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Resumo

Esta tese investiga o espaco de moédulos de feixes tangentes logaritmicos 7 de hipersu-
perficies reduzidas V(f) em P? e sua "n-liberdade", um conceito introduzido com base no
comprimento de um esquema de dimensao zero Z, que ¢é definido como o sub-esquema
de zeros de uma secao global de Ty de grau minimo. Construimos uma estratificacao do
espaco projetivo. Além disso, exploramos invariantes numéricos associados a curvas planas
para varios graus e implementamos um algoritmo de "forca bruta'para gerar polinémios

de grau superior.

Palavras-chave: Feixe de diferenciais. Esquema Quot e familias de feixes. Feixes sem

torcao.



Abstract

This thesis investigates the moduli space of logarithmic tangent sheaves 7; of reduced
hypersurfaces V (f) in P? and their "n-freeness’, a concept introduced based on the length
of a zero-dimensional scheme Z which is defined as the zero-subscheme of a global section
of T of minimal degree. We construct a stratification of the projective space. Additionally,
we explore numerical invariants associated with plane curves for various degrees and

implement a "brute-force" algorithm to generate higher-degree polynomials.

Keywords: Sheaf of differentials. Quot schemes and families of sheaves. Torsion-free

sheaves.



Contents

Introduction . . . . . . . .. L e e e 10
1.1 Introduction . . . . . . . . .. 10
1.1.1 Moduli . . . . . .. . 10
1.1.2 n-freeness . . . . . . .. 11
1.1.3 Numerical invariant associated to plane curves . . . . . . . ... .. 12
Preliminaries . . . . . . . . . . . . . 0 i e e e e e e e 13
2.1 Basic definitions . . . . . . ... 13
2.1.1 Sheaf of differentials . . . . .. ... o000 13
2.1.2  Hilbert polynomial . . . . . ... ... .. ... 0. 14
2.1.3  Quot-scheme and families of sheaves . . . . . ... ... ... ... 15
Constructionof Moduli . . . . .. ... ... ... ... ... ... . ..., 17
3.1 Definitions and computations . . . . . . . ... ... ... 17
3.1.1 Applying flattening stratification . . . . . . . .. .. ... 18
3.1.2  Applying representability of Quot functors . . . . . . ... ... .. 20
Propertiesof Logbundles . . . . . ... .. ... ... .. . ... . ... .. 23
4.1 Zero-subscheme of a global section . . . ... ... ... ... ... .... 23
4.2 Algebraic setting . . . . . ... 23
4.2.1 Bourbaki sequences and Bourbaki ideals . . . . .. ... ... ... 23
4.3 Global sections and syzygies . . . . . . . ... 24
4.3.1 Nearly-Free Curves . . . . . . . . .. .. 29
4.3.2 Stability . . . ... 30
Numerical invariant associated to planecurves . . . . .. ... ....... 32
5.1 Cubics . . . . . e 32
5.1.1 Reducible Cubics . . . . . . . . ... ... 32
5.1.2  TIrreducible Cubics . . . . . . .. .. oo 32
5.2 Reduced Quartics . . . . . . . . ... 34
.21 J=120 e 34
D.2.2 J=34 . . e 34
5.2.3  JE=D . e 35
5.2.4  j=6 (nearly-free curves) . . . . . .. ... ... 35
5.2.5  j=T79 (free curves) . . . . . ... 36
5.3 GIT stability for cubics and quartics . . . . . . ... ... ... ... ... 36
5.4 The algorithm . . . . . . . . ... 37

5.4.1 TIrreducible nearly-free and free quintics and sextics . . . . . .. .. 45



BIBLIOGRAPHY . . . . . e e e e e e e e

Appendix
APPENDIX A Algorithm . . . ... ... .. ... ...



10

1 Introduction

Let f € k[x,y, z] be a homogeneous polynomial over some algebraically closed
field k& defining a curve C' and denote d + 1 = deg(f).

1.1 Introduction

The partial derivatives 0, f, 0, f, 0.f are homogeneous polynomials of degree
d and they form a function of locally free sheaves V(f) defined by (0.f,0d,f,0.f) €
Home_, (OF}, Opz2(d)), the gradient map of f. Because we are in the projective plane, the
kernel of V(f) is locally free T¢. So

0— To — OF — Opz2(d) (1.1)
and if we denote Z; the ideal sheaf associated to the ideal (0, f, 0, f, 0. f) then
0—To—> 0% —Z;(d)—0 (1.2)

is exact, 7o is called the logarithmic tangent sheaf of C'.

Such sheaves have been extensively studied e.g. (SAITO, 1980), (DIMCA,;
SERNESI, 2014). We also cite (MARCHESI; VALLES, 2019) which heavily inspired this
thesis, we are interested in particular on the zero dimensional scheme Z of length n (Z is

the zero-subscheme given by a nonzero minimal degree global section of T, definition 36).

1.1.1 Moduli

One of our main objectives is to construct a moduli space of logarithmic tangent

sheaves of reduced hypersurfaces in P?2. We describe the idea:

Fix the degree d, we have that V(f) € Homo, (O, Op(d)) = H°OF(d),

then V(f) is an element of the k-vector space generated by monomials in a direct sum.

Now projectivize the vector space Wy := H 0(’)19;%3(d) over k forming a projective
space PW, of dimension 3dimy(H"Op:(d)) — 1, we will show that any such V(f) is inside a
linear subspace of W;. Furthermore it defines a projective variety (irreducible) of dimension
dimy,(H°Ops(d+1)) —1 given by the image of an injective linear map V/, : H’Ops(d+1) —
Wy (Lemma 16). Now we have a projective morphism V4 := P(V/) : PHOp2(d+1) — PW,

and its image Yy := im(V,) is irreducible and closed.

We will then define (Theorem 21) a stratification of PW, with respect to the

Hilbert polynomial of im(h) where we now view h € W, as a morphism. Each stratum Z;
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is locally closed with the property that the Hilbert polynomial of ¢m(h) is the same P; for
any |[h] € Z; < PW,. We then consider the intersections v, ; := Z; n'Y, and ask for the

d+2
strata of Z; with Hilbert polynomial P; = ( ; ) — j of degree zero (a constant). This

implies that im(h) = Z(d) define a zero-dimensional scheme of degree j. In particular
Z(d) is of the form Z;(d) where Z; is the Jacobian ideal of some f homogeneous of degree
d+ 1.

Each stratum Z; induces a flat family of quotient sheaves, then the repre-
sentability of the Quot functor implies that we have morphisms Z; — Quot™ O} which

we then restrict to vy ;.

Now each stratum v, ; is inside the image of V, this implies that we have
a stratification of square-free global sections in HOp2(d + 1) corresponding to reduced

curves with h’O; = j.

1.1.2 n-freeness

Consider the following diagram where f is homogeneous of degree d + 1:

Opz(—a) —_— O]}nz(—a)
\[g’ la /ﬁ\
7-0 —_— 30]}»2 — % Ij(d) — Opz(d)

| | |

Zz(a—d) —— Q := cokero —— Z;(d)

Another objective is to study and understand the role of the zero-dimensional subscheme
Z. If Z has length 1 then 7y is said to be nearly-free. A theorem given by (MARCHESI;
VALLES, 2019) states that a nearly-free bundle is uniquely determined by the point Z

and the minimal degrees a,d — a corresponding to generators of 7.
We consider the cases where Z has length n in (36) and we call T; n-free. There
is then an equation (4.7) involving n, j,d, a:
n+j=d —ad+ad. (1.3)
Where n = 0,...,d* (n = d* if j = 0, that is, f has no singularities) and j is the number of
singular points.

We pose the question whether every value of n is realizable. For cubics and

quartics the values n = 2 and n = 5 (respectively) seem to be missing.
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1.1.3 Numerical invariant associated to plane curves

We compute explicitly the values of n, j, a for each normal form of plane curves
of degree d = 3,4. We also implement a "brute-force' algorithm and show it can recover a
polynomial representing each case. This algorithm is used to generate polynomials of higher
degrees (d=5,6) where we also recover interesting cases from the literature (irreducible

free curves with one singular point of multiplicity d-1).
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2 Preliminaries

2.1 Basic definitions

Fix the following notations:

k is an algebraically closed field of characteristic 0
o B(F) := dimy(H'(F))

o ext'(F,G) = dimyExty (F,G)

2.1.1 Sheaf of differentials

We begin this section with a general definition of the Kéahler differential of a

morphism of schemes:

Definition 1. Let 7 : X — S be a separated morphism of schemes and consider the fiber

product, its natural projections and the diagonal morphism (which is a closed immersion)

pl,pQZXXSX—)X (21)

A:X > X xgX (2.2)
The closed immersion A induces a closed subscheme defined by an ideal sheaf Tp. Locally
on affine patches Ip is just the kernel of the multiplication map Z 5, @t; — Z sit; and

Ip = (xg — ag,x1 — ay, ..., T, — ay,) where z;, a; are local coordmates for each copy of X.

Then the Kdhler module of differentials is defined to be the Ox-module {1x /5 =
A*Tp/Tp.
Remark 2. (Stacks project authors, 2021, Tag 07THX) The Kdhler module of differentials

comes with a morphism Ox — SQx,g taking a local section s € Ox(U) to ds := pys —pi's =

(1®s—s®1)mod(Z3). We denote Qfx/s = /\QX/S and 92(/3 := Ox. Then there is the
algebraic de Rham complex defined by the differential d above: it is the unique complex of
the form

such that in degree 0 the morphism is the differential d.

Let S = Spec(k) and X — Spec(k) a k-scheme. We may omit "Spec" and just

write k instead if no confusion arises.


https://stacks.math.columbia.edu/tag/07HX
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Definition 3. Let
(=)* = Homoy (—, Ox)

be the dual functor and
(=)** = Homo, (Homo, (—, Ox), Ox)
be the double dual functor taking a O x-module F to the Ox-module F* and F** respectively.

Definition 4. The sheaf is Tx = Tx 1= Homo, (Qxk, Ox) = Q}“(/k.

Let X = IP" be the projective space over k, there is a sequence called the Euler

sequence:

0— Qxp — Ox (=) - Ox -0 (2.4)

and its dual version using the tangent sheaf

0— Ox — Ox (1) - Tx -0 (2.5)

The next theorem is a classical theorem which will be used a few times along
this thesis.

Theorem 5. (HARTSHORNE, 2013, Serre Duality, Thm 3.7.1) Let X = P" over k as
before, let wxx = Q) = Ox(—n — 1) be the dualizing sheaf of P" and F a coherent

Ox-module. Then for anyi=0,...,n
Ext'(F,wx) = H' ' (F)* (2.6)

are naturally isomorphic k-vector spaces.

2.1.2 Hilbert polynomial

Definition 6 (Hilbert polynomial). Let X be a projective scheme over a field k with
fized ample line bundle Ox (1), F a coherent sheaf on X and h'(X,F) := dim,H' (X, F)
(each H'(X,F) is a finite k-vector space). Under those conditions we define the Euler
characteristic of F to be x(F) = Z(—l)ihi(X, F) and the Hilbert polynomial of

=0

F by Pr:m — x(F o, Ox(m)). Both are additive over exact sequences and Pr is a
polynomial in Q[m].

We now list some observations that will be useful for the main result:
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Remark 7. Let Y — X be a closed immersion with X projective over k and Ly be the

quasi-coherent ideal sheaf on X. Then we have the defining exact sequence of Ox-modules
O—>]y—>0X—>Oy—>0 (27)

X is Noetherian because it is a projective scheme thus Ly is coherent and Pr, is well
defined. Since the Hilbert polynomial is additive for exact sequences of coherent sheaves we
have:

Pr, = Poy — Po, (2.8)

If dim(Y') = 0 we have that Oy (m) = Oy and Po, = h°(X,Oy). Then:
Pr, @) = Poy(@ — h*(X, Oy) (2.9)

hY(X, Oy) is the length of the zero-dimensional projective subscheme Y . Furthermore, if

Y is reduced, length(Y') represents the set-theoretical number of points of Y.

Example 1. Let X = P? and Iy = (0,f, 0, f, 0.f) be the ideal sheaf defined by the partial
derivatives of f = a12* + y* + 2xy*z + 222% for some ay € k. For a; + 0 we have that Y is

zero dimensional and non-reduced consisting of the point (1;0;0) with length 7.

Definition 8. (HUYBRECHTS; LEHN, 2010, Definition 6.1.1) Let (F,G) be a pair of
coherent Ox-modules. Then the Euler characteristic of the pair (F,G) is

X(F.G) = > (~1)ext'(F,G) (2.10)

%

Suppose that F is locally free, then we may rewrite the Hirzebruch-Riemann-

Roch Theorem using the Euler characteristic of a pair of sheaves:

Theorem 9. (HUYBRECHTS; LEHN, 2010, Lemma 6.1.1)

X(F,G) = J ch(F*)ch(G)td(X) (2.11)

X

We will use this equation in the next chapter.

2.1.3 Quot-scheme and families of sheaves

Definition 10. (HUYBRECHTS; LEHN, 2010, Definition 2.1.1) A flat family of sheaves
on the fibers of a morphism of schemes f : X — S is a coherent sheaf F on X which is
flat over S, that is: for any x € X we have that F, is flat over the local ring Og, f().

We restrict our attention to the case where X and S are k-schemes:

Let S be a Noetherian scheme over an algebraically closed field k and f : X — S
a projective morphism with fixed Ox (1) an f-ample line bundle on X. Let H be a coherent
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Ox-module and, for any S-scheme T, let Hp := 7% 7" denote the pullback of H by the
natural projection mx,r : X xgT — X. Consider the functor

Quoti/x/s : (Sch/S)? — Sets

defined on objects by Quoti/x/S(T) = {q: Hr — F} , the set of all T-flat families of

quotient sheaves with Hilbert polynomial P € Q[A], and on morphisms Quot,, X /S(g :

T" — T) it sends Hy — F to Hp — (1 x ¢g)*F. Then it follows that QUOt’}I-D[/X/S is a

representable functor, in other words there is a S-scheme (namely Quoti % /S) and a

natural isomorphism of functors Morges/s(—, Quoti /X /s) ~ Quoti IX/s"

Remark 11. Let f: Y — Quoti/x/s be a morphism of schemes. Then

Morgens(Y, QUOt’fL/X/S) = MZ/X/S(Y)

hence any f is naturally mapped to a family of quotients parameterized by Y .

The tautological family is defined by applying the Quot functor to the projective

scheme representing itself and taking the identity morphism Id:

Ide Morsch/S(QuotZ/X/S, Quoti/x/s) ~ QuotZ/X/s(QuotZ/X/S). (2.12)

It is a coherent sheaf G on Quoti/x/s X g X such that any family of quotients of H can
be defined as a pullback from G (see (HUYBRECHTS; LEHN, 2010, p.41 Tautological
Family)).

The construction of the Quot scheme was introduced by Grothendieck. We cite
references (GROTHENDIECK, 1961) or (NITSURE, 2005) for the existence:

Theorem 12. (NITSURE, 2005) Let S be a Noetherian scheme, m : X — S a projective
morphism, and L a relatively very ample line bundle on X. Then for any coherent Ox-

module H and any polynomial ® € Q[)], the functor Quot*~

H)X /S is representable by a

projective S-scheme QUO’C%&/S'

We also have that torsion-freeness is an open condition:

Theorem 13. (MARUYAMA, 1976, Section 2) Let F be a family of sheaves on X
parameterized by S, suppose that s € S such that Fy := F|x sy is torsion-free. Then there

is S = S open such that F is torsion-free for any s € S’.

Last theorem guarantees us that the torsion-free quotients form an open set of

the Quot scheme. We denote this open set Quottl} (with appropriate sub-indexes X, #, .S).
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3 Construction of Moduli

3.1 Definitions and computations

Now fix the following setting: Let X = P? f e H%(Op(d + 1)) a square-
free homogeneous form for some positive integer d and Wy := Home_, (O, Op2(d)) =
H°(O%(d)) as k-vector space. Let Z; be the Jacobian ideal given by the partial derivatives
of fo, f1, f2 of f, it defines a zero-dimensional scheme J with length j := h°(O;). Remark
(7) gives the following lemma:

d+2
Lemma 14. The Hilbert polynomial of Z;(d) is Pr,a) = ( ; ) —J

Since the set of monomials of degree d form a basis for the k-vector space

H'Op2(d) we can define (fixing basis) a linear morphism acting as a gradient map:

Definition 15. Let V/; : H'Op2(d+1) — Wy be a k-linear morphism taking each monomial
to the partial derivatives Vi = (0, 0y, 0,). Eaplicitly,

i—1 k—l)

zlyf P o (TP 2R gty TR ka2

fori+j+k=d+1.

We can visualize what is happening with the coordinates (a;;) under each

partial derivative by writing down each array.

Example 2. Let d+ 1 =4, fit B ={my =2 "y'27 | i,j € Zso i +j < 4} a basis for
H°Op2(4) and B' = {m}; = 2* "7y’ | i+ j < 3} basis for H'Op2(3).
1+y<4 i+5<3
Let f = Z aijx‘l’“]ylzj e H'Op:2(4) and g = Z bix* "y € H'Op2(3),
i,j=0 i,j=0
we can formally represent f and g as matrices:

Qoo Ao1 Qo2 A3 Qo4 boo bor Doz bos
ayp ap; a2 aiz 0 b b b 0
My = la axn az 0|, M,=1]" " " (3.1)

by b2 0 0

aszp a3y 0 0 0
by O 0

| @40 0 0 0 ]

Then 0,(f), 0,(f),0.(f) € H'Op2(3) and:
dapy 3apr 2ap2  ap3 ayp a1 G2 13
3&10 2(1,11 a19 0 2&20 2a21 2@22 0

M, = 7M - )
D7 20 a0 0 W7 304 3az 0 0

aso 0 0 0 4(140 0 0 0
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agr 2agy 3apz 4aps
M | an 2a12 2a13 0
o) 921 2(1,22 0 0

asy 0 0 0

Lemma 16. V/; defines an injective morphism Vg : PHOp2(d + 1) — PW, such that

Va(lf]) = [0uf, 0y f, 0.f]. Furthermore, the image of V4 is a projective variety of dimension

dim(imV,) = (d —5 3) —1.

Proof. V}(f) = 0 implies that every partial derivative is zero identically, which means that
f does not depend on x,y, z and hence it is the zero vector. An injective linear morphism

¢ 'V — W defines an injective algebraic morphism of projective spaces P¢ : PV — PW

d+3
with dim(im(P¢)) = dim PV = dim PHOpa(d + 1) = ( ; ) ~ 1 O

Definition 17. Let Yy :=im(Vy) < PWy, by our last lemma it is a projective variety of
. . d+3
dimension 5 -1

3.1.1 Applying flattening stratification

Definition 18. For a scheme S, a stratification of S is a finite set {Si, ..., Sy} of locally

closed subschemes of S such that every point s € S is in exactly one subset S;.

We will use the following result:

Corollary 19. (MUMFORD, 1964, Flattening Stratification p.60) Let f : X — S be a
morphism which can be factored X — P" x S — S, explicitly, f = my 0@ where i is a
closed immersion and wo the canonical projection. Let F be a coherent sheaf on X, then F

defines a stratification (Z;) on S where Z; are indezed by Hilbert polynomials P; so that:

e The induced sheaf F oy Oz, has Hilbert polynomial P; on P" x Z;
e ifi £ j then P, + F;

The stratification is flat in the sense that F @ Oy, is a flat family of sheaves on the fibers
of f (Definition 10) for each i.

The next definition will fix some notations for our main theorem.

Definition 20. Let P? be the projective plane over a field k, d = 0 an integer and consider
Wy = (HOp2(d))®* as a vector space over k. Let X4 := P* x PWy, p: Xq — P? and
q: Xq — PWy be the projections and denote Opz(d) X Opyy, (1) := p*Op2(d) Qs ¢*Opw, (1)
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Theorem 21. There is a finite set of locally closed subschemes Zp, < PWy indexed by
distinct numerical polynomials P; such that PWy = |_| Zp, with the following property: If

h € Wy has projective class [h] € Zp,, then the Hilbert polynomial of im(h) = Z,(d) is P;

Proof. Since Homxy,y(AX B, A" X B') ~ Homx(A, A") @, Homy (B, B'), there is a
non-zero global section o € 3HOp2(d) @ H’Opw, (1) that corresponds to a morphism of
sheaves

0 : 30p2 X Opy, — Op2(d) X Opw, (1) (3.2)
It defines a subscheme T < P? x PW, induced by the cokernel of o:
30p2pw, = Op2(d) ® Opw, (1) & Or(d, 1) — 0 (3.3)
Let Zr be the ideal sheaf of T', then we have
0— Zr = Op: X Opyy, — O — 0 (3.4)

where we denote o to be the inclusion morphism. Z; is the kernel of a morphism of
coherent sheaves thus it is also coherent. We also have that im (o) = Zr(d, 1), hence there

is an exact sequence:

0— k:er(a) - 30[[»2><de Z IT(d, 1) — 0 (35)

Applying Corollary 19 on the coherent sheaf Zr(d, 1) gives us a finite set of lo-
cally closed subschemes Z; < PW,; with the property that the induced sheaf Zr(d, 1)|p2x ()
has constant Hilbert polynomial P; for any [h] € Z;, this property is accompanied with
flatness over Z;: The coherent sheaf Zr(d, 1)|z, on P? x Z; is a flat family over Z;. (Definition
10)

Pick [h] € Z; and apply the restriction to the fiber P? x {[h]}:
0— k?@?“(()’)hpﬂx{[h]} — 30P2x{[h]} 7 IT<d, ].)|[P>2><{[h]} -0 (36)

The sequence is exact because the first T'or appearing involves Zr(d, 1)|z,, which is flat
over Z; and thus has no torsion on the fiber P* x {[h]}. O

We have defined a flattening stratification Z; parameterizing ideal sheaves
defined by three homogeneous forms with Hilbert polynomial P;. Each Z; is locally closed,

i.e. closed inside an open set of PW;. In particular there are strata Z; with Hilbert
d+2

2
with J zero-dimensional scheme of length j generated by three homogeneous forms of

polynomial of the form P; = — j corresponding to twisted ideal sheaves Z;(d)

degree d, we will now focus on Z; with this particular Hilbert polynomial P;.
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3.1.2 Applying representability of Quot functors

In this subsection we will use the property that the Quot functors are represented
by the quasi-projective Quot schemes. The objective is to define a flat family of quotient
sheaves Z;(d) (twisted ideal sheaves) parameterized by some subscheme of the Quot

scheme.

Definition 22. Let j be a non-negative integer, Z; be a stratum corresponding to the

d+2
Hilbert polynomial P; = ( ;— ) — j and denote vy ; = Z; 0 Yy where Yy = imV,. Then
vgq,; 1s locally closed and we also define vq 1= |_| va,; < PWy, note that vy is a finite union

j=0
of locally closed subschemes.
Remark 23. An element in [h] € va; is of the form [h] = V4([f]) = [V([f)] € PW,. Since
h e Wy = Home, (O, Op(d)) and [h] € Z; we have that im(h) = Ip(d) is a twisted
ideal sheaf of a length j zero-dimensional subscheme. Furthermore Z; induces a flat family

of sheaves on P* given by the coherent sheaf Ir(d, )|z, on P? x Z;.

d+2
Theorem 24. Fiz an integer j = 0 such that P; = ( —5 ) — 7 s the Hilbert polynomial

corresponding to the stratum Z;. There is a natural morphism of schemes ¢q; : vq; —
Quotﬁ(@%’) taking [V f] to (Z;(d), O} — T;(d)) € Quotf;?((’)[%g) where Ly is the Jacobian
ideal of f.

Proof. Consider the flat family of sheaves Zr(d,1)|z, parameterized by Z;. For each
[h] € Z; we have that im(h) = Zp,(d) is naturally a torsion-free quotient of OF’, thus our
family of sheaves must be an element of Quotij{ O%(Z;). By representability (Remark 11)

of Quot’ OI%S this family must correspond to a morphism of schemes:
v Z; — Quot} (OF) (3.7)
The restriction of ¢; to v4; yields the desired morphism

baj = Vjlvy, : Va; — Quotf;((’)g%g) (3.8)

Remark 25. Consider the morphism ¢q; : vqj — Quotﬁ(@lga;’) from our previous lemma.
Following Remark 11, we have that ¢q; € Mor(VdJ,Quotfjﬂ'(OfI?f)) = Quoti{ (0% (va;)
defines a family of ideal sheaves Lq; flat over vq;. The kernel Gq; in equation 5.6 also
has vanishing first Tor, thus it is also flat over vy ;. Gaj represents logarithmic tangent

sheaves defined by V f with J of length j.

Proposition 26. Let f € H'Op2(d + 1), then T; := ker(V f) is locally free of rank 2
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Proof. Consider the following exact sequence:
0—T; > O —I;(d)—0

Notice first that rkZ;(d) = 1 and being the kernel of coherent sheaves, 7; is coherent
of rank 2. Furthermore 77 is reflexive because ker(F — G) is reflexive if F locally free

and G torsion-free. Finally, it is locally free since we are in P? and the singular locus of a
reflexive sheaf must be at least of codimension 3 ((OKONEK; SCHNEIDER; SPINDLER,
1980)). O

Let [¢ : O — Z;(d)] be an element parameterized by v, — Quotgc((’)%%g)
d+2

where @) is the polynomial ¢ := Pr,,a) = < 5

) — 7. There is the following estimation
for dimq Quot%(@m@zg):

Proposition 27. (HUYBRECHTS; LEHN, 2010)

hom(Ty,Z;(d)) = dim[q]Quot%(OP@f) > hom(T;,Z;(d)) — ext' (T;,Z;(d)) (3.9)

We need one technical lemma:

Lemma 28. Let T; be locally free as before, then:
H*(T;* @ I;(d)) = H*(T;(2d)) (3.10)
Proof. Apply the exact functor (—) ® 7;* to the sequence
0 —Z;(d) — Opz(d) — Oy(d) — 0
so that we have
0—->Zy(d)®T — Op2(d) @T* — Oy(d) @TF* — 0.

T; is a rank 2 locally free sheaf, hence 7;* = T;(d). And dimJ = 0 implies that we can
write Oy = O,(d). So

Using the functor of global sections and again the fact that J is zero-dimensional:
0=H"(0;®T;) = H*Z; @ T;(2d)) — H*(T;(2d)) - H*(O;®T;) =0 (3.12)
O

A brief computation using the Riemann-Roch equation (2.11) and the previous

lemma yield the following theorem:
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Theorem 29. x(7;,Z;(d)) = hom(T;,Z;(d)) — ext' (T;,Z;(d)) =7 — j + 3d(5 + d)/2
Proof. First notice that Ty is locally free. Then

e(T7, I/(d)) = eat(Ox, Ty ® Ty(d)) = h(Ty" @ T,(d)) = W*(T(2d)
where last equality comes from our previous lemma. Now use Serre Duality (2.6) so that

h*(T;(2d)) = ext’(T;(2d),wp2) = h°(T;(—2d + d) ® Op2(—3)) = h*(T;(—d — 3)) = 0

Thus the Euler characteristic is just

X(T3,Zs(d)) = hom(Ty, Z;(d)) — ext' (T;, Z;(d)) (3.13)

Next we use the equation (2.11)

X(T5, Zs(d)) = f ch(T;(d))ch(Z;(d))td(P?) (3.14)

IP2
2j — d?
2

and ch(Tr(d)) = (2,4, ), ch(Z;(d)) = (1,d, d2_22‘7), td(P?) = (1,3/2,1).

2 o 2 o
3200 (108/2,1) = (2,3 + 3d, 2L =2 9d

2
++2)

ch(T;(d)).ch(Z;(d)).td(B?) = (2, 3d,

, hence

14+ 15d + 3d® — 2j

| Tz, @.aae) - . L G d)

2
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4 Properties of Log bundles

4.1 Zero-subscheme of a global section

Fix the following setting in this subsection: Let a be the least positive integer
such that HT;(a) # 0. Since T;(a) is a rank two bundle there is a zero-dimensional
scheme Z satisfying the following exact sequence ((BARTH, 1977)):

0— Op(—a) > Tf—>Zz(a—d)—0 (4.1)

We can also justify the existence of the ideal sheaf 7, within the problem
of Bourbaki sequences, which gives an explicit construction of Z. We cite (DIMCA;
STICLARU, 2020) for the usage of Bourbaki ideals for logarithmic tangent sheaves on [P
and note that (DIMCA; STICLARU, 2020, Theorem 5.1 (1)) implies on equation (4.7).

4.2 Algebraic setting

4.2.1 Bourbaki sequences and Bourbaki ideals

Let R be a commutative Noetherian ring and M a finitely generated R-module.

Then a Bourbaki sequence is defined to be and exact sequence of R-modules:
0->F—->M-—>1-0 (4.2)
such that F'is free and [ is an ideal of R. I is said to be a Bourbaki Ideal of M. We have

the following problem concerning the existence of a Bourbaki sequence:

Given R a commutative Noetherian ring and 0 — F % M with F
and M finitely generated R modules with F' free. When does 0 — ' — M —

coker(¢) — 0 becomes a Bourbaki sequence?

Theorem 30. (BOURBAKI, 1998, Theorem 6.8.4) Let R be a Noetherian integral domain
and M a finitely generated torsion-free R-module. Then there is a free submodule F' of M
such that M/F is isomorphic to an ideal I of R.

The next definition establishes the explicit algebraic connection between the

first syzygy module and its sheafification £y = T;(—1):

Definition 31. (DIMCA; STICLARU, 2020) Let AR(f) denote the graded S = Clz,y, z]-
module of first syzygies defined by AR(f)y, := {(00,01,02) € ST°| Z 0:.0;(f) = 0}. Then

i=0,1,2
the sheafification E; of AR(f) is a rank two vector bundle on P* and E; = T;(—1).
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If o is a nonzero syzyqy of minimum degree a then
0— S(—a) > AR(f) — B(f.0)(a—d) =0

where B(f, o) is a Bourbaki ideal.

During the next section we focus on properties of T that can be deduced using
simple operations on exact sequences of sheaves.

4.3 Global sections and syzygies

Let f € k[z,y, z] be homogeneous of degree d+ 1 and Ty its logarithmic tangent

sheaf with inclusion 7 : 7y — (’)]?,23. We now have two exact sequences:

0T 50 % T,(d) -0 (4.3)
and
0— O[pﬁ(—a) 7 7} — Iz(a - d) — 0 (44)

where we denote ¢y to be the restriction of V(f) : 0%} — Opz(d) to its image Z;(d) and

o’ a non-zero global section of T;(a) of minimum degree a.

The next proposition gives a correspondence between elements of AR(f),

(Definition 31) and morphisms o : Op2(—a) — T; where we identify o € H*T;(a).

Proposition 32. Let o' : Op2(—a) — O} be in AR(f), for some f homogeneous and a
non-negative integer, that is: o' = (0y, 01, 04) with o; homogeneous of degree a satisfying

Z 0:.0;(f) = 0. Then there is an unique global section o : Op2(—a) — T; of degree a
i=0,1,2
such that moo =o',

Proof. We denote V f : O — Op2(d) and consider the sequence (4.3) and apply the left

exact functor Home, (Opz(—a), —) so that we have an exact sequence:

0 — Homo,, (Op(—a), Ty) = Homo,, (Op:(—a), OF) EN Homo,, (Op2(—a), Z;(d))
(4.5)
The composition V f oo’ € Home,, (Op(—a), Op2(d)) = H°(Opz2(a + d)) is given by the

polynomial Z 0:.0;(f) which is zero since 0’ € AR(f),. Then by exactness of the previous
i=0,1,2

sequence we have that o’ must be an element in the image of Home_, (Op2(—a), Ty) =

Homo,, (Op2(—a), OF). In other words we have a 0 € Homo,, (Op2(—a), Ty) such that

m oo = o'. The uniqueness of o comes from the injectivity of mo —. m
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The uniqueness gives us a correspondence of global sections of T(a) and first

syzygies o’ of the map V f corresponding to the composition Z 0..0i(f) = 0. If a is the
i=0,1,2

least integer such that 7;(a) has non-zero global sections and o’ € H*T;(a) then we have:

OpQ(-CL) —_— OPQ(—G)
J e
o o /\
T —————— 0% 1 7,(d) —— Op(d)

l J |

Zz(a—d) —— Q := cokerc’ —— T;(d)

where
is exact by the snake lemma: the first morphism is injective because of the identity

Opz(—a) — Op2(—a) and its cokernel is Z;(d) because O — @Q is surjective.

Example 3. Consider the arrangement given by f = xyz, then Vf = (yz,zz,zy) and
denote by J the scheme defined by Vf, C = V(f) has 3 double points and 0 triple points.

Thus we have the following diagram

Op2(—1) =——= Op2(—1)
x \i
jcr o’::[—OZ!H/ /\
T —————— 0% 5 7,(2) —— Op(2)

| J |

Z7(—1) —— Q := cokero’ —— Z;(2)

But gy o0’ = 0 since Vf oo = 0, then im(c') < ker(qs) and hence o' defines the
section o. Let n be the length of Z, we use the Chern classes of Z(2) and Q to conclude
that n=0: c(Iz(—1)) = 1 —t +nt?, ¢(Q) = 1 +t +t* and c(T;(2)) = 1 + 2t + 3t*. But
c(Zz(—1))c(Z;(2)) = ¢(Q) and hence n = 0. Thus Ty is free.

The next theorem simplifies the computations done on Example 3 into an useful

formula:

Theorem 33. Let f be a square-free homogeneous polynomial of degree d + 1, J be the
zero-dimensional subscheme defined by the Jacobian ideal Ly, Ty = kerV f the logarithmic
tangent sheaf of f with a the least integer such that T¢(a) has non-zero global section with

subscheme Z, zero-dimensional of length n. Then:
n+j=d —ad+a® (4.7)

Moreover if f is non-singular then n = d* and a = d.
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Proof. The equation follows, from the exact sequence corresponding to the third row of
the main diagram, by comparing Chern classes. We will use Chern polynomials ¢(F)(t)

for the computation:
c(Zz(a—d)).c(Z;(d)) = ¢(Q) (4.8)

where ¢(Zz(a — d)) = 1+ (a —d).t + nt?, ¢(Q) = (1 —at)™ =1+ at+a*t* and
c(Z;(d)) = 1+d.t+ jt? then

co(Zz(a—d)).c(Z;(d) =1+ dt+jt*+ (a—d).t+d.(a—d).t* +n.t?

(4.9)
=1l+at+(n+j+ad—d)¢

On the other side we have ¢(Q) = 1 + a.t + a®.t*, by comparing the coefficients we have
that n + j + a.d — d*> = a*.

If f is non-singular then j = 0 and Vf : O% — Op2(d) is surjective. By
dualizing

0—T; — OF — Op2(d) — 0
we have that
0 — Op2(—d) - OF — T —0

. Since T/ = T;(—c1(T)) = T;(d) it follows that HT;(d—1) = 0 but H*T;(d) # 0, hence

a = d and n = 0 from the equation. O

Example 4. Consider the diagram from our previous example:

OP’Q(il) O]P’Z(i]‘)
T VI
JU UI::[_Oy}J /_\
T 0B Y T,(2) —— Op(2)

l J |

Z7(—1) —— @ := cokero’ —— 1;(2)

We have that a = 1,d = 2,7 = 3. Using equation (4.7) we have thatn =4 —2+1—3 =0,

hence f = xyz is free.

It is possible to compute a free resolution of 7; using the free resolution of
Z;. We can use the Horseshoe lemma to understand the relation of resolutions of Z; and

resolutions of 7T;. Explicitly:

Proposition 34. Let Z be the zero-scheme associated to a section o € H*T;(a) as above
and let
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be a free resolution with quotient map w. Then we have a free resolution
0— Fi(a—d) — Fyla—d)®O(—a) & T -0 (4.11)
where @ is some morphism induced by w.

Proof. Apply the left exact functor Homo,, (Fo(a — d), —) on the exact sequence (4.4):

Home,, (Fo(a —d),Ty) — Homo, (Fo(a —d),Zz(a — d)) — E:Et}QPQ (Fo(a —d), Opz(—a))

(4.12)
But Fy is free and H'(Op2(k)) = 0 for any k so the Ext term vanishes and the first
morphism above is a surjection. There is then a morphism @ € Homo,, (Fo(a — d), T)

such that the composition
F[)(CL — d) i 7} - Iz(a — d)

1S w.

We can now consider the induced morphism @@ o : Fy(a — d) ® Op2(—a) — T;.
We use the snake lemma to show that © @ o is surjective and its kernel is Fi(a — d),

explaining in details: consider the two columns corresponding to the exact sequences

0 — Opz(—a) — T; — Tz(a—d) — 0 (4.13)

and
0 — Op2(—a) — Fy(a —d) ® Op2(—a) — Fyla—d) — 0 (4.14)

and the morphisms corresponding to the rows id, o @ o and w:

O(—a) =———= O(—a)

J JG

0 —— ker 6@ o — Fyla—d)® O(—a) —227, T;

|

0 —— Fi(a—d) —— Fyla—d) —=—— Tz(a—d) —— 0
Then the snake lemma states that the following sequence is exact:
0— ker(@® o) — ker(w) — 0 — coker(@@ o) — 0 (4.15)

where we used the vanishings of coker(@@ o) and ker(id). We have then that ker(o®o)
Fi(a — d) and coker(@w @ o) = 0, which implies that @ @ o is surjective.

L1

Example 5. For n =1 we have a free resolution:

O—>O[P2(Cl—d—2>—>Op2(—a)@(9p2(a—d—1>2—>7}—>0
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Proof. One point is given by the intersection of two lines, in other words the resolution of

77 must be defined by two linear forms:
0 — Op2(—2) = Op2(—1)® Op2(—1) > Iz — 0 (4.16)
So Proposition 34 implies that we must have
0— Opz(a—d—2) — Opz2(—a) ®Op2(a —d —1)> > T; — 0 (4.17)

O

If n = 2 there is still only one resolution for Z, hence we can easily describe a

resolution for 7:

Example 6. Let f be homogeneous of degree d + 1 and Ty be its logarithmic tangent
bundle. Suppose that the zero subscheme Z of a global section of minimal degree has length

2. So Proposition 34 with the resolution
0— Op2<—3) - Op2<—2) @ O]pZ(—l) - IZ —0

gives us a sequence:

0— Op2(a—d—3) % Ope(a—d—1)®Op2(a—d—2)®Op2(—a) - T; — 0 (4.18)

where M = [My(z,vy, 2), My(x,y, 2), Ma(z,y, 2)] with My e H*(Op(2)), M, €
H°(Op2(1)) and My € H*(Op2(d — 2a + 3)).

Since My is a linear form, we can choose My =y through coordinate change,
hence we can eliminate any terms of My, My with y in M using elementary row operations
of matrices. In particular, we can write My = ax® + bxz + cz* which implies My =

c(x — c12)(x — caz) for some ¢, c1,co € C. Now there are two cases : ¢; = ¢o or ¢ £ cs.
If ¢c; = co then Z is a double point thus we can write My = z?
Then M = [2°,y, az? 23 4 Bxz2"2] for a, € C.
If ¢; £ c5 then Z are distinct points and we can write f = xz
Then M = [zz,y, az 23 + Bx?72%%3] for a, B e C.

In both cases using Serre duality (2.6) to justify the next isomorphism we
have that T; € Ext'(Zz(a — d),Op2(—a)) =~ H'(Zz(2a — d — 3)), and this last vector
space has dimension 2. The case a = [ = 0 implies that Ty is the trivial extension
T; =Zz(a —d) @ Op2(—a). But Ty is locally free, hence this corresponds to the free case.
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4.3.1 Nearly-Free Curves

Let C be a reduced curve in P? defined by a polynomial f € H°(Op2(d)) and
Tc = Ty as above. The curve C' is said to be free if T; splits as a sum of line bundles, and

is nearly free if T fits in an exact sequence
0— OPQ(—b — ].) i Opz(—a) @ OPZ(—b)2 i 7} -0

where a,b € N, b > a. Nearly free vector bundles are completely defined by a point P € P?

and a choice of a, b:

Theorem 35. (MARCHESI; VALLES, 2019, Theorem 2.1) T; is a nearly free vector
bundle with exponents (a,b) € N if and only if there exists a point P € P* such that T; fits

in the following exact sequence

0— O(—a) > T; — Ip(—b+1) — 0 (4.19)

The sequence above is equivalent to
0—>0(-a) > Ty —>Ipla—d)—0

We then fix deg(f) = d + 1. By example 5, we know that a nearly free bundle has free

resolution:
0— Op2(a—d—2) = Op2(—a) ®Op2(a—d—1)*> - T; -0 (4.20)

Definition 36. Let f be reduced, then we say that T; is n - free if O, = n.

We pose the following question: Given d, is every n from 0 to d? realizable?

This problem will be further discussed in the next chapter.

Theorem 37. Let Z and J be the zero-schemes defined by T; for some f homogeneous of
degree d + 1 and denote wy and wy to be the dualizing sheaves of J and Z. Then there is
an ezxact sequence

Op2(d —a) > wy — Og — wy — 0 (4.21)

inducing a short exact sequence
0 — coker(n) - Og »> wz — 0 (4.22)
where S is the zero-dimensional subscheme given by o.

Proof. Since Z and J are zero-dimensional their dualizing sheaves are:

Wy = 5$t2(0], OPQ) = 5$t1(IJ,OP2)
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and
Wyg = g[L‘tQ(Oz, O[pﬁ) = Sxtl(IZ, O]p2)

Consider now the exact sequence (4.6) and apply the functor (—)*:
Op B> wy 2 Eat'(Q, Op2) B wy — 0 (4.23)
Now dualize the sequence:
0 — Opz(—a) > OF - Q — 0 (4.24)

to get
0%} — Opz2(a) — Ext'(Q, Op2) — 0 (4.25)

and note that Ext'(Q, Op:) is a quotient of Op2(a) which implies that Ext'(Q, Op2) =
Ogs(a) for a subscheme S which is the subscheme of zeroes of ¢’ (the subschemes are all

zero dimensional, so we drop the degrees):
Op2(d—a) > wy — Os > wz — 0 (4.26)
Exactness implies im(n) = ker(g) and thus
coker(n) = w,/im(n) = w,/ker(g) = im(g) = ker(g')

so the sequence

0 — ker(q') — Os 9y —0 (4.27)

can be written
0 — coker(n) » Og = wz — 0 (4.28)
[

Remark 38. Our last theorem gives a geometrical interpretation: The support of Og
can be seen as the union of Supp(coker(n)) and Supp(wz), but each dualizing sheaf must
be supported on the corresponding zero-dimensional schemes and coker(n) is given by a

quotient wy/n(Opz(d — a)) with support inside J.

We finish this chapter with a result on the stability of 7:

4.3.2 Stability

Let r be the integer such that 7(r) is normalized, that is, ¢;7;(r) = 0 or —1.

We will need to use the following lemma:

Lemma 39. (OKONEK; SCHNEIDER; SPINDLER, 1980) Let F be a normalized rank
2 reflexive sheaf on P". Then F is stable if and only if H*(F) = 0. If ¢, F is even then F
is semistable if and only if H'F(—1) = 0
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Since a is, by definition, the least positive integer such that H 07}(@) £ 0, it is
possible to tell if 7 is stable looking only at d, a:

Proposition 40. Let f be homogeneous of degree d + 1 and a the integer such that
HT;(a—1) =0 and H°T;(a) 0. Define r = d/2 if d even and r = (d — 1)/2 if d odd.
Then T; is stable if and only if H'T;(r) = 0 if and only if r < a.

Remark 41. It follows then that for a cubic and quartic, the sheaf Ty is stable if and
only if a > 1.
There is another result given by (FAENZI; MARCHESI, 2021) concerning

stability. Although being a general result for PV we state here the particular case for P?.

Theorem 42. (FAENZI; MARCHESI, 2021, Theorem C) Let f be reduced as before, then
T; is stable if:
j<(d—r)(d) (4.29)

where r is the same number given in Proposition 40.

For cubics and quartics this implies that 7 is stable if:
j<(d—1)d (4.30)
The right hand side of the inequality has value 2,6 for cubics and quartics respectively.

Example 7. Let f = y* + 2zy?2 + 222% + y2° and g = y*2* + y* + 2% be quartics with
singularities Ag and Eg. Both curves are absolutely irreducible with T; stable and j = 6
(see table at the end of next chapter).
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5 Numerical invariant associated to plane

curves

We compute the numbers n, j, a and list the cases where 7} is stable as a sheaf,

and whether C is GIT-stable.

5.1 Cubics

5.1.1 Reducible Cubics

Let C' be a plane cubic, suppose that C'is reducible. We can list every possible

combination:

e (' is the union of an irreducible conic and a line

— (zz + y*)y = 0 conic and a non tangent line (j=2, a=1, n=1)

— (zz + y*)z = 0 conic and a tangent line (j=3, a=1, n=0)
e (' is the union of three lines

— y® = 0 triple line (non reduced)
— y*(y + z) = 0 double + simple line (non reduced)
— yz(y + z) = 0 three concurrent lines (j=4, a=0, n=0)

— zyz = 0 generic (j=3, a=1, n=0)

5.1.2 lrreducible Cubics

If C is irreducible, then it is well known that we can write C' in two forms:

o If C is non-singular then it is projectively equivalent to y°z = z(z — 2)(x — Az with
A % 0,1 (Legendre form)

« C is projectively equivalent to y*z = 2 + axz? + bz® (Weierstrass form)

We also have that if C' is in a Weierstrass form then it is non-singular if and only if

4a® + 276* + 0

If C' is smooth we already know that it is 4-free. It is known that a irreducible

3

singular cubic is either isomorphic to a cuspid y*z = 2° (n,j,a = 1,2,1) or a nodal

v’z =2 + 2%z (nja = 3,1,2).
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« j=0 — Non-singular (n =4, a = 2)

e j=1 = Nodal (n=3,a=2)

e j=2 = Cuspid and Conic + non tangent line (n = 1, a = 1)

e j =3 = Generic lines xyz and Conic + tangent line (n = 0, a = 1)

e j=4 = Concurrent lines (n = 0, a = 0)
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5.2 Reduced Quartics

Here we will use the classification of singular quartic curves (where we take the
normal form of each projective class) given in (NEJAD, 2010). By Proposition 40 we have
that 7y is stable if and only if @ > 1.

5.2.1 j=1.2

Singularities Polynomial (n,j,a)
14, (®yar + vylas + 2%yPas + Pzay + yPzas + vt + Yt + 2y2?) (8,1,3)
24, (ztay + 23yay + 23zas + v2yzay + 2%y* + 2222 + y22?) (7,2,3)
14, (yta1 + zyay + 2%yPas + 232ay4 + vPyzas + ot + y?2?) (7,2,3)
522 j=34

Singularities Polynomial (n,j,a)
(1A;1,2A4,) (zy?zay + 22zay + 23yas + 2t — 2227 + y?2?) (6,3,3)
3A; (22%yzay + 2xy*zay + 2xvy2ias + 2?4+ 2227 4 7 2P) (6,3,3)
1A3 (zyPar + 2%9y%ay + yas — 2t + 2% (4,3,2)
34, x - (vPzay + x2%ay + wyzaz + vy + v’z + y2?) (4,3,2)
(2A41,14;)  (22%yza; + 2wyPzay + 2°y* + 222% + 20y2® + y*2?) (3,4,2)
(1A1,1A3) (2y°za; + 2xyzay + y* + 2727 + y?2?) (3,4,2)
1D, (®y’ar + 2%yas + y*' — 2”2 + zy°2) (3,4,2)
24, (®ya; + 22aq + 2%yzaz + x* + y*2?) (3,4,2)
1A, (y2*a; + 2tay + y* + 22922 + P2 + 2%2%) (3,4,2)
(1A1,14;3) o (z2%ay + 2yzas + y° + 2°2 + y°2) (3,4,2)
4A, x - (y*za; + y22ay + vy* + vyz + 2°) (3,4,2)
4A, (xy + 2z + y2) - (yza; + vzas + xy) (3,4,2)
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523 j=5

Singularities Polynomial (n,j,a)
(1A1,2A45) (22%yzay + 2%y* + 20y’ + 222 4 22y2® + PP (2,5,2)
(1A, 1A3) (2zy*zay + y* + 2y°2 + 2727 (2,5,2)
(1A;,1A,) (y22%a1 + y* + 2292 + 22 + 222?) (2,5,2)
1A5 (zta; + y* — 2022 + 2227 + y?2P) (2,5,2)
1Ds (Pya, + 2* + y* + Iy22) (2,5,2)
1As v - (zyza, +y°* + 2%z + 127) (2,5,2)
(2A1,143)  x-(yz%a; + xy + 2yz + 2°) (2,5,2)
(1A1,1Dy) o - (z%zay + 2° + 2yz + y2?) (2,5,2)
(3A1,14;) o (y2Pay + 2y + 32 + 2°) (2,5,2)
(2A41,143)  (2y + 22z +y2) - (yzas + 2y + x2) (2,5,2)
54, z-y- (yza; + 22 + zy + x2) (2,5,2)

5.2.4 j=6 (nearly-free curves)

Singularities Polynomial (n,j,a)
3As (2% — 22%yz — 229”2 + 2%2% — 2wy2? + P22 (1,6,2)
(1A42,1A4)  (y* + 2222 + 232 + 2227 (1,6,2)
1Ag (y* — 2wz + 2222 + 2y2%) (1,6,2)
1Eg (®y?a; + 2' + y°2) (1,6,2)
(1A1,145) o (zy® + zyz + 2%) (1,6,2)
1Dg z- (2% + zyz + 2°) (1,6,2)
(1A}, 1A9,1A3) - (29 + y2* + 2°) (1,6,2)
(1A1,1D5) o - (z%zay + 2% + y2° (1,6,2)
(141,145)  (zy+2%) - (zy + yz + 2%) (1,6,2)
2A3 - (z+y)- (yza; + %) (1,6,2)
(3A1,143) z-y-(z°+ 2z +yz2) (1,6,2)
(241,1Dy)  z-y-(xy + 22+ y2) (1,6,2)
6A, zoy-x-(x+y+2) (1,6,2)
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5.2.5 j=7,9 (free curves)

Singularities Polynomial (n,j,a)
(1A2,145)  x-(zy* + 2°) (0,7,1)
1E; z - (%Y + 22 + 2°) (0,7,1)
147 (2% +yz) - (22 + y* + y2) (0,7,1)
(1A1,243) z-y- (2 +y2) (0,7,1)
(1A1,1D¢)  z-y- (y* + x2) (0,7,1)
(3A1,1Dy)  z-y-x-(z+2) (0,7,1)
Four concur- z%2%a; + 22%a; + 2%z + 2°2° (0,9,0)

rent lines

Note that n = 5 does not occur, motivating our question of gaps between values of n. We

also see that for the irreducible quartics with singularities Ag and Fg we have j = 6,a = 2,

then Ty is a stable bundle, hence we show that there is an example for the projective plane

with sharper conditions on j in contrast with Theorem 42.

5.3 GIT stability for cubics and quartics

Let G = SL(3) be the reductive group acting on P?. G has a well defined action
on homogeneous polynomials f € Vg, := H°Op2(d + 1) via g.f = f o g~ which induces
an action SL(3) x PV;,; — PVy,4. In this sense there is a GIT semistable locus PV, ;%

and a GIT quotient PV, ** — (PVy41*)//G.

The classification for cubics (HOSKINS, ) and quartics (ARTEBANI, 2009)

with respect to GIT stability is well known. For cubics we have the following:

 Semistable orbit given by Irreducible nodal (j=1)

And for quartics:

Stable locus corresponds to smooth cubics (j=0)

Semistable orbit given by conic + non tangent line (j=2)

Semistable orbit given by union of non concurrent lines (j=3)

« Stable locus corresponds to quartics that are smooth (j=0) or have at most ordinary

double points and cusps (j=1,2)

 Semistable orbit given by reduced quartics with tacnodes (j

double conics.

3) and (non-reduced)
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For the cases d + 1 = 3,4 we can manually verify the following remark:

Remark 43. Let f € V1 be homogeneous of degree d + 1 = 3,4 defining a curve C. If C
is GIT stable then Ty is a stable as sheaf.

Remark 44. For quartics we have that Ty is stable if a > 1. This includes every quartic

in our table for j =1,...,6.

5.4 The algorithm

The main purpose for the existence of our algorithm is to be able to generate

concrete examples of reduced plane curves. (See appendix for the definitions of each

function)

class dVec ():

def

def

__init__(self ,d):
self.d = d
P2 .<x,y,z> = ProjectiveSpace (2,QQ)
self .P2 = P2
self.indices = [(i,j) if i+j<=d else None for i in
range (d+1) for j in range(d-i+1)]
print ("generating indices... ",self.indices)
self .monomialdict = {}
for i,j in self.indices:
m = x"(d-i-j)*y~ (i) *z~(j)
self .monomialdict [(i,j)] = m
print ("with respective monomials:", self.monomialdict
)
generate _poly(self ,CONSTRAINTS = []):
coefdict = {}
vanishingmonomials = []
f =20
for i,j in self.indices:
if (i,j) in CONSTRAINTS:

coef = 0
else:

coef = ZZ.random_element (-5,5)
if coef==

vanishingmonomials.append ((i,j))
coefdict [(i,j)] = coef*self.monomialdict[(i,j)]
f = f + coefdict[(i,j)]
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def

def

def

CHECKSQUAREFREE = (f!=0 and f.is_squarefree())
if CHECKSQUAREFREE == False:

#print ("f non square-free, rerunning...")

f = self.generate_poly (CONSTRAINTS = CONSTRAINTS)
return £
# then substitute zero for i,j in CONSTRAINTS
runexperimentonce (self ,CONSTRAINTS = []):
f = self.generate_poly (CONSTRAINTS = CONSTRAINTS)
delta = logtest (f)
return {"f":f,"delta":deltal

endlessexperiment (self ,LIMIT = 1000, CONSTRAINTS (1

self.experiments = []
for k in range (LIMIT):
output = self.runexperimentonce (CONSTRAINTS
CONSTRAINTS)

self .experiments.append (output)

computefrequency(self):

from collections import Counter

LIMIT = len(self.experiments)

self .frequency_sigma =

Counter ([self.experiments[k][’delta’] for k in range(
len(self.experiments))]) .most_common ()

PERCENTAGES = []

for k in range(len(self.frequency_sigma)):

PERCENTAGES . append(self.frequency_sigmal[k] [1]/

LIMIT)
self .percentages = PERCENTAGES
cases = [x[0] for x in self.frequency_sigma]

self . filterpoly = {}
for CASE in cases:
filterpolytemp =
[x[’f’] for x in self.experiments if x[’delta’]==
CASE]
self .filterpoly [CASE]=
[factor (f) for f in filterpolytemp][0]
print ("\n Case (n,j,a):",CASE," with polynomials:

n
b

self.filterpoly [CASE])
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print ("\n Table of occurrences: ",self.
frequency_sigma,", with
probabilities:" ,PERCENTAGES)

P2.<x,y,z> = ProjectiveSpace (QQ,2)

Then run the following code for d=3, d=4 and d=5:

V = dVec (d)
V.endlessexperiment (LIMIT=10000, CONSTRAINTS = [(0,0),(1,0)
,(0,1)1)

V.computefrequency ()

The output for each case is:

d=3:
generating indices... [(0, 0), (0, 1), (1, 0), (0, 20, (1,
1, (2, 0),

(o, 3), (1, 2), (2, 1), (3, 0]

with respective monomials: {(0, 0): z~3, (0, 1): y*xz~2, (1,
0): x*xz72,

(0, 2): y~2*xz, (1, 1): x*y*z,

(2, 0): x~2*xz, (0, 3): y~3,

(1, 2): xxy~2, (2, 1): x72xy, (3, 0): x~3}

Case (n,j,a): (3, 1, 2) f: x73 + x72%y + x*y~2 + y~3 + x72%

z + 2%x*xy*z + 2*%y~2%xz with singularities: [(0 : O : 1)]

Case (n,j,a): (1, 2, 1) f: x73 + 2%xx72xy + 2%x*xy~2 + y~3 +
X"2%z

with singularities: [(0 : O : 1)]
Case (n,j,a): (0, 3, 1) f: (2*%xx + 2%y + z) *x (x72 + y~2)
with

singularities: [(0 : O : 1)]

Case (n,j,a): (0, 4, 0) f: y *x x * (x + y) with
singularities: [(0 : O : 1)]

Table of occurrences:



10

11

12

13

14

15

16

17

18

19

20

21

22

Chapter 5. Numerical invariant associated to plane curves 40

So we managed to recover at least one example for each of the four possible set of (n,j,a)

corresponding to singular reduced cubics.
For quartics we have:

generating indices... [(0, 0), (0, 1), (1, 0), (0, 20, (1,
1), (2, o), (0, 3), (1, 2), (2, 1), (3, 0), (0, 4), (1, 3)
, (2, 2), (3, 1), (4, 0)]

with respective monomials: {(0, 0): z~4, (0, 1): y*xz~3, (1,
0): xxz~3, (0, 2): y™2xz~2, (1, 1): x*xy*z~2, (2, 0): x"2%z
“2, (0, 3): y~3xz, (1, 2): xx*xy~2xz, (2, 1): x"2xyx*xz, (3,
0): x73%xz, (0, 4): y~4, (1, 3): x*xy~3, (2, 2): x"2%xy~2,
(3, 1): x~3*xy, (4, 0): x~4}

Case (n,j,a): (8, 1, 3) f: x4 + 2*%x73%y + x"2%xy~2 + 2%x*y
~3 4

2xy~4 + x73%z + X*y 2%z + X"2%z72 + y"2*%z"2 with
singularities:

[(O0 : 0 : 1]

Case (n,j,a): (7, 2, 3) f: 2%x74 + x72%y~2 + x*xy 3 + 2%x~3%
z +

y~3%z + 2*%x72*%z72 with singularities: [(0 : O : 1)]

Case (n,j,a): (3, 4, 2) f: (2*xx*y + 2*%y~2 + x*z + 2%y*xz) *
(x72 + y*z)
with singularities: [(0 : O : 1)]

Case (n,j,a): (4, 3, 2) f: 2xx74 + x73%xy + x*y~3 + x*xy 2%z
+ y 3%z

+ 2%y~2%xz72 with singularities: [(0 : O : 1)]

Case (n,j,a): (6, 3, 3) f: 2%xx74 + x73%xy + 2%x72*%y~2 + y~4
+

2xxT2xy*xz + 2xxkxy 2%z + 2%y~ 3%z + 2%y~ 2xz"2 with
singularities

[(0O : 0 : 1)]

Case (n,j,a): (2, 5, 2) f: x *x (2%xx72%y + x*y~2 + 2%xxxy*z +
X*z"2

+ 2%y*z~2) with singularities: [(-1 : 1 : 1), (0 : 0 : 1),
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(0 : 1 : 0)]

23
24 Case (n,j,a): (1, 6, 2) f: y *x (x73 + 2*%x*xy~2 + 2%y~3 + 2x*x
kykz +
25 y~2%xz) with singularities: [(0 : O : 1)]
26
27 Case (n,j,a): (0, 7, 1) f: (x72 + y~2) *x (x72 + x*xy + y~2 +
2%x*xz +
28 2%y*z + 2%z72) with singularities: [(0 : 0 : 1)]
29
30 Case (n,j,a): (1, 6, 1) f: (2) * x *x (x73 + y~2%z) with
singularities:
31 [(O : 0 : 1), (O : 1 : 0O)]
32
33 Case (n,j,a): (0, 9, 0) f: x74 + 2*%xx73%xy + x"2*%xy~2 + 2*xy~4
34 with singularities: [(0 : O : 1)]
35
36 Table of occurrences: [((s, 1, 3), 6652), (7, 2, 3), 1604)
, ((3, 4, 2), 554),
s ((4, 3, 2), 525), ((6, 3, 3), 385), ((2, 5, 2), 212), ((1,
6, 2), 49),
38 (¢co, 7, 1), 11), (1, 6, 1), 4), (0, 9, 0), 4)] , with
probabilities:
39 [0.6652, 0.1604, 0.0554, 0.0525, 0.0385, 0.0212, 0.0049,
0.0011, 0.0004, 0.0004]
So we recover all the 9 possible cases of reduced singular quartics of previous chapter: [(8,
1, 3), (7, 2, 3), (3, 4, 2),(4, 3, 2),(6, 3, 3), (2, 5, 2), (1, 6, 2), (0,7, 1), (0,9, 0)] with the
addition of (1, 6, 1) corresponding to the union of a cuspidal cubic with cusp at (0:0: 1)
and a non-tangent line intersecting the cubic at (0:1:0) and (0:0: 1), a degree 1 syzygy
is [0, y, —2z] with subscheme of zeroes S corresponding to a point (1:0 : 0).
For d=5:
1 generating indices... (co, o), o, 1), (1, 0), (0, 2), (1,

1), (2, 00, (0, 3), (1, 2), (2, 1), (3, 0), (0, 4), (1, 3)
, (2, 2), (3, 1), 4, 0), (0, 5, (1, 4), (2, 3), (3, 2),
(4, 1), (5, 0)]

2 with respective monomials: {(0, 0): z75, (0, 1): y*z~4, (1,
0): xxz~4, (0, 2): y~2xz73, (1, 1): x*xy*z~3, (2, 0): x"2%z
=3, (0, 3): y~3xz72, (1, 2): xxy~2xz~2, (2, 1): x"2%xy*z~2,
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(3, 0): x73xz72, (0, 4): y~dxz, (1, 3): x*xy~3xz, (2, 2):
x"2xy~2%z, (3, 1): x73xy*z, (4, 0): x74xz, (0, 8): y~5,
(1, 4): x*xy~4, (2, 3): x72%y"3, (3, 2): x"3*y"2, (4, 1): x
~4xy, (5, 0): x"5}

Case (n,j,a): (15, 1, 4) f: 2*%xx74xy + x72%y~3 + x*y~ 4 + 2%x
T4xz + xXT2%y 2%z + 2%x*xy 3%z + 2xyT4kxz + x73*%z72 + xT2ky*
z72 4+ x*yT2%z72 + 2%xx*xy*xz~3 + 2%y 2%z~ 3 with

singularities: [(0 : O : 1)]

Case (n,j,a): (14, 2, 4) f: x75 + 2*%x73*xy~2 + x*xy~4 + 2%y~b
+ XT3*%yxz + 2%x*xy 3%z + yTdkz + 2%x73*%z72 + 2kx*xy 2%xz72

+ 2%y~3%z72 + x72x2z”"3 with singularities: [(0 : 0 : 1)]

Case (n,j,a): (13, 3, 4) f: x75 + x74*xy + x72%xy~3 + 2*xx*xy~4
+ 2xy~"b + x74%xz + xT2%y 2%z + x*xy 3%z + 2xy~4*xz + X" 3%z
T2 + 2%xT2%y*z72 + x*xy T 2%z72 + x72%z"3 with singularities

[(0 : 0 : 1)]

Case (n,j,a): (12, 4, 4) f: x75 + x74*xy + 2*%x"3*%y~2 + 2%*x
T2xyT3 4+ x*xyT4 + xT2%yT2%z + 2%x*y " 3%z + 2%y 4*kz + 2%xx7 3%
z72 + XT2%yxz72 + 2%x*y~2%z”2 with singularities: [(0 : O

1]

Case (n,j,a): (9, 4, 3) f: x *x (2*%x74 + 2%x73%y + 2%x"2%y~2
+ 2%xx*xy~3 + 2%y~4 + x73*%z + xT2%y*z + 2%x*xy 2%z + y 3%z
+ 2%XT2%z272 + x*y*z"2 + yT2%z"2 + 2%x*xz"3 + y*z~3) with

singularities: [(0 : O : 1)]

Case (n,j,a): (11, 5, 4) f: 2%xx73xy~2 + x*xy~4 + 2*%x"3*xy*z +
XT2xyT2xz + 2%y 4kxz + 2%xxT3%z72 + 2%xxT2%y*zT2 + 2xxxy 2%

z~"2 with singularities: [(0O : O : 1), (1 : O : 0)]

Case (n,j,a): (8, 5, 3) f: z x (x4 + x*xy~3 + x73%z + 2%*x
T2%y*xz + x*kyT2%z + 2%y 3%z + 2xx*y*z~2) with

singularities: [(-1 : 1 : 0), (0O : O : 1), (O : 1 : 0)]

Case (n,j,a): (7, 6, 3) f: (x + y) *x (x74 + x73*%xy + 2xy~4 +

X73%z - xT2%y*z + xX*y“2%z + x72%z72 + y~2%z72) with
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singularities: [(0 : O : 1)]

Case (n,j,a): (6, 7, 3) f: z *x x * (2%x73 + 2xx72%y + x*y~2
+ y73 + xT2%z + X*ky*xz + y 2%z + x*z"2 + 2%y*xz~2) with

singularities: [(-1 : 1 : 0), (O : O : 1), (O : 1 : 0)]

Case (n,j,a): (10, 6, 4) f: x75 + 2*%x74*xy + 2xx72%xy~3 + 2xy
°5 + 2%x74xz + xxy 3%z + y 4%z + x73*%z"2 with

singularities: [(0 : O : 1)]

Case (n,j,a): (5, 8, 3) f: x *x (x4 + 2xx*xy~3 + 2*xy~4 + x
T2ky*kz + 2%x*xy~2%z + 2%xy~2%xz72) with singularities: [(O
0 : 1)]

Case (n,j,a): (4, 9, 3) f: x74*xy + x73*xy~2 + 2*%xx72%xy~3 + 2%
y°b + 2xxT4*xz + 2%x" 2%y 2%z + x*xy 3%z with singularities:

[(O0 : 0 : 1)]

Case (n,j,a): (1, 11, 2) f: z *x x * (2%x~3 + x"2*y + y~3 +
2*%x"2%z) with singularities: [(-1 : 1 : 0), (0O : O : 1),
(0 : 1 : 0)]

Case (n,j,a): (0, 12, 2) f: y *x (x74 + x73xy + 2*x"2%xy~2 +
Yy 4 + 2%xx73%z + 2%x*xy~2%z + x"2%z72) with singularities:
[(-1 : 0 : 1), (O : 0 : 1)]

Table of occurrences: [((15, 1, 4), 7009), ((14, 2, 4),
1594), ((13, 3, 4), 580), ((12, 4, 4), 365), ((9, 4, 3),
159), ((11, 5, 4), 90), ((8, 5, 3), 70), ((7, 6, 3), B8),

(6, 7, 3), 27), (10, 6, 4), 23), ((5, 8, 3), 14), ((4,
9, 3), 7)), (1, 11, 2), 3), ((0, 12, 2), 1)] , with
probabilities: [0.7009, 0.1594, 0.058, 0.0365, 0.0159,
0.009, 0.007, 0.0058, 0.0027, 0.0023, 0.0014, 0.0007,
0.0003, 0.0001]

So we find 14 cases, it is possible to eliminate ordinary double points
(cases (15,1,4),(14,2,4),(13,3,4)) and search for triple points or higher multiplicities by

adding constraints, i.e. we can demand a; ; = 0 for some choices of 1, j:

CONSTRAINTS = [(0,0),(1,0),(0,1),(1,1),(2,0),(0,2)1]
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which results in:

Case (n,j,a): (12, 4, 4) f: x75 + x74*xy + x73%xy~2 + 2%x72xy

T3 4+ 2xx*xy~4 + 2%x74%z + 2xx*xy 3%z + yT4xz + x"3%z72 + 2%Xx
T2%y*zT2 + 2%xx*ky~2%z72 + 2%y~ 3%z”2 with singularities: [(O
0 : 1)]

Case (n,j,a): (11, 5, 4) f: 2*%x75 + x74xy + x*y 4 + 2%xx74x%z
+ 2*xXT3%xy*xz + 2%xXT2%xyT 2%z + x*y 3%z + yT4dxz + x"3*xz72 +

2*%x"2*%y*z~"2 with singularities: [(0 : O : 1)]

Case (n,j,a): (10, 6, 4) f: x75 + 2%xx74xy + 2%x"3xy~2 + 2%y
T5 + 2%xxT3ky*kz + 2kxky 3%z + 2xx73*%z72 + 2%xx"2xy*xz”"2 with

singularities: [(0 : O : 1)]

Case (n,j,a): (7, 6, 3) f: y x (2xx74 + x73*y + x72%xy~2 + X
xy~3 + X73%z + XT2ky*z + X*ky~ 2%z + Xx"2%z72 + y~2%xz"2)

with singularities: [(0 : 0 : 1)]

Case (n,j,a): (6, 7, 3) f: 2xx75 + 2*x"4*%y + x"2*%y~3 + y~b
+ X*ky“ 3%z + 2%y T4d*xz + X*xy 2*%z"2 + y~3*z"2 with

singularities: [(0 : -1 : 1), (0 : 0 : 1)]

Case (n,j,a): (5, 8, 3) f: z x (x4 + 2%x73%y + x72%xy~2 + X
xy T3 + 2%x73%z + XT2%y*z + X*y 2%z + 2%y~ 3%z) with

singularities: [(0O : O : 1), (0O : 1 : 0)]

Case (n,j,a): (4, 9, 3) f: x75 + 2%xx74%xy + x73*xy~2 + 2%x72%
y©3 + 2xx*xy~4 + 2%y~b5 + x73*%xy*z + 2%y 4%z with
singularities: [(0 : O : 1)]

Case (n,j,a): (3, 10, 3) f: y *x (2%xy~4 + 2xy~3*xz + x"2%z72
+ xX*y*z~2 + 2%xy~2%z"2) with singularities: [(0 : O : 1),
(1 : 0 : 0)]

Case (n,j,a): (1, 11, 2) f: x * (2%x74 + 2*%x7"3*%y + 2%xx"2%y
T2 4+ 2%x*kyT3 + yT4 + 2%xxT2ky*kz + 2xx*xy " 2%z + x"2%z72)

with singularities: [(0 : 0 : 1)]

Case (n,j,a): (2, 10, 2) f: x * (x74 + 2%xx73%xy + 2*xx*xy~3 +
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2*%x7"3%z + 2xy~3xz) with singularities: [(0O : O : 1), (O
1 : 0)]

20

21 Case (n,j,a): (0, 13, 1) f: (y + 2*xz) * x *x (x73 + x"2*y +
y~3) with singularities: [(0 : -2 : 1), (0 : O : 1)]

22

23 Case (n,j,a): (0, 12, 2) f: (x + z) * (x + y) * (x73 + 2xy
"3 + x72%z) with singularities: [(-1 : 0 : 1), (-1 : 1
1), (0 : 0 : 1), (1 : -1 : 1)]

24

25 Table of occurrences: [((12, 4, 4), 6680), ((11, 5, 4),
1497), ((10, 6, 4), 590), ((7, 6, 3), 475), ((6, 7, 3),
386), ((5, 8, 3), 192), ((4, 9, 3), 122), ((3, 10, 3),
37), ((1, 11, 2), 12), ((2, 10, 2), 6), ((0, 13, 1), 2),
(0, 12, 2), 1)] , with probabilities: [0.668, 0.1497,
0.059, 0.0475, 0.0386, 0.0192, 0.0122, 0.0037, 0.0012,
0.0006, 0.0002, 0.0001]

We see that new polynomials with singularity of higher multiplicity appears: [((3, 10, 3),
37), ((2, 10, 2), 6), ((0, 13, 1), 2)]

5.4.1 Irreducible nearly-free and free quintics and sextics

An interesting case occurs when we ask for irreducible plane curves of degree
d with a point (say P=(0:0:1)) that is singular of multiplicity d-1. For example, if f is a

quintic then we pass
CONSTRAINTS = (0,0),(1,0),(0,1),(1,1),(2,0),(0,2),(3,0),(0,3),(2,1),(1,2)]

sothat a;; =0 wheni+j <d—1=4:

1 Case (n,j,a): (1, 11, 2) f£: (-1) x (-2%xx75 + 4*xx"4xy - 4xx
T3xy T2 - 4xx7T2xy~3 + 4xx*xy~4 - y~b + bxxxy~3xz - 2%xy~4x*z)
with singularities: [(0 : O : 1)]

3 Case (n,j,a): (0, 12, 2) f: (-1) * (-x75 - 3*x74*y + 4*x"3x%
y~2 - 2xy~5 + 4*%x"4%xz) with singularities: [(0 : O : 1)]

5 Case (n,j,a): (0, 16, 0) f: (-1) *x (4*xx75 - x74*y - 4*x" 3%y
"2 - x*xy~4 + 3%y~5) with singularities: [(0 : O : 1)]

And appropriate conditions for sextics yield:
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Case (n,j,a): (1, 18, 3) f: (-1) * (5*x"6 - 4xx"b*xy + 2%*x
“4%yT2 - 4%x"3%y~3 + x"2%y 4 + x*ky"5 - y 6 + 2%x"5*z)
with singularities: [(0 : 0 : 1)]

Case (n,j,a): (0, 25, 0) f: (-1) * (b5*x"6 + bxx"b*xy - 3%*x
T4xyT2 + 3%xx73xy"3 - 4xx72xy~4 - 2xx*xy~5 - 3%y~6) with
singularities: [(0 : O : 1)]
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APPENDIX A - Algorithm

# Basic functions

from IPython.core.interactiveshell import InteractiveShell

InteractiveShell.ast_node_interactivity = ’all’
def generate_quartics(substitute_parameter=False, field = QQ)
# using delta_ p := (mu_p + r_p - 1)/2 we have g = (1/2)(d

-1)(d-2) - sum_p(delta_p) for p in Sing(X)
R.<x,y,z,a_1,a 2,a_3,a_4,a_5> = PolynomialRing(field,8)
DESCRIPTION = {}

£ =4{}

# IRREDUCIBLE

# Genus O:

# |Sing(C)| = 3:

## Three nodes with a_i != +-1 and delta = 2%xa_1l*a 2%a_3+
a_1"2+a_272+a_372-1 != 0 #TODO conditions

fL0] = y 2%z272+x7 2%z 2+x 2%y "2+2*x*y*z*x(a_l*x+a_2*y+a_3%*z
)

DESCRIPTION[0] = "3.A 1"

## Three cusps:

fL1] = y72%z72+x72%272+x72*%y T2 -2k x*ky*kzx (X+y+2)
DESCRIPTION[1] = "3.A 2"

## One node two cusps with a_i != +-1

f[2] = y 2%z 2+x72%z72+x7 2%y " 2+2*kx*y*z*x(a_l*x+y+z)

DESCRIPTION([2] = "1.A 1 + 2.A 2"

## One cusp two nodes with a_i != +-1 and delta = (a_1+
a_ 2)"2 I= 0

f[3] = y™2%z72+x72%z272+x 2%y T 2+2*kx*ky*xzx(a_lxx+ta_ 2xy+z)

DESCRIPTION[3] = "2.A 1 + 1.A 2"

# |Sing(C)| = 2:

## One node and Tacnode with a_2 != +-1 and delta = a_172
+ 2272 -1 1=0

f[4] = z72%(x72+y~2)+y~4+2%a_1xy~3*xz+2%a 2%x*xy 2%z
DESCRIPTION[4] = "1.A 1 + 1.A 3"
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APPENDIX A. Algorithm

ol

## One cusp and Tacnode with a_1

f[5] = x 2%z 24y 4+2%y " 3kz+2%ka_1kx*ky 2%z

DESCRIPTION([5] = "1.A 2 + 1.A_3"

## One node and Ramphoid cusp with a_1
fL6] = x72%z72+y " 4+2%zky 3+2%x*y " 2%z+a_1*z" 2%y~ 2

DESCRIPTION([6] = "1.A 1 + 1.A 4"
## One cusp and Ramphoid cusp

fL7] = X"2%z72+y 4+2%z*y " 3+2%x*y 2%z

DESCRIPTION([7] = "1.A 2 + 1.A_4"
# |Sing(C)| = 1:
## One Oscnode with a 1 I= 0

f[8] = (y~2-x*z) 2+y 2%z 2+a 1*z"4

DESCRIPTION[8] = "1.A_5"
## A _6 cusps

f[9] = (y~2-x%z) " 2+2xy*z~3
DESCRIPTION[9] = "1.A_6"
## Ordinary triple point

f[10] = x*x(y~2-x72)*z+y~4+a_1*x"2%y 2+a_2%y*x"3

DESCRIPTION[10] = "1.D_4"

## Tacnode cusp

f[11] = x*y 2%xz+x"4+y~4+a_1*x"3*y

DESCRIPTION [11] = "1.D_5"

## Multiplicity 3 cusp

f[12] = y~3xz+x74+a_1*x"2%xy~2
DESCRIPTION [12] = "1.E_6"

# Genus 1
# 18ing(C)| = 2
## Two nodes

f[13] = (y72+x72) *z"2+x7 2%y~ 2+a_1*x"4+a_2*x"3*y+a_3*x" 3%z

+a_4*xx"2xy*xz
DESCRIPTION[13] = "2.A_1"
## Two cusps

f[14] = y~2%z"2+x"4+a_1*x"3xy+ta_2%x"3%z+ta_3*x"2%y*xz

DESCRIPTION [14] = "2.A_2"

## One node and cusp

f[156] = z72%(y~2-x"2)+x"4+a_l*x*xy~2%z+a_2*x"3*kz+a_3*x" 3%y

DESCRIPTION[15] = "1.A 1 + 1.A 2"



APPENDIX A. Algorithm 52

68 # |Sing(C)| = 1

69 ## One tacnode

70 f[16] = y~2xz"2-x"4+a 1l*xx*xy~3+a_2*x"2*%y~2+a_3*y~4

71 DESCRIPTION[16] = "1.A_3"

72 ## One Ramphoid cusp

73 fL17] = x72%z72+2%xx*y " 2%z+y 4+y~3*z+a_lxy*z~3+a_2xz"4

74 DESCRIPTION [17] = "1.A_4"

75

76 # Genus 2

77 # |Sing(C)| =1

78 ## One node

79 f[18] = x*y*z " 2+x74+y 4+a_1*x"3xy+a_2*x*xy 3+a_3*x 2%y 2+
a_4x*xx"3*%xz+a bxy 3%z

80 DESCRIPTION[18] = "1.A_1"

81 ## One cusp

82 f[19] = y~2*%z"2+x"4+a_1l*xy 4+a_2x*x*y ~3+a_3*x"2xy 2+a_4x*x
“3*z+ta_bxx"2xy*z

83 DESCRIPTION[19] = "1.A_2"

84

85 # REDUCIBLE: Cubic and 1line

86 ## Smooth cubic then:

87 ## Three nodes with a 1 I= 0

88 f[20] = x*(x*y 2+y~2%xz+y*xz"2+a_1*x"2%z+a_2*x*z"2+a_3*x*yx*
z)

89 DESCRIPTION [20] = "3.A_1"

90 ## One node and tacnode with a_1 != 0

91 f[21] = x*x(x"2%z+a_1*xx*z " 2+a 2*x*xy*z+y 3+y~2%z)

92 DESCRIPTION[21] = "1.A 1 + 1.A_3"

93 ## Oscnode with a_1 != 0

94 f[22] = x*(x72*%z+x*xz " 2+a_1l*xxy*xz+y~3)

95 DESCRIPTION [22] = "1.A_5"

96

97 ## Nodal cubic then:

98 ## Four nodes with a_1 != 0 and a 2-4a_1 != 0 and a_1-a_2

= -1

99 f[23] = x*(z273+x*y~2+a_1lxy~2%z+a_2%y*z 2+x*y*2z)

100 DESCRIPTION [23] = "4.A_1"

101 ## Two nodes and tacnode with a 1 != 0,1

102 f[24] = x*(273+x*y 2+a_1l*xy*z 2+x*xy*2z)
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DESCRIPTION[24] = "2.A 1 + 1.A 3"

## One node and one Oscnode

f[25] = x*(273+x*y 2+x*y*2z)
DESCRIPTION[25] = "1.A_1 + 1.A_B"

## One node and ordinary triple point
f[26] = x*(x73+a_1*x"2%z+y*z " 2+x*y*2z)
DESCRIPTION[26] = "1.A_1 + 1.D_4"

#4 D 6

f[27] = x*(x73+z273+x*y*z)
DESCRIPTION [27] = "1.D 6"

## Cuspidal cubic then

## Three nodes and cusp with a_1 != +-2
f[28] = x*x(z"3+x*y 2+y~2xz+a_ l*xy*xz~2)
DESCRIPTION[28] = "3.A_1 + 1.A_2"

## One node one cusp one tacnode

f[29] = x*x(z"3+x*y~2+y*z"2)
DESCRIPTION([29] = "1.A 1 + 1.A 2 + 1.A 3"
## One cusp one Oscnode

f[30] = x*x(z73+x*y~2)

DESCRIPTION[30] = "1.A_2 + 1.A_B"

## One node and Tacnode cusp D_5

f[31] = x*(x73+a_1*x"2%z+y*z~2)

DESCRIPTION[31] = "1.A_1 + 1.D_5"
## E_7

f[32] = x*(273+x72*%y+x*z"2)
DESCRIPTION [32] = "1.E 7"

# Two conics:

## Four nodes

f[33] = (x*y+ta_l*xy*xzt+ta 2%x*z) *x(x*xy+x*z+y*z)
DESCRIPTION[33] = "4.A_1"

## Two nodes and tacnode

f[34] = (x*y+x*xz+a_lxy*z)*x(x*ky+x*z+y*z)
DESCRIPTION[34] = "2.A 1 + 1.A 3"

## One node and Oscnode

f[35] = (z72+x*xy)*(z"2+y*z+x*y)
DESCRIPTION[35] = "1.A 1 + 1.A 5"

## Two tacnodes with a_1 != 0,1
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142 f[36] = (x72+x*xy)*(x"2+a_1l*xy*xz)

143 DESCRIPTION [36] = "2.A 3"

144 ## A7

145 f[37] = (x72+y*z) *(x"2+y*xz+y~2)

146 DESCRIPTION [37] = "1.A 7"

147

148 # Conic and two lines

149 ## Five nodes with a_1 != 0,1

150 f[38] = y*zx(x"2+a_l*y*z+x*z+x*y)
151 DESCRIPTION[38] = "5.A_1"

152 ## Three nodes and tacnode

153 f[39] = y*zx(x"2+y*z+x*z)

154 DESCRIPTION[39] = "3.A_1 + 1.A 3"
155 ## One node and two tacnodes

156 f[40] = y*z*x(x"2+y*z)

157 DESCRIPTION[40] = "1.A_ 1 + 2.A 3"
158 ## Two nodes and triple point D_4
159 f[41] = y*xz*x(x*xy+x*xz+y*z)

160 DESCRIPTION [41] = "2.A 1 + 1.D_4"
161 ## One node and D_6

162 f[42] = y*z*x(y~2+x%xz)

163 DESCRIPTION[42] = "1.A 1 + 1.D_6"
164

165 # Four lines

166 ## Six nodes

167 f[43] = x*y*xz*x(x+y+z)

168 DESCRIPTION [43] = "6.A_1"

169 ## Three nodes and triple point D_4
170 f[44] = xx*xy*z*x(x+z)

171 DESCRIPTION [44] = "3.A_1 + 1.D_4"
172 ## Four concurrent lines with a_1 != 0,1
173 f[45] = x*xzx(x+z)*(x+a_1%*z)

174 DESCRIPTION [45] = "Four lines intersecting"
175

176 DESCRIPTION = 1ist(DESCRIPTION.values())
177

178

179 if substitute_parameter == True:

180 R2.<x,y,z> = PolynomialRing(field,3)
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def

def

def

# generate parameters a_i and substitute
g list ()
for poly in f.values():

p = tuple(ZZ.random_element (1000) for k in range
(5))

temp = poly((x,y,z)+p)
temp = R2(temp)
g.append (temp)

return g, DESCRIPTION

else:
return list(f.values()), DESCRIPTION

JacobianIdeal (X):
» 0
X: Projective Subscheme defined by method
ProjectiveSpace.subscheme, expected to be
generated by a single f
J: Ideal generated by all first partial derivatives \
partial i £

X.Jacobian ()
Ideal(J.gens () [1:]) # Jacobian with only the partial

derivatives as generators (doesnt matter because f is
homogeneous but Sagemath carries an extra generator if
we dont exclude)

return J

JacobianSyzygy (X):

X: Projective subscheme

Syz: Syzygy module of ideal J
J = JacobianIdeal (X)
Syz = J.syzygy_module ()

return Syz

MinimumDegreeColumn (Syz) :

>?? Auxiliary function for MinimumDegreeSyzygy
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def

def

Syz: Syzygy module
output: dictionary of minimum degree generators
gens = Syz.rows() # list of generators of syzygy
mindegree = min([max(generator [0].degree(),generator [1].
degree () ,generator [2] .degree()) for generator in gens
D
mindeg generators = [generator for generator in gens if
max (generator [0] .degree () ,generator [1].degree (),
generator [2] .degree () )==mindegree]
return {"mindegree_generators":mindeg_generators, "degree

":mindegree, "len":len(mindeg_generators)}

MinimumDegreeSyzygy (X) :
) )
X: Projective subscheme
mindeg: dictionary of minimum degree generators
) )
Syz = JacobianSyzygy (X)
mindeg = MinimumDegreeColumn (Syz)

return mindeg

logtest (polynomial):

) )

polynomial: Homogeneous polynomial in x,y,z

value: [n,j,al

-
-

)

# d+1:=deg(f)

d = polynomial.degree() - 1

X = P2.subscheme(polynomial)

I J = JacobianIdeal (X)

hilb = I_J.hilbert_polynomial ()

a = MinimumDegreeSyzygy (X) [’degree’]
j = hilb (0)

n = (d72-axd+a"2-j)

value = n,j,a

return value
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