconds, and average gap computed as (UB − LB)/UB.

Table 2.3 shows a summary of the results for this set. Following a trend observed in
the previous instance set, model CC-partition failed to solve any of the instances in this
set, so we decided to omit it from the reports. Due to the high number of colors considered
in all instances of this set, model CR-partition failed to even load most of them due to
memory constraints, so this model is also omitted from the reports.

Model CA-AF was able to optimally solve 48 out of 60 instances (80%) in this set,
while ML-AF was only able to solve 3 to optimality (0.05%). This was expected since we
knew from previous analysis that ML-AF could only surpass CA-AF in cases with a very
small number of colors. We can also notice that despite the significantly larger number of
colors, CA-AF was faster on average and solved more instances when compared to similar
instances in the Uniform Randomly Generated Instances set. This shows that, unlike any
of the other proposed models, CA-AF is reasonably efficient in dealing with high-degree
color constraints.

Results on Instances Adapted from BPP Literature

We evaluate the proposed models on the set of Instances Adapted from BPP Literature.
In this set, we adapt difficult instances from the BPP literature, namely the AI and ANI
instances, to instances of the CBPP. These instances have specific properties to their lower
bounds while solved by a classic set-cover formulation, so to maintain these properties,
we guarantee that the optimal solution value is maintained when adapting them to the
CBPP. Additionally, we consider only two colors in the adaptation, so all models can
be competitive. For more details on the original instances and their properties, we refer
to Delorme et al. [13]. Table 2.4 shows the results for all models in this instance set.

Model CA-AF was only able to solve the smaller instances of each set, being 42 out
of 94 (44%) from AI and 39 out of 60 (65%) from ANI. The model was unable to even
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CA-AF ML-AF CC-partition CR-partition

instance # opt time gap opt time gap opt time gap opt time gap

201_2500_AI 50 42 951 0.003 39 1099 0.023 45 392 0.002 46 386 0.001
402_10000_AI 36 0 1805 1 0 1804 1 25 994 – 32 1105 –
600_20000_AI 8 0 1816 1 0 1813 1 2 1759 – 0 2271 –
201_2500_ANI 49 39 846 0.005 44 791 0.042 41 784 – 48 471 0

402_10000_ANI 11 0 1804 1 0 1804 1 1 1772 – 0 1810 –

Average 16.2 1444.4 0.601 16.6 1462.2 0.613 22.8 1140.2 – 25.2 1208.6 –

Table 2.4: Results for all models on Instances Adapted from BPP Literature. Column
instance describes the original instance class, with the first number being an approxima-
tion of the number of items, and the second number an approximation of the bin capacity.
Column # shows the number of instances for each class. Each model has a set of columns
opt, time, and gap meaning, respectively, amount of instances to be solved optimally, the
average time in seconds, and the average gap computed as (UB − LB)/UB.

compute a lower bound for any instance of size greater than 200. This was expected since
the AI and ANI sets are very difficult for simpler arc flow models. Advanced reduction
techniques are often required to deal with such instances in the BPP, such as the reflect
model of Delorme and Iori [11] or the meet-in-the-middle model of Côté and Iori [10].
Because of the nature of the color constraints, such techniques cannot be trivially adapted
to the CBPP.

Model ML-AF does slightly better than CA-AF, solving 39 out of 94 instances (41%)
from AI and 44 out of 60 (73%) from ANI. Similarly to the previous model, only instances
of size 200 were solved. This result was expected, due to ML-AF outperforming CA-AF
in cases with only a few colors in previous experiments. Since this set only has instances
with 2 colors, ML-AF presents a smaller number of constraints when compared to CA-AF,
which may explain the slightly better results.

We expected the exponential models to perform very well in this set, due to previous
results of VRPSolver BPP models [24] even surpassing those of Delorme and Iori [11].
This was confirmed, with both partition models performing similarly well. CC-partition
solved 72 out of 94 instances (76%) from AI and 42 out of 60 (70%) from ANI, while
CR-partition solved 78 out of 94 instances (82%) from AI and 48 out of 60 (80%) from
ANI. Interestingly, although model CR-partition was able to solve more instances in
total, model CC-partition was the only one to solve 2 instances from AI with size 600 and
one instance from ANI with size 400. This shows us that both these models have a high
potential for solving difficult instances for cases when the number of colors is 2.

2.6 Concluding Remarks

In this work, we study the Colored Bin Packing Problem under an exact approach. We
start by proposing a generalization of the arc flow model of Valério De Carvalho [27],
using multiple layers to represent different colors (ML-AF). Then, we propose a novel arc
flow formulation with color-alternating constraints (CA-AF) and demonstrate that the
additional constraints are sufficient to model the CBPP without having to use one layer
per color. Furthermore, we prove that the two arc flow models are equivalent in terms
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of linear relaxation strength. We also present two set-partition models (CC-partition and
CR-partition) to be solved by a branch-cut-and-price algorithm through a reduction to
a general Vehicle Routing Problem with VRPSolver. A diverse benchmark set is also
proposed to evaluate the models.

Experimental results comparing all the proposed models are presented. Among the
ones considered, the CA-AF can solve the most instances, the largest of which has 500

items and 37 colors. However, when only two colors are considered, the set-partition
models are shown to outperform the other models.

It would be interesting to investigate, in the future, the use of the characterization of
feasible solutions given in Theorem 1 to design efficient heuristics and meta-heuristics for
the CBPP. This characterization can also pave the way for new approximation algorithms
for the CBPP or even approximation schemes for a colored variant of the knapsack prob-
lem. Good algorithms for the colored variant of the knapsack problem may lead to a good
branch-and-price algorithm to solve the set-partition model based on the formulation of
Gilmore and Gomory [15].
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Chapter 3

Algorithms for the Bin Packing
Problem with Scenarios

Abstract This paper presents theoretical and practical results for the bin packing prob-
lem with scenarios, a generalization of the classical bin packing problem which considers
the presence of uncertain scenarios, of which only one is realized. For this problem, we
propose an absolute approximation algorithm whose ratio is bounded by the square root
of the number of scenarios times the approximation ratio for an algorithm for the vector
bin packing problem. We also show how an asymptotic polynomial-time approximation
scheme is derived when the number of scenarios is a constant. As a practical study of the
problem, we present a branch-and-price algorithm to solve an exponential model and a
variable neighborhood search heuristic. To speed up the convergence of the exact algo-
rithm, we also consider lower bounds based on dual feasible functions. Results of these
algorithms show the competence of the branch-and-price in obtaining optimal solutions for
about 59% of the instances considered, while the combined heuristic and branch-and-price
optimally solved 62% of the instances considered.

Keywords Bin Packing Problem; Scenarios; Approximation Algorithm; Variable Neigh-
borhood Search; Branch-and-Price Algorithm;

3.1 Introduction

Cutting and packing problems have been widely studied in the context of Operations Re-
search, mainly because of their properties and real-world applicability [51]. Among these
problems, the Bin Packing Problem (BPP) asks to pack a set of one-dimensional items,
each of a given size, into the least possible number of bins of given identical capacities,
where the total size of items in a bin does not exceed the bin capacity. Several variants of
this problem have been studied in the literature, either due to their theoretical interest,
or their high applicability in different industries [48, 19].

The BPP and its variants have been extensively investigated since the thirties [40].
Such problems are among the most studied in approximation contexts. A recent survey
by Coffman et al. [18] presented over 180 references related to approximation results
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for the BPP and its variants. In particular, the BPP is shown to be APX-hard, and
indeed no algorithm has an approximation factor smaller than 3/2, unless P = NP [50].
Regarding practical techniques for the BPP, a survey by Delorme et al. [25] reviewed
models and solution methods, and experimentally compared the available software tools to
solve the problem. Recent practical contributions for the BPP include the generalized arc-
flow formulation by Brandão and Pedroso [11], the cooperative parallel genetic algorithm
by Kucukyilmaz and Kiziloz [41], the reflect formulation by Delorme and Iori [24], the
branch-and-cut-and-price algorithm by Wei et al. [52] and the framework of de Lima et al.
[21].

Several variants of the BPP have also been extensively investigated in the literature.
For example, in the variant with fragile objects, the capacity of a bin is directly influenced
by its most fragile item [17]. In the BPP with precedence constraints, a precedent item
cannot be packed in a bin later than its successors [43]. The variant with overlapping items
assumes that some subsets of items, when packed in the same bin, occupy less capacity
than the sum of their individual size [35]. In the BPP with item fragmentation, items
can be split and fragmentally packed [7]. In the generalized BPP, bins may have different
cost and capacity and items are associated to a profit and are divided by compulsory (i.e.,
mandatory to load) and non-compulsory. The aim is to minimize the overall cost based
on the bins cost and items profit [3]. In the online BPP, items arrive sequentially and
each must be packed before the arrival of the next one, with no information about the
next items [4]. The temporal variant considers one additional dimension in the BPP, and
the bin capacity should not be violated at any unit of a discretized time horizon [22].

One of the current challenges to solving practical logistic problems is to deal with
the uncertainty arising from real-world applications [47, 55, 39, 2]. In particular, one
popular way to deal with this issue is by describing scenarios. A scenario is defined as a
possible outcome that may arise depending on the problem’s uncertain variables. Some
authors use scenarios to consider the problem description as combinatorial rather than
stochastic, as, e.g., Feuerstein et al. [29]. Considering the scarcity of works that apply this
concept of scenarios to deal with uncertainty in bin packing problems and the existence of
practical applications, Bódis and Balogh [9] recently introduced the Bin Packing Problem
with Scenarios (BPPS).

The BPPS is a generalization of the BPP where each item belongs to a subset of
scenarios, and a packing must respect the capacity constraints of the bins for each scenario
individually. Whilst the set of scenarios is known in advance, only one of the scenarios
will be realized. This introduces the possibility of packing in a single bin items whose
combined sizes surpasses the bin capacity, as long as the bin capacity is respected in each
individual scenario. Although Bódis and Balogh [9] introduced three objective functions
for the BPPS, we are concerned with the objective of minimizing the number of bins of
the worst-case scenario, which is the most challenging one. In this way, the BPP is the
particular case of the BPPS where there is a single scenario.

A generalization of the BPP that is similar to the BPPS is the Vector Bin Packing
Problem (VBPP), where bins and items have multiple dimensions and the bin capacity
must be respected in all of its dimensions. The objective is the same as in the BPP, to
minimize the number of bins. Caprara and Toth [13] presented lower bounds, heuristics,
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and a branch-and-bound (B&B) algorithm for the VBPP with two dimensions. Alves
et al. [1] investigated dual feasible functions for this problem. Buljubašić and Vasquez
[12] proposed a local search algorithms where a Tabu search and descent search with add
and drop moves were used to explore the search space. In Hu et al. [38], a set-covering
model is solved by a branch-and-price (B&P) algorithm. In Heßler et al. [37], there is a
stabilized branch-and-price algorithm with dual optimal cuts. Recently, Wei et al. [53]
developed a branch-and-price algorithm for the vector packing with two dimensions, where
a goal cut approach is used to obtain lower bounds and a dynamic programming with
branch-and-bound solves the pricing problem, improving previous results of the literature.

To the best of our knowledge, the recent work by Bódis and Balogh [9] is the only one in
the literature concerned with the BPPS. Motivated by its interesting theoretical aspects,
its general applicability and its relation to well-studied problems, this paper proposes
theoretical and practical results for the BPPS. The contributions of the current work are
the following: (i) an absolute approximation algorithm for the BPPS based on the VBPP;
(ii) an asymptotic polynomial time approximation scheme (APTAS) for the version of the
problem with a constant number of scenarios; (iii) an exact method for the problem based
on a branch-and-price algorithm for an exponential Integer Linear Programming (ILP)
model; and (iv) a Variable Neighborhood Search (VNS) heuristic.

This paper is organized as follows. In Section 3.2 we provide formal definitions to be
used to contextualize the contributions of the paper. In Section 3.3, we show that an
approximate solution of the BPPS can be obtained by solving an instance of the VBPP,
leading to an absolute approximation algorithm for the BPPS. In Section 3.4, we present
an APTAS for the BPPS, when the number of scenarios is a constant. As for practical
results, Section 3.5 describes a VNS algorithm for the BPPS and Section 3.6 presents a
branch-and-price algorithm to solve an exponential model for the BPPS. The evaluation
of the proposed VNS and branch-and-price algorithms is performed in Section 3.7, from
experiments based on the solution of randomly generated instances. Finally, Section 3.8
presents the conclusions and directions for future research.

3.2 Formal Definitions

In this section, we provide some definitions to contextualize the contributions of this work.
For simplicity, throughout the paper, we denote, for any natural n, the set {1, . . . , n}
simply by [n].

Bin Packing Problem with Scenarios (BPPS) In the BPPS, we are given a number
d of scenarios, a set I = [n] of n items, with each i ∈ I having a size si ∈ Q+ and a set
of scenarios Ki ⊆ [d], and an unlimited number of identical bins of capacity W ∈ Q+.
For each k ∈ [d], the set of items in scenario k is denoted by Sk = {i ∈ I | k ∈ Ki}. A
solution B of the BPPS is a partition of I such that for each part B ∈ B and for each
scenario k ∈ [d],

∑
i∈B∩Sk

si ≤ W . The objective of the BPPS is to find a solution that
minimizes

VBPPS(B) = max
k∈[d]

|{B ∈ B : B ∩ Sk ̸= ∅}|.
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The objective corresponds to minimize the number of bins of the worst-case scenario,
i.e., the scenario with the largest number of bins. A closely related problem is the VBPP.

Vector Bin Packing Problem (VBPP) In the VBPP, we are given a number d

of resources, a set I = [n] of n items, each i ∈ I having a vector si ∈ Qd
+ of resource

consumption, and an unlimited number of identical bins of resource capacity given as a
d-dimensional vector W = (w1, w2, . . . , wd) ∈ Qd

+. A solution B is a partition of I such
that for each part B ∈ B and each resource k ∈ [d],

∑
i∈B sik ≤ wk. The objective is to

find a solution that minimizes
VVBPP(B) = |B|.

The VBPP is a generalization of the BPP, and thus it is also APX-hard. Woeginger
[54] showed that there is no APTAS for the two-dimensional version of this problem unless
P = NP. Chekuri and Khanna [14] gave an asymptotic O(ln d)-approximation for the case
where d is a fixed constant. Later on, this result was improved to 1+ ln d by Bansal et al.
[5]. Also, as noted by Christensen et al. [15], the APTAS of Fernandez de la Vega and
Lueker [28] implies a (d+ ε)-approximation for the VBPP.

For the theoretical results of this paper in Sections 3.3 and 3.4, we assume, without
loss of generality, that the instances of the BPPS and the VBPP are normalized by a
proper scaling of the items, so that the capacity of the bins corresponds to 1 on each
dimension.

An important concept in both theoretical and practical results for the BPP and related
variants is the one of cutting pattern: a feasible combination of items in a single bin. For
the BPPS, we represent a cutting pattern as a vector p = (a1p, . . . , anp, b1p, . . . , bdp) of
binary coefficients, such that: each coefficient aip is equal to 1 if and only if item i is in
pattern p, and each coefficient bkp is equal to 1 if and only if some item of the scenario k

is in pattern p. We denote by P the set of all feasible patterns for the BPPS.

3.3 An Absolute Approximation Algorithm

In the following, we consider a mapping between the set of instances of the BPPS and a
subset of instances of the VBPP. Starting with a normalized instance I = (d, I,K, s) of
the BPPS, we construct a normalized instance I ′ = (d, I, s′) of the VBPP. For that, let,
for each i ∈ I and k ∈ [d],

sik =

{
si if i ∈ Sk,

0 otherwise.

It is simple to verify that a solution B for I is a solution for I ′, and vice-versa.

Definition 2. A solution B is minimal for the BPPS if, for any two bins A,B ∈ B, there
exists a scenario k, such that ∑

i∈A∩Sk

si +
∑

i∈B∩Sk

si > 1.
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Notice that the value of B for the BPPS is not larger than the value of B for the
VBPP. In the opposite direction, we have Theorem 4.

Theorem 4. If B is a minimal solution for the BPPS, then VVBPP(B) ≤
√
dVBPPS(B).

Proof. We say that two bins A and B are incompatible in a scenario k if both bins, A
and B, are non-empty in scenario k. Let G be a multigraph where each bin represents a
vertex, and for each pair of bins A and B and scenario k, there is one edge between A

and B (labeled as k) if they are incompatible in k.
For each scenario k ∈ [d], we define hk = |{B ∈ B : B∩Sk ̸= ∅}|, i.e., hk is the number

of bins used by B in k. Let h = maxk∈[d] hk, and notice that, since, for each scenario,
there is an edge for each two used bins, the number of edges in G is

|E(G)| =
d∑

k=1

hk(hk − 1)

2
≤ d

h(h− 1)

2
.

Let r be the number of bins. Since B is minimal, any two bins are incompatible in
at least one scenario and G must have at least one edge between any two vertices, i.e.,
|E(G)| ≥ r(r−1)

2
. Thus,

r(r − 1)

2
≤ d

h(h− 1)

2
,

and, since r ≤ dh, as each bin is non-empty in at least one scenario, we have that

r2 ≤ dh2 + r − dh ≤ dh2.

The result follows as r = VVBPP(B) and h = VBPPS(B).

Corollary 2. Suppose there exists an α-approximation for the VBPP, then there exists
an α

√
d-approximation for the BPPS.

Proof. Consider an instance I of BPPS and the instance I ′ of VBPP obtained as described
above. Also, let B be the solution found by the α-approximation for instance I ′, B∗

V be
an optimal solution for VBPP with instance I ′ and B∗

S be a minimal optimal solution for
BPPS with instance I. Then, we have

VBPPS(B) ≤ VVBPP(B) ≤ αVVBPP(B∗
V ) ≤ αVVBPP(B∗

S) ≤ α
√
dVBPPS(B∗

S).

The bound given by this strategy cannot improve the dependency on d, by the following
lemma.

Theorem 5. For each d ≥ 1, there exists an instance I of the BPPS with d scenarios and
a solution B for I, which is minimal for the BPPS, such that VVBPP(B) ≥

√
d
2

VBPPS(B).

Proof. Let r =
⌈√

d
⌉
. We construct an instance I = (d, I,K, s) that contains r items.

We consider a complete graph G with r vertices. For each vertex i of G, create an
item i with size si = 1, and for each edge {i, j} of G, create a scenario k with items
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Sk = {i, j}. Notice that each item is in exactly r − 1 scenarios, and that the number of
scenarios is

|E(G)| = r(r − 1)

2
=

⌈
√
d⌉(⌈

√
d⌉ − 1)

2
≤ (

√
d+ 1)

√
d

2
≤ d.

Now, we create a solution B with r bins, such that, for each item i, there is one bin
Bi = {i}. We claim that B is minimal for the BPPS. Indeed, for any two bins Bi and Bj,
items i and j are contained in a common scenario k, with Sk = {i, j}, and si + sj > 1.

Notice that VVBPP(B) = r. Let h = VBPPS(B), so h is the maximum number of non-
empty bins in a given scenario. Since each scenario contains exactly 2 items, then h = 2.
Therefore,

r = ⌈
√
d⌉ ≥

√
d

2
2 =

√
d

2
h.

Finally, using the 1 + ln d-asymptotic approximation algorithm of Bansal et al. [5] for
the VBPP (for constant d) and the fact that the APTAS of Fernandez de la Vega and
Lueker [28] implies a (d + ε)-approximation for the VBPP [15], we have the following
result.

Corollary 3. There exists a (d + ε)
√
d-approximation for the BPPS. Also, for any

constant d, there exists a (1 + ln d)
√
d-approximation for the BPPS.

3.4 An Asymptotic Polynomial Time Approximation
Scheme

We present an APTAS for the BPPS when the number of scenarios d is a constant. First,
we observe that, if all items are large and the number of distinct item sizes is bounded
by a constant, then the number of valid patterns of items in a bin is also bounded by a
constant. It implies that for this restricted case, a polynomial algorithm can be readily
obtained by simply enumerating the frequencies of all patterns.

To obtain such a restricted instance, we use the linear grouping technique, follow-
ing Fernandez de la Vega and Lueker [28], by grouping items of similar sizes and creating
a map from smaller to larger items. A naive approach does not work, however, since one
must take into account the scenarios. Thus, we group items according to their scenarios
separately, but we do the mapping simultaneously.

Finally, to solve a general instance, we combine small items into artificial large items.
Again, this is done on a per-scenario basis, so as only compatible items are combined. If
the small items do not fit exactly into the area of the artificial items, then this change
may cause bins to be slightly augmented. The surpassing items are then relocated to new
bins greedily, increasing the number of bins by just a fraction of the optimal value.

In the following, we use the notion of type. The type of item i is the set of scenarios
which contain i. The set of all types is denoted by T . Also, the value of an optimal
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solution for an instance I is denoted by OPT(I).

3.4.1 Restricted instances

In this subsection, we consider instances of the BPPS in which the items are large and
the number of distinct sizes is bounded by a constant. Precisely, let V be a set of positive
numbers and consider a constant ε, with 0 < ε ≤ 1/4 and 1/ε is an integer. An instance
(d, I,K, s) of the BPPS is said to be V -restricted if {si : i ∈ I} = V and si ≥ ε2 for
every i ∈ I.

Recall that a bin B ⊆ I is feasible if, for any scenario k ∈ [d],
∑

i∈B∩Sk
si ≤ 1. For

a type t ∈ T and v ∈ V , let Btv be the subset of items in B with type t and size v.
Observe that the family of all sets Btv form a partition of B. The pattern of B is the
vector (|Btv|)t∈T ,v∈V .

Lemma 10. If |V | is constant, the number of distinct patterns for a V -restricted instance
is bounded by a constant.

Proof. Consider a feasible bin B. Since si ≥ ε2, for any i ∈ B,

|B|ε2 ≤
∑
i∈B

si ≤
d∑

k=1

∑
i∈B∩Sk

si ≤
d∑

k=1

1 = d,

where the last inequality follows because B is feasible. It means that the number of
items in any bin is at most d/ε2. Since a vector corresponding to a pattern has |T ||V |
elements, the number of patterns is at most (1 + d/ε2)

|T ||V |, which is constant since d is
constant.

Lemma 11. If |V | is constant, then an optimal solution of a V -restricted instance can
be computed in polynomial time.

Proof. Consider a V -restricted instance I, and let M be the set of distinct patterns for
I. Given a solution B and a pattern p ∈ M , the number of bins in B, which has (a
non-empty) pattern p, is denoted by np. Clearly np ≤ |I| for every p ∈ M , as there
are only |I| items, and each bin has at least one item. The configuration of B is the
vector (np)p∈M . Thus, the number of possible configurations is bounded by |I||M |, which
is polynomial since, by Lemma 10, |M | is constant.

Notice that, given a vector (np)p∈M , one can either find a solution B with this con-
figuration, or decide there is no such solution. Indeed, it is sufficient to count the total
number of items of each type and size over all the patterns. Therefore, one can list all
configurations in polynomial time and return the one with the minimum value.

3.4.2 An APTAS for large items

Suppose now that we have an instance I = (d, I,K, s), such that all items are large, i.e.,
for each i ∈ I, we have si ≥ ε2, but the number of distinct sizes is not necessarily bounded
by a constant.
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Definition 3. Given instances I = (d, I,K, s) and Ī = (d, Ī, K̄, s̄), we say that I dom-
inates Ī if there exists a subset I ′ ⊆ I and a bijection f : I ′ → Ī, such that, for every
i ∈ I ′, items i and f(i) have the same type and si ≥ s̄f(i). In this case, we write I ≽ Ī.

Lemma 12. If I ≽ Ī, then OPT(I) ≥ OPT(Ī).

In the following, we create an instance Ī = (d, Ī, K̄, s̄) with I ≽ Ī, such that all items
of Ī are large and the number of distinct sizes is bounded by a constant.

First, for each t ∈ T , let It be the set of items of type t and let m = 2d

ε3
−1. We consider

the set It sorted in decreasing order of size, and build m+1 groups of consecutive items,
obtaining a partition {G0

t , G
1
t , . . . , G

m
t }, where the first m groups have size ⌈|It|/(m+1)⌉,

and the last group either has the same size, or is smaller.
Now, for each t ∈ T and ℓ ∈ {1, 2, . . . ,m}, we create a set Ḡℓ

t as follows: for each item
i ∈ Gℓ

t, add an item to Ḡℓ
t with the same set of scenarios t, and with size equal to the size

of the largest item in Gℓ
t. Let Ī be the union of all sets Ḡℓ

t, and Ī be the instance induced
by Ī.

Lemma 13. I ≽ Ī.

Proof. For ℓ ∈ {1, 2, . . . ,m}, as |Gℓ−1
t | ≥ |Gℓ

t| = |Ḡℓ
t|, we can find a bijection f between

a subset of Gℓ−1
t and Ḡℓ

t for ℓ ∈ {1, 2, . . . ,m} such that i and f(i) has the same type.
Finally, as si ≥ sj for i ∈ Gℓ−1

t and j ∈ Gℓ
t and s̄f(i) is the maximum size of an item in

Gℓ
t, we have that si ≥ s̄f(i).

For a type t ∈ T , the group of the largest items is G0
t . For each item i in this group,

we pack it into a separate bin {i}. By joining all these bins, we obtain a packing P0.

Lemma 14. VBPPS(P0) ≤ εOPT(I) + 2d.

Proof. Let t ∈ T and fix an arbitrary scenario k of t. We consider an optimal solution for I,
and let Pk be the set of bins used in scenario k in this solution. Therefore, |Pk| ≤ OPT(I).
Observe that, since k belongs to t, the set of items included in bins of Pk must contain
It. As, for each i ∈ It, si ≥ ε2,

ε2|It| ≤
∑
i∈It

si ≤
∑
B∈Pk

∑
i∈B∩Sk

si ≤
∑
B∈Pk

1 = |Pk| ≤ OPT(I).

This implies that the value of P0 can be bounded by

∑
t∈T

|G0
t | =

∑
t∈T

⌈
ε3

2d
|It|
⌉
≤ 2d +

∑
t∈T

εOPT(I)

2d
≤ εOPT(I) + 2d.

To obtain a packing of the remaining items, we solve instance Ī. For this, let V be
the set of distinct sizes in Ī. For each t ∈ T , we created m groups, where each group
has items of the same size. Therefore, |V | ≤ 2dm. This means that Ī is a V -restricted
instance for |V | bounded by a constant. Using Lemma 11, we obtain a solution P̄1 for
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Ī in polynomial time. Since I ≽ Ī, we can obtain a solution P0 ∪ P1 for I, where P1 is
obtained from P̄1 by replacing items of Ḡℓ

t by items of Gℓ
t. Let I1 be the instance obtained

from the items of P1. Observe that P1 is feasible, since we replaced items of larger size
which appear in the same set of scenarios, thus for each scenario, the capacity of each bin
remains respected.

Lemma 15. VBPPS(P1) ≤ OPT(I).

Proof. Note that the number of unused bins in each scenario is the same for P1 and P̄1,
thus VBPPS(P1) = VBPPS(P̄1). Since, P̄1 is optimal for Ī, we have VBPPS(P̄1) = OPT(I1).
Now, using Lemma 12 and the fact that I ≽ Ī, we have OPT(I1) ≤ OPT(I).

Combining the previous results, one obtains a APTAS for instances with large items
only.

Lemma 16. Suppose for every i ∈ I, si ≥ ε2. Then one can find in polynomial time a
packing P of I with VBPPS(P) ≤ (1 + ε)OPT(I) + 2d.

Proof. Define P = P0∪P1. Notice that P contains every item of I, and thus it is feasible.
Using lemmas 14 and 15,

VBPPS(P) ≤ VBPPS(P0) + VBPPS(P1) ≤ εOPT(I) + 2d + OPT(I).

3.4.3 An APTAS for the general case

In the general case of the BPPS, an instance I = (d, I,K, s) may contain large and small
items. Let L = {i ∈ I : si ≥ ε2} be the set of large items, and S = I \ L be the set of
small items.

To obtain a packing of L∪S, we first replace S by the set of large items, Ŝ, which we
define as follows. For each type t ∈ T , let St be the set of small items with type t. Now,
let Ŝt be a set of ⌈

∑
i∈St

si/(ε − ε2)⌉ items, such that each j ∈ Ŝt has size ŝj = ε and is
of type t. The set Ŝ is the union of sets Ŝt for every type t.

Thus, we create an instance Î = (d, Î, K̂, ŝ) whose set of items is Î = L ∪ Ŝ, each of
which has size at least ε2. Lemma 17 compares the optimal value of I and Î.

Lemma 17. OPT(Î) ≤ (1 + 2d+1(d+ 1)ε)OPT(I) + 1.

Proof. Consider an optimal solution P∗ for I. For each bin B ∈ P∗ and type t ∈ T , we
define Bt = B ∩ St, i.e., Bt is the set of small items with type t. Then, we replace the
items in Bt by ⌈

∑
i∈Bt

si/(ε− ε2)⌉ new items of size ε, and with the same scenarios of t.
We call the modified packing by P ′.

Observe that P ′ may be infeasible, since new items may surpass the bins’ capacity.
We can obtain a feasible solution P ′′ by relocating some created items from P ′ to new
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bins. For each type t and each bin B ∈ P ′, the number of items needed to be picked is
the additional area divided by ε rounded up, that is,⌈⌈∑

i∈Bt

si
ε−ε2

⌉
ε−

∑
i∈Bt

si

ε

⌉
≤ 1 +

ε+ ε
∑

i∈Bt

si
ε−ε2

−
∑

i∈Bt
si

ε

= 2 +
1

1− ε

∑
i∈Bt

si

≤ 2 + 2
∑
i∈Bt

si

where the last inequality follows from the fact that ε ≤ 1/2. Let R be the set of all
picked items. Observe that |P∗| ≤ dOPT(I), since each bin is not empty for at least one
scenario. Thus, as there are 2d types and

∑
B∈P∗

∑
i∈Bt

si ≤ OPT(I), the number of items
in R is at most

∑
t∈T

∑
B∈P∗

(
2 + 2

∑
i∈Bt

si

)
= 2d+1|P∗|+ 2d+1 OPT(I)

= 2d+1dOPT(I) + 2d+1 OPT(I)

= 2d+1(d+ 1)OPT(I).

Since 1/ε is an integer, one can rearrange all items of R into at most⌈
2d+1(d+ 1)OPT(I)

1/ε

⌉
new bins of unit capacity. Let R be this set of new bins, and obtain a feasible packing
P ′′ of I, by making a copy of P ′, removing the items of R, and adding the bins of R.

Notice that VBPPS(P ′) = VBPPS(P∗) = OPT(I). Using these facts, the value of P ′′

can be estimated as

VBPPS(P ′′) ≤ VBPPS(P ′) + |R|

= OPT(I) +

⌈
2d+1(d+ 1)OPT(I)

1/ε

⌉
= OPT(I) + 2d+1(d+ 1)εOPT(I) + 1.

We notice that P ′′ contains all large items L and, for each type t, a certain number of
items with scenarios t and size ε. Thus, to obtain a packing for Î from P ′′, it is sufficient
to show that for each t, the number of created items corresponding to t is not smaller
than |Ŝt|. Indeed, for a given t, the number of created items is

∑
B∈P∗

⌈∑
i∈Bt

si/ε

⌉
≥

⌈∑
i∈St

si/ε

⌉
= |Ŝt|.

To conclude the proof, we create a packing P̂ for Î by removing the exceeding items
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of P ′′. Since removing such items can only decrease the objective value, VBPPS(P̂) ≤
VBPPS(P ′′).

Finally, to obtain a packing for I, one can first obtain a packing of Î, then replace
items from Ŝt by items in St. This leads to Theorem 6.

Theorem 6. For every constant ε′ > 0, one can find in polynomial time a packing P of
I such that VBPPS(P) ≤ (1 + ε′)OPT(I) + 2 + 2d.

Proof. Define r = 2d+1(d+1) and define ε as the largest number such that ε ≤ min( ε′

3r
, 1/4)

and 1/ε is an integer. Let Î be the instance obtained from I by replacing, for each type,
the items smaller than ε2 with items of size ε, as previously mentioned. Since each
item of Î has size at least ε2, by Lemma 16, we obtain a packing P̂ for Î with value
VBPPS(P̂) ≤ (1 + ε)OPT(Î) + 2d in polynomial time.

For each t ∈ T , we place all items of St over the items of Ŝt. Precisely, we do the
following: start by making a copy P of P̂ ; select a set A of unpacked items in St whose
total size is at least ε− ε2 and at most ε. If there is not such a set A, then let A be the
remaining set of unpacked items in St. Find a bin B ∈ P with an item j ∈ Ŝt ∩ B and
replace j by the items of A. Since there are ⌈

∑
i∈St

si/(ε − ε2)⌉ items in Ŝt, and each
group A, except perhaps one of them, has size at least ε − ε2, we always find an unused
item j ∈ Ŝt; repeat these steps while there are unpacked items in St for some t.

The resulting packing P contains all items in I. As no bin was added, P has the same
value of P̂ . Using Lemma 17, we finally obtain

VBPPS(P ) = VBPPS(P̂ ) ≤ (1 + ε)OPT(Î) + 2d

≤ (1 + ε)[(1 + 2d+1(d+ 1)ε)OPT(I) + 1] + 2d

= (1 + rε2 + rε+ ε)OPT(I) + 2d + 1 + ε

≤ (1 + 3rε)OPT(I) + 2d + 1 + ε

≤ (1 + ε′)OPT(I) + 2 + 2d.

3.5 A Variable Neighborhood Search Algorithm

The Variable Neighborhood Search is a metaheuristic that searches in different neighbor-
hood structures and has systematic change of neighborhood to find better solutions and
escape from local optima. Mladenović and Hansen [42] proposed the VNS not only for
combinatorial optimization problems, but for optimization in general. Due to its high
applicability to similar problems [44, 30, 6], we apply the VNS to solve the BPPS.

In order to successfully implement it, we need to clarify three key characteristics of
the problem: the local search neighborhood structures and how to navigate the search
space; sensitive and computationally viable objective functions; and the stopping criteria.
In the following, we detail each of these and describe the resulting algorithm.
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3.5.1 Neighborhood structures

A neighborhood structure specifies a well-defined way to get from any given solution into
another solution that is “close” to the first one. We refer to these neighborhood structures
as a “movement” that takes one solution as input and, depending on some structure-
dependent input parameters, it returns a different but “close” solution. We define four
neighborhood structures for the BPPS in the following order:

• N1: Given items i and j packed into different bins, move i to the bin currently
containing j, then move j to the bin that contained i;

• N2: Given an item i and a bin B that currently does not contain i, move i to B;

• N3: Given bins B1, B2, and B3 and items i and j packed into B1, move these items
to B2 and B3, respectively;

• N4: Given a bin B, remove it from the solution and repack the items in the first bin
that can accommodate each of them, respecting the order that they appeared in B.

Neighborhoods N1, N2, and N3 are prioritized according to their complexity. Although
neighborhood structure N4 is the smallest one, it can take comparatively more computa-
tional effort to compute since we have to repack all items of a given bin, so we consider
it as the last one.

3.5.2 Objective function

The objective function for the BPPS may not be sensitive enough to rank two neighbor
solutions. Thus, to guide the VNS, we define a fitness function that penalizes solutions
in which the bin occupation per scenario is small.

Let B be a solution for the BPPS and Bk be the subset of bins that contain items in
scenario k, where |Bk| is the number of bins used in k. Furthermore, let ocp(k,B) be the
total size of the items in bin B from scenario k. Given a solution B, the VNS moves to a
neighbor solution B′ such that f(B) > f(B′), for f defined as:

f(B) = VBPPS(B)−
∑
k∈K

∑
B∈Bk

(
ocp(k,B)

|Bk|W

)2

3.5.3 Stopping criteria

Since the VNS cannot tell whether an optimal solution is reached, we use two stopping
criteria to decide when the algorithm stops. The first criterion is the timeout, where a
preset CPU time limit (tmax) is imposed, so the VNS stops as soon as the time limit
is exceeded. The second criterion is the local-convergence, where a preset number of
iterations (cmax) is imposed, so the VNS stops if the best known solution is not updated
within this number of iterations.
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3.5.4 Algorithm

The VNS takes as input an initial solution x, a number of neighborhood structures Nmax =

4, a time limit tmax = 1800 seconds and a convergence limit cmax = 500 iterations (these
values were achieved after preliminary computational tests). The initial solution x is
obtained as follows: items are sorted in non-increasing order of their sizes and then
packed in the first open bin where it fits, considering the capacity constraints in every
scenario and opening a new bin whenever necessary.

The overall structure of the proposed VNS is given in the following algorithm:

VNS(x,Nmax, tmax, cmax)

1 t = 0, c = 0

2 while t < tmax and c < cmax

3 κ = 1

4 improvement = False // Assume there will be no improvement
5 repeat
6 x′ = Shake(x, κ) // Get a random solution in Nκ(x)

7 x′′ = Local-Search(x′,Nmax) // Perform VND to improve x′

8 if f(x′′) < f(x) // There has been an improvement
9 x = x′′

10 κ = 1

11 improvement = True
12 else // Local optima, change neighborhood
13 κ = κ+ 1

14 until κ == Nmax

15 if improvement // There has been an improvement
16 c = 0

17 else // No improvement in this iteration
18 c = c+ 1

19 t = CPU-Time() // Update processing time.

The VNS uses a Shake procedure that simply returns a solution x′ randomly selected
from the neighborhood Nκ of x. The Local-Search procedure is based on the Variable
Neighborhood Descent (VND) approach, which is the deterministic descent-only version
of the VNS. Our local search takes as input a solution x and the number of neighborhood
structures Nmax = 4, resulting in the following algorithm:

Local-Search(x,Nmax)

1 κ = 1

2 repeat
3 x′ = argminy∈Nκ(x) f(y) // Find the first best neighbor of x
4 if f(x′) < f(x) // There has been an improvement
5 x = x′

6 κ = 1

7 else // Local optima, change neighborhood
8 κ = κ+ 1

9 until κ == Nmax
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3.6 A Branch-and-Price Algorithm

We propose an exact method for the BPPS based on column generation and branch-
and-bound, that is, a branch-and-price algorithm. This method consists of modelling the
problem as an ILP with a very large (usually exponential) number of variables, which are
generated and added to the model only as they are needed, in each node of the branch-
and-bound tree. Branch-and-price has been used successfully to solve practical instances
of the BPP and several of its variants [26, 46, 23, 10, 8].

One of the most successful formulations for the classical BPP and variants is based on
associating a variable to each cutting pattern (see, e.g., Delorme et al. [26]). In practice,
such kinds of formulations lead to models with an exponential number of variables, as the
number of cutting patterns is usually exponential with respect to the number of items.
Due to this, to solve practical instances with such models, one has to rely on column
generation to solve the corresponding linear relaxation.

The column generation method, proposed by Ford Jr. and Fulkerson [31] and general-
ized by Dantzig and Wolfe [20], solves the linear relaxation of models with a large number
of variables. Gilmore and Gomory [33, 34] were the first to present practical experiments
based on column generation, by solving the linear relaxation of an exponential model
for the BPP. The column generation method solves the linear relaxation by iteratively
solving the restricted master problem (RMP), which considers only a subset of variables
(columns) of the original model. At each iteration, the method has to determine the
existence of non-basic columns which are candidate to improve the current solution of
the RMP, i.e., columns with negative reduced cost (on minimization problems). If the
method determines that no such column exists, then the solution of the RMP is an optimal
solution for the original linear relaxation, providing a bound for the integer problem.

3.6.1 A pattern-based model

Recalling that P is the set of all cutting patterns for the BPPS, the following exponential
ILP model solves the BPPS:

minimize F , (3.1)

s.t. :
∑
p∈P

aipXp ≥ 1, ∀i ∈ I; (3.2)∑
p∈P

bkpXp ≤ F , ∀k ∈ K; (3.3)

Xp ∈ {0, 1}, ∀p ∈ P ; (3.4)

F ∈ Z+. (3.5)

For each pattern p ∈ P , binary variable Xp is equal to 1 if and only if p is used in
the solution. The integer variable F represents an upper bound on the number of bins
(patterns) that is used by each individual scenario. The objective function (3.1) is to
minimize F . Constraints (3.2) guarantees that every item belongs to at least one cutting
pattern of the solution. Constraints (3.3) ensures that, for every scenario k ∈ K, the
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number of bins that packs at least one item from k is at most F . The domain of variables
is in (3.4) and (3.5).

Next, we describe a column generation algorithm to solve the linear relaxation of (3.1)–
(3.5). As the initial set of columns for the RMP, we consider each cutting pattern with
a single item. The dual solution of the RMP consists of a value αi ≥ 0 for each item i

associated with a constraint in (3.2), and a value βk ≤ 0 for each scenario k associated
with a constraint in (3.3). The dual solution is used to solve the pricing problem, which
determines a column with minimum reduced cost, that is

min
p∈P

{
cp −

(∑
i∈I

αiaip +
∑
k∈K

βkbkp

)}
,

which is equivalent to

max
p∈P

{∑
i∈I

αiaip +
∑
k∈K

βkbkp

}
. (3.6)

3.6.2 The pricing problem

In order to generate a new column, we need to find a feasible pattern that optimizes (3.6).
Since it includes a term for each item and a term for each scenario used in the pattern,
we can describe the pricing problem as the following Knapsack Problem with Scenarios.

Knapsack Problem with Scenarios (KPS) In the KPS, we are given: a number d

of scenarios; a set I = [n] of n items, with each item i ∈ I having a size si, item value
vi ∈ Q, and a set of scenarios Ki ⊆ [d]; a vector u ∈ Qd of scenario values, and a knapsack
of capacity W ∈ Q+. For simplicity, for each item i ∈ I, define:

ski =

{
si, if item i is in the scenario k;

0, otherwise.

A solution is a subset B of I such that for each scenario k ∈ K,
∑

i∈B ski ≤ wk. The
objective is to find a solution that maximizes∑

i∈B

vi +
∑

k:ski >0, i∈B

uk.

Theorem 7. KPS is NP-hard in the strong sense.

Proof. Let us recall the Maximum Independent Set problem, which given a graph G

consists of finding a subset of maximum cardinality of its vertices such that no two of its
elements are adjacent in G. This problem is known to be strongly NP-hard [32], so all we
need to do is present a polynomial reduction from this problem into the KPS.

Let I = G(V,E) be an instance of the Maximum Independent Set problem. We
construct an instance I ′ = (d, I, s, v,K, u,W ) of the KPS such that |I| = |V |, d = |V |.
For each item i ∈ I there is a scenario ki ∈ [d] associated with it. We define Ki =
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{ki} ∪ {kj : (i, j) ∈ E} and we let ski = 1 if k ∈ Ki. We define vi = 1 for all i ∈ I, uk = 0

for all k ∈ [d] and W = 1.
Now notice that there is a bijection between solutions of I and I ′ which preserves

the value of the objective function two items corresponding to two adjacent vertices of
V cannot be in the same solution of I ′, the items are unit-valued and the scenarios are
zero-valued.

As a consequence of Theorem 7, our pricing subproblem does not admit a pseudo-
polynomial time algorithm, unless P = NP, thus, we propose the following ILP model to
solve it.

We can use the dual solution (α, β) of the RMP as item-values and scenario-values
(u, v) to describe the following model for the pricing subproblem

maximize
∑
i∈I

αiAi +
∑
k∈K

βkBk (3.7)

s.t. :
∑
i∈I

skiAi ≤ WBk, ∀k ∈ K; (3.8)

Ai, Bk ∈ {0, 1}, ∀i ∈ I, k ∈ K. (3.9)

In model (3.7)-(3.9), variables Ai are related to the coefficients aip, and variables Bk

are related to the coefficients bkp. Hence, variables A and B determine the cutting pattern
that is generated. The objective function (3.7) is related to the pricing formula in (3.6).
Constraints (3.8) assures that the solution of the model represents a valid cutting pattern
for the BPPS. Notice that W is the capacity of a bin, then if a scenario k ∈ K is used
(Bk = 1), the sum of the sizes of all items that belong to the scenario k must be at most
W , and if this scenario is not used (Bk = 0), then the sum of the sizes of all items that
belong to k must be equal to 0.

3.6.3 The branch-and-price algorithm

To solve the model (3.1)-(3.5), we propose a branch-and-price algorithm. The branch-
and-price is based on an enumeration of the fractional solution of the column generation
algorithm. For this end, we use the branching scheme of Ryan and Foster [45]. Given a
fractional solution X∗, we know, from Vance et al. [49], that there exists rows l and m

such that
0 <

∑
p:alp=1,amp=1

Xp < 1.

We use this pair of rows to create two branches for the current node. On one side we
enforce that items l and m must be packed in the same pattern, and on the other side we
enforce that they must be packed in different patterns. This is achieved by the following
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branching constraints ∑
p:alp=1,amp=1

Xp ≥ 1 (3.10)

∑
p:alp=1,amp=1

Xp ≤ 1 (3.11)

Rather than explicitly adding these constraints to the RMP, they are enforced by
setting the infeasible columns’ upper bound to zero. On the branch of (3.10), this is
equivalent to combine items l and m. For the branch of (3.11), this is equivalent to
making rows l and m disjoint. However, this is not enough, since we must also avoid
infeasible columns to be re-generated on each branch, which can be achieved by modifying
the underlining pricing subproblem as follows:

• For the branches in which items l and m are combined, it suffices to modify the set
of items to Ī = {1, . . . , n} \ {l,m} ∪ {n+ 1}, with αn+1 = αl + αm,

skn+1 =


skl , if skl > 0 and skm = 0,

skm, if skl = 0 and skm > 0,

skl + skm, if skl > 0 and skm > 0,

0, otherwise;

(3.12)

• For branches in which items l and m must be packed in different patterns, we simply
add the following disjunction constraint

Al + Am ≤ 1. (3.13)

These changes can be easily accommodated into the model (3.7)-(3.9) without much effort.
To obtain an upper bound at each node, we solve the current restricted master problem

with the integrality constraint. In other words, we solve an ILP model that consists only
of the columns that have been already generated. The use of this method at each node
can be computationally expensive, but it usually provides tight upper bounds.

Some instances of the problem may be too complex to be solved by the column gen-
eration algorithm in practical time. In this manner, we would need faster methods for
obtaining lower bounds for such instances. Two methods are proposed to get a lower
bound at the root node of the branch-and-price algorithm. One of them is based on the
continuous lower bound for the bin packing problem, and it is given by the following
equation:

LBCON = max
k∈K

{⌈∑
i∈Sk

ski /W

⌉}
. (3.14)

The idea behind the continuous lower bound (3.14) is to break items into unitary-sized
items to fill empty spaces in a packing, which could not be filled otherwise. The LBCON

computes the continuous lower bound for every scenario, and returns the largest value
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between them.
The other lower bound that we use is based on dual feasible functions. A dual feasible

function (DFF) is a function f such that, for any finite set X of real numbers, if
∑

x∈X x ≤
1, then

∑
x∈X f(x) ≤ 1. For a survey on DFFs, we refer to Clautiaux et al. [16]. Given

a DFF f , we can construct a lower bound based on it, similarly to the continuous lower
bound, as given in the following equation:

LBDFF = max
k∈K

{⌈
∑
i∈Sk

f(ski /W )⌉} (3.15)

In the proposed branch-and-price algorithm, given λ ∈ {1, . . . ,W/2}, we consider the
DFF proposed by Fekete and Schepers [27] and described in (3.16):

f(s) =


W, if s > W − λ;

0, if s ≤ λ;

s, otherwise.

(3.16)

3.7 Numerical Experiments

The efficiency of the proposed VNS and B&P algorithm is evaluated with computational
experiments. Both solutions methods were implemented in the C++ programming lan-
guage, with the B&P algorithm using the Gurobi Solver version 8.1 [36] to solve the linear
programming models. The experiments were carried out in a computer with an Intel(R)
Xeon(R) CPU E5–2630 v4 processor at 2.20 GHz, with 64 GB of RAM and under the
Ubuntu 18.04 operating system.

A total of 120 instances were generated, divided into 12 different classes of 10 instances
each. The classes are combinations of the number of items n ∈ {10, 50, 100, 200} and the
number of scenarios d ∈ {0.5n, n, 2n}, which depends on the number of items of the class.
For every instance, the size of the items is randomly generated over the set {1, . . . , 99}
under a uniform probability distribution, whereas the size of the bin is fixed to 100. The
scenarios were generated randomly, similarly to Bódis and Balogh [9], such that an item
i ∈ I belongs to the scenario k ∈ K with probability 0.5.

A summary of the computational results is presented in Table 3.1. Columns n and
d present, respectively, the number of items and the number of scenarios of each class
of instances. We consider three sets of columns, each representing one of the tested
algorithms, with the last one, VNS+B&P, being the B&P algorithm using the solution
obtained from the VNS as a warm-start. The columns gap represent the average optimality
gap that each algorithm achieved in each class, computed as UB−LB

UB
, where UB and LB

are respectively the upper and lower bounds obtained. Notice that since the VNS does
not produce a lower bound on its own, we used the lower bound from the VNS+B&P to
compute its optimality gap. Columns time represent the average time in seconds that
each algorithm spent to solve each instance of the corresponding class, being 1800 seconds
the time limit for the VNS and VNS + B&P algorithms, and a time limit of 3600 for B&P.
Columns |OPT | represent the number of instances from each class that were solved to
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optimality (out of 10) by each algorithm. Columns cols and nodes represent the average
number of columns generated and the number of explored nodes, respectively, considering
the B&P algorithm.

First, we discuss the performance of the VNS algorithm. From Table 3.1, we can
notice that most instances with 10 items are easily solved by the heuristic. However,
for instances of size 50 and 100 we can notice a significant larger gap, even though the
algorithm time never reaches its time limit. This indicates that the VNS quickly found
a local-optima and was not able to escape it, thus prematurely converging. Something
similar can be observed for the instances of size 200, although the running time gets closer
to the time limit in these cases. For this algorithm, only two instances of size 50, 100, and
200 are solved to optimality, achieving a total average gap of 8.32% in an average time of
390.01 seconds.

Observing the results for algorithm B&P, we can notice a significant improvement.
All instances of 10 and 50 items are solved to optimality very quickly (100 seconds on
average). We start to notice a drop in performance for the instances of size 100 and
200. For instances of size 100, the algorithm was able to solve 11 instances to optimality,
out of 30, averaging over 1800 seconds for all number of scenarios. We can also observe
that the average gap for these instances is very small (around 2% for all number of
scenarios). The algorithm times out for all instances of size 200, with an average gap
of 14%. Interestingly, the average gaps achieved by the B&P for these instances are not
far from the ones obtained by the VNS, with the latter having half the time limit of the
former. The total average gap for this algorithm is 4.71% in an average time of 1648.28
seconds.

Finally, we analyze the VNS + B&P algorithm, that is, B&P using the VNS solution
as a warm-start. Once again, all instances of size 10 are completely solved in negligible
time. Differing from the pure B&P algorithm though, this one could not find optimal
solutions for a few instances of size 50. These 5 instances brought all the averages for
this group of instances up, since they were tried until the time limit of 1800 seconds,
totaling thousands of columns and hundreds of nodes more than their non-warm-started
counterpart. This might happen because the solution of the VNS algorithm might impact
the branching step of the B&P, making it harder for the algorithm to converge depending
on the branch it takes initially. However, we can notice that for instances of size 100, the
VNS + B&P solved 19 instances to optimality, 8 more than the pure B&P and with a
significant smaller average time. This algorithm also timed out for all instances of size
200, while presenting a greater gap in average compared to the pure B&P because of the
smaller time limit. When compared to the pure B&P algorithm, the VNS + B&P gives
an average gap greater by 0.16% while using less than half the time in average.

The data from Table 3.1 shows us that although the VNS algorithm struggles to avoid
local-optima, its results serve as good upper bounds to be fed into a more elaborated
model such as the B&P presented. By using the VNS’s result as a warm-start, the B&P
algorithm was able to solve more instances in less time, this was not enough to tackle
instances with 200 items.
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3.8 Concluding Remarks

This work deals with a variant of the bin packing problem where items occupy the bin
capacity when they belong to the same scenario. For this problem, a variety of solution
methods are proposed, including an absolute approximation algorithm, an asymptotic
polynomial time approximation scheme, a variable neighborhood search based heuristic,
and a branch-and-price that solves a set-cover-based formulation. Results of the heuristic
and the branch-and-price illustrate how effective is the latter to solve small and medium
size instances, having its efficiency improved when the heuristic provides a start solutions.

While the approximation algorithms depend either on an approximation algorithm for
the vector bin packing problem, for the absolute approximation algorithm, or the number
of scenarios, for the APTAS, the heuristic and branch-and-price can be used to handle the
problem in practical contexts. The heuristic is not so competitive with the branch-and-
price algorithm, since the former only optimally solved 26% of the instances, while the
latter obtained optimal solutions for 59% of the instances. If solutions of the heuristic are
used as a warm-start for the branch-and-price, the number of optimal solutions increases
to about 62%. In total, we were able to prove optimality for 79 out of the 120 proposed
instances.

Future research can focus on new approximation algorithms that explore the influence
of the scenarios. Improvements in the variable neighborhood search are also expected,
including new neighborhood structures and local searches. Regarding the branch-and-
price, we will work on valid cuts and the possibility of dynamic programming algorithms
for the pricing problem.
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Chapter 4

Smart Energy Pricing for Demand-side
Management in Renewable Energy
Smart Grids

Abstract The Smart Grids are expected to provide various benefits to society by inte-
grating advances in power engineering with recent developments in the field of Informa-
tion and Communications Technology. One of the advantages is the support to efficient
demand-side management (DSM), e.g. changes in consumer demands for energy based on
using incentives. Indeed, DSM is expected to help grid operators balance time-varying
generation by wind and solar units, and the optimization of their usage. This paper
focuses on DSM considering renewable energy generation and proposes an auction, in
which consumers submit bids to renewable energy usage plans. An additional model is
introduced to allow consumers to compute their bid for a given usage plan. Both models
have been extended to include energy storage devices. The proposed model is compared
to a system with time-varying pricing for energy, where it is shown to allow consumers to
use more appliances, to lead to a larger profit and to reduce the peak-to-average ratio of
energy consumption. Finally, the impact of the use of energy storage in households and
in the energy provider is also considered.

Keywords Demand-side Management; Smart Grid; Smart Pricing; Auction; Energy
Storage Devices

4.1 Introduction

The European Technology & Innovation Platform – Smart Networks for Energy Tran-
sition (ETIP-SNET) defines smart grids as “electricity networks that can intelligently
integrate the actions of all users connected to it — generators, consumers, and those
that do both — in order to efficiently deliver sustainable, economic and secure electricity
supplies.” [12]. In a usual smart grid scenario, each consumer is equipped with energy
consumption scheduling (ECS) devices that are able to automatically start, stop, increase
or decrease the energy consumption of appliances, as well as smart metering equipment
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that allows the grid to gather advanced information on energy consumption on the end
users. Having such infrastructure, energy providers can obtain more information on how
and when the energy is consumed, thus charging accordingly and leading the system to a
better use overall instead of coping with peak demands. Consumers also benefit from the
infrastructure by making better scheduling for their appliance usage while taking into con-
sideration the changes in the energy cost set by the providers at a certain time. However,
this comes at a high cost of investments in Information and Communication Technology
(ICT), such as Cognitive Radio Network infrastructures, smart sensing equipment [16, 27]
and research on the efficient algorithmic implementation of such systems.

Initiatives such as the Europe 2020 Climate and Energy Package — which aims to
cut greenhouse gas emissions by 20%, establish 20% of the EU’s energy from renewable
sources, and show an improvement of 20% in energy efficiency by 2020 — have pushed
for the implementation of smart grids through legislation and incentives, indicating that
they may, in fact, play a key role in the transition into a more sustainable energy pro-
duction, distribution, and consumption [11]. As opposed to the current grid, smart grids
take advantage of advanced metering infrastructure, and supervisory control and data
acquisition, while also being capable of self-healing. There is a vast body of literature
regarding smart grids, however this paper focuses on the connection between game theory
and demand-side management in smart grids. For an overview of the applications of game
theory in smart grids, please refer to Saad et al. [25].

Demand-Side Management (DSM) is a set of techniques implemented by utility com-
panies designed to influence the energy consumption of their end users in order to achieve
a more efficient grid operation in relation to the available power plant capacity [22]. The
main DSM techniques include load management and demand response. Load management
is usually implemented as direct load control where based on an agreement between the
utility company and consumers, the utility company can remotely control the operation
of certain appliances of their consumers in order, for instance, to avoid global peaks of
usage. On the other hand, demand response is based on implementing financial or other
incentives to influence consumers’ demand for energy. One common way to implement
demand response is to use smart pricing, in which the utility company sets the price of
the energy according to the aggregated load of the consumers, encouraging their end-users
to shift their load to off-peak hours.

In this paper, a smart grid is considered in which traditional power plants (carbon,
nuclear, etc.) are integrated with renewable power plants (solar panels, wind turbines,
etc.) to provide power to small communities of consumers. A novel smart pricing scheme is
proposed to allocate energy to consumers (households) on the basis of constraints imposed
by energy production. The proposed scheme charges consumers for an energy usage plan.
As usual in Auction Theory, consumers’ satisfaction with a usage plan is modeled as a
monetary gain, which translates to an auction bid for the respective usage plan. A separate
model is also proposed to help consumers to compute their value for a given energy
usage plan based on a discrete model for describing appliance usage. Plans are assigned
to consumers in such a way that the renewable energy capacity is not exceeded, yet
maximizes the overall value of these assigned energy plans. The Vickrey–Clarke–Groves
(VCG) mechanism [33, 9, 14] is used to incentivize consumers to be truthful by charging
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them in a way that it is in their best interest (financially speaking) to report their true
values for the usage plans.

Since consumers only report their auction bids for usage plans, this smart pricing
scheme allows for more freedom in modeling of household appliances while also maintain-
ing full privacy for consumers since their demands are never explicitly reported to the
utility company (or the other consumers).

The proposed model is able to shift energy consumption from peak hours to off-peak
hours. As a consequence, it can better exploit the energy generated by renewable sources.
When compared to a time-varying pricing model, it also allows consumers to use more
appliances, which in turn, leads to better social welfare (the satisfaction in society).
Additionally, it also leads to a larger overall profit for the utility company and it reduces
the peak-to-average ratio of energy consumption.

The contributions of this paper are the following:

• Introduction of a model for handling demand-side management in which power
is allocated according to consumers bids for a set of possible usage plans, with the
advantages of being appropriate for renewable power plants and ensuring consumers’
privacy. The energy usage plans can be designed by the power provider or developed
by considering historical values.

• A discrete model to describe consumers’ value for a given energy usage plan which
is appropriate for modeling a wide range of operating scenarios in terms of power
demand. For example, it is possible to model must-run appliances (appliances that
must run within a specific time window), non-interruptible appliances (appliances
that cannot be paused in order to save energy, e.g., an electric stove), interruptible
appliances (appliances that can be paused in order to save energy, e.g., charging a
Plug-in Hybrid Electrical Vehicle – PHEV) and various combinations of these. This
discrete model provides a way to describe customers’ utility gained from executing
each appliance activity, thus incorporating the discomfort that comes from the user
not executing or delaying the execution of such appliances.

• Both models are extended to consider the use of energy storage devices on both
the premises of the consumers and the energy provider. The introduction of energy
storage is particularly significant in scenarios involving renewable power plants since
it allows the partial reshaping of the power production pattern, e.g. providing energy
at times when the production is low but demand is high (for example at night, when
there is no solar energy production). In general, household energy storage devices
allow consumers to utilize an energy usage plan better, possibly increasing the value
that can be gained from it. Moreover, power plant energy storage devices improve
energy availability, and as a consequence, increase overall social welfare by allowing
the assignment of more valuable plans to consumers.

The remainder of this paper is organized as follows. An overview of the related work
is shown in Section 4.2. Section 4.3 describes the overall system model including: an
optimization model to allocate providers’ energy usage plans while maximizing the social
welfare; a model that can be used by consumers to compute their utility for a usage plan,
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given the utility values of using their appliances; an extension of the proposed models
to incorporate energy storage devices. In Section 4.4, the practical performance of the
proposed models is evaluated with numerical experiments. Finally, in Section 4.5, the
final remarks are presented.

4.2 Related Work

Due to the intricate nature of energy providing, many models of DSM have been proposed
in the literature, mostly focusing on achieving a smaller peak-to-average ratio (PAR, the
ratio between the highest load and the average load) by shifting load to off-peak hours.

Fahrioglu and Alvarado [13] presented the first article in the literature to consider
smart pricing and game theory in this context. In it, the use of incentives is considered
that encourage consumers to sign up for the desired demand management contract with
the (non-renewable) energy supplier while revealing their actual value for energy usage.
Afterward, several articles utilized game theory in order to price energy consumption.

Mohsenian-Rad et al. [21] consider a demand-side management model consisting of an
incentive-based consumption schedule scheme by using ECS devices for each consumer.
In their model, the price of energy at each time is computed as a quadratic function of the
aggregated load of the consumers, and the consumers react by letting their ECS devices
change the starting or stopping time of their appliances. They prove that the proposed
game converges to the unique Nash Equilibrium, i.e. a point in which no single player
can improve the price paid by shifting any of their appliances if all players always choose
their best strategy selfishly. The game is solved with both a centralized algorithm on the
provider’s side and a distributed algorithm to be executed individually in each consumer’s
ECS, thus propagating only the total load of each consumer and partially preserving their
privacy.

Zhu et al. [38] expand on the model proposed by Mohsenian-Rad et al. [21] allowing
it to consider a broader amount of appliances, including power-shiftable appliances which
are allowed to shift the amount of power provided to them. The authors use integer linear
programming and integer quadratic programming to solve both centralized and distributed
versions of the proposed game, although they do not provide any mathematical guarantees
that the proposed models admit a unique Nash Equilibrium. Afterward, Liu et al. [18]
propose a PAR constrained model while taking into consideration the consumers’ prefer-
ences such as minimizing the operation delay (considering shifts). The article proposes
a distributed algorithm to minimize the amount of information exchanged and compare
their results empirically with the model proposed by Zhu et al. [38].

Logenthiran et al. [19] propose a DSM model based on load shifting in which the
objective is to minimize the difference between an objective load profile, defined by the
utility company, and the actual consumption profile. A heuristic-based Evolutionary
Algorithm is proposed to solve the problem.

Many DSM models rely on shifting the use of some appliances to off-peak hours by
means of monetary incentives. However, an argument can be made that these shifts are
not always desired by the consumers, thus the price paid by energy does not necessarily
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reflect the actual utility of the consumers. Li et al. [17] propose a remodeling of DSM as
a sparse load shifting problem that minimizes the number of interruptions and restarts
for consumers’ appliances. This model admits multiple Nash equilibria, and therefore the
algorithm proposed searches for an equilibrium that minimizes PAR. Wang et al. [34]
use a discomfort function (along with a cost of energy generation and cost of energy from
the provider) to compute the utility of each consumer while planning the use of energy
storage. Yang et al. [35] propose a time of use pricing scheme for DSM in which the
utility of the consumers is modeled as the price paid for their load plus a user satisfaction
function based on the difference between their demand and their load. A backward
induction technique is used to find an equilibrium, but no proof of convergence of the
algorithm is provided. Srinivasan et al. [30] present an evaluation of different dynamic
pricing techniques, including the one proposed by Yang et al. [35], using real data from
the Singapore electricity market.

From the perspective of the utility company, a real-time pricing scheme can be imple-
mented considering a scenario where DSM is used. Bu and Yu [7] proposes a decision-
making framework for the utility companies modeled as a four-stage Stackelberg game, in
which during the three first stages the utility companies decide what kind of energy source
to use, how much energy to procure and then the retail price to offer to the consumers.
In the fourth stage, the consumers adjust their demands according to the prices offered.
Backward induction is used to determine a sub-game perfect equilibrium. Belhaiza and
Baroudi [6] propose a model for demand management in neighborhood area networks
that involves strategies from both the side of the consumers and the side of the utility
companies.

Most DSM models rely on repeatedly exchanging information between consumers and
the utility company (sometimes even between consumers) until an equilibrium is reached.
This raises concerns about revealing private information about consumers’ energy usage.
Because of this, it is preferable to do all computations in a distributed way so that un-
necessary data is not transmitted to other parties. Even then, most DSM models require
consumers to report their true demand for energy. Furthermore, due to the cyclic nature of
best-response games, convergence is not always achievable in viable computational time.
Because of these difficulties, auctions as a pricing model for DSM in smart grids have been
studied recently in the literature, where consumers’ usually bid once for each energy offer-
ing and based on these bids the utility company chooses how much energy every consumer
should receive. In this context, Atzeni et al. [5] use auctions in the day-ahead phase of its
DSM model. Samadi et al. [26] apply the VCG mechanism for dynamic pricing in such
a way to maximize the aggregation of the utility functions of all consumers subtracted
by the (non-renewable) energy production cost. Since a VCG mechanism is used, there
is no incentive for consumers to lie about their true preferences regarding energy usage.
Finally, Ma et al. [20] propose an enhanced Arrow-d’Aspremont-Gerard-Varet (AGV)
mechanism [2, 10] for this model, which also ensures truthfulness.

Differently from the works of Samadi et al. [26] and Ma et al. [20], the proposed
model does not restrict consumers on how they can obtain value from energy usage and
on how they can use the energy provided. The proposed model for bid computation can
consider several different types of household appliances. Moreover, as in the proposed
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system, the energy allocation is independent of how bids are generated in the auction; the
bid computation model can be exchanged for more suitable ones, especially in the case
of commercial or industrial consumers. Additionally, since the bids only represent how
much a plan is valued for a consumer, the consumer never has to explicitly state their
actual load demands which preserve their privacy.

The inclusion of renewable energy sources into the grid adds more complexity to it.
For a comprehensive view of the difficulties of integrating renewable energy resources and
some of the recent efforts in doing so, please refer to the work of Rehmani et al. [23].

Due to the unpredictable nature of renewable energy sources, the actual energy pro-
duced on a certain day can vary with factors such as wind speed and solar irradiance.
Because of this, methods of forecasting these factors have been developed in order to
provide accurate predictions for the amount of renewable energy that can be generated
by a plant in a given time period. Thus, forecasting of wind and solar power have been
extensively studied in the literature. However, evaluating these predictions can be chal-
lenging since their performances can also vary with many factors, such as forecast time
horizons, quality of the data used, distribution of wind speeds, and topography of the
area studied [31]. One common metric used to evaluate these models is the Root Mean
Squared Error (RMSE). This metric is simply the square root of the quadratic mean of the
differences between predicted and observed values (standard deviation of the prediction
errors), and it gives some insight into how far the observed values are from the predicted
line.

Soman et al. [29] present an overview and comparative analysis of various forecasting
techniques for wind power and speed. They separate the techniques in the following time
horizons: very short term (few seconds to 30 seconds ahead); short term (30 minutes
to 6 hours ahead); medium term (6 hours to 1 day ahead); and long term (1 day to 1
week ahead). Ssekulima et al. [31] present a review of both solar and wind forecasting
in the context of integration of renewable energy to the grid and its challenges. More
recently, Ahmed and Khalid [1] review several renewable energy forecast techniques in
the literature with an application-oriented approach. One of the applications presented
by the authors is the impact of using forecasting of renewable energy generation on energy
markets.

In order to achieve higher accuracy, a trend has developed of combining several dif-
ferent models to mitigate the individual weaknesses of each of them [31]. Ren et al. [24]
review several ensemble methods based on existing models for accurately forecasting wind
and solar power. For example, one can notice in the authors’ experiments that for time
horizons of 24 hours, many techniques achieved an RMSE of around 0.10. Because of
this, it is reasonable to assume that a DSM model can use a state-of-the-art forecasting
method with relatively low errors to predict the amount of renewable energy available in
a day-ahead fashion.

Regarding models for renewable energy usage in demand-side management, some
works [4, 28, 8, 36, 34, 37] consider the integration of decentralized renewable energy
sources, as well as energy storage devices. The model proposed in this paper is different
from theirs since it considers that the energy supplier is the one supplying renewable
energy, not the consumers.
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Works, such as the ones by Atzeni et al. [4] and Zazo et al. [37], consider the inter-
mittent and stochastic nature of renewable energy generation and the unreliability of the
consumers’ load prediction when it comes to real-time consumption. Since the model
proposed in this paper considers that the energy is provided by selling energy usage plans
which are complemented with non-renewable energy, the consumers can modify their load
according to their needs. Furthermore, regarding the uncertain nature of renewable energy
generation, the model proposed in this paper does not address this problem directly, but
it can be slightly modified to consider the case where the energy supplier utilizes batteries
and non-renewable energy to reduce its impact on the system. In the experiments, it is
shown that this does not significantly impact the quality of the proposed model. Another
possibility would be to be conservative when predicting the energy generation in such a
way that any excedent renewable energy could be sold as non-renewable energy (as the
model already does).

4.3 System Model

In this section, a system model for smart pricing in DSM in the context of smart grids
is presented. First, a general model of smart pricing is described, then in the subsequent
subsections, two optimization problems that compose the proposed model are formally
defined: the allocation of usage plans to consumers who have given their bids; and the
evaluation of energy usage plans for bidding on the side of the consumers. Both problems
are modeled as integer linear programming formulations that can be solved to optimality
by the commercial solver Gurobi [15] in a reasonable time.

4.3.1 General Description

In the scenario considered in this paper, the utility company controls a centralized re-
newable energy source and access to supplementary non-renewable energy. The company
aims at allocating the clean energy produced to consumers in a way that maximizes the
social welfare of the community while attending to the constraints imposed by the capac-
ity for production of renewable energy. This scenario can be encountered, for instance,
in communities that have access to renewable energy sources and want to avoid using
non-renewable energy as much as possible or in governments which want to provide social
welfare using renewable energy instead of relying on non-renewable sources.

In the model, a set T of discrete time slots {1, 2, . . . , tmax} with tmax being a positive
integer is considered. For each time slot, consumers receive a constant amount of energy
from the utility company. For instance, one possibility would be to consider each time
slot as an hour in a day, therefore tmax would be 24.

The utility company has a set P of energy usage plans. An energy usage plan is a
non-negative vector that represents the maximum energy (in kWh) a consumer is allowed
to utilize during each time slot from this source (the user can buy supplementary energy
which will possibly be non-renewable). The consumer will, however, only receive the
amount of energy actually used. The energy usage plans can be developed by the utility



88

company considering historical data, such as energy production and consumption. Alter-
natively, they can consist of simple usage plans such as constant plans in which the same
amount of energy is provided for every hour or plans which provide low levels of energy
for some hours and higher levels for others. In fact, the power provider can adjust the
energy usage plans as time passes in order to control the energy demand. In Section 4.4,
some sample usage plans are presented.

Energy allocation is modeled as a sealed-bid auction using the VCG mechanism [33,
9, 14]. That is, energy usage plans are provided to a set C of consumers who will bid for
them. Each consumer c ∈ C bids a value bc,p for the energy usage plan p ∈ P . Bids can
be computed in any way desired by the consumer, but the VCG mechanism guarantees
that the best strategy for the consumers is to report their values truthfully, i.e. consumers
will not benefit from giving a bid that does not correspond to their true intentions. As
the auction is a sealed-bid, each consumer submits their bids only once and the auction
is executed after all bids are submitted. The utility company has a limited amount of
energy available for each time slot limited by their capacity to produce renewable energy,
therefore if wt is the available energy (in kWh) at time t, consumers compete against each
other for this (limited) energy resource.

The objective is to assign at most a single usage plan to every consumer, constrained
by the power plant capacity w in order to maximize social welfare, which is the sum of bc,p,
for each consumer c ∈ C and plan p. Since consumers could strategically misrepresent
their actual value in order to profit, the VCG mechanism is utilized to guarantee that it
is in the best interest of consumers to declare values truthfully. Thus, in this paper it is
considered that bc,p represents the real value of usage plan p for consumer c, i.e. consumers
do not provide wrong or forged information. In Section 4.3.3, one way for consumer c to
compute a bid bc,p for a given usage plan p is introduced. Figure 4.1 presents a flowchart
of the proposed system model.

Utility company discloses avail-
able usage plans to consumers

Consumer 1

computes its value
for each plan

. . .
Consumer n

computes its value
for each plan

plans plans

Utility company computes an opti-
mal allocation of plans to consumer
and charge consumers accordingly

bids bids

Consumer 1

receives energy
according to plan

. . .
Consumer n

receives energy
according to plan

plans plans

Figure 4.1: A flowchart representing the system model.

In the proposed model, the cost of generating energy is not explicitly considered,
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since the model is designed for renewable energy sources such as wind and solar energy,
where the output is not controlled by how much resources are consumed. Thus, the
pricing strategy focuses on guaranteeing fair resource usage instead of covering energy
production expenses or maximizing profit. Nonetheless, profits can be reverted to system
maintenance or improvement as a consequence of using renewable energy.

4.3.2 Energy Allocation

In the proposed model, the utility company needs to define how to assign energy plans
to consumers with the aim of maximizing social welfare based on consumers’ bids but
constrained by the power plant capacity. That is, the company must allocate usage plans
to consumers so that the consumer that values the most each usage plan obtains it as
long as there is enough renewable energy to accommodate it in the aggregated load.

This problem is modeled as an integer linear program. Consider that T =

{1, 2, . . . , tmax} is a set of discrete time slots, P is a set of usage plans, C is the set
of consumers, bc,p is the bid of consumer c ∈ C for plan p ∈ P , pt is the amount of energy
(in kWh) of usage plan p at time slot t and wt is the power plant capacity (in kWh) at
time t. Let x be a binary vector indexed by C × P , where xc,p indicates if usage plan p

is assigned to consumer c. The following integer program formulation consists of finding
the values of x that

max
∑
c∈C

∑
p∈P

bc,p xc,p

s. t.
∑
p∈P

xc,p ≤ 1, ∀c ∈ C,∑
c∈C

∑
p∈P

pt xc,p ≤ wt, ∀t ∈ T,

xc,p ∈ {0, 1}, ∀c ∈ C, ∀p ∈ P.

This integer linear programming formulation can be solved using a commercial solver
such as Gurobi [15] to obtain an optimal allocation of energy usage plans to consumers
at a reasonable time.

Consumer c will be charged the value πc(b, x), which depends on the bids b reported by
the consumers as well as on the optimal solution x of the integer linear program computed
for b.

In order to compute prices, the VCG mechanism is used in conjunction with the Clarke
pivot rule. This guarantees that every consumer will pay a non-negative price for energy
consumption, that no consumer will pay more for an energy usage plan than their bid for
it, and that consumers will be compelled to report their bids truthfully. Thus, applying
the VCG mechanism with the Clarke pivot rule, the value of πc(b, x) is defined as:

πc(b, x) = max
x′∈S

 ∑
c′∈C\{c}

∑
p∈P

bc′,px
′
c′,p

−
∑

c′∈C\{c}

∑
p∈P

bc′,pxc′,p, (4.1)
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where S is the set of feasible solutions for the integer linear program. That is, every
consumer is charged their externality, the difference between the maximum social welfare
obtained by other consumers when consumer c is not in the market and the social welfare
obtained by the other consumers when consumer c is in the market.

Even though the model can have multiple optimal solutions, any of these solutions
would be fair to the consumers, since, for any two optimal solutions x∗ and x̃ in which a
consumer c receives plan p∗ in x∗ and plan p̃ in x̃, the value obtained from the usage plan
minus the price paid is the same, that is, bc,p∗ − πc(b, x

∗) = bc,p̃ − πc(b, x̃). In fact,

bc,p∗ − πc(b, x
∗) = bc,p∗ −max

x′∈S

 ∑
c′∈C\{c}

∑
p∈P

bc′,px
′
c′,p

+
∑

c′∈C\{c}

∑
p∈P

bc′,px
∗
c′,p (4.2)

=
∑
c′∈C

∑
p∈P

bc′,px
∗
c′,p −max

x′∈S

 ∑
c′∈C\{c}

∑
p∈P

bc′,px
′
c′,p

 (4.3)

= max
x∈S

{∑
c′∈C

∑
p∈P

bc′,pxc′,p

}
−max

 ∑
c′∈C\{c}

∑
p∈P

bc′,px
′
c′,p

 (4.4)

=
∑
c′∈C

∑
p∈P

bc′,px̃c′,p −max
x′∈S

 ∑
c′∈C\{c}

∑
p∈P

bc′,px
′
c′,p

 (4.5)

= bc,p̃ −max
x′∈S

 ∑
c′∈C\{c}

∑
p∈P

bc′,px
′
c′,p

+
∑

c′∈C\{c}

∑
p∈P

bc′,pxc′,p (4.6)

= bc,p̃ − πc(b, x̃) (4.7)

where the equality between (4.3) and (4.4) follows from the optimality of x∗ and the
equality between (4.4) and (4.5) follows from the optimality of x̃.

4.3.3 Bid Computation

In order to consume energy according to the scheduled energy in a usage plan, a consumer
must decide which appliances to turn on or off and at what specific time. A consumer has
many alternatives to choose from when deciding this appliance usage. Let an alternative
be a combination of the energy usage of one appliance in kWh for every time slot, with
a value, representing consumer satisfaction associated with using such appliances in the
times described by the alternative. For example, the consumer can choose to watch TV
from 20:00 to 22:00, consuming a constant amount of energy for each time unit, or use
a washing machine from 09:00 to 12:00, which consumes a variable amount of energy
dependent on the washing cycle. Some alternatives, however, are mutually exclusive.
For example, the consumer can charge their Plug-in Hybrid Electric Vehicle (PHEV)
from 21:00 to 06:00 using a certain amount of energy during all of those hours or charge
the PHEV from 00:00 to 05:00 but using a larger amount of energy per hour. The consumer
can, however, choose only one of the alternatives since the PHEV is only charged once.

In the case of renewable energy, it may be unrealistic to expect consumers to be able
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to satisfy their demands using only this type of energy in the fulfillment of their usage
plan. It is thus assumed that consumers can also buy supplementary energy at a fixed
hourly rate, possibly from another energy provider, in order to supplement the energy
which a usage plan provides. This system is well suited for renewable energy, especially
in the case of small generators in a community, and is actually optional, since the price of
the supplementary energy can be set to infinity (or, in practice, a relatively large value),
which will forbid the usage of non-renewable energy.

More formally, this scenario can be described in the following way:

• a set T = {1, 2, . . . , tmax} of discrete time slots,

• a usage plan p, where pt is the capacity of the usage plan at time t,

• a set A of alternatives where, for every a ∈ A, va is the value gained from choosing
alternative a and ua,t is the amount of energy consumed by alternative a at time t,

• a family A = {A1, A2, . . . , Ak} where Ai ⊆ A and exactly one alternative must be
chosen from Ai,

• a cost rt for every supplementary kWh consumed at time t.

Let y be a binary vector indexed by A where ya indicates if alternative a is chosen
and λ be a vector indexed by T where λt is the amount of supplementary energy (in
kWh) consumed at time t. The following integer linear program formulation computes
the optimal bid bc,p for a consumer c with alternative set A for an energy plan p.

bc,p = max
∑
a∈A

vaya −
∑
t∈T

rtλt

s. t.
∑
a∈Ai

ya = 1, ∀Ai ∈ A,∑
a∈A

ua,tya ≤ pt + λt, ∀t ∈ T,

ya ∈ {0, 1}, ∀a ∈ A,

λt ≥ 0, ∀t ∈ T.

Appliance i can be modeled by defining a set Ai of alternatives for it. Since exactly
one alternative for every set Ai is chosen, a must-run appliance is represented by a set of
alternatives, as exactly one of them will be chosen. Optional appliances can be represented
by adding an alternative with zero energy consumption and zero value.

Non-interruptible appliances can be modeled considering only alternatives where the
appliance runs from start to finish, that is, alternatives a where ua,t > 0 if and only if t is
in a pre-specified time interval. Interruptible appliances can be modeled by considering
all possible interruptions that can occur. For example, an interruptible appliance which
should run for 4 hours, but it can be interrupted only once in the middle of the cycle and
that consumes 1kW per hour can be modeled by considering as alternatives every vector



92

ua so that there are k and ℓ in T with ua,k = ua,k+1 = ua,ℓ = ua,ℓ+1 = 1 and ua,t = 0 for
every t /∈ {k, k + 1, ℓ, ℓ+ 1}.

The model can also represent the arbitrary mutual exclusion of alternatives for different
appliances (e.g. a consumer might decide either to watch TV or to use a computer in the
evening, but not both). In Sect. 4.4.1, more concrete examples of appliances are given.

4.3.4 Incorporating Energy Storage

Extensions of the previous optimization problems considering energy storage devices [4, 8,
34] are presented in this section. Energy storage devices help consumers to better utilize
their energy usage plans so that unused energy can be consumed at times of greater need.
Energy storage devices are also useful to utility companies. By using energy storage
devices, for example, utility companies can store energy during days when solar energy
production is high and use it at night, when no solar energy is generated.

Let y be a binary vector indexed by A where ya indicates if alternative a is chosen,
λ be a vector indexed by T where λt is the amount of supplementary energy (in kWh)
consumed at time t, κ, z+ and z− be vectors indexed by T such that κt represents the
amount of energy (in kWh) stored at the beginning of time slot t, z−t represents how much
energy (in kWh) is discharged at time slot t and z+t represents how much energy (in kWh)
is charged during time slot t. The following integer linear program formulation consists
of finding y, λ, κ, z+ and z− that

bc,p = max
∑
a∈A

vaya −
∑
t∈T

rtλt

s. t.
∑
a∈Ai

ya = 1, ∀Ai ∈ A,∑
a∈A

ua,tya ≤ βz−t − αz+t + pt + λt, ∀t ∈ T,

z+t − z−t ≤ δmax, ∀t ∈ T,

κt ≤ K, ∀t ∈ T,

κt+1 = γκt + z+t − z−t , ∀t ∈ T,

ya ∈ {0, 1}, ∀a ∈ A,

λt, κt, z
−
t , z

+
t ≥ 0, ∀t ∈ T,

where κtmax+1 = κ1, K is the capacity of the energy storage device in kWh, α ≥ 1 and
β ≤ 1 are parameters associated with charging and discharging efficiencies, respectively,
γ ≤ 1 is the leakage rate, and δmax is the maximum charging rate in kWh. Even though
this model allows the battery to be charged and discharged at the same time, notice
that this would waste more energy. In fact, any feasible solution where the battery is
both charged and discharged at time t can be modified to either charge z+t − z−t kWh if
z+t − z−t ≥ 0 or discharge z−t − z+t kWh if z+t − z−t ≥ 0. This integer linear programming
model is a generalization of the model previously described in Section 4.3.3.

The model for energy allocation to consumers can be extended to include energy
storage in a similar way and will not be shown in this paper. Moreover, one can compute
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the prices, as shown before in Section 4.3.2 using Equation (4.1).

4.4 Simulation and Experimental Results

In this section, the performance of the proposed model using a randomly generated in-
stance is assessed. Results comparing the proposed model with a system in which con-
sumers do not have ECS are omitted since it is well established in the literature that the
usage of ECS devices can improve the social welfare [26]. In the evaluation, the impact
of adding energy storage devices both on the consumers’ and energy providers’ side is
considered. First, the way in which instances are generated is described in detail and,
later, the results are discussed.

4.4.1 Data generation and assumptions

Consumers are assumed to have a set of appliances in which the alternatives represent
different usage patterns for those appliances. Thus, every Ai of A represents the alterna-
tives for a specific appliance i. For many of those appliances, all alternatives are equally
good for the consumer regardless of the starting and ending times and, all have the same
satisfaction value. For other appliances, the value depends on the starting and ending
times. For one of the appliances, there is a basic alternative a which brings the consumer
the most satisfaction when using the appliance, and this is the basis for setting the value
of the other alternatives.

The level of satisfaction obtained by using the appliance at time t, according to the
basic alternative a∗, is computed by using the following function (as done by Samadi et al.
[26]):

v(ω, ua∗,t) =

 ω ua∗,t −
u2
a∗,t

4
, if 0 ≤ ua∗,t < 2ω

ω2, if ua∗,t ≥ 2ω

where ω is a random parameter chosen uniformly from a list of possibilities. That is, the
value va∗ of alternative a∗ is computed as

∑
t∈T v(ω, ua∗,t). Thus, va∗ is the maximum

value for that appliance. This function is used only to generate an instance for the model
and, in fact, a consumer could give any non-negative value for any alternative.

Table 4.1 presents the parameters considered for the appliances for which any alterna-
tive is equally good. It is also possible to define the time relationships between appliances,
such as the following: the clothes dryer (if used) starts only immediately after the wash-
ing machine is finished; if the clothes dryer is going to be activated, the corresponding
washing machine activation is free to start at any time.

For air conditioning, lighting and entertainment, the consumer has an ideal time inter-
val, I, of usage and obtains the value va∗ if they can be used in this time interval. Moreover,
all the discrete non-empty subintervals of I are alternatives, each with value ρkava∗ , where
ρa ∈ [0, 1] is the value discount rate of appliance a and k is the number of hours missing
in the corresponding time interval. Table 4.2 shows the associated parameters for these
appliances. The ideal time interval for air conditioning usage is randomly chosen for each
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Appliance ω Starting times Duration Power (kW)

Clothes iron 4, 6, 8, 10 08:00–16:00 2 h 1.00

Dishwasher 4, 6, 8, 10 Any time 1 h 1.44

Generic (×4) 2, 4, 6 06:00–23:00 1 h 1.50

Pool pump 2, 4, 6, 8 Any time 2 h 2.00

Vaccum cleaner 4, 6, 8, 10 08:00–16:00 2 h 1.50

Washing machine 4, 6, 8, 10 08:00–16:00 or any time (with clothes dryer) 2 h 1.70

Clothes dryer 4, 6, 8, 10 Optionally after washing machine 2 h 1.25

Water heaters (x2) 2, 4, 6, 8, 10, 12 06:00–07:00 or 18:00–22:00 1 h 1.00

Table 4.1: Parameters of appliances whose alternatives have the maximum value.

Appliance ω Target int. ρ Power (kW)

Air Conditioning 2, 4, 6, 8, 10, 12 or 14 See description 0.8 1.00

Entertainment 6, 8, 10, 12, 14, 16, 18 or 22 18:00–00:00 0.9 1.50

Lighting (evening) 2, 4, 6, 8, 10 or 12 18:00–00:00 0.9 0.25

Lighting (morning) 2, 4, 6, 8, 10 or 12 06:00–08:00 0.9 0.25

Table 4.2: Parameters of appliances based on a target usage time interval.

consumer: it is given by r – 22:00 where the same r is chosen uniformly in the interval
from 09:00 to 17:00.

It is also possible to consider alternatives, such as using a stove in the morning and
in the evening, with 1 kWh being consumed for 2 hours after being activated. The
value of ω, in this case, is chosen from the set {10, 12, 14, 16, 18}. In the morning
version, the starting times are chosen from the set {11:00, 12:00, 13:00} in which 12:00
is the preferred one and, for the evening time slot, the starting time is chosen from
{18:00, 19:00, 20:00, 21:00, 22:00}, with 20:00 being the preferred time. Let p be the
preferred starting time of the appliance, an alternative starting at time t has a value
of 0.9|t−p|va∗ .

In relation to charging a PHEV, ω is chosen from the set {2, 4, 6, 8, 10}, and, for every
subinterval I between 18:00–08:00, there is an alternative A that consumes 9.9 kWh evenly
distributed in I. The value of A is thus given by 0.9kva∗ , where k is the number of hours
not in the interval of 20:00–06:00, and a∗ is the alternative which charges the PHEV from
20:00 to 06:00.

Three types of energy usage plans are considered:

• Flatk: a usage plan where every position has value k,

• Uk,i: a usage plan where the value is k for time slots 1, 2, . . . , i− 1 and k + 1

elsewhere,

• Dk,i: a usage plan where the value is k for time slots i+1, i+ 2, . . . , tmax and k+1

elsewhere.

where k ∈ {0, 0.25, . . . , 3.0} and i ∈ {0, . . . , 23}.
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The instance considered has n = 100 consumers and, if some of the consumers have
energy storage devices, only 30% are considered to do so.

The renewable energy production capacity was obtained by scaling the mean solar and
wind energy produced in the CSUD region of Italy for each hour in a five day period (from
06–11–2016 to 10–11–2016). Fig. 4.2 shows the mean energy production in the period.
Let W ′

t be the mean renewable energy produced at time t. In order to obtain the energy
production capacity, W ′

t is scaled by 2n|T |/
∑

t∈T W ′
t , and, thus, the mean energy capacity

per hour and per consumer is 2 kWh; this is sufficient to induce some competition among
clients while meeting the clients’ basic energy needs.
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Figure 4.2: Mean solar and wind energy production in Italy (CSUD region) from 06-11-
2016 to 10-11-2016 [32].

The consumers’ energy storage device is a lithium-ion battery with parameters
α = 0.9−1, β = 1.1−1, δmax = 0.5 kWh, γ = 24

√
0.9 and K = 4kWh as specified by Atzeni

et al. [3], and the energy provider’s battery has a value of 40 for the parameter K and 5

for the parameter δmax, and the same values for parameters α, β and γ.
In order to establish a baseline for the proposed model, we compare it to a time-

varying pricing model, where consumers can buy energy at the price rt at time t. In
this model, renewable energy is considered to have priority over non-renewable energy,
that is, non-renewable energy will only be sold after selling all the renewable energy at
time t. Thus, this model only wastes renewable energy when there is no demand at a
specific time. This scenario describes the situation where, for instance, the consumers are
not willing to participate in the auction for acquiring renewable energy, so they pay the
same fixed price that they would pay if they only used the supplemental non-renewable
energy (although some of the renewable energy may be delivered to them to diminish the
environmental impact of the community).

A similar assumption is made for the proposed system. Any unallocated renewable
energy can be sold as supplementary energy at a time-varying price with renewable energy
sold first and non-renewable energy afterward. Thus, in this model, there are two types of
renewable energy loss: one because consumers may not consume all the energy allocated
to them in their given usage plan; and the other because the demand at a given time is
less than the renewable energy produced.
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In the evaluation, three different scenarios are considered; one where supplementary
energy is “inexpensive” (rt = 6 for every t ∈ T ), one in which supplementary energy is
“expensive” (rt = 9 for every t ∈ T ) and, finally, one “mixed” scenario where supplementary
energy is expensive at peak demand hours and inexpensive otherwise (rt = 6 for 1 ≤ t ≤ 18

and rt = 9 for 19 ≤ t ≤ 24).

4.4.2 Social welfare and revenue

Table 4.3 presents the number of appliances used on average by a consumer, the percentage
of the maximum possible social welfare, and the percentage of the maximum possible
revenue obtained by the two models.

Proposed Time-varying

Scenario Appliances Welfare Revenue Appliances Welfare Revenue

Inexpensive 15.99 90.50% 36.55% 12.07 79.78% 37.25%
Mixed 15.67 88.81% 37.07% 11.87 74.85% 32.66%
Expensive 14.55 85.33% 41.19% 10.24 63.09% 18.89%

Table 4.3: The number of appliances used on average and percentage of the maximum
social welfare and revenue obtained by the two models.

The proposed model was able to increase the average number of appliances used by
a consumer and the social welfare by 32.48% and 13.44% in the inexpensive scenario, by
32.01% and 18.66% in the mixed scenario, and by 42.09% and 35.24% in the expensive
scenario, respectively. From this, it can be concluded that the consumers have a strong
incentive to participate in the auction, since by doing so they will greatly increase their
welfare and the number of appliances used.

This result was expected since in the time-varying pricing model alternatives are chosen
according to the difference between value and price, which leads consumers to choose
only alternatives with high value and low energy consumption. On the other hand, in
the proposed model a consumer considers all appliances at once when bidding for an
energy usage plan. Moreover, it is the objective of the proposed model to maximize social
welfare (even though this is done indirectly by considering energy usage plans), while the
time-varying model is not concerned with this.

Finally, the revenue in the proposed model decreased by 1.89% in the inexpensive
scenario, but increased by 13.50% in the mixed scenario and 118.02% in the expensive
scenario. This means that since the proposed model allows consumers to use more energy,
it is able to earn more money for energy.

4.4.3 Energy allocation

Figures 4.3, 4.5 and 4.7 present renewable and non-renewable energy consumption and the
renewable energy waste in the proposed model for the three scenarios considered, while
Figures 4.4, 4.6 and 4.8 present those statistics for the time-varying model of pricing.
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Figure 4.3: Energy consumption using the proposed model in the inexpensive scenario.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

100

200

300

p
ow

er
(k

W
h
)

renewable

waste

non-renewable

Figure 4.4: Energy consumption using the time-varying model of pricing in the inexpensive
scenario.
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Figure 4.5: Energy consumption using the proposed model in the mixed scenario.

As the figures show, the proposed model wastes less renewable energy than the time-
varying model for all three scenarios. In fact, renewable energy waste with the proposed
model was 5.86% for the inexpensive model, 5.67% for the mixed model, and 10.77% for
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Figure 4.6: Energy consumption using the time-varying model of pricing in the mixed
scenario.
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Figure 4.7: Energy consumption using the proposed model in the expensive scenario.
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Figure 4.8: Energy consumption using the time-varying model of pricing in the expensive
scenario.

the expensive model, while, for the time-varying pricing model, it was 31.09% for the
inexpensive model, 30.24% for the mixed model, and 46.60% for the expensive model.
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Interestingly, the proposed model suggested using less non-renewable energy than the
time-varying model of pricing in the inexpensive scenario but suggested using more energy
than that suggested in the mixed and expensive scenarios. The proposed model suggested
using 365.81 kWh, 225.69 kWh and 137.17 kWh for the inexpensive, mixed, and expensive
scenarios, respectively, with the time-varying model suggesting 480.40 kWh, 104.78 kWh
and 61.49 kWh for the same scenarios. This happens because when energy is expensive,
the consumers tend to use fewer appliances in the time-varying model.

Fortunately, it is possible to decrease the suggested non-renewable energy use by in-
creasing the price of supplementary energy. In preliminary experiments, it was noticed
that with higher values of rt (such as 12 or 15) the proposed model led to a smaller
consumption of non-renewable energy while still keeping better social welfare, revenue,
number of appliances used and PAR when compared with the time-varying model.

Finally, as shown in Figures 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 and summarized in Table 4.4,
the proposed model has a smaller peak energy consumption and a higher mean energy
consumption, and consequently a smaller PAR.

Proposed Time-varying

Scenario peak average peak/average peak average peak/average

Inexpensive 239.58 203.51 1.18 307.35 157.82 1.95
Mixed 246.07 198.05 1.24 281.95 144.31 1.95
Expensive 207.27 184.15 1.13 215.62 109.35 1.97

Table 4.4: Mean, peak and average to peak energy consumption for both models.

4.4.4 Energy storage devices usage

Figures 4.9, 4.10 and 4.11 present the renewable and non-renewable energy consumption
and the renewable energy waste for the proposed model when energy storage devices are
available.

As the figures show, the renewable energy waste decreased to the level of 27.99%,
32.80%, and 45.87% of that generated by the proposed model without energy storage
devices, for the inexpensive, mixed and expensive models, respectively.

Moreover, the proposed model with energy storage devices increased social welfare by
0.76%, 1.26% and 2.06% in the inexpensive, mixed and expensive scenarios, respectively,
when compared with the proposed model without energy storage devices.

The amount of non-renewable energy used by the proposed model with energy storage
devices decreased 1.15% for the inexpensive model, but increased 16.46% for the mixed
scenario and 13.68% for the expensive scenario. This was expected since there is an
increase in social welfare (the consumers use more energy), a decrease in renewable energy
waste (there is less renewable energy available) and the possibility of modifying the energy
usage plan by storing energy when inexpensive and using it when expensive.

As for revenue, when the proposed model was used with energy storage devices, it
increased by 4.44%, 4.79%, and 4.20% for the inexpensive, mixed and expensive scenarios,
respectively.
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Figure 4.9: Energy consumption using the proposed model with energy storage devices
in the inexpensive scenario.
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Figure 4.10: Energy consumption using the proposed model with energy storage devices
in the mixed scenario.
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Figure 4.11: Energy consumption using the proposed model with energy storage devices
in the expensive scenario.
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Finally, the ratio of peak-to-average consumption for the proposed model with energy
storage devices was 1.16, 1.20, and 1.15 for the inexpensive, mixed and expensive scenarios,
respectively, a result similar to that obtained without energy storage devices.

4.4.5 Uncertainty of Renewable Energy Generation

Since the presented model does not directly handle the unpredictability of renewable
energy sources, it must use a day-ahead prediction technique in order to approximate the
capacity for the plant. As one of the techniques discussed in the literature to mitigate
the impact of renewable energy generation prediction errors is to use storage units on the
provider’s side [31], it is proposed that the presented model should be extended in the
following way: if the predicted value is greater than that observed, then the system will
store renewable energy in batteries (or waste it if they are at full capacity); and, if the
predicted value is smaller than that observed, then the system will first try to use the
energy stored in the batteries. If they are empty, it will acquire non-renewable energy in
order to fulfill the auction contracts with consumers.

In the following section, a comparison between the cases with certainty and uncertainty
in renewable energy production considering the proposed model (for simplicity without
using energy storage devices as described in Section 4.3.4) is presented. It was considered
that there are 2 additional provider-side batteries (with the same parameter considered
in Section 4.4.1) used specifically for mitigating the prediction errors.

In order to simulate uncertainty, for every period of time t, the actual amount of energy
produced at time t was chosen from a normal distribution with mean wt and standard
deviation wt/10 independently at random. The analysis was made considering 100 trials
randomly generated.

On average, for the inexpensive scenario, the renewable energy used decreased by
0.31% (from 4518.54 kWh to 4504.43 kWh, with a standard deviation of 22.26 kWh), the
non-renewable energy used increased by 3.86% (from 365.81 kWh to 379.92 kWh, with a
standard deviation of 22.26 kWh) and the waste decreased by 15.32% (from 281.45 kWh to
238.34 kWh, with a standard deviation of 64.92 kWh). For the mixed scenario, on average,
the renewable energy used decreased by 0.38% (from 4527.68 kWh to 4510.44 kWh, with
a standard deviation of 24.30 kWh), the non-renewable energy used increased by 7.64%
(from 225.69 kWh to 242.93 kWh, with a standard deviation of 24.30 kWh), and the
waste decreased by 16.57% (from 272.31 kWh to 227.18 kWh, with a standard deviation
of 64.78 kWh). Finally, for the expensive scenario, on average, the renewable energy used
decreased by 0.05%, (from 4282.57 kWh to 4280.29 kWh, with a standard deviation of
24.30 kWh), the non-renewable energy used increased by 1.66% (from 137.17 kWh to
139.45 kWh, with a standard deviation of 6.60 kWh), and the waste decreased by 16.95%
(from 517.42 kWh to 429.71 kWh, with a standard deviation of 64.78 kWh). Thus, as long
as there is a reasonably accurate forecast model and storage units on the provider’s side
to help mitigate the errors, the presented model remains effective despite the uncertainty
of the energy sources. See Figure 4.12 (in contrast with Figure 4.5) for an example of
energy consumption in the mixed scenario when there is uncertainty, including the usage
of storage devices for prediction error mitigation.
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Figure 4.12: Energy consumption using the proposed model with uncertainty mitigation
for a test case of the mixed scenario. The amount of external non-renewable energy needed
to compensate for the prediction error is shown in light red, the amount of energy used
to charge the mitigation storage units is shown in light green, and the amount of energy
taken from the storage units to mitigate the prediction errors is shown in light blue.

4.4.6 Performance Evaluation

All the numerical experiments were executed in a computer with the following configu-
ration: Intel (R) Xeon (R) CPU X3430 with 2.40GHz of clock rate, 4 cores and 8GB of
RAM with Linux 64bits (Ubuntu). Both optimization problems were modeled as integer
linear programs that were solved using the python2 API of Gurobi [15] version 8.1.1. All
the simulations and analysis were coded in Python 2.7.

Although the problems that appear in the proposed model are NP-hard, these problems
could be solved reasonably fast with a commercial ILP solver when considering an instance
of a size that is common in the literature (for example, Samadi et al. [26] considers an
instance with 50 consumers). For the energy allocation problem, which is solved in a
centralized way, the execution time was 853, 583 and 710 seconds for the inexpensive,
mixed and expensive scenarios of the proposed model (without batteries) respectively.
When considering energy storage devices, the extended model was solved in 295, 214 and
456 seconds for the inexpensive, mixed and expensive scenarios, respectively.

For the bid computations, several ILP problems were solved, i.e. one for each consumer
and usage plan. The total time to solve all the bid computation problems was 1494, 1785
and 2193 seconds for the inexpensive, mixed and expensive scenarios respectively. The
average computing time per consumer was about 14, 17 and 21 seconds for the inexpensive,
mixed and expensive scenarios respectively. The computation times for the model with
energy storage devices was close to its counterpart, in which it was 14, 16 and 20 seconds
for the inexpensive, mixed and expensive scenarios, respectively.

4.5 Conclusions

This paper has presented a new model for smart pricing for demand-side management by
using energy consumption scheduling devices for renewable energy. The proposed model
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is based on an auction where consumers submit bids for a set of possible energy usage
plans designed by the utility company and then allocates energy according to the power
plant production capacity. A model for generating consumers’ bids which can consider
must-run, non-interruptible, interruptible appliances and other variations is presented.
Both models are extended to consider the usage of energy storage devices.

The main advantage of the proposed model is that it does not make any assumptions
about how consumers will derive value from energy consumption nor does it depend
on how bids are computed by consumers. That is, the model presented for generating
consumers bids is only a suggestion, and can be replaced by any other model with the
same purpose. This simplifies the perspective of the consumer about the system since a
bid represents how much a consumer is willing to pay for a specific usage plan. Moreover,
this allows for the creation of models for other consumers such as universities, hospitals
or industries, as long as one can define how those consumers allocate energy from a given
energy usage plan and how they obtain value from energy usage.

Numerical examples show that the proposed model offers great improvement when
compared with the time-varying model of pricing. In fact, it was able to increase social
welfare, as well as the mean number of appliances used by a consumer and revenue,
while reducing the renewable energy waste and peak-to- average ratio. Even though
more non-renewable energy is consumed, this can be reduced by increasing the price of
supplementary energy, so that the values are lower than those obtained using the time-
varying pricing model while still obtaining better social welfare and high revenue. It has
also been shown that energy storage devices can improve social welfare while reducing
energy waste. Finally, the numerical simulations give us confidence that the models could
be implemented efficiently with existing ILP solvers both for the energy allocation and
bid computation problems.

As future work, the proposed model could be extended to better consider the unpre-
dictable nature of renewable energy generation. In the experiments, it is shown that this
unpredictability does not significantly affect the proposed model and that these effects can
be mitigated using additional batteries. Nonetheless, a solution that specifically considers
the unpredictability could obtain better results.
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Chapter 5

Concluding Remarks

In this work, we study algorithms and mathematical models for some variants of packing
problems. The thesis is presented as a collection of articles: one already published in an
international journal; and two recently submitted. Each article consists of a project on a
specific problem, often using different approaches to solve them.

The first project, as discussed in Chapter 2, consisted of the colored bin packing
problem. This problem had already been extensively studied in the literature, both with
online and approximation algorithms. However, to the best of our knowledge, there were
no experimental results in the literature for it. Our main result was the enhanced arc
flow formulation that used a compact multi-graph and preserved the same strong linear
relaxation bound of the generalization of the model of Valério de Carvalho for the CBPP.
To contextualize the quality of this model, we wanted to compare it with branch-and-
price models, but since a fast algorithm for pricing in a Gilmore-Gomory formulation was
not available, it was unlikely that such a model would be competitive. The VRPSolver
framework was then used to propose two competitive set-partition models to complement
our enhanced arc flow formulation.

Although heuristics and metaheuristics for the CBPP are not presented in this the-
sis, they have been considered in another work, in collaboration with an undergraduate
student, during the project. Since many different metaheuristics can be applied to this
problem, this area presents many possibilities for future work. Furthermore, we could
investigate fast algorithms for the colored variant of the knapsack problem, making a
Gilmore-Gomory-style set-partition formulation viable. Such formulation could even be
improved with the study of dual feasible functions, problem-specific cuts, and other similar
techniques.

The second project, as discussed in Chapter 3, consisted of the bin packing problem
with scenarios. To the best of our knowledge, this recently proposed problem had only
been studied from an online perspective, so the main contributions of this work are the
first approximation algorithms and the first offline computational study for the BPPS.
The set-cover formulation, usually associated with these types of packing problems, had
limited success because the pricing sub-problems were proven to be strongly NP-hard
even without any branching constraints. To circumvent this situation, we solved the sub-
problems using a MILP model and employed dual feasible functions to improve the quality
of the lower bounds in hopes of a faster convergence. Furthermore, we proposed a VNS
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metaheuristic to provide a good initial solution for the exact model. We believe these
results will serve as a good foundation for further experimental works on this problem in
the future.

Additionally, arc flow formulations could also be considered for the BPPS. However, it
is unclear whether we can represent items appearing simultaneously in multiple scenarios
without adding a dimension per scenario. This approach has been used to model the
vector bin packing problem using an arc flow formulation, but the number of variables
significantly increases with the number of dimensions. A similar approach for the BPPS
would be limited to instances with a lower level of uncertainty. Alternative metaheuris-
tics could be considered for giving an initial solution to the problem, as well as other
neighborhood structures for the proposed VNS framework. These directions could also
be considered in future works.

The last project, as discussed in Chapter 4, consisted of a smart pricing scheme for
demand-side management in smart grids. In this work, we used a game-theoretical ap-
proach to an application involving connected electrical networks. The main contribution
comes from the multidisciplinary nature of the modeling approach, bringing game the-
ory, combinatorial optimization, and network systems together to propose a solution. By
modeling both the energy allocation and bid calculation as packing problems, we were
able to perform simulations of the proposed auction scheme by solving both problems as
MILPs. This approach also enabled a smooth integration of the use of batteries on both
sides by slightly altering the objective functions and knapsack constraints. Results of the
simulations show that the proposed model is effective at reducing the peak-to-average
consumption ratio, an important metric for energy grids.

Since the targeted application of the proposed model was aimed at small communities,
the simulations included only a few hundred consumers, which was ideal for the proposed
MILP models. If larger communities, of thousands of consumers, were considered, we
would have to study an alternative algorithm for the energy allocation problem that
would scale better with the size of the community. Furthermore, we only considered
household consumers in the bidding computation problem. If we were to account for
commercial and industrial consumers, our models would have to include specific rules to
accommodate these new profiles. These types of consumers also have a larger number of
appliances to be allocated to their plans, so the proposed bidding computation algorithm
would need to scale properly. These extensions could be considered in future works.

For all problems studied in this thesis, we provided a benchmark set of instances along
with the implementation of all exact and heuristic algorithms proposed. We hope that
we were able to establish a solid foundation for experimental results on each of these
problems so that new algorithms developed in the future can build upon these results.
All the benchmark data and code can be made available for researchers under reasonable
personal request.
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