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Resumo

Seja (M, A, i) um espago de probabilidade e f : M — M um homeomorfismo que preserva
uma medida de probabilidade ergddica p. Dada F uma foliacdo f-invariante continua de
dimensao 1 em M com folhas de classe C'*, mostramos que se f preserva um F-sistema de
comprimentos de arcos continuo {l,},crs, entdo podemos classificar as medidas condicionais
de 1 ao longo de F em trés possibilidades: elas sdo ou atomicas para quase toda folha, ou
sao equivalentes a medida A\, que ¢ induzida pelo F-sistema de comprimento de arco, ou o

seu suporte é um conjunto de Cantor da folha, para quase toda folha.

Além disso, mostramos que se f : M — M é um C'-difeomorfismo transitivo parcialmente
hiperbélico com dire¢ao central topologicamente neutra que preserva uma medida ergodica,
entao a desintegracao dessa medida ¢ atémica ou equivalente a medida induzida pelo

sistema de comprimentos de arco ao longo de cada folha central.

Palavras-chave: Medidas condicionais, medidas ergddicas, dindmica hiperbodlica, conjunto

de Cantor, centro topologicamente neutro.



Abstract

Let (M, A, 1) be a probability space and let f : M — M be a homeomorphism that
preserves an ergodic probability measure p. Given a continuous f-invariant foliation F of
dimension 1 in M with C' leaves, we show that if f preserves a continuous F-arc length
system {l,}.enr, then the conditional measures of p along F can be classified into three
possibilities: they are either atomic for almost every leaf, or equivalent to the measure A,

induced by the F-arc length system, or their support is a Cantor set on almost every leaf.

Furthermore, we prove that if f : M — M is a C! transitive, partially hyperbolic
diffeomorphism with a topologically neutral central direction that preserves an ergodic
measure, then the disintegration of this measure is either atomic or equivalent to the

measure induced by the arc lengths along each central leaf.

Keywords: Conditional measures, ergodic measures, hyperbolic dynamics, Cantor set,

topologically neutral center.
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Introduction

A general notion of a dynamical system is given by a pair (M, f), where M is
an ambient manifold and f : M — M maps are continuous or discrete time that relates
the current state of the system to its past and future states. The theory of dynamical
systems aims to identify patterns and understand the asymptotic behavior of orbits in

such systems.

A useful approach to understand the temporal evolution of dynamical systems
in spaces with invariant measures is to study their statistical and geometrical properties.
This is precisely the objective of ergodic theory, which considers an ambient manifold
M equipped with a probability measure u, a o-algebra A, and a map f: M — M that
preserves the measure; that is, for every A € A, we have u(A) = u(f~*(A)). Ergodic theory
seeks to identify properties that are valid for almost all trajectories of the system with
respect to the measure pu. We say that a system is ergodic if the f-invariant subsets only
belong to sets with measure zero or one; that is, if for every measurable set B < M such
that f~'(B) = B, we have u(B) =0 or u(B) = 1.

Even though ergodicity implies unpredictability from a measure standpoint,
there are several degrees of unpredictability that make up the ergodic hierarchy. The
ergodic hierarchy differentiates systems based on how quickly they mix sets over time.
Among the many fine ergodic properties, the Bernoulli property is the most robust form of
unpredictability in terms of measure. This means that we can find a symbolic representation
of the system that is equivalent to a shift, and we can find a finite partition of the system
where the symbolic representation generated by this partition is measurably equivalent to
a standard Bernoulli shift. In regards to orbit information, this indicates that, using this
finite partition, it is impossible to determine the partition element of the initial point even
if all past and future orbit information is available. This level of unpredictability is known
as "chaos in terms of measure'. Linear toral automorphisms without eigenvalues of norm

one are natural examples of Bernoulli automorphisms, as shown in [33].
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Measure disintegration

Measure disintegration techniques have been a crucial tool in ergodic theory.
We can disintegrate a probability measure p over the partition induced by any countable
generated sub-o-algebra £ < B for a topological space X with its Borel o-algebra B and a
probability measure p on X. This disintegration involves finding a collection of probability
measures {/i}.cx, such that p,([z]) = 1 for the element [z] of the partition induced by
& containing x. The function x — p, is measurable with respect to the Borel o-algebra.
Moreover, for any B € B, u(B) = J e (B) du(x). We refer to this collection of probability

measures as the disintegration of v along £.

If we have a one-dimensional continuous foliation F and any (small) foliation
box U, we can disintegrate the restriction of p to the foliation box into conditional
probabilities along the local leaves F|U(x) using the disintegration {uY : x € U}. This
disintegration is called the disintegration of p along F|U.

We say that a probability measure p has Lebesgue disintegration along F if,
for p-almost every x, any representative of the conditional probability measure {1 }zem
is equivalent to Riemannian volume on F(z) in terms of their zero sets. On the other
hand, p has atomic disintegration if {p }.eps is an atomic class for p-almost every x. Some
results obtained with this tool include, for example, the proof that the stable and unstable
foliations of globally hyperbolic (or Anosov) systems are absolutely continuous, despite not
being C! in general, given by Anosov and Sinai [2, 3] in the 1960s. This result crucial in
Anosov’s celebrated proof that the geodesic flow for any compact manifold with negative

curvature is ergodic.

In certain recent investigations, some properties of measure disintegration have
been obtained for some systems, such as for partially hyperbolic diffeomorphisms, that
is, diffeomorphism f such that the tangent bundle T'M admits D f-invariant splitting
E*® E°® E* such that Df
and Df

E? nor as expanded as vectors in E*. When the center direction is integrable we have a

g+ is a uniformly contracting, D f|gu is uniformly expanding,

ge is dominated by both: vectors in E° are neither as contracted as vector in

foliation tangent to E°, called center foliation.

Some authors had have carateristics for the disintegration along of center
foliation, for example, in the work of D. Ruelle and A. Wilkinson they proved in [31]
that certain partially hyperbolic dynamics with negative fiberwise Lyapunov exponent
have atomic disintegration of the preserved measure along the fibers. Later, A. Homburg
proved in [21] that some of the examples considered in [31] have disintegration consisting
of only one Dirac measure. A. Avila, M. Viana, and A. Wilkinson proved in [4] that
C'-volume preserving perturbations of the time-1 map of geodesic flows on negatively

curved surfaces have either atomic or absolutely continuous disintegration of the volume
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measure along the center foliation. Moreover, in the latter case, the perturbation must
be the time-1 map of an Anosov flow. Within the class of diffeomorphisms derived from
Anosov diffeomorphisms, G. Ponce, A. Tahzibi, and R. Varao exhibited an open class
of volume preserving diffeomorphisms in [28] that have atomic disintegration along the
center foliation. Recently, A. Tahzibi and J. Zhang answered a question from [27] and
proved in [32] that non-hyperbolic measures of diffeomorphisms derived from Anosov

diffeomorphisms on T? may also have atomic disintegration along the center foliation.

Note that all of the results mentioned above have as hypotheses some kind of
hyperbolicity. In this work, one of our main goals is to better understand the disintegration
of an invariant measure along an invariant foliation for the dynamics without requiring
hyperbolicity or partial hyperbolicity for f, but assuming that the invariant foliation has
some type of rigidity metric with respect to f. In other words, we aim to investigate
what the possible characterizations are of the conditional measures obtained when we
disintegrate p over a foliation F, assuming that the behavior of f along F is far from

being hyperbolic

Setting and statement of results.

Our work will take place in a probability space (M, A, i), where M is a compact
Riemannian manifold with at least two dimensions, p is a non-atomic Borel measure,
and A is the completion of the Borel o-algebra B of M with respect to the measure .
Essentially, this means that the space (M, A, 1) is equivalent to the probability space
([0,1], Ajo17, Lebyo.17), where Lebyg 7 is the standard Lebesgue measure on [0, 1] and Ajg

is the o-algebra of Lebesgue measurable sets of [0, 1].

The following is the main result of this work.

Theorem A. [25] Let f : M — M be a homeomorphism over a compact smooth manifold
and F be a f-invariant one dimensional continuous foliation of M by C'-submanifolds
and {l;}zers a F-arc length system. If f is ergodic with respect to an f-invariant measure

1 then one of the following holds:

a) the disintegration of u along F is atomic.

b) for almost every x € M, the conditional measure on F(x) is equivalent to the measure

;. defined on simple arcs of F(x) by:

A:(7([0,1])) = l.(v), where~y is a simple arc.

c) for almost every x € M, the conditional measure on F(x) is supported in a Cantor

subset of F(x).
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The existence of invariant systems of metrics was obtained in [11] for the
context of transitive partially hyperbolic diffeomorphisms with topological neutral center,
meaning that f and f~! have Lyapunov stable center direction (see [19, section 7.3.1]), i.e,
given any € > 0 there exists § > 0 for which, given any C' path « tangent to the center

direction, one has
lenght(y) < 6 = lenght(f"(y)) <e, VYnelZ.

According to [30, Corollary 7.6], the diffeomorphisms in question have a continuously

integrable center direction, which gives rise to a foliation F of M.

This theorem has a useful application in the case of partially hyperbolic
diffeomorphisms with a one-dimensional topologically neutral center direction. Bonatti
and Zhang proved in [11, Theorem A] the existence of a Farc length system for such

diffeomorphisms, where F¢ denotes the center foliation.

We are able to show a dichotomy for this class of diffeomorphisms, where the

case of conditional measures supported on a Cantor set is not necessary.

Theorem B. [20] Let f : M — M be a transitive C* partially hyperbolic diffeomorphism
on a closed manifold M. Assume that f has one-dimensional topologically neutral center.

If f is ergodic with respect to a f-invariant total support measure p then either:

a) the disintegration of u along of center foliation, F¢, is atomic.

b) for almost every x € M, the conditional measure on F(x) is equivalent to the

measure N\, defined on simple arcs of F°(x) by:

e (7([0,1])) = 1.(7), where v is a simple arc.

An important application of this theorem is [26] where the author proved
in Theorem A that if f is a C'*, a > 1, partially hyperbolic diffeomorphism with an
orientable one-dimensional center bundle, whose orientation is preserved by f, and f
preserves a smooth ergodic measure p while being topologically neutral along the center
direction, then the conditional measures of the disintegration of y along the center foliation
F¢ are atomic or the center foliation, F¢, is leafwise absolutely continuous and f is

Bernoulli.
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Preliminaries

In this chapter, we aim to briefly introduce some relevant concepts that are
essential to understanding our results. Our primary objective is to make this text as
self-contained as possible by providing references that will facilitate comprehension. While
we will state most of the results, we will omit their proofs, which can be found in the

provided references.

2.1 Measure-Theoretical Properties of Partitions

A partition P of a measurable space (X, .A, ) is a collection of a measurables

subsets of X, P called atoms of P, satisfying

e Pn(@Q = I for every pair of distinct atoms P, () € P;

- Jr=x

pep

Given a sub-g-algebra & ¢ B generated by a countable family of subsets in B,
{E, }nen, associated to € we define the equivalence relation ~¢ as for x,y € M we write
x ~gy if xp(r) = xp(y) for every E € £, where xg is the characteristic function. The
equivalence classes under ~¢ are measurable and can be represented as intersections of
sets F), of the form F), € F,,, X\ E,. In other words, for every x € X, the equivalence class

of z is given by

[z] := ﬂ E = ﬂ{Fn : F,e{E,, X\ E,} and x € F,}
Ee&: xel

Consequently, [z] is a Borel set for every x € X and {[z] : x € X} is a partition of X.

We will call the partition [z] : z € X associated with the countably generated

o-algebra a countably generated partition.
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Definition 2.1. Given a sub-o-algebra £ < B generated by a countable family {Ep}nen. A
family of measures {p,}rex is called a system of conditional measures or a disintegration

of v associated to &, if

1. Given ¢ € C°(X), then x — J(pdux is €-measurable;

2. pe([z]) =1, p-almost every x;

3. if B < X is measurable, then
W(B) = [ m(Blduty).
yeB

For simplicity, we also say that {4, }.ex is a disintegration with respect to the
partition P = {[z] : x € X}. The existence of disintegration with respect to such partitions

is garantee by the following result, which we prove here for the sake of the reader.

Theorem 2.2. [15] Let X be a metric compact space, B the Borelian o-algebra and € < B
a sub-o-algebra generated by a countable family of Borelian subset, then there exists a

system of conditional measures with respect to &.

Proof. Since X is a compact metric space, we can choose a countable, dense, and Q-linear
subset V' = {fy, f1,...} © C(X) such that fy = 1. Let go = fo = 1 and for every i > 1 we

define g; as the conditional expectation of f on &, this is,
9 = E(fil€) € L'(X, B, 1)

where
E(fi|€)(y) = ,u([ly]) f[y] fidp, almost every y e X.

Actually here g; denotes a representative of the equivalence class of integrable functions.
Let Xy < X be a full measure subset such that for every o, 8 € Q and every f;, f; € V the

following conditions are satisfied,

1. E(af; + Bf;1€)(x) = aE(fi|E)(x) + BE(f;|€)(x), for every x € X,

2. min f; < E(f;|€)(z) < max f;, for every x € X.

Thus, for every x € X, we can consider the functional H, : C'(X) — R defined by
H.(fi) = gi(x), fori=0,1,...

Notice that from Item 2 above, it follows that |#,| < 1 for almost every = € X. Hence by
the Riesz Representation Theorem, for every y € X, there exists a probability measure s,
on X such that

?@U)=JfWMMA@-

For y € X \ X, we define p, to be some fixed measure to ensure measurability.
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Claim 1. The function y — p, is E-measurable and E(x4|E) = p,(A) for almost every
ye X.

Proof. Let C c B be the family of subsets A € B such that the function y — p,(A) is
E-measurable and E(x4|€)(y) = py(A) for almost every y € X. We want to show that
C = B. To do this, we use the Monotone Class Theorem, which states that a family of
monotone classes that contains a algebra that generates the Borel o-algebra B is equal to
the o-algebra B. We show that C is a family of monotone classes and contains an algebra

that generates B.

Consider Cy < B the collection of set A such that x4 is pointwise limit of a
uniformly bounded sequence of continuous functions. Notice that for any open subset
B, the indicator function y g is the pointwise limit of a sequence of continuous functions
0 < h,, < 1. Therefore, the collection Cy is not empty. First, let us show that Cy is an

algebra:

o Clearly X, J € C,.

o Let A € Cy, then there exists a sequence of continuous functions 0 < h,, < 1, such
that h,, converges pointwise to x4, consider h,, = 1 — h,, we have that h,, converges

pointwise to xx. 4, thus X ~ A € C.

o Given A, B € Cy, then there exist uniformly bounded sequences of continuous
functions h,, and g,, such that h,(z) — xa(x) and g,(x) — xp(x), then (h,-g,)(z) —
(xa - xB)(x) = xa~p(x), consequently A n B € C,.

Now, we will show that the algebra Cy is contained in C. Indeed, let A € Cy and 0 < h,, < 1 be
a sequence of continuous functions such that h, — x4, thus by the Dominate Convergence

Theorem we have

Jim ) Ry, dpy, = JXA dpy = piy(A).
This implies that the function y — 11, (A) is the pointwise limit of the sequence of functions
Ry Yy Jhn dp,, we already know that E(h,|E) = Jh" dp, almost every y € X. Since

E(h,|E) is €-measurable for every n € N, follows that y — p, is &-measurable and
E(xal€)(y) = py(A), then we have that Cy < C.

On the other hand, notice that it contains the closed subsets, given any closed

A < X, consider for n € N
hp(x) = exp(—n - dist(x, A)),
notice that h,, — x4, then we have A € Cy. Thus Cy generates the Borel o-algebra B.

Finally, let us see that C is a family of monotone classes. Let Ay € Ay < -+ be a

countable collection of increasing sets belonging to C and A = UA;. We have that x4, — x4
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in L'. Then for almost all y € X, p,(A) = lim z1,(A,). Thus, the function y — p,(A) is
the pointwise limit of the sequence of measurable functions, y — 1, (A,) = E(xa,|E)(v).
By continuity of conditional expectation, we have that E(x 4, |€) — E(xal|€). Therefore,
py(A) = E(xal€), hence A = UA; € C. Analogously, we show that if By D By D --- is a

sequence of decreasing sets belonging to C, then B = nB; belongs to C.

Thus, we have shown that C is a family of monotone classes containing an
algebra Cy, which generates the o-algebra B. Then, by the Monotone Class Theorem, we

have that C = B, as we wanted to show. n

Claim 2. For all f € L' and almost every point y € X
B(/1E)) = | £dy (21)

Proof. We know that (2.1) holds for f = x4 by the previous Claim. Since we can
approximate any function f € L' by simple functions, and both sides of the equality (2.1)
are linear and continuous under monotone increasing sequences, we conclude the proof of
Claim 2. O]

Claim 3. For almost every y € X, p,([y]) = 1.

Proof. Let {E,} generate &, for each n € N and for every y € X, by definition of [y] we
have [y] < E, or [y] n E, = &, then by Claim 2 we have that for almost every point

ye X
1
ty(En) = E(xe,|€)(y) = i) f[y] XE, dp = Xk, (), (2.2)

Now, for each n € N consider F,, € {E,,, X \ E,}, we have that

[y]: ﬂ Fy,

yeFy

using F,, in equation (2.2), it follows that pu,(F,) = 1, for every n € N such that y € F},,
thus 4, ([y]) = 1. O

Therefore, we consider the family of mesures {y,},ex, and it is a system of

contitional measure for . [

It is natural to wonder whether we may have two distinct disintegrations for
the measure p with respect to £. The following result shows that, in terms of measure,

the system is indeed unique.

Proposition 2.3. [15] If {i,} and {v,} are systems of contitional measures for ju then

fy = Vy p-almost every v € X.
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Proof. Assume that there exists a subset @) < X with p(Q) > 0 such that u, # v, for all
y € Q. Consider a dense countable set of functions {¢} = C°(X). Define the sets

A = {«%’EQ : f Ok Ajtg #J @kd%}
] (=]

Since M(U Ar) = Q) > 0, there exists ko such that p(Ag,) > 0. Consider the set
Qo < Ay, given by

Qo = {ZE € Akzo : J Pho dux > J Pk dl/x}
[z] [=]

Without loss of generality, assume that p(Qg) > 0. Then

[ o xaudn = | (01 oy dia) dita) - fQO (1 ditz) dp()

> f (¢ry dvz) dv(w) = J% *XQo it
0

This is a contradiction, which implies that the assumption that p, # v, for all y € @ is

false.

O

2.2 Basics on Foliations
In this section we recall some geometric and measurable properties of foliations
and disintegration of measure on a foliated box.

Let M be a smooth manifold of dimension m. A C"-foliation, r = 0, of dimension
0 < n < m by C'-manifolds is defined as a maximal atlas F of class C" on M with the

following properties:

1. if (U,p) € F then o(U) = Uy x Uy < R" x R™™", where Uy, Uy are open disks;

2. If (U,¢),(V,¢) e F such that U n'V # &, then the function ¢ o ™" : (U n V) —
(U n'V) satisfies:

oo Nz, y) = (h(z,y), ha(y)).

Let F be a C" foliation of dimension 0 < n < m of a manifold M of dimension

n. Given (U, ¢) € F with
e(U) =U; x Uy < R" x R™™™,

the subsets o' (U; x {c}), for some c € U, are called the plaques of F.

We will say that M is foliated by F and the chart (U, ) € F is called the
foliated boz.
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Figure 1 — Foliation

By the definition, we have that f = ¢ |y, x¢e}: Ur X {¢} — U is an C" embedding.
Therefore the plaques are connected submanifolds of class C", » = 0, and dimension n. In
addition, given two plaques o and 3 in U either a n f = J or a = 3. We will use the
notation F|U(x) to denote the plaque in U that contains x.

From now on, F will denote a continuous and f-invariant one dimensional
foliation for the manifold M.

Proposition 2.4. Let (M, A, 1) be a probability space, where M is a manifold and A is
the completation of the Borel o-algebra B. If F is a one-dimensional continuous foliation
of M and given a finite open cover U of M by local charts of F then, for every U e U the
family of plaques {F|U(x)}zer is a countably generated measurable partition for U.

Proof. Given F a one-dimensional continuous foliation F and a local chart ¢ : U —
(0,1) x B'1(0), we define the countable collection of subsets {£,} by:

E.e=(0,1) x B(g,1/k) c R xR*™', ¢qe B '(0)n Q" ', keN.

Note that every quk is a Borelian subset of R" and since ¢ is an homeomorphism
we have that E,; = @_I(Eqvk) is a Borelian subset in U. Let £ < B be the sub-c-algebra
generated by the family of Borelian sets {E,;}. Notice that for every y € M the atom,
[y] is the connected component of F(y) n U that contains y, this is, F|U(y). Therefore
{F|U(x)}sev is a countably generated partition for U. O

By the proposition above, for each U € U, there exists a family of measures

{1} cu that is the disintegration of the measure pu(-|U) in U.
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In this case we also call {,qu}yeU, the system of conditional measures of ju or

the disintegration of p along F restricted to U.

A significant observation to make here is that the conditional measures for
distinct foliation boxes match on their intersection. That is, if U; and U, are foliation

boxes such that U; n Uy # F, then for almost every x € Uy n Us,, we have ,uUl = MIU2 up

x
to a constant factor. In other words, the conditional measures uxU are compatible across

different foliation boxes, which reflects the coherence of the foliation structure.

Proposition 2.5. [/]. If Uy and Uy are domains of two local charts o1 and ¢y of F, then
for almost every x the conditional measures pi* and pY? coincide up to a constant on
U1 M UQ.

Proof. For the sake of the reader, we will recall the proof given in [4]. Let ¥ be a cross-
section of Uy, this is, 3 is a submanifold of dimension m — n intersecting every local leaf
at exactly one point. Let uy, be the measure on ¥ obtained by projecting u(-|Uy) along
the local leaves. Consider any C' = Uy n Uy < U; and let uc be the image of p(-|C') under

the projection along the local leaves. The Radon-Nikodym derivative

dpc
d/LU1

at puc-almost every point.

Then for any measurable set £ < C,
d
u(B) = | i (B dun &) = ulE) = | 4 (B) T dpco)
pX b Hu,

By essential uniqueness, this proves that the disintegration of p(-|C') along the local leaves
is given by
c _ dHoy
T dpc
where y € F|U;(z) n . Doing the same for C' = U; n Uy < Uy, we have that

(y) (Y1 |C) for p-almost every z e C

d d
ﬂ(y)(pgl|0) = &(y)(quQ]C) for p-almost every point x € C.
dpc dpic

]

As observed in [4], Proposition 2.5 allows us to define a family of classes of

measures {{, : x € M}, such that

o wy(M ~ F(x)) =0 for every x € M and every representative w, € ),

e the function z — 2, is constant on the leaves of F,
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« for a foliated box U we have that the conditional measures ,uxU along the plaques
F|U(z) coincide almost everywhere with the normalized restrictions of the €, to

the plaques in U, this is, for almost every point x € U we have
Y = w,(|F|U
py = wa (| F|U (),

where w, denotes a representant of €2,.

2.3 Lebesgue differentiation theorem

In this section, we will recall an important result of measure theory known as
the Lebesgue differentiation theorem. The theorem applies to classes of metric measure

spaces (X, d, p) that meet certain conditions.

Definition 2.6. Given a metric space (X,d), a measure v on X is said to be a doubling

measure if there exists a constant R > 0 such that for any x € X and any r > 0 we have

v(B(x,2r)) < R-v(B(x,r)).

We say that (X,d, p) is a doubling metric measure space if n is a doubling

measure for the metric space (X, d).

The following theorem is a Lebesgue differentiation theorem for general doubling

metric measure spaces.

Theorem 2.7. [18, Lebesque differentiation Theorem] Let (X, d, i) be a doubling metric
measure space, and f : X — R a localy integrable function. Then, almost every point

x € X is a Lebesgue density point of f, that is,

1

iy ) o )~ @) =0

where Blz,r| denote the closed ball in X with center x and radius r. In particular,

1

iy~ s LM ) duy) = £(z).

for almost every x € X.

Note that for every = € suppp we have p(B|z,r]) > 0 for every r > 0, therefore

the two expressions given in the theorem make sense almost everywhere.

To present the following result, let us recall the definition of a regular measure.
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Definition 2.8. Let X be a topological space, and let A be a o-algebra on X. Let u be
a measure on (X, A). We say that u is a reqular measure if, for every measurable subset

A c X, we have:
w(A) =sup{u(F) : Fc A, F compact and measurable, }

and

u(A) = inf{u(G) : G2 A, G open and measurable.}

Using Theorem 2.7, we can find a characterization for the Radon-Nikodym

derivative associated to two measures, one of them being a doubling measure.

Theorem 2.9. [18, Lebesgue—Radon—Nikodym theorem] Let (X, d, 1) be a doubling metric

measure space and v be a locally finite Borel-reqular measure on X. If v << u then for
v

almost every x € X the Radon-Nikodym derivate of v with respect ., d—(m), is given by
1

the limit
(2.3)

Proof. Consider the locally integrable function f : X — R, given by

flz) = @(x), for almost every z € X.

Since p is a doubling measure in (X, d) by the Lebesgue differentiation Theorem, we have
that

. 1
@) =lim s L[W] 1) dyly)

. 1 dv
= Bl JB[ (y) du(y)
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Metric System

In this chapter, we introduce the definition of an F-arc length system for a
continuous and f-invariant one-dimensional foliation F. This definition was motivated by

the notion of center metric given by Bonatti and Zhang in [11].

3.1 Invariant arc-lengths systems

From now on, F will denote a continuous and f-invariant one-dimensional
foliation for the manifold M.

Definition 3.1. Given a foliation F of M and x € M, we say that a C*-curve v : [0,1] —
F(x) is a simple arc if y(t) # v(s) for allt # s with (t,s) ¢ {(0,1),(1,0)}.

By convention, by degenerate arc we mean a point. Given two simple arcs 7y
and o, we write 7 ~ ¢ to indicate that ¢ is a reparametrization of . Clearly, this defines
an equivalence relation on the space of simple arcs. Abusing the notation, the simple arcs

7, is any representative of the class [7].

Definition 3.2. We say that a sequence of simple arcs 7y, converges to ~y (in the C°-

topology) if v, converges pointwise to 7.

Definition 3.3. We call {I,} an F-arc length system, if for each x € M, l, is a real valued

function defined on the simple arcs on F(x) and satisfies the following properties:
1. 1, is strictly positive on the non-degenerate arcs, and vanish on degenerate arcs,
2. let v:[0,1] - F(x) be a simple arc and a € (0,1), then
l(7[0,a]) + l(vla, 1]) = L(v[0, 1]);

3. let v :[0,1] = F(x) a simple arc, then

L (7[0, 1]) = L5y (f(7[0, 1]));
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4. given a sequence of simple arcs 7, : [0,1] — F(x,) converging to a simple arc
v :[0,1] = F(z), then

le, (V) = (), asn — +o0.

Below we present some examples of systems with invariant foliations that admit

F-arc length systems.

Example 3.4. Assume d > 2 and let L : R? — R be a linear transformation given by a
matrix with integer entries, such that 1 is an eigenvalue of L. Let v be an eigenvector of L
associated with the eigenvalue 1. Consider the subspace E = R - v. Since L is linear, it
induces a linear map fy, : T¢ — T¢, where T is the d-dimensional torus, and F induces a
one-dimensional foliation F on T¢ that is fi-invariant. It follows that f; preserves the arc
length along the leaves of F, and therefore the standard arc-lengths on the leaves form an

F-arc length system.

Question 3.1. Is there an ergodic measure p preserved by f;, whose conditional measures

are supported on a Cantor subset of the leaves?

Example 3.5. Let ¢ : R x M — M be any C' flow. The foliation F given by the orbits
of © is a @-invariant C'-foliation of M for any fixed ¢ € R. There is a natural F-arc length

system in this case given by:

lo(y) =1, with ¢(l,7(0)) =~(1).

Assume that almost every x € M is not a periodic point of ¢. Given any ;-ergodic
invariant measure p, it follows from [22, Example 7.4] that the disintegration of y along

F is either Lebesgue or atomic.

Example 3.6. Some skew-products also provide interesting examples. For instance,

consider the function f: T¢ x S* — T¢ x S*, given by

f(x,y) = (9(z), Raly)),

where ¢ : T — T is any homeomorphism and R, : S' — S' is a rotation of angle a.

In this example, the foliation F is defined as the set of leaves of the form
{2} x S, where z is an element of T¢. These leaves are invariant under f, meaning that if
(x,y) is on a leaf F(xg,yo), then f(z,y) is on the leaf F(f(xo,v0)). Moreover, if for every
re T x S* we take [, to be the usual arc length measure on the circle S*, but defined on
the leaf {z} x S*, then we get a collection of arc length measures {l,} that forms an F-arc
length system. This means that the lengths of curves along the leaves of F are well-defined

and can be measured consistently using these arc length measures.
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In this example it is easy to determine the measurable properties of F in the
sense that, given a Borel g-invariant measure v, the measure v x Ag: is f-invariant, and a
direct application of the Fubini Theorem shows that the disintegration of p along F has

the Lebesgue measures Ag1 as its conditional measures.

Center metric for transitive partially hyperbolic diffeormorphism with topological

neutral center

One of the main motivations of this work was to understand the measurable
properties of the center foliation preserved by partially hyperbolic diffeomorphisms with
topological neutral center. Our results imply that the disintegration of any f-invariant
ergodic probability measure of such maps falls into one of two possible cases. When the
conditional measures have full support, the occurrence of an invariance principle is proven
by the author in [26]. Furthermore, if the measure is smooth, full support of the conditional

measures implies the Bernoulli property for f.

In order to present the following example, which was provided by recent results
of Bonatti-Zhang [11], first we are going to give some important definitions of properties

for dynamical systems.

Definition 3.7. A C* diffeomorphism f : M — M, on a compact Riemannian manifold
M, is said to be partially hyperbolic if there is a nontrivial splitting
TM =FE°® E°®E"
such that
Df(z)E"(z) = E7(f(x)), 7 € {s,c,u}

and a Riemannian metric for which there are continuous positive functions ju, i, v, 0, vy,
with

A~

v(p),o(p) <1, and p(p) <v(p) <~(p) <@~

such that for any vector v € T,M,

p)llvl] < [[Df(p) - vll <v@)llv]l, ifve E°(p)

y(p)lloll < [IDf(p) - vll < A(p)~vll, ifve E(p)
o(p)~M|vll < [IDf(p) - ol < flp)""[vll, if v e E(p).

If a partially hyperbolic diffeomorphism f has invariant foliations 7 and F“
that are tangent to E°@® E® and E°® E" respectively, then we say that f is dynamically

coherent. In such cases, the intersection of F° and F forms the center foliation.

While the strong stable and strong unstable bundles of partially hyperbolic

diffeomorphisms are always integrable, and they are integrated into unique f-invariant
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foliations known as strong foliations, the center bundle presents a more complex situation.
Even in the one-dimensional center case, center foliations may not exist, as proved by

examples in [10] and [29].

Definition 3.8. We say that f has topological neutral center if, for any € > 0, there exists
§ > 0 for which: given any C* curve v : [0,1] — M with v'(t) € E°(y(t)), 0 <t < 1, if
length(y) < ¢ then length(f" (7)) < &, for all n € Z.

In [11] the authors study partially hyperbolic diffeomorphisms that are transitive
and have a one-dimensional topologically neutral center, resulting in dynamically coherent
systems. They proved the existence of a continuous metric along the center foliation that

remains invariant under the dynamical systems.

Theorem 3.9. [11, Theorem A] Let f : M — M be a transitive C" partially hyperbolic
diffeomorphism with one-dimensional topologically neutral center direction. Then f admits

a center metric system which is invariant under f.

Outline of proof. We will construct metrics {¢1} along the center leaves in a residual subset
N of M. Then, we will show that the metric we construct is f-invariant, continuous, and
invariant under the holonomies of the strong stable and strong unstable foliations. Thus,

we can extend this metric system to the entire manifold M.

Before describing the set NV, we will define and present the main properties of

the limit center maps, which will be crucial in constructing this system of metrics.

Let L; and L, be two center leaves of f. We say that a map F': Ly — Lo is
a limit center map if there exists a sequence {n;} < Z with |n;| — oo such that {f"}
pointwise converges to F'. We denote by .Z (L1, La) (resp. £ (L)) the set of all limit center
maps from L to Ly (resp. from L to L).

Some important properties of the set of limit center maps are:

1. Uniformly topologically neutrality: For any € > 0 small, there exist 6 > 0 and n > 0
such that for any F' € £ (L1, Ly), and any two points =,y € L1, we have

o If di(z,y) < 4, then d5(F(z), F(y)) < e, where df denotes the distance on
center leaf L;. In particular F': (Ly,d{) — (Ls,d5) is continuous;

o If for z,y € Ly we have ¢y/4 > d{(z,y) > ¢, then d$(F(z), F(y)) > n, where
g9 > 0 is a lower bound for the length of center leaves.

2. For each F € £(L4, Ly), F is a surjective local homeomorphism.

3. If F: L — Lyand G : Ly — L3 are a limit center maps, then the composition G o F'

is a limit center map from L; to Ls.
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4. Let F'e Z(L), and suppose that F" has a fixed point = € L:

o if I is orientation preserving, then F' = Idy;

o if F is orientation reversing, then F is an involution on L, this is, F2 = Id;.
5. If F e Z(L), then F is a homeomorphism.

6. For any x € M, if there exists a sequence {n;} < N such that f" — y € M, we
can use the transitivity and continuity of the center foliation, together with the
topologically neutral property along the one-dimensional center bundle, to construct

a limit center map F': L, — L, that satisfies F'(z) = .

On the other hand, consider the set
N={zreM: al)=uw() =M}, (3.1)

where,
w(z) = {ye M : In; “=% oo such that f™(z) =% y},

is the w-limit of x; and
a(r) ={ye M : Iny "% o such that I (x) k—oo n:
is the a-limit of x.

Note that A is f-invariant and since f is transitive, N is a residual subset of
M. Assuming that L is a center leaf and L n N # (¥, it follows from item (6) above that
L is a subset of . This means that A contains all the center leaves, so the set A is

saturated by the center leaves.

Additionally, for any center leaf L containing a point in N, we have that
Z7(L) is a group. Indeed, we already have Id; € £"(L) and for any F,G € £"(L),
GoFeZ*(L).

In order to show that £ " (L) is a group, it is necessary to demonstrate that for
any F e " (L), there exists a G € " (L) such that F o G = G o F = Id;. Consider an
F e Z*(L) such that F(z) =y for some y € L. Since L = N, there exists a G € £ (L)
such that G(y) = z. Then, the limit center map G o F' has a fixed point. Using the item
(4), we have G o F' = 1Id. By the item (5), both F' and G are homeomorphisms on L.

Furthermore, using the properties of the limit center map, we can conclude
that for any center leaf L containing a point in A, the action on L given by the group
Z*(L) is both free and transitive. By the Holder theorem (see [24]), the group £ " (L) is

isomorphic to the group of translations (respectively, rotations) on R (respectively, S*).

Since every orientation-reversing limit center map from L to L is an involution
(see [11, Proposition 4.7]), we can conclude that .Z(L) forms a group. Moreover, .Z(L) is
either equivalent to £ (L) or can be generated by the union of £ (L) and —Id;.
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Remark 3.10. The properties mentioned above play a crucial role in proving Theorem
3.9 since the group formed by combining translations and —Idg (resp. rotations and —Ids: )
maintains the Euclidean metric on R (resp. R/Z) unaltered. Any metric on R (resp. R/7Z)
that is invariant under the set of translations (resp. rotations) can be obtained by scaling

the Euclidean metric by a constant factor.

Definition of the family of center metrics {{1} LA/ center leaf

The item (6) above establishes that for any x,y € M, if y belongs to w(x), then
there exists a limit center map from L, to L,. This enables us to establish connections
between the limit center maps on distinct center leaves, and we can prove that for any two

center leaves Ly, Ly such that L; and Ly have non-empty intersection with A/, we have:

o Each limit center map F': L; — Lo is a homeomorphism.

 For any limit center maps F, G € £ (L4, Ls), there exist F} € Z(L1) and Fy € £ (L,)
so that
G:FOFIIFQOF.

Let £ be an .£(L)-invariant metric on a center leaf L < N. Consider a metric F,(¢) in Ly,
given by
Fo(0)(F(0[ap)) = €(07a]), for every center map o : [a,b] — L.

Since F': L — L; is a homeomorphism, Fy(¢) is well defined.

Furthermore, the second point above establishes that the metric F,(¢) on L,
remains unaffected by the choice of F' and is £ (L;)-invariant. That is, given a leaf center
LN # & and a Z(L)-invariant metric £;, on L, for any center leaf L1 n N # & and

any two limit center maps Fi, Fy € Z(L, Ly), we have

(F1)«(lr) = (F2)«(LL).

Moreover, note that f(L) < N, which implies that for any F' € Z(L, f(L)), the composition
floFe Z(L), and hence F,({1) = f.(¢r).

Thus, we can ensure the existence of a family of metrics {€1} s center leat I

the center leaves that are contained within A/, such that
« For any two center leaves L, Ly contained in A and any F € Z (L, Ls), we have
F*(€L1> = gLQ;

o For any leaf L = N, we have
f*(gL) = gf(L)a
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o If {Z L}LeA center lea 18 another family of metric satisfying the two properties above,
then there exist A > 0 such that

ZLZ)\'EL.

Therefore, in order to prove Theorem 3.9, it is necessary to establish that the family of
metrics {{1} e’ center leaf CaN be extended smoothly as a center metric on all of M. The
main tool for proving this is to check that the family {¢1}1car center 1eaf 18 invariant under

the holonomies of the strong stable and strong unstable foliations.

Holonomy of the strong stable foliation

First, we show that given a center leaf L and points z,y € L with y € w(z),
every strong stable leaf intersects L in at most one point. Indeed, by item (6), there exists
a limit center map F' : L — L such that F(x) = y. Assume that there are 21, z5 € L such
that z; # 2o and z; € F*(23). Since F' is a limit center map, there exists a sequence
n; —> oo such that f™ converges to F'. This implies that F'(z;) = F(23), contradicting the
fact that [’ is a homeomorphism. This observation is important for defining the holonomy

between two leaves.

Now, let Ly, Ly = N be two center leaves in the same center-stable leaf L.
By Proposition 2.8 in [11], since f is a C! partially hyperbolic diffeomorphism with
topologically neutral center, the center stable foliation has the completeness property.
Thus, Lo is contained in the union of the strong stable leaves through L; which coincides
with L and vice versa. According to the above observation, each strong stable leaf cuts

Ly in at most one point, and the same for Ls. Thus,

o The map H** : Ly — Ly induced by the holonomy of the strong stable foliation is a
homeomorphism from Ly to Ls, because each strong stable leaf in L intersects L,

and Ly in exactly one point, creating a unique correspondence between the two sets.

Figure 2 — Holonomy of the strong stable foliation
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o Let H* : L1 — L be the holonomy of the strong stable foliation and {£1} L center leaf

be a family of metrics in the center leaves in N. Then
£L2 = (HSS)*(€L1>'

Finally, it was proved in [11, Proposition 4.18], that the family of metrics in
the center leaves in N, {{1} Lc A center leaf Can be extended in a unique way, by continuity,

to all the center leaves, defining a center metric on M.

]

As the proof of Theorem 3.9 strongly relies on the fact that the central direction

is one-dimensional, a natural question arises:

Question 3.2. What happens for partially hyperbolic systems with a 2-dimensional center

foliation and a topologically neutral center? Are there invariant metrics?

The previous theorem is a very important part of the proof of the following
result, which is a classification of partially hyperbolic diffeomorphisms on a closed 3-

manifold with topological neutral center.

Theorem 3.11. [11, Theorem C] Let f : M — M be a C'-partially hyperbolic diffeomor-
phism and M a closed manifold of dimension 3. Assume that f has a one-dimensional
topologically neutral center and f is transitive. Then, up to finite lifts and iterates, f is

C"-conjugate to one of the following:

1. Skew products over a linear Anosov on T? with rotations of the circle.

2. The time 1-map of a transitive topological Anosov flow.

3.2 Invariant F-metric systems

Let F be a one-dimensional continuous foliation for M and {l, },ep be an F-arc
length system as defined in the previous section. For every x € M in this section we are
going to define a metric d, in the leaf F(z). The metric system {d,}.cps is important
throughout this work because based on it we define the measure within the plaque of the
foliation F.

Since we will show that the metric system is additive, first we define what it

means for a point to be between two points within a leaf F(x) for all z € M.

Definition 3.12. Let F be an f-invariant one-dimensional foliation of M. For any

x e M, given y,z,w € F(x) we say that y is between z and w, if there exists a simple arc



Chapter 3. Metric System 30

v :[0,1] — F(x) such that v(0) = z, v(1) = w, v(t) = y for some t € (0,1), and v has
the least length of the simple arcs at F(x) connecting the points y and z, this is,

() = min{l, () : «:[0,1] — F(x) such that v is a simple arc,
with a(0) = z and a(1) = w}.

Next, we show that for each x € M, one can define an additive metric d, in F(z).
Furthermore, we show that the metric system {d,}.cps is an f-invariant metric system
along the foliation F, that is, given any = € M, the equality d)(f(2), f(w)) = du(z, w)
holds for every z,w € F(x).

Lemma 3.13. Consider the F-arc length system, {l;},er. For every x € M the function
d, in F(x), given by

d.(y,z) :=min{l, () : v:[0,1] — F(x) is simple arc,
with v(0) =y and (1) = z},

has the following properties:

1. d, is an additive metric, that is, given y, z,w € F(x) such that y is between z and
w, then

daz(za ’LU) = dx(za y) + dz<y7 ’U});
2. dj is invariant by f, that is,
dy@)(f(2), f(y) = du(2,y).

Proof. First we show that for x € M, d, is a metric on F(x), let y, z € F(x):

e d.(y,z) = 0: from the definition it is clear that d,.(y,z) = 0 and d,(y, z) = 0 if, and
only if, z = y.

o do(z,y) = du(y,7):

d.(y,z) = min{l,(y) : v:[0,1] — F(z) is simple with v(0) =y, v(1) = z}
= min{l,(v) : v:[0,1] = F(z) is simple with v(0) = z, v(1) = y}
=d,(z,y).

o dy(z,w) < d.(z,y) + d.(y, w): we will actually show item (1), that is, the metric is
additive.
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1. Since for every x € M we have that F(z) is a one-dimensional manifold, then F(z)

is homeomorphic either to R or S!, which is why we divide the proof into two parts.

First we assume that F(z) is homeomorphic to R. Given z,w,y € F(x) such that
y is between z and w, there exists a single simple arc (modulo parameterization),
a:[0,1] - F(z) and to € (0,1) such that a(0) = z, a(1) = w and «(tg) = y. Then
g 40] and o, 1) Te the only simple connected paths (modulo reparametritation)
from z to y, and from y to w, respectively. Thus, by Definition 3.3 we have that
d(z,w) := min{l,(y) : v:[0,1] - F(x), 7(0) = z and v(1) = w}
= l.(a) = lw(a\[o,t0]> + lw(al[to,l])
Now, suppose that F(x) is homeomorphic to S'. Then, modulo reparamentrization,

there are only two paths aj,as : [0,1] — F(z) that connect the points z and w.

Assume, without loss of generality, that [,(ca;) < [, (az). This implies that
dy(z,w) = min{l,(y) : v : [0,1] = F(x), 7(0) = z and v(1) = w} = (1)

and there exists ¢ € (0, 1) such that oy (tg) = y.

0"1([03 1])

- —

az([0, 1])

Figure 3 — Simple arcs a; and ao

We will show that d.(z,y) = l(ou),,), and with an analogous proof we also obtain
that d.(y, w) = lz(au,, ,,)- Indeed, suppose there is an other path as : [0,1] — F(x)
for which a3(0) = z, a3(1) = y and d,(z,y) = l,(a3). Since there are only two
paths connecting points z and y (unless reparameterized), we have that s is the
concatenation of ay with —ay|_1_,), where —a; denotes the curve —ay : [~1,0] —
F(x), —a1(t) := ag(—t). Thus,

lx(a1|[oya]> > dft(zay) = lw<043> = Z:L‘(CVQ) = lx(al)a

which is a contradiction. Therefore, I, (o1, ) = dz(2, y) and, analogously, (a1, ,,) =

d.(y,w). By the second item of Definition 3.3, we have

d:}c(za w) = l:}c(al) = lm(a1|[0,a]) + lx(a1|[a71]) = dx(za y) + doc(va)v

concluding that d, is an additive metric, as we wanted to show.
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2. By the definition of d, and the F-arc length system {[,}, we have that

dp)(f(2), f(y)) = min{lp@) () = v [0,1] = F(f(x)) with v(0) = f(y), v(1) = f(2)}

= min{l,;(y) : v:[0,1] = F(z) with v(0) =y, v(1) = z}
= d.(z,y).

]

Definition 3.14. We call {d,}.enr the F-metric system if {d,}sen is the family of metric

associated to the F-arc length system {l;}zer, given in Lemma 3.13.

Remark 3.15. [t is important to note that, in general, from the definition of d, we cannot
guarantee the convergence dy, (., y,) — dz(x,y) for two sequences x, — x and y, — y
with y, € F(x,), y € F(x). This problem motivates the definition of the property we call

plaque-continuous.

Definition 3.16. Consider F a one-dimensional continuous foliation of M. We say that

a function F : U F(x) x F(x) — [0,00) is plaque-continuous if given any p € M, there
reM
exists a foliated box p € U, such that for any sequences x, — x, y, — y with y, € F|U(x,),

xeU and y e F|U(x), we have
lim F(zn, yn) = F(z,y).

n—0o0

Any such foliated box U will be called a continuity-domain of F.

Definition 3.17. We say that a family of metrics {d, : x € M} is plaque-continuous, if
the function F : U F(x) x F(x) — [0,00) defined by
xeM

F($7y> = dz(l',y),

is plaque continuous. In this case, if U is a continuity-domain of F', we will also say that

U is a continuity-domain of {d,}.

In the following proposition we will show that the metric system {d,} is plaque-
continuous, which guarantees that the problem mencioned in Remark (3.15) does not

occur restricted to plaques.

Proposition 3.18. The F-metric system {d}zep, from Definition 3.14 is plaque-continuous.

Proof. Let (p,U) be a local chart of F, where ¢ : U — (0,1) x B(0,7) < R" for some
r > 0. We know that the plaques of F in U are given by ¢~ '((0,1) x {z}), z € B(0,r). For
any p € U, consider ¢ : V < U — (0,1) x B(0,s) < R" another local chart centered in p
such that

reV = L (FlU(x)) >3- 1,(F|V(x)).
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This can be done by the continuity of [, in F(x).

Consider z € V,y € F|V(z) = ¢ '((0,1),2) and sequences =, € V, y, €
FIV(z,) = ¢7((0,1), 2,) with x,, — z and y,, — y. For each n € N we define the simple
curve v, (t) := ¢ ((1 —t)¢(x,) + td(yn), 2). Note that this curve minimizes the I,-length
connecting x,, and y,, that is, d,, (Tn, Yn) = ls, (Vn)-

By the convergence of the sequences z,, and y,,, we have that ~,, — v, where ~
is the simple curve given by v(t) = ¢ ' ((1 — t)é(x) + t¢(y), 2'), and by the choice of the

local chart V', we have

da:n (Ina yn) = l;rn (/Yn) and dx(xvy) = lac(’)/)

Therefore, using the continuity of {l,} we conclude that lim d,, (T Yn) = lim 1, (V) =

l.(v) = dy(x,y), this is, {d,} is plaque-continuous. O

Proposition 3.19. Let U be a finite open cover of M by local charts of F. There exists
t > 0 such that for all x € M, there is U € U with

de<l’,t) c U

Proof. For each x € M, take any U, € U with z € U,. Since U, n F(x) is an open set in
F(x), there exists r, > 0 for which By, (z,r,) < U, n F(x). By plaque continuity of {d,},

there exists a neighborhood z € V,, < U, for which
ye ‘/;E = de(y>rx) = Ux

Since M is compact, we may cover M with a finite number of neighborhoods V,,,;, 1 <i < (.
Take vt = min{r,, : 1 <i <[}. O

Now using the fact that {d,} is plaque continuous, we are able to show that
the union of open balls By, (z,r) < F(z), for r > 0 small enough and z varying along a

transversal to F, is an open set in M.

Lemma 3.20. Given any local open transversal T' to F, for any r > 0 small enough, the

set

S = U By, (z,71)

zeT
1S open.

Proof. Let v > 0 be the number as in Proposition 3.19. Given r > 0 and r < v small
enough, if z € M, there exists a local chart (U, ¢) € U.

Consider = € T, we can assume that T is a local transversal associated to

the local chart (U, ¢), then by the plaque continuity of {d,}, for » > 0 small enough, we
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have that By (y,r) < U for every y € T In particular U \ T has two open connected

components, U; and Us, with U; n Uy = T.

Since U is a local chart for a one-dimensional foliation, we may consider an
orientation on the F|U-plaques. Now we assume that S is not open. Then, there exists y € S
and a sequence yi ¢ S, with y,, — y. Consider z € T such that y € By, (z,r) < F(z) n U.
Denote by ® = {¢;} the flow on the F|U-plaques induced by the orientation fixed before
and such that

dp(:(p), ) = [t],

whenever ¢;(p) is defined. Let tg € R such that x = ¢, (y). As y € By, (z,7) and By, (x,r)

is an open set in F|U(x), there exists § > 0 for which
¢i(y) € By, (z,r) = S, te[to—0,to + ).
Now, by the plaque continuity and the fact that y, — y, we have

(ptoﬂs(yk) - 90t0*5<y>7 (10t0+5(y/€) - <Pt0+5<y)'

Observe that ¢y, _s(y) and ¢y, 4s(y) belong to different connected components, thus, for k
large enought the same happens for ¢, —s(yx) and g, +5(Yx)-

Since v = {@i(yr) :  t € [to — 0,tp + J|} is an arc with points in both the
interior and the exterior of the connected component Uy, it must intersect its boundary,
namely 7. Then there exists t; € [ty — d, to + d] such that ¢y, (yx) € T. By the choices of ¢,

and d we have that y, € S for large k, yielding a contradition.

That is, S is open, as we wanted to show. O

Lemma 3.21. Let v > 0 be a real number given in Proposition 3.19. For every 0 <t < t/2
and any Borel subset B < M, the set defined by

0,(B) = {z e M : d,(x, B) < t, (3.2)

1s a measurable set.

Proof. Let U be a finite cover of M by local charts which are continuity-domains of {d,}.
Consider v the number given by Proposition 3.19. In particular the family {U,, : U € U},
defined by

Uyp = {x e U :dy(x,0U) = t/2},

is still a cover of M. Let B © M be a Borel subset. Observe that
d(Bn Ut/2> cU, Uel, t<rt/2

We will prove that, for U € U, the subset ®;(B n Uy/) is measurable and, since U is a

finite cover of M, we conclude that ®;(B) is measurable.
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Let ¢y : U — BP1(0) x (0,1) be a local chart of F. Since the foliation is of
dimension one inside U, we can consider the orientation in the plaques F|U(x), which is
induced by the orientation in the line segments of the form {Z} x (0,1) < R®* x R. This
orientation induces, at each plaque, an order relation, which we will denote by < (the

plaque being implicit in the context).

Again, as in the proof of Proposition 3.19, we consider the flow along the
plaques. Explicitly, for s € [—¢,], with 0 < ¢ < v/2 fixed, we define ¢! : U, — U by:

o for s > 0, ¢¥(x) is the only point of the plaque F|U(x) such that d,(z, ¢¥(z)) = s
and x < ¢V (1);

o fors < 0, ¢Y(z) is the unique point of the plaque F|U(z) such that d,(z, ¢¥ (z)) = —s

and ¢Y () < x.

Due to the fact that cover U was chosen as being a finite collection of local
charts which are a continuity-domain of {d,}, we have that, for every |s| < ¢, the function
#Y is continuous and, consequently, by the definition of ¢", it is a homeomorphism. Thus

S

oY (B n Uyjy) is a measurable subset of M for every s € [—t,].
Now, for each 1 <7 < n, take

of(B) = Jol (BnUp), 0<t<t/2
=

Notice that ®Y(B) is a measurable set, since each set in the countable union is measurable

as we have proved before. Consequently,

q>t<B) = U (I)g(B)a

UeUd
is a measurable set, as we wanted to show. O

In the following definition we will use the identification S* = [0, 1]/ ~ where

0 ~ 1, thus the point 0 stands for the equivalence class of 0 in S*.

Definition 3.22. Let F be a one-dimensional foliation of M. Given an F-arc length
system, {l;}zer, for x € M we have a well defined homeomorphism
hy : F(x) — F,

where F =R or F = S*, hy(x) =0, and such that, for any simple arc v : [0,1] — F(z)
we have

1(7[0,1]) = A(ha(7[0, 1])),
where A denotes the Lebesgue measure on F. In particular A(h. ([0, 1])) is the size of the
interval h,(v[0,1]). We now define the measure A\, on F(x) given by:

Ao = (WY
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Note that, if [0, 1] is a simple arc in F(z), then

>\m('7[07 1]) = )‘(hz('y[o’ 1])) = lz(7[07 1])

Consequently, the measure A, is a doubling measure.

3.3 Properties of non-atomic disintegrations

For the proof of the main theorem, it is necessary to understand the topological
structure of sup uY, where {Y},cas is a disintegration of 1 on a local chart U, as well as
the properties of the measure pu(-|U) with respect to this disintegration. To this end, we

consider the specific context of our case.

Let F be a one-dimensional continuous foliation of M that is invariant under
f. We consider U to be a finite cover of M by local charts U of F such that U is also
contained within a local chart of F, and each U € U is a continuity domain of the F-metric

system {dg}zens-

For each fixed U € U, we consider {ju,}.cy to be the disintegration of u(-|U)
along the plaques of F in the local chart U. We say that the disintegration of u along F
is atomic if for any local chart U, for almost every y € U there exists a(y) in the plaque
FIU(y) with ! (a(y)) > 0. If we assume that the disintegration is not atomic, then for
each U € U there exists a null measure subset Ay such that Y is not atomic for every

$¢AU

We also fix the following notation: For v > 0, we denote the constant obtained
in Proposition 3.19, and for any subset X < M, we denote by By the Borel sigma algebra
of X given by the topology induced by that of M. It is important to observe that, by
definition, for any U € U, the set Ay is F|U-saturated in U.

Lemma 3.23. If the disintegration of  along F is not atomic, then for each 0 <1r <,
Uel and x € U\ Ay, the map

y > iy (Ba, (7)),
is continuous when restricted to the subset V,, ¢ F|U(z) given by
Vo ={ye FIU(x) : By, (y,7) = FIU(x)}.

Proof. Let U € U be a fixed local chart and take x € U. It should be noted that the
set V, < F(x) containing x is connected and open subset in F|U(z). By definition of

continuity, we want to show that

it 1Y (B (g 1)) = 1 (B, (3.7).
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for any sequence vy, — y, and y,,y € V.

Let y belong to V, and denote by 0By, (y,r) the boundary of the set By, (y,r)
inside the plaque F|U(z). Since ¥ is not atomic and F is a one-dimensional foliation, for

0 < r < t, we have that
1Y (0Bg, (y,7)) = 0 and puY (0B, (yn, 7)) = 0,¥n € N.

Now, consider the set B,, given by B,, := By, (yn,7)ABqy, (y,r), where Y AZ denotes the

symmetric difference of the sets Y and Z. From standard measure theory, we have that:

n—a0 n—o0

limsup p¥ (B,) < p¥ <lim sup Bn> :

Thus, since we are assuming that the disintegration is not atomic, this implies that the

conditional measure of boundaries of balls is zero. Then we have

n—0o0

limsup 1 (Bn) < ) (ﬁ U Bn>

Therefore

lim g (Ba, (y,7) \ Ba, (Y, 7)) < lim g5 (Ba, (ya,7) ~ Ba, (y.7)) = 0.

Consequently,
lim 65 (Ba, (Y1) = 115 (Ba, (y,7)),

n—0o0

as we wanted to show. O

Proposition 3.24. Let (U, p) € U be a fized local chart and 0 < r < t. For every open
subset V< U such that
reV = By (x,r)cU,

the map given by
T = MzU(Bdm(x’ r))?

is By a, -measurable when it is considered restricted to V . Ay, and consequently, it is

also By a, -measurable as V < U.

Proof. Let (U, ) € U be a fixed local chart. If z,y € U belong to the same F-plaque in U,
then pl = qu . By the definition of the family of measures Y, we already know that for
all Borel subset B < U the function

reV — ul(B),
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is Borel measurable.

Since we are considering (U, ¢) as a local chart, we have that ¢ |y is an
homeomorphism, and we can assume that it is of the form ¢ = ¢ |,: V — (0,1) x B}*(0),

where B71(0) = R"! is an open ball in R" .

Setting ¢, : V — [0, 90) to be

9r(x) = g (Ba, (z,7)),
we have
9r 0 @7 (%1, 82) = Hig-1 (2, 00) (Ba (07" (21, 22),7)).
In the first part of the proof, we will show that the function g,op™" : (0,1)x B} 1(0) — [0, 1]

is continuous in the variable x; and Borel measurable in the variable x,.

‘P_l(xlxm2>

Since the second coordinate being fixed {z,}, we are evaluation the function
on a single plaque. Note, that the function g, o go_l(-,a:g) corresponds to the function
y (Ba,,(y,7)). Then from Lemma 3.23, restricted to V\ Ay we have the continuity

of g, o ¢! the first coordinate, where the conditional measure is non-atomic.

Now, fix the first coordinate x; € (0,1), and consider the transversal T" =

{z1} x By7*(0) = (0,1) x B *(0). By Lemma 3.20, we have that the set

S = U By, (z,1),

zep~1(T)
is an open subset of M. Thus, the definition of measure disintegration implies that
y — g (S) is a Borel measurable function on V, which proves that g, o ¢~ (z1,-) is a
Br-measurable function. In particular, its restriction to T n o(V N~ Ay) =T ~ ¢(Ay) is a
Br. (4, -measurable map. But observe that by the definition of the set S, for z € T' we
have that

s (S) = pz (Ba, (w,7)).

Therefore, for fixed 21, the map x5 € G \ma(0(Av)) = Bo-1(21 20) (Ba, 1, .., (o™ (w1, 22),7))
is B (o(Ay))-measurable, where m; : (0,1) x G — @ is the projection onto the second

coordinate.

Consequently, g, o~ restricted to ((0,1) x G) \ p(Ay) is a jointly measurable
function with respect to the product sigma-algebra B(g 1) X B n(o(Ay)) (see for example
[1, Lemma 4.51]). As ¢ is a homeomorphism, we conclude that g, is By 4, -measurable,

as we wanted to show.

]

In the following Lemma, we prove that the subset of M consisting of all points
x € M for which there is a ball in F(z) with null z¥ measure, is a relatively Borel set.

This set will be essential for the proof of the main theorem.
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Lemma 3.25. For each U e U, the set

zv=J FlU@)~ supp i,
a?GU\.AU

s By a, -measurable set.

Proof. First let us give a better formulation for the definition of Z. Observe that
Zy={reU~ Ay : pY(I) = 0 for some open ball z € [ = F(x)}.

Consider an enumeration {qi, ga, ...} of the Q@ n [0, 1], and let U be the given finite family
of local charts covering M associated to foliation F. For each U € U and i € N, consider

also the function ¢V : U; \. Ay — R given by

¢i () = g (Ba, (7, 0:)),

where U; = {x e U : By, (x,q;) < U}.

Observe that we may cover U; with a countable number of local charts V;j c U;,
j € N and, by Proposition 3.24, we know that ¢ H/;j is a By, -measurable function for

every j. In particular ¢ is By, Ay-measurable for every . Now for every ¢ € N define

2= (¢7)7'({0}) = M.

By the definition of ¢!, we have that ZU is a By, 4,-measurable subset, (in particular, a
By a,-measurable subset) and p(ZY) = 0. Note that, by definition of the set Z;, we can

describe Z;; as an enumerable union of the sets Zz-U, that is,
o0
zv=|J2 (3.3)
i=1

Therefore Zy; is a By a,-measurable subset, as we wanted to show. Moreover, since
w(ZY) = 0 for any i € N, we have that u(Zy) = 0. O

Note that, for every x € U . Ay, we have
Zy 0 FlU(x) = FIU(x) \ supp p

and by definition the support of the measure ,ug is a closed set, which implies that the set
2y n F|U(x) is open in F|U(x). On the other hand, consider the null measure subset P
given by

P={e: WU Veld, zeUnV, fd(|U~AV) %t (JUAV)},

that is, P is the set of points = for which there exists two local charts U and V' in U, both

containing x, where the respective conditional measures at the plaque of x, uY and uY,
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are not equivalent on the intersection F|U(xz) n F|V (z). In particular this set has zero

measure by Proposition 2.5. Set

M= M~ <U(ZUUAU)UP)>

UeUd

~

and note that u(M) = 1. Now we define the full measure f-invariant subset given by

My = ) f7(M). (3.4)

nez
To guarantee that the conditional measures are defined in all the leaves F(x), we
define the measure p, in the following way: for each x € M, we denote by u, the measure
on F(z) given by the conditional measure ', where U € U is such that = € B(x,t) < U.
We then normalize pl so that it assigns weight exactly one to By, (x,t). In other words,

for a measurable set F' < F(x), we have
pa(F) = g (F| By, (2,7)). (3.5)

This guarantees that i, is defined in all leaves F(x) and has the desired properties.

Given any y € By, (x,t) n My, the measures y, and y, are proportional to each
other at the intersection By, (z,t) n By, (y,t). In fact, let U and V' be different local charts
associated with F such that x € B(x,v) c U and y € B(y,t) < V.

Since z,y € My, by choosing M, and Proposition 2.5, we have that the con-
ditional measures ,ug and u;/ coincide up to a constant on U n V. In particular, these
measures coincide up to a constant on By, (z,t) N By, (y,t). This means that there exists

a constant 5 > 0 for which p, = - i, restricted to By, (x,v) n By, (y,t).

We can see the form of this constant by evaluating both sides of equality

py = B - py at the set By, (z,t) N By, (y,t), which yields

B+ pe(Ba, (7,%) N By, (y,%)) = py(Ba, (x,t) N By, (y,t))

fy(Ba, (x,t) N Ba, (y,t))
fte(Ba, (z,t) N Ba, (y, 1))

We also call the family of measure {ju,} the disintegration of x along F. Since

==

the family of measures {u,} is described in terms of the conditional measures uY, for
U € U, we obtain the following results that guarantee the continuity and measurability of

the functions y — p,(By, (y,7)) and 7 — p,(Bqg, (y, 7)), respectively.
Corollary 3.26. For each 0 <r <<, x € My

1S continuous.
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Proof. For a certain fixed 0 < r < v, take any x € M. Let y € By, (z,t) n My and U e U
with By, (y,t) < U, take y, € By, (z,t) n My with y,, — y as n — o0 and By, (yn,t) < U.

By definition,
= 1ty (1Ba, (y. %)), ty, = pty, (| Ba, (Y, v))-
Hy = Ky de\Y>s %) )5 Hyp = My, dz \Ynis
Therefore, for n € N such that By, (y,7) © B, (yn,t) and By, (yn,r) < Bqa, (y,t),

_ ﬁ‘gn(Bdﬁ(yn,r)) B lqu(Bdm(yn,T))
ty, (Ba, (Yn, 7)) = W By (g ®) 0 (Ba (yor0))’ (3.6)

By Lemma 3.23 we have qu(de(yn, r)) — ,LL;](de (y,r)) and ,qu(Bdw (Yn,t)) — ,qu(Bdw (y,v))

as n —> 0. Therefore 1, (Bg, (yn, 7)) — 1ty(Ba, (y,7)), as we wanted to show.

O
Corollary 3.27. For each x € My, the map
r€[0,t] = pa(By, (2,7)),
is continuous. Furthermore, the map
(x,r) e My x [0,¢] — pz(Ba,(x,7)), (3.7)

is jointly measurable.

Proof. First, let us prove that for any z € My the function r € [0,t] — p,(Bqg, (z,7)) is a
continuous. Let 0 = r < v and r, € [0,t] N\, 7 (if r = ¢ the argument is analogous). Hence,

te(Ba, (x, 1)) = pe(Ba, (z,7)) + po(Ba, (z,7,) \ Ba, (z,7)). As 1, is non-atomic we have
lim e (Ba, (2,72) ~ Ba, (2,7)) = 0.

Then,
fo(Ba, (%,70)) = pie(Ba, (7)),
showing the first part of the statement.
Let us show the second statement. For each x € M, let x € V,, a local chart
with
yeVy= By, (y,v) c Uy, forsomeU,el.
As M is compact, we may cover M with a finite number of such local charts, say

Vi,Vo,...,V;, and call Uy, U,,...,U; the associated local charts in Y. For any j, con-

sider
y €V — uy(Ba,(y,7)).
Observe that

1y (Bay (7)) = 20
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Therefore, by Proposition 3.24, y € V; n My — p,(Ba, (y, 7)) is a By, Ay, -measurable map.

As j is arbitrary, y € My — p,(Bqg, (y,7)) is a By~m,-measurable map.

Thus, the map given by (3.7) is jointly measurable, as it is continuous in the

first coordinate and Bjz,-measurable in the second.

]

For the rest of this section, we will show that the disintegration {u,}z € M is

a family of f-invariant measures on F.

By the definition of f-metric system {d,}, we have that this family of metrics

is F-invariant, which implies
f(Bg,(z,1)) = Bdf(z)(f(:r), r), for r <. (3.8)

We also know that the conditional measures are also invariant. Thus, it makes sense to

talk about the invariance of {y,}, which is the Lemma that we will show next.

Lemma 3.28. The system of measure disintegration {{i,}zen, @S f-invariant in the fol-

lowing sense, for every 0 <e <t

futta(Bay, (f(2),€)) = ps@) (Bay, (f(2), €))-

In other words, fijte = ftpz) on Bye)(f(x),t).

Proof. Given x € My, there exists two local charts U,V € U such that = € By, (z,tv) c U
and f(z) € By, (f(z),v) = V. From (i) in Lemma 3.13 we obtain

f(de(l‘,Z-Z)) = Bdf(ac)(f(x)76) - Bdf(a:)(-f(x)7t) c V.

From the properties of measure disintegration, we know that f.u! are measures equivalent
to {uY} at the intersection f(U) NV, thus we have
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Classification of conditional measures

Taking into account the properties of the metric system {d,}, in the last section
of this chapter we consider an atlas of local charts associated with the foliation F, denoted
by U. We prove the properties of the disintegration of the measure p in U, where U € U is
a local chart. Specifically, we show how the measure p decomposes along the leaves of F
within each chart U e U.

4.1 Proof Theorem A

Let (M, A, i) be a probability space and F be a continuous one-dimensional
foliation of M. Note that if the conditional measures {u,} are atomic we have nothing to
do. Then, from now on the results that will be shown are assuming that the disintegration

of p along the foliation F is not atomic.

Let My the full measure subset given by (3.4) and consider {f; }zes, the system
of conditional measures along F, and let d = {d,}.epr be the F-metric system induced by

the F-arc length system {l,}.cps as in Definition 3.14.

Definition 4.1. We define the distortion of the conditional measures p, with respect to

the measures A, induced by the F-metric system by
(By, (2,
g B 2:2)

Ax) = £—0 2e

Zf X € M(),

Recall that By, (z,¢) is the ball inside F(x) with respect to the metric d,,
centered at the point = and with radius e, in particular p,(Bg, (x,€)) > 0 for all = € supp .
(where the support here is inside F(z)). Thus, it makes sense to evaluate the quantity

above.

Observe that, the Corollary 3.26 we have that the function A is measurable,

but it is not immediately true that A(z) < oo for p-almost every z. Also note that from
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Lemma 3.28 and the f-invariance of the F-metric system we have

f*,U/:c = Hf(x) and f(Bd1<x75)) = Bdf(z) (f(ﬂ?),&'),

and

di@)(f(2), f(y)) = du(,y),

Therefore, we conclude that A(x) is f-invariant. By ergodicity of f, it follows
that A(x) is constant almost everywhere. Let us call that constant by A, this is, there

exists a Borel f-invariant full measure set Mc My such that

A(x) =A for every x € M. (4.1)

Note that A can be finite or A = c0. Since the proofs are different, in the
following sections, we will divide the proof for these two cases. In the sequel, we will prove

some technical Lemmas for the case A = oo and the technical Lemmas for the case A < 0.

4.1.1 Technical Lemmas for the case A = o

Lemma 4.2. [If A = o, there exists a sequence ¢, — 0, as k — +00, and a full measure
subset R® < M such that

1. R® is f-invariant;

2. for all x € R* we have
Ha (B, (2, €x))

> k. 4.2
2, (4.2)

Proof. Let k € N* arbitrary. Since A(z) = A for every x € M , define

fiz(Ba, (7, €))
2e

0, if e M~ M.

sup{sét: >k}, if zeM

Ek(l") =

Claim: The function ¢4 (z) is measurable for all k£ € N.

Proof. Define the function w : My x [0,t] — [0, 00) given by:

po(Bu.(2.2))

By Corollary 3.27, for any x € My, the function w(zx,-) : (0,t) — [0,00) is
continuous, and from Proposition 3.24, for any fixed 0 < € < t, the function w(-, ) : My —

[0, 0) is a measurable.

Given any k € N and 8 > 0, by the definitions of ¢, and the function w, we
have that = € £,((0, 3)) implies
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sup{eét ; W}k}e(o,ﬁ).

This is equivalent to
pa(Ba, (z,7))

2r
<= w(x,r) € [0,k) for every f <r <t

—=aze (] w(r)(0,k))

p<r<1

<k forevery B<r<t

Then, by the continuity of w(z,-) and the density of Q at (5, t), it follows that

() wen)(0.0) = () wr) ([0,k).
p<r<1 p<r<1,reQ
So we have just shown that

e ((0,8) = () wlr)([0,k)).

B<r<1,reQ

Therefore, £; ' ((0, 3)) is measurable, as it is a countable intersection of measurable subsets
of My, and by definition £, *({0}) = M \ My also a measurable subset. Consequently &, is

a measurable function for every k. m

Note that e, (z) is f-invariant. In fact, by Lemma 3.28 and the f-invariance of
{d,}, we obtain

/J“f($)(Bdf(w)(f(a’:)7€)) = f*ux(Bdf(z)(f(x)7€))
=t (f ™~ (Bay,, (f(2),€)))
=Ha(Ba, (2, €))-

this implies

=sup{e <1 : ———= >k}

=€k(.r).

Thus, for any k € Nx, the function ¢ is f-invariant and by ergodicity, ¢ is
constant almost everywhere. Let R}’ be a full measure set such that e (z) is constant

equal to g for every x € Ry’.

Now, let us see that the sequence {e;} satisfies €, — 0 as k — oo. Since [0, t] is

a compact set of R, we can take the sequence {¢;} < [0, t] to be convergent.
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Suppose that there exists ¢ > 0 such that ¢, — e. Then by continuity of
x — piz(Bg,(x,7)) (see Corollary 3.27), we have that p,(Bg,(z,ex)) — pe(Ba,(x,€)) as

k — oo, then
PelBa(@,9)) ) pe(Bal@en) o
2¢ k—a0 2e} k—a0

which is a contradiction. Therefore, we conclude that ¢, — 0 as k — 0.

+o0
Take R := ﬂ R[. Since each R;° has full measure, R* has full measure and
k=1
clearly satisfies what we want for the sequence {e};. Finally, take R = ﬂ Fi(R®). The
1€Z
set R™ is f-invariant, has full measure and satisfies (1) and (2). O

We now set, for each U e U, € U\ (Zy U Ap),

1 uY(Ba,(y,er))
2, = e FlU(x)\ Zy 1 — - 24—~
v {y U@ 2v: o 0B, (5,v)

> k,Vk with By, (y,ex) © U} :

and
my = |J 1.
zeUN(ZyvAy)
Observe that if z € R™ then x € II;, therefore R” n U < II7. In particular,

UNIIE < U~ R*. Since u(R™) = 1, II}7 is measurable.

Lemma 4.3. Let U € U be a local chart. For every x € R n U, consider 6 = 6(x) > 0
for which
By, [2,2-0+t] < U.

The set 117, N By, [7,6] is a closed subset on the plaque F|U(x).

Proof. Let y, — ¥y, yn € 7y 0 By, [7,0], y € F|U(x). In particular, By, (Yn,t) < Ba, (7,6 +
t) < U, and taking the limit over n, we also have By, (y,t) < By, (z,0+t) < U. Furthermore,
it is clear that y € By, [z, 0] since this is a closed set. By Lemma 3.23, for each k € N the

map
Yy e de [.’17, 6] = Fsk (SC) — MyU(de <y7 gk))a

is continuous and the same holds for
y € By, [x,8] © Fi(x) = py (Bq, (y,1)).

Thus,
lim ’qun(de(yn7€k)) _ /”LyU(de(y7€k))
n—00 /JJyUn(de(yn’t)) ’qu(Bdm(y,‘C)) ;

Which implies that for all & > 1 we have

15 (Ba, (v, x)) _ 115 (Ba, (Yns k)
2 - p (Ba, (y,v))  n=% 284 - pll (Ba, (yn,v)) ~

k=>1.
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that is, y € I, as we wanted.

For A ¢ U we define the F|U-saturate of A on U given by

FIUA) = | J FIU(x)

€A

Now, we consider the following set

v = FIUG) N (FIU)(Z0).

[U(z) € (FIU)(Zv)

FlU(z) € (FIUYII®

Figure 4 — Set D}

In other words, Df; is the union of the plaques F|U(z) for x € IIJ that do not

have intervals of p-null measure.

Lemma 4.4. The set D defined above is a measurable subset.

Proof. Consider the natural projection associated to the foliation F given by
7:U—>U/F
x> 7m(x) = F|U(x).

As U is an open subset of a manifold, in particular, it is a Polish space thus, U/F with the
quotient topology is also a Polish space. By Lemma 3.3, we know that Zy = xp n (U~ Ay)
for some Borel subset xpy < U and U \ Ay is F|U-saturated, then

m(Zu) = m(xv) n7(U ~ Av),
where 7(xy) is a Souslin set’ by [8, Corollary 1.10.9]. Therefore

Fl(Zy) =7 H(mlxv) n (U N Ap)) = 7w (xw)) n (U N Ap),

A subset of a Polish space Y is called a Souslin set, or an analytical set, if it is the image of a Polish
space X by a continuous map from X to Y.

1
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is a measurable set.

Since R* nU < F|U(I1{) and u(R™) = 1 we have that F|U(II}) is a measur-
able subset of U, this implies that D = F|U(I1j7) \ F|U(Zy) is a measurable set, as we
wanted. O

Now we define the set
p*:= |J s (U Dg‘?) .
neZ,Ueld

Since D{; is measurable, by ergodicity of f and the f-invariance of D™, must satisfy either
uw(D*) =0 or u(D*) =1.

4.1.2 Technical Lemmas for the case A < o

Lemma 4.5. If A < oo, there exists a sequence ¢, — 0, as k — +00, and a full measure
subset R < M such that

1. R is f-invariant;

2. for every x € R, then
tiz(Ba, (. €k))

- (4.3)

| =

S

Proof. The proof is very similar to the proof of Lemma 4.2. Let k € N* arbitrary. Since
A(x) = A for every x € M define

T B ) 1 . F
sup{aét:W—A <} ifxeM
ep(x) = 2e k :
0 ifreM~M
Observe that for = € M such er(x) exists, in fact, since
T B ) T
A = limsupw for z € M,
e—0 £

we can take a sequence ¢, — 0 such that the given ratio approaches A.

Claim: The function g4 (z) is measurable for all k£ € N.

Proof. Define the function w : My x [0,t] — [0, ) given by

_ (B (,2)

w(z,e) 5
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As observed in the proof of Lemma 4.2, for fixed x € My, the function r — w(x,r) is
continuous and for any 0 < r < v, the function x — w(z,r) is measurable. Given any
keN, k> 0and 3 >0, let us show that £, '((0,3)) is a measurable set. Note that:

z € e;((0,8)) = ex(z) € (0, )

(:):sup{aét: W—A‘éi}e(o,ﬁ)

2e
B 1
/MW_A‘>, for every > p3
2 k
(:)W_A>l or M—A<—l,fors>ﬁ
%% k 2¢e k

Thus, we conclude that

e ((0,8)) ={z : ex(x) € (0, 8)}

:Bgllw(.,r)‘l ([A + ]1’00)> O w(e,r)! QO’A B ;)) |

Now, the continuity of w(z,-) and the density of Q on [, t], implies that

G0 = O et (| pe) Juuta (Joa-1)).

B<r<e,reQ

Therefore, £ *((0, 3)) is measurable, as it is a countable intersection of measurable subsets
of My and by definition ;' ({0}) = M . M also a measurable subset, and consequently

€k is a measurable function for every k. O

With a similar argument used in Lemma 4.5, we show that e (z) is f-invariant,
by ergodicity we may take the full measure set Rj where €;(z) is constant equal to e.

The sequence ¢, — 0 as k — o0.

+00

Consider R := ﬂ Ry.. Since each Ry has full measure, R has full measure and
k=1
clearly satisfies what we want for the sequence {j}r. The set R = ﬂ fl(é) is f-invariant,
€L
has full measure and satisfies (1) and (2), as we wanted. O

Similar to the definitions made in Section 4.1.1, we set

Iy := U IL, v,
J.TEU\(ZUU.AU)
where
1 pY(Ba, (y,er)) 1 .
M= dye FlU()~ 2y« |— . B2 _ Al < = Yk with By (y,t) c UL
v {y U@ v o 0 B (1)) g 7 with Bo,(uv) ©
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Lemma 4.6. For every x € Rn U, consider §(x) > 0 for which
By [x,2 -0 +t] c U.
The set 11,y N By, [x,0] is a closed subset on the plaque F|U(x).
Proof. Identical to the proof of Lemma 4.3. m

Similar to the definitions made in Section 4.1.1, we consider the set

DU = F’U(HU) AN (f‘U)(Zu)

Lemma 4.7. The set Dy definided above is a measurable subset.
Proof. The proof uses the same arguments as those in Lemma 4.4. O]

Now, we define the f-invariant subset

D= |J s (UDU).

neZ,Ueld

As Dy is measurable for all U € U, D is measurable, and again by ergodicity, we have
w(D) =0or u(D)=1.

After proving the auxiliary lemmas for A* (resp. A) and obtaining the sets D

(resp. D*) we divide the next part of the proof into four cases.

o Case 1: A < 0 and p(D) = 0: In this case, we will prove that almost every leaf has

the conditional measure p, supported on a Cantor set.

o Case 2: A = o0 and p(D™) = 0: As in the Case 1, we will prove that almost every

leaf has the conditional measure p, supported on a Cantor set.
e Case 3: A = o0 and pu(D*) = 1: we will show that this case does not occur.

e Case 4: A < o0 and p(D) = 1: In this case, we will prove that for almost every leaf

F(z), the conditional measure p, is equivalent to the measure \,.

413 Casel: A <ooand u(D) = 0.

As was said above, in this case, we will show that for every local chart U € i and almost

every z € U, the support of the conditional measures pl is a Cantor set on the plaque
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F|U(x). Note that by the definition of D, u(D) = 0 implies that u(F|U(Zy)) = 1, which

means that there are many leaves of F containing intervals of null measure.

As fixed in Section 2.2, consider {€2,},cps the disintegration of p along F. By
definition for this family of mesures, we can consider G a full measure F-saturated set of

points where any representative w, of the class €2, is allways invariant under f, this is
fiQx = ij(x), V] e 7.

Let U € U be a local chart, we also know from the definition of {2, },car and {uY} that
measures ug and w, coincide almost every point x € M. Since we are assuming that the

disintegration is not atomic, we can define the full-measure set in U given by

GUV ={reU:ul =w,(|FIU()} n{x: uY is non-atomic}.

Now, we consider 7 € N such that 1/f < t. Note that n does not depend on

the local chart U. For n € N, n > n, consider the following set
@llj/n(ZU) ={xeU:d,(x,2y) < 1/n}.

We assert that ®1U/n(ZU) is measurable. In fact, by Lemma 3.25, the set Zy < U is
Bir.a,-measurable set, which implies that there exists a Borelian subset xy such that

Zy =xv N (U~ Ay). Since Ay is F-saturated in U, we have
oY, (Zv) = {z € M : dy(2,xv) < 1/n} 0 (U~ Ap).

By Lemma 3.21, as xy is a Borel subset of U we have that {z € M : d,(z,xv) < 1/n} is

measurable, therefore q)lU/n(ZU) is measurable, as we wanted to show.

Now, for n € N such that n > n we consider the set
&, = UgU A (@Y, (20) nGY). (4.4)
U
Since @gj/n(ZU) is measurable, we have that &, is an f-invariant measurable subset of M,
thus by the ergodicity of f, the set &, either has full or null measure.

Lemma 4.8. u(&,) =1 for every n € N and n > 7.

Proof. If we assume that there exists Ny € N with Ny > 7 such that p(€Ex,) = 0. In
fact, u(Ey,) = 0 implies that p(EY,) = 0 for any local chart U € U, and moreover, since

EY = &Y. we have p(EY) = 0 for any N > Nj,.

By definition of 5](\],0, we know that

QU M g M @1/1\[(2{]) c S%O for N = N(),
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as 1(GY n G) = u(U), it should be noted that
(®1/N(ZU)) = u(GY "G N Qyn(Z2y)) < pEY) = VN = Nj.

From definition of system of conditional measures, we notice that

(@ (21)) = J W (FIU(y) A 8V (Z0)) duly) = 0,

E(I)gj/N(ZU)

and
FlU(y) n q)l/N(ZU) = q)[1]/N<ZU N FU(y)).

In particular, for almost every x € U we have
1 (BY)n (20 0 FIU(x))) = 0. (4.5)
As q)l/N(ZU N F|U(x))) is an open subset of F|U(x), for every y € @IIJ/N(ZU N FlU(x)))

there exists r > 0 such that By, (y,r) < CIDI/N(ZU N F|U(zx))) then by (4.5) we have

pa (Ba,(y,7)) = 0.
Terefore, for almost every x € U we find that
QD?/N(ZU NFlU(x)) <€ Zy n FlU(x).

But clearly the other continence holds, thus Zy; n F|U(z) = <I>1/N(ZU N F|U(z))) and
this implies Zy n F|U(x)) = F|U(x). As this happens for almost every z € U we fall in
contradiction with the fact that u(Zy n U) = 0. Therefore p(&,) = 1 for every n € N and

n=n. O

Since p(&,) = 1 for every n € N and n > fi. We will prove that for every set

U € U, the measure 1 is supported on a Cantor set.

First, we prove that the intersection of set Zy n F|U(z) is dense in F|U(x)

for almost all z € U. In fact, for U € U we consider the subset £ < U, given by

& = (UgUme @), (20) N GU>>-

Since 11(&,) = 1 the set &Y has full measure in U for every n > 7.

For ze &Y = ﬂ EYV asn > and 1/f < v, we have that z € F|U(z) for some
n=n

x e U and By, (z,1/n) c U. For n = n, let j € Z with
f(z) e @7,(Z0) n GY,
and since f/(z) e @l/n(ZU) there exists a point p € F(f/(z)) n Zy such that

d-i()(p, [ (2)) < 1/n.
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Then, by the f-invariance of the F-metric system {d,}, we have d,(f’(p), z) < 1/n, which
implies f’(p) e U. If ,upU(de (p,d)) = 0, for some § > 0 small, since ug ~ Wi (because
f7(2) € GY) and z € G, it follows that w,(f7(I,)) = wpi(-)(I,) = 0 and z € G*. Thus
pY (f7(1,)) = 0, therefore, f7(p) € Zy and z € ®y,(Zy). Consequently 2 € Z, for almost

every z € EV.

If Z; # F|U(2), then we would be able to find an open arc in the complement
of Zy (in particular in the complement of Zy), which must have positive u! measure.
Then, for almost every z € £V this contradicts the fact that uJ(€Y) = 1. That is, the set
Zy n F|U(z) is dense in F|U(z), for almost every z € EV.

Lemma 4.9. C, := F|U(x) \ 2y is a Cantor set in F|U(x), for every x € EV.

Proof. To prove that C, is a Cantor set, we will show that it is nowhere dense and perfect.
Note that, by the definition of Zi;, we have that C, is closed subset in F|U(z) (see Lemma
3.25), and given that C, := F|U(z) \ Zy and Zy n F|U(z) is a dense set in F|U(x), it
follows that C, is nowhere dense.

Given z € Y, let us see that C, has no isolated points. Suppose by contradiction
that there is an isolated point in C,, say y € C,. Then, there exists r > 0 such that
B(y,r) < U and Bg,(y,7) nCy = {y}. As y € C, it follows that 0 < uY(Bg, (y,7)). Then,

by the basic properties of probability measures, we have that

0 < p(Ba,(y,r)) = pd (Ba, (y,r) ~ Ca) + ud ({y}) = 1 ({y}),

therefore 1Y ({y}) > 0, which contradicts the assumption that z € £Y < U \. Ay. This
means that pU is not atomic, which implies that {y} cannot have positive measure with

respect to ug.

Thus, we have shown that C, is a set that is never dense and perfect. Therefore,

we have that C, is a Cantor set, as we wanted to show. n

Thus, for almost every x € M and any local chart U, the conditional measures
,ug is supported in the Cantor set C,. We remark that for the Lemma 4.9, we did not use

the fact that A = o0, so the same argument will work when A < co.

414 Case2: A =00 and (D) =0.

In this scenario, we follow a similar approach to the previous case. Specifically, we show,

as in Case 1, that for almost every x € U, the measure u, is supported in a Cantor set.

Note that p(D”) = 0 implies that for every local chart U € U, p(Df7) = 0. Since
Dy = FIUE) ~ (FIU)(Zy) and pw(FU(I1EF)) = u(U), we have that u(F|U(Zy)) = 0.
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Consequently, almost every plaque F|U(x) does not contain intervals of null measure with

respect to uzU.

Again, as in the Case 1, for every n > 0, we define the set &, given in (4.4). If
w(E,) = 1 for every n € N, then there exists a subset of U, namely £V with u(&Y) = u(U),
such that z € £Y implies Zy N F|U(z) is dense is F|U(z). Hence, as showed by the Lemma
4.9, it follows that the support of u is a Cantor subset of the plaque F|U(x) for almost

every x € U.

Otherwise, if ;1(En,) = 0 for some Ny € N, then as in Case 1, we conclude that
Zy n FlU(z)) = F|U(z), contradicting the fact that u(Zy n U) = 0. Thus, this case does

not occur.

415 Case 3: A = and pu(D”) = 1.

Let us prove that this case cannot occur. Suppose that p(D*) = 1. Take U € U such that
w(D*AU) > 0and for v > 0 given in Proposition 3.19 the set {x € U : By, (z,¢v) c U} # &.
Since u(F|U(I1Y)) = p(U) and by definition of the system of conditional measures, for
almost every point y € U, we have qu(Hﬁ N F|U(y)) = 1. In particular, for almost every
y € D* n U, we have that

py (I 0 FIU(y)) = 1. (4.6)

Since {x € U : By, (z,v) € U} # & we can to consider y € D and x € F|U(y) such that

By, (z,t) = U. Also, from Lemma 4.3, we have that I17’;; n By, [z, 6] is a closed subset in

F|U(x) for some 0 > 0 small (0 < t). Next, using the properties of the sets D} and 117,

we are going to prove that
By, |x,6] < 17, for e FlU(y) n 1.

Suppose, by contradiction that there exists z € By, [z, 0] \ 117 0 By, [z, d]. Since I, n
By, [z, 6] is closed in F|U(y), there is d2 > 0 such that

de (Za 52) c de [.CL’, 5] ~ H;(?U M de [.’137 5]

Then, by (4.6), we have uY (By,(z,0,)) = 0. This means that z € Zy;, note that F|U(z) =
F|U(y), then F|U(y) < F|U(Z2y). Consequently, F|U(Zy) n Dff # ¢, which contradicts
the definition of Df7. Therefore,

HZC,)U M de[fb,é] = Bdm[x,é],

as we wanted to show.
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On the other hand, consider 0 < ry < § small enough such that By, (x,t+2-19) <
U. Let k € N be large enough such that €, < 9. By Lemma 3.13, we have that {d,} is an

additive metric system. This implies that we can take |ro/ex| disjoint balls of radius g

inside By, (z,70), say with center ay, ay, . . ., a|y/e,) € II;;;. Then, we have
lro/ex]
> 1 (Ba,(ai,er)) < p (B, (2, 70))
i=1

lngJuganxahsk» _ 1 (By, (2,79))
& By (w,e) ~ pl (B, (ev)

Thus, we can write

[ro/ex] U U U
Hy (Bda: <ai7 t)) . My (de (ai7 5k)) Ky (de (l‘, ’I"O))
2 W(Ba(e.0) W B one) (B e (1)

By Lemma 3.23, we have that the function w € By, [z,70] € Fi = uY (By, (w,t))
is continuous. Therefore, this function is bounded from below, which means that there
exists an 1 > 0 such that

W (B (w0,5)

e (B, () —
On the other hand, for each i = 1, ..., |ro/ex]|, we have that a; € By, [x,0]. As By, [x,d] <
I, by the definition of the set IT;7;, it follows that

for every w € By, [x, 1]

11 (Ba, (ai, €r,))

> 95k forall i=1,..., |
1Y (Ba, (a;,t)) ok orat |70/x]

Therefore,

%f@wu%m_@wu%%»
i=1 /”LIU(Bd"c I,t)) :u’g(Bdac (ai7t))

g R B c)
i=1 lug(de (a'i7 t))
To

277'(2614'/{?){J

Ek

So, from (4.7) we have

ro | _ pg (B, (w,70))
|<

n- (2 k) - Lk = 1 (By, (z,v)

Taking k — oo, the left side goes to infinity from where we conclude that

W (B (2, m)
el Bac 810 =0 (B ) %

which is a contradiction. Thus, this case does not occur.
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416 Case4: A <ooand pu(D)=1.

Given any local chart U e U, if u(D) =1 and A < oo, we will show that for almost every
x € U the conditional measure p in the plaque F|U(z) is equivalent to the measure \,

given in Definition 3.22.

First, we show that for almost every x € M, the coditional measure p, is

absolutely continuous with respect to the measure \,.

Lemma 4.10. The constant A # 0 and
Pz K Az,

for p-almost every x € M.

Proof. Let y € D. Then, for some ng € Z and U € U we have f™(y) € Dy. Call x = f™(y).
As z e FIU(Ily) ~ F|U(Zy), we have uY (F|U(Ily) n F|U(x)) = 1. Therefore, we conclude
(by the same argument used in Case 3 - Section 4.1.5) that

HI,U M de[‘raé] = de[xué]u

for some small 0. Consequently, [T, N F|U(x) > Fy(x), where F,(z) is an connected subset
in the plaque F|U(z) defined by

Fi(x) ={ye FlU(z) : du(y, 0F|U(x)) = t}. (4.8)

Furthermore, we have F; < Il 7.

On the other hand, the definition of set II;; implies that for any k € N*, U e U
and x € IIy, the following inequality holds:

115 (Ba, (2, €x))

— Al <
2e, - i (Ba, (7, 7))

1
—. 4.9
! (49)
Given a constant r > 0 such that By, (z,r) < Fi(x). Take ky € N such that
ko' < r. Since {d,} is a F-metric system, for any k > ko we need at most s(k) = |r/ex] +1

points, say ai, as, ..., s € Bq, (x,7), to cover the ball By, (x,r) with balls of radius e.

Again by continuity (see Lemma 3.23), there exists § > 0 such that

U
B .
op = P Bl0¥) gp s,

15 (Ba, (2, )

Since ay, as, ..., asky € Ba, (z,7) < Iy, we also have

Y(B 2
to (Ba,(.61)) 28k o A

1 (Ba, (,¢)) K
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Therefore,
k
IU:L‘U( <S( ):ug de al?‘gk i :ux de &17576))
(Y (Ba — ud(By,(v,v) & pl(Ba,(a;,v))

s(k

:UJ Bdw Qj, 5/6))
5 2 i B (a0

N

k)

»
—~

Since lim s(k)e, — r as kK — o0, we have that

hmﬁ ()El:=0

Therefore, taking the limit when & — oo, we have that

W (B (,17))
W (Ba () S 20T

This means that
:ux(de ($? 7’))

Vx(de(:Ea T) = ol B

Therefore, p, « A\, when restricted to F, and A > 0. As r > 0 can be taken to

be arbitrarily small, it follows that u, « \;, as we wanted to show.

Next, we are able to conclude that u! is equivalent to the measure \,.

Lemma 4.11. For p almost every x € M
1y~ Aa

Proof. By Lemma 4.10, we know that uY « \,. Since ), is a doubling measure, as stated
in Theorem 2.9, for A\,-almost every point y € Fi(z) defined in 4.8, we have that the
Radon-Nikodym derivative duY /d)\, exists and is given by

d:U’xU( ) = lim M
dA, =0 Ay (Ba, (v, 7))

In particular, by taking the limit along the subsequence ¢, k — o0, we conclude that

dul Y (Ba,(y,er))
e () = lim Fz 2\ A, — a. F.(2),
dA; (y> kl_f)folo Aw(de (y7 5k)) ’ e ve (33)

which implies

d
d‘;ﬂc( )=By)-A, A\ —ae ye F(z),
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where 3(y) = uY(Bg, (y,t)). Since 3 is a continuous function when restricted to the plaque

F|U(z), given any compact I < F,(z) we have

di,
d\;

/A < (y) < BoA, Ny ae ye 1.

Then,
1A Ay < g, Ay ae ye .

This implies that the set E < F|U(z) if such that xY(E) = 0, then for any compact subset
I c{ye FlU(z) : d.(y,0F|U(x)) = ¢}, we have \,(En 1) =0.

Since F(x) can be expressed as a countable union of increasing compact subsets,
we can conclude that \,(E' nye F|U(z) : d.(y,0F|U(x)) = t) = 0. Furthermore, since
t can be arbitrarily small, we can conclude that A\,(E) = 0. Thus, we have shown that

A « 1Y as desired. O
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Proof of Theorem B

5.1 Proof Theorem B

First, we recall the Holder theorem for actions on one-dimensional manifolds.
The action given by a group G acting on a manifold M is a free action if each non-trivial

element in GG has no fixed points.

Theorem 5.1 (Holder Theorem). [2/] Let G be a group of orientation preserving homeo-
morphisms acting freely on R (resp.S*). Then G is isomorphic to a subgroup of translations

on R (resp. of the rotations in S*).

As in the proof of the Theorem 3.9 in [11], consider the set N = {x € M :

a(x) = w(x) = M}, since f is transitive, N is full measure residual subset.

Definition 5.2. We say that a map F : F°(x) — F°(x) is a limit center map if there

exists a sequence {n;} < Z with |n;| — oo such that { "} pointwise converges to F.

For each x € N we consider

L(F(x)) :={F : F(x) > F°(x) : F is a limit center map} and
LHF(x)) :={F e £ (F°(x)) : F preserves the orientation of F¢(z)}.

Remark 5.3. (see [11, Proposition 4.7] For every x € N', we have:

o If F°(x) is not compact, then there is a homeomorphism 1, : F(x) — R, such that
LHF (@) = {vs o Tiothy, teR},

where T, is the translation T, - R — R, s — s + t.
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If F°(x) is compact, then there is a homeomorphism 1, : F(x) — S, such that
L (F(x)) = {7 o Riony, te S =R/Z},

where Ry is the rotation Ry : St — S, s +— s+ t(modZ).

o L(F(x)) is a group whose action on F°(x) is transitive.

o L(F(x)) either coincides with £ (F¢(x)) or is the group generated by L (F¢(x))
and —Id|F°(z).

o If F: F(x) — F°(x) is a limit center map having a fized point x € F°(z), if F is
orientation preserving, then F is the identity map of F¢(x). This is, the action on
F(x) given by the group L+ (F°(z)) is free.

Lemma 5.4. For p-almost every x € M, for p,-almost every y € F(x), there is a limit
center map F € L7 (F¢(x)) such that F(x) =y and Fiypi, = api,.

Proof. We have that the map = — p, is measurable, restricted to a full measure subset
of M (see for example 3.27). Using Lusin’s theorem takes {K;} an increasing sequence of
compact sets for which the map = — pu, is continuous when restricted to each K;. As u
is ergodic, for p-almost every point z € K;, the orbit of x is dense in a full measurable

subset of K;. Let P, = N n K.

Let z € P, and y € F°(x) n P;. From [11, Proposition 4.7], we know that there
exists F' € £ (F°(x)) such that F(z) = y. Since F' is a limit center map, there exists a

sequence ny C Z with |[n;| — oo so that the sequence f"*|re(,) point wise converges to F.

By the continuity of x — pu, on the set P; and since y € P;, we have that

By taking the limit set of K;, we conclude that for p-almost every point x € P (where
P =1lim P) and y € F°(x) n P, there exists F' € £ (F°(z)) such that F(x) = y and
Fipy = pyy, and by definition of ji,, we have Fip, = afiy. O

Lemma 5.5. For each x € P, the set given by
G, :={F e L (F(2)) : Fipte = au, for some a > 0},
is a closed subgroup of L% (F¢(z)).

Proof. Using Lemma 5.4, we can conclude that G, is nonempty. Additionally, we can prove
that G, is a subgroup of .Z*(F¢(z)) by showing that for any F,G € G,, Fo G € G,.

To prove that G, is a subgroup of Z*(F°(x)), we only need to show that
(F oG Yy = ap, for some a € R. Since F and G are both elements of G, we know

that there exist aq, as € R such that Gy, = aju, and Fyu, = aspi,.
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Let A be any measurable subset of F¢(x), we have

:;G*M(G(A)) —~ iuz(Gl(G(A)»

This implies that G~ € G,. Then

(F oG )spa(A) = pa((F o GT)7HA)) = pa(G(F(A))
= (G spa(F7H(A)) = cnpue(F(A))
= oy Fypir(A) = cqanpi,(A)
= iz (A).
Therefore, F o G~' € G, and we have shown that G, is a subgroup of £ (F¢(x)).

Consider a sequence {F}, } ey © G, that converges to F' € £ (F°(z)). We aim

to show that F' € (G, which means F' = u, = au, for some o € R.

For any bounded subset A < F¢(x), we have F,(A) — F(A) in the Hausdorff
metric. Suppose that p,(0F(A)) = 0, we have that p,(F,(A)) converges to p.(F(A)). To
see this, consider B,, = F(A,)AF(A), which is the symmetric difference between the sets
B, = F(A,) and F(A).

lim sup p,(B,,) < p(limsup By,)

n—a0 n—o0

=ﬂx<ﬁ UBn)

m=1ln=m

< 1. (0F(A)) = 0.

Thus,
This implies that
lim j1,(Fy (A)) = pa(F(A)).

n—o0

Therefore, for every measurable bounded subset A < F¢(z) such that Fip,(0A) =
0, we have (F},)sptz(A) — Fap,(A). This implies that (F,)«p, — Fip. We also have
(F))spty = Qupliy, where oy, = i, (A)/ 1z (FL(A)) for any measurable subset A < F¢(x) such
that p,(F(A)) # 0 and n € N large enough.

Since F' is a homemomorphism, we can take A ¢ F¢(X) such that yu,(A) >0
and p,(F(A)) > 0. Furthermore, since p, is not atomic, p,(0(F(A))) = 0, where 0(F'(A))
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denotes the boundary of F'(A). It follows that o, — a = p(A)/u.(F(A)), and hence
Fiop, = ap,. Therefore, F' € G, as we wanted to show. O

Proof of Theorem B. Let x € P and consider the action on F¢(z) given by the group
L (F¢(x)). This action is free and transitive for every z. Applying the Holder Theorem
5.1, we conclude that £ " (F¢(z)) is isomorphic to the group of translations (resp. rotations)
on R (resp. S') if F¢(z) is homeomorphic to R (resp. S'). We denote by T, the group of

translations (resp. rotations) on R (resp. S').

By Lemma 5.5, we have that G, is a closed subgroup of .Z*(F¢(x)). Therefore,
G, must be either the whole group T}, of translations (rotations) of F¢(z), or the discrete

group generated by a single element.

First, suppose G, is isomorphic to a discrete subgroup of 7. In this scenario,
would imply the existence of only a countable number of points in F¢(z) with full measure,
since each atom of u, must be mapped to an atom by a fixed translation. Additionally, the

support cannot be a Cantor set because the atoms must be equidistant from each other.

Now, suppose that G, is isomorphic to the group of translations in R (resp.
rotations in S'), which implies that the support of p, is full. This, in turn, implies that
1z 18 equivalent to the measure )\, generated by the metric length system. This completes
the proof of the theorem. O
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Discussions

In this section, we will make some remarks on the one-dimensional hypothesis

and then state some directions for further investigation.

If the dimension of the foliation F is greater than one, the arguments used in
the proof of the main theorem cannot be applied. This is due to the inability to utilize the
structure of a manifold of dimension one. For example, the proof of Lemma 3.13 heavily
depends on the fact that the leaves of the foliation F are homeomorphic to either S* or R.
Another significant result that utilizes the fact that the foliation is one-dimensional, is
Proposition 3.18, where, we prove that the metric system is plaque continuous, which is a

critical result for the proof of Theorem A. This raises the natural question:

Question 6.1. If the foliation F has dimension > 2 with an f-invariant metric system,

can we have a classification for the conditional measure, in the same sense as Theorem A?

One of the challenges in this scenario is the presence of multiple directions.
When dealing with a foliation F of dimension greater than one, it becomes impossible to

establish a ordering inside of the each leaf.

On the other hand, in [11] the authors provided a classification for C' partially
hyperbolic diffeomorphisms on a closed 3-manifold M, which a topologically neutral center
of one-dimension and transitive. This classification mentioned above raised an important

question:

Question 6.2. Is it possible to classify functions in T based on their topological or
metric properties while preserving 1-dimensional foliations with a F-arc length system, as
stipulated by Theorem C presented by Bonatti-Zhang in [11]?

Another natural question arises regarding the existence of the F-arc length
system for a partially hyperbolic diffeomorphism with a central direction of dimension

greater than 1.
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Question 6.3. If the center foliation F€¢ for a partially hyperbolic diffeomorphism has

dimension = 2, is there an F-metric system?

The literature identifies a crucial property called quasi-isometric in the center,
which falls under the class of partially hyperbolic diffeomorphisms with a central direction

of dimension 1. This property holds significant value and is extensively studied in the field.

Definition 6.1. The partially hyperbolic and dynamically coherent diffeomorphism f is
quasi-isometric in the center if there exist Ko = 1 and ¢y > such that for every xz,y e M

satisfying F(x) = F°(y) and every n € Z,
Ky'd(z,y) — co < d°(f" (@), f"(y)) < Kod*(2,y) + co,

where d° is the distance along the leaves of F¢ induces by the Riemannian metric.

For example, if the center leaves are compact and arranged in a fiber bundle,
this property holds. However, there is a significant subset of systems known as discretized
Anosov flows [6, 23], which have non-compact one-dimensional center leaves that are
quasi-isometric in the center. In these systems, each center leaf is individually fixed such
that f(z) e F¢(x) for all z € M. Perturbations of the time-one map of Anosov flows fall

into this category.

Definition 6.2. Let f : M — M be a partially hyperbolic diffeomorphism with a one-

dimensional central direction. We say that f is a discretized Anosov flow if there exist

1. an orientation foliation F¢ such that for every x € M, the leaf F°(x) € F* is C7,
tangent to E° and satisfies f(F(x)) = F(x), and

2. a continuous map 7 : M — R, such that
f(@) = r@) (@)

for every x € M, where py : M — M denotes a unit speed flow whose orbits are the leaves
of F°.

Discretized Anosov flows have received extensive attention in the literature,
albeit sometimes under different names. For instance, the first instances of robustly
transitive diffeomorphisms isotopic to the identity were obtained in [9], which were
constructed to be arbitrarily close to the time 1 map on any Anosov flow. These examples

are categorized as discretized Anosov flows.

Recent work in [5] demonstrated that discretized Anosov flows account for every

dynamically coherent homotopic to the identity partially hyperbolic diffeomorphism of
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many 3-manifolds. Additionally, [17] (and [16]) showed that in most 3-manifolds, discretized

Anosov flows are accessible and ergodic when they preserve a volume form.

Other notable dynamical results related to discretized Anosov flows, include the
rigid results found by [4], the measurements of maximal entropy by [12], the centralizers
rigidity for partially hyperbolic diffeomorphisms examined by [14] and [7], and the invariant

principle demonstrated in [13].

Question 6.4. If f is a discretized Anosov flow, can we construct an F°-arc length system

that is measurable, at least?

Question 6.5. In general, do systems with quasi-isometric centers admit a measurable

Fe-metric system?



66

Bibliography

ALIPRANTIS, C. D., AND BORDER, K. C. Infinite dimensional analysis, third ed.
Springer, Berlin, 2006.

Anosov, D. Geodesic flows on closed riemannian manifolds with negative curvature.
Proc. Steklov Inst. Math. 90 (1969), 1-235.

ANosov, D., AND SINAI, Y. Certain smooth ergodic systems. Russ. Math. Surv. 22
(1967), 103-167.

AviLA, A., VIANA, M., AND WILKINSON, A. Absolute continuity, lyapunov expo-
nents and rigidity I: geodesic flows. Journal of European Math. Soc. (2015).

BARTHELME, T., FENLEY, S. R., FRANKEL, S., AND POTRIE, R. Partially
hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The
dynamically coherent case. https://arziv.org/abs/1908.06227 (2022).

BARTHELME, T., FENLEY, S. R., AND POTRIE, R. Collapsed anosov flows and self
orbit equivalences. https://arziv.org/abs/2008.06547 (2022).

BARTHELME, T., AND GOGOLEV, A. Centralizers of partially hyperbolic diffeomor-

phisms in dimension 3. Discrete and Continuous Dynamical Systems 41, 9 (2021),
4477-4484.

BoGAcHEV, V. 1. Measure Theory I, vol. 1. Springer-Verlag, Berlin, 2007.

BonNaTTI, C., AND DiAz, L. J. Persistent nonhyperbolic transitive diffeomorphisms.
Annals of Mathematics 0 (1995), 357-396.

BonatTi, C., GOGOLEV, A., HAMMERLINDL, A., AND POTRIE, R. Anomalous

partially hyperbolic diffeomorphisms I1I: Abundance and incoherence. Geometry and
Topology 24, 4, 1751 — 1790.



Bibliography 67

[11]

[12]

[13]

[14]

[15]

[23]

[24]

BonaTTi, C., AND ZHANG, J. Transitive partially hyperbolic diffeomorphisms with
one-dimensional neutral center. Sci. China Math. 63, 9 (2020), 1647-1670.

Buzzi, J., FIsHER, T., AND TAHZIBI, A. A dichotomy for measures of maximal

entropy near time-one maps of transitive Anosov flows. Ann. Sci. Ec. Norm. Supér.
(4) 55, 4 (2022), 969-1002.

CROVISIER, S., AND POLETTI, M. Invariance principle and non-compact center
foliations. https://arziv.org/abs/2210.14989 (2022).

DAMJIANOVIC, D., WILKINSON, A., AND XU, D. Pathology and asymmetry:

Centralizer rigidity for partially hyperbolic diffeomorphisms. Duke Mathematical
Journal 170, 17 (2021), 3815 — 3890.

EINSIEDLER, M., AND LINDENSTRAUSS, E. Diagonal actions on locally homogeneous
spaces. In Homogeneous flows, moduli spaces and arithmetic (2010), no. 10 in Clay
Math. Proc., American Math. Soc., Providence, RI, pp. 155-241.

FENLEY, S. R., AND POTRIE, R. Accessibility and ergodicity for collapsed anosov
flows. https://arziv.org/pdf/2103.14630.pdf (2021).

FENLEY, S. R., AND POTRIE, R. Ergodicity of partially hyperbolic diffeomorphisms
in hyperbolic 3-manifolds. Advances in Mathematics 401 (2022), 108315.

HEINONEN, J., KOSKELA, P., SHANMUGALINGAM, N., AND TYSON, J. T. Sobolev
Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. New
Mathematical Monographs. Cambridge University Press, 2015.

Herrz, F. R., HERTZ, M. A. R., AND URES, R. A survey about partially hyperbolic
dynamics. Fields Institute Communications 51 (2007), 35-88.

Hertz, F. R., NORIEGA, M., AND PONCE, G. A note on the conditional measures

along certain one-dimensional invariant foliations. in preparation (2023).

HoMBURG, A. J. Atomic disintegrations for partially hyperbolic diffeomorphisms.
Proc. Amer. Math. Soc. 145, 7 (2017), 2981-2996.

LINDENSTRAUSS, E. Recurrent measures and measure rigidity. In Dynamics and
randomness II, vol. 10 of Nonlinear Phenom. Complex Systems. Kluwer Acad. Publ.,
Dordrecht, 2004, pp. 123—-145.

MARTINCHICH, S. Global stability of discretized anosov flows.
https://arziv.org/abs/2204.03825 (2022).

NavAas, A. Groups of circle diffeomorphisms. Chicago Lectures in Mathematics.
University of Chicago Press, Chicago, 1L, 2011.



Bibliography 68

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

NORIEGA, M., PONCE, G., AND VARAO, R. Classification of conditional measures
along certain invariant one-dimensional foliations. https://arziv.org/abs/1812.00057

(2022).

PonNcE, G. Ergodic properties of partially hyperbolic diffeomorphisms with topologi-
cal neutral center. https://arziv.org/abs/1906.05396 (2022).

PonNcE, G., AND TAHzIBI, A. Central lyapunov exponents of partially hyperbolic
diffeomorphisms on T®. Proc. Amer. Math. Soc. 142 (2014), 3193-3205.

PoNcE, G., TanziBI, A., AND VARAO, R. Minimal yet measurable foliations.
Journal of Modern Dynamics 8, 1 (2014), 93-107.

RODRIGUEZ HERTZ, F., RODRIGUEZ HERTZ, M., AND URES, R. A non-dynamically

coherent example on T®. Annales de UInstitut Henri Poincaré C, Analyse non linéaire
33, 4 (2016), 1023-1032.

RobpriGUEZ HERTZ, F., RODRIGUEZ HERTZ, M. A., AND URES, R. A survey of
partially hyperbolic dynamics. In Partially hyperbolic dynamics, laminations, and
Teichmiiller flow, vol. 51 of Fields Inst. Commun. Amer. Math. Soc., Providence, RI,
2007, pp. 35-87.

RUELLE, D., AND WILKINSON, A. Absolutely singular dynamical foliations. Comm.
Math. Phys. 219 (2001), 481-487.

TAaHZIBI, A., AND ZHANG, J. Disintegrations of non-hyperbolic ergodic measures
along the center foliation of DA maps. Bulletin of the London Mathematical Society
(jan 2023).

Y .KATZNELSON. Ergodic automorphisms of T" are bernoulli shifts. Israel Journal of
Mathematics 10, 186-195 (1971).



	First page
	Title page
	Acknowledgements
	Resumo
	Abstract
	Contents
	Introduction
	Preliminaries
	Measure-Theoretical Properties of Partitions
	Basics on Foliations
	Lebesgue differentiation theorem

	Metric System
	Invariant arc-lengths systems
	Invariant F-metric systems
	Properties of non-atomic disintegrations

	Classification of conditional measures
	Proof Theorem A
	Technical Lemmas for the case = 
	Technical Lemmas for the case < 
	Case 1: < and (D)=0.
	Case 2: = and (D)=0.
	Case 3: =  and (D)=1. 
	Case 4: <  and (D)=1.


	Proof of Theorem B
	Proof Theorem B

	Discussions
	Bibliography

