

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Eduardo Mobilon

100 GBIT/S AES-GCM CRYPTOGRAPHY ENGINE FOR
OPTICAL TRANSPORT NETWORKS: ARCHITECTURE,

DESIGN, AND 40 NM SILICON PROTOTYPING

MÓDULO CRIPTOGRÁFICO AES-GCM OPERANDO A
100 GBIT/S PARA REDES DE TRANSPORTE ÓPTICO:

ARQUITETURA, PROJETO E PROTOTIPAGEM EM 40 NM

Campinas
2023

Eduardo Mobilon

100 GBIT/S AES-GCM CRYPTOGRAPHY ENGINE FOR
OPTICAL TRANSPORT NETWORKS: ARCHITECTURE,

DESIGN, AND 40 NM SILICON PROTOTYPING

MÓDULO CRIPTOGRÁFICO AES-GCM OPERANDO A
100 GBIT/S PARA REDES DE TRANSPORTE ÓPTICO:

ARQUITETURA, PROJETO E PROTOTIPAGEM EM 40 NM

Thesis presented to the School of Electrical and
Computer Engineering of the University of
Campinas, as partial fulfillment of the requirements
for the degree of Doctor in Electrical Engineering,
in the area of Telecommunications and Telematics.

Tese apresentada à Faculdade de Engenharia
Elétrica e de Computação da Universidade Estadual
de Campinas, como parte dos requisitos exigidos
para a obtenção do título de Doutor em Engenharia
Elétrica, na área de Telecomunicações e Telemática.

Supervisor/Orientador: Prof. Dr. Dalton Soares Arantes

Este trabalho corresponde à versão final da tese
defendida pelo aluno Eduardo Mobilon, orientada
pelo Prof. Dr. Dalton Soares Arantes.

Campinas

2023

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

 Mobilon, Eduardo, 1973-
 M713g Mob100 Gbit/s AES-GCM cryptography engine for optical transport networks :

architecture, design, and 40 nm silicon prototyping / Eduardo Mobilon. –
Campinas, SP : [s.n.], 2023.

 MobOrientador: Dalton Soares Arantes.
 MobTese (doutorado) – Universidade Estadual de Campinas, Faculdade de

Engenharia Elétrica e de Computação.

 Mob1. Criptografia. 2. Autenticação. 3. Redes ópticas. 4. Circuitos digitais. 5.

Circuitos integrados. I. Arantes, Dalton Soares, 1946-. II. Universidade
Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação.
III. Título.

Informações Complementares

Título em outro idioma: Módulo criptográfico AES-GCM operando a 100 Gbit/s para redes
de transporte óptico : arquitetura, projeto e prototipagem em 40 nm
Palavras-chave em inglês:
Cryptography
Authentication
Optical networks
Digital circuits
Integrated circuits
Área de concentração: Telecomunicações e Telemática
Titulação: Doutor em Engenharia Elétrica
Banca examinadora:
Dalton Soares Arantes [Orientador]
Max Henrique Machado Costa
Kayol Soares Mayer
João Batista Rosolem
Monica de Lacerda Rocha
Data de defesa: 24-02-2023
Programa de Pós-Graduação: Engenharia Elétrica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-6101-2940
- Currículo Lattes do autor: http://lattes.cnpq.br/9699996941745210

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

100 GBIT/S AES-GCM CRYPTOGRAPHY ENGINE FOR OPTICAL TRANSPORT

NETWORKS: ARCHITECTURE, DESIGN, AND 40 NM SILICON PROTOTYPING

MÓDULO CRIPTOGRÁFICO AES-GCM OPERANDO A 100 GBIT/S PARA REDES DE

TRANSPORTE ÓPTICO: ARQUITETURA, PROJETO E PROTOTIPAGEM EM 40 NM

Autor: Eduardo Mobilon RA: 994155

Orientador: Prof. Dr. Dalton Soares Arantes

Data da Defesa: 24 de fevereiro de 2023

A Comissão Examinadora composta pelos membros abaixo aprovou esta tese.

Prof. Dr. Dalton Soares Arantes (Presidente)
FEEC/Unicamp

Prof. Dr. Max Henrique Machado Costa
FEEC/Unicamp

Dr. Kayol Soares Mayer
FEEC/Unicamp

Dr. João Batista Rosolem
CPQD

Profa. Dra. Monica de Lacerda Rocha
EESC/USP

A Ata de Defesa, com as respectivas assinaturas dos membros da Comissão Examinadora,

encontra-se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na Secretaria de Pós-Graduação

da Faculdade de Engenharia Elétrica e de Computação.

I dedicate this work to all of my family.

To my beloved wife and daughters, with special gratitude for their support and

comprehension, to my mother, who educated me with simplicity and wisdom to

righteousness and honesty, to the memory of my father, who taught me and showed the

value of work, and to my brothers, who have always supported me in my goals.

ACKNOWLEDGMENTS
First and foremost, I thank God for the countless blessings, health, and opportunities

granted to me and my family.

My special gratitude to my beloved wife and daughters, for all the encouragement, support,

comprehension, and sacrifices throughout my dedication to this project.

To my supervisor and committee chair, Prof. Dr. Dalton Soares Arantes, for the way in

which he allowed me to conduct the work and for the ever-relevant observations in all

textual and content revisions. Further, I extend my gratitude to my committee members,

Prof. Dr. Max Henrique Machado Costa (FEEC/Unicamp), Dr. Kayol Soares Mayer

(FEEC/Unicamp), Dr. João Batista Rosolem (CPQD), and Profa. Dra. Mônica de Lacerda

Rocha (EESC/USP), for their careful instructions and constructive advice.

To CPQD, for the opportunities that allowed me to build my professional career,

developing and coordinating advanced and innovative technological projects.

My appreciation, at long last, to everyone who contributed directly and indirectly to the

realization of this work, especially to my colleagues in the development of the 100G OTN

Processor ASSP, a challenging project for the most advanced Brazilian integrated circuit

at the time.

This work is part of a research and development project for an integrated circuit designed

for the Brazilian telecom industry, led by the CPQD Foundation and financed by the

Technical-Scientific Development Fund (FUNTEC) of the National Bank for Economic

and Social Development (BNDES), and by the technical intervening company Padtec S.A.

The function of cryptographic protocols is

to minimize the amount of trust required.

Niels Ferguson

ABSTRACT
The optical transport network (OTN) technology enables transparent multiservice high-

speed data transmission. All digital processing operations involving client data

manipulation for digital wrapping and transport through the optical network are performed

by OTN processor devices, implemented in either high-end programmable logic devices or

application-specific integrated circuits. Although highly efficient for data transport and

monitoring, the OTN communication channel is vulnerable to a series of attacks in the

optical layer, which can lead to the extraction and/or manipulation of confidential

information. Cryptography mechanisms address the information security issue in a

communication link, ensuring data confidentiality. Authentication strategies, on the other

hand, are used to provide integrity by allowing the detection of possible manipulations in

the transmitted information. OTN systems were not designed to cope with this technology.

The use of block ciphers, for instance, requires some adaptations to handle packet

generation and the transport of auxiliary cryptographic information, which are needed in

the data encryption and decryption processes. This work presents and describes in detail

the conception, architecture design, implementation, and 40 nm silicon prototyping of an

Advanced Encryption Standard with Galois/Counter Mode (AES-GCM) Cryptography

Engine operating at 100 Gbit/s, specifically developed to protect high-speed OTN

communication links, providing confidentiality and integrity to transmitted data.

Key Words: optical transport network; OTN; cryptography; confidentiality; integrity;

encryption; decryption; AES-GCM.

RESUMO
A tecnologia de redes de transporte óptico (Optical Transport Network – OTN) permite a

transmissão de dados multisserviços de forma transparente e em alta velocidade. Suas

operações de processamento digital envolvendo manipulação de dados dos sinais clientes

para empacotamento e transporte pela rede óptica são realizadas por processadores OTN,

implementados em avançados dispositivos de lógica programável ou em circuitos

integrados de aplicação específica. Embora altamente eficiente em suas funções de

transporte e monitoração dos dados, o canal de comunicação OTN é vulnerável a uma série

de ataques na camada óptica que podem permitir a extração e/ou manipulação de

informações confidenciais. Mecanismos de criptografia endereçam a questão da segurança

da informação em um enlace de comunicação, garantindo a confidencialidade dos dados.

Estratégias de autenticação, por outro lado, são empregadas para garantir sua integridade

ao permitir a detecção de eventuais manipulações na informação transmitida. Sistemas

OTN não foram projetados para lidar com essa tecnologia. O uso de cifradores de bloco,

por exemplo, exige algumas adaptações para tratar a geração de pacotes e o transporte de

informações criptográficas auxiliares, necessárias ao processo de cifragem e decifração dos

dados. Este trabalho apresenta e descreve de forma detalhada a concepção, projeto de

arquitetura, implementação e prototipagem em silício na tecnologia de 40 nm de um

Módulo Criptográfico utilizando o Padrão de Criptografia Avançada com Modo

Galois/Contador (Advanced Encryption Standard with Galois/Counter Mode – AES-

GCM) operando a 100 Gbit/s, desenvolvido especificamente para proteger enlaces de

comunicação OTN de alta velocidade, proporcionando integridade e confidencialidade aos

dados transmitidos.

Palavras Chave: rede de transporte óptico; OTN; criptografia; confidencialidade;

integridade; cifragem; decifração; AES-GCM.

LIST OF FIGURES
Figure 2.1 OTN signal hierarchical frame construction. .. 34

Figure 2.2 G.709 OTN frame structure. ... 35

Figure 2.3 Client signals being mapped into an OTUk structure transported in a

single wavelength optical channel. ... 36

Figure 2.4 Ciphered communication system. ... 53

Figure 2.5 Scytale (a) used by the Spartan and the representation of the monoalphabetic

substitution used in the Caesar cipher (b). .. 55

Figure 2.6 Cipher disk (a) and the “Tabula Recta” (b) used by Trithemius. 56

Figure 2.7 Enigma machine (a), 3D illustration of its rotors (b), and the plug board (c)

with connections creating the substitutions S ↔ O and A ↔ J. 58

Figure 2.8 Symmetric-key cryptosystem. ... 60

Figure 2.9 Asymmetric-key cryptosystem.. 62

Figure 2.10 Hybrid (symmetric and asymmetric) OTN cryptosystem. 64

Figure 2.11 BB84 protocol illustration. .. 66

Figure 2.12 AES encryption algorithm pseudo-code. .. 68

Figure 2.13 Simplified flowchart of the AES encryption algorithm. ... 69

Figure 2.14 Illustration of the AES algorithm Substitute Bytes step. .. 70

Figure 2.15 Illustration of the AES algorithm Shift Rows step. ... 70

Figure 2.16 Illustration of the AES algorithm Mix Columns step. .. 71

Figure 2.17 Illustration of the AES algorithm Add Round Key step. .. 71

Figure 2.18 Illustration of the CTR mode of encryption using an

AES block cipher and an IV sequence. ... 73

Figure 2.19 Examples of the encryption of an original image (a) using ECB (b) and

CBC or CTR (c), highlighting the fragility of the ECB mode. 74

Figure 2.20 Illustration of the AES-GCM architecture. ... 75

Figure 2.21 IBM quantum roadmap. .. 80

Figure 3.1 100G OTN cryptography high-level system architecture diagram. 83

Figure 3.2 100G OTN crypto packet frame construction. .. 84

Figure 3.3 Correlation of the encryption overhead and the encrypted message of

consecutive crypto packets. ... 86

Figure 3.4 ODU overhead fields of an OTN frame. ... 88

Figure 3.5 Crypto packet made up of four padded ODU frames and

distribution (location) of the encryption overhead bytes. 89

List of Figures

Figure 4.1 100G AES-GCM Cryptography Engine hardware functional

architecture block diagram. ... 98

Figure 4.2 Padded ODU frame handled by the Crypto4OTN block. 102

Figure 4.3 Crypto4OTN block interface diagram. ... 103

Figure 4.4 Crypto4OTN TX processor input data timing diagram. 106

Figure 4.5 Loopback Mux sub-block interface. ... 107

Figure 4.6 Data Path Flow Control sub-block interface. .. 111

Figure 4.7 Data Path Flow Control sub-block simplified functional

architecture diagram. ... 114

Figure 4.8 OPU Cryptography Engine sub-block interface.. 116

Figure 4.9 OPU Cryptography Engine high-level functional architecture diagram. 119

Figure 4.10 OPU Drop data grouping in the 640-bit output bus. ... 121

Figure 4.11 OPU Drop input data timing diagram. .. 122

Figure 4.12 OPU Drop output data timing diagram. .. 122

Figure 4.13 OPU Add input data timing diagram. ... 124

Figure 4.14 OPU Add output data timing diagram. ... 124

Figure 4.15 Crypto Engine Control output data timing diagram. ... 129

Figure 4.16 ODU OH Inserter sub-block interface. ... 130

Figure 4.17 Modular (Galois) LFSR with xm as the most significant bit. 133

Figure 4.18 ODU OH Extractor sub-block interface. ... 134

Figure 4.19 Replacement Signal Generator sub-block interface. ... 137

Figure 4.20 ODU AIS-like — all ‘1s’ pattern in the gray area. ... 139

Figure 4.21 ODU user-defined pattern in the gray area. .. 139

Figure 4.22 Authentication Buffer sub-block interface. ... 140

Figure 4.23 Correlation of the authentication TAG and the encrypted

OPU message of two consecutive crypto packets. .. 142

Figure 4.24 Control Engine high-level architecture diagram. .. 144

Figure 4.25 Control Engine sub-block interface. ... 145

Figure 4.26 TX processor controller finite state machine state diagram. 154

Figure 4.27 Some TX control signals as a function of MFAS values. 154

Figure 4.28 Loss of authentication (LOA) 64-bit sliding window mechanism. 156

Figure 4.29 RX processor controller finite state machine state diagram. 158

Figure 4.30 Multistage synchronization cell (a) and corresponding timing diagram (b). 160

Figure 5.1 16-Stage Galois LFSR RTL design code excerpt. .. 162

Figure 5.2 16-Stage Galois LFSR schematic view. .. 163

List of Figures

Figure 5.3 Magnified view of some multiplexers from the

16-stage Galois LFSR schematic. ... 164

Figure 5.4 Magnified view of some shift register flip-flops from the

16-stage Galois LFSR schematic. ... 164

Figure 5.5 Shift-register-based delay line modeled with generate statements. 165

Figure 5.6 Shift-register-based delay line modeled with the left shift operator (<<). 166

Figure 5.7 Test bench module architecture used for functional verification of the

Crypto4OTN block. .. 167

Figure 5.8 Padded ODU frame structure with fixed patterns, as generated by the

test bench driver. ... 167

Figure 5.9 Simulation waveforms (I) for the OPU Cryptography Engine sub-block. 171

Figure 5.10 Simulation waveforms (II) for the OPU Cryptography Engine sub-block. 172

Figure 5.11 Clear and encrypted data values corresponding to different lines of a frame. 173

Figure 5.12 Simulation waveforms (III) for the OPU Cryptography Engine sub-block. 174

Figure 5.13 Simulation waveforms (I) for the ODU OH Inserter and

Extractor sub-blocks. .. 177

Figure 5.14 Crypto packet simulated frame data showing overhead insertion. 178

Figure 5.15 Simulation waveforms (II) for the ODU OH Inserter and

Extractor sub-blocks. .. 179

Figure 5.16 Simulation waveforms (III) for the ODU OH Inserter and

Extractor sub-blocks. .. 180

Figure 5.17 Simulation waveforms (IV) for the ODU OH Inserter and

Extractor sub-blocks. .. 181

Figure 5.18 Simulation waveforms (V) for the ODU OH Inserter and

Extractor sub-blocks. .. 182

Figure 5.19 Simulation waveforms and data for the Replacement Signal

Generator sub-block. ... 184

Figure 5.20 Simulation waveforms (I) for the Crypto4OTN block. ... 188

Figure 5.21 Simulation waveforms (II) for the Crypto4OTN block. 189

Figure 5.22 Simulation waveforms (III) for the Crypto4OTN block. 190

Figure 5.23 Simulation waveforms (IV) for the Crypto4OTN block. 191

Figure 5.24 Simulation waveforms (V) for the Crypto4OTN block. 192

Figure 5.25 Simulation waveforms (VI) for the Crypto4OTN block. 193

Figure 5.26 Simulation waveforms (VII) for the Crypto4OTN block. 194

Figure 5.27 Simulation waveforms (VIII) for the Crypto4OTN block. 195

Figure 5.28 CPQD’s 100G OTN Processor ASSP hardware functional

architecture block diagram. ... 196

List of Figures

Figure 5.29 Packaged FCBGA 100G OTN Processor ASSP pictures. 198

Figure 5.30 100G OTN Processor test environment setup diagram. .. 199

Figure 5.31 3D model of the evaluation board developed for the 100G OTN Processor. 200

Figure 5.32 Evaluation board designed and manufactured for testing the

100G OTN Processor ASSP.. 201

Figure 5.33 BGA socket for the 100G OTN Processor assembly and testing. 201

Figure 5.34 100G OTN Processor evaluation board with the CPU (SBC) and

CFP modules installed. ... 202

Figure 5.35 Setup for EVB bring-up and preliminary tests of the 100G OTN Processor. 202

Figure 5.36 Results of the CLI commands for the 100G OTN Processor test register

data (a) writing and (b) reading, and (c) RTL version register reading. 204

Figure 5.37 CFP passive break-out module.. 205

Figure 5.38 CFP passive break-out module with a single-channel

11.18 Gbit/s differential electrical loopback connection. 205

Figure 5.39 Multi-fiber push on loopback adapter. .. 206

Figure 5.40 Eye diagram of an 11.18 Gbit/s signal received by one of the

SerDes showing bit transitions. ... 206

Figure 5.41 Eye diagram of an 11.18 Gbit/s signal received by one of the

SerDes without bit transitions. .. 207

Figure 5.42 100G OTN Processor EVB test setup with a JDSU ONT-512

OTN traffic analyzer. .. 207

Figure 5.43 CFP Cross Adapter card designed to correct the interconnection

mistake between a CFP module and the ASSP. .. 208

Figure 5.44 CFP Cross Adapter card inserted on the ASSP EVB CFP slot. 209

Figure 5.45 Successful SerDes parallel bus loopback with 100 Gbit/s PRBS data. 209

Figure 5.46 Debug Module (generator and monitor) implemented in the

100G OTN Processor. ... 210

Figure B.1 Digital integrated circuit design flow used by CPQD. .. 249

LIST OF TABLES
Table 2.1 Euclidean algorithm steps for the calculation of

gcd(1160718174, 316258250) = 1078. ... 41

Table 2.2 Arithmetic modulo 2 for the finite field GF(2). .. 47

Table 2.3 Cryptanalytic attack models. ... 54

Table 2.4 Recommended key bit lengths for security levels of 80, 128, 192, and

256 bits for both asymmetric and symmetric cryptosystems. 63

Table 2.5 What to expect for different timeframes based on the

expert’s estimates of the likelihood of a quantum computer able to

break the RSA-2048 algorithm in 24 hours. ... 79

Table 2.6 Literature-reported estimates of quantum resilience for

current cryptosystems. .. 79

Table 3.1 Definitions of crypto session, crypto block, and crypto packet. 84

Table 3.2 Encryption overhead frame format and field sizes.. 86

Table 3.3 Hardware layer programmable consequent actions. ... 91

Table 4.1 100G AES-GCM Cryptography Engine operation modes. 97

Table 4.2 Standardized interfaces used in the 100G AES-GCM Cryptography Engine. 100

Table 4.3 Clock signals used in the 100G AES-GCM Cryptography Engine....................... 100

Table 4.4 Reset signals used in the 100G AES-GCM Cryptography Engine. 101

Table 4.5 Crypto4OTN block interface signals. ... 105

Table 4.6 Loopback Mux sub-block interface signals. ... 110

Table 4.7 Data Path Flow Control sub-block interface signals. .. 114

Table 4.8 OPU Cryptography Engine sub-block interface signals. 118

Table 4.9 OPU Drop sub-block interface signals. ... 120

Table 4.10 OPU Add sub-block interface signals. .. 123

Table 4.11 AES-GCM sub-block interface signals. .. 126

Table 4.12 AES-GCM sub-block data path latencies. .. 127

Table 4.13 Crypto Engine Control sub-block interface signals. ... 128

Table 4.14 ODU OH Inserter sub-block interface signals. ... 131

Table 4.15 Overhead data scrambling XOR operations. ... 133

Table 4.16 ODU OH Extractor sub-block interface signals. ... 135

Table 4.17 Replacement Signal Generator sub-block interface signals. 138

Table 4.18 Authentication Buffer sub-block interface signals. ... 142

List of Tables

Table 4.19 Control Engine sub-block interface signals. ... 150

Table 4.20 TX processor main general requirements.. 151

Table 4.21 TX processor session control state actions. ... 153

Table 4.22 RX processor main general requirements. .. 155

Table 4.23 RX processor session control state actions. .. 157

Table 5.1 Crypto4OTN block hierarchical area distribution. .. 198

Table 5.2 100G OTN Processor chip and package parameters. .. 198

Table 5.3 Test and RTL version registers for each block

(or group of blocks) of the 100G OTN Processor. .. 203

Table A.1 100G AES-GCM Cryptography Engine configuration register map. 229

Table A.2 Description of the register ips_access_tst. .. 229

Table A.3 Description of the register rtl_version. .. 229

Table A.4 Description of the register blk_rst. .. 230

Table A.5 Description of the register blk_ctr... 230

Table A.6 Description of the register (RESERVED). .. 231

Table A.7 Description of the register tx_intr_status. ... 231

Table A.8 Description of the register tx_intr_mask. .. 231

Table A.9 Description of the register tx_intr_hist. .. 232

Table A.10 Description of the register rx_intr_status. ... 232

Table A.11 Description of the register rx_intr_mask. .. 233

Table A.12 Description of the register rx_intr_hist. .. 233

Table A.13 Description of the register tx_proc_ctrl. ... 234

Table A.14 Description of the register tx_session_state. ... 234

Table A.15 Description of the register tx_session_status. ... 234

Table A.16 Description of the register tx_session_period. .. 235

Table A.17 Description of the register tx_session_threshold. ... 235

Table A.18 Description of the register tx_key_reuse_period. ... 235

Table A.19 Description of the register tx_conseq_act. .. 236

Table A.20 Description of the register tx_key_0. .. 236

Table A.21 Description of the register tx_key_1. .. 236

Table A.22 Description of the register tx_key_change. ... 236

Table A.23 Description of the register tx_aad_buffer. .. 236

Table A.24 Description of the register tx_aad_capture.. 237

Table A.25 Description of the register tx_iv_csid. .. 237

Table A.26 Description of the register tx_iv_cbid. .. 237

List of Tables

Table A.27 Description of the register tx_iv_cpid. .. 237

Table A.28 Description of the register tx_calc_tag. .. 238

Table A.29 Description of the register tx_repl_signal_pattern. ... 238

Table A.30 Description of the register tx_cnt_latch. ... 238

Table A.31 Description of the register rx_proc_ctrl. ... 239

Table A.32 Description of the register rx_session_state. ... 239

Table A.33 Description of the register rx_session_status. ... 239

Table A.34 Description of the register rx_session_period. .. 240

Table A.35 Description of the register rx_session_threshold. ... 240

Table A.36 Description of the register rx_key_reuse_period. ... 240

Table A.37 Description of the register rx_conseq_act. .. 241

Table A.38 Description of the register rx_key_0. .. 241

Table A.39 Description of the register rx_key_1. .. 241

Table A.40 Description of the register rx_aad_buffer. .. 242

Table A.41 Description of the register rx_iv_csid. .. 242

Table A.42 Description of the register rx_iv_cbid. .. 242

Table A.43 Description of the register rx_iv_cpid. .. 242

Table A.44 Description of the register rx_calc_tag. .. 243

Table A.45 Description of the register rx_rcvd_tag. .. 243

Table A.46 Description of the register rx_cnt_latch. ... 243

Table A.47 Description of the register rx_cs_cnt_clear. .. 243

Table A.48 Description of the register rx_cs_cnt. ... 244

Table A.49 Description of the register rx_cp_cnt_clear. ... 244

Table A.50 Description of the register rx_cp_cnt. ... 244

Table A.51 Description of the register rx_loa_window_mask. ... 244

Table A.52 Description of the register rx_loa_cnt_threshold. ... 245

Table A.53 Description of the register rx_loa_fail_cnt_clear. ... 245

Table A.54 Description of the register rx_loa_fail_cnt.. 245

Table A.55 Description of the register rx_tag_fail_cnt_clear. ... 246

Table A.56 Description of the register rx_tag_fail_cnt.. 246

Table A.57 Description of the register rx_csks_bit_cnt_clear. .. 246

Table A.58 Description of the register rx_csks_bit0_cnt. .. 246

Table A.59 Description of the register rx_csks_bit1_cnt. .. 247

Table A.60 Description of the register rx_csks_hist_cnt_clear. .. 247

Table A.61 Description of the register rx_csks_bit0_hist_cnt. .. 247

Table A.62 Description of the register rx_csks_bit1_hist_cnt. .. 248

Table A.63 Description of the register (RESERVED). .. 248

LIST OF ACRONYMS

Acronym Description
AAD Additional Authenticated Data
AES Advanced Encryption Standard
AIS Alarm Indication Signal

ASIC Application Specific Integrated Circuit
ASSP Application Specific Standard Product
ATE Automated Test Equipment
ATM Asynchronous Transfer Mode
ATPG Automatic Test Pattern Generation
BER Bit Error Rate

BERT Bit Error Rate Tester
BIP Bit-Interleaved Parity

BIST Built-In Self-Test
BGA Ball Grid Array
CBR Constant Bit Rate
CBC Cipher Block Chaining
CBID Crypto Block ID
CFP C Form-Factor Pluggable
CLI Command-Line Interface

CPID Crypto Packet ID
CPU Central Processing Unit
CSID Crypto Session ID
CSKS Crypto Session Key Selection
CTS Clock Tree Synthesis
DES Data Encryption Standard
DFT Design for Verification
DH Diffie–Hellman
DoS Denial of Service
DRC Design Rule Checking
DUT Design Under Test

DWDM Dense Wavelength Division Multiplexing
ECB Electronic Code Book

ECDH Elliptic Curve Diffie–Hellman
EFEC Enhanced Forward Error Correction
ETSI European Telecommunications Standards Institute
EVB Evaluation Board
FA Frame Alignment

FAS Frame Alignment Signal
FCBGA Flip Chip Ball Grid Array

FEC Forward Error Correction
FIFO First In, First Out
FIPS Federal Information Processing Standards

FPGA Field Programmable Gate Array
FS Frame Start

FSM Finite State Machine

List of Acronyms

Acronym Description
GCC General Communication Channel
GCM Galois/Counter Mode
GCD Greatest Common Divisor

GDSII Graphic Design System II
GFP Generic Framing Procedure
HCF Highest Common Factor
IEEE Institute of Electrical and Electronics Engineers

IC Integrated Circuit
IP Intellectual Property / Internet Protocol

ITU-T International Telecommunication Union
Telecommunication Standardization Sector

IV Initialization Vector
JTAG Joint Test Action Group
KDF Key Derivation Function

LCAS Link Capacity Adjustment Scheme
LEC Logic Equivalence Checking
LFSR Linear Feedback Shift Register
LOA Loss of Authentication
LUT Lookup Table
LVS Layout Versus Schematic
MAC Message Authentication Code
MCU Microcontroller Unit
MDIO Management Data Input/Output
MFAS Multi-Frame Alignment Signal
MPO Multi-Fiber Push On
MFS Multi-Frame Start
MLM Multi-Layer Mask
NIST National Institute of Standards and Technology
OCh Optical Channel

ODTN Open and Disaggregated Transport Network
ODU Optical Channel Data Unit
OH Overhead

ONF Open Networking Foundation
OPU Optical Channel Payload Unit
OSI Open Systems Interconnection
OTL Optical Transport Layer
OTN Optical Transport Network
OTP One-Time Pad
OTU Optical Channel Transport Unit
PCB Printed Circuit Board
PDH Plesiochronous Digital Hierarchy
PKC Public-Key Cryptography
PKS Public-Key System
PLL Phase Locked Loop

PRBS Pseudo-Random Binary Sequence
QKD Quantum Key Distribution
QEC Quantum Error Correction
QRE Quantum-Resistant Encryption

QRNG Quantum Random Number Generation

List of Acronyms

Acronym Description
RES Reserved
RTL Register Transfer Level
RSA Rivest–Shamir–Adleman
SBC Single Board Computer
SDH Synchronous Digital Hierarchy
SDN Software-Defined Networking

SDON Software-Defined Optical Networking
SED Self-Encrypting Drive

SerDes Serializer/Deserializer
SHA Secure Hash Algorithm
SMA Subminiature Version A
SNDL Store Now and Decrypt Later
SNR Signal-to-Noise Ratio

SONET Synchronous Optical Network
SSF Server Signal Fail
STA Static Timing Analysis
TDM Time Division Multiplexing

T-SDN Transport-Software-Defined Networking
TSF Trail Signal Fail
USB Universal Serial Bus
UVM Universal Verification Methodology
VCAT Virtual Concatenation
WDM Wavelength Division Multiplexing
XOR Exclusive OR

CONTENTS
ACKNOWLEDGMENTS .. VI

ABSTRACT ... VIII

RESUMO ... IX

LIST OF FIGURES ... X

LIST OF TABLES .. XIV

LIST OF ACRONYMS ... XVII

CONTENTS .. XX

CHAPTER 1 INTRODUCTION .. 26

1.1 Background and Purpose .. 26

1.2 Thesis Outline ... 28

1.3 Author Contributions .. 29

1.4 Subject Related Author’s Works .. 29

1.4.1 Patent ... 29

1.4.2 Journal Published Paper .. 29

1.4.3 Conference Proceeding Papers .. 29

1.4.4 Computer Program Registration ... 30

CHAPTER 2 OPTICAL TRANSPORT TECHNOLOGIES AND CRYPTOGRAPHY 31

2.1 Introduction .. 31

2.2 Optical Transport Networks ... 34

2.3 Security Threats in Optical Networks .. 36

2.4 Mathematical Background for Cryptography .. 39

2.4.1 Number theory .. 39

2.4.1.1 Divisibility ... 39

2.4.1.2 Prime Numbers .. 39

2.4.1.3 The Euclidean Algorithm .. 40

2.4.1.4 Modular Arithmetic and Congruence .. 41

2.4.1.5 Fermat’s and Euler’s Theorems ... 42

2.4.2 Abstract Algebra and Finite (Galois) Fields ... 44

2.4.2.1 Groups ... 44

2.4.2.2 Rings .. 45

2.4.2.3 Fields ... 45

Contents

2.4.3 Polynomial Arithmetic in Extension Fields .. 47

2.4.4 One-Way and Trapdoor Functions .. 49

2.4.4.1 Integer Factorization Problem ... 50

2.4.4.2 Discrete Logarithm Problem .. 50

2.4.5 Hash Functions .. 52

2.5 Cryptographic Systems ... 53

2.5.1 Historical Evolution .. 55

2.5.2 Symmetric and Asymmetric Cryptography .. 60

2.5.3 Quantum Cryptography ... 64

2.6 Advanced Encryption Standard – AES ... 67

2.6.1 Substitute Bytes ... 69

2.6.2 Shift Rows ... 70

2.6.3 Mix Columns... 70

2.6.4 Add Round Key .. 71

2.6.5 Round Key Derivation .. 72

2.7 Modes of Operation ... 72

2.7.1 Galois/Counter Mode – GCM ... 74

2.7.2 GCM Security Aspects .. 75

2.8 Quantum Threat and Post Quantum Cryptography .. 76

CHAPTER 3 OTN CRYPTOGRAPHIC SYSTEM ARCHITECTURE 82

3.1 OTN Cryptographic Link ... 82

3.2 Crypto Session, Crypto Block, and Crypto Packet ... 83

3.3 Hardware and Software Layers.. 85

3.3.1 Hardware Layer Control ... 85

3.3.2 Establishment and Management of Crypto Sessions .. 85

3.3.3 Key Management .. 86

3.4 Encryption Overhead Frame .. 86

3.4.1 Authentication TAG .. 87

3.4.2 AAD .. 87

3.4.3 IV .. 87

3.4.4 Encryption Overhead Transmission Format ... 88

3.5 Error or Failure Recovery and Session Management .. 89

3.5.1 Hardware Recovery and Consequent Actions ... 90

3.5.2 Software Recovery .. 91

3.5.3 Loss of Authentication and TAG Mismatch ... 92

3.5.4 Session-About-to-Expire Interrupt .. 92

Contents

3.5.5 Session Key Reuse .. 93

3.6 Configuration and Performance Monitoring Procedures .. 93

3.6.1 Crypto Session Establishment ... 93

3.6.1.1 RX Side .. 93

3.6.1.2 TX Side .. 93

3.6.2 Crypto Session Key Change ... 94

3.6.2.1 TX Side .. 94

3.6.3 Use of Additional Authenticated Data (AAD) .. 94

3.6.4 Performance Monitoring Counters .. 95

CHAPTER 4 100G AES-GCM CRYPTOGRAPHY ENGINE 96

4.1 Features and Characteristics .. 96

4.2 Operation Modes .. 97

4.3 Hardware Functional Architecture .. 97

4.3.1 Nomenclature for Signals and Buses .. 99

4.3.2 Clock and Reset .. 100

4.3.3 Crypto4OTN Block ... 102

4.3.4 Loopback Mux Sub-Block .. 107

4.3.5 Data Path Flow Control Sub-Block ... 111

4.3.6 OPU Cryptography Engine Sub-Block ... 116

4.3.6.1 OPU Drop Sub-Block .. 119

4.3.6.2 OPU Add Sub-Block ... 122

4.3.6.3 AES-GCM Sub-Block ... 124

4.3.6.4 Crypto Engine Control Sub-Block ... 127

4.3.7 ODU OH Inserter Sub-Block .. 130

4.3.7.1 Scrambling Function .. 132

4.3.8 ODU OH Extractor Sub-Block ... 134

4.3.8.1 Descrambling Function .. 136

4.3.9 Replacement Signal Generator Sub-Block .. 137

4.3.10 Authentication Buffer Sub-Block ... 140

4.3.11 Control Engine Sub-Block .. 144

4.3.11.1 TX Processor Controller .. 151

4.3.11.2 RX Processor Controller .. 155

4.3.11.3 Register and Reset Controller .. 159

CHAPTER 5 DESIGN, VERIFICATION, AND SILICON PROTOTYPING 161

5.1 Crypto4OTN Block Design and Testing .. 161

Contents

5.1.1 RTL Design ... 161

5.1.2 Test Bench Design .. 166

5.2 Functional Simulations .. 168

5.2.1 OPU Cryptography Engine ... 168

5.2.2 ODU OH Inserter and Extractor ... 175

5.2.3 Replacement Signal Generator .. 183

5.2.4 Crypto4OTN ... 185

5.3 100G OTN Processor ... 196

5.3.1 Chip Design and Manufacturing ... 197

5.4 Chip Prototype Testing .. 199

5.4.1 Evaluation Board ... 199

5.4.2 CPU Interface Testing ... 202

5.4.3 SerDes Testing .. 204

5.4.4 IP Block Testing .. 208

CHAPTER 6 CONCLUSIONS AND FINAL REMARKS ... 211

6.1 Main Contributions ... 213

6.2 Remarks and Future Work Suggestions .. 213

REFERENCES .. 215

APPENDIX A CONFIGURATION REGISTER MEMORY MAP 227

A.1.1 ips_access_tst – IPS Access Test .. 229

A.1.2 rtl_version – Crypto4otn RTL Version ... 229

A.1.3 blk_rst – Crypto4OTN Block Reset .. 230

A.1.4 blk_ctr – Block Control ... 230

A.1.5 RESERVED – Reserved Register ... 231

A.1.6 tx_intr_status – TX Processor Interrupt Status ... 231

A.1.7 tx_intr_mask – TX Processor Interrupt Mask ... 231

A.1.8 tx_intr_hist – TX Processor Interrupt Request History ... 231

A.1.9 rx_intr_status – RX Processor Interrupt Status ... 232

A.1.10 rx_intr_mask – RX Processor Interrupt Mask .. 232

A.1.11 rx_intr_hist – RX Processor Interrupt Request History .. 233

A.1.12 tx_proc_ctrl – TX Processor Control .. 233

A.1.13 tx_session_state – TX Crypto Session State Control .. 234

A.1.14 tx_session_status – TX Crypto Session Status .. 234

A.1.15 tx_session_period – TX Crypto Session Period .. 234

Contents

A.1.16 tx_session_threshold – TX Session Period Threshold .. 235

A.1.17 tx_key_reuse_period – TX Key Reuse Period .. 235

A.1.18 tx_conseq_act – TX Consequent Actions ... 235

A.1.19 tx_key_0 – TX Crypto Session Key 0... 236

A.1.20 tx_key_1 – TX Crypto Session Key 1... 236

A.1.21 tx_key_change – TX Key Change Control ... 236

A.1.22 tx_aad_buffer – TX Additional Authenticated Data Buffer 236

A.1.23 tx_aad_capture – TX AAD Capture Control... 237

A.1.24 tx_iv_csid – TX IV Crypto Session ID ... 237

A.1.25 tx_iv_cbid – TX IV Crypto Block ID ... 237

A.1.26 tx_iv_cpid – TX IV Crypto Packet ID .. 237

A.1.27 tx_calc_tag – TX Calculated Authentication TAG ... 238

A.1.28 tx_repl_signal_pattern – TX Replacement Signal Pattern 238

A.1.29 tx_cnt_latch – TX Counter Latch Control .. 238

A.1.30 rx_proc_ctrl – RX Processor Control .. 238

A.1.31 rx_session_state – RX Crypto Session State Control .. 239

A.1.32 rx_session_status – RX Crypto Session Status ... 239

A.1.33 rx_session_period – RX Crypto Session Period ... 240

A.1.34 rx_session_threshold – RX Session Period Threshold .. 240

A.1.35 rx_key_reuse_period – RX Key Reuse Period .. 240

A.1.36 rx_conseq_act – RX Consequent Actions ... 240

A.1.37 rx_key_0 – RX Crypto Session Key 0 .. 241

A.1.38 rx_key_1 – RX Crypto Session Key 1 .. 241

A.1.39 rx_aad_buffer – RX Additional Authenticated Data Buffer 242

A.1.40 rx_iv_csid – RX IV Crypto Session ID ... 242

A.1.41 rx_iv_cbid – RX IV Crypto Block ID ... 242

A.1.42 rx_iv_cpid – RX IV Crypto Packet ID .. 242

A.1.43 rx_calc_tag – RX Calculated Authentication TAG... 243

A.1.44 rx_rcvd_tag – RX Received Authentication TAG .. 243

A.1.45 rx_cnt_latch – RX Counter Latch Control .. 243

A.1.46 rx_cs_cnt_clear – RX Crypto Session Counter Clear ... 243

A.1.47 rx_cs_cnt – RX Crypto Session Counter .. 244

A.1.48 rx_cp_cnt_clear – RX Crypto Packet Counter Clear .. 244

A.1.49 rx_cp_cnt – RX Crypto Packet Counter .. 244

A.1.50 rx_loa_window_mask – RX Loss of Authentication Window Mask.................... 244

A.1.51 rx_loa_cnt_threshold – RX Loss of Authentication Counter Threshold 245

A.1.52 rx_loa_fail_cnt_clear – RX Loss of Authentication Failure Counter Clear 245

Contents

A.1.53 rx_loa_fail_cnt – RX Loss of Authentication Failure Counter 245

A.1.54 rx_tag_fail_cnt_clear – RX Authentication TAG Failure Counter Clear 245

A.1.55 rx_tag_fail_cnt – RX Authentication TAG Failure Counter 246

A.1.56 rx_csks_bit_cnt_clear – RX CSKS Bit Counter Clear .. 246

A.1.57 rx_csks_bit0_cnt – RX CSKS Bit 0 Counter .. 246

A.1.58 rx_csks_bit1_cnt – RX CSKS Bit 1 Counter .. 246

A.1.59 rx_csks_hist_cnt_clear – RX CSKS Histogram Counter Clear 247

A.1.60 rx_csks_bit0_hist_cnt – RX CSKS Bit 0 Histogram Counter 247

A.1.61 rx_csks_bit1_hist_cnt – RX CSKS Bit 1 Histogram Counter 247

A.1.62 RESERVED – Reserved Register ... 248

APPENDIX B DIGITAL INTEGRATED CIRCUIT DESIGN FLOW 249

B.1 Front-End Phase .. 250

B.1.1 Technical Specifications ... 250

B.1.2 Architecture Design .. 250

B.1.3 Modeling and Validation .. 250

B.1.4 RTL Design ... 251

B.1.5 Functional Verification ... 251

B.1.6 Boundary Scan .. 252

B.1.7 Synthesis and Integration .. 252

B.2 Back-End Phase ... 253

B.2.1 Place and Route ... 253

B.2.2 Physical Verification ... 253

B.2.3 Automatic Test Pattern Generation (ATPG) ... 254

B.2.4 Fail Simulation .. 254

B.2.5 Vector Test Transferring ... 254

B.2.6 Tape-Out ... 254

APPENDIX C ODU OH INSERTER SUB-BLOCK RTL CODE LISTING 255

26

Chapter 1

INTRODUCTION

1.1 BACKGROUND AND PURPOSE

The ever-growing convergence of Internet video and mobile data services has been pushing

optical network infrastructure to expand the available transmission capacity, using new

modulation formats and increasingly higher transmission data rates [1–4]. On top of the

physical media advances, optical transport network (OTN) technology [5–8] emerged as

an evolution of the synchronous optical network (SONET) and synchronous digital

hierarchy (SDH) systems [9], enabling carriers to fully utilize each fiber wavelength by

transparently mapping client signals according to a standardized digital wrapping

technique [10] in a scalable and cost-optimized way.

OTN has become the de facto technology for long-distance transport networking and has

been extensively deployed across the globe, providing carrier-class protection and carrying

mission-critical traffic from the edge into the metro and core of the network. The global

optical transport network market size is expected to grow from $23.91 billion in 2023 to

$35.18 billion in 2027, at a compound annual growth rate (CAGR) of 10.1% [11].

All the digital processing operations involving client data manipulation for wrapping and

transmission over the optical network are performed by OTN processor devices, with

functional logic blocks or intellectual property (IP) cores implemented in either high-end

field programmable gate arrays (FPGAs) or application specific integrated circuits /

standard products (ASICs/ASSPs).

Although highly efficient and error-protected [12], the OTN communication channel is

insecure in terms of allowing an intruder to tap sensitive information from the link and/or

manipulate and change the transmitted data. The rise of cybercrimes and the consequent

costs of data breaches drive network communication security to the cutting edge of

encryption technology, including quantum cryptography [13–17].

Chapter 1 – Introduction 27

Data can be encrypted at different individual layers of the open systems interconnection

(OSI) model [18] or even at multiple layers, in an approach known as layered security.

In optical transport networking, the wavelength division multiplexing (WDM) technology

is considered a layer 0 — an additional level in the base of the OSI model stack, dealing

with physical optics.

In this context, OTN is a physical layer protocol carrying out the OSI layer 1 functions in

a transport network, and the great advantage of encrypting at this layer is that it enables a

transparent secure transmission at the payload level, after the information data have passed

through the different upper layer protocols.

In the scope of microelectronics, many contributions have been presented with alternatives

for implementing cryptographic algorithms, such as the well-known Advanced Encryption

Standard with Galois/Counter Mode (AES-GCM) [19–24]. However, because of the data

block processing nature of this algorithm, its use in OTN systems requires adaptations such

as a packet generation mechanism, ensuring data segmentation and aggregation, as well as

a transport container for cryptographic auxiliary information.

This work presents the development of a 40 nm silicon-prototyped architecture for a

100 Gbit/s AES-GCM Cryptography Engine solution. The design was specifically

conceived for OTN cryptosystems (OSI layer 1), with emphasis on systemic aspects

addressing important issues such as the generation of cryptographic packets (with OTN

frame aggrupation and insertion of the encryption overhead), the composition of the

initialization vector sequence (concatenating four distinct fields with specific functions),

and the transport of the encryption overhead within the OTN infrastructure (using reserved

fields of the OTN frames).

Additional features designed and implemented in this work are also covered, such as an

optional scrambling of the encryption overhead data for enhanced security, a

synchronization and hitless cipher key change strategy with a protection mechanism based

on forward error correction (with no acknowledgment signaling), the retention of the

received cryptographic packets until authentication confirmation, and the generation of

programmed consequent actions as a result of user selected triggering events (fail signals,

errors, authentication mismatching, etc.).

Chapter 1 – Introduction 28

The register transfer level (RTL) design of the proposed solution was fully verified by

simulations, and the implemented IP core was integrated into an 8M gate 40 nm 100 Gbit/s

OTN processor ASSP developed by CPQD [25] for the Brazilian telecom industry,

integrating third-party mixed-signal solutions with previously developed functional logic

blocks [26], enabling the establishment of secure optical communication links.

1.2 THESIS OUTLINE

Chapter 2 presents introductory concepts related to optical transport and encryption

technologies, including some relevant mathematical background. Key elements of the

hierarchical construction of OTN frames and the main definitions relating to encryption,

authentication, and symmetric/asymmetric cryptosystems are discussed, as well as some

details of the AES algorithm and modes of operation, such as the Galois/Counter Mode.

Quantum cryptography, quantum computing threats, and post-quantum cryptography are

also covered.

The architecture of the developed OTN cryptographic system is described in Chapter 3,

with emphasis on the concepts of cryptographic session, block, and packet, as well as

details about the role of the hardware and software layers, the structure of the encryption

overhead framing, the error or failure recovery mechanisms, and the session management.

Chapter 4 presents the 100G AES-GCM Cryptography Engine, with its features,

characteristics, operation modes, configuration procedures, hardware functional

architecture, partitioning of the logic building blocks, and implementation details.

The design, verification, and 40 nm silicon prototyping of the proposed solution, integrated

into a 100G OTN Processor developed by CPQD, is shown in Chapter 5.

Chapter 6 brings the conclusions and final remarks about the conducted work, highlighting

the main contribution and suggestions for future research.

The interested reader is referred to Appendix A for a complete description of the 100G

AES-GCM Cryptography Engine configuration register map, to Appendix B for an

explanation of the digital integrated circuit design flow used by CPQD, and finally to

Appendix C for the entire RTL code listing of one of the constituting logic blocks of the

complete cryptographic solution.

Chapter 1 – Introduction 29

1.3 AUTHOR CONTRIBUTIONS

This work presents and describes in detail a system and logic architecture of an AES-GCM

Cryptography Engine operating at 100 Gbit/s, conceived and designed for use in OTN

communication links originally not prepared to cope with a block cipher.

The topic is of great relevance, and the information presented, including some design ideas,

provides a solid foundation for the development of similar applications in the areas of both

cryptography and OTN systems or even of a different nature in the scope of

microelectronics.

1.4 SUBJECT RELATED AUTHOR’S WORKS

Several author’s works are directly related to the 100G AES-GCM Cryptography Engine

development, among which the following stand out.

1.4.1 PATENT

Deposited at the Brazilian National Institute of Industrial Property (INPI) on behalf of

CPQD Foundation and Padtec S.A.:

 Process number: BR 10 2016 0112605;

 Deposit date: 18/05/2016;

 Title: Hardware Method and Architecture for Implementing AES-GCM Encryption

in Optical Transport Networks (Método e Arquitetura de Hardware para

Implementação de Criptografia AES-GCM em Redes de Transporte Óptico);

 Inventors: Eduardo Mobilon and Rodolfo Soares Caproni.

1.4.2 JOURNAL PUBLISHED PAPER

Eduardo Mobilon and Dalton Soares Arantes, “100 Gbit/s AES-GCM Cryptography
Engine for Optical Transport Network Systems: Architecture, Design and 40 nm Silicon
Prototyping”. Microelectronics Journal, vol. 116, 105229, ISSN 0026-2692, 2021.
https://doi.org/10.1016/j.mejo.2021.105229.

1.4.3 CONFERENCE PROCEEDING PAPERS

E. Mobilon, R. Bernardo, and L. R. Monte, “100 Gbit/s Optical Transport Network 40 nm
Test Chip Design and Prototyping”. SBMO/IEEE MTT-S International Microwave and
Optoelectronics Conference (IMOC), Águas de Lindóia, pp. 1–5, 2017.
https://doi.org/10.1109/IMOC.2017.8121108;

https://doi.org/10.1016/j.mejo.2021.105229
https://doi.org/10.1109/IMOC.2017.8121108

Chapter 1 – Introduction 30

A. Salvador, D. Carvalho, C. Nakandakare, E. Mobilon, J. C. de Oliveira, and D. S.
Arantes, “100 Gbit/s FEC for OTN Protocol: Design Architecture and Implementation
Results”. International Telecommunications Symposium (ITS), São Paulo, Brazil, pp. 1–5,
2014. https://doi.org/10.1109/ITS.2014.6947951;

R. Bernardo, A. H. Salvador, E. Mobilon, L. R. Monte, S. Boisclair, and A. Warshawsky,
“Design and FPGA Implementation of a 100 Gbit/s Optical Transport Network Processor”.
23rd International Conference on Field Programmable Logic and Applications, Porto,
Portugal, pp. 1–4, 2013. https://doi.org/10.1109/FPL.2013.6645601.

1.4.4 COMPUTER PROGRAM REGISTRATION

Deposited at the Brazilian National Institute of Industrial Property (INPI) on behalf of

CPQD Foundation:

 Process number: BR 51 2017 000827-2;

 Creation date: 14/06/2016;

 Expedition date: 01/08/2017;

 Title: CPQD3407 – AES-256 GCM Cryptographic Module for OTN Protocol

(Módulo Criptográfico AES-256 GCM para Protocolo OTN) – Crypto4OTN –

V.05.09.00;

 Language: System Verilog;

 Authors: Eduardo Mobilon and Arley Henrique Salvador.

https://doi.org/10.1109/ITS.2014.6947951
https://doi.org/10.1109/FPL.2013.6645601

31

Chapter 2

OPTICAL TRANSPORT TECHNOLOGIES

AND CRYPTOGRAPHY

This chapter briefly describes optical transport technologies, highlighting their frame structure

and protection mechanisms. Security threats in optical networks are also overviewed, with a few

considerations regarding software-defined and disaggregated optical networks. Cryptographic

systems are then presented after some relevant mathematical background, starting with the main

concepts related to data encryption and authentication, briefing over their historical evolution, and

stepping into quantum cryptography. The final sections show some of the cryptographic modes of

operation, with emphasis on the most relevant in the scope of this work, the quantum computing

threats endangering classical encryption algorithms, as well as their quantum-resistant

counterparts of post-quantum cryptography.

2.1 INTRODUCTION

The history of transport network technologies begins with the interconnection of telegraph

and telephone exchanges, providing communications between regional, national, and

international centers through analog networks using coaxial cables [6, 27].

Digital transmission systems using the time division multiplexing (TDM) technique

emerged in the 1970s, significantly increasing transmission distances as a result of the

higher signal-to-noise ratio (SNR). This technique was conceived to transport voice over

telephone networks using plesiochronous digital hierarchy (PDH) technology. It is

organized into several levels (orders), and the aggregated signal of each order is formed by

grouping (with sequential byte interleaving) four tributary signals from the previous level.

The main difficulty of PDH systems is the insertion and extraction (add/drop) of these

tributaries in intermediate network sections due to channel interleaving. This process

requires demultiplexing the aggregated beam, which makes this an inflexible and expensive

standard.

Chapter 2 – Optical Transport Technologies and Cryptography 32

With the advent and evolution of semiconductor lasers and optical fibers, a more advanced

and still PDH-compatible system evolved from the synchronous optical network (SONET),

created at Bellcore (Bell Communications Research, Inc.), to its standardization by the

ITU-T in the 1980s as the new synchronous digital hierarchy (SDH) [9].

SDH technology has brought a significant increase in the transmission rates of transport

networks, integrating them with optical transmission systems, in addition to the possibility

of broad and efficient management, making them highly reliable. Its interfaces were

designed for the transport of legacy telephone traffic, but with the emergence and

popularization of packet networks (especially Ethernet), SDH systems were adapted to

carry this type of traffic. New mechanisms were then created, such as virtual concatenation

(VCAT), link capacity adjustment scheme (LCAS), and generic framing procedure (GFP).

Because of the development and maturity of optical technologies and the exponential

growth of data traffic (resulting from Internet services), it has become essential to improve

the integration between data networks and optical networks. Thus, in the 1990s, studies

began on a new standard to maximize the efficiency of transmission systems — the optical

transport network (OTN).

This system defines a digital envelope to encapsulate numerous protocols such as SDH,

ATM, and Ethernet and transport them efficiently and securely across optical networks

using wavelength division multiplexing (WDM) technology [28].

Optical transport networks handle circuit switching, establishing a dedicated

communication path between two nodes and thus guaranteeing low latency and high

bandwidth. These circuit links are set up with a dedicated and fixed capacity to

accommodate a deterministic peak traffic, being then underutilized in some circumstances.

Packet switching, on the other hand, creates a connectionless network with messages being

segmented into packets that are dynamically routed between the source and destination

nodes, being the primary basis for transferring data across computer networks. Resources

are allocated as needed, and the network channels are occupied only when packets are

transmitted.

Chapter 2 – Optical Transport Technologies and Cryptography 33

Due to the explosive growth in data traffic driven by video and multimedia applications,

cloud services, and the emergence of high-speed mobile Internet access technologies,

packet traffic dominates metropolitan area networks.

In this context, the multi-protocol label switching (MPLS) technology [29] routes and

delivers data packets to their destinations quickly and efficiently based on labels rather than

network addresses, working in conjunction with the Internet protocol (IP) and providing

class-specific traffic engineering features.

Since its inception, OTN has evolved and optimized to support Ethernet traffic and flexible

packet technologies. Typically, multi-layer network architectures are used with an MPLS

over OTN approach, where the label-switching routers are attached to optical cross-

connects, which are then interconnected by point-to-point WDM links creating end-to-end

circuit-switched optical channels called lightpaths. In this way, Ethernet and IP/MPLS

traffic are aggregated to be efficiently and reliably transported across the OTN backbone.

Beyond data transport and administration functionalities, information security services are

crucial in communication systems, including modern optical telecommunications. The

most important ones can be grouped as follows [30]:

• Confidentiality: protection of data from unauthorized disclosure;

• Integrity: assurance that data are received exactly as transmitted;

• Authentication: assurance of the communicating party identity;

• Nonrepudiation: protection against denial by one of the parties of having

participated in all or part of the communication.

These elementary security functions are covered in the field of cryptography, originally

defined as the art and science of encryption [31], but today featuring a much broader scope.

Cryptography has a long and fascinating history, starting back thousands of years ago,

changing the outcome of both world wars and being ubiquitously available in current

communication and storage systems. Throughout its existence, it has transitioned from an

ancient art to a modern principle-driven science.

Chapter 2 – Optical Transport Technologies and Cryptography 34

2.2 OPTICAL TRANSPORT NETWORKS

The OTN protocol is an optimum converged transport technology for both legacy and

emerging client signals, enabling high-speed transparent multi-service data transport with

additional functionalities of multiplexing, switching, management, and supervision. It also

incorporates a forward error correction (FEC) code [32–34] that allows greater reach

between optical network nodes and/or higher bit rates on the same fiber.

In the electrical domain, an OTN signal is obtained by a hierarchical frame construction,

with the client signal being mapped into progressively larger data structures, which make

up the optical channel payload unit (OPU), the optical channel data unit (ODU), and,

finally, the optical channel transport unit (OTU), as illustrated in Figure 2.1.

This TDM hierarchy allows for lower-order ODU payloads to be combined and/or switched

to add/drop lower rate signals into/from higher-order ODU frames. The OTN switching

technology [35, 36] supports new services, virtualizing the optical network bandwidth

between nodes to the ODU bit rate granularities of ODU0 (1.25 Gbit/s), ODU1 (2.5 Gbit/s),

ODU2/2e (10 Gbit/s), ODU3 (40 Gbit/s), or ODU4 (100 Gbit/s).

Figure 2.1 – OTN signal hierarchical frame construction.

Due to the process or method of mapping (encapsulating) and transparently transporting

client signals within the payload of a larger frame over an optical network, the OTN system

is also called “digital wrapper” [5].

The resulting G.709 OTN frame structure, shown in Figure 2.2, is made up of four lines of

4080 bytes, with reserved areas for the frame alignment (FA) word, the different layer

overheads (OH), the payload data, and the FEC redundancy bytes [34].

Client
SDH, Ethernet, Fibre Channel

OPUk
Overhead

Client Frames
SDH, Ethernet, Fibre Channel

OPUk FramesODUk
Overhead

ODUk FramesOTUk
Overhead FEC

K=1 – 2.5 Gbit/s
K=2 – 10 Gbit/s
K=3 – 40 Gbit/s
K=4 – 100 Gbit/s

OTUk

ODUk

OPUk

Client

Cl
ie

nt
M

ap
pi

ng

Cl
ie

nt
De

m
ap

pi
ng

Chapter 2 – Optical Transport Technologies and Cryptography 35

Figure 2.2 – G.709 OTN frame structure.

The 7-byte frame alignment word comprises two important signals: a 6-byte frame

alignment signal (FAS), defined in row 1 and columns 1 to 6 of the OTN frame as a fixed

pattern sequence (0xf6f6f6282828) and a single byte multi-frame alignment signal

(MFAS), defined in row 1 and column 7, with its value being incremented after each frame

providing a 256-frame multi-frame.

The OTU4 level was incorporated into the OTN hierarchy from the 2009 revision of the

ITU-T G.709 standard [10], motivated by IEEE initiatives to develop a 100 Gbit/s Ethernet

signal standard. The technological and economic efforts to maintain the rate of the OTU4

level equivalent to four times that of the OTU3 (as in the previous levels) were not justified

at the time, since the only client signal data rate was 100 Gbit/s [37].

The bit manipulation and processing operations necessary for the hierarchical construction

of OTN frames, from the client signal mapping to the calculation of the redundancy bytes

of the error correcting code, are performed by digital circuits implemented in ASICs or

FPGAs. Typically, the entire process is divided into distinct functional logic blocks

dedicated to mapping, multiplexing, framing, and FEC, among others.

Data synchronization between the numerous blocks that make up a given OTN solution is

guaranteed by digital signals generated (or extracted) from the frame alignment markers

(FAS and MFAS). Thus, usually a digital frame start (FS) pulse precedes the first bit of the

first line of an OTN frame. Similarly, a multi-frame start (MFS) pulse precedes the first bit

of the first line of the first OTN frame (MFAS = 0) of a multi-frame.

In the optical domain, dense wavelength division multiplexing (DWDM) technology [28]

is adopted at the physical layer to allow for the use of all available bandwidth in the optical

fiber. As illustrated in Figure 2.3, each OTUk frame is mapped into a wavelength, which

constitutes the optical channel (OCh) [5, 7].

FEC

1 14 16 17 Columns (Bytes) 3824 4080

OPUk
Payload

OPUk
OHODUk

OH

OTUk
OHFA

Ro
w

s

1

2

3

4

Chapter 2 – Optical Transport Technologies and Cryptography 36

In optical networks, OTN-compatible line cards can be commonly found either in the

network nodes, as terminal modules called transponders that map/demap client signals, or

along the links, as regenerator units used in long reach communication channels, also

allowing for client data switching and aggregation.

Figure 2.3 – Client signals being mapped into an OTUk structure transported

in a single wavelength optical channel.

The standard OTN FEC, based on the Reed-Solomon RS (255, 239) code [34], or even

stronger enhanced FEC (EFEC) codes [38, 39] ensure protection against communication

errors caused by transmission impairments in the optical fiber, categorized into linear

(attenuation, noise, and dispersion) [40] and nonlinear (four-wave mixing, self-phase

modulation, and cross-phase modulation) [41] effects. This error control strategy also

brings early warning capabilities, since the analysis of the number of corrected errors can

assist on the early detection of some network element degradation.

Although real-time optical power analysis can also be used for fault detection and

localization [42], including some attempts to tap the communication link, only a

cryptography solution can address current network stringent security demands.

2.3 SECURITY THREATS IN OPTICAL NETWORKS

The optical layer of a transport network is vulnerable to a number of attacks [43, 44].

Information security threats can be classified into the following main categories [16]:

• Espionage, characterized as an attempt to gain unauthorized access to transported

data without disrupting network traffic;

Client
Signals

DWDM
Multiplexer

OTUk mapped into
a wavelength

OCh

Chapter 2 – Optical Transport Technologies and Cryptography 37

• Disturbance of the optical channel, aiming at degrading or completely interrupting

the communication service in the optical layer through cuts in the optical fibers,

insertion of interfering signals (reducing the signal-to-noise ratio), etc.;

• Denial of service (DoS) attack, through the flooding of packets on the network,

causing loss of service or degradation in data transfer rate;

• Network intrusion, allowing the attacker to exercise control over resources and

manipulate the network operation;

• Quantum attacks, resulting from the emerging technology of quantum computing,

aimed at breaking the keys used in cryptographic algorithms.

Regarding data confidentiality, the biggest concern is the possibility of espionage through

optical fiber tapping. This can be done intrusively, with the fiber cut and a reconnection

using a signal splitter, or non-intrusively, through techniques that allow extracting a part of

the light without generating traffic disturbances. One of the main non-intrusive tapping

methods consists of bending the fiber, causing some of the light to escape through its

cladding (due to the angle of incidence being smaller than the critical angle). This can be

easily done using a clip-on optical coupler specially designed for this purpose [45].

On top of the physical media threats, network control, management, and operation can also

be compromised, bringing new challenges to maintaining the security of the entire system.

Traditional packet networks have distributed control and transport protocols running on

their routers and switches, making them complex and hard to manage. High-level network

policies are implemented by the configuration of each device using low-level and vendor-

specific commands. The control and data planes, responsible for handling and forwarding

network traffic, are also embedded in the networking devices, reducing the flexibility of

the infrastructure operation and evolution.

Software-defined networking (SDN) [46] has emerged as a new paradigm that became a

highly adopted technology in packet networks, separating the control and data planes and

allowing the control operations to be implemented in a logically centralized network

controller.

These same architectural principles were brought to single-domain optical networks,

leveraging the flexibility of SDN control into software-defined optical networking (SDON)

Chapter 2 – Optical Transport Technologies and Cryptography 38

[47], providing network services over an underlying high-capacity optical infrastructure

with specific transmission and switching characteristics. Transport-SDN (T-SDN) [48]

also came out as a natural evolution into multiple domain optical networks, with more

stringent demands for the networking element orchestration and control, mainly due to new

physical attributes such as wavelength continuity, non-linear effects, signal-to-noise ratio,

and dispersion compensation.

Recent efforts are now being directed towards the disaggregation of optical communication

equipment, breaking the vertically integrated (single-vendor) solutions with the approach

of using open application program interfaces (APIs) and open-source software to allow

transparent communication with vendor-independent equipment for network configuration

and management workflows. Open and Disaggregated Transport Network (ODTN) project

[49] is an Open Networking Foundation (ONF) platform and operator-led initiative to build

datacenter interconnections using multi-vendor disaggregated optical transport equipment

orchestrated and managed by an SDN controller, starting with point-to-point and expanding

to multi-point networks.

Despite the numerous advantages of all these SDN-based concepts applied to network

management and control, new flanks of cyber attacks are opened up. The paradigm of a

logically centralized network controller allows for programmability, automation, and run-

time deployment of security procedures and policies, but it may, in fact, become a single

point of failure, leading to potentially catastrophic consequences for the whole network.

Many security challenges and threats in SDN can be grouped according to the plane being

attacked (application, control, or data plane) [50], and all the respective security solutions

are also implemented in the software layer.

Hardware encryption mechanisms remain a good countermeasure for securing the data

plane traffic, and, in the context of the evolving T-SDN and ODTN systems, they must

comply with the open APIs necessary for transparent communication with the SDN-based

controller. Additionally, with the segregation of the control and data planes, it is also

important to monitor and protect the communication channel between the separated layers

of the SDN-based optical network, applying the already studied security solutions [50] to

guarantee the expected network-wide security.

Chapter 2 – Optical Transport Technologies and Cryptography 39

2.4 MATHEMATICAL BACKGROUND FOR CRYPTOGRAPHY

This section brings a quick review of some mathematical concepts that help in

understanding cryptographic algorithms and systems. Further details can be found in any

textbook on number theory [51, 52] and abstract algebra or even in introductory sections

of cryptography books [30, 31, 53, and 54].

2.4.1 NUMBER THEORY

Number theory is a branch of mathematics concerned with the study of the set of positive

integers, often called natural numbers, with a wide range of applications in cryptography.

2.4.1.1 DIVISIBILITY

A nonzero b divides a if a = mb for some m, where a, b, and m are integers. It is denoted

by b | a, indicating that b is a divisor of a with no remainder on division.

Some simple properties of divisibility for integers are shown below:

 If a | 1, then a = ±1;

 If a | b and b | a, then a = ±b;

 Any b ≠ 0 divides 0;

 If a | b and b | c, then a | c;

 If b | g and b | h, then b | (mg+nh), for arbitrary integers m and n.

Given any positive integer b and any nonnegative integer a, dividing a by b results in an

integer quotient q and an integer remainder (or residue) r that conform to the following

relationship:

 𝑎𝑎 = 𝑞𝑞𝑞𝑞 + 𝑟𝑟 0 ≤ 𝑟𝑟 < 𝑞𝑞; 𝑞𝑞 = ⌊𝑎𝑎/𝑞𝑞⌋ (2.1)

where ⌊𝑥𝑥⌋ is the largest integer less than or equal to x. Equation (2.1) expresses a theorem

but, by tradition, is referred to as the division algorithm.

2.4.1.2 PRIME NUMBERS

An integer p > 1 is called a prime number if its only positive divisors are 1 and p. Any

integer greater than 1 that is not prime is called a composite number.

Chapter 2 – Optical Transport Technologies and Cryptography 40

The fundamental theorem of arithmetic, also called the unique factorization theorem, states

that every positive integer greater than 1 can be written in exactly one way (apart from

rearrangement) as the product of one or more primes.

For example, 15 = 3 × 5, 255 = 3 × 5 × 17, and 60 = 2 × 2 × 3 × 5.

The greatest common divisor (GCD) of two or more integers (not all zero), also called the

highest common factor (HCF), is the largest positive integer that divides each of them. Two

numbers, a and b, are called coprime, relatively prime, or mutually prime if gcd(a, b) = 1.

For small numbers, the GCD is easy to calculate by factoring them and finding their HCF.

As an example, for a = 84 and b = 30, factoring yields:

a = 84 = 2 × 2 × 3 × 7 b = 30 = 2 × 3 × 5

The GCD is then the product of all common prime factors — gcd(84, 30) = 2 × 3 = 6.

2.4.1.3 THE EUCLIDEAN ALGORITHM

The most efficient method known for finding the greatest common divisor of two numbers

is called the Euclidean algorithm, which consists of doing a sequence of divisions with a

remainder r until r = 0.

From Equation (2.1) it follows that any common divisor of b and r is also a divisor of a.

Moreover, any common divisor of a and b is also a divisor of r, since r = a − qb.

Accordingly, the common divisors of a and b are the same as the ones of b and r.

The problem of finding the common divisors of a and b is then reduced to the same problem

for the numbers b and r, which are respectively less than a and b. The essence of the also

called Euclid’s algorithm lies in the repetition of this argument, finding the GCD of two

integers a and b by recursively reducing the operands.

As an example, for the calculation of the gcd(36, 132) the algorithm runs as follows:

The first step is to divide 132 by 36, which gives a quotient of 3 and a remainder of

24, written as 132 = 3 × 36 + 24. The next step is to take 36 and divide it by the

remainder 24 from the previous step, giving 36 = 1 × 24 + 12. Repeating this process,

Chapter 2 – Optical Transport Technologies and Cryptography 41

when dividing 24 by 12 the remainder becomes zero or 24 = 2 × 12 + 0.

The remainder from the previous step is then the greatest common divisor of the

original two numbers, so gcd(36, 132) = 12.

Applying the Euclidean algorithm to large numbers shows how it is far more efficient than

factorization to compute the GCD. Table 2.1 shows the algorithm steps for the calculation

of gcd(1160718174, 316258250) = 1078.

1160718174 = 3 × 316258250 + 211943424
316258250 = 1 × 211943424 + 104314826
211943424 = 2 × 104314826 + 3313772
104314826 = 31 × 3313772 + 1587894

3313772 = 2 × 1587894 + 137984
1587894 = 11 × 137984 + 70070
137984 = 1 × 70070 + 67914
70070 = 1 × 67914 + 2156
67914 = 31 × 2156 + 1078
2156 = 2 × 1078 + 0

Table 2.1 – Euclidean algorithm steps for the calculation of gcd(1160718174, 316258250) = 1078.

2.4.1.4 MODULAR ARITHMETIC AND CONGRUENCE

If a is an integer and b is a positive integer, a mod b is defined as the remainder when a is

divided by b. The integer b is called the modulus. Thus, for any integer a, the Equation

(2.1) can be rewritten as follows:

𝑎𝑎 = 𝑞𝑞𝑞𝑞 + 𝑟𝑟 0 ≤ 𝑟𝑟 < 𝑞𝑞; 𝑞𝑞 = ⌊𝑎𝑎/𝑞𝑞⌋

𝑎𝑎 = ⌊𝑎𝑎/𝑞𝑞⌋ × 𝑞𝑞 + (𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞)

(2.2)

Two integers a and b are said to be congruent modulo n if (a mod n) = (b mod n). This is

written as a ≡ b (mod n), with the parentheses indicating that (mod n) applies to the entire

equation and not just to the right-hand side. When a is congruent to b with respect to the

modulus n, a and b differ by a multiple of n or, in other words, n divides (a – b). It follows

that if a ≡ 0 (mod n), then n | a. Some examples are given below:

11 mod 7 = 4 → 11 = 7 × 1 + 4
–11 mod 7 = 3 → –11 = 7 × (–2) + 3
73 ≡ 4 (mod 23)
21 ≡ –9 (mod 10)

Chapter 2 – Optical Transport Technologies and Cryptography 42

Congruences have the following properties:

 a ≡ b (mod n) if n | (a – b);

 a ≡ b (mod n) implies b ≡ a (mod n);

 a ≡ b (mod n) and b ≡ c (mod n) imply a ≡ c (mod n).

The modulo operator (mod n) maps all integers into the set of integers {0, 1, …, (n – 1)}.

Modular arithmetic can be performed within this finite set, with the following properties:

 [(a mod n) + (b mod n)] mod n = (a + b) mod n;

 [(a mod n) – (b mod n)] mod n = (a – b) mod n;

 [(a mod n) × (b mod n)] mod n = (a × b) mod n.

These are some examples:

11 mod 8 = 3
15 mod 8 = 7
[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2
(11 + 15) mod 8 = 26 mod 8 = 2
[(11 mod 8) – (15 mod 8)] mod 8 = –4 mod 8 = 4
(11 – 15) mod 8 = –4 mod 8 = 4
[(11 mod 8) × (15 mod 8)] mod 8 = 21 mod 8 = 5
(11 × 15) mod 8 = 165 mod 8 = 5

One familiar example of modular arithmetic is the “clock arithmetic”. In spite of new hours

being added, the result always wraps around 12 (or 24, depending on the clock style).

2.4.1.5 FERMAT’S AND EULER’S THEOREMS

Fermat’s theorem states that if p is prime and a is a positive integer not divisible by p, then:

 𝑎𝑎𝑝𝑝−1 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) (2.3)

These are some examples for a = 7 and p = 19:

72 = 49 ≡ 11 (mod 19) 74 ≡ 121 ≡ 7 (mod 19)
78 ≡ 49 ≡ 11 (mod 19) 716 ≡ 121 ≡ 7 (mod 19)
ap–1 = 718 = 716 × 72 ≡ 7 × 11 ≡ 1 (mod 19)

Chapter 2 – Optical Transport Technologies and Cryptography 43

A useful alternative form of Fermat’s theorem states that if p is a prime and a is a positive

integer, then:

 𝑎𝑎𝑝𝑝 ≡ 𝑎𝑎 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) (2.4)

The first form of this theorem in Equation (2.3) requires that a be relatively prime to p.

This does not hold for Equation (2.4).

Two examples are:

p = 5 and a = 3 → ap = 35 = 243 ≡ 3 (mod 5) = a (mod p)
p = 5 and a = 10 → ap = 105 = 100000 ≡ 10 (mod 5) = a (mod p)

An important quantity in number theory is referred to as Euler’s totient function, written as

φ(n) and defined as the number of positive integers less than n and relatively prime to n.

By convention, φ(1) = 1, although it has no meaning.

For example, 37 is a prime number and so all of the positive integers from 1 through 36 are

relatively prime to 37. Consequently, φ(37) = 36. To determine φ(35), on the other hand,

all of the positive integers less than 35 that are relatively prime to it must be listed. As

shown below, since there are 24 numbers on this list, φ(35) = 24.

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34

As observed in the previous example, for a prime number p, φ(p) = p – 1.

Now for two prime numbers p and q, with p ≠ q and n = pq,

 𝜑𝜑(𝑛𝑛) = 𝜑𝜑(𝑝𝑝𝑞𝑞) = 𝜑𝜑(𝑝𝑝) × 𝜑𝜑(𝑞𝑞) = (𝑝𝑝 − 1) × (𝑞𝑞 − 1) (2.5)

As an example, φ(21) = φ(3) × φ(7) = (3 – 1) × (7 – 1) = 2 × 6 = 12.

Euler’s theorem states that for every a and n that are relatively prime:

 𝑎𝑎𝜑𝜑(𝑛𝑛) ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) (2.6)

Two examples are:

a = 3, n = 10, and φ(10) = 4 → aφ(n) = 34 = 81 ≡ 1 (mod 10) = 1 (mod n)
a = 2, n = 11, and φ(11) = 10 → aφ(n) = 210 = 1024 ≡ 1 (mod 11) = 1 (mod n)

Chapter 2 – Optical Transport Technologies and Cryptography 44

A useful alternative form of this theorem is also available:

 𝑎𝑎𝜑𝜑(𝑛𝑛) + 1 ≡ 𝑎𝑎 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) (2.7)

Again, as in the case of Fermat’s theorem, the first form of Euler’s theorem in Equation

(2.6) requires that a be relatively prime to n. This does not hold for Equation (2.7).

2.4.2 ABSTRACT ALGEBRA AND FINITE (GALOIS) FIELDS

Fields are a subset of a larger class of algebraic structures called rings, which are in turn a

subset of the larger class of groups, all of them being fundamental elements of a branch of

mathematics known as abstract algebra. Finite fields are a subset of fields, consisting of

those with a finite number of elements.

These structures are sets of elements which can be algebraically combined by operations

subjected to specific rules that define the nature of the set. By convention, the notation for

these operations is usually the same as the ones for addition and multiplication on ordinary

numbers.

2.4.2.1 GROUPS

A group G is a set of elements with a binary operation denoted by • that associates to each

ordered pair (a, b) of elements in G an element (a • b) in G, such that the following axioms

are obeyed. The operator • is generic and can refer to addition, multiplication, or some

other mathematical operation.

(A1) Closure: if a and b belong to G, then a • b is also in G;

(A2) Associative: a • (b • c) = (a • b) • c for all a, b, c in G;

(A3) Identity element: there is an element e in G such that

a • e = e • a = a for all a in G;

(A4) Inverse element: for each a in G, there is an element a’ in G such that

a • a’ = a’ • a = e.

A group is called abelian or commutative if it satisfies the following additional condition:

(A5) Commutative: a • b = b • a for all a, b in G.

Chapter 2 – Optical Transport Technologies and Cryptography 45

Examples of abelian groups include the set of integers (positive, negative, and 0) under

addition as well as the set of nonzero real numbers under multiplication.

A cyclic group G has every element being a power ak (with k integer) of some fixed element

a ∈ G. This element a is said to generate the group or to be a generator of G. A cyclic group

is always abelian and may be finite or infinite.

2.4.2.2 RINGS

A ring R is a set of elements with two binary operations, called addition and multiplication,

such that for all a, b, c in R the following axioms are obeyed.

(A1–A5) R is an abelian group with respect to addition, satisfying axioms A1

through A5. For the case of an additive group, the identity element is

denoted as 0 and the inverse of a as –a;

(M1) Closure under multiplication: if a and b belong to R, then ab is also in R;

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R;

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R and

(a + b)c = ac + bc for all a, b, c in R.

A ring is called commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

An example of commutative ring is the set of integers with their standard addition and

multiplication operations.

An integral domain is a commutative ring that obeys the following axioms.

(M5) Multiplicative identity: there is an element 1 in R such that

a1 = 1a = a for all a in R.

(M6) No zero divisors: if a and b belong to R and ab = 0, then either a = 0 or b = 0.

2.4.2.3 FIELDS

A field F is a set of elements with two binary operations, called addition and multiplication,

such that for all a, b, c in F the following axioms are obeyed.

Chapter 2 – Optical Transport Technologies and Cryptography 46

(A1–M6) F is an integral domain, satisfying axioms A1 through A5 and

M1 through M6;

(M7) Multiplicative inverse: for each a in F, except 0, there is an element a–1 in F

such that a(a–1) = (a–1)a = 1.

The rational, real, and complex numbers are usual examples of fields.

A field can also be defined as a set which contains an additive and a multiplicative group,

such that the following conditions hold:

 F forms an abelian group with respect to addition;

 The nonzero elements of F form an abelian group with respect to multiplication;

 The distributive law holds, that is, for all a, b, c in F:

a(b + c) = ab + ac and (a + b)c = ac + bc.

Finite fields, also called Galois fields after Évariste Galois who studied them in the

nineteenth century, are algebraic structures with a finite number of elements. This number

defines the order or cardinality of the field.

An important theorem states that a field with order m only exists if m is a prime power, i.e.,

m = pn, for some positive integer n and prime integer p, which is called the characteristic

of the finite field.

As a consequence, there are, for instance, finite fields with 11 elements, with 81 elements

(since 81 = 34), or with 256 elements (since 256 = 28). On the other hand, there is no finite

field with 12 elements since 12 = 22 × 3, which is not a prime power.

Finite fields of order pn, generally written GF(pn), play a crucial role in many cryptographic

algorithms.

Prime fields are the ones with a prime order, i.e., with n = 1. Elements of a prime field

GF(p) can be represented by integers 0, 1, …, p – 1, and the two field operations are integer

addition and multiplication modulo p.

The arithmetic in a prime field follows the rules for integer rings:

 Addition and multiplication are done modulo p;

Chapter 2 – Optical Transport Technologies and Cryptography 47

 The additive inverse of any element a is given by a + (−a) ≡ 0 mod p;

 The multiplicative inverse of any nonzero element a is defined as a(a–1) = 1.

Table 2.2 shows the arithmetic modulo 2 for the smallest finite field GF(2), with the

elements {0, 1}, which is ubiquitous in computer science technology and, consequently,

important for the advanced encryption standard algorithm implementation.

Addition Multiplication

+ 0 1 × 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Table 2.2 – Arithmetic modulo 2 for the finite field GF(2).

It can be noticed that the modulo 2 addition is equivalent to an XOR logic operation, while

the multiplication is equivalent to an AND.

When the order pn of a finite field is not a prime number, the addition and multiplication

operations cannot be represented by an arithmetic modulo pn. These so-called extension

fields require a different notation for their elements, as well as different arithmetic rules.

The elements of an extension field are represented by polynomials, and computations in

such fields are done by polynomial arithmetic.

In extension fields GF(2n), elements are represented by polynomials with coefficients in

GF(2) with a maximum degree of n – 1. In the field GF(28), used in the advanced

encryption standard, each element A ∈ GF(28) is then represented as:

 𝐴𝐴(𝑥𝑥) = 𝑎𝑎7𝑥𝑥7 + ⋯ + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0, 𝑎𝑎𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺(2) = {0, 1} (2.8)

A polynomial in GF(2n) can be uniquely represented by its n binary coefficients. In this

way, each element of the set of all the 28 = 256 polynomials that makes up the finite field

GF(28) can be represented by an 8-bit number.

2.4.3 POLYNOMIAL ARITHMETIC IN EXTENSION FIELDS

Addition and subtraction in extension fields are performed by the respective standard

polynomial operations, adding and subtracting coefficients with equal powers of x in the

underlying finite field GF(2).

Chapter 2 – Optical Transport Technologies and Cryptography 48

Given two elements of an extension field, A(x) and B(x) ∈ GF(2n), their sum and difference

are computed as follows:

 𝐶𝐶(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) + 𝐵𝐵(𝑥𝑥) = � 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0

, 𝑐𝑐𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝑞𝑞𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 2 (2.9)

 𝐶𝐶(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) − 𝐵𝐵(𝑥𝑥) = � 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0

, 𝑐𝑐𝑖𝑖 = 𝑎𝑎𝑖𝑖 − 𝑞𝑞𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝑞𝑞𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 2 (2.10)

Addition and subtraction modulo 2 are the same operations, equivalent to a bitwise XOR

logic function. The example below shows the sum or difference of two elements of GF(28):

 𝐴𝐴(𝑥𝑥) = 𝑥𝑥7 + 𝑥𝑥6 + 𝑥𝑥4 + 1

 𝐵𝐵(𝑥𝑥) = 𝑥𝑥4 + 𝑥𝑥2 + 1

 𝐶𝐶(𝑥𝑥) = 𝑥𝑥7 + 𝑥𝑥6 + 𝑥𝑥2

Multiplication in an extension field follows a similar approach of the respective operation

in a prime field GF(p), where the result is modulo p. In GF(2n), however, an irreducible

polynomial is necessary for the modulo reduction. This also called prime polynomial is

roughly comparable to a prime number, since it cannot be expressed as a product of two

polynomials. In other words, its only factors are 1 and the polynomial itself.

According to the fundamental theorem of algebra, every non-zero, single-variable, degree

n polynomial with complex coefficients has, counted with multiplicity, exactly n complex

roots. This does not hold for finite fields, since they are not algebraically closed.

As an example, the polynomial P(x) = x8 + x4 + x3 + x + 1, used for multiplications in the

AES algorithm, is irreducible over GF(28).

Conversely, the polynomial P(x) = x4 + x3 + x + 1 with coefficients over GF(2) is reducible

since x4 + x3 + x + 1 = (x2 + x + 1)(x2 + 1). Therefore, it cannot be used to construct the

extension field GF(24).

Given two elements of an extension field, A(x) and B(x) ∈ GF(2n) and an irreducible

polynomial P(x), their multiplication is computed as follows:

Chapter 2 – Optical Transport Technologies and Cryptography 49

 𝐶𝐶(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) ∙ 𝐵𝐵(𝑥𝑥) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥) (2.11)

 𝑃𝑃(𝑥𝑥) = � 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖
𝑛𝑛−1

𝑖𝑖=0

, 𝑝𝑝𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺(2) (2.12)

As an example, A(x) = x3 + x2 + 1 and B(x) = x2 + x are elements of a finite field GF(24)

with the irreducible polynomial P(x) = x4 + x + 1. First, their plain product is obtained as

C’(x) = A(x) ‧ B(x) = x5 + x3 + x2 + x. Then, by (2.11), C(x) = x5 + x3 + x2 + x mod P(x),

with the remainder obtained by long polynomial division as shown below.

 x

x4 + x + 1 x5 + x3 + x2 + x

– (x5 + x2 + x)

 0 + x3 0 0

The final polynomial product over the extension field GF(24) is C(x) = A(x) ‧ B(x) = x3.

With regards to the inversion operation in extension fields, the inverse A–1 of a nonzero

element A ∈ GF(2n) with an irreducible polynomial P(x) is defined as:

 𝐴𝐴−1(𝑥𝑥) ∙ 𝐴𝐴(𝑥𝑥) = 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥) (2.13)

For small fields (with typically 216 or fewer elements) lookup tables with the precomputed

inverses of all field elements are often used. Otherwise, inverses can also be explicitly

computed using the extended Euclidean algorithm.

2.4.4 ONE-WAY AND TRAPDOOR FUNCTIONS

Given two sets, X and Y, a function from X (domain) to Y (codomain) is an assignment of

an element of Y to each element of X. This relationship is declared by the notation f: X → Y.

For any x ∈ X, f(x) = y is called the image of x under f. The image of a function, denoted

by Im(f), is the set of all output values it may produce.

A function f : X → Y is one-way if f(x) is easy to compute for all x ∈ X, but for a random

y ∈ Im(f) it is computationally infeasible (with known algorithms) to find any x ∈ X such

that f(x) = y. In other words, one-way functions are easy to compute but intractable to invert.

Their existence is still an open conjecture.

Chapter 2 – Optical Transport Technologies and Cryptography 50

Trapdoor (or trapdoor one-way) functions are a special case of one-way functions for which

finding their inverse is also easy giving an extra information (the trapdoor).

Two cryptographically relevant candidates for one-way functions are the integer

factorization and the discrete logarithm problems. The security of many cryptographic

techniques depends upon their intractability.

2.4.4.1 INTEGER FACTORIZATION PROBLEM

As stated in Section 2.4.1.2, by the fundamental theorem of arithmetic every positive

integer greater than 1 can be written in exactly one way (apart from rearrangement) as the

product of one or more prime numbers.

No efficient non-quantum algorithm is known for the prime factorization of sufficiently

large numbers, and many cryptographic techniques depend upon the intractability of this

problem. A recent factorization experiment showed that a 240-digit (795-bit) number was

factored using approximately 900 core-years of computing power [55].

The integer factorization problem presents a one-way function: multiplying two large

primes is computationally easy, but factoring the resulting product is very difficult. It can

also be a source of many trapdoor one-way functions when the prime factors are provided

as a trapdoor (extra) information.

As an example, given two prime numbers p and q, together with their product n = pq,

a function defined as f(x) = x3 mod n is relatively easy to compute but intractable to invert

(i.e., to find x given n) for very large distinct prime factors. However, if p and q are provided

as a trapdoor information, available algorithms can efficiently compute this modular cube.

2.4.4.2 DISCRETE LOGARITHM PROBLEM

The discrete logarithm problem is defined in the so-called cyclic groups — the algebraic

structures defined in Section 2.4.2.1. Given the general expression

 𝑎𝑎𝑚𝑚 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) (2.14)

in which a and n are relatively prime, there is at least one integer m that satisfies the

equation, namely m = φ(n), according to Euler’s theorem in Equation (2.6).

Chapter 2 – Optical Transport Technologies and Cryptography 51

The least positive exponent m that satisfies Equation (2.14) is called the order of a (mod n),

which also corresponds to the period length of the group generated by a.

As an example, the powers of 7 modulo 19 are given below.

71 ≡ 7 (mod 19)
72 = 49 = 2 × 19 + 11 ≡ 11 (mod 19)
73 = 343 = 18 × 19 + 1 ≡ 1 (mod 19)
74 = 2401 = 126 × 19 + 7 ≡ 7 (mod 19)
75 = 16807 = 884 × 19 + 11 ≡ 11 (mod 19)

The order of 7 modulo 19 = 3, and, consequently, the output sequence repeats with this

period length, generating a cyclic group.

A number g is a primitive root modulo n if every number a relatively prime to n is

congruent to a power of g modulo n. In other words, g is a primitive root modulo n if, for

every integer a relatively prime to n, there is some integer k for which

 𝑔𝑔𝑘𝑘 ≡ 𝑎𝑎 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) (2.15)

Such a value k is called the index or discrete logarithm of a to the base g modulo n.

In this way, g is a primitive root modulo n if and only if g is a generator of the multiplicative

group of integers modulo n. In particular, for a prime number p, if a is a primitive root of

p, then a, a2, …, ap – 1 are distinct elements (mod p), generating a cyclic group with a period

length of p – 1.

As an example, 3 is a primitive root of 7, but 2 is not.

31 mod 7 = 3 34 mod 7 = 4 21 mod 7 = 2 24 mod 7 = 2

32 mod 7 = 2 35 mod 7 = 5 22 mod 7 = 4 25 mod 7 = 4

33 mod 7 = 6 36 mod 7 = 1 23 mod 7 = 1 26 mod 7 = 1

Considering now the exponential equation

 𝑦𝑦 = 𝑔𝑔𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 (2.16)

it is easy to calculate y given g, x, and p, but it is intractable to find x (the discrete logarithm)

given y, g, and p, thereby establishing a one-way function.

Chapter 2 – Optical Transport Technologies and Cryptography 52

2.4.5 HASH FUNCTIONS

A hash function H computes a digest of a message, accepting a variable-length block of

data M as input and producing a fixed-size hash value h = H(M). It can be seen as the

fingerprint or a unique representation of a message. Practical hash functions have output

lengths between 128–512 bits.

A cryptographic hash function is an algorithm for which it is computationally infeasible to

find a data object that maps to a pre-specified hash result (one-way property) or two data

objects that map to the same hash result (collision-free property). It is widely used in

security applications such as message authentication and digital signatures.

For a hash value h = H(x), x is called the preimage of h. A collision occurs when x ≠ y and

H(x) = H(y). Generally accepted security requirements for cryptographic hash functions are

listed below:

 Variable input size: H can be applied to a block of data of any size;

 Fixed output size: H produces a fixed-length output;

 Efficiency: H(x) is relatively easy to compute for any given x;

 Preimage resistance (one-way property): for any given hash value h, it is

computationally infeasible to find y such that H(y) = h;

 Second preimage resistance (weak collision resistance): for any given block x, it

is computationally infeasible to find y ≠ x with H(y) = H(x);

 Collision resistance (strong collision resistance): it is computationally infeasible

to find any pair (x, y) with x ≠ y, such that H(x) = H(y);

 Pseudo-randomness: the output of H meets standard tests for pseudo-randomness.

In order to handle an arbitrary-length message, the hash function segments input data into

a series of equal size blocks, which are then processed sequentially by a compression

function. This iterated design is known as Merkle–Damgård construction.

Many dedicated (custom designed) hash functions have been proposed in the last decades,

and the most popular ones have been part of the so-called MD4 family. This message digest

algorithm was developed by Ronald Rivest using 32-bit variables and bitwise Boolean

operations to allow very efficient software implementations. A strengthened version,

Chapter 2 – Optical Transport Technologies and Cryptography 53

named MD5, are still used in Internet security protocols for computing file checksums or

for storing of password hashes.

After early signs of potential weaknesses, a new algorithm was published in 1993, called

secure hash algorithm (SHA). In 1995 it was modified to SHA-1. Both are 160-bit hash

functions based on the MD5 algorithm. Further improvements led to SHA-2 in 2004 and

SHA-3 in 2015. SHA-2 is still an industry standard, with variants generating hash values

in the range of 256–512 bits.

2.5 CRYPTOGRAPHIC SYSTEMS

A vulnerable communication system transmits data from node A (Alice) to B (Bob)

through an insecure channel. Secret and valuable information can be intercepted by an

eavesdropper (Eve). As depicted in Figure 2.4, this security issue can be addressed by

cryptographic systems using an encryption mechanism on the transmitter side to convert

the original message x, known as plaintext, into an encrypted version y, called ciphertext,

which becomes useless and unintelligible to an intruder. A decryption function on the

receiver side reverts this operation and recovers the original message.

Figure 2.4 – Ciphered communication system.

Encryption mechanisms address the important issue of information security in a

communication link, obscuring data that could be inspected by an intruder tapping one or

both of the lines of a bidirectional communication channel without the knowledge of the

terminal units. Authentication strategies are used to ensure data integrity and detect a

possible manipulation as the intruder could also insert malicious regenerator modules in

the communication link, being able not only to intercept traffic, but also to modify the

information contents. In an OTN system, for instance, as long as the intruder correctly

Transmitter
Node A
(Alice)

Receiver
Node B
(Bob)

Insecure Channel

x y y x

Eavesdropper
(Eve)

Encryption Decryption

Plaintext Ciphertext Ciphertext Plaintext

Chapter 2 – Optical Transport Technologies and Cryptography 54

updates the BIP-8 (bit-interleaved parity — purely an error detection scheme) values in the

OTN frames, data terminal equipment will not notice any modifications in the payload.

Cryptographic systems apply special algorithms with a set of rules for data manipulation

(based on either substitutions and permutations or complex mathematical operations) to

provide the expected data security functions. They all depend on the secrecy of a key, used

to parameterize the publicly known encryption and decryption functions.

Cryptanalysis is the science of breaking cryptosystems and, together with cryptography,

makes up the field of cryptology. Many types of attacks are enforced against encryption

algorithms as an attempt to breaching security.

In a brute-force attack, every possible key is tried until a meaningful ciphertext to plaintext

correspondence is achieved. Analytical attacks, on the other hand, rely on the algorithm

structural properties, the knowledge of the plaintext characteristics, or even the availability

of sample plaintext–ciphertext pairs in order to deduce a specific plaintext or the key being

used by the cryptosystem. Some of these cryptanalytic attack models [30] are listed in

Table 2.3.

Attack Model Known to Cryptanalyst

Ciphertext Only Ciphertext.

Known Plaintext
 Ciphertext;
 One or more plaintext–ciphertext pairs formed with the secret key.

Chosen Plaintext
 Ciphertext;
 Plaintext message chosen by cryptanalyst, together with its corresponding

ciphertext generated with the secret key.

Chosen Ciphertext
 Ciphertext;
 Ciphertext chosen by cryptanalyst, together with its corresponding

decrypted plaintext generated with the secret key.

Chosen Text

 Ciphertext;
 Plaintext message chosen by cryptanalyst, together with its corresponding

ciphertext generated with the secret key;
 Ciphertext chosen by cryptanalyst, together with its corresponding

decrypted plaintext generated with the secret key.

Table 2.3 – Cryptanalytic attack models.

Two other important generic approaches are the birthday and the meet-in-the-middle

attacks, which are called collision attacks [31] and are based on the birthday paradox [53]

Chapter 2 – Optical Transport Technologies and Cryptography 55

which shows a surprisingly large probability of appearance of duplicate values (also called

collisions), such as the reuse of keys in a cryptosystem.

2.5.1 HISTORICAL EVOLUTION

In ancient Egypt, around 4000 years ago, writing by symbols (hieroglyphics) started the

history of cryptography. It was not a secret writing system, as in the modern concept, but

through some substitution of usual symbols for unusual ones (probably aiming to convey

dignity and authority), it incorporated one of the essential elements of cryptography: a

deliberate transformation of writing [56].

As early as 500 BC, in ancient Greece, the Spartan military used the “Scytale” — a method

of scrambling messages through a transposition process obtained by helically winding a

ribbon around a stick [57], as illustrated in Figure 2.5 (a) [58]. The written message then

became unintelligible when the ribbon was unrolled, being deciphered only by the receiver

who had a stick of the same diameter.

Later, one of the simplest and most well-known encryption techniques based on character

substitution appeared in ancient Rome. An example is Caesar's famous monoalphabetic

cipher, used around 50 BC by Emperor Gaius Julius Caesar. For the encryption, each letter

in the clear message is replaced by another one from the same alphabet after shifting some

positions, as illustrated in Figure 2.5 (b) [59].

Using a single alphabet, the Caesar cipher key space is quite limited (only 25 characters),

making the code easily decipherable.

Figure 2.5 – Scytale (a) used by the Spartan and the representation of the monoalphabetic substitution used

in the Caesar cipher (b).

(a) (b)

Chapter 2 – Optical Transport Technologies and Cryptography 56

The first well-documented polyalphabetic cipher is believed to have been created by Leon

Battista Alberti around 1467 [56]. He also developed a device for encoding and decoding,

illustrated in Figure 2.6 (a) [60]. This cipher disk consisted of two concentric disks with

printed alphabets mounted one on top of the other. The smaller disk rotated on top of the

larger one, allowing the alphabets to shift.

When a fixed offset (or a fixed key) was used, the cipher became monoalphabetic,

equivalent to the Caesar cipher. When the offset was changed throughout the encoding

process, it became a polyalphabetic cipher.

In 1518, the book “Polygraphia” was published, considered the first printed work on

cryptology. It was written by a German Benedictine abbot named Johannes Trithemius,

who created a square table of alphabets in which rows are formed by the previous ones

shifted one position to the left. This was called “Tabula Recta”, illustrated in Figure 2.6 (b)

[61], and served as a polyalphabetic cipher (consisting essentially of 26 Caesar ciphers).

The first letter of the clear message was encrypted by substitution using the first alphabet,

the second letter, using the second alphabet, and so on, returning to the first after 26 letters.

The Trithemius cipher is also the first instance of a progressive key system, in which all

cipher alphabets are exhaustively used before any repetition [56]. Modern cryptographic

systems also make use of this key progression.

Figure 2.6 – Cipher disk (a) and the “Tabula Recta” (b) used by Trithemius.

(a) (b)

Chapter 2 – Optical Transport Technologies and Cryptography 57

In 1586, Blaise de Vigenère published a type of polyalphabetic cipher called an autokey

cipher, which used secret keys iteratively derived from both clear and encrypted messages

[56]. It constitutes one of the first major cryptographic systems, gaining a reputation for

being exceptionally strong and remaining indecipherable for about 300 years [62].

After the World War I, Arthur Scherbius invented in Germany a polyalphabetic substitution

cipher based on electromechanical rotors — a machine called Enigma [57, 63], shown in

Figure 2.7 (a) [64].

Each letter of the clear message was typed on a keyboard, and the corresponding ciphered

letter lit up in a specific panel. Three rotors (later increased to four) of 26 steps with

electrical contacts, as illustrated in Figure 2.7 (b) [65], generated the coding. One of the

cylinders rotated one step for each typed letter. The second rotated one step for each

complete revolution of the first, and the third, one step for each complete revolution of the

second. The result is a set of 26 × 26 × 26 = 17,576 different substitution alphabets used

before the system returns to its initial state [30].

When the armed forces of Nazi Germany adopted the Enigma, a front plug board was added

to the electromechanical apparatus, as shown in Figure 2.7 (c) [66], allowing permutations

of letters between the keyboard and the first cipher. The number of rotors also increased to

five (of which three were chosen and installed in the machine). With the rotor order

arbitrarily adjustable and the number of cables for the plug board increased from six to ten,

the encryption key space was approximately 1.6 × 1020 [62].

The UK created a secret department, based in Bletchley Park, to break codes and decipher

military messages. Among the cryptanalysts, formed by brilliant mathematicians,

engineers, linguists, and others, was Alan Turing, considered the father of computer

science. Aided by Polish mathematicians, such as Marian Rejewski et al., who had already

broken the Enigma code in its commercial version, Turing developed a machine called

“Bombe” that could neutralize the effect of the plug board, thus reducing the effort to code

breaking by a factor of about 1014 [57, 62].

Chapter 2 – Optical Transport Technologies and Cryptography 58

Figure 2.7 – Enigma machine (a), 3D illustration of its rotors (b), and the plug board (c) with connections

creating the substitutions S ↔ O and A ↔ J.

Claude Shannon, the father of information theory, also laid a solid theoretical foundation

for both cryptography and cryptanalysis [62]. The concept that a secure cryptographic

system depends on the secrecy of the key and not only on the complexity or secrecy of the

encryption algorithm (Kerckhoffs principle) had already been enunciated by Auguste

Kerckhoffs in 1883 [67]. Shannon rephrased it to “the enemy knows the system being

used”, establishing principles [68] still used today:

• Substitution (S box) – generating confusion and hiding the connection between

the encrypted message and the key;

• Transposition (T box) – generating diffusion and obscuring the statistical

relationship between the clear and encrypted messages;

• Multistage – a super encipherment with serial stages of substitution and

transposition, also known as a product cipher.

These principles were used in the development of the first encryption standard, published

in 1977. The data encryption standard (DES) evolved from the result of a competition in

the United States, in which the IBM system was the winner.

(a) (c)

(b)

Chapter 2 – Optical Transport Technologies and Cryptography 59

Using a 64-bit block cipher and 16 stages of substitution and transposition, it was placed

in the public domain and then broken by various groups using the exhaustive key search

method, also called a brute-force attack [62].

After a further selection process, it was then replaced in 2001 by a new advanced

encryption standard (AES) that used 128, 192, and 256-bit keys, thus generating a virtually

unbreakable number of combinations.

Shannon also proved that a single-use cipher is information-theoretically secure, as long as

it is used correctly, even for an attacker with infinite computing power. However, its key

must be random, at least as long as the clear message to be encrypted, and used only once.

This one-time pad (OTP) cryptosystem was first described by Frank Miller in 1882, 35

years before the patent issued to Gilbert S. Vernam, who developed an electromechanical

system using similar principles to encrypt teletype communications. In the early

implementations, the key material was distributed as a thick pad with hundreds of single-

use paper sheets (hence the name), each bearing a unique key in the form of lines of

randomly sequenced letters or numbers.

Historical uses of one-time pad systems starting back in the early 1900s [56, 63] include

communications between diplomatic and military organizations, espionage agencies such

as the KGB, and even the hotline between Moscow and Washington D.C. established in

1963 — a teleprinter arrangement, popularly known as the red telephone, protected by a

one-time tape system.

Practical OTP systems experience two fundamental difficulties — the generation of truly

random single-use keys and their distribution across all the communication parties.

In 1976, Whitfield Diffie and Martin Hellman published a classic paper [69] with a secure

key exchange mechanism and an asymmetric-key encryption concept that opened the door

to public-key systems (PKS). In this approach, the receiver has a secret or private key and

a public key. The private key is used by the decryption algorithm, while the public key is

used by the sender to encrypt the clear message to be transmitted.

Two years later, in 1977, Massachusetts Institute of Technology (MIT) scholars Ronald

Rivest, Adi Shamir, and Len Adleman invented a public-key system named after their

Chapter 2 – Optical Transport Technologies and Cryptography 60

initials — RSA, which is based on the difficulty of factoring products of large prime

numbers [70].

The inversion of the PKS channel, using the private (secret) key on the transmitter side and

the public key on the receiver side, makes it possible to implement the concept of digital

signature, in which the transmitter can authenticate itself to the receiver [53].

With the incipient practical implementation of quantum computing technology [71], it is

possible that, in a few decades, codes that would take billions of years to be broken in

brute-force attacks by advanced conventional computers will be more quickly deciphered.

The same concepts of quantum mechanics that guided the development of quantum

computers also gave rise to the so-called “quantum cryptography” [72], which so far

actually presents a secure solution for exchanging keys between parties [73]. Many of these

quantum communication methods, and particularly the so-called quantum key distribution

(QDK) protocols, use a subset of photon polarization states to represent a binary ‘0’ and

another for ‘1’ [14]. The first demonstration of an experimental prototype carried out in

1992 [74] established the technological feasibility of this concept.

2.5.2 SYMMETRIC AND ASYMMETRIC CRYPTOGRAPHY

Classical modern cryptography can be split into two major branches: secret or symmetric-

key systems and public or asymmetric-key distribution methods.

In a symmetric cryptography approach, also known as symmetric-key or single-key

scheme, the same cipher key is used by the two communication nodes (Alice and Bob) to

encrypt and decrypt messages, as shown in Figure 2.8.

Figure 2.8 – Symmetric-key cryptosystem.

Alice BobInsecure Channel

x y y x

Eve

Symmetric
Encryption

e(x,k)

Symmetric
Decryption

d(y,k)

Secure Channel

k k

Chapter 2 – Optical Transport Technologies and Cryptography 61

The implementation of this cryptosystem presupposes the existence of a secure channel

through which both nodes exchange their secret cipher key.

A symmetric encryption function e(x,k) accepts two inputs: the clear message to transmit

(x), or plaintext, and a cipher key (k). The output of e(x,k) is an encrypted message (y), or

ciphertext. The original message can only be found by applying the decryption function

d(y,k) on the encrypted message with the correct cipher key (k).

The selected encryption function, based on substitutions and permutations, must make it

difficult for intruders (such as Eve) to guess the cipher key from the encrypted message

and, the larger the key size (in bits), the longer it will take to be discovered via brute-force

or some other mathematical attack. With 256 bits, for instance, there are 2256 ≈ 1.1∙1077

different keys to be tried in a brute-force attack.

Assuming, for instance, that each possible combination could be checked in just one single

floating-point operation (flop), a supercomputer capable of performing at 1 exaflop/s, for

example, would need 36.7∙1048 years to check just 1% of this huge key space. Interestingly

enough, the current estimate for the age of the universe is approximately 13.77∙109 years.

Fast and secure symmetric-key algorithms are widely used in communication and storage

systems. They have, however, two important shortcomings related to the key distribution

problem (the need of a secure channel) and the possibility of repudiation (a communication

node cheatingly denying the transmission or reception of a message).

These drawbacks were overcome by a revolutionary idea proposed by Whitfield Diffie and

Martin Hellman [69] in 1976, with contributions from Ralph Merkle [75] — an astounding

breakthrough with the concept of public-key cryptography (PKC).

This radically different asymmetric cryptography approach, depicted in Figure 2.9, uses a

pair of related keys (public and private) and moves from the elementary tools of

substitution and permutation to the use of one-way and trapdoor mathematical functions,

which are easy to compute but intractable to invert, unless using some private extra

information in the case of trapdoor functions. Public keys can be published and do not need

to be obscured. Only the private keys must be secretly maintained.

Chapter 2 – Optical Transport Technologies and Cryptography 62

Figure 2.9 – Asymmetric-key cryptosystem.

The asymmetric encryption function e’(x,kpub) ciphers Alice’s plaintext (x) using the

previously shared Bob’s public key (kpub), generating the ciphertext (y). The original

message is then recovered by applying the decryption function d’(y,kpriv) using the related

private key (kpriv), secretly maintained by Bob.

The inversion of the public-key system channel — using the private key for message

encryption and the public one for decryption — provides a means for nonrepudiation using

digital signature algorithms [53].

In these scenario, Bob, for instance, digitally signs a message by applying an algorithm

taking the message itself and his private key as inputs. The resulting digital signature is

then transmitted appended to its respective message. Alice later applies a signature

verification algorithm using the received message and the appended digital signature as

inputs. The result is a true/false or valid/invalid signature indication, thus legitimating the

origin of the message.

Three major families of public-key algorithms of practical relevance can be classified based

on their underlying computational problem [53]:

• Integer Factorization Schemes – such as the RSA, based on the difficulty to factor

large integers;

• Discrete Logarithm Schemes – such as the Diffie–Hellman (DH) key exchange,

based on what is known as the discrete logarithm problem in finite fields;

• Elliptic Curve (EC) Schemes – such as the Elliptic Curve Diffie–Hellman (ECDH)

key exchange, being a generalization of the discrete logarithm algorithm.

These public-key algorithms require long operand arithmetic, based on number theoretic

functions. The longer these operands and keys, the more secure the algorithms become.

kpub

Alice BobInsecure Channel

x y y x

Eve

Asymmetric
Encryption

e’(x,kpub)

Asymmetric
Decryption

d’(y,kpriv)

Chapter 2 – Optical Transport Technologies and Cryptography 63

Their security level, which expresses the cryptography strength, can be defined by a

number of bits, resulting in the number of steps required in an attack. A security level of n

bits indicates that the best-known attack for a particular algorithm requires 2n steps.

A symmetric cryptosystem with an n-bit key has a security level of n bits, but this

relationship is not as straightforward in the asymmetric case. Table 2.4 shows the

recommended key bit lengths for security levels of 80, 128, 192, and 256 bits for both

asymmetric and symmetric cryptosystems.

Algorithm Family Cryptosystem
Security Level (bit)

80 128 192 256

Integer Factorization RSA 1024 3072 7680 15360
Discrete Logarithm DH 1024 3072 7680 15360

Elliptic Curves ECDH 160 256 384 512

Symmetric-key AES 80 128 192 256

Table 2.4 – Recommended key bit lengths for security levels of 80, 128, 192, and 256 bits for both

asymmetric and symmetric cryptosystems.

These results show that for a given cryptographic strength, asymmetric cryptosystems

require longer keys when compared to the symmetric case. EC schemes offer the closest

asymmetric equivalent to symmetric encryption in terms of performance.

The computational complexity for the calculations needed in the asymmetric

cryptosystems does not scale linearly with the key length, but instead grows much more

rapidly than that. Consequently, the proposed key sizes are long enough to provide

resistance to a brute-force attack but result in a processing speed too slow for a high amount

of data encryption [30]. Public-key operations can be 2–3 orders of magnitude slower than

symmetric-key encryption [53].

This is the reason why these asymmetric cryptosystems are used only for key management

and digital signature applications. Data are commonly encrypted/decrypted by a faster

symmetric system (such as the AES) using a key that is exchanged with an asymmetric

algorithm.

Figure 2.10 shows two OTN communication nodes A and B using a hybrid cryptosystem,

with an asymmetric-key scheme for the key exchange (eliminating the need of a secure

Chapter 2 – Optical Transport Technologies and Cryptography 64

channel) and a symmetric-key system for data encryption (providing secure and fast data

processing).

In node A side, the asymmetric encryption function e’(k,kpub) ciphers the symmetric key

(k) using the previously shared public key (kpub). In node B side, the asymmetric decryption

function d’(z,kpriv) receives the ciphered key (z) and decrypts the symmetric key (k) using

the related private key (kpriv). After being securely exchanged, the symmetric key (k) can

be used by the symmetric encryption e(x,k) and decryption d(y,k) functions to provide data

confidentiality over the communication channel.

Figure 2.10 – Hybrid (symmetric and asymmetric) OTN cryptosystem.

2.5.3 QUANTUM CRYPTOGRAPHY

Although symmetric encryption algorithms can provide a fast and secure means of ensuring

data confidentiality, as discussed in the previous section, the fundamental problem of key

distribution persists. Public-key systems (using asymmetric encryption) were designed to

handle this limitation, also addressing the non-repudiation issue.

Nonetheless, as soon as sufficient computational power becomes available or new

mathematical algorithms are designed (with fast and clever procedures for factoring large

numbers, for instance), encryption key security will eventually be at risk, compromising

the whole cryptography solution.

Quantum information theory is a recently emerged area of physics and technology, with

astonishing implications in computer science and communication systems. In contrast with

the use of discrete classical deterministic bits, a quantum information processing system

encodes the elementary units of information using non-classical properties of a quantum

Asymmetric
Encryption
e’(k,kpub)

Asymmetric
Decryption
d’(z,kpriv)

k kz zkpub

OTN
Terminal

Equipment

A

OTN
Terminal

Equipment

B

Regular OTN Link
Insecure Channel

x y y x

Intruder

Symmetric
Encryption

e(x,k)

Symmetric
Decryption

d(y,k)

Chapter 2 – Optical Transport Technologies and Cryptography 65

system in a superposition state, yielding revolutionary properties and possibilities in the

new domain of Quantum Computing.

The basic unit of quantum information is a two-state quantum-mechanical system called

Qubit (quantum bit), which can be engineered as the spin of the electron, trapped atoms

and ions, photons, and superconducting circuits. Following a fundamental principle of

quantum mechanics, qubits represent not only the ‘0’ and ‘1’ binary states but also their

superposition.

One application of these new information processing techniques is called Quantum

Cryptography [76], which so far in fact does not directly encrypt data, but rather provides

quantum key distribution (QKD) solutions based on concepts from quantum mechanics

such as the Heisenberg’s uncertainty principle, no-cloning theorem, and quantum

entanglement.

The first QKD protocol — the still widely used BB84 — was invented in 1984 by Charles

Bennett of IBM Research and Gilles Brassard of the University of Montreal [77], being

then demonstrated with an experimental prototype in 1992 [74] using a quantum channel

to transmit qubits in the form of polarized photons.

In accordance with the laws of quantum mechanics, polarized photons behave

deterministically only when they pass through a parallel or perpendicular filter, being

transmitted or absorbed depending on the correspondence of their polarization axes. When

diagonally polarized photons pass through a vertically oriented polarizing filter, however,

they emerge randomly repolarized in either the vertical or the horizontal direction.

Consequently, the receiver can distinguish between either rectilinear (0 and 90°) or

diagonal (45 and 135°) polarizations, but not between both.

In this way, because of the uncertainty principle, an eavesdropper cannot measure the

photon polarizations without modifying them in such wise that it allows the action to be

detected by the communication parties. This is what ensures unconditional absolute

security.

The BB84 QKD protocol can be divided in the following steps:

Chapter 2 – Optical Transport Technologies and Cryptography 66

1. Alice choses a random bit sequence as well as a random set of rectilinear (0 and

90°) or diagonal (45 and 135°) polarization bases;

2. Alice encodes each bit polarizing photons according to the corresponding chosen

bases — for instance, a horizontal or 45° polarization for a binary ‘0’ and a vertical

or 135° for a binary ‘1’;

3. Bob receives the photons and, for each one, randomly decides to measure its

rectilinear or diagonal polarization, converting the results back into a bit sequence;

4. Bob and Alice then communicate through a public but authenticated channel. Bob

tells her which type of measurement (rectilinear or diagonal) was used for each

photon (but not the measurement result), and Alice tells him whether he has made

the right kind of measurement;

5. They both discard all cases in which Bob has made the wrong measurement;

6. The remaining polarizations can then be decoded and sifted as a new shared key

sequence to be used for secure encryption purposes.

Figure 2.11 illustrates these protocol steps, with the highlighted columns indicating the

correspondence between the sending and measurement bases.

Figure 2.11 – BB84 protocol illustration.

Eavesdropping can be detected by publicly comparing (and then discarding) a randomly

selected subset of the sifted key or, with much more efficiency, by a parity calculation

within a random subset containing about half the bits of this key.

Since this detection is done after qubit transmission, there is no point in using this

technology to transmit valuable information other than an encryption key, which will be

used for encipherment only after the security is verified.

Alice’s random bits 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1

Alice’s random
sending bases

Alice’s photon
polarizations

Bob’s random
measuring bases

Bob’s photon
polarizations

Bob’s received bits 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1

Public discussion of bases

Sifted key 1 0 0 0 0 1 0 1

Chapter 2 – Optical Transport Technologies and Cryptography 67

QKD could be used with one-time pad encryption to achieve perfect secrecy. This requires,

however, a truly random key (which can also be generated with quantum techniques) at

least as long as the message to be encrypted, what may impose bandwidth limitations

considering the difficulties of maintaining an error-free quantum communication channel.

Being typically 1.000 to 10.000 times slower than conventional optical communications

[78], practical QKD systems are commonly combined with classical symmetric encryption

mechanisms (such the AES algorithm) with short-term (frequently replaced) keys to

provide quantum-safe security.

Several commercially available QKD systems are supplied by companies such as MagiQ

(USA) [79], KETS (UK) [80], ID Quantique (Switzerland) [81], and Toshiba (Japan) [82].

Additionally, there have been also initiatives to standardize a QKD interface, such as the

European OpenQKD project [83] and the work of the European Telecommunications

Standards Institute (ETSI) [84], which will certainly facilitate the introduction of QKD for

OTN vendors. Some are indeed already taking part in this new technology, joining efforts

with telecom operators to make demonstrations combining symmetric encryption solutions

with QKD systems in multiple testbed networks [85, 86].

2.6 ADVANCED ENCRYPTION STANDARD – AES

A well-known, widely adopted and worldwide standardized symmetric encryption

algorithm is the AES (Rijndael) [87, 88], developed by the Belgian cryptographers Joan

Daeman and Vincent Rijimen [89].

Following a five-year standardization process, Rijndael was selected between fifteen

competing designs and was announced by the National Institute of Standards and

Technology (NIST) as the Federal Information Processing Standards (FIPS) publication

197 on November 26, 2001.

This 20+ year algorithm is still largely used in current digital communication and

computer/storage systems, being implemented for instance in commercially available OTN

processor ASSPs and self-encrypting drives (SEDs) due to its robust, fast, and secure

encryption capabilities. Some other applications include file transfer and Wi-Fi security

Chapter 2 – Optical Transport Technologies and Cryptography 68

protocols, programming language libraries, mobile apps, file compression tools, and disk

partition encryption.

AES is an iterative block cipher that encrypts 128 bits of data using a 128/192/256-bit

cipher key. Data are processed by repeatedly combining substitution (bringing in some

confusion) and permutation computations (adding diffusion) within several rounds (10, 12,

or 14, depending on the key size) to produce the ciphertext.

Each 128-bit input block is arranged into a 4 × 4 matrix of 16 bytes, called a state matrix,

and data are processed within each round using operations in the Galois field GF(28),

following a set of standardized steps: substitute bytes, shift rows, mix columns, and add

round key. A key expansion process generates each 128-bit round key from the original

cipher key (of 128, 192, or 256 bits). Decryption is achieved by performing these

operations in the reverse order.

The sequence of operations listed in Figure 2.12 shows the encryption process using a

pseudo-code notation [89]. Encryption consists of an initial key addition, denoted by

AddRoundKey, followed by Nr – 1 rounds with the application of the transformation

denoted by Round and, finally, one application of the final transformation denoted by

FinalRound. The number of rounds (Nr) is 10, 12, or 14, depending on the length of the

cipher key (128, 192, or 256 bits).

The initial key addition and each subsequent transformation take as input the State matrix

and a round key, which is denoted by ExpandedKey[i] in the round i. The operation of

deriving the round keys (ExpandedKey) from the main cryptographic key (CipherKey) is

denoted by KeyExpansion.

Figure 2.12 – AES encryption algorithm pseudo-code.

procedure AES_Rijndael(State,Cipherkey)

KeyExpansion(CipherKey,ExpandedKey)

AddRoundKey(State,ExpandedKey[0])

for i = 1 to Nr − 1 do

Round(State,ExpandedKey[i])

end for

FinalRound(State,ExpandedKey[Nr])

end procedure

Chapter 2 – Optical Transport Technologies and Cryptography 69

The Round transformation consists of four different operations or steps: Substitute Bytes

(generating confusion), Shift Rows and Mix Columns (generating diffusion), and Add

Round Key [30]. The FinalRound is identical to the previous ones, except for the removal

of the Mix Columns step.

Figure 2.13 shows a simplified flowchart of the AES encryption algorithm.

Figure 2.13 – Simplified flowchart of the AES encryption algorithm.

2.6.1 SUBSTITUTE BYTES

The Substitute Bytes step, illustrated in Figure 2.14 [90], constitutes a non-linear

transformation in which each byte ai,j of the input state matrix is replaced by another, bi,j,

according to a substitution box (S-Box) constructed from a multiplicative inverse in the

finite field GF(28) and a bitwise affine transformation.

The S-Box is a 16 × 16 matrix with a permutation of all 256 possible 8-bit values. The

replacement process is typically implemented from a lookup table (LUT) in which the four

most significant bits of ai,j address the row, while the four least significant bits address the

columns. In this way, the hexadecimal value 95, for instance, addresses the position of row

9 and column 5 of this table, containing the value 2A, thus generating the substitution

95 → 2A.

Key Expansion

Plaintext

Round Key (0)+
Substitute Bytes

Shift Rows

Mix Columns

+

+
Ciphertext

Substitute Bytes

Shift Rows

Round Key (i)

Round Key (Nr)

(Nr – 1)
Rounds

Chapter 2 – Optical Transport Technologies and Cryptography 70

Figure 2.14 – Illustration of the AES algorithm Substitute Bytes step.

This transformation generates confusion, causing each bit of the ciphered message to

depend on several parts of the key, thus making it difficult to be discovered from known

plaintext attacks in which pairs of clear and encrypted messages are analyzed.

2.6.2 SHIFT ROWS

In the Shift Rows step, illustrated in Figure 2.15 [91], the first row of the state matrix is

preserved while the second, third, and fourth rows are cyclically shifted 1, 2, and 3 bytes

to the left, respectively.

Figure 2.15 – Illustration of the AES algorithm Shift Rows step.

2.6.3 MIX COLUMNS

The Mix Columns step, illustrated in Figure 2.16 [92], operates on each column

individually by mapping each of its bytes into new values that are a function of all four

bytes in that column. This can be represented in terms of polynomial arithmetic by

considering each column of the state matrix as a four-term polynomial with coefficients in

GF(28). Each column is then multiplied (modulo {01}x4 + {01}) by a fixed polynomial

C(x) = {03}x3 + {01}x2 + {01}x + {02}, where the {n} notation indicates n in the

hexadecimal number base.

1,2

a a a

aa1,1aa

a 2,1a a a

aaa

0,0 a0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 a3,1 3,2 3,3 b
2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

S

Substitute
Bytes

a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

No
Change

Shift 1

Shift 2

Shift 3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,1 1,2 1,3 1,0

0,0 0,1 0,2 0,3

2,0 2,1 2,2 2,3 2,0 2,12,2 2,3

3,0 3,1 3,2 3,3 3,0 3,1 3,23,3

Shift Rows

Chapter 2 – Optical Transport Technologies and Cryptography 71

Figure 2.16 – Illustration of the AES algorithm Mix Columns step.

This transformation, together with the Shift Rows step, generates diffusion, so that a casual

change in one bit of the clear message produces a change in several bits of the ciphered

message, thus obscuring their statistical relationship.

2.6.4 ADD ROUND KEY

In this step, illustrated in Figure 2.17 [93], the round key is added to the state matrix by a

bitwise eXclusive OR (XOR) logic operation.

As depicted in Figure 2.13, this addition happens at both the input and output of the AES

algorithm and is sometimes referred to as key whitening. It helps to increase the resistance

against exhaustive key search attacks.

Figure 2.17 – Illustration of the AES algorithm Add Round Key step.

1,2

a a a

aa1,1aa

a 2,1a a a

aaa

0,0

a0,1

0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 a3,1
3,2 3,3 b

1,2

b b b

bbb

b 2,1b b b

bb

0,0

b0,1

0,2 0,3

1,0
b1,1

1,3

2,0 2,2 2,3

3,0 b3,1
3,2 3,3

Mix Columns

2,1

1,21,1

a a a a

aaaa

a a a a

aaaa

0,0 0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

k k k k

kkkk

k k2,1

k

k k

kkk

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

b
2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

Add
Round Key

Chapter 2 – Optical Transport Technologies and Cryptography 72

2.6.5 ROUND KEY DERIVATION

The round keys (128 bits) are derived from the main cryptographic key (128, 192, or 256

bits) from an expansion process, generating a linear vector of 128 × (Nr + 1) bits through

operations performed on 4-byte words involving substitutions (S-Box), cyclic

permutations, and recursive XOR operations. The selection of round keys is done by

consecutively reading, at each new round, the necessary number of bits from the expanded

vector.

Alternatively, key derivation can be done in real time, without expanding the full array —

a solution particularly suited to memory-constrained systems.

2.7 MODES OF OPERATION

In order to encrypt a larger than 128-bit message, the AES block cipher needs to be

repeatedly applied in a way defined by different modes of operation [94]. A straightforward

approach would be a direct use of the block cipher, breaking the original message into 128-

bit chunks, for instance, encrypting each one independently, and then concatenating the

resulting ciphertext blocks together.

Although highly parallelizable in hardware implementations, this Electronic Code Book

(ECB) mode of operation is not semantically secure [95, 96], as similar 128-bit plaintext

blocks will look very similar at the output of the encryption function, helping an attacker

to build up a codebook and extract the message contents.

An alternative solution called Cipher Block Chaining (CBC) mode involves connecting the

cipher blocks in such a way that the resulting ciphertext becomes dependent on all the

previously processed plaintext blocks. This also requires an additional primitive called

Initialization Vector (IV) sequence, which is essentially a cryptographic “nonce” (number

only used once), to randomize the encryption of the first block. This chaining connection,

however, prevents hardware parallelization.

The counter (CTR) mode of operation uses a set of counters as input blocks for the cipher.

The resulting encrypted blocks are then combined with those of the clear message through

a logic XOR operation, generating confidentiality. In this architecture, which is highly

parallelizable in hardware, randomization for subsequent message blocks is achieved as

Chapter 2 – Optical Transport Technologies and Cryptography 73

this counter is incremented for each new cipher instance. Obviously, care must be taken

with its initialization mechanism so that values do not repeat between different instances

of the encryption function using the same key. An initialization vector (IV) can then be

concatenated with the counter, ensuring this uniqueness requirement [53, 94]. Figure 2.18

illustrates the CTR mode of operation using an AES block cipher and an IV sequence.

Figure 2.18 – Illustration of the CTR mode of encryption using an AES block cipher and an IV sequence.

If the length of the chosen IV sequence is 96 bits, for example, 32 bits are left for the

counter (totaling the 128 input bits of the AES block cipher). For each new message block

encrypted with the same key, the counter must be incremented while the IV remains fixed.

In this example, 232 message blocks can be encrypted with the same key. After that, a new

IV sequence must be generated, which must also be different from the previous ones until

the key is changed.

In this architecture, the block cipher always perform only the encryption operation, as it

encrypts just counter values (already concatenated to IV) that are synchronized in both the

transmitter and receiver with respect to each corresponding encrypted block. Consequently,

decryption naturally occurs when ciphered data are fed into the algorithm, since if

C ⨁ X = Y, then C ⨁ Y = X.

Figure 2.19 [97–99] shows the encryption of an image (a) in the ECB (b) and CBC or CTR

(c) modes of operation, highlighting the fragility of the ECB mode in keeping clear

message patterns present in the ciphered message.

AES

IV

x[1] + + + +
y[1]

Counter 1

AES

IV Counter 2

AES

IV Counter 3

AES

IV Counter 4

x[3] x[4]

y[2] y[3] y[4]

x[2]

y[1] y[2] y[3] y[4]
Encrypted Message

Key Key Key Key

C1 C2 C3 C4

Original Message

x[1] x[2] x[3] x[4]

Chapter 2 – Optical Transport Technologies and Cryptography 74

Figure 2.19 – Examples of the encryption of an original image (a) using ECB (b) and CBC or CTR (c),

highlighting the fragility of the ECB mode.

2.7.1 GALOIS/COUNTER MODE – GCM

A standardized algorithm called Galois/Counter Mode [100] provides not only a mode of

encryption operation but also an authentication mechanism. It is a combination of the

counter mode of encryption with the Galois mode of authentication.

This architecture relies on a 128-bit block cipher and uses multiplications in the 128-bit

Galois field GF(2128) to realize authenticated encryption and decryption functions, with the

computation of a message authentication code (MAC). Galois field multiplication

computations are easily parallelized in hardware, allowing for high processing throughputs

[101–103].

On the transmitter side, data are encrypted using the CTR mode and a MACTX is computed

and appended to the message. On the receiver side, a MACRX is also computed and then

compared with the received MACTX to ensure message authentication and integrity. The

MAC is also known as authentication TAG and can be thought of as a cryptographic

checksum [53].

The GCM algorithm also protects the authenticity of an additional block of data, called

additional authenticated data (AAD). However, it is left in clear (not encrypted) and may

serve as a container for parameters of a network protocol, for instance.

Figure 2.20 illustrates an AES-GCM algorithm architecture. In the encryption section, five

128-bit AES block ciphers running in parallel (in CTR mode) handle a plaintext data path

of 640 bits. In the authentication section, hash multiplications are performed in the Galois

(a) (b) (c)

Chapter 2 – Optical Transport Technologies and Cryptography 75

field. The hash sub key (H) is obtained by the encryption of a 128-bit zero sequence and

the IV sequence is also ciphered before being included in the authentication process.

Figure 2.20 – Illustration of the AES-GCM architecture.

2.7.2 GCM SECURITY ASPECTS

There is a crucial requirement of “uniqueness” [100] for IV sequences in the GCM, in order

to ensure the security of this mode of operation [104, 105]:

The probability that the authenticated encryption function ever will be

invoked with the same IV and the same key on two (or more) distinct sets of

input data shall be no greater than 2-32.

If a single IV is repeated in a set of instances of the authenticated encryption function that

uses a given key, the cryptographic solution may be vulnerable to forgery attacks [106].

Although the IV sequence can have any number of bits between 1 and 264 – 1, the length

of 96 bits is recommended to promote interoperability, efficiency, and simplicity of design

[100].

The length of the resulting TAG sequence is limited by the size of the finite field within

which the hash multiplications are performed (128 bits). Although some applications may

benefit from the use of shorter TAGs (such as those involving audio and video, which

require lower latency), this may lead to security vulnerabilities and a 128-bit sequence is

recommended [100, 107].

AES

IV

Plaintext 1 + +
Ciphertext 1

Counter 1

AES

IV Counter 2

AES

IV Counter 0

+ +

AAD len (A) || len (C)

len (A) = length (ADD)
len (C) = length (Ciphertext)

Ciphertext 2

Plaintext 2

Key Key Key

+

AES

IV Counter 4

+
Ciphertext 4

Plaintext 4

Key

+

AES

IV Counter 3

+
Ciphertext 3

Plaintext 3

Key

+

AES

IV Counter 5

+

+

+
TAG

Ciphertext 5

Plaintext 5

Key

H H H HH H

H
AESKey

0

H

En
cr

yp
tio

n
Au

th
en

tic
at

io
n

Chapter 2 – Optical Transport Technologies and Cryptography 76

2.8 QUANTUM THREAT AND POST QUANTUM CRYPTOGRAPHY

Quantum computing [108] has emerged as a technology capable of solving certain types of

problems of huge importance for humankind, which today are practically prohibitive or

even impossible to be solved by classical computers.

It represents a new and fundamentally different computing paradigm, carrying tremendous

advantages for solving optimization, simulation, and mathematical problems which impact

biomolecular systems, pharmaceutical industries, material science such as

superconductors, machine learning and artificial intelligence, financial services and

technology, and many other areas of human knowledge.

As mentioned before, in Section 2.5.3, instead of digital deterministic states represented by

bits, quantum computers rely on encoding information in any coherent two-level system

with superposition states requiring probabilistic measurements. These qubits or quantum

bits are much more powerful because of the associated quantum mechanical phenomena

such as superposition, interference, and entanglement.

In a classical computer, calculations can be done either sequentially in time or in parallel,

with multiple copies of the calculating machine. With n bits, there are 2n states that are

processed one at a time by logic gates performing Boolean operations.

Similarly, a quantum computer has qubit gates that can be arranged in circuits to perform

any quantum logic. However, it can bring together all those 2n states and put them all in

one superposition state, leading to quantum effects of parallelism and interference, which

underlies the processing exponential speedup [109, 110].

Recent quantum supremacy demonstrations include the Sycamore 53-qubit programmable

superconducting processor from Google [111], which actually has been beaten by a new

classical algorithm [112], and a non-programmable photonic platform with 50 squeezed

states [113].

The Canadian company Xanadu Quantum Technologies also presented Borealis, their

newest and largest quantum computer ever built. With 216 squeezed-state qubits, it became

the first computer capable of quantum computational advantage to be deployed on the

cloud. With a runtime advantage that is over 50 million times as extreme as that reported

Chapter 2 – Optical Transport Technologies and Cryptography 77

from earlier photonic machines, it requires only 36 µs to produce a single sample of a

particular mathematical problem, which would take on average more than 9.000 years to

be done by the best available classical algorithms and supercomputers [114].

Nonetheless, quantum computers need to be engineered to cope with decoherence and

errors caused by environmental factors that cause qubits to lose their properties [115].

Coherence time is the lifetime of the quantum-mechanical properties of a qubit,

corresponding to the duration of time in which the qubit is in a viable state before it decays

due to environmental disruptions. Gate time corresponds to the time required for a single

gate operation. A figure of merit is then how many gates can be applied before qubit

decoherence. Various techniques to control these phenomena are gathered under the name

of quantum error correction (QEC).

Different qubit modalities such as trapped ions, silicon quantum dots, and superconducting

qubits show varying performances in terms of the number of operations before errors, as

well as the gate speed, which ranges from kilohertz up to a few gigahertz [116].

Special algorithms have been developed to explore the advantages of quantum computers

in solving specific problems such as simulation, factoring, linear systems, and search [110].

Two of most importance for encryption-based security systems are Shor’s factoring and

Grover’s search algorithms.

In 1994, Peter Shor developed an efficient algorithm for finding discrete logarithms and

factoring integers that runs in a polynomial time on a quantum computer with a sufficient

number of qubits [117]. This is the most famous and possibly most important quantum

algorithm discovered to date.

Given a number N, the goal is to factor it and find its prime factors p and q. The difficulty

of doing that with classical computers underpins the security basis of the RSA public-key

algorithm. The runtime of the best-known classical algorithm for factoring an n-bit number

is roughly 𝑒𝑒𝑛𝑛1/3 steps, which is not polynomial time and thus inefficient, while in a

quantum computer running Shor’s algorithm, it is n2 log n log log n steps, reducing a sub-

exponential problem to a polynomial problem [109].

Chapter 2 – Optical Transport Technologies and Cryptography 78

Another mundane problem in information processing is searching for an entry that satisfies

a given condition in an unsorted database of N = 2n items. The most efficient way of

achieving that with a classical algorithm is to examine all the N items in the database until

finding the correct answer, which on average will require N/2 trials.

Lov K. Grover devised in 1996 [118] a quantum search algorithm that finds the expected

entry with a quadratic speedup of √𝑁𝑁 steps [109]. This means that a symmetric

cryptosystem with keys of 128 bits, for instance, could be brute-force attacked with 264

steps by a quantum computer, which is still a huge effort.

The current question is how this quantum leap in computing power and new algorithms

will ever challenge and change the way information is securely communicated.

Whether large-scale cryptographically relevant quantum computers become available,

Shor’s contributions would destroy the security basis for most real deployed public-key

(asymmetric) cryptosystems, while Grover’s could threaten the symmetric solutions.

The Global Risk Institute has published a 2021 Quantum Threat Timeline Report [119]

focusing on estimates for the timeline of the threat posed to cybersecurity by quantum

computers. This survey provides the most recent opinions of almost fifty experts from

academia and industry on several aspects of quantum computing.

Table 2.5, reproduced from this report, shows what to expect for different timeframes based

on the expert’s estimates of the likelihood of a quantum computer being able to break the

RSA-2048 algorithm in 24 hours.

This report also indicates that superconducting systems and trapped ions are the most

promising technology for realizing a cryptography-threatening quantum computer.

As mentioned before, all qubit modalities are subject to environmental factors that turn into

different noise sources, reducing the operational fidelity of the quantum bits. In order to

cope with decoherence, many physical qubits are needed to make up a single logical qubit,

providing stability, error correction, and fault tolerance to quantum gates and circuits.

Chapter 2 – Optical Transport Technologies and Cryptography 79

Timeframe What to Expect

Next 5 Years

Most experts (25/46) judged that the threat to current public-key cryptosystems in
the next 5 years is “<1% likely”. About a quarter of them (11/46) judged it relatively
unlikely (“<5% likely”). The rest selected “<30%” (9/46) or “about 50%” (1/46)
likely, suggesting there is a non-negligible chance of an impactful surprise within
what would certainly be considered a very short-term future.

Next 10 Years
Still more than half of the respondents (24/46) judged the event was “<1%” or “<5%”
likely, but already 15/46 felt it was “about 50%” or “>70%” likely, suggesting there
is a significant chance that the quantum threat becomes concrete in this timeframe.

Next 15 Years

More than half (28/46) of the respondents indicated “about 50%” likely or more
likely, among whom 13 indicated a “>70%” likelihood, and 5 an even higher “>95%”
likelihood. This timeframe appears as a tipping point, as the number of respondents
estimating a likelihood of “about 50%” or larger become the majority.

Next 20 Years

Roughly 90% (41/46) of respondents indicated “about 50%” or more likely, with
21/46 pointing to “>95%” or “>99%” likely. This indicates there is a significant bias
toward viewing the realization of the quantum threat as substantially more likely than
not within this timeframe.

Next 30 Years

Forty experts out of 46 indicated that the quantum threat has a likelihood of 70% or
more this far into the future, with 16/44 experts indicating a likelihood greater than
99%. Thus, there appears to be a relatively low expectation of any fundamental
showstoppers or other reasons that a cryptographically relevant quantum computer
would not be realized in the long run.

Table 2.5 – What to expect for different timeframes based on the expert’s estimates of the likelihood of a

quantum computer able to break the RSA-2048 algorithm in 24 hours.

A consensus study report published in 2019 by The National Academies of Sciences,

Engineering, and Medicine [120] helps clarify the current state of the art, likely progress

toward, and ramifications of, a general-purpose quantum computer.

Table 2.6, partially extracted from this publication, shows some literature-reported

estimates of quantum resilience for current cryptosystems under different assumptions of

error rates and error-correcting codes.

Cryptosystem Category Key
Size

Security
Level

Threatening
Quantum
Algorithm

Logical
Qubits

Required

Physical
Qubits

Required

Time Required
to Break the

Cryptosystem

AES-GCM Symmetric
Encryption

128
192
256

128
192
256

Grover’s
algorithm

2,953
4,449
6,681

4.61 × 106
1.68 × 107
3.36 × 107

2.61 × 1012 years
1.97 × 1022 years
2.29 × 1032 years

RSA Asymmetric
Encryption

1024
2048
4096

80
112
128

Shor’s
algorithm

2,050
4,098
8,194

8.05 × 106
8.56 × 106
1.12 × 107

3.58 hours
28.63 hours
229 hours

ECDH Asymmetric
Encryption

256
384
512

128
192
256

Shor’s
algorithm

2,330
3,484
4,719

8.56 × 106
9.05 × 106
1.13 × 106

10.5 hours
37.67 hours

55 hours

Table 2.6 – Literature-reported estimates of quantum resilience for current cryptosystems.

Chapter 2 – Optical Transport Technologies and Cryptography 80

These rough estimates, based on underlying assumptions for construction architecture,

error rate, and gate speed, show that the number of physical qubits required to implement

the threatening algorithms is thousands of times larger than what is provided by current

quantum computers, and, moreover, the time required to break symmetric cryptosystems

is still astronomical.

As shown in Figure 2.21 [121], IBM has just unveiled its 433-qubit Osprey quantum

processor and expects to scale to 4,158 qubits in 2025, going beyond single chips and

introducing classical parallelized quantum computing.

Figure 2.21 – IBM quantum roadmap.

A great deal of technological evolution is needed for quantum computers to achieve the

necessary capacity to endanger classical cryptography. Despite all the engineering

challenges, though, asymmetric cryptosystems will eventually be compromised. As a

response to this quantum crisis, many efforts have been made towards the so-called post-

quantum cryptography (PQC) [122, 123], which is believed to resist quantum computer

attacks.

This relatively young research area focuses on devising mathematical operations and

algorithms for quantum-safe classical cryptography. There are many important classes of

cryptographic systems beyond those threatened by quantum computing, such as hash-

based, code-based, lattice-based, and multivariate-quadratic-equations cryptography [123].

Chapter 2 – Optical Transport Technologies and Cryptography 81

The capability of breaking RSA and elliptic curve cryptography together with a store-and-

break threat known as store now and decrypt later (SNDL) — a cyber attack in which

valuable encrypted data are stored and maintained to be decrypted later, once sufficiently

large and fault-tolerant quantum computers are available — drives organizations and

standardization bodies into a transition to a new suite of quantum-resistant encryption

(QRE) algorithms [124].

As the quantum threat is expected to have a large and disruptive impact on the current

digitally dependent economy, the World Economic Forum also prepared a study [125]

based on in-depth discussions between senior leaders and quantum experts from its

quantum security working group, which provides guidance for organizations to achieve a

secure quantum transition setting short, medium, and long-term goals to manage the risk.

The report also highlights emerging technologies that can help mitigate the quantum threat:

post-quantum cryptography, quantum key distribution, and quantum random number

generation (QRNG), which is used as a source of genuine randomness to maximize the

strength of a key.

In summary, as previously discussed and according to the estimates shown in Table 2.6,

although public-key systems may be ruined within a few decades, the AES-GCM and other

symmetric cryptosystems are in the class of quantum-resistant encryption algorithms.

Therefore, assuming a secure key exchange between the parties, symmetric encryption with

large keys could be used to protect information privacy, as quantum computers are not

expected to be able to feasibly reduce the brute-force attack time.

82

Chapter 3

OTN CRYPTOGRAPHIC

SYSTEM ARCHITECTURE

The previous chapter introduced optical transport technologies and key concepts related to data

encryption and authentication. This chapter describes the entire architecture of the cryptographic

system developed for the establishment of secure links in OTN systems, with emphasis on the

hardware and software layer division and on the generation and transport of the encryption

overhead data necessary for the link operation.

3.1 OTN CRYPTOGRAPHIC LINK

Although highly efficient and protected against transmission errors, OTN systems were not

originally prepared to establish a secure communication channel with data confidentiality

and authenticity. The implementation of a cryptography solution demands adaptations that

allow the transport of additional data corresponding to the encryption overhead, as well as

the design of mechanisms for the generation of IV sequences, establishment and

maintenance of cryptographic sessions, management and exchange of keys, among others.

The high-level system architecture diagram depicted in Figure 3.1 illustrates how to enable

cryptography in a 100 Gbit/s optical transport network using the developed 100G AES-

GCM Cryptography Engine. It must be integrated into the OTN processing chain (either in

an ASIC/ASSP or in an FPGA) at the ODU layer.

The developed architecture is based on a hybrid cryptosystem, as previously shown in

Figure 2.10, with the encryption and authentication functions implemented in a hardware

layer using the AES-GCM algorithm. The generation and exchange of large symmetric

keys are implemented in a software layer (running in the Host CPU), and the use of an

asymmetric protocol such as Diffie–Helman or RSA, or even quantum key distribution,

can provide a secure method for key exchange over any channel, including the inherently

insecure OTN link.

Chapter 3 – OTN Cryptographic System Architecure 83

Figure 3.1 – 100G OTN cryptography high-level system architecture diagram.

Both inputs and outputs of the cryptography engine blocks handle a padded ODU frame

(rows with 3840 columns) with MFAS and FAS signaling. The higher OTU layer is

processed by other blocks (e.g. a Framer) in the OTN processor device. Encryption and

decryption engines work just on the OPU area, and an OTN OH Processor inserts and

extracts the cryptographic auxiliary information (TAG, AAD, and IV) using ODU reserved

overhead fields. This provides the advantage of transparency in regenerations along the

link or across multiple transport networks, where only the OTU overhead is processed.

With the use of padding, data corresponding to one line of the padded ODU frame will be

transmitted in 48 clock cycles using a 640-bit bus. The last 128 bits of each line (or the

least significant bits of the data bus in the 48th clock cycle) are padding bits (zeros) and

must be ignored. Data processing is synchronized by the MFAS and FAS signaling.

3.2 CRYPTO SESSION, CRYPTO BLOCK, AND CRYPTO PACKET

Before the establishment of an OTN secure communication link (OTN Crypto Link)

between these two nodes, both sides need to communicate and exchange information to

initiate Crypto Sessions, each one with a different cipher key. Once a crypto session is

initiated, all OPU data are encrypted using the same key. In order to benefit from the

inherent OTN multi-frame alignment feature, crypto sessions are further divided into a set

of Crypto Blocks, all aligned with MFAS = 0.

Figure 3.2 shows the minimum transport unit for the encrypted data together with the

encryption overhead (TAG, AAD, and IV), named Crypto Packet.

Encryption

Decryption

OTN OH
Processor

Control
Interface

100G AES-GCM OTN Cryptography Engine

Host
CPU

Mux
Mapper
Framer

OTU4
Framer

ODU4ODU4

OTN
Crypto Link

Node A

Encryption
Overhead

FAS / MFAS
Fail

FAS / MFAS
Fail

‘

Decryption

Encryption

OTN OH
Processor

Control
Interface

100G AES-GCM OTN Cryptography Engine

Host
CPU

Mux
Mapper
Framer

ODU4
Encryption
Overhead

FAS / MFAS
Fail

FAS / MFAS
Fail

Node B

ODU4
OTU4

Framer

Chapter 3 – OTN Cryptographic System Architecure 84

Figure 3.2 – 100G OTN crypto packet frame construction.

The minimum number of OPU payloads in the crypto packet is a function of the encryption

overhead size and the available bandwidth in the ODU overhead fields. Since the IV and

TAG are 96 and 128-bit sequences, at least 28 bytes are necessary. Assuming the use of

the 2-byte and the 6-byte reserved fields of the ODU overhead, the available bandwidth is

eight bytes per ODU frame. Then, with a minimum of four padded ODU frames (four OPU

payloads in the crypto packet), a bandwidth of 32 bytes is available for the encryption

overhead, providing a transport container for the cryptographic sideband data, including

four bytes of AAD.

The crypto block, in this case, will have 64 crypto packets since it is aligned with an OTN

multi-frame.

Table 3.1 summarizes these architectural conception definitions with additional remarks.

 Definition Remarks

Crypto
Session

Timeframe within which data are
securely transmitted in an OTN Crypto
Link using a single cipher key, which is
generated by software on the
transmitter side and shared with the
receiver side using an asymmetric
encryption protocol over a software
communication link.

Minimum period dependent on the software layer response
time and the software communication link bandwidth.

It is a multiple of crypto blocks, which are aligned with
OTN multi-frames (256 OPUs).

Maximum period determined, in practice, by security
policies and the number of unique IV sequences that can be
generated within the session.

Crypto
Block

Subdivision of a crypto session used to
benefit from the OTN multi-frame
alignment signal (MFAS).

Group of 64 crypto packets, each with four OPUs.

Period = 299.008 µs (OTU4).

Aligned with OTN MFAS = 0.

Crypto
Packet

Transport unit for encrypted data
together with encryption overhead
(TAG, AAD, and IV), digitally
wrapped into four ODU frames.

32 bytes for encryption overhead, transmitted in the eight
reserved bytes available in each ODU overhead.

60960 bytes for encrypted data (four OPUs), transmitted in
the OPU overhead and payload areas.

Period = 4.672 µs (OTU4).

Table 3.1 – Definitions of crypto session, crypto block, and crypto packet.

AAD Encrypted OPU DataTAG

Plaintext OPU Data

IV

Crypto Packet

Chapter 3 – OTN Cryptographic System Architecure 85

3.3 HARDWARE AND SOFTWARE LAYERS

The hardware layer, made up of two processors (TX and RX), performs OPU data

encryption, decryption, and authentication, as well as transmission and reception of crypto

packets between two nodes and performance monitoring for statistics generation.

The software layer is mainly responsible for the hardware layer control (through a set of

configuration registers), crypto session establishment and management, and cipher key

management. An OTN in-band side channel called general communication channel (GCC),

typically used to carry transmission management and signaling information, can be used as

the software layer communication link.

3.3.1 HARDWARE LAYER CONTROL

The hardware layer is configured and commanded by the software layer. For example,

cryptographic sessions can be restarted, or session periods can be changed at any time by

software commands. However, for security reasons, a set of predefined hardware actions

(called consequent actions) were also designed and implemented for faster response or for

the case of software execution or communication failures.

3.3.2 ESTABLISHMENT AND MANAGEMENT OF CRYPTO SESSIONS

A crypto session is established through certificate exchange (with authentication) and

sharing of a session key. During an active session, the software layer needs to share a cipher

key for the next one. In this way, a new crypto session starts when the current one expires

without traffic disturbances, using a hitless key change mechanism.

The common crypto session establishment procedure is as follows:

1. Nodes A and B communicate through a software communication link using an

insecure channel;

2. Both nodes exchange certificates and verify the authenticity of each other;

3. Node A shares a 256-bit key to node B, using an asymmetric encryption protocol;

4. Nodes A and B use the shared session key for encryption and decryption of the

OPU data in the crypto packets.

Chapter 3 – OTN Cryptographic System Architecure 86

The session period, in terms of the number of crypto blocks, is defined by the software

layer according to security policies and programmed into a hardware configuration register.

3.3.3 KEY MANAGEMENT

The software layer must generate the cryptographic symmetric key (session key) used for

crypto packet encryption/decryption. It is then shared with the receiver side within the

current crypto session period, so that it can be used in the next one. The generation of large

ephemeral (short-term) session keys contributes to the security of the overall solution.

3.4 ENCRYPTION OVERHEAD FRAME

Figure 3.3 illustrates the correlation between the encryption overhead and the ciphered

message of three consecutive crypto packets. The IV field of a crypto packet is related to

the ciphered message of the next one, because at the receiver side it is needed in advance

for OPU data decryption. In the same way, the TAG field of a crypto packet is related to

the ciphered message of the previous one, since it will be calculated by the transmitter side

after the entire message has been encrypted.

Figure 3.3 – Correlation of the encryption overhead and the encrypted message

of consecutive crypto packets.

Table 3.2 shows the corresponding encryption overhead frame format and the field sizes

adopted in this architecture, considering the available bandwidth of 32 bytes per crypto

packet, with an indication of hardware (HW) and software (SW) layer management.

Field Description Size (byte) Managed by

TAG Message Authentication Code (MAC) 16 HW
AAD Additional Authenticated Data 4 SW

IV

CSKS – Crypto Session Key Selection 1 SW/HW
CSID – Crypto Session ID 4 SW
CBID – Crypto Block ID 4 HW
CPID – Crypto Packet ID 3 HW

Table 3.2 – Encryption overhead frame format and field sizes.

Encrypted OPUTAG

Crypto Packet
[n]

Crypto Packet
[n-1]

Crypto Packet
[n+1]

AAD IV Encrypted OPUTAG AAD IV Encrypted OPUTAG AAD IV

Chapter 3 – OTN Cryptographic System Architecure 87

3.4.1 AUTHENTICATION TAG

The TAG field corresponds to the message authentication code (MAC) generated by the

AES-GCM algorithm and is used by the receiver to verify the authenticity of the received

message.

It is transmitted first in order to reduce data store-and-forward latency during the

authentication process.

3.4.2 AAD

Additional authenticated data (AAD) comprises 4-bytes of plaintext per crypto packet.

It can be used by the optical transport network operator to transmit some supervision or

management-related data, without the need for encryption, but ensuring authenticity.

3.4.3 IV

The initialization vector (IV) follows a deterministic construction with the concatenation

of two fields, called the “fixed” field and the “invocation” field [100].

In this developed architecture, the fixed field is made up of a Crypto Session Key Selection

(CSKS) control byte, together with a Crypto Session Identification (CSID) 4-byte number.

The invocation field, which ensures the uniqueness requirement of a different IV per

invocation of the authenticated encryption function [100] (in this case a unique IV per

crypto packet), was implemented as integer counters corresponding to a Crypto Block

Identification (CBID) 4-byte number and a Crypto Packet Identification (CPID) 3-byte

number.

Since the CBID field is incremented at every multi-frame (64 crypto packets) of an active

crypto session, its size defines, regardless of the CPID free-running counter value, the total

number of 232 × 64 unique IVs per crypto session. Considering the crypto packet period of

4.672 µs, this leads to a maximum session period of 14.86 days. Obviously, security

policies will limit this period to a much shorter range.

Chapter 3 – OTN Cryptographic System Architecure 88

The CSKS control byte (part of the IV fixed field) is used to select one of the crypto session

keys (0 or 1) for decryption, as part of a hitless key change mechanism. In order to mitigate

channel-induced errors in the transmission of this information, it is encoded in an 8-bit

code word using a simple FEC strategy known as repetition code.

The receiver side then extracts this key selection information using majority decoding

applied on this CSKS code word over 63 crypto packets, with the protection being

accomplished by an 8 × 63 = 504 repetition code.

3.4.4 ENCRYPTION OVERHEAD TRANSMISSION FORMAT

Figure 3.4 shows the ODU overhead fields of an OTN frame.

In this developed architecture, the encryption overhead is transmitted in the eight reserved

(RES) bytes of all the four ODU frames within a crypto packet.

Figure 3.4 – ODU overhead fields of an OTN frame.

The encryption and decryption engines benefit from the availability of the OTN MFAS to

delineate the boundaries of the ODU frames within the crypto packets, in order to insert

and extract encryption overhead data.

Figure 3.5 shows a crypto packet made up of four padded ODU frames, as well as the

distribution (location) of the encryption overhead data (16 bytes of TAG, 4 bytes of AAD,

and 12 bytes of IV) in their relative positions within the RES fields of the ODU overhead

(lines 2 and 4 of each frame).

Frame Alignment Overhead OTUk Overhead

RES PM
TCM

TCM
ACT TCM6 TCM5 TCM4 FTFL

TCM3 TCM2 TCM1 PM EXP

GCC1 GCC2 APS/PCC RES

OPUk
OH

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Chapter 3 – OTN Cryptographic System Architecure 89

Figure 3.5 – Crypto packet made up of four padded ODU frames and distribution (location)

of the encryption overhead bytes.

3.5 ERROR OR FAILURE RECOVERY AND SESSION MANAGEMENT

The hardware layer must be able to resynchronize from OTU link failures, such as those

caused by signal degradation or loss of frame alignment, with minimal traffic disturbances

when possible, as well as operate in a preconfigured way (through the consequent actions)

in case of security-compromising failures.

Both software stacks running in the nodes A and B must also resynchronize is such

circumstances. This can be accomplished by checking the hardware layer performance

monitoring and status registers. Furthermore, they must also be able to recover in case of

problems in the software layer itself, such as certificate or authentication failures.

ODU OH

ODU OH

1 15 38248 3840

Encrypted OPU Padding
AAD

FA OH OTU OH1

2

3

4 CSKS CSID CBID

1

2

3

4

ODU OH

Encrypted OPU Padding
AAD

FA OH OTU OH1

2

3

4 CBID CPID

TAG

TAG
Encrypted OPU

FA OH OTU OH

Padding

1

2

3

4

ODU OH

TAG

TAG
Encrypted OPU

FA OH OTU OH

Padding

Crypto Packet

MFAS
[1:0]

RES (row, col)

(2, 1) (2, 2) (4, 9) (4, 10) (4, 11) (4, 12) (4, 13) (4, 14)

0 TAG TAG TAG TAG TAG TAG TAG TAG

1 TAG TAG TAG TAG TAG TAG TAG TAG

2 AAD AAD CSKS CSID CSID CSID CSID CBID

3 AAD AAD CBID CBID CBID CPID CPID CPID

Chapter 3 – OTN Cryptographic System Architecure 90

3.5.1 HARDWARE RECOVERY AND CONSEQUENT ACTIONS

Hardware layer relies on the multi-frame alignment (and counter) signal to delineate crypto

packets, blocks, and sessions. In the case of frame slips or any alignment errors, as well as

client signal or OTN link failures, preconfigured consequent actions will be triggered.

Since the alarm events are also reported to the software layer by CPU interrupts, security

policies may also determine other prevalent software-commanded actions.

Table 3.3 shows the programmable consequent actions for both TX and RX processors,

which are only applicable for active crypto sessions.

Triggering
Event

TX Processor
Consequent Actions

RX Processor
Consequent Actions

Session
Expiration

1. None.
2. Assert ipy_ssf_tx and close the crypto

session in the current direction.
3. Assert ipy_ssf_tx and close both crypto

sessions in the current and opposite
directions.

4. Reuse current key during a limited period
determined by tx_key_reuse_period
register. When the key reuse period
expires, assert ipy_ssf_tx and close the
crypto session in the current direction.

5. Reuse current key during a limited period
determined by tx_key_reuse_period
register. When the key reuse period
expires, assert ipy_ssf_tx and close both
crypto sessions in the current and opposite
directions.

6. Close the crypto session in the current
direction.

7. Close both crypto sessions in the current
and opposite directions.

8. Reuse current key during a limited period
determined by tx_key_reuse_period
register. When the key reuse period
expires, close the crypto session in the
current direction.

9. Reuse current key during a limited period
determined by tx_key_reuse_period
register. When the key reuse period
expires, close both crypto sessions in the
current and opposite directions.

1. None.
2. Assert ipy_ssf_rx and close the crypto

session in the current direction.
3. Assert ipy_ssf_rx and close both crypto

sessions in the current and opposite
directions.

4. Reuse current key during a limited period
determined by rx_key_reuse_period
register. When the key reuse period
expires, assert ipy_ssf_rx and close the
crypto session in the current direction.

5. Reuse current key during a limited period
determined by rx_key_reuse_period
register. When the key reuse period
expires, assert ipy_ssf_rx and close both
crypto sessions in the current and opposite
directions.

6. Close the crypto session in the current
direction.

7. Close both crypto sessions in the current
and opposite directions.

8. Reuse current key during a limited period
determined by rx_key_reuse_period
register. When the key reuse period
expires, close the crypto session in the
current direction.

9. Reuse current key during a limited period
determined by rx_key_reuse_period
register. When the key reuse period
expires, close both crypto sessions in the
current and opposite directions.

ipy_tsf_tx
input port
assertion

1. None.
2. Close the crypto session in the current

direction.
3. Generate replacement signal and keep the

crypto session active in the current
direction.

Chapter 3 – OTN Cryptographic System Architecure 91

Triggering
Event

TX Processor
Consequent Actions

RX Processor
Consequent Actions

ipy_tsf_rx
input port
assertion

1. None.
2. Close the crypto session in the current

direction.
3. Close both crypto sessions in the current

and opposite directions.

TAG
Mismatch

(TAG_FAIL)

1. None.
2. Close the crypto session in the current

direction.
3. Close both crypto sessions in the current

and opposite directions.
4. Assert ipy_ssf_rx and close the crypto

session in the current direction.
5. Assert ipy_ssf_rx and keep the crypto

session active in the current direction.
6. Assert ipy_ssf_rx and close both crypto

sessions in the current and opposite
directions.

Loss of
Authentication

(LOA)

1. None.
2. Close the crypto session in the current

direction.
3. Close both crypto sessions in the current

and opposite directions.
4. Assert ipy_ssf_rx and close the crypto

session in the current direction.
5. Assert ipy_ssf_rx and keep the crypto

session active in the current direction.
6. Assert ipy_ssf_rx and close both crypto

sessions in the current and opposite
directions.

Table 3.3 – Hardware layer programmable consequent actions.

3.5.2 SOFTWARE RECOVERY

Software protection mechanisms must be implemented to ensure recovery in different

failure scenarios. In the case of certificate validation problems, for instance, the execution

flow must return to an idle state, waiting for a new communication attempt to be

established.

Supervisory routines (watchdog threads) can also be used to return to this same idle state

in cases where there is loss of communication or failure to receive the expected asymmetric

encryption protocol messages.

Chapter 3 – OTN Cryptographic System Architecure 92

3.5.3 LOSS OF AUTHENTICATION AND TAG MISMATCH

The decryption engine verifies TAG matching at every crypto packet and asserts

TAG_FAIL indication for every mismatch condition. When operating in authenticated

encryption or authentication-only modes, it can output decrypted or authenticated data only

after the TAG sequence is verified or as soon as data arrive, regardless of the matching

condition.

In the first case, the store-and-forward delay will be equivalent to six ODU frames

(hardware architecture pipelining not included). This time corresponds to the reception of

a complete crypto packet (four ODU frames) followed by the first two frames of the next

one (for the extraction of the transmitted TAG sequence, as represented in Figure 3.3).

Conversely, a cut-through mode can be configured to eliminate the authentication delay,

and, in this case, data authenticity can still be signaled upon the reception of the first two

ODU frames of the following crypto packet (from where the transmitted TAG sequence

will be extracted).

For security reasons, an authentication blocking condition can also be configured to allow

OPU data (overhead and payload) to be replaced by zeros in the crypto packets with

TAG_FAIL indication.

In addition to the TAG matching verification, a loss of authentication (LOA) indication is

evaluated by a sliding window mechanism (with programmable size and threshold). LOA

can trigger consequent actions or can be used by the software layer, but does not directly

control data output.

Both TAG_FAIL and LOA are asserted only if the crypto session is active. Otherwise, they

are cleared.

3.5.4 SESSION-ABOUT-TO-EXPIRE INTERRUPT

Although the crypto session period is determined by the software layer, a CPU interrupt is

generated by hardware to indicate when the current session is about to expire. This is done

as a function of the crypto block count and a programmable register indicating the threshold

above which an interrupt should be raised. This allows the software to tweak the interrupt

Chapter 3 – OTN Cryptographic System Architecure 93

generation based on how long it will take for the transmitter and receiver to negotiate a

new crypto session.

3.5.5 SESSION KEY REUSE

If the software layer is temporarily executing operations of higher priority and the crypto

session period expires without a new key being provided, a configuration register will

control whether the hardware layer will drop the crypto link (closing the crypto session) or

reuse the current session encryption key.

In this case, a programmable counter limiting the number of reiterations ensures security,

since the link is dropped when the limit is reached.

3.6 CONFIGURATION AND PERFORMANCE MONITORING PROCEDURES

This section describes basic software layer procedures for the establishment, maintenance,

and monitoring of crypto sessions.

3.6.1 CRYPTO SESSION ESTABLISHMENT

Assuming that both TX and RX side crypto sessions are closed, the following procedures

are expected for the software layer to establish a new one:

3.6.1.1 RX SIDE

1. Write the new key in the “key 0” register set;

2. Write ‘1’ in the rx_session_state register to request session establishment.

After step 2, the RX processor engine waits for a multi-frame start pulse and then keeps

decoding the CSKS (Crypto Session Key Selection) FEC information until the selected key

is ‘0’ at MFAS = 252. After that, it changes the key and establishes the crypto session in

the beginning of the next crypto packet, at MFAS = 0.

3.6.1.2 TX SIDE

3. Write the new key in the “key 0” register set;

4. Write ‘1’ in the tx_key_change register to request a key change process (this bit is

cleared by hardware);

5. Write ‘1’ in the tx_session_state register to request session establishment.

Chapter 3 – OTN Cryptographic System Architecure 94

When crypto sessions are closed, the TX processor engine continuously sends a CSKS

value of 0xff to the RX side, corresponding to the selection of “key 1”.

After step 5, it waits for a multi-frame start pulse and then sends a new CSKS with value

0x00 to the RX side, corresponding to the selection of “key 0”. This new key selection

information will be decoded at MFAS = 252, and the crypto session will be established in

the beginning of the next crypto packet, at MFAS = 0.

Before writing ‘1’ in the tx_key_change, the software layer must also have provided a new

CSID value in the tx_iv_csid register.

3.6.2 CRYPTO SESSION KEY CHANGE

Assuming that both TX and RX side crypto sessions are active, the following procedures

are expected for the software layer:

3.6.2.1 TX SIDE

1. Read the tx_session_status register to verify the active key (‘0’ or ‘1’);

2. Write the new key in the inactive key register set;

3. Write ‘1’ in the tx_key_change register to request a key change process (this bit is

cleared by hardware).

After step 3, the TX processor waits for a multi-frame start pulse and then sends a CSKS

value corresponding to the inactive key (‘1’ or ‘0’). This information will be decoded by

the RX processor at MFAS = 252, and a new session (with the new key) will start in the

beginning of the next crypto packet, at MFAS = 0.

3.6.3 USE OF ADDITIONAL AUTHENTICATED DATA (AAD)

The transmitted AAD value is updated at every crypto packet, but it is only captured by

hardware from the corresponding tx_aad_buffer register after ‘1’ is written in the

tx_aad_capture register (a self-clearing bit).

In this way, the available bandwidth for AAD transmission is limited not only by the virtual

channel (4 bytes per crypto packet), but also by the software control interface response time

and the application execution speed.

Chapter 3 – OTN Cryptographic System Architecure 95

3.6.4 PERFORMANCE MONITORING COUNTERS

Both TX and RX processors provide a set of performance monitoring counters/registers.

Before reading operations, the software layer must write ‘1’ in a special self-clearing

register (tx_cnt_latch or rx_cnt_latch) dedicated to latch and holding all values.

For the TX processor, the latched values correspond to the following counters/registers:

• Crypto block ID;

• Crypto packet ID;

• Calculated TAG.

For the RX processor, the latched values correspond to the following counters/registers:

• Crypto session ID;

• Crypto block ID;

• Crypto packet ID;

• Calculated TAG;

• Received TAG;

• Crypto session counter;

• Crypto packet counter;

• LOA fail counter;

• TAG fail counter;

• CSKS (bit 0) counter;

• CSKS (bit 1) counter;

• CSKS (bit 0) histogram counter;

• CSKS (bit 1) histogram counter.

In the RX processor only, each counter also contains its own dedicated clearing register.

96

Chapter 4

100G AES-GCM

CRYPTOGRAPHY ENGINE

This chapter describes the 100G AES-GCM Cryptography Engine, designed and implemented

according to the conceived systemic architecture solution shown in the previous chapter. Its main

features, characteristics, operation modes, and configuration procedures are presented, along with

a detailed description of its hardware functional architecture and partitioning of the logic building

blocks, which were later modeled and implemented in a hardware description language.

4.1 FEATURES AND CHARACTERISTICS

The following list presents the main technical and operational features of the developed

100G AES-GCM Cryptography Engine.

• Supports Galois/Counter Mode;

• 256-bit key AES (Rijndael) algorithm with optional key derivation function for

enhanced security;

• 128-bit message authentication code (MAC);

• 96-bit initialization vector (IV);

• 640-bit bus data path interfaces;

• Receives and transmits padded ODU frames;

• Encryption and decryption affects just the OPU area (overhead and payload);

• Transport unit for encrypted data and encryption overhead (crypto packet) made up

of four ODU frames;

• Encryption overhead (TAG, AAD, and IV) transmitted in the reserved (RES) fields

of the ODU overhead with optional scrambling for enhanced security;

• Three operation modes: authenticated encryption, authentication-only, and

encryption-only;

• Store-and-forward delay equivalent to six ODU frames when operating in

authenticated encryption or authentication-only modes;

Chapter 4 – 100G AES-GCM Cryptography Engine 97

• Cut-through mode for delivering data with delayed TAG matching indication;

• Bypass and loopback functions;

• Programmable consequent actions in case of failure or security-compromising

conditions;

• Provides several counters for performance monitoring;

• Configurable flow control mode (“push/pull”) for both TX and RX data paths;

• Independent clock signals for TX and RX processors;

• Software configurable via a 16-bit register map interface with maskable interrupts.

4.2 OPERATION MODES

The 100G AES-GCM Cryptography Engine solution can be configured to operate in three

different modes, as detailed in Table 4.1.

Operation Mode Description/Characteristics

Authenticated
Encryption

• OPU data are encrypted by the AES-GCM algorithm;
• OPU data and AAD are authenticated in the RX processor side;
• Authentication modes:

o Store-and-forward: OPU data are delivered only after a TAG matching
condition (with a delay equivalent to six ODU frames);

o Cut-through: OPU data are delivered upon reception and the TAG
matching condition is signaled later.

Authentication-Only

• OPU data are transmitted as plain text (no encryption);
• OPU data and AAD are authenticated in the RX processor side;
• Authentication modes:

o Store-and-forward: OPU data are delivered only after a TAG matching
condition (with a delay equivalent to six ODU frames);

o Cut-through: OPU data are delivered upon reception and the TAG
matching condition is signaled later.

Encryption-Only • OPU data are encrypted by the AES-GCM algorithm;

Table 4.1 – 100G AES-GCM Cryptography Engine operation modes.

4.3 HARDWARE FUNCTIONAL ARCHITECTURE

Figure 4.1 shows the block diagram of the 100G AES-GCM Cryptography Engine

hardware functional architecture, composed of several sub-blocks with specialized

functions. Names in parentheses correspond to the top-level modules of the respective

models described in the Verilog hardware description language [126].

Chapter 4 – 100G AES-GCM Cryptography Engine 98

Figure 4.1 – 100G AES-GCM Cryptography Engine hardware functional architecture block diagram.

Data coming from the client side 640-bit interface are manipulated by the TX processor

blocks (for encryption) and then output in the line side interface. In the opposite direction,

decryption is performed by the RX processor blocks.

The Crypto4OTN block can be configured to operate in authenticated encryption,

authentication-only, and encryption-only modes. The user can also define the

authentication mode as store-and-forward, when OPU data are delivered only after a TAG

matching condition (with a delay equivalent to six ODU frames) or cut-through, when OPU

data are delivered upon reception and the TAG matching condition is signaled later.

Right at the input of both client and line side interfaces, a Loopback Mux sub-block (a data

selector multiplexer switch) provides far-end loopback functionalities. Correspondingly, at

the output of both interfaces a Data Path Flow Control sub-block handles flow control and

bypass.

The OPU Cryptography Engine sub-block implements the core functionalities for data

encryption, decryption, and authentication. It receives and transmits padded ODU frames

and handles OPU drop/add synchronization. Depending on the operation mode, this sub-

block outputs encrypted or clear data as well as a 128-bit authentication TAG. It is

instantiated in both TX (for encryption) and RX (for decryption) processor lineups.

Loopback Mux
(loopback_mux)

Data Path
Flow

Control

(flow_control)

Loopback Mux
(loopback_mux)

Data Path
Flow

Control

(flow_control)

Control Engine
(control_engine)

ODU OH
Inserter

(oh_inserter)

ODU OH
Extractor

(oh_extractor)

Authentication
Buffer

(auth_buffer)

TX Processor

RX Processor
RX Data Path Bypass

TX Data Path Bypass

Client Side
Far-End

Loopback

OPU
Cryptography

Engine
(crypto_engine)

OPU
Cryptography

Engine
(crypto_engine)

Replacement
Signal

Generator
(repl_sig_gen)

M
FS

/F
S/

TS
F

Line Side
Far-End

Loopback

M
FS

/F
S/

TS
F

SSF Bypass
Push/PullLoopback

Loopback
SSF

Bypass
Push/Pull

(crypto4otn)
Cl

ie
nt

Si
de

In
te

rf
ac

e

Li
ne

Si
de

In
te

rf
ac

e

Chapter 4 – 100G AES-GCM Cryptography Engine 99

In the TX processor chain, the encryption overhead bytes (TAG, AAD, and IV) are inserted

in the eight RES fields of the ODU overhead by the ODU OH Inserter sub-block. Since

four consecutive frames are needed (making up a crypto packet), the multi-frame start

(MFS) signal is used to synchronize the insertion location distribution.

In the end of the TX processor lineup, a Replacement Signal Generator sub-block generates

an OTN AIS-like (alarm indication signal) or a user-defined pattern replacement signal to

be used in case of authentication mismatch or any error or failure condition, according to

register programmed consequent actions.

In the RX processor chain, the ODU OH Extractor sub-block extracts the encryption

overhead bytes while the remaining input data are forwarded to the output port, except for

the ODU overhead RES fields, which are filled with ‘0’ in the output frame.

A second instance of the OPU Cryptography Engine then decrypts data, and, finally, an

Authentication Buffer sub-block stores six ODU frames and forwards them after TAG

matching verification when the authentication mode is configured for store-and-forward.

Data must be buffered to wait for authentication because the TAG value generated in the

transmitter (to be compared with the one calculated in the receiver) of a given crypto packet

comes at the beginning of the next one, as previously shown in Figure 3.3.

The operation of the Crypto4OTN block is entirely orchestrated by the Control Engine sub-

block. It was designed upon the use of two finite state machines to control and synchronize

the TX and RX processor lineups, together with a Register and Reset Controller that

provides CPU access to a set of configuration registers.

The Control Engine handles crypto session establishment and maintenance procedures,

controlling the hitless key change mechanism, building up the IV sequence, and performing

a series of other functions requested by the software layer through the configuration

registers. All the resulting controlling actions are time-adjusted for each sub-block, based

on the FS, MFS, and MFAS synchronization signals.

4.3.1 NOMENCLATURE FOR SIGNALS AND BUSES

The architecture design and implementation of the 100G AES-GCM Cryptography Engine

were based on methodologies that include the use of a standardized nomenclature for name

Chapter 4 – 100G AES-GCM Cryptography Engine 100

assignments in the interfaces of the external signals of its logic blocks and sub-blocks,

making them reusable between different projects.

This standardization defines a consistent input and output interface between blocks, as well

as a common strategy for reset mechanisms, clock signals, and debug and test modes.

Table 4.2 shows the standardized interfaces used for the input and output signals, divided

and organized in a color code scheme according to the functional characteristics of their

group. A corresponding prefix is also defined to compose the signal names, thus allowing

the quick identification of their respective interface.

Interface (Color) Signal Name Prefix Description/Characteristics

Forest-Green Line ipf_ Send/Receive data to/from a FIFO memory.

Green Line ipg_ Global signals, such as clock and reset.

Yellow Line ipy_ Main data path.

Indigo Line ipi_ Interrupt signals.

Sky-Blue Line ips_ Register access signals.

Tan Line ipt_ Test signals.

Table 4.2 – Standardized interfaces used in the 100G AES-GCM Cryptography Engine.

4.3.2 CLOCK AND RESET

Both TX and RX processors operate in different clock domains, and, therefore, two global

logic clock signals must be provided for the Crypto4OTN block. The register access

interface also has a dedicated clock signal.

Table 4.3 shows the used clock signals.

Clock Signal Frequency/Duty-Cycle Description/Characteristics

ipg_clk_sys_tx 180 MHz / 50%
TX processor green line interface.
Clock signal used in the internal global logic.

ipg_clk_sys_rx 180 MHz / 50%
RX processor green line interface.
Clock signal used in the internal global logic.

ipg_clk 70–90 MHz / 50% Green line interface for register access.

Table 4.3 – Clock signals used in the 100G AES-GCM Cryptography Engine.

Chapter 4 – 100G AES-GCM Cryptography Engine 101

For reset signals there are two related inputs, controlled by the circuit in which the

Crypto4OTN block is integrated — ipg_hard_async_reset_b and ipg_soft_reset_async_b.

The first corresponds to a hardware reset, while the second can be generated through

software controls. Both are asserted (at a low logic level) and de-asserted asynchronously

with the global logic clock signals, producing the same effect on the internal logic.

These signals are internally combined within the Control Engine sub-block and

synchronized with the clock domains of both TX and RX processors, generating two new

reset signals, which can also be controlled through a configuration register. They are all

presented in Table 4.4.

Reset Signal Clock Domain Sources

tx_reset_sync_b ipg_clk_sys_tx
ipg_hard_async_reset_b
ipg_soft_reset_async_b
Register: blk_rst[0]

rx_reset_sync_b ipg_clk_sys_rx
ipg_hard_async_reset_b
ipg_soft_reset_async_b
Register: blk_rst[8]

Table 4.4 – Reset signals used in the 100G AES-GCM Cryptography Engine.

The configuration register values are preserved when the Crypto4OTN block is reset by

the blk_rst register.

Chapter 4 – 100G AES-GCM Cryptography Engine 102

4.3.3 CRYPTO4OTN BLOCK

As previously presented, the Crypto4OTN block corresponds to the top-level

implementation of the 100G AES-GCM Cryptography Engine solution.

Input and output data are structured in what is called a padded ODU frame, as illustrated

in Figure 4.2. In this way, data corresponding to one line of that frame are transmitted in

48 clock cycles over a 640-bit bus. The last 128 bits of each line (the least significant ones

of the data bus at the 48th clock cycle) are “padding” bits (zeros) and should be ignored.

Figure 4.2 – Padded ODU frame handled by the Crypto4OTN block.

Figure 4.3 shows the representation of the Crypto4OTN block with its external input and

output interfaces and the respective signals organized and separated between the TX and

RX processors.

Table 4.5 brings the signal names with their interface directions (input/output) and

corresponding descriptions.

1

ODU OH
OPU Payload

O
PU

 O
H

15 3824

Padding

3840

1

ODU OH

FA OH OTU OH

OPU Payload

O
PU

 O
H

15 3824ODU Frame

Padded ODU Frame

Transmission
Order

1

2

3

4

1

2

3

4

FA OH OTU OH

Chapter 4 – 100G AES-GCM Cryptography Engine 103

Figure 4.3 – Crypto4OTN block interface diagram.

Signal I/O Description

ipg_hard_async_reset_b I Green line asynchronous hard reset signal. This signal is asserted and de-asserted
asynchronously. Active-low.

ipg_soft_reset_async_b I Green line interface soft reset signal. This signal is asserted and de-asserted
asynchronously. Active-low.

ipg_clk I Green line interface clock at 90 MHz with duty cycle of 50%. Used for the register
access interface.

ips_addr[7:0] I Sky-Blue line interface address bus. Used for register access.

ips_wdata[15:0] I Sky-Blue line interface write data bus. Used for register access.

ips_rwb I
Sky-Blue line interface read/write selection.
'0' – Data are written by the CPU.
'1' – Data are read by the CPU.

100G AES-GCM Cryptography Engine

crypto4otn

ipg_hard_async_reset_b

ipg_soft_reset_async_b

ipg_clk

ips_addr[7:0]

ips_wdata[15:0]

ips_rwb

ips_module_en

ipt_test

ipy_data_tx_in[639:0]

ipy_valid_tx_in

ipy_fs_tx_in

ipy_mfs_tx_in

ipy_data_rx_out[639:0]

ipy_valid_rx_out

ipy_fs_rx_out

ipy_mfs_rx_out

ipy_ssf_rx

ipy_tsf_tx

ipy_tsf_rx

ipy_data_tx_out[639:0]

ipy_valid_tx_out

ipy_fs_tx_out

ipy_mfs_tx_out

ipy_ssf_tx

ips_rdata[15:0]

ips_xfr_wait

ips_xfr_err

ipy_data_rx_in[639:0]

ipy_valid_rx_in

ipy_fs_rx_in

ipy_mfs_rx_in

TX Processor

RX Processor

ipi_int

auth_tag_matching

ipg_clk_sys_tx

ipy_req_tx_out ipy_req_tx_in

ipy_req_rx_in ipy_req_rx_out

dbg_byp_tx

dbg_lpbk_tx

dbg_lpbk_rx

dbg_byp_rx

ipg_clk_sys_rx

Chapter 4 – 100G AES-GCM Cryptography Engine 104

Signal I/O Description

ips_module_en I Sky-Blue line interface module enable. Selects the crypto4otn block for register
access. Active-high.

ipt_test I Test mode enable signal (for DFT purposes). Active-high.

ipg_clk_sys_tx I TX processor green line interface clock at 180 MHz with duty cycle of 50%. Used
for internal global logic.

ipg_clk_sys_rx I RX processor green line interface clock at 180 MHz with duty cycle of 50%. Used
for internal global logic.

ipy_data_tx_in[639:0] I Yellow line interface input data for the TX processor. Receives padded ODU
frames coming from the client side with data to be encrypted.

ipy_valid_tx_in I
Yellow line interface input data valid. Validates the padded ODU input data at the
ipy_data_tx_in bus, as well as the ipy_fs_tx_in, ipy_mfs_tx_in, and ipy_tsf_tx
signals. Active-high.

ipy_fs_tx_in I Yellow line interface input data frame start pulse. Indicates the start of the ODU
input data frame at the ipy_data_tx_in bus. Active-high.

ipy_mfs_tx_in I Yellow line interface input data multi-frame start pulse. Indicates the start of the
ODU input data multi-frame at the ipy_data_tx_in bus. Active-high.

ipy_data_rx_in[639:0] I Yellow line interface input data for the RX processor. Receives padded ODU
frames coming from the line side with data to be decrypted.

ipy_valid_rx_in I
Yellow line interface input data valid. Validates the padded ODU input data at the
ipy_data_rx_in bus, as well as the ipy_fs_rx_in, ipy_mfs_rx_in, and ipy_tsf_rx
signals. Active-high.

ipy_fs_rx_in I Yellow line interface input data frame start pulse. Indicates the start of the ODU
input data frame at the ipy_data_rx_in bus. Active-high.

ipy_mfs_rx_in I Yellow line interface input data multi-frame start pulse. Indicates the start of the
ODU input data multi-frame at the ipy_data_rx_in bus. Active-high.

ipy_tsf_tx I TX processor input client data fail signal indication. Active-high.

ipy_tsf_rx I RX processor input line data fail signal indication. Active-high.

ipy_req_tx_in I TX processor input data request for data flow control.

ipy_req_rx_in I RX processor input data request for data flow control.

dbg_byp_tx I

Debug port for TX processor bypass control, with priority over the register
command.
‘0’ – Normal operation.
‘1’ – Bypass mode.

dbg_byp_rx I

Debug port for RX processor bypass control, with priority over the register
command.
‘0’ – Normal operation.
‘1’ – Bypass mode.

dbg_lpbk_tx I

Debug port for client side far-end loopback control, with priority over the register
command.
‘0’ – Normal operation.
‘1’ – Client loopback mode.

dbg_lpbk_rx I

Debug port for line side far-end loopback control, with priority over the register
command.
‘0’ – Normal operation.
‘1’ – Line loopback mode.

Chapter 4 – 100G AES-GCM Cryptography Engine 105

Signal I/O Description

ipi_int O Indigo line interface interrupt request signal. Active-high.

ips_rdata[15:0] O Sky-Blue line interface read data bus. Used for register access.

ips_xfr_wait O Sky-Blue line interface transfer wait signal. When in logic low ‘0’ it indicates that
the access is complete. Active-high.

ips_xfr_err O Sky-Blue line interface transfer error signal. Active-high.

ipy_data_tx_out[639:0] O Yellow line interface output data for the TX processor. Transmits padded ODU
frames going to the line side with encrypted data.

ipy_valid_tx_out O
Yellow line interface output data valid. Validates the padded ODU output data at
the ipy_data_tx_out bus, as well as the ipy_fs_tx_out, ipy_mfs_tx_out, and
ipy_ssf_tx signals. Active-high.

ipy_fs_tx_out O Yellow line interface output data frame start pulse. Indicates the start of the ODU
output data frame at the ipy_data_tx_out bus. Active-high.

ipy_mfs_tx_out O Yellow line interface output data multi-frame start pulse. Indicates the start of the
ODU output data multi-frame at the ipy_data_tx_out bus. Active-high.

ipy_data_rx_out[639:0] O Yellow line interface output data for the RX processor. Transmits padded ODU
frames going to the client side with decrypted data.

ipy_valid_rx_out O
Yellow line interface output data valid. Validates the padded ODU output data at
the ipy_data_rx_out bus, as well as the ipy_fs_rx_out, ipy_mfs_rx_out, and
ipy_ssf_rx signals. Active-high.

ipy_fs_rx_out O Yellow line interface output data frame start pulse. Indicates the start of the ODU
output data frame at the ipy_data_rx_out bus. Active-high.

ipy_mfs_rx_out O Yellow line interface output data multi-frame start pulse. Indicates the start of the
ODU output data multi-frame at the ipy_data_rx_out bus. Active-high.

ipy_ssf_tx O TX processor output line data fail signal indication. Active-high.

ipy_ssf_rx O RX processor output client data fail signal indication. Active-high.

ipy_req_tx_out O
TX processor output data request for data flow control. Active-high.
In “pull” mode, it is asserted when necessary to request data.
In “push” mode, it is continuously asserted.

ipy_req_rx_out O
RX processor output data request for data flow control. Active-high.
In “pull” mode, it is asserted when necessary to request data.
In “push” mode, it is continuously asserted.

auth_tag_matching O
RX processor authentication TAG matching indication. Updated at every crypto
packet of an active crypto session, after TAG verification. Active-high.
This output port is disabled in the encryption-only operation mode.

Table 4.5 – Crypto4OTN block interface signals.

Data processing is synchronized by the multi-frame start (MFS) and frame start (FS) pulses.

The first is asserted one clock cycle before the start of a multi-frame (256 frames), and the

second, one clock cycle before the start of an ODU frame.

Input and output data buses are sampled (captured) only when the corresponding validation

(valid) signal is asserted. In some applications, the input valid signal is de-asserted during

Chapter 4 – 100G AES-GCM Cryptography Engine 106

few clock periods for data rate adaptation. In this case, this is reflected to the output, with

a similar waveform being generated after the inherent processing latency.

Figure 4.4 shows the Crypto4OTN TX processor input data timing diagram.

Figure 4.4 – Crypto4OTN TX processor input data timing diagram.

Multiplexer switches can be configured so that received data are completely bypassed

directly to the respective output interfaces on both TX and RX processors (bypass), as well

as looped back in the client and line side interfaces (far-end loopback).

The input fail indication signals (ipy_tsf_tx and ipy_tsf_rx) are registered to the respective

output (ipy_ssf_tx and ipy_ssf_rx) with a delay equivalent to the Crypto4OTN total

processing latency.

The output fail indication signals (ipy_ssf_tx and ipy_ssf_rx) may also be generated by the

Control Engine sub-block in response to a consequent action triggered by predefined

operating conditions.

An authentication TAG matching indication signal (auth_tag_matching output) is also

generated (except in the encryption-only operation mode) and updated at every crypto

packet of an active crypto session, after TAG verification by the RX processor.

Chapter 4 – 100G AES-GCM Cryptography Engine 107

4.3.4 LOOPBACK MUX SUB-BLOCK

The Loopback Mux sub-block corresponds to a data selector multiplexer switch used to

provide far-end loopback functionalities.

Figure 4.5 shows its external input and output interface, and Table 4.6 brings the signal

names, interface directions (input/output), descriptions, and the corresponding sources and

destinations (from/to).

Figure 4.5 – Loopback Mux sub-block interface.

Signal I/O Description From/To

reset_sync_b I
Synchronous reset signal
generated in the Control Engine
sub-block. Active-low.

control_engine.tx_reset_sync_b (*)
control_engine.rx_reset_sync_b (**)

ipg_clk_sys I

Green line interface clock at
180 MHz with duty cycle of
50%. Used for internal global
logic.

crypto4otn.ipg_clk_sys_tx (*)
crypto4otn.ipg_clk_sys_rx (**)

data_in[639:0] I Padded ODU input data.
crypto4otn.ipy_data_tx_in (*)

crypto4otn.ipy_data_rx_in (**)

valid_in I

Input data valid. Validates the
ODU input data at the data_in
bus, as well as the fs_in, mfs_in,
and fail_in signals. Active-high.

crypto4otn.ipy_valid_tx_in (*)
crypto4otn.ipy_valid_rx_in (**)

loopback_mux

reset_sync_b

data_in[639:0]

valid_in

fs_in

mfs_in

data_out[639:0]

valid_out

fs_out

mfs_out

ipg_clk_sys

fail_in

data_in_lpbk[639:0]

valid_in_lpbk

fs_in_lpbk

mfs_in_lpbk

fail_in_lpbk

loopback

dbg_lpbk

fail_out

dbg_byp

enable

loopback_blocking

Chapter 4 – 100G AES-GCM Cryptography Engine 108

Signal I/O Description From/To

fs_in I

Input data frame start pulse.
Single clock period pulse that
precedes the start of the ODU
input data frame at the data_in
bus. Active-high.

crypto4otn.ipy_fs_tx_in (*)
crypto4otn.ipy_fs_rx_in (**)

mfs_in I

Input data multi-frame start
pulse. Single clock period pulse
that precedes the start of the
ODU input data multi-frame at
the data_in bus. Active-high.

crypto4otn.ipy_mfs_tx_in (*)
crypto4otn.ipy_mfs_rx_in (**)

fail_in I Fail signal. Active-high.
crypto4otn.ipy_tsf_tx (*)

crypto4otn.ipy_tsf_rx (**)

data_in_lpbk [639:0] I Padded ODU input data
(loopback).

crypto4otn.ipy_data_rx_out (*)
crypto4otn.ipy_data_tx_out (**)

valid_in_lpbk I

Input data valid (loopback).
Validates the ODU input data at
the data_in_lpbk bus, as well as
the fs_in_lpbk, mfs_in_lpbk, and
fail_in_lpbk signals. Active-
high.

crypto4otn.ipy_valid_rx_out (*)
crypto4otn.ipy_valid_tx_out (**)

fs_in_lpbk I

Input data frame start pulse
(loopback). Single clock period
pulse that precedes the start of
the ODU input data frame at the
data_in_lpbk bus. Active-high.

crypto4otn.ipy_fs_rx_out (*)
crypto4otn.ipy_fs_tx_out (**)

mfs_in_lpbk I

Input data multi-frame start
pulse (loopback). Single clock
period pulse that precedes the
start of the ODU input data
multi-frame at the data_in_lpbk
bus. Active-high.

crypto4otn.ipy_mfs_rx_out (*)
crypto4otn.ipy_mfs_tx_out (**)

fail_in_lpbk I Fail signal (loopback). Active-
high.

crypto4otn.ipy_ssf_rx (*)
crypto4otn.ipy_ssf_tx (**)

loopback I

Loopback port selection control.
‘0’ – Normal port selected for
output.
‘1’ – Loopback port selected for
output.

control_engine.client_loopback (*)
control_engine.line_loopback (**)

loopback_blocking I

Loopback port selection
blocking control, with priority
over the enable signal, used here
to inhibit the loopback port
selection control.
‘0’ – Loopback port selection
enabled.
‘1’ – Loopback port selection
disabled (data loopback
controlled just by the dbg_lpbk
debug port).

crypto4otn.dbg_lpbk_rx (*)
crypto4otn.dbg_lpbk_tx (**)

Chapter 4 – 100G AES-GCM Cryptography Engine 109

Signal I/O Description From/To

dbg_lpbk I

Debug port for loopback control,
with priority over the enable
signal.
‘0’ – Normal port selected for
output.
‘1’ – Loopback port selected for
output.

crypto4otn.dbg_lpbk_tx (*)
crypto4otn.dbg_lpbk_rx (**)

dbg_byp I

Debug port for bypass control,
with priority over the enable
signal, used here to inhibit the
loopback port selection control.
‘0’ – Loopback port selection
enabled.
‘1’ – Loopback port selection
disabled (data loopback
controlled just by the dbg_lpbk
debug port).

crypto4otn.dbg_byp_tx (*)
crypto4otn.dbg_byp_rx (**)

enable I

Block enable control.
‘0’ – Block disabled and all
output ports de-asserted (at logic
‘0’).
‘1’ – Block enabled.

control_engine.tx_enable (*)
control_engine.rx_enable (**)

data_out[639:0] O Padded ODU output data.

crypto_engine(TX processor).data_in (*)
flow_control(TX processor).data_in_byp (*)

oh_extractor.data_in (**)
flow_control(RX processor).data_in_byp (**)

valid_out O

Output data valid. Validates the
ODU output data at the data_out
bus, as well as the fs_out,
mfs_out, and fail_out signals.
Active-high.

crypto_engine(TX processor).valid_in (*)
flow_control(TX processor).valid_in_byp (*)

control_engine.ipy_valid_tx_in (*)
oh_extractor.valid_in (**)

flow_control(RX processor).valid_in_byp (**)
control_engine.ipy_valid_rx_in (**)

fs_out O

Output data frame start pulse.
Single clock period pulse that
precedes the start of the ODU
output data frame at the
data_out bus. Active-high.

crypto_engine(TX processor).fs_in (*)
flow_control(TX processor).fs_in_byp (*)

control_engine.ipy_fs_tx_in (*)
oh_extractor.fs_in (**)

flow_control(RX processor).fs_in_byp (**)
control_engine.ipy_fs_rx_in (**)

mfs_out O

Output data multi-frame start
pulse. Single clock period pulse
that precedes the start of the
ODU output data multi-frame at
the data_out bus. Active-high.

crypto_engine(TX processor).mfs_in (*)
flow_control(TX processor).mfs_in_byp (*)

control_engine.ipy_mfs_tx_in (*)
oh_extractor.mfs_in (**)

flow_control(RX processor).mfs_in_byp (**)
control_engine.ipy_mfs_rx_in (**)

Chapter 4 – 100G AES-GCM Cryptography Engine 110

Signal I/O Description From/To

fail_out O Fail signal. Active-high.

crypto_engine(TX processor).fail_in (*)
flow_control(TX processor).fail_in_byp (*)

control_engine.ipy_tsf_tx (*)
oh_extractor.fail_in (**)

flow_control(RX processor).fail_in_byp (**)
control_engine.ipy_tsf_rx (**)

(*) When used in the TX processor
(**) When used in the RX processor

Table 4.6 – Loopback Mux sub-block interface signals.

The multiplexer switch has two input ports (normal and loopback) and one output port.

The dbg_lpbk, dbg_byp, and loopback_blocking input ports have priority over the enable

control signal.

When the dbg_lpbk input is asserted, the loopback input port is selected and registered to

the output. Otherwise, if either the loopback_blocking or the dbg_byp inputs are asserted,

the normal input port is selected and registered to the output, ensuring the correct data port

selection for the TX/RX processor bypass or opposite-side-loopback conditions.

When these ports are de-asserted, the loopback input controls the selection of the loopback

or normal input ports when the block is enabled.

Chapter 4 – 100G AES-GCM Cryptography Engine 111

4.3.5 DATA PATH FLOW CONTROL SUB-BLOCK

This sub-block stores a small amount of data and incorporates a selector multiplexer switch

to handle data path flow control and bypass functionalities.

Figure 4.6 shows its external input and output interface, and Table 4.7 brings the signal

names, interface directions (input/output), descriptions, and the corresponding sources and

destinations (from/to).

Figure 4.6 – Data Path Flow Control sub-block interface.

Signal I/O Description From/To

reset_sync_b I

Synchronous reset signal
generated in the Control
Engine sub-block. Active-
low.

control_engine.tx_reset_sync_b (*)
control_engine.rx_reset_sync_b (**)

ipg_clk_sys I

Green line interface clock at
180 MHz with duty cycle of
50%. Used for internal
global logic.

crypto4otn.ipg_clk_sys_tx (*)
crypto4otn.ipg_clk_sys_rx (**)

flow_control

reset_sync_b

data_in[639:0]

valid_in

fs_in

mfs_in

data_out[639:0]

valid_out

fs_out

mfs_out

ipg_clk_sys

fail_in_a

data_in_byp[639:0]

valid_in_byp

fs_in_byp

mfs_in_byp

fail_in_byp

spare_bit_in spare_bit_out

data_req_in

level_threshold[5:0]

flow_control_mode

bypass

dbg_byp

ipt_test

enable

data_req_out

fail_out

fifo_full

fifo_empty

fail_in_b

Chapter 4 – 100G AES-GCM Cryptography Engine 112

Signal I/O Description From/To

data_in[639:0] I Padded ODU input data.
repl_sig_gen.data_out (*)
auth_buffer.data_out (**)

valid_in I

Input data valid. Validates
the ODU input data at the
ipy_data_in bus, as well as
the fs_in, mfs_in, fail_in_a,
fail_in_b, and spare_bit_in
signals. Active-high.

repl_sig_gen.valid_out (*)
auth_buffer.valid_out (**)

fs_in I

Input data frame start pulse.
Single clock period pulse
that precedes the start of the
ODU input data frame at the
ipy_data_in bus. Active-
high.

repl_sig_gen.fs_out (*)
auth_buffer.fs_out (**)

mfs_in I

Input data multi-frame start
pulse. Single clock period
pulse that precedes the start
of the ODU input data multi-
frame at the ipy_data_in
bus. Active-high.

repl_sig_gen.mfs_out (*)
auth_buffer.mfs_out (**)

fail_in_a I Fail signal. Active-high.
repl_sig_gen.fail_out (*)
auth_buffer.fail_out (**)

fail_in_b I Fail signal. Active-high.
control_engine.ipy_ssf_tx (*)

control_engine.ipy_ssf_rx (**)

data_in_byp[639:0] I Padded ODU input data
(bypass).

loopback_mux(TX processor).data_out (*)
loopback_mux(RX processor).data_out (**)

valid_in_byp I

Input data valid (bypass).
Validates the ODU input
data at the ipy_data_in_byp
bus, as well as the fs_in_byp,
mfs_in_byp, and fail_in_byp
signals. Active-high.

loopback_mux(TX processor).valid_out (*)
loopback_mux(RX processor).valid_out (**)

fs_in_byp I

Input data frame start pulse
(bypass). Single clock
period pulse that precedes
the start of the ODU input
data frame at the
ipy_data_in_byp bus.
Active-high.

loopback_mux(TX processor).fs_out (*)
loopback_mux(RX processor).fs_out (**)

mfs_in_byp I

Input data multi-frame start
pulse (bypass). Single clock
period pulse that precedes
the start of the ODU input
data multi-frame at the
ipy_data_in_byp bus.
Active-high.

loopback_mux(TX processor).mfs_out (*)
loopback_mux(RX processor).mfs_out (**)

fail_in_byp I Fail signal (bypass). Active-
high.

loopback_mux(TX processor).fail_out (*)
loopback_mux(RX processor).fail_out (**)

spare_bit_in I Spare signal input.
Tied to ‘0’ (*)

auth_buffer.auth_tag_matching_retimed (**)

data_req_in I Data request. Active-high.
crypto4otn.ipy_req_tx_in (*)

crypto4otn.ipy_req_rx_in (**)

Chapter 4 – 100G AES-GCM Cryptography Engine 113

Signal I/O Description From/To

level_threshold[5:0] I FIFO level threshold value.
control_engine.tx_level_thr (*)

control_engine.rx_level_thr (**)

flow_control_mode I

Flow control mode
selection.
‘0’ – Push mode.
‘1’ – Pull mode.

control_engine.tx_flow_ctrl_mode (*)
control_engine.rx_flow_ctrl_mode (**)

bypass I Bypass port selection
control. Active-high.

control_engine.tx_bypass (*)
control_engine.rx_bypass (**)

dbg_byp I

Debug port for bypass
control, with priority over
the enable signal. Active-
high.

crypto4otn.dbg_byp_tx (*)
crypto4otn.dbg_byp_rx (**)

ipt_test I
Test mode enable signal (for
DFT purposes). Active-
high.

crypto4otn

enable I

Block enable control.
‘0’ – Block disabled and all
output ports de-asserted (at
logic ‘0’).
‘1’ – Block enabled.

control_engine.tx_enable (*)
control_engine.rx_enable (**)

data_out[639:0] O Padded ODU output data.

crypto4otn.ipy_data_tx_out (*)
loopback_mux(RX processor).data_in_lpbk (*)

crypto4otn.ipy_data_rx_out (**)
loopback_mux(TX processor).data_in_lpbk (**)

valid_out O

Output data valid. Validates
the ODU output data at the
ipy_data_out bus, as well as
the fs_out, mfs_out, fail_out,
and spare_bit_out signals.
Active-high.

crypto4otn.ipy_valid_tx_out (*)
loopback_mux(RX processor).valid_in_lpbk (*)

crypto4otn.ipy_valid_rx_out (**)
loopback_mux(TX processor).valid_in_lpbk (**)

fs_out O

Output data frame start
pulse. Single clock period
pulse that precedes the start
of the ODU output data
frame at the ipy_data_out
bus. Active-high.

crypto4otn.ipy_fs_tx_out (*)
loopback_mux(RX processor).fs_in_lpbk (*)

crypto4otn.ipy_fs_rx_out (**)
loopback_mux(TX processor).fs_in_lpbk (**)

mfs_out O

Output data multi-frame
start pulse. Single clock
period pulse that precedes
the start of the ODU output
data multi-frame at the
ipy_data_out bus. Active-
high.

crypto4otn.ipy_mfs_tx_out (*)
loopback_mux(RX processor).mfs_in_lpbk (*)

crypto4otn.ipy_mfs_rx_out (**)
loopback_mux(TX processor).mfs_in_lpbk (**)

fail_out O Fail signal. Active-high.

crypto4otn.ipy_ssf_tx (*)
loopback_mux(RX processor).fail_in_lpbk (*)

crypto4otn.ipy_ssf_rx (**)
loopback_mux(TX processor).fail_in_lpbk (**)

spare_bit_out O Spare signal output.
Not connected (*)

crypto4otn.auth_tag_matching (**)

Chapter 4 – 100G AES-GCM Cryptography Engine 114

Signal I/O Description From/To

data_req_out O Data request. Active-high.
crypto4otn.ipy_req_tx_out (*)

crypto4otn.ipy_req_rx_out (**)

fifo_full O FIFO full indication. Active-
high.

control_engine.tx_flow_ctrl_fifo_full (*)
control_engine.rx_flow_ctrl_fifo_full (**)

fifo_empty O FIFO empty indication.
Active-high.

control_engine.tx_flow_ctrl_fifo_empty (*)
control_engine.rx_flow_ctrl_fifo_empty (**)

(*) When used in the TX processor
(**) When used in the RX processor

Table 4.7 – Data Path Flow Control sub-block interface signals.

The Data Path Flow Control sub-block has two input ports (normal and bypass) and one

output port.

Figure 4.7 shows its simplified functional architecture diagram.

Figure 4.7 – Data Path Flow Control sub-block simplified functional architecture diagram.

When either the bypass or the dbg_byp inputs are asserted, the bypass input port is selected

and registered to the output. Otherwise, the normal input port is used in the flow control

pipeline. In bypass mode, the data_req_in input is also registered to the data_req_out

output. The dbg_byp input has priority over the enable control.

FIFO

data_req_out
data_req_in

(bypass || dbg_byp)

flow_ctrl_mode

‘1’
RD

flow_ctrl_mode

empty

(bypass || dbg_byp)

valid_outWRvalid_in

data_in

data_in_byp

valid_in_byp

(bypass || dbg_byp)

1

0

0

1

1

0

0

10

1

data_out

(FIFO level < level_thres)

flow_ctrl_mode

0

1

Chapter 4 – 100G AES-GCM Cryptography Engine 115

When operating in “pull” mode (flow_control_mode input asserted), an internal FIFO

stores data coming from the normal (not the bypass) input port. In this mode, the

data_req_out is asserted (to request data from the preceding block) until the internal FIFO

level reaches the value specified in the level_threshold input. The FIFO read enable is

controlled by the data_req_in input.

Conversely, when operating in “push” mode (flow_control_mode input de-asserted), the

data_req_out port is asserted and the input data are directly registered to the output port,

being pushed by the preceding block.

The level_threshold value is set by the Crypto4OTN block control register (blk_ctr). The

lower bound is four, but a default setting of 32 (four times the register value) is used to

provide a margin for data stored in the preceding sub-blocks (pipeline flushing/filling),

especially in the AES-GCM sub-block (instantiated in the OPU Cryptography Engine).

The data valid output signal (valid_out) logic level depends on the flow control operation

mode. In “push” mode, it is a registered copy of valid_in, while in “pull” mode it is asserted

when the FIFO is not empty and the data request input signal (data_req_in) is asserted.

Only in “pull” mode, after a reset event a pre-filling mechanism ensures that the FIFO is

filled up to the level_threshold value before output is released. When the flow control mode

is changed from “push” to “pull”, this pre-filling mechanism is restarted.

Two spare signals (spare_bit_input and spare_bit_output) are also implemented to be used

in the RX processor to synchronize the Crypto4OTN top block auth_tag_matching output

signal. In bypass mode, the spare_bit_output signal is tied to logic level ‘0’.

The input fail indication signals (fail_in_a and fail_in_b) are combined by a logic OR

operation, and the result is registered to the respective output (fail_out) with a delay

equivalent to the Data Path Flow Control processing latency.

Chapter 4 – 100G AES-GCM Cryptography Engine 116

4.3.6 OPU CRYPTOGRAPHY ENGINE SUB-BLOCK

The OPU Cryptography Engine sub-block implements the core functionalities for OPU

data encryption, decryption, and authentication. It receives and transmits padded ODU

frames and handles OPU drop/add synchronization. Depending on the operation mode, this

sub-block outputs encrypted or clear data, as well as a 128-bit authentication TAG. It is

instantiated in both TX (for encryption) and RX (for decryption) processor lineups.

Figure 4.8 shows its external input and output interface, and Table 4.8 brings the signal

names, interface directions (input/output), descriptions, and the corresponding sources and

destinations (from/to).

Figure 4.8 – OPU Cryptography Engine sub-block interface.

Signal I/O Description From/To

reset_sync_b I
Synchronous reset signal
generated in the Control Engine
sub-block. Active-low.

control_engine.tx_reset_sync_b (*)
control_engine.rx_reset_sync_b (**)

crypto_engine

reset_sync_b

key[255:0]

aad[31:0]

iv[95:0]

data_in[639:0]

valid_in

fs_in

mfs_in

data_out[639:0]

valid_out

fs_out

mfs_out

ipg_clk_sys

tag[127:0]

iv_write

op_mode[1:0]

tag_write

key_write

run_mem_sel

precalc_mem_sel

kdf_ena

aad_write

enable

fail_in fail_out

Chapter 4 – 100G AES-GCM Cryptography Engine 117

Signal I/O Description From/To

ipg_clk_sys I
Green line interface clock at
180 MHz with duty cycle of 50%.
Used for internal global logic.

crypto4otn.ipg_clk_sys_tx (*)
crypto4otn.ipg_clk_sys_rx (**)

data_in[639:0] I Padded ODU input data.
loopback_mux(TX processor).data_out (*)

oh_extractor.data_out (**)

valid_in I

Input data valid. Validates the
ODU input data at the data_in bus,
as well as the fs_in, mfs_in, and
fail_in signals. Active-high.

loopback_mux(TX processor).valid_out (*)
oh_extractor.valid_out (**)

fs_in I

Input data frame start pulse. Single
clock period pulse that precedes
the start of the ODU input data
frame at the data_in bus. Active-
high.

loopback_mux(TX processor).fs_out (*)
oh_extractor.fs_out (**)

mfs_in I

Input data multi-frame start pulse.
Single clock period pulse that
precedes the start of the ODU
input data multi-frame at the
data_in bus. Active-high.

loopback_mux(TX processor).mfs_out (*)
oh_extractor.mfs_out (**)

fail_in I Fail signal. Active-high.
loopback_mux(TX processor).fail_out (*)

oh_extractor.fail_out (**)

key[255:0] I 256-bit crypto session key.
control_engine.tx_key (*)

control_engine.rx_key (**)

aad[31:0] I Additional authenticated data.
control_engine.tx_aad (*)

oh_extractor.aad (**)

iv[95:0] I

Initialization vector made up of a
fixed field (CSKS and CSID) and
an invocation field (CBID and
CPID).

control_engine.tx_iv (*)
oh_extractor.iv (**)

precalc_mem_sel I Pre-calculation memory selection.
control_engine.tx_precalc_mem_sel (*)

control_engine.rx_precalc_mem_sel (**)

run_mem_sel I
Running memory selection, from
where pre-calculated data are read
by the AES-GCM algorithm.

control_engine.tx_run_mem_sel (*)
control_engine.rx_run_mem_sel (**)

key_write I Key write enable and pre-
calculation trigger pulse.

control_engine.tx_key_write (*)
control_engine.rx_key_write (**)

aad_write I AAD write enable and pre-
calculation trigger pulse.

control_engine.tx_aad_iv_write (*)
oh_extractor.aad_write (**)

iv_write I IV write enable and pre-
calculation trigger pulse.

control_engine.tx_aad_iv_write (*)
oh_extractor.iv_write (**)

op_mode[1:0] I

Crypto session operation mode.
‘00’ – Authenticated encryption.
‘01’ – Authentication-only.
‘10’ – Encryption-only.

control_engine.tx_op_mode (*)
control_engine.rx_op_mode (**)

Chapter 4 – 100G AES-GCM Cryptography Engine 118

Signal I/O Description From/To

kdf_ena I

Key derivation function enable
control. Active-high. When
enabled, key values are scrambled
before being delivered to the AES-
GCM sub-block.

control_engine.tx_kdf_ena (*)
control_engine.rx_kdf_ena (**)

enable I

Block enable control.
‘0’ – Block disabled and all output
ports de-asserted (at logic ‘0’).
‘1’ – Block enabled.

control_engine.tx_enable (*)
control_engine.rx_enable (**)

data_out[639:0] O Padded ODU output data.
oh_inserter.data_in (*)

auth_buffer.data_in (**)

valid_out O

Output data valid. Validates the
ODU output data at the data_out
bus, as well as the fs_out, mfs_out,
and fail_out signals. Active-high.

oh_inserter.valid_in (*)
auth_buffer.valid_in (**)

fs_out O

Output data frame start pulse.
Single clock period pulse that
precedes the start of the ODU
output data frame at the data_out
bus. Active-high.

oh_inserter.fs_in (*)
auth_buffer.fs_in (**)

mfs_out O

Output data multi-frame start
pulse. Single clock period pulse
that precedes the start of the ODU
output data multi-frame at the
data_out bus. Active-high.

oh_inserter.mfs_in (*)
auth_buffer.mfs_in (**)

fail_out O Fail signal. Active-high.
oh_inserter.fail_in (*)

auth_buffer.fail_in (**)

tag[127:0] O Authentication TAG generated for
the current crypto packet.

control_engine.tx_calc_tag (*)
oh_inserter.tag (*)

control_engine.rx_calc_tag (**)

tag_write O

Authentication TAG write enable
pulse. TAG output bus value must
be captured and stored on the
rising edge of tag_write.

control_engine.tx_calc_tag_write (*)
oh_inserter.tag_write (*)

control_engine.rx_calc_tag_write (**)

(*) When used in the TX processor
(**) When used in the RX processor

Table 4.8 – OPU Cryptography Engine sub-block interface signals.

Figure 4.9 shows its high-level functional architecture diagram.

Incoming OPU data are dropped and sent to the AES-GCM sub-block for

encryption/authentication. At the same time, the OTN frame overhead is buffered until data

being output by the AES-GCM are ready to be added to the overall frame.

Chapter 4 – 100G AES-GCM Cryptography Engine 119

Figure 4.9 – OPU Cryptography Engine high-level functional architecture diagram.

Depending on the state of the kdf_ena input port, a key derivation function is used to

scramble the key value before it is delivered to the AES-GCM sub-block. A simple byte

transposition operation derives a new 256-bit sequence for the encryption and

authentication algorithm, thus providing an additional security layer.

The input fail indication signal (fail_in) is registered to the respective output (fail_out) with

a delay equivalent to the OPU Cryptography Engine processing latency.

4.3.6.1 OPU DROP SUB-BLOCK

The OPU Drop sub-block needs to handle data segregation in the 640-bit bus. For instance,

right after the frame start pulse, the first bus cycle brings 14 bytes of OTN overhead (to be

forwarded) and 66 bytes of OPU data (to be dropped). In the same way, the 48th bus cycle

(the last one of a frame line) contains 64 bytes of OPU data (to be dropped) and 16 padding

bytes (to be discarded). OPU data being dropped to the AES-GCM sub-block need to be

regrouped in 640-bit words, and, therefore, if the dropped data bus is incomplete in a given

clock cycle, more data must be appended in the next one.

Table 4.9 brings the signal names, interface directions (input/output), descriptions, and the

corresponding sources and destinations (from/to).

Signal I/O Description From/To

reset_sync_b I Synchronous reset signal generated in the Control
Engine sub-block. Active-low. crypto_engine

ipg_clk_sys I Green line interface clock at 180 MHz with duty cycle
of 50%. Used for internal global logic. crypto_engine

data_in[639:0] I Padded ODU input data. crypto_engine

AES-GCM
(aesgcm)

OPU Add
(opu_add)

OPU Drop
(opu_drop)

Crypto Engine Control
(crypto_eng_ctrl)

OTN OH

OPU
Payload

Chapter 4 – 100G AES-GCM Cryptography Engine 120

Signal I/O Description From/To

valid_in I
Input data valid. Validates the ODU input data at the
data_in bus, as well as the fs_in and mfs_in signals.
Active-high.

crypto_engine

fs_in I
Input data frame start pulse. Single clock period pulse
that precedes the start of the ODU input data frame at
the data_in bus. Active-high.

crypto_engine

mfs_in I
Input data multi-frame start pulse. Single clock period
pulse that precedes the start of the ODU input data
multi-frame at the data_in bus. Active-high.

crypto_engine

enable I
Block enable control.
‘0’ – Block disabled.
‘1’ – Block enabled.

crypto_engine

opu_data[639:0] O OPU output data. aesgcm.data_in

opu_valid O
Output data valid. Validates the OPU output data at the
opu_data bus, as well as the fs_out and mfs_out signals.
Active-high.

aesgcm.valid_in

fs_out O
Output data frame start pulse. Single clock period pulse
that precedes the start of the ODU output data frame.
Active-high.

opu_add.fs_in

mfs_out O
Output data multi-frame start pulse. Single clock period
pulse that precedes the start of the ODU output data
multi-frame. Active-high.

opu_add.mfs_in

oh_data[111:0] O OTU/ODU overhead data output. opu_add.oh_data_in

oh_valid O Overhead data valid. Validates the overhead data at the
oh_data bus. Active-high. opu_add.oh_valid_in

Table 4.9 – OPU Drop sub-block interface signals.

The internal logic for OPU data drop is synchronized by the incoming padded ODU multi-

frame start (mfs_in) and frame start (fs_in) signal pulses. They are asserted one clock cycle

before the start of each multi-frame and each frame, respectively. Incoming OPU data are

dropped to the AES-GCM sub-block, while the OTN overhead is forwarded to the OPU

Add sub-block.

Figure 4.10 illustrates how data are grouped along with the 48 bus cycles in each of the

four lines of two consecutive padded ODU frames. The 14 bytes of OTN overhead in the

beginning of each line are forwarded to the oh_data output. In the end of each line, 16

padding bytes are discarded. Each block in the figure represents a 640-bit input bus cycle,

and numbers correspond to how many bytes are grouped to fill out a transmission bus that

is dropped to the opu_data output.

Chapter 4 – 100G AES-GCM Cryptography Engine 121

Numbers enclosed by dashed lines represent bytes not used in that current cycle (remaining

for the next one). It can be noticed that in the 48th cycle of the last line of the second

consecutive frame (even frame) the dropped data bus (in the opu_data output) is complete,

establishing a data grouping distribution periodicity of two (odd/even) frames or 384 clock

cycles. In case of an OTN frame slip, the multi-frame start (mfs_in) signal ensures

realignment.

The signal opu_valid is de-asserted (logic ‘0’) during the bus cycles enclosed by the thick

red dashed lines, since the 640-bit dropped data bus is not complete in these clock cycles.

Considering the periodicity of two frames (384 cycles), de-assertion occurs at cycles 1,

144, and 241.

Both opu_valid and oh_valid are de-asserted when the enable input is de-asserted.

Figure 4.10 – OPU Drop data grouping in the 640-bit output bus.

Figure 4.11 and Figure 4.12 show the OPU Drop input and output data timing diagrams.

14 66 14 66 14 66 14 50 16

14 36 44 36 44 36 44 20 1630

14 660 74 6 74 6 64 16

14 5610 24 56 24 56 24 40 16

14 26

14 66 76 60 16

14 46 16

16 64 16

40 54 26 54 26 54 10 16

4 764 4

20 34 46 34 46 34 30

50 64 16 64 16

1st 2nd 47th 48th

...

...

...

...

...

...

...

...

...

MSB (80 bytes) LSB
(input data bus)

1

2

3

4

1

2

3

4

Complete output data
bus in the 48th cycle of
even frames (2, 4, 6, ...)

14

Odd Frame
1, 3, 5, ...

Input Bus Cycles:

Even Frame
2, 4, 6, ...

Chapter 4 – 100G AES-GCM Cryptography Engine 122

Figure 4.11 – OPU Drop input data timing diagram.

Figure 4.12 – OPU Drop output data timing diagram.

4.3.6.2 OPU ADD SUB-BLOCK

The OPU Add sub-block handles data aggregation.

In the beginning of each ODU frame line, 14 overhead bytes coming from the OPU Drop

are buffered, while the remaining OPU bytes are processed by the AES-GCM sub-block.

Then, a mechanism similar to the one used in the OPU Drop handles byte regrouping

between consecutive input bus cycles of OPU data. In the end of each line, 16 zero padding

bytes must be appended to complete the padded ODU frame structure.

Table 4.10 brings the signal names, interface directions (input/output), descriptions, and

the corresponding sources and destinations (from/to).

Signal I/O Description From/To

reset_sync_b I Synchronous reset signal generated in the Control
Engine sub-block. Active-low. crypto_engine

ipg_clk_sys I Green line interface clock at 180 MHz with duty
cycle of 50%. Used for internal global logic. crypto_engine

opu_data[639:0] I OPU input data. aesgcm.data_out

opu_valid I
OPU data valid. Validates the OPU input data at
the opu_data bus, as well as the fs_in and mfs_in
signals. Active-high.

aesgcm.valid_out

Chapter 4 – 100G AES-GCM Cryptography Engine 123

Signal I/O Description From/To

fs_in I
Input data frame start pulse. Single clock period
pulse that precedes the start of an ODU frame.
Active-high.

crypto_eng_ctrl.fs_retimed

mfs_in I
Input data multi-frame start pulse. Single clock
period pulse that precedes the start of an ODU
multi-frame. Active-high.

crypto_eng_ctrl.mfs_retimed

oh_data[111:0] I OTU/ODU overhead data input. opu_drop.oh_data_out

oh_valid I Overhead data valid. Validates the overhead data
at the oh_data bus. Active-high. opu_drop.oh_valid_out

enable I
Block enable control.
‘0’ – Block disabled.
‘1’ – Block enabled.

crypto_engine

data_out[639:0] O Padded ODU output data. crypto_engine

valid_out O
Output data valid. Validates the ODU output data
at the data_out bus, as well as the fs_out and
mfs_out signals. Active-high.

crypto_engine

fs_out O
Output data frame start pulse. Single clock period
pulse that precedes the start of the ODU output
data frame at the data_out bus. Active-high.

crypto_engine

mfs_out O

Output data multi-frame start pulse. Single clock
period pulse that precedes the start of the ODU
output data multi-frame at the data_out bus.
Active-high.

crypto_engine

Table 4.10 – OPU Add sub-block interface signals.

The internal logic for OPU Add is also synchronized by the multi-frame start (mfs_in) and

frame start (fs_in) signal pulses. These signals are retimed by the Crypto Engine Control

to match the same processing delay of the AES-GCM.

Data grouping distribution has the same periodicity of 2 (odd/even) frames or 384 clock

cycles. In case of an OTN frame slip, the multi-frame start (mfs_in) signal ensures

realignment.

An additional OPU data storage of a couple of cycles is needed to compensate for the gaps

in the opu_valid signal as data are not provided by the AES-GCM at cycles 1, 144, and

241.

Figure 4.13 and Figure 4.14 show the OPU Add input and output data timing diagrams.

Chapter 4 – 100G AES-GCM Cryptography Engine 124

Figure 4.13 – OPU Add input data timing diagram.

Figure 4.14 – OPU Add output data timing diagram.

4.3.6.3 AES-GCM SUB-BLOCK

The AES-GCM sub-block performs all the mathematical operations for encryption,

decryption, and authentication of the OPU data. Every 640-bit word in the data path is

sliced in five segments, which are processed by five instances of a 128-bit AES block

cipher running in parallel, as previously shown in Figure 2.20. The block receives data to

be encrypted or decrypted, a 256-bit cipher key, a 96-bit IV sequence, and the 32-bit AAD.

It then outputs encrypted/decrypted data and a 128-bit authentication TAG.

Table 4.11 brings the signal names, interface directions (input/output), descriptions, and

the corresponding sources and destinations (from/to).

Signal I/O Description From/To

reset_sync_b I
Synchronous reset signal generated
in the Control Engine sub-block.
Active-low.

crypto_engine

ipg_clk_sys I
Green line interface clock at
180 MHz with duty cycle of 50%.
Used for internal global logic.

crypto_engine

data_in[639:0] I Clear message input data. opu_drop.opu_data

Chapter 4 – 100G AES-GCM Cryptography Engine 125

Signal I/O Description From/To

data_valid_in I
Input data valid. Validates the clear
message input data at the data_in
bus. Active-high.

opu_drop.opu_valid

key[255:0] I 256-bit crypto session key. crypto_engine

aad[31:0] I Additional authenticated data. crypto_engine

iv[95:0] I

Initialization vector made up of a
fixed field (CSKS and CSID) and
an invocation field (CBID and
CPID).

crypto_engine

precalc_mem_sel I Pre-calculation memory selection. crypto_eng_ctrl.precalc_mem_sel_retimed

run_mem_sel I
Running memory selection, from
where pre-calculated data are read
by the AES-GCM algorithm.

crypto_eng_ctrl.run_mem_sel_retimed

precalc_key_pls I

Key pre-calculation trigger. Key
input bus value is captured and
internal calculations are initiated on
the rising edge of precalc_iv_pls.

crypto_eng_ctrl.key_write_retimed

precalc_aad_pls I

AAD pre-calculation trigger. AAD
input bus value is captured and
internal calculations are initiated on
the rising edge of precalc_aad_pls.

crypto_engine.aad_write

precalc_iv_pls I

IV pre-calculation trigger. IV input
bus value is captured and internal
calculations are initiated on the
rising edge of precalc_iv_pls.

crypto_engine.iv_write

msg_size_static[15:0] I
Message size in multiples of 640
bits. It is represented by a 16-bit
value.

Tied to a fixed value of 0x02fa,
corresponding to a message size of

762 × 640 = 487,680 bits

data_direction I

Specifies whether the AES-GCM
sub-block is used in the TX or RX
processor.
‘0’ – Used in the TX processor.
‘1’ – Used in the RX processor.

Tied to a fixed value

msg_sync_pls I

Input clear message
synchronization pulse. It precedes
the start of a clear message block to
synchronize internal message size
counters.

crypto_eng_ctrl.crypto_packet_start

enable I
Block enable control.
‘0’ – Block disabled.
‘1’ – Block enabled.

crypto_engine

op_mode[1:0] I

Crypto session operation mode.
‘00’ – Authenticated encryption.
‘01’ – Authentication-only.
‘10’ – Encryption-only.

crypto_engine

data_out[639:0] O Encrypted output data. opu_add.opu_data

data_valid_out O
Output data valid. Validates the
encrypted output data at the
data_out bus. Active-high.

opu_add.opu_valid

Chapter 4 – 100G AES-GCM Cryptography Engine 126

Signal I/O Description From/To

tag_out[127:0] O Authentication TAG generated for
the current crypto packet. crypto_engine.tag

tag_valid_out O

Authentication TAG valid pulse.
TAG output bus value must be
captured and stored on the rising
edge of tag_valid_out.

crypto_engine.tag_write

precalc_ready O Pre-calculation ready indication.
Not used in this application. Not connected

Table 4.11 – AES-GCM sub-block interface signals.

The AES-GCM message_size input port is tied to the fixed value 0x02fa, corresponding to

a message size of 762 × 640 = 487,680 bits and making up four OPUs — the payload of

one crypto packet.

When the OPU Cryptography Engine sub-block is instantiated in the TX processor lineup,

the AES-GCM data_direction input port is tied to ‘0’ to indicate that an encryption

operation is expected. Conversely, in the RX processor it is tied to ‘1’ to perform data

decryption.

Due to the inherent latency of the necessary calculations, a dual-memory bank strategy was

used to keep data processing at speed. They store cryptographic parameter values (key,

AAD, and IV) to be used in two phases — pre-calculation and encryption/decryption. In

this way, while one crypto packet is being processed using the parameters stored in the

“running memory”, the necessary pre-calculations for the next one are being concurrently

executed using the ones stored in the “pre-calc memory”. These memory banks are

cyclically switched over at every crypto packet.

The AES-GCM is further internally divided into three sub-blocks — the first (aesgcm_gctr)

performs the encryption and decryption processes, the second (aesgcm_ghash) calculates

the authentication TAG, and the third (aesgcm_ctrl) controls and synchronizes data

between the other two sub-blocks.

Table 4.12 shows the block data path latencies. The 16-cycle latency for the

encryption/decryption process is a consequence of the 14-stage pipelined implementation

of the 14-round AES algorithm, with two additional cycles of data registering in the block

overall architecture.

Chapter 4 – 100G AES-GCM Cryptography Engine 127

Operation Mode Data Output Latency TAG Latency
Authenticated Encryption/Decryption 16 26
Authentication-Only 1 10
Encryption/Decryption-Only 16 -
Bypass 1 -

Table 4.12 – AES-GCM sub-block data path latencies.

The author was not directly involved in the RTL design of the AES-GCM sub-block, which

was built based on two reference models written in C language, serving both as an

architectural guideline and as golden models for functional verification purposes.

4.3.6.4 CRYPTO ENGINE CONTROL SUB-BLOCK

The Crypto Engine Control sub-block synchronizes the data flow at the input of the AES-

GCM and OPU Add sub-blocks, in order to delineate the payload of crypto packets and

perform ODU frame reconstruction.

Table 4.13 brings the signal names, interface directions (input/output), descriptions, and

the corresponding sources and destinations (from/to).

Signal I/O Description From/To

reset_sync_b I Synchronous reset signal generated in the
Control Engine sub-block. Active-low. crypto_engine

ipg_clk_sys I
Green line interface clock at 180 MHz with
duty cycle of 50%. Used for internal global
logic.

crypto_engine

valid_in I Input data valid. Validates the fs_in and
mfs_in signals. Active-high. opu_drop.opu_valid

fs_in I
Input data frame start pulse. Single clock
period pulse that precedes the start of the
ODU data frame. Active-high.

opu_drop.fs_out

mfs_in I

Input data multi-frame start pulse. Single
clock period pulse that precedes the start of
the ODU input data multi-frame. Active-
high.

opu_drop.mfs_out

precalc_mem_sel I Pre-calculation memory selection. crypto_engine

run_mem_sel I
Running memory selection, from where
pre-calculated data are read by the AES-
GCM algorithm.

crypto_engine

key_write I Key write enable and pre-calculation trigger
pulse. crypto_engine

Chapter 4 – 100G AES-GCM Cryptography Engine 128

Signal I/O Description From/To

op_mode[1:0] I

Crypto session operation mode.
‘00’ – Authenticated encryption.
‘01’ – Authentication-only.
‘10’ – Encryption-only.

crypto_engine

enable I

Block enable control.
‘0’ – Block disabled and all output ports de-
asserted (at logic ‘0’).
‘1’ – Block enabled.

crypto_engine

fs_retimed O

Output data frame start pulse. Single clock
period pulse that precedes the start of an
ODU frame. Active-high. Corresponds to a
delayed version of the fs_in input signal.

opu_add.fs_in

mfs_retimed O

Output data multi-frame start pulse. Single
clock period pulse that precedes the start of
an ODU multi-frame. Active-high.
Corresponds to a delayed version of the
mfs_in input signal.

opu_add.mfs_in

crypto_packet_start O
Crypto packet start synchronization pulse.
Single clock period pulse that precedes the
start of a crypto packet OPU data.

aesgcm.message_sync

precalc_mem_sel_retimed O

Retimed version of the pre-calculation
memory selection input bit, sampled at the
rising edge of the crypto_packet_start
synchronization pulse.

aesgcm.precalc_mem_sel

run_mem_sel_retimed O

Retimed version of the running memory
selection input bit, sampled at the rising
edge of the crypto_packet_start
synchronization pulse.

aesgcm.run_mem_sel

key_write_retimed O

Retimed version of the key write enable and
pre-calculation trigger pulse, sampled at the
falling edge of the crypto_packet_start
synchronization pulse.

aesgcm.precalc_key_pls

Table 4.13 – Crypto Engine Control sub-block interface signals.

Figure 4.15 shows how data flow synchronization is accomplished by asserting the

crypto_packet_start output in the clock period that follows the detection of the frame start

pulse at the fs_in input, in the beginning of each crypto packet. OPU data start right after

this synchronization pulse, in the second clock cycle after the frame start pulse.

The precalc_mem_sel_retimed and run_mem_sel_retimed outputs are retimed versions of

the precalc_mem_sel and run_mem_sel inputs, sampled at the rising edge of the

crypto_packet_start synchronization pulse. In the same way, the key_write_retimed output

is a retimed version of the key_write input, but sampled at the falling edge of the

crypto_packet_start synchronization pulse.

Chapter 4 – 100G AES-GCM Cryptography Engine 129

The fs_retimed and mfs_retimed outputs are retimed versions of the fs_in and mfs_in inputs,

with a delay equivalent to the AES-GCM sub-block processing latency (one clock cycle

for authentication-only or 16 clock cycles for authenticated encryption and encryption-only

operation modes).

Figure 4.15 – Crypto Engine Control output data timing diagram.

Chapter 4 – 100G AES-GCM Cryptography Engine 130

4.3.7 ODU OH INSERTER SUB-BLOCK

This sub-block handles data insertion into the ODU overhead.

Encryption overhead data (16 bytes of TAG, 4 bytes of AAD, and 12 bytes of IV) are

inserted into four consecutive ODU overheads, each with eight available RES fields.

Additionally, all these data can be scrambled right before insertion.

Figure 4.16 shows its external input and output interface, and Table 4.14 brings the signal

names, interface directions (input/output), descriptions, and the corresponding sources and

destinations (from/to).

Figure 4.16 – ODU OH Inserter sub-block interface.

Signal I/O Description From/To

reset_sync_b I Synchronous reset signal generated in the
Control Engine sub-block. Active-low. control_engine.tx_reset_sync_b

ipg_clk_sys I
Green line interface clock at 180 MHz with
duty cycle of 50%. Used for internal global
logic.

crypto4otn.ipg_clk_sys_tx

data_in[639:0] I Padded ODU input data. crypto_engine(TX processor).data_out

oh_inserter

reset_sync_b

tag[127:0]

tag_write

aad_iv_write

data_in[639:0]

valid_in

fs_in

mfs_in

data_out[639:0]

valid_out

fs_out

mfs_out

ipg_clk_sys

aad[31:0]

iv[95:0]

scrambler_ena

enable

fail_in fail_out

Chapter 4 – 100G AES-GCM Cryptography Engine 131

Signal I/O Description From/To

valid_in I
Input data valid. Validates the ODU input data
at the data_in bus, as well as the fs_in, mfs_in,
and fail_in signals. Active-high.

crypto_engine(TX processor).valid_out

fs_in I

Input data frame start pulse. Single clock
period pulse that precedes the start of the ODU
input data frame at the data_in bus. Active-
high.

crypto_engine(TX processor).fs_out

mfs_in I

Input data multi-frame start pulse. Single clock
period pulse that precedes the start of the ODU
input data multi-frame at the data_in bus.
Active-high.

crypto_engine(TX processor).mfs_out

fail_in I Fail signal. Active-high. crypto_engine(TX processor).fail_out

tag[127:0] I
Authentication TAG to be inserted in the
current crypto packet (calculated for the
previous one).

crypto_engine(TX processor)

aad[31:0] I Additional authenticated data. control_engine.tx_aad

iv[95:0] I
Initialization vector made up of a fixed field
(CSKS and CSID) and an invocation field
(CBID and CPID).

control_engine.tx_iv

tag_write I
TAG write enable pulse. TAG input bus value
is captured and stored on the rising edge of
tag_write.

crypto_engine(TX processor)

aad_iv_write I
AAD and IV write enable pulse. AAD and IV
input bus values are captured and stored on the
rising edge of aad_iv_write.

control_engine.tx_aad_iv_write

scrambler_ena I Scrambler enable control. Active-high. control_engine.tx_oh_scrambler_ena

enable I

Block enable control.
‘0’ – Block disabled and all output ports de-
asserted (at logic ‘0’).
‘1’ – Block enabled.

control_engine.tx_enable

data_out[639:0] O Padded ODU output data. repl_sig_gen.data_in

valid_out O
Output data valid. Validates the ODU output
data at the data_out bus, as well as the fs_out,
mfs_out, and fail_out signals. Active-high.

repl_sig_gen.valid_in

fs_out O

Output data frame start pulse. Single clock
period pulse that precedes the start of the ODU
output data frame at the data_out bus. Active-
high.

repl_sig_gen.fs_in

mfs_out O

Output data multi-frame start pulse. Single
clock period pulse that precedes the start of the
ODU output data multi-frame at the data_out
bus. Active-high.

repl_sig_gen.mfs_in

fail_out O Fail signal. Active-high. repl_sig_gen.fail_in

Table 4.14 – ODU OH Inserter sub-block interface signals.

Chapter 4 – 100G AES-GCM Cryptography Engine 132

The encryption overhead bytes (TAG, AAD, and IV) are inserted in the eight RES fields

of the ODU overhead, with location (row, column) shown in Figure 3.5. Since four

consecutive frames are needed, a clock cycle counter synchronized by the multi-frame start

signal (mfs_in) is used to determine the insertion location distribution.

In the beginning of each frame line, the 14 most significant bytes of the 640-bit bus

correspond to the OTN overhead fields. Data are replaced (inserted) during clock cycles

number 49 and 145 in a given ODU frame.

Replacement data (encryption overhead) are captured from the respective input port and

internally stored to be used at the time of insertion. All other incoming data are forwarded

to the output port.

The input fail indication signal (fail_in) is registered to the respective output (fail_out) with

a delay equivalent to the ODU OH Inserter processing latency.

4.3.7.1 SCRAMBLING FUNCTION

As an additional security feature, an optional scrambling of the encryption overhead data

at the time of insertion was also implemented. Depending on the state of the scrambler_ena

input port, all inserted data can be scrambled by the following mechanism.

A 16-stage Galois linear feedback shift register (LFSR) with feedback polynomial x16 + x15

+ x14 + x12 + x10 + x8 + x7 + x + 1 can generate 216 – 1 (65535) distinct 16-bit words, with

the most and the least significant bytes denoted by B1 and B0, respectively.

Since there are 49152 clock cycles in one crypto block (256 frames), this 16-stage LFSR

can be used as a pseudo-random binary sequence (PRBS) generator for data scrambling.

Shifting occurs at every clock cycle, only when valid_in and scrambler_ena input ports are

active. For synchronization purposes, it is reinitialized at every multi-frame (after an mfs_in

pulse) with the sequence 0x5555.

The LFSR was implemented with an internal feedback construction (modular or Galois)

with x16 as the most significant bit, as depicted in Figure 4.17.

Chapter 4 – 100G AES-GCM Cryptography Engine 133

Figure 4.17 – Modular (Galois) LFSR with xm as the most significant bit.

Overhead data (D) are XOR combined with a 16-bit PRBS output word (P), as detailed in

Table 4.15, producing a scrambled sequence (S) at the time of insertion in the ODU

overhead. Descrambling is accomplished later in the data extraction process by the use of

the same synchronized LFSR, since if D ⨁ P = S, then S ⨁ P = D.

MFAS
[1:0]

RES (row, col)

(2, 1) (2, 2) (4, 9) (4, 10) (4, 11) (4, 12) (4, 13) (4, 14)

0 TAG ^ B1 TAG ^ B0 TAG ^ B1 TAG ^ B0 TAG ^ B1 TAG ^ B0 TAG ^ B1 TAG ^ B0

1 TAG ^ B1 TAG ^ B0 TAG ^ B1 TAG ^ B0 TAG ^ B1 TAG ^ B0 TAG ^ B1 TAG ^ B0

2 AAD ^ B1 AAD ^ B0 CSKS ^ B1 CSID ^ B0 CSID ^ B1 CSID ^ B0 CSID ^ B1 CBID ^ B0

3 AAD ^ B1 AAD ^ B0 CBID ^ B1 CBID ^ B0 CBID ^ B1 CPID ^ B0 CPID ^ B1 CPID ^ B0

Table 4.15 – Overhead data scrambling XOR operations.

gm–1 gm–2 g0 = 1g1g2g3gm = 1

Chapter 4 – 100G AES-GCM Cryptography Engine 134

4.3.8 ODU OH EXTRACTOR SUB-BLOCK

This sub-block handles data extraction from the ODU overhead.

Encryption overhead data (16 bytes of TAG, 4 bytes of AAD, and 12 bytes of IV) are

extracted from four consecutive ODU overheads, each with eight available RES fields.

Additionally, all these data can be descrambled right after extraction.

Figure 4.18 shows its external input and output interface, and Table 4.16 brings the signal

names, interface directions (input/output), descriptions, and the corresponding sources and

destinations (from/to).

Figure 4.18 – ODU OH Extractor sub-block interface.

Signal I/O Description From/To

reset_sync_b I Synchronous reset signal generated in the
Control Engine sub-block. Active-low. control_engine.rx_reset_sync_b

ipg_clk_sys I
Green line interface clock at 180 MHz with
duty cycle of 50%. Used for internal global
logic.

crypto4otn.ipg_clk_sys_rx

data_in[639:0] I Padded ODU input data. loopback_mux(RX processor).data_out

valid_in I
Input data valid. Validates the ODU input data
at the data_in bus, as well as the fs_in, mfs_in,
and fail_in signals. Active-high.

loopback_mux(RX processor).valid_out

data_in[639:0]

valid_in

fs_in

mfs_in

data_out[639:0]

valid_out

fs_out

mfs_out

tag[127:0]

aad[31:0]

iv[95:0]

reset_sync_b

ipg_clk_sys

oh_extractor

tag_write

aad_write

iv_writeenable

fail_in fail_out

scrambler_ena

Chapter 4 – 100G AES-GCM Cryptography Engine 135

Signal I/O Description From/To

fs_in I

Input data frame start pulse. Single clock
period pulse that precedes the start of the ODU
input data frame at the data_in bus. Active-
high.

loopback_mux(RX processor).fs_out

mfs_in I

Input data multi-frame start pulse. Single clock
period pulse that precedes the start of the ODU
input data multi-frame at the data_in bus.
Active-high.

loopback_mux(RX processor).mfs_out

fail_in I Fail signal. Active-high. loopback_mux(RX processor).fail_out

scrambler_ena I Scrambler enable control. Active-high. control_engine.rx_oh_scrambler_ena

enable I

Block enable control.
‘0’ – Block disabled and all output ports de-
asserted (at logic ‘0’).
‘1’ – Block enabled.

control_engine.rx_enable

data_out[639:0] O Padded ODU output data. crypto_engine(RX processor).data_in

valid_out O
Output data valid. Validates the ODU output
data at the data_out bus, as well as the fs_out,
mfs_out, and fail_out signals. Active-high.

crypto_engine(RX processor).valid_in

fs_out O

Output data frame start pulse. Single clock
period pulse that precedes the start of the ODU
output data frame at the data_out bus. Active-
high.

crypto_engine(RX processor).fs_in

mfs_out O

Output data multi-frame start pulse. Single
clock period pulse that precedes the start of the
ODU output data multi-frame at the data_out
bus. Active-high.

crypto_engine(RX processor).mfs_in

fail_out O Fail signal. Active-high. crypto_engine(RX processor).fail_in

tag[127:0] O Authentication TAG corresponding to the
previous crypto packet. control_engine.rx_rcvd_tag

aad[31:0] O Additional authenticated data.
control_engine.rx_rcvd_aad

crypto_engine(RX processor).aad

iv[95:0] O
Initialization vector made up of a fixed field
(CSKS and CSID) and an invocation field
(CBID and CPID).

control_engine.rx_rcvd_iv
crypto_engine(RX processor).iv

tag_write O
TAG write enable pulse. TAG input bus value
is captured and stored on the rising edge of
tag_write.

control_engine.rx_rcvd_tag_write

aad_write O
AAD write enable pulse. AAD input bus value
is captured and stored on the rising edge of
aad_write.

control_engine.rx_rcvd_aad_write

iv_write O
IV write enable pulse. IV input bus value is
captured and stored on the rising edge of
iv_write.

control_engine.rx_rcvd_iv_write

Table 4.16 – ODU OH Extractor sub-block interface signals.

Chapter 4 – 100G AES-GCM Cryptography Engine 136

The encryption overhead bytes (TAG, AAD, and IV) are extracted from the eight RES

fields of the ODU overhead, with location (row, column) shown in Figure 3.5. Since four

consecutive frames are needed, a clock cycle counter synchronized by the multi-frame start

signal (mfs_in) is used to determine the extraction positions.

In the beginning of each frame line, the 14 most significant bytes of the 640-bit bus

correspond to the OTN overhead fields. Data are extracted during clock cycles number 49

and 145 in a given ODU frame.

Extracted data (encryption overhead) are internally stored and sent to the respective output

port as soon as they are available. All other incoming data are forwarded to the output port,

except for the ODU overhead RES fields, which are filled with ‘0’ in the output frame.

The input fail indication signal (fail_in) is registered to the respective output (fail_out) with

a delay equivalent to the ODU OH Extractor processing latency.

4.3.8.1 DESCRAMBLING FUNCTION

Depending on the state of the scrambler_ena input port, all extracted data can be

descrambled by the same mechanism described in Section 4.3.7.1. Since the scrambling

was performed by XOR operations combining data with PRBS words, descrambling is

accomplished by repeating the same operations between scrambled data and the same

corresponding PRBS words.

The same 16-stage Galois LFSR is used as a PRBS generator, with bit shifting occurring

at every clock cycle, only when valid_in and scrambler_ena input ports are active. Again,

for synchronization purposes, it is reinitialized at every multi-frame (after an mfs_in pulse)

with the sequence 0x5555.

Chapter 4 – 100G AES-GCM Cryptography Engine 137

4.3.9 REPLACEMENT SIGNAL GENERATOR SUB-BLOCK

The Replacement Signal Generator sub-block generates an AIS-like (alarm indication

signal) or user-defined pattern replacement signal in the output of the TX processor.

Figure 4.19 shows its external input and output interface, and Table 4.17 brings the signal

names, interface directions (input/output), descriptions, and the corresponding sources and

destinations (from/to).

Figure 4.19 – Replacement Signal Generator sub-block interface.

Signal I/O Description From/To

reset_sync_b I Synchronous reset signal generated in the
Control Engine sub-block. Active-low. control_engine.tx_reset_sync_b

ipg_clk_sys I
Green line interface clock at 180 MHz
with duty cycle of 50%. Used for internal
global logic.

crypto4otn.ipg_clk_sys_tx

data_in[639:0] I Padded ODU input data. oh_inserter.data_out

valid_in I
Input data valid. Validates the ODU input
data at the data_in bus, as well as the fs_in,
mfs_in, and fail_in signals. Active-high.

oh_inserter.valid_out

fs_in I

Input data frame start pulse. Single clock
period pulse that precedes the start of the
ODU input data frame at the data_in bus.
Active-high.

oh_inserter.fs_out

mfs_in I

Input data multi-frame start pulse. Single
clock period pulse that precedes the start
of the ODU input data multi-frame at the
data_in bus. Active-high.

oh_inserter.mfs_out

fail_in I Fail signal. Active-high. oh_inserter.fail_out

repl_sig_gen

reset_sync_b

repl_sig_ena

data_in[639:0]

valid_in

fs_in

mfs_in

data_out[639:0]

valid_out

fs_out

mfs_out

ipg_clk_sys

repl_sig_sel

repl_sig_pattern[15:0]

enable

fail_in fail_out

Chapter 4 – 100G AES-GCM Cryptography Engine 138

Signal I/O Description From/To

repl_sig_ena I Replacement signal enable control.
Active-high. control_engine

repl_sig_sel I

Replacement signal selection.
‘0’ – AIS-like pattern is generated as the
replacement signal.
‘1’ – User defined pattern is generated as
the replacement signal.

control_engine

repl_sig_pattern[15:0] I
Replacement signal pattern. 16-bit word
repeatedly concatenated to make up the
replacement signal.

control_engine

enable I

Block enable control.
‘0’ – Block disabled and all output ports
de-asserted (at logic ‘0’).
‘1’ – Block enabled.

control_engine.tx_enable

data_out[639:0] O Padded ODU output data. flow_control(TX processor).data_in

valid_out O

Output data valid. Validates the ODU
output data at the data_out bus, as well as
the fs_out, mfs_out, and fail_out signals.
Active-high.

flow_control(TX processor).valid_in

fs_out O

Output data frame start pulse. Single clock
period pulse that precedes the start of the
ODU output data frame at the data_out
bus. Active-high.

flow_control(TX processor).fs_in

mfs_out O

Output data multi-frame start pulse. Single
clock period pulse that precedes the start
of the ODU output data multi-frame at the
data_out bus. Active-high.

flow_control(TX processor).mfs_in

fail_out O Fail signal. Active-high. flow_control(TX processor).fail_in_a

Table 4.17 – Replacement Signal Generator sub-block interface signals.

When repl_sig_ena signal is asserted by the Control Engine sub-block, output data are

replaced by either an AIS-like or a user-defined pattern, depending on the state of

repl_sig_sel input.

If AIS-like is selected (repl_sig_sel = ‘0’), almost all bits of the ODU frame are set to ‘1’,

except for the frame alignment overhead (FA OH), OTU overhead (OTU OH), ODU FTFL,

and ODU overhead RES fields, as shown in Figure 4.20.

Chapter 4 – 100G AES-GCM Cryptography Engine 139

Figure 4.20 – ODU AIS-like — all ‘1s’ pattern in the gray area.

If the user-defined pattern is selected instead (repl_sig_sel = ‘1’), then only the OPU

overhead and payload areas of the padded ODU frames are replaced by new data generated

by the concatenated repetition of a single 16-bit word read from the repl_sig_pattern input.

The 16 padding bytes at the end of each line remain ‘0’, as shown in Figure 4.21

Figure 4.21 – ODU user-defined pattern in the gray area.

The data replacement action depends only on the repl_sig_ena control input, not being

synchronized with any other signal.

The input fail indication signal (fail_in) is registered to the respective output (fail_out) with

a delay equivalent to the Replacement Signal Generator processing latency.

1

ODU OH
OPU Payload

O
PU

 O
H

15 3824

Padding

3840Padded ODU Frame
1

2

3

4

FA OH OTU OH
FTFL

14

RES

RES

1

ODU OH
OPU Payload

O
PU

 O
H

15 3824

Padding

3840Padded ODU Frame
1

2

3

4

FA OH OTU OH

Chapter 4 – 100G AES-GCM Cryptography Engine 140

4.3.10 AUTHENTICATION BUFFER SUB-BLOCK

When the Crypto4OTN block operates in authenticated encryption or authentication-only

modes, with the authentication delay configured for the store-and-forward mode, this sub-

block stores six ODU frames (corresponding to 1.5 crypto packets) and forwards them after

TAG matching verification.

Figure 4.22 shows its external input and output interface, and Table 4.18 brings the signal

names, interface directions (input/output), descriptions, and the corresponding sources and

destinations (from/to).

Figure 4.22 – Authentication Buffer sub-block interface.

Signal I/O Description From/To

reset_sync_b I
Synchronous reset signal
generated in the Control Engine
sub-block. Active-low.

control_engine.rx_reset_sync_b

ipg_clk_sys I

Green line interface clock at
180 MHz with duty cycle of
50%. Used for internal global
logic.

crypto4otn.ipg_clk_sys_rx

data_in[639:0] I Padded ODU input data. crypto_engine(RX processor).data_out

valid_in I

Input data valid. Validates the
ODU input data at the data_in
bus, as well as the fs_in, mfs_in,
and fail_in signals. Active-high.

crypto_engine(RX processor).valid_out

auth_buffer

reset_sync_b

bypass

data_in[639:0]

valid_in

fs_in

mfs_in

data_out[639:0]

valid_out

fs_out

mfs_out

ipg_clk_sys

auth_tag_matching

auth_blocking

ipt_test

enable

auth_tag_matching_retimed

fail_in fail_out

Chapter 4 – 100G AES-GCM Cryptography Engine 141

Signal I/O Description From/To

fs_in I

Input data frame start pulse.
Single clock period pulse that
precedes the start of the ODU
input data frame at the data_in
bus. Active-high.

crypto_engine(RX processor).fs_out

mfs_in I

Input data multi-frame start
pulse. Single clock period pulse
that precedes the start of the
ODU input data multi-frame at
the data_in bus. Active-high.

crypto_engine(RX processor).mfs_out

fail_in I Fail signal. Active-high. crypto_engine(RX processor).fail_out

auth_blocking I

Authentication blocking control.
Active-high.
‘0’ – OPU data are forwarded
regardless of the authentication
TAG matching indication status.
‘1’ – OPU data are replaced by
zero in the case of a TAG
mismatch.

control_engine

auth_tag_matching I

Authentication TAG matching
indication. Updated at every
crypto packet, after TAG
verification. Active-high.

control_engine

bypass I
Bypass control.
‘0’ – Normal operation.
‘1’ – Bypass mode.

control_engine.auth_buffer_bypass

ipt_test I Test mode enable signal (for
DFT purposes). Active-high. crypto4otn

enable I

Block enable control.
‘0’ – Block disabled and all
output ports de-asserted (at logic
‘0’).
‘1’ – Block enabled.

control_engine.rx_enable

data_out[639:0] O Padded ODU output data. flow_control(RX processor).data_in

valid_out O

Output data valid. Validates the
ODU output data at the data_out
bus, as well as the fs_out,
mfs_out, and fail_out signals.
Active-high.

flow_control(RX processor).valid_in

fs_out O

Output data frame start pulse.
Single clock period pulse that
precedes the start of the ODU
output data frame at the
data_out bus. Active-high.

flow_control(RX processor).fs_in

mfs_out O

Output data multi-frame start
pulse. Single clock period pulse
that precedes the start of the
ODU output data multi-frame at
the data_out bus. Active-high.

flow_control(RX processor).mfs_in

fail_out O Fail signal. Active-high. flow_control(RX processor).fail_in

Chapter 4 – 100G AES-GCM Cryptography Engine 142

Signal I/O Description From/To

auth_tag_matching_retimed O

Retimed version of the
authentication TAG matching
indication, synchronized with
the output crypto packets.

flow_control(RX processor).spare_bit_in

Table 4.18 – Authentication Buffer sub-block interface signals.

Data must be buffered to wait for authentication since the TAG value generated in the

transmitter (to be compared with the one calculated in the receiver) of a given crypto packet

comes at the beginning of the next one, as described in Section 3.4 and shown in Figure

4.23.

Figure 4.23 – Correlation of the authentication TAG and the encrypted OPU message

of two consecutive crypto packets.

The 16-byte TAG data transmitted in the eight ODU overhead RES fields of the first two

frames of a crypto packet are correlated to the encrypted OPU payload of the previous one.

Consequently, six frames must be stored so that the TAG of the current crypto packet

(calculated from the received encrypted OPU payload) can be compared to the TAG

coming in the next one (previously calculated in the TX side) for matching verification

before authenticated data are made available at the output.

When the auth_blocking input is asserted, the auth_tag_matching input controls whether

the stored crypto packet (four oldest frames in the buffer) must be entirely forwarded to the

output or have its OPU overheads and payloads replaced by ‘0’. Conversely, when

MFAS
[1:0]

RES (row, col)

(2, 1) (2, 2) (4, 9) (4, 10) (4, 11) (4, 12) (4, 13) (4, 14)

0 TAG TAG TAG TAG TAG TAG TAG TAG

1 TAG TAG TAG TAG TAG TAG TAG TAG

2 AAD AAD CSKS CSID CSID CSID CSID CBID

3 AAD AAD CBID CBID CBID CPID CPID CPID

MFAS
[1:0]

RES (row, col)

(2, 1) (2, 2) (4, 9) (4, 10) (4, 11) (4, 12) (4, 13) (4, 14)

0 TAG TAG TAG TAG TAG TAG TAG TAG

1 TAG TAG TAG TAG TAG TAG TAG TAG

2 AAD AAD CSKS CSID CSID CSID CSID CBID

3 AAD AAD CBID CBID CBID CPID CPID CPID

Crypto Packet
[n]

Crypto Packet
[n+1]

Encrypted OPUTAG AAD IV Encrypted OPUTAG AAD IV

6 Frames

Chapter 4 – 100G AES-GCM Cryptography Engine 143

auth_blocking is ‘0’, the stored crypto packet will be entirely forwarded to the output

regardless of the TAG matching indication.

Input data are directly forwarded to the output (with no extra storing delay) when the bypass

input is asserted. Output data behavior is unpredictable right after transitioning to/from the

bypass mode.

The crypto packet boundary delineation is obtained from packet and frame counters, which

are synchronized by the mfs_in signal.

The auth_tag_matching_retimed output is a retimed version of the auth_tag_matching

input, synchronized with the output crypto packets.

The input fail indication signal (fail_in) is registered to the respective output (fail_out) with

a delay equivalent to the Authentication Buffer processing latency.

Chapter 4 – 100G AES-GCM Cryptography Engine 144

4.3.11 CONTROL ENGINE SUB-BLOCK

This sub-block implements all the needed functionalities for control and synchronization

of the 100G AES-GCM Cryptography Engine operation.

It is internally divided in two independent controllers (for the TX and RX processors)

sharing a common Register and Reset Controller, as shown in Figure 4.24.

Figure 4.24 – Control Engine high-level architecture diagram.

Both internal controllers handle their own interrupt subset and consequent action

procedures, interacting with each other when necessary. Since each controller belongs to a

different clock domain, these interactions are implemented using proper clock domain

crossing techniques.

These TX and RX processor controllers receive frame start (FS) and multi-frame start

(MFS) synchronization pulses, which are used for crypto packet boundary delineation

before generation of the controlling actions.

Figure 4.25 shows its external input and output interface, and Table 4.19 brings the signal

names, interface directions (input/output), descriptions, and the corresponding sources and

destinations (from/to).

RX Processor
Controller

TX Processor
Controller

Register and Reset Controller
(crypto4otn_ctrl)

Chapter 4 – 100G AES-GCM Cryptography Engine 145

Figure 4.25 – Control Engine sub-block interface.

control_engine

rx_calc_tag_write

rx_rcvd_aad[31:0]

rx_rcvd_iv[95:0]

tx_bypass

rx_bypass

ipy_fs_tx_in

ipy_mfs_tx_in

ipy_fs_rx_in

ipy_mfs_rx_in

ipy_ssf_tx

ipy_ssf_rx

repl_sig_ena

ipy_tsf_tx

ipy_tsf_rx

repl_sig_sel

repl_sig_pattern[15:0]

tx_key[255:0]tx_calc_tag[127:0]

tx_aad[31:0]

tx_iv[95:0]

TX Processor

tx_key_write

tx_op_mode[1:0]

rx_rcvd_tag[127:0] rx_key[255:0]

rx_key_write

auth_tag_matching

auth_buffer_bypass

RX Processor

tx_calc_tag_write

rx_calc_tag[127:0]

rx_op_mode[1:0]

rx_precalc_mem_sel

rx_run_mem_sel

tx_precalc_mem_sel

tx_run_mem_sel

tx_scrambler_ena

rx_kdf_ena

tx_kdf_ena

ipg_soft_reset_async_b

ipg_clk_sys_tx

ipg_clk

ips_addr[7:0]

ips_wdata[15:0]

ips_rwb

ips_module_en

ipt_test

ips_rdata[15:0]

ips_xfr_wait

ips_xfr_err

line_loopback

client_loopback

ipi_intGlobal

tx_aad_iv_write

rx_rcvd_aad_write

rx_rcvd_iv_write

rx_rcvd_tag_write

rx_scrambler_ena

ipg_hard_async_reset_b

tx_reset_sync_b

auth_blocking

ipy_valid_tx_in

ipy_valid_rx_in

rx_reset_sync_bipg_clk_sys_rx

rx_enable

tx_enable

tx_flow_ctrl_mode

rx_flow_ctrl_mode

tx_level_thr[5:0]

rx_level_thr[5:0]

tx_flow_ctrl_fifo_full

tx_flow_ctrl_fifo_empty

rx_flow_ctrl_fifo_full

rx_flow_ctrl_fifo_empty

Chapter 4 – 100G AES-GCM Cryptography Engine 146

Signal I/O Description From/To

ipg_hard_async_reset_b I
Green line asynchronous hard reset signal.
This signal is asserted and de-asserted
asynchronously. Active-low.

crypto4otn

ipg_soft_reset_async_b I
Green line interface soft reset signal. This
signal is asserted and de-asserted
asynchronously. Active-low.

crypto4otn

ipg_clk_sys_tx I
TX processor green line interface clock at
180 MHz with duty cycle of 50%. Used
for internal global logic.

crypto4otn

ipg_clk_sys_rx I
RX processor Green line interface clock at
180 MHz with duty cycle of 50%. Used
for internal global logic.

crypto4otn

ipg_clk I
Green line interface clock at 90 MHz with
duty cycle of 50%. Used for the register
access interface.

crypto4otn

ips_addr[7:0] I Sky-Blue line interface address bus. Used
for register access. crypto4otn

ips_wdata[15:0] I Sky-Blue line interface write data bus.
Used for register access. crypto4otn

ips_rwb I

Sky-Blue line interface read/write
selection.
'0' – Data are written by the CPU.
'1' – Data are read by the CPU.

crypto4otn

ips_module_en I
Sky-Blue line interface module enable.
Selects the crypto4otn block for register
access. Active-high.

crypto4otn

ipt_test I Test mode enable signal (for DFT
purposes). Active-high. crypto4otn

tx_calc_tag[127:0] I Authentication TAG generated for the
current crypto packet.

crypto_engine.tag
(TX processor)

tx_calc_tag_write I

Authentication TAG write enable pulse.
TAG input bus (tx_calc_tag) value is
captured and stored on the rising edge of
tx_calc_tag_write.

crypto_engine.tag_write
(TX processor)

ipy_valid_tx_in I

Yellow line interface input data valid.
Validates the padded ODU input data at
the Crypto4OTN ipy_data_tx_in bus.
Active-high.

crypto4otn

ipy_fs_tx_in I

Yellow line interface input data frame start
pulse. Indicates the start of the ODU input
data frame at the Crypto4OTN
ipy_data_tx_in bus. Active-high.

crypto4otn

ipy_mfs_tx_in I

Yellow line interface input data multi-
frame start pulse. Indicates the start of the
ODU input data multi-frame at the
Crypto4OTN ipy_data_tx_in bus. Active-
high.

crypto4otn

ipy_tsf_tx I TX processor input client data fail signal
indication. Active-high. crypto4otn

Chapter 4 – 100G AES-GCM Cryptography Engine 147

Signal I/O Description From/To

tx_flow_ctrl_fifo_full I TX processor flow control FIFO full
indication. Active-high.

flow_control.fifo_full
(TX processor)

tx_flow_ctrl_fifo_empty I TX processor flow control FIFO empty
indication. Active-high.

flow_control.fifo_empty
(TX processor)

rx_rcvd_tag[127:0] I
Received authentication TAG
corresponding to the previous crypto
packet.

oh_extractor.tag

rx_rcvd_aad[31:0] I Received additional authenticated data for
the current crypto packet. oh_extractor.aad

rx_rcvd_iv[95:0] I

Received initialization vector made up of
a fixed field (CSKS and CSID) and an
invocation field (CBID and CPID), to be
used for the next crypto packet.

oh_extractor.iv

rx_rcvd_tag_write I

Authentication TAG write enable pulse.
TAG input bus (rx_rcvd_tag) value is
captured and stored on the rising edge of
rx_rcvd_tag_write.

oh_extractor.tag_write

rx_rcvd_aad_write I
AAD write enable pulse. AAD input bus
(rx_rcvd_aad) value is captured and stored
on the rising edge of rx_rcvd_aad_write.

oh_extractor.aad_write

rx_rcvd_iv_write I
IV write enable pulse. IV input bus
(rx_rcvd_iv) value is captured and stored
on the rising edge of rx_rcvd_iv_write.

oh_extractor.iv_write

ipy_valid_rx_in I

Yellow line interface input data valid.
Validates the padded ODU input data at
the Crypto4OTN ipy_data_rx_in bus.
Active-high.

crypto4otn

ipy_fs_rx_in I

Yellow line interface input data frame start
pulse. Indicates the start of the ODU input
data frame at the Crypto4OTN
ipy_data_rx_in bus. Active-high.

crypto4otn

ipy_mfs_rx_in I

Yellow line interface input data multi-
frame start pulse. Indicates the start of the
ODU input data multi-frame at the
Crypto4OTN ipy_data_rx_in bus. Active-
high.

crypto4otn

ipy_tsf_rx I RX processor input line data fail signal
indication. Active-high. crypto4otn

rx_calc_tag[127:0] I Authentication TAG generated for the
current crypto packet.

crypto_engine.tag
(RX processor)

rx_calc_tag_write I

Authentication TAG write enable pulse.
TAG input bus (rx_calc_tag) value is
captured and stored on the rising edge of
rx_calc_tag_write.

crypto_engine.tag_write
(RX processor)

rx_flow_ctrl_fifo_full I RX processor flow control FIFO full
indication. Active-high.

flow_control.fifo_full
(RX processor)

rx_flow_ctrl_fifo_empty I RX processor flow control FIFO empty
indication. Active-high.

flow_control.fifo_empty
(RX processor)

Chapter 4 – 100G AES-GCM Cryptography Engine 148

Signal I/O Description From/To

tx_reset_sync_b O

TX processor synchronous reset signal
generated in the crypto4otn_ctrl sub-block
(Register and Reset Controller). Active-
low.

TX processor sub-blocks

rx_reset_sync_b O

RX processor synchronous reset signal
generated in the crypto4otn_ctrl sub-block
(Register and Reset Controller). Active-
low.

RX processor sub-blocks

ipi_int O Indigo line interface interrupt request
signal. Active-high. crypto4otn

ips_rdata[15:0] O Sky-Blue line interface read data bus.
Used for register access. crypto4otn

ips_xfr_wait O
Sky-Blue line interface transfer wait
signal. When in logic low ‘0’ it indicates
that the access is complete. Active-high.

crypto4otn

ips_xfr_err O Sky-Blue line interface transfer error
signal. Active-high. crypto4otn

tx_key[255:0] O 256-bit crypto session key for the current
crypto packet.

crypto_engine.key
(TX processor)

tx_aad[31:0] O Additional authenticated data for the
current crypto packet.

crypto_engine.aad
(TX processor)
oh_inserter.aad

tx_iv[95:0] O

Initialization vector made up of a fixed
field (CSKS and CSID) and an invocation
field (CBID and CPID) for the next crypto
packet.

crypto_engine.iv
(TX processor)
oh_inserter.iv

tx_precalc_mem_sel O Pre-calculation memory selection. crypto_engine.precalc_mem_sel
(TX processor)

tx_run_mem_sel O
Running memory selection, from where
pre-calculated data are read by the AES-
GCM algorithm.

crypto_engine.run_mem_sel
(TX processor)

tx_key_write O Key write enable and pre-calculation
trigger pulse.

crypto_engine.key_write
(TX processor)

tx_aad_iv_write O AAD and IV write enable and pre-
calculation trigger pulse.

crypto_engine.aad_write
(TX processor)

crypto_engine.iv_write
(TX processor)

oh_inserter.aad_iv_write

tx_op_mode[1:0] O

Crypto session operation mode.
‘00’ – Authenticated encryption.
‘01’ – Authentication-only.
‘10’ – Encryption-only.

crypto_engine.op_mode
(TX processor)

tx_kdf_ena O

Key derivation function enable control.
Active-high. When enabled, key values
are scrambled before being delivered to
the AES-GCM sub-block.

crypto_engine.kdf_ena
(TX processor)

tx_scrambler_ena O

Overhead scrambler enable control.
Active-high. When enabled, overhead data
are scrambled before being inserted into
ODU frames.

oh_inserter.scrambler_ena

Chapter 4 – 100G AES-GCM Cryptography Engine 149

Signal I/O Description From/To

repl_sig_ena O Replacement signal enable control.
Active-high. repl_sig_gen

repl_sig_sel O

Replacement signal selection.
‘0’ – AIS-like pattern is generated as the
replacement signal.
‘1’ – User defined pattern is generated as
the replacement signal.

repl_sig_gen

repl_sig_pattern[15:0] O
Replacement signal pattern. 16-bit word to
be repeatedly concatenated to make up the
replacement signal.

repl_sig_gen

ipy_ssf_tx O TX processor output line data fail signal
indication. Active-high. crypto4otn

tx_enable O
TX processor enable control.
‘0’ – TX processor disabled.
‘1’ – TX processor enabled.

TX processor sub-blocks

tx_bypass O
TX processor bypass control.
‘0’ – Normal operation.
‘1’ – Bypass mode.

flow_control.bypass
(TX processor)

client_loopback O
Client side far-end loopback control.
‘0’ – Normal operation.
‘1’ – Client loopback mode.

loopback_mux.loopback
(TX processor)

tx_flow_ctrl_mode O

TX processor flow control operation
mode.
‘0’ – Push mode.
‘1’ – Pull mode.

flow_control.flow_control_mode
(TX processor)

tx_level_thr[5:0] O TX processor flow control FIFO level
threshold.

flow_control.level_threshold
(TX processor)

rx_key[255:0] O 256-bit crypto session key for the current
crypto packet.

crypto_engine.key
(RX processor)

rx_precalc_mem_sel O Pre-calculation memory selection. crypto_engine.precalc_mem_sel
(RX processor)

rx_run_mem_sel O
Running memory selection, from where
pre-calculated data are read by the AES-
GCM algorithm.

crypto_engine.run_mem_sel
(RX processor)

rx_key_write O Key write enable and pre-calculation
trigger pulse.

crypto_engine.key_write
(RX processor)

rx_op_mode[1:0] O

Crypto session operation mode.
‘00’ – Authenticated encryption.
‘01’ – Authentication-only.
‘10’ – Encryption-only.

crypto_engine.op_mode
(RX processor)

rx_kdf_ena O

Key derivation function enable control.
Active-high. When enabled, key values
are scrambled before being delivered to
the AES-GCM sub-block.

crypto_engine.kdf_ena
(RX processor)

Chapter 4 – 100G AES-GCM Cryptography Engine 150

Signal I/O Description From/To

rx_scrambler_ena O

Overhead scrambler enable control.
Active-high. When enabled, overhead data
are scrambled after being extracted from
ODU frames (equivalent to descrambling).

oh_extractor.scrambler_ena

auth_blocking O

Authentication blocking control. Active-
high.
‘0’ – OPU data are forwarded regardless of
the authentication TAG matching
indication status.
‘1’ – OPU data are replaced by zero in the
case of a TAG mismatch.

auth_buffer

auth_tag_matching O
Authentication TAG matching indication.
Updated at every crypto packet, after TAG
verification. Active-high.

auth_buffer

auth_buffer_bypass O
Authentication Buffer bypass control.
‘0’ – Normal operation.
‘1’ – Bypass mode.

auth_buffer

ipy_ssf_rx O RX processor output client data fail signal
indication. Active-high. crypto4otn

rx_enable O
RX processor enable control.
‘0’ – RX processor disabled.
‘1’ – RX processor enabled.

RX processor sub-blocks

rx_bypass O
RX processor bypass control.
‘0’ – Normal operation.
‘1’ – Bypass mode.

flow_control.bypass
(RX processor)

line_loopback O
Line side far-end loopback control.
‘0’ – Normal operation.
‘1’ – Line loopback mode.

loopback_mux.loopback
(RX processor)

rx_flow_ctrl_mode O

RX processor flow control operation
mode.
‘0’ – Push mode.
‘1’ – Pull mode.

flow_control.flow_control_mode
(RX processor)

rx_level_thr[5:0] O RX processor flow control FIFO level
threshold.

flow_control.level_threshold
(RX processor)

Table 4.19 – Control Engine sub-block interface signals.

Chapter 4 – 100G AES-GCM Cryptography Engine 151

4.3.11.1 TX PROCESSOR CONTROLLER

The TX processor controller handles the crypto session establishment and maintenance

procedures on the transmitter side, as commanded by the software layer.

Some of its main general requirements are listed in Table 4.20.

Requirement Description

CPID counter

24-bit free running and wrap-around counter, restarted after a reset event.

Incremented at every crypto packet, when MFAS [1:0] = 0.

Used to form the invocation field of the initialization vector.

CBID counter

32-bit non-wrap-around counter, restarted at the beginning of a crypto session.

It runs when the session is active and increments at every 64 crypto packets,
right after an MFS pulse.

Used to form the invocation field of the initialization vector and to verify the
crypto session expiration.

(8, 1) repetition FEC
encoder

Repetition FEC encoder for the key selection information.

The CSKS 8-bit code word (CSKS = 8{~ACTIVE_KEY}) is generated after a
KEY_CHANGE pulse.

Final encoding is accomplished by the CSKS transmission over one complete
crypto block (64 crypto packets).

On the receiver side, decoding happens over 63 crypto packets, resulting in a
final 504-bit repetition code.

MFS Watchdog
Timer

Watchdog timer that monitors the presence of MFS pulses in the three operation
modes: authenticated encryption, authentication-only, and encryption-only.

It is restarted after a reset event.

When it reaches a time-lapse greater than 10 seconds, the session state is forced
to inactive.

IV and AAD
Pre-Calculation

Pulse Generators

Two concurrent one-cycle pulses generated in the middle of all crypto packets
(at MFAS = 2, 6, 10, …, 254) corresponding to the tx_iv_write and tx_aad_write
signals, which trigger the IV and AAD pre-calculation processes.

Table 4.20 – TX processor main general requirements.

Table 4.21 describes actions and procedures for a simplified finite state machine (FSM)

valid for the three operation modes: authenticated encryption, authentication-only, and

encryption-only. All controlling actions are time-adjusted for each sub-block, based on the

FS, MFS, and MFAS synchronization signals.

Chapter 4 – 100G AES-GCM Cryptography Engine 152

State Actions/Procedures

INIT

 SESSION_STATUS = ‘0’, indicating that session is not established (insecure);
 Request enabling of the Replacement Signal Generator;
 KEY_SWAP = 0, indicating that key must be changed at MFAS = 252;
 ACTIVE_KEY = ‘1’ (active key selection);
 tx_precalc_mem_sel = ‘0’ (pre-calculation memory page selection);
 tx_run_mem_sel = ‘1’ (running memory page selection);
 SESSION_START_REQ = ‘0’;

SEND_IV_SYNC

 tx_iv = {0xff, 0, 0, 0} (send the next IV value {CSKS, CSID, CBID, CPID} with CSKS
= 0xff to ODU OH Inserter and OPU Cryptography Engine sub-blocks);

 Wait for SESSION_START_REQ = ‘1’, KEY_CHANGE_REQ = ‘1’ and an MFS
pulse;

KEY_CHANGE

 tx_iv = {0x00, 0, 0, 0} (send the next IV value{CSKS, CSID, CBID, CPID} with CSKS
= 0x00 to ODU OH Inserter and OPU Cryptography Engine sub-blocks);

 Wait for MFAS = 252 (last crypto packet of a crypto block) and then:
 tx_key = rgt_tx_key_0 (change the key value at the corresponding output port);
 Pulse tx_key_write, triggering the key pre-calculation process;
 Wait for MFAS = 253 (right before the middle of the last crypto packet);

SEND_IV

 CSID = rgt_tx_iv_csid (load CSID field from the corresponding register);
 tx_iv = {0x00, CSID, 0, CPID} (send the next IV value {CSKS, CSID, CBID, CPID} to

ODU OH Inserter and OPU Cryptography Engine sub-blocks);
 CSKS_HOLD = 0x00;
 If AAD_CAPTURE = ‘1’, capture the AAD value from the corresponding register:
 AAD = rgt_tx_aad_buffer;
 AAD_CAPTURE = ‘0’ (clear the AAD capture flag);

 tx_aad = AAD (send the AAD value to ODU OH Inserter and OPU Cryptography
Engine sub-blocks);

 KEY_CHANGE_REQ = ‘0’;
 ACTIVE_KEY = ‘0’ (active key selection);
 PRECALC_SECOND_MEM = ‘1’;
 Wait for an MFS pulse;

ACTIVE_SESSION

 SESSION_STATUS = ‘1’, indicating that session is established (secure);
 Request disabling of the Replacement Signal Generator (it may keep enabled by a

programmed consequent action or by the software layer);

 If MFAS [1:0] = 0 (start of a crypto packet):
 tx_run_mem_sel = MFAS[2] (running memory page selection);
 tx_precalc_mem_sel = ~MFAS[2] (pre-calculation memory page selection);
 If crypto session has just started, clear CBID;
 If PRECALC_SECOND_MEM = ‘1’:
 Pulse tx_key_write, triggering the key pre-calculation process;
 PRECALC_SECOND_MEM = ‘0’;

 If MFAS [7:0] = 0 (start of a crypto block):
 If KEY_CHANGE_REQ = ‘1’:
 KEY_CHANGE_REQ = ‘0’;
 CSKS_HOLD = CSKS;
 KEY_SWAP = 1;

 If MFAS [7:0] = 252 (last crypto packet of a crypto block):
 If KEY_SWAP = ‘1’:
 Change the key at the corresponding output port:
 If ACTIVE_KEY = ‘1’, tx_key = rgt_tx_key_0;
 If ACTIVE_KEY = ‘0’, tx_key = rgt_tx_key_1;

 Pulse tx_key_write, triggering the key pre-calculation process;
 ACTIVE_KEY = ~ACTIVE_KEY;
 PRECALC_SECOND_MEM = ‘1’;
 CSID = rgt_tx_iv_csid;

 If MFAS [1:0] = 2 (middle of a crypto packet):
 If MFAS = 254 and KEY_SWAP = ‘1’ (end of a crypto block and key change

request):

Chapter 4 – 100G AES-GCM Cryptography Engine 153

State Actions/Procedures
 tx_iv = {CSKS_HOLD, CSID, 0, CPID} (send the next IV value to ODU OH

Inserter and OPU Cryptography Engine sub-blocks);
 KEY_SWAP = ‘0’;

 Else if MFAS = 254 (just end of a crypto block):
 tx_iv = {CSKS_HOLD, CSID, CBID+1, CPID};

 Else (just middle of a crypto packet):
 tx_iv = {CSKS_HOLD, CSID, CBID, CPID};

 If AAD_CAPTURE = ‘1’, capture the AAD value from the corresponding register:
 AAD = rgt_tx_aad_buffer;
 AAD_CAPTURE = ‘0’;

 tx_aad = AAD (send the AAD value to ODU OH Inserter and OPU Cryptography
Engine sub-blocks);

Table 4.21 – TX processor session control state actions.

When the crypto session is not established, ACTIVE_KEY = 1, and the software layer must

write the next (starting) key in the tx_key_0 register.

The SESSION_START_REQ flag is asserted only by a ‘0’ → ’1’ transition in the

SESSION_STATE bit of the tx_session_state register, indicating a crypto session start

request from the software layer.

The CSKS_HOLD register is updated in the beginning of a crypto block only if there is a

pending key change request (KEY_CHANGE_REQ = 1). It is used to hold the value of

CSKS and avoid disturbances in the transmitted IV, since the KEY_CHANGE bit is

asynchronously controlled by the software layer.

Figure 4.26 depicts the TX processor controller FSM state diagram.

Chapter 4 – 100G AES-GCM Cryptography Engine 154

Figure 4.26 – TX processor controller finite state machine state diagram.

Figure 4.27 illustrates some of the TX control signals as a function of the MFAS values.

The “key_write” control, enclosed by dotted lines, occurs only when there is a key change

request (either in the first crypto session establishment or whenever commanded by the

software layer).

Figure 4.27 – Some TX control signals as a function of MFAS values.

When the crypto session is inactive, CSKS = 0xff is sent to the RX side. After

SESSION_START_REQ = 1 and KEY_CHANGE_REQ = 1, the TX processor controller

MFAS

TAG AAD/IV AAD/IVTAG TAG AAD/IV AAD/IVTAG TAG AAD/IV AAD/IVTAGCrypto Packet

252 253 254 255 0 1 2 3 4 5 6 7

aad_write
iv_write

aad_write
iv_write

aad_write
iv_writekey_write key_write

precalc_mem_sel

run_mem_sel

Chapter 4 – 100G AES-GCM Cryptography Engine 155

waits for an MFS pulse and then CSKS = 0x00 is transmitted to indicate a key change

process, which will be decoded by the RX processor controller at MFAS = 252.

At this time, the tx_key_write signal is pulsed to trigger a key pre-calculation process in

the AES-GCM sub-block, and a flag (PRECALC_SECOND_MEM) is set to request this

pre-calculation for the second memory right in the beginning of the next crypto block.

When the crypto session is active and a new key change process is requested, the TX

processor controller waits for MFAS = 252 and repeats these same procedures.

In both inactive and active crypto sessions, the tx_aad_iv_write signal is pulsed in the

middle of all crypto packets (at MFAS = 2, 6, …, 254) to transfer data to ODU OH Inserter

and OPU Cryptography Engine sub-blocks and to trigger the AAD and IV pre-calculation

processes.

4.3.11.2 RX PROCESSOR CONTROLLER

The RX processor controller handles the crypto session establishment and maintenance

procedures on the receiver side, as commanded by the software layer.

Some of its main general requirements are listed in Table 4.22.

Requirement Description

(504, 1) repetition
FEC decoder

Repetition FEC decoder for the key selection information, received as a CSKS 8-
bit code word and decoded by a majority gate over 63 crypto packets, resulting in
a final 504-bit repetition code.

Decoding process starts right after an MFS pulse and finishes at MFAS = 252,
when decoded information is stored in DEC_KEY_SEL.

If the number of bits ‘1’ is greater than 252 (504/2), DEC_KEY_SEL = ‘1’.
Otherwise, DEC_KEY_SEL = ‘0’.

MFS Watchdog
Timer

Watchdog timer that monitors the presence of MFS pulses in the three operation
modes: authenticated encryption, authentication-only, and encryption-only.

It is restarted after a reset event.

When it reaches a time-lapse greater than 10 seconds, session state is forced to
inactive.

Maskable sliding
window for TAG

mismatch counting

64-bit shift register storing the TAG_FAIL status of 64 crypto packets. MSB
corresponds to the current crypto packet and LSB, to the oldest one. Masked
outputs are added to generate a 7-bit event count, updated at every crypto packet.

Table 4.22 – RX processor main general requirements.

Chapter 4 – 100G AES-GCM Cryptography Engine 156

Loss of authentication (LOA) indication is generated by TAG matching failure counting

within a sliding window. A counter threshold is used for both assertion and de-assertion of

the LOA indication and the window size can be configured by a masking register, as

illustrated in Figure 4.28.

Figure 4.28 – Loss of authentication (LOA) 64-bit sliding window mechanism.

TAG_FAIL events are registered in a 64-bit shift register (starting at MSB), corresponding

to a 64 crypto packet sliding window. By controlling a 64-bit mask, different window sizes

and patterns can be created to limit and delimitate the event counting. If the configured

threshold is reached and the session is active, LOA is asserted, otherwise it is de-asserted.

Both TAG_FAIL and LOA flags are cleared if the crypto session is closed (inactive).

Table 4.23 describes actions and procedures for a simplified finite state machine valid for

the three operation modes: authenticated encryption, authentication-only, and encryption-

only. All controlling actions are time-adjusted for each sub-block, based on the FS, MFS,

and MFAS synchronization signals.

State Actions/Procedures

INIT

 SESSION_STATUS = ‘0’, indicating that session is not established (insecure);
 auth_tag_matching = ‘0’;
 Request assertion of the ipy_ssf_rx output port;
 ACTIVE_KEY = ‘1’ (active key selection);
 rx_precalc_mem_sel = ‘0’ (pre-calculation memory page selection);
 rx_run_mem_sel = ‘1’ (running memory page selection);

KEY_DEC SESSION_START_REQ = ‘0’;
 Keep checking DEC_KEY_SEL value at MFAS = 252 until it is ‘0’;

KEY_CHANGE rx_key = rgt_rx_key_0 (change the key value at the corresponding output port);
 Pulse rx_key_write, triggering the key pre-calculation process;

MSB

TAG_FAIL

Event-storing 64-bit shift register∙ ∙ ∙

LSB

∙ ∙ ∙ Masking window

64-Bit
Adder

TAG_FAIL event counting

7-bit adding result

Chapter 4 – 100G AES-GCM Cryptography Engine 157

State Actions/Procedures
 ACTIVE_KEY = ‘0’;
 PRECALC_SECOND_MEM = ‘1’;

ACTIVE_SESSION

 SESSION_STATUS = ‘1’, indicating that session is established (secure);
 Request de-assertion of the ipy_ssf_rx output port (it may keep asserted by a

programmed consequent action or by the software layer);

 If MFAS [1:0] = 0 (start of a crypto packet):
 rx_run_mem_sel = MFAS[2] (running memory page selection);
 rx_precalc_mem_sel = ~MFAS[2] (pre-calculation memory page selection);
 If PRECALC_SECOND_MEM = ‘1’:
 Pulse rx_key_write, triggering the key pre-calculation process;
 PRECALC_SECOND_MEM = ‘0’;

 If MFAS [7:0] = 252 (last crypto packet of a crypto block):
 Update key value in the corresponding output port:
 If DEC_KEY_SEL = ‘0’:
 rx_key = rgt_rx_key_0;
 ACTIVE_KEY = ‘0

 Else:
 rx_key = rgt_rx_key_1;
 ACTIVE_KEY = ‘1’;

 If the key has changed:
 Pulse rx_key_write, triggering the key pre-calculation process;

 If MFAS [1:0] = 3 (end of a crypto packet):
 If the key has changed:
 PRECALC_SECOND_MEM = ‘1’;

Table 4.23 – RX processor session control state actions.

When the crypto session is not established, ACTIVE_KEY = 1, and the software layer must

write the next (starting) key in rx_key_0 register.

The SESSION_START_REQ flag is asserted only by a ‘0’ → ’1’ transition in the

SESSION_STATE bit of the rx_session_state register, indicating a crypto session start

request from the software layer.

Figure 4.29 depicts the RX processor controller FSM state diagram.

Chapter 4 – 100G AES-GCM Cryptography Engine 158

Figure 4.29 – RX processor controller finite state machine state diagram.

When the crypto session is inactive, after SESSION_START_REQ = 1 and an MFS pulse

the RX processor controller keeps checking DEC_KEY_SEL at MFAS = 252 until it is ‘0’.

Then, the rx_key_write signal is pulsed to trigger a key pre-calculation process in the AES-

GCM sub-block, and a flag (PRECALC_SECOND_MEM) is set to request this pre-

calculation for the second memory right in the beginning of the next crypto block.

AAD and IV write enable and pre-calculation functions are not commanded by the RX

processor controller, but by the ODU OH Extractor sub-block instead.

When the crypto session is active, DEC_KEY_SEL is always evaluated at MFAS = 252.

If a key change is detected, two key pre-calculation processes (for the first and second

memories) are triggered at MFAS = 252 and 0, respectively.

Chapter 4 – 100G AES-GCM Cryptography Engine 159

4.3.11.3 REGISTER AND RESET CONTROLLER

The Register and Reset Controller sub-block, instantiated by the Control Engine, handles

the interface for configuration register access, as well as the synchronization of the reset

signal and the clock domain crossings.

The input reset signals, ipg_hard_async_reset_b and ipg_soft_reset_async_b, are

synchronous with the ipg_clk clock signal and are used as a logic reset only on circuits

belonging to this clock domain. Based on these signals, the Register and Reset Controller

sub-block generates two new reset signals, tx_reset_sync_b and rx_reset_sync_b,

synchronous with the Crypto4OTN internal global logic clock domains, ipg_clk_sys_tx and

ipg_clk_sys_rx.

Additionally, it is also in charge of implementing the clock domain crossing of the signals

read from the block internal logic. They are at the system clock domain (ipg_clk_sys_tx or

ipg_clk_sys_rx) and are read by the IPS Bus at the ipg_clk domain.

This synchronization, performed by the Register and Reset Controller sub-block on all

signals that cross different clock domains, is necessary to avoid the occurrence of

metastability events [127]. A metastable state results from a violation of the setup and hold

times of a flip-flop when a signal is sampled by the clock during its logic state transition.

Its output may then show anomalies (glitches) or remain in an undetermined state for a

certain time.

The probability of a flip-flop entering a metastable state and the time it takes to get out of

it depends on the technology used in its manufacturing process, as well as on the operating

conditions (e.g., voltage, temperature, and frequency). Typically, they return to a steady

state after one or two clock periods [128].

A common way of mitigating metastability, implemented in the Register and Reset

Controller sub-block, is the use of synchronization cells made up of two or more flip-flop

stages, as illustrated in Figure 4.30 (a). The timing diagram shown in (b) depicts the clock

(CLK), the asynchronous (S1), the metastable (S2), and the synchronized (S3) signals.

Chapter 4 – 100G AES-GCM Cryptography Engine 160

Through the flip-flop time parameters, as well as the frequencies involved, it is possible to

statistically calculate the mean time between failures (MTBF) related to the occurrence of

metastability events.

If necessary, other stages can be added to the synchronization cell for the cases where the

metastable state resolution time lasts more than one clock cycle.

Figure 4.30 – Multistage synchronization cell (a) and corresponding timing diagram (b).

D QD Q
S1 S2 S3

CLK

S1

CLK

S2

S3

(a) (b)

161

Chapter 5

DESIGN, VERIFICATION, AND

SILICON PROTOTYPING

The previous chapter presented the hardware functional architecture of the 100G AES-GCM

Cryptography Engine, developed upon a systemic architecture of a cryptographic solution

conceived to allow for the establishment of secure communication links over OTN systems. This

chapter describes its design, verification (through functional simulations), and silicon prototyping,

integrated into a 100 Gbit/s OTN Processor built in the 40 nm technology. The results of laboratory

tests with the developed ASSP prototypes are also presented.

5.1 CRYPTO4OTN BLOCK DESIGN AND TESTING

All the 100G AES-GCM Cryptography Engine functional logic blocks described in Section

4.3 were implemented within the Crypto4OTN top module, according to a digital integrated

circuit design flow used by CPQD, described in Appendix B.

Throughout its conception and architectural design, the complete solution was partitioned

into several sub-blocks and each one was later coded in a hardware description language

(HDL), which provides syntactic and semantic support for modeling the temporal behavior

and spatial structure of the hardware.

5.1.1 RTL DESIGN

From the architectural design, the Crypto4OTN top module and each of its sub-blocks were

modeled in Verilog aiming at the subsequent logic synthesis, thus generating the respective

RTL (register transfer level) designs.

Figure 5.1 shows a code excerpt corresponding to the Verilog modeling of a 16-stage

Galois linear feedback shift register — the same used in the ODU OH Inserter and Extractor

sub-blocks, as described in Section 4.3.7.1. The interested reader is referred to Appendix

C for the entire RTL design code listing of the ODU OH Inserter sub-block.

Chapter 5 – Design, Verification, and Silicon Prototyping 162

Figure 5.1 – 16-Stage Galois LFSR RTL design code excerpt.

Although the code conditional and loop statements (if, else, and for) look similar to their

counterparts in other common programming languages, this is an RTL model that describes

a hardware implementation. It means they are not translated into a set of executable

machine instructions but, instead, they are interpreted by the logic synthesis tool and

converted into a netlist of connected logic cells.

The always statement (line 1) creates a structured procedure which, in this case, is sensitive

to the rising edge of the ipg_clk_sys clock signal, as well as to the falling edge of the

reset_sync_b signal, thus creating a sequential logic circuit.

The lfsr signal in line 4 is declared at the beginning of the ODU OH Inserter Verilog module

as a 16-bit register (16 flip-flops). The if statement in line 3 ensures the reset of these flip-

flops when the reset_sync_b signal is asserted. Other if statements in lines 6, 7, 9, and 10

are synthesized as multiplexers controlled by the respective signals inside their conditional

expressions (enable, valid_in, scrambler_ena, and mfs_in).

1 always @(posedge ipg_clk_sys, negedge reset_sync_b)
2 begin : lfsr_seq_proc
3 if (!reset_sync_b) begin
4 lfsr <= 16'd0;
5 end else begin
6 if (enable) begin
7 if (valid_in) begin
8 // 16-stage Galois LFSR
9 if (scrambler_ena) begin
10 if (mfs_in) begin
11 lfsr <= 16'h5555;
12 end else begin
13 for (i=15; i>0; i=i-1) begin
14 if (fb_pol[i]) begin
15 lfsr[i] <= lfsr[i-1] ^ lfsr[15];
16 end else begin
17 lfsr[i] <= lfsr[i-1];
18 end
19 end
20 lfsr[0] <= lfsr[15];
21 end
22 end
23 end // if (valid_in)
24 end // if (enable)
25 end
26 end // lfsr_seq_proc

Chapter 5 – Design, Verification, and Silicon Prototyping 163

The linear feedback shift register is actually created by the for loop statement in line 13,

with the flip-flop cascade and feedback connections being selected by a set of multiplexers

generated by the repetition of the if statement in line 14 (inside the loop), which are

controlled by the feedback polynomial coefficients stored at the fb_pol register.

Figure 5.5 shows the schematic view of this code, generated by the ModelSim® [129]

simulation tool. Highlighted sections correspond to if multiplexers (1–4 and 6–10), LFSR

XOR gates (5), and the shift register flip-flops (11).

Figure 5.2 – 16-Stage Galois LFSR schematic view.

Further optimizations are later performed by the synthesis tool. For instance, the fb_pol

coefficient multiplexers (6) are certainly replaced by hardwired logic connections.

Magnified views of the top-left corner multiplexers and some shift register flip-flops are

shown in Figure 5.3 and Figure 5.4.

1

8

5

6 7

9
10

2 3 4

11

1: mfs_in
2: scrambler_ena
3: valid
4: enable
5: XOR gates
6: fb_pol coefficients
7: mfs_in
8: scrambler_ena
9: valid_in
10: enable
11: shift register flip-flops

11

Chapter 5 – Design, Verification, and Silicon Prototyping 164

Figure 5.3 – Magnified view of some multiplexers from the 16-stage Galois LFSR schematic.

Figure 5.4 – Magnified view of some shift register flip-flops from the

16-stage Galois LFSR schematic.

There are commonly multiple ways of modeling a specific logic circuit using an HDL like

Verilog. Figure 5.5 and Figure 5.6 show different code excerpts corresponding to a shift-

register-based delay line — the same used in the Crypto Engine Control sub-block, as

described in Section 4.3.6.4, to generate the retimed versions of the mfs_in and fs_in input

signals. Both use parameters (SR_DW = 2 and DLY_CYCLES = 15), which were

previously defined by a localparam directive.

The first one uses a generate statement (line 29) with a loop construct (line 30) to instantiate

multiple copies of a flip-flop register (line 37) that samples data coming from the previous

instance. This creates the cascade connection for the shift register.

The assignment statements in lines 19 and 20 create the connections between the mfs_in

and fs_in input signals and the inputs of the two shift registers denoted by SR[0] and SR[1].

mfs_in scrambler_ena valid
enable

valid enable

Chapter 5 – Design, Verification, and Silicon Prototyping 165

A multiplexer created by the if statement in line 9 and controlled by the op_mode input

signal connects the mfs_retimed and fs_retimed output signals to the shift register output

(lines 12 and 13) or directly to their corresponding input signals (lines 16 and 17), thus

creating the necessary delays depending on the selected operation mode.

Figure 5.5 – Shift-register-based delay line modeled with generate statements.

In the second code, the shift registers are created by the use of the left shift operator (<<)

in the assignment statements in lines 20 and 21.

1 always @(posedge ipg_clk_sys, negedge reset_sync_b)
2 begin : fs_mfs_retimed_seq_proc
3 if (!reset_sync_b) begin
4 fs_retimed <= 1'b0;
5 mfs_retimed <= 1'b0;
6 sr[0] <= {SR_DW{1'b0}};
7 end else begin
8 if (enable) begin
9 if ((op_mode == 2'b00) || (op_mode == 2'b10)) begin
10 // If operation mode is "authenticated encryption"
11 // or "encryption-only".
12 fs_retimed <= sr[DLY_CYCLES - 1][1];
13 mfs_retimed <= sr[DLY_CYCLES - 1][0];
14 end else begin
15 // If operation mode is "authentication-only".
16 fs_retimed <= fs_in & valid_in;
17 mfs_retimed <= mfs_in & valid_in;
18 end
19 sr[0][1] <= fs_in & valid_in;
20 sr[0][0] <= mfs_in & valid_in;
21 end else begin
22 fs_retimed <= 1'b0;
23 mfs_retimed <= 1'b0;
24 end // if (enable)
25 end
26 end // fs_mfs_retimed_seq_proc
27 // SR-based delay line
28 genvar i;
29 generate
30 for (i = 1; i < DLY_CYCLES; i = i + 1) begin : SR
31 always @(posedge ipg_clk_sys, negedge reset_sync_b)
32 begin : sr_proc
33 if (!reset_sync_b) begin
34 sr[i] <= {SR_DW{1'b0}};
35 end else begin
36 if (enable) begin
37 sr[i] <= sr[i-1];
38 end // if (enable)
39 end
40 end // sr_proc
41 end
42 endgenerate

Chapter 5 – Design, Verification, and Silicon Prototyping 166

Figure 5.6 – Shift-register-based delay line modeled with the left shift operator (<<).

5.1.2 TEST BENCH DESIGN

Functional verification of the cryptographic solution during the RTL design phase was

done with standard simulation approaches based on a regular test bench module, as

depicted in Figure 5.7. The Cryto4OTN block was instantiated as the design under test

(DUT) module, and appropriate stimuli were applied in the client side interface. The output

data in the line side interface were fed back to the RX processor by a loopback connection.

Along with the reset and clock, all the necessary control signals were generated by the test

bench driver in order to simulate the software layer commands and exercise the

establishment and maintenance of crypto sessions. Padded ODU frames were generated

with either fixed or random payloads, simulating OTN data produced by the associated

blocks in an ASIC/ASSP processing chain.

All sub-blocks were verified and debugged by timing diagram analysis with waveform

inspection over the entire design hierarchy. The expected DUT functionality was also

1 always @(posedge ipg_clk_sys, negedge reset_sync_b)
2 begin : fs_mfs_retimed_seq_proc
3 if (!reset_sync_b) begin
4 fs_retimed <= 1'b0;
5 mfs_retimed <= 1'b0;
6 sr[0] <= {DLY_CYCLES{1'b0}};
7 sr[1] <= {DLY_CYCLES{1'b0}};
8 end else begin
9 if (enable) begin
10 if ((op_mode == 2'b00) || (op_mode == 2'b10)) begin
11 // If operation mode is "authenticated encryption"
12 // or "encryption-only".
13 fs_retimed <= sr[1][DLY_CYCLES - 1];
14 mfs_retimed <= sr[0][DLY_CYCLES - 1];
15 end else begin
16 // If operation mode is "authentication-only".
17 fs_retimed <= fs_in & valid_in;
18 mfs_retimed <= mfs_in & valid_in;
19 end
20 sr[1] <= sr[1] << 1;
21 sr[0] <= sr[0] << 1;
22 sr[1][0] <= fs_in & valid_in;
23 sr[0][0] <= mfs_in & valid_in;
24 end else begin
25 fs_retimed <= 1'b0;
26 mfs_retimed <= 1'b0;
27 end // if (enable)
28 end
29 end // fs_mfs_retimed_seq_proc

Chapter 5 – Design, Verification, and Silicon Prototyping 167

automatically verified by a test bench monitor, which checked both transmitted and

received data.

In a similar approach, the AES-GCM sub-block was independently tested with the

encryption and authentication algorithms being successfully verified against a golden

model written in System Verilog, stimulated by test vectors from a validation suite

standardized by NIST [130].

Figure 5.7 – Test bench module architecture used for functional verification of the Crypto4OTN block.

In order to facilitate waveform inspection during the debug phase, padded ODU frames

were generated with fixed patterns as shown in Figure 5.8. In the beginning the first line,

the OTN frame alignment signal (FAS) is followed by the multi-frame alignment signal

(MFAS) counter (0x00 to 0xff).

Arbitrary hexadecimal values with different letters and numbers for each line were then

added to the frame overhead and payload areas, allowing the quick location of each field

during waveform inspection.

Figure 5.8 – Padded ODU frame structure with fixed patterns, as generated by the test bench driver.

Test Bench
Module

Line Side
Interface
Loopback

Crypto4OTN

TX Processor

RX Processor

Client Side
Interface

Clock Generator

Checker

Control Signal Generator

DUT

OTN Frame Generator

Driver

Monitor

L1:{FAS, MFAS, aaaa...aa, 01, e1e1...f1, 0000...00}:f6f6f6282828MFaaaaaaaaaaaaaa01e1e1e1e1e1...f10000...00
L2:{ bbbb...bb, 02, e2e2...f2, 0000...00}:bbbbbbbbbbbbbbbbbbbbbbbbbbbb02e2e2e2e2e2...f20000...00
L3:{ cccc...cc, 03, e3e3...f3, 0000...00}:cccccccccccccccccccccccccccc03e3e3e3e3e3...f30000...00
L4:{ dddd...dd, 04, e4e4...f4, 0000...00}:dddddddddddddddddddddddddddd04e4e4e4e4e4...f40000...00

FAS
MFAS

Counter

OH Payload Padding

Line
Number

Different OH values
for each frame line

Different values in the end
of each line payload

Chapter 5 – Design, Verification, and Silicon Prototyping 168

5.2 FUNCTIONAL SIMULATIONS

The following sections bring some functional simulation results for the 100G AES-GCM

Cryptography Engine solution, demonstrating the overall functionality of some sub-blocks

and the complete integrated Crypto4OTN design. They are part of a long set of test cases

used during the RTL design phase.

Simulations were done with the test bench module depicted in Figure 5.7, using padded

ODU frames generated with fixed patterns as shown in Figure 5.8.

5.2.1 OPU CRYPTOGRAPHY ENGINE

As described in Section 4.3.6, this sub-block implements the core functionalities for OPU

data encryption, decryption, and authentication.

In this simulation, which spans over three complete multi-frames, padded ODU frames

generated by the test bench driver are fed into the client side interface of the Crypto4OTN

block, pass through the Loopback Mux, and reach out to the OPU Cryptography Engine.

Verilog force statements in the test bench driver simulate and generate control signals at

the required time instants, also configuring the sub-block with the following parameters:

key = {8'h31, 8'h30, 8'h29, 8'h28, 8'h27, 8'h26, 8'h25, 8'h24,
 8'h23, 8'h22, 8'h21, 8'h20, 8'h19, 8'h18, 8'h17, 8'h16,
 8'h15, 8'h14, 8'h13, 8'h12, 8'h11, 8'h10, 8'h09, 8'h08,
 8'h07, 8'h06, 8'h05, 8'h04, 8'h03, 8'h02, 8'h01, 8'h00};

aad = {8'h03, 8'h02, 8'h01, 8'h00};

iv = {8'h11, 8'h10, 8'h09, 8'h08, 8'h07, 8'h06,
 8'h05, 8'h04, 8'h03, 8'h02, 8'h01, 8'h00};

Figure 5.9 shows simulation waveforms corresponding to the main signals of the external

input and output interfaces of the OPU Cryptography Engine and its sub-blocks (OPU

Drop, AES-GCM, OPU Add, and Crypto Engine Control).

The waveforms show the MFS and FS input synchronization pulses (1) and the fixed-

pattern padded ODU frame lines (2–5). The corresponding output synchronization pulses

(9) precede the start of the output frames with encrypted data (10), which make up the

crypto packets. The TAG value (calculated for the previous crypto packet) is also output

with the respective TAG write pulse (11).

Chapter 5 – Design, Verification, and Silicon Prototyping 169

Five control signals coming from the Control Engine sub-block are also shown: the pre-

calculation and running memory selection (6), which switch over at every crypto packet,

and the IV, AAD, and key write pulses (7–8).

The signal opudrop_opu_valid is de-asserted (logic ‘0’) during the bus cycles 1, 144, and

241 (within the periodicity of 2 frames or 384 clock cycles), as described in Section 4.3.6.1

and illustrated in Figure 4.10. These gaps (12–14) happen due to the data segregation

mechanism populating the 640-bit bus.

Finally, waveforms of the aggregated OH + encrypted OPU data (15) and some retimed

control signals (16) are presented.

An additional view of the same signal waveforms is shown in Figure 5.10. Arrows indicate

the bus cycles corresponding to the beginning and ending of the first line, as well as the

beginning of the second, third, and fourth lines of a frame for both the clear input data and

the encrypted output data, with the corresponding values presented in Figure 5.11.

Now the system clock signal (1) periods can be clearly seen, as well as the timing

relationship between the padded ODU frame synchronization pulses (2, 3, 4, 13, and 14)

along with the different sub-blocks.

The OPU data (5–8) and ODU overhead (9–12) dropped by the OPU Drop sub-block are

distinguishable thanks to the fixed pattern structure used in the test bench driver frame

generation.

The crypto_packet_start (15) pulse is generated by the Crypto Engine Control sub-block

after every four FS pulses, starting right after an MFS pulse that comes from the OPU Drop

sub-block. Signals precalc_mem_sel_retimed and run_mem_sel_retimed are retimed

versions (16) of the precalc_mem_sel and run_mem_sel inputs, synchronized with the

rising edge of the crypto_packet_start pulse. These three signals are fed into the AES-GCM

sub-block to delineate the boundaries of the data blocks to be encrypted or decrypted and

to switch over the memory banks of pre-calculated and running cryptographic parameters.

Figure 5.12 brings a third view of the same signal waveforms with time delay information.

Chapter 5 – Design, Verification, and Silicon Prototyping 170

The input to output data processing delay (2) of 22 clock cycles correspond to the pipeline

delays of 2 cycles in the OPU Drop (5), 16 cycles in the AES-GCM (data processing

latency), 3 cycles in the OPU Add (8), and 1 cycle in the last output register (3). The Crypto

Engine Control sub-block delays the data synchronization signals (11) for the OPU Add

according to the AES-GCM data processing latency (10).

The tag_write output pulse is registered directly from the aesgcm_tag_valid_out signal

with a delay of one clock cycle (6).

The retimed control signals (12) are generated right after an MFS pulse coming from the

OPU Drop sub-block (7).

Chapter 5 – Design, Verification, and Silicon Prototyping 171

Figure 5.9 – Simulation waveforms (I) for the OPU Cryptography Engine sub-block.

1:
 In

pu
t d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

5:
 O

D
U

 fr
am

e
cl

ea
rd

at
a

(4
th

 li
ne

)
9:

 O
ut

pu
t d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

13
: O

PU
 D

ro
p

se
co

nd
da

ta
 v

al
id

ga
p

2:
 O

D
U

 fr
am

e
cl

ea
rd

at
a

(1
st

 li
ne

)
6:

 P
re

-c
al

cu
la

tio
n

an
d

ru
nn

in
g

m
em

or
y

se
le

ct
io

n
10

: O
D

U
 fr

am
e

en
cr

yp
te

d
da

ta
14

: O
PU

 D
ro

p
th

ird
da

ta
 v

al
id

ga
p

3:
 O

D
U

 fr
am

e
cl

ea
rd

at
a

(2
nd

 li
ne

)
7:

 In
pu

t A
AD

 a
nd

IV
 w

rit
e

pu
ls

es
11

: O
ut

pu
tT

AG
w

rit
e

pu
ls

e
15

: A
gg

re
ga

te
d

ov
er

he
ad

 +
 e

nc
ry

pt
ed

O
PU

 d
at

a

4:
 O

D
U

 fr
am

e
cl

ea
rd

at
a

(3
rd

 li
ne

)
8:

 In
pu

t k
ey

w
rit

e
pu

ls
e

12
: O

PU
 D

ro
p

fir
st

da
ta

 v
al

id
ga

p
16

: R
et

im
ed

co
nt

ro
ls

ig
na

ls

1

C
ry

pt
o

Pa
ck

et
9

7
8

13

2
3

4
5

10

16

6

12
14

15

11

Chapter 5 – Design, Verification, and Silicon Prototyping 172

Figure 5.10 – Simulation waveforms (II) for the OPU Cryptography Engine sub-block.

1:
 S

ys
te

m
 c

lo
ck

si
gn

al
5:

 D
ro

pe
d

O
PU

 c
le

ar
da

ta
 (1

st
 li

ne
)

9:
 D

ro
pe

d
O

D
U

 o
ve

rh
ea

d
da

ta
 (1

st
 li

ne
)

13
: O

PU
 A

dd
ou

tp
ut

 d
at

a
sy

nc
hr

on
iz

at
io

n
si

gn
al

s

2:
 In

pu
t d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

6:
 D

ro
pe

d
O

PU
 c

le
ar

da
ta

 (2
nd

 li
ne

)
10

: D
ro

pe
d

O
D

U
 o

ve
rh

ea
d

da
ta

 (2
nd

 li
ne

)
14

: R
et

im
ed

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

3:
 O

ut
pu

t d
at

a
sy

nc
hr

on
iz

at
io

n
si

gn
al

s
7:

 D
ro

pe
d

O
PU

 c
le

ar
da

ta
 (3

rd
 li

ne
)

11
: D

ro
pe

d
O

D
U

 o
ve

rh
ea

d
da

ta
 (3

rd
 li

ne
)

15
: C

ry
pt

o
pa

ck
et

st
ar

t s
ig

na
l

4:
 O

PU
 D

ro
p

ou
tp

ut
 d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

8:
 D

ro
pe

d
O

PU
 c

le
ar

da
ta

 (4
th

 li
ne

)
12

: D
ro

pe
d

O
D

U
 o

ve
rh

ea
d

da
ta

 (4
th

 li
ne

)
16

: P
re

-c
al

cu
la

tio
n

an
d

ru
nn

in
g

m
em

or
y

se
le

ct
io

n

1
2

3

4
5

6
7

8

9
11

12
10

13

14
15

16

Chapter 5 – Design, Verification, and Silicon Prototyping 173

Figure 5.11 – Clear and encrypted data values corresponding to different lines of a frame.

6
4
0
'
h
f
6f
6
f
62
8
28
2
8
0
0
a
aa
a
a
aa
a
aa
a
a
a
a
0
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1

e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1

6
4
0
'
h
f
6f
6
f
62
8
28
2
8
0
0
a
aa
a
a
aa
a
aa
a
a
a
a
d
9
3
1
f
8
5
0
4
b
a
4
8
0
2
0
5
4
e
7
a
6
3
e
b
2
e
9
6
e
e
e
d
c
b
a
5
7
4
b
6
8
2
3
5
1
e
2
e
e
c
7

7
3
9
5
f
c
d
1
6
5
6
1
a
b
a
a
a
2
c
5
c
9
b
c
1
0
6
1
5
4
5
0
d
5
c
4
f
a
5
7
0
a
e
7
1
a
e
1
2
e
4
5
8
1
f
a
b
1
c
a
8
9
3
2
1
9
2
0
4
5
3
c
c
a
b
c
4
8
4
3

6
4
0
'
h
b
bb
b
b
bb
b
bb
b
b
b
b
b
bb
b
b
bb
b
bb
b
b
b
b
0
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2

e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2

6
4
0
'
h
b
bb
b
b
bb
b
bb
b
b
b
b
b
bb
b
b
bb
b
bb
b
b
b
b
7
c
1
7
9
2
2
f
1
f
9
0
0
3
1
6
f
a
6
c
4
e
8
5
9
f
0
7
5
9
0
0
8
8
6
0
4
4
d
d
4
4
e
a
7
1
7
c
f
0
9
f

f
4
a
b
c
7
0
0
9
6
c
4
8
c
b
a
2
d
7
4
c
8
8
b
2
d
9
1
f
9
7
4
8
e
f
5
7
4
5
7
e
0
2
3
d
0
5
9
a
5
2
8
f
7
f
2
3
4
3
3
8
d
e
4
4
d
0
e
5
5
f
2
b
2
1
d
9
3
5
e

6
4
0
'
h
c
cc
c
c
cc
c
cc
c
c
c
c
c
cc
c
c
cc
c
cc
c
c
c
c
0
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3

e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3

6
4
0
'
h
c
cc
c
c
cc
c
cc
c
c
c
c
c
cc
c
c
cc
c
cc
c
c
c
c
8
6
c
c
d
b
c
3
a
5
4
5
f
2
1
1
7
1
6
e
c
1
4
c
c
6
6
f
8
4
8
2
c
1
2
d
b
e
d
6
9
1
c
a
0
7
0
2
a
0
2
9

e
6
6
4
5
d
0
5
e
0
1
d
f
6
f
f
a
a
6
2
a
2
0
8
2
7
1
2
8
3
6
2
d
3
8
9
c
1
c
7
3
8
c
7
c
4
a
6
3
0
d
4
e
2
f
7
f
1
e
1
6
e
4
1
6
1
6
b
1
f
1
c
d
6
b
a
a
f
b
f

6
4
0
'
h
d
dd
d
d
dd
d
dd
d
d
d
d
d
dd
d
d
dd
d
dd
d
d
d
d
0
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4

e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4

6
4
0
'
h
d
dd
d
d
dd
d
dd
d
d
d
d
d
dd
d
d
dd
d
dd
d
d
d
d
7
1
f
d
a
e
b
5
2
9
1
4
2
0
e
8
5
7
7
7
4
3
0
9
a
1
5
8
3
6
8
8
c
d
0
7
f
c
e
a
7
3
4
c
5
b
a
a
b
8
4
f

9
2
7
d
0
f
a
3
1
5
f
f
1
1
5
e
6
e
f
9
2
b
5
a
e
f
6
0
b
5
a
7
f
b
6
a
f
7
f
f
a
f
9
9
3
3
2
c
0
c
0
6
6
2
f
8
f
2
8
1
4
f
c
5
d
f
5
b
c
f
1
2
9
5
c
c
a
f
a
7

6
4
0
'
h
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1

e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
f
1
00
0
0
00
0
00
0
0
0
0
0
00
0
0
00
0
00
0
0
0
0
0
00
0
0

6
4
0
'
h
f
2
d
f
5
a
2
5
9
c
9
6
3
d
2
c
1
6
2
1
c
1
e
1
6
2
6
a
5
6
5
7
f
2
6
a
f
3
9
6
1
9
3
e
2
5
e
5
a
c
5
d
4
2
5
7
a
a
1
f
4
6
1
0
b
e
6
3
d
6
2
8
3
4
e
8
6
8
4
f

f
f
9
1
5
1
a
f
8
6
1
9
2
e
0
b
9
b
b
4
f
8
8
9
6
5
6
d
7
a
6
b
3
6
e
6
0
2
0
8
e
d
4
4
8
2
7
d
00
0
0
00
0
00
0
0
0
0
0
00
0
0
00
0
00
0
0
0
0
0
00
0
0

Cl
ea

r
Da

ta

En
cr

yp
te

d
Da

ta

Be
gi

nn
in

g
of

1s
t L

in
e

En
d

of
1s

t L
in

e

Be
gi

nn
in

g
of

2n
d

Li
ne

Be
gi

nn
in

g
of

3r
d

Li
ne

Be
gi

nn
in

g
of

4t
h

Li
ne

Be
gi

nn
in

g
of

1s
t L

in
e

En
d

of
1s

t L
in

e

Be
gi

nn
in

g
of

2n
d

Li
ne

Be
gi

nn
in

g
of

3r
d

Li
ne

Be
gi

nn
in

g
of

4t
h

Li
ne

Chapter 5 – Design, Verification, and Silicon Prototyping 174

Figure 5.12 – Simulation waveforms (III) for the OPU Cryptography Engine sub-block.

1:
 In

pu
t d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

4:
 O

ut
pu

t d
at

a
sy

nc
hr

on
iz

at
io

n
si

gn
al

s
7:

 O
PU

 D
ro

p
ou

tp
ut

 d
at

a
sy

nc
hr

on
iz

at
io

n
si

gn
al

s
10

: D
at

a
sy

nc
hr

on
iz

at
io

n
si

gn
al

re
tim

in
g

de
la

y

2:
 In

pu
t t

o
ou

tp
ut

 d
at

a
pr

oc
es

si
ng

de
la

y
5:

 In
pu

t t
o

O
PU

 D
ro

p
re

gi
st

er
de

la
y

8:
 C

ry
pt

o
En

gi
ne

C
on

tro
lt

o
O

PU
 A

dd
re

gi
st

er
de

la
y

11
: R

et
im

ed
da

ta
 s

yn
ch

ro
ni

za
tio

n
si

gn
al

s

3:
 O

PU
 A

dd
to

ou
tp

ut
 re

gi
st

er
de

la
y

6:
 A

ES
-G

C
M

 to
ou

tp
ut

 re
gi

st
er

de
la

y
9:

 O
PU

 A
dd

ou
tp

ut
 d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

12
: R

et
im

ed
co

nt
ro

ls
ig

na
ls

5

7

12

2

3
4

6

8

9

11
10

1

Chapter 5 – Design, Verification, and Silicon Prototyping 175

5.2.2 ODU OH INSERTER AND EXTRACTOR

These sub-blocks handle data insertion and extraction into/from the ODU overhead, as

described in Sections 4.3.7 and 4.3.8.

This simulation spans over four complete multi-frames, with padded ODU frames

generated by the test bench driver being again fed into the client side interface of the

Crypto4OTN block, passing through the Loopback Mux and the OPU Cryptography

Engine, and reaching out to the ODU OH Inserter. Data then pass through the Replacement

Signal Generator and Data Path Flow Control sub-blocks. The Crypto4OTN TX processor

line side output interface is looped back into the RX line side input. Consequently, data

pass through the Loopback Mux and, finally, reach out to the ODU OH Extractor.

To speed up the simulations, the AES-GCM sub-block (inside the OPU Cryptography

Engine) was replaced by a delay-only model, which provides the same latency but does not

modify the incoming data.

Verilog force statements in the test bench driver simulate and generate control signals at

the required time instants, also configuring the sub-blocks with the following parameters:

tag = 128'ha1a2a3a4a5a6a7a8b1b2b3b4b5b6b7b8;
aad = 32'hc1c2d1d2;
iv = 96'he1e2e3e4e5e6f1f2f3f4f5f6;

Figure 5.13 shows simulation waveforms corresponding to the main signals of the external

input and output interfaces of the ODU OH Inserter and Extractor sub-blocks. The internal

LFSR register signals are also presented.

The waveforms show the MFS and FS input (1, 4) and output (3, 5) synchronization pulses.

TAG, AAD, and IV input bus values are captured and stored on the rising edge of the

arbitrarily generated tag_write and aad_iv_write pulses (2), being later gradually inserted

into the corresponding ODU overhead fields starting at the third frame of multi-frame 1.

Overhead extraction is also demonstrated, with data being gradually recovered (6–13)

starting from the third frame.

Overhead data write enable pulses (14–16) are generated by the ODU OH Extractor sub-

block when the extracted data are available to be captured by the Control Engine and the

RX processor OPU Cryptography Engine sub-blocks.

Chapter 5 – Design, Verification, and Silicon Prototyping 176

Simulated frame data showing overhead insertion within a crypto packet boundary are

shown in Figure 5.14. The beginning of the four lines of frames number 8, 9, 10, and 11 of

multi-frame 1 are presented with TAG, AAD, and IV values inserted in their relative

positions within the RES fields of the ODU overhead, as previously described in Section

3.4.4 and Figure 3.5.

An additional view of the previous signal waveforms is shown in Figure 5.15. The ODU

OH Inserter scrambler_ena control signal is asserted (2) in the end of multi-frame 1,

causing the respective LFSR to resynchronize (4) right after the MFS input pulse (1).

Inserted overhead data are then scrambled as described in Section 4.3.7.1 and Table 4.15.

The corresponding ODU OH Extractor scrambler_ena control signal is asserted later (7),

in the beginning of multi-frame 2, causing its LFSR to resynchronize (12) only after the

next MFS input pulse (6).

In this way, extracted overhead data are correct (9) until the ODU OH Inserter scrambler

is enabled. After that, they become scrambled (10) because the ODU OH Extractor LFSR

is in a reset (zero) stuck state. Finally, they are correctly recovered (11) starting at multi-

frame 3.

Figure 5.16 brings a third view of the same signal waveforms showing the expanded ODU

OH Inserter 16-bit pseudo-random LFSR data (2) resynchronized right after the MFS input

pulse (1). Extracted TAG data are then gradually scrambled (3–6) along with the first two

frames of multi-frame 2, while the ODU OH Extractor LFSR remains in a reset state (7).

A detailed view of these signals at this simulation step is shown in Figure 5.17. The ODU

OH Inserter scrambler_ena control signal is asserted (2) in the end of frame 254 of multi-

frame 1. Its LFSR resynchronizes (3) right after the MFS input pulse (1). The

corresponding ODU OH Extractor scrambler_ena control signal is asserted later (5), in the

end of frame 2 of multi-frame 2. Correct extracted overhead data (6–8) then become

scrambled (9–11) since the ODU OH Extractor LFSR remains in a reset stuck state (15).

Figure 5.18 brings a final view of these signal waveforms, showing the scrambled extracted

overhead data (3) from multi-frame 2 being gradually correctly recovered (4–6) as the

ODU OH Extractor LFSR resynchronizes (10) after the MFS input pulse (2) at the start of

multi-frame 3.

Chapter 5 – Design, Verification, and Silicon Prototyping 177

Figure 5.13 – Simulation waveforms (I) for the ODU OH Inserter and Extractor sub-blocks.

1:
 O

H
 In

se
rte

ri
np

ut
 d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

5:
 O

H
 E

xt
ra

ct
or

ou
tp

ut
da

ta
 s

yn
ch

ro
ni

za
tio

n
si

gn
al

s
9:

 IV
 e

xt
ra

ct
io

n
(la

st
6

by
te

s)
13

: T
AG

 e
xt

ra
ct

io
n

(la
st

6
by

te
s)

2:
 O

H
 In

se
rte

ri
np

ut
 T

AG
, A

AD
, a

nd
IV

 w
rit

e
pu

ls
es

6:
 A

AD
 e

xt
ra

ct
io

n
(fi

rs
t2

 b
yt

es
)

10
: T

AG
 e

xt
ra

ct
io

n
(fi

rs
t2

 b
yt

es
)

14
: O

H
 E

xt
ra

ct
or

ou
tp

ut
 A

AD
 w

rit
e

pu
ls

e

3:
 O

H
 In

se
rte

ro
ut

pu
t d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

7:
 A

AD
 e

xt
ra

ct
io

n
(la

st
2

by
te

s)
11

: T
AG

 e
xt

ra
ct

io
n

(n
ex

t6
 b

yt
es

)
15

: O
H

 E
xt

ra
ct

or
ou

tp
ut

 IV
 w

rit
e

pu
ls

e

4:
 O

H
 E

xt
ra

ct
or

in
pu

t d
at

a
sy

nc
hr

on
iz

at
io

n
si

gn
al

s
8:

 IV
 e

xt
ra

ct
io

n
(fi

rs
t6

 b
yt

es
)

12
: T

AG
 e

xt
ra

ct
io

n
(n

ex
t2

 b
yt

es
)

16
: O

H
 E

xt
ra

ct
or

ou
tp

ut
 T

AG
 w

rit
e

pu
ls

e

M
ul

ti-
Fr

am
e

1

2

3 4 5

7

8
9

6

14
15

16
11

12
13

10

1

Chapter 5 – Design, Verification, and Silicon Prototyping 178

Figure 5.14 – Crypto packet simulated frame data showing overhead insertion.

1
6
4
0
'
h
f
6
f
6
f
6
2
8
2
8
2
8
0
8
a
a
a
a
a
a
a
a
a
a
a
a
a
a
0
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
.
.
.

2
6
4
0
'
h
a
1
a
2
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
0
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
.
.
.

3
6
4
0
'
h
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
0
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
.
.
.

4
6
4
0
'
h
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
a
3
a
4
a
5
a
6
a
7
a
8
0
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
.
.
.

1
6
4
0
'
h
f
6
f
6
f
6
2
8
2
8
2
8
0
9
a
a
a
a
a
a
a
a
a
a
a
a
a
a
0
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
.
.
.

2
6
4
0
'
h
b
1
b
2
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
0
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
.
.
.

3
6
4
0
'
h
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
0
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
.
.
.

4
6
4
0
'
h
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
b
3
b
4
b
5
b
6
b
7
b
8
0
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
.
.
.

1
6
4
0
'
h
f
6
f
6
f
6
2
8
2
8
2
8
0
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
0
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
.
.
.

2
6
4
0
'
h
c
1
c
2
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
0
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
.
.
.

3
6
4
0
'
h
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
0
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
.
.
.

4
6
4
0
'
h
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
e
1
e
2
e
3
e
4
e
5
e
6
0
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
.
.
.

1
6
4
0
'
h
f
6
f
6
f
6
2
8
2
8
2
8
0
b
a
a
a
a
a
a
a
a
a
a
a
a
a
a
0
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
.
.
.

2
6
4
0
'
h
d
1
d
2
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
0
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
.
.
.

3
6
4
0
'
h
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
0
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
.
.
.

4
6
4
0
'
h
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
f
1
f
2
f
3
f
4
f
5
f
6
0
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
.
.
.

Cr
yp

to
Pa

ck
et

O
DU

 O
H

TA
G

TA
G

FA
 O

H
O

TU
 O

H

O
DU

 O
H

AA
D

FA
 O

H
OT

U
 O

H

CS
KS

 C
SI

D
CB

ID

O
DU

 O
H

AA
D

FA
 O

H
OT

U
 O

H

CB
ID

 C
PI

D

O
DU

 O
H

TA
G

TA
G

FA
 O

H
O

TU
 O

H

Chapter 5 – Design, Verification, and Silicon Prototyping 179

Figure 5.15 – Simulation waveforms (II) for the ODU OH Inserter and Extractor sub-blocks.

1:
 O

H
 In

se
rte

ri
np

ut
 M

FS
 p

ul
se

4:
 O

H
 In

se
rte

rL
FS

R
 re

sy
nc

hr
on

iz
at

io
n

7:
 O

H
 E

xt
ra

ct
or

sc
ra

m
bl

er
en

ab
le

si
gn

al
10

: S
cr

am
bl

ed
ex

tra
ct

ed
ov

er
he

ad
 d

at
a

2:
 O

H
 In

se
rte

rs
cr

am
bl

er
en

ab
le

si
gn

al
5:

 O
H

 E
xt

ra
ct

or
in

pu
t M

FS
 p

ul
se

8:
 O

H
 E

xt
ra

ct
or

ou
tp

ut
 M

FS
 p

ul
se

11
: C

or
re

ct
ex

tra
ct

ed
ov

er
he

ad
 d

at
a

3:
 O

H
 In

se
rte

ro
ut

pu
t M

FS
 p

ul
se

6:
 O

H
 E

xt
ra

ct
or

in
pu

t M
FS

 p
ul

se
9:

 C
or

re
ct

ex
tra

ct
ed

ov
er

he
ad

 d
at

a
12

: O
H

 E
xt

ra
ct

or
LF

SR
 re

sy
nc

hr
on

iz
at

io
n

M
ul

ti-
Fr

am
e

2
M

ul
ti-

Fr
am

e
3

M
ul

ti-
Fr

am
e

1

3
2

1

4
5 7

8

6

9
11

12
10

Chapter 5 – Design, Verification, and Silicon Prototyping 180

Figure 5.16 – Simulation waveforms (III) for the ODU OH Inserter and Extractor sub-blocks.

1:
 O

H
 In

se
rte

ri
np

ut
 M

FS
 p

ul
se

3:
 S

cr
am

bl
ed

ex
tra

ct
ed

TA
G

 d
at

a
(2

 b
yt

es
)

5:
 S

cr
am

bl
ed

ex
tra

ct
ed

TA
G

 d
at

a
(1

0
by

te
s)

7:
 O

H
 E

xt
ra

ct
or

LF
SR

 in
 re

se
t s

tu
ck

st
at

e

2:
 O

H
 In

se
rte

rL
FS

R
 1

6-
bi

t d
at

a
4:

 S
cr

am
bl

ed
ex

tra
ct

ed
TA

G
 d

at
a

(8
 b

yt
es

)
6:

 S
cr

am
bl

ed
ex

tra
ct

ed
TA

G
 d

at
a

(1
6

by
te

s)

1
M

ul
ti-

Fr
am

e
2

2

7

3
4

5
6

Chapter 5 – Design, Verification, and Silicon Prototyping 181

Figure 5.17 – Simulation waveforms (IV) for the ODU OH Inserter and Extractor sub-blocks.

1:
 O

H
 In

se
rte

ri
np

ut
 M

FS
 p

ul
se

5:
 O

H
 E

xt
ra

ct
or

sc
ra

m
bl

er
en

ab
le

si
gn

al
9:

 S
cr

am
bl

ed
ex

tra
ct

ed
TA

G
 d

at
a

13
: O

H
 E

xt
ra

ct
or

ou
tp

ut
AA

D
 w

rit
e

pu
ls

e

2:
 O

H
 In

se
rte

rs
cr

am
bl

er
en

ab
le

si
gn

al
6:

 C
or

re
ct

ex
tra

ct
ed

TA
G

 d
at

a
10

: S
cr

am
bl

ed
ex

tra
ct

ed
AA

D
 d

at
a

14
: O

H
 E

xt
ra

ct
or

ou
tp

ut
IV

 w
rit

e
pu

ls
e

3:
 O

H
 In

se
rte

rL
FS

R
 re

sy
nc

hr
on

iz
at

io
n

7:
 C

or
re

ct
ex

tra
ct

ed
AA

D
 d

at
a

11
: S

cr
am

bl
ed

ex
tra

ct
ed

IV
 d

at
a

15
: O

H
 E

xt
ra

ct
or

LF
SR

 in
 re

se
t s

tu
ck

st
at

e

4:
 O

H
 E

xt
ra

ct
or

in
pu

t M
FS

 p
ul

se
8:

 C
or

re
ct

ex
tra

ct
ed

IV
 d

at
a

12
: O

H
 E

xt
ra

ct
or

ou
tp

ut
TA

G
 w

rit
e

pu
ls

e

M
ul

ti-
Fr

am
e

2
M

ul
ti-

Fr
am

e
1

1

2

3
4

5
6

7

15

9
11

12
13

10

8

14

Chapter 5 – Design, Verification, and Silicon Prototyping 182

Figure 5.18 – Simulation waveforms (V) for the ODU OH Inserter and Extractor sub-blocks.

1:
 O

H
 In

se
rte

ri
np

ut
 M

FS
 p

ul
se

4:
 C

or
re

ct
ex

tra
ct

ed
TA

G
 d

at
a

7:
 O

H
 E

xt
ra

ct
or

ou
tp

ut
TA

G
 w

rit
e

pu
ls

e
10

: O
H

 E
xt

ra
ct

or
LF

SR
 re

sy
nc

hr
on

iz
at

io
n

2:
 O

H
 E

xt
ra

ct
or

in
pu

t M
FS

 p
ul

se
5:

 C
or

re
ct

ex
tra

ct
ed

AA
D

 d
at

a
8:

 O
H

 E
xt

ra
ct

or
ou

tp
ut

AA
D

 w
rit

e
pu

ls
e

3:
 S

cr
am

bl
ed

ex
tra

ct
ed

ov
er

he
ad

 d
at

a
6:

 C
or

re
ct

ex
tra

ct
ed

IV
 d

at
a

9:
 O

H
 E

xt
ra

ct
or

ou
tp

ut
IV

 w
rit

e
pu

ls
e

M
ul

ti-
Fr

am
e

2
M

ul
ti-

Fr
am

e
3

21

7
8

9
10

4
5

3
6

Chapter 5 – Design, Verification, and Silicon Prototyping 183

5.2.3 REPLACEMENT SIGNAL GENERATOR

The Replacement Signal Generator sub-block generates an AIS-like or user-defined pattern

replacement signal in the output of the TX processor, as described in Section 4.3.9.

This simulation spans over two complete multi-frames, with padded ODU frames

generated by the test bench driver being again fed into the client side interface of the

Crypto4OTN block. After passing through the Loopback Mux, OPU Cryptography Engine,

and ODU OH Inserter in the TX processor lineup, data reach out to the Replacement Signal

Generator.

Verilog force statements in the test bench driver simulate and generate control signals at

the required time instants.

Figure 5.19 shows simulation waveforms corresponding to the main signals of the external

input and output interfaces of the Replacement Signal Generator sub-block.

The waveforms show the MFS and FS input and output synchronization pulses (1, 5). The

repl_sig_ena control signal is asserted (2) right in the beginning of multi-frame 1, enabling

the output signal replacement. The repl_sig_sel control signal is asserted (3) at the

beginning of the following second frame, then selecting the user-defined pattern which

changes to 0xcafe (4) also at the beginning of multi-frame 1.

The data output bus shows the original (6), AIS-like (7), and user-defined pattern (8)

replaced data.

Simulated data are also presented in this same figure, showing the four lines of the output

frame 255 (end of multi-frame 0) with the original data, frame 0 (start of multi-frame 1)

with the AIS-like replaced data, and frame 1 with the user-defined pattern replaced data.

The RES fields of the ODU overhead are filled with zero because no overhead data were

provided for the ODU OH Inserter sub-block in this simulation. The highlighted replaced

data can be compared with Figure 4.20 and Figure 4.21.

Chapter 5 – Design, Verification, and Silicon Prototyping 184

Figure 5.19 – Simulation waveforms and data for the Replacement Signal Generator sub-block.

1:
 In

pu
t d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

3:
 R

ep
la

ce
m

en
ts

ig
na

ls
el

ec
tio

n
5:

 O
ut

pu
t d

at
a

sy
nc

hr
on

iz
at

io
n

si
gn

al
s

7:
 A

IS
-li

ke
re

pl
ac

ed
da

ta

2:
 R

ep
la

ce
m

en
ts

ig
na

le
na

bl
e

4:
 R

ep
la

ce
m

en
ts

ig
na

lp
at

te
rn

6:
 O

rig
in

al
 d

at
a

8:
 U

se
r-d

ef
in

ed
pa

tte
rn

re
pl

ac
ed

da
ta

6
4
0
'
h
f
6
f
6
f
6
2
8
2
8
2
8
f
f
a
a
a
a
a
a
a
a
a
a
a
a
a
a
0
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
.
.
.
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
f
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
0
0
0
0
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
0
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
.
.
.
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
e
2
f
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
0
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
.
.
.
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
e
3
f
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
0
0
0
0
0
0
0
0
0
0
0
0
0
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
.
.
.
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
e
4
f
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
f
6
f
6
f
6
2
8
2
8
2
8
0
0
a
a
a
a
a
a
a
a
a
a
a
a
a
a
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
.
.
.
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
0
0
0
0
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
b
b
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
.
.
.
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
.
.
.
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
0
0
0
0
0
0
0
0
0
0
0
0
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
.
.
.
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
f
6
f
6
f
6
2
8
2
8
2
8
0
1
a
a
a
a
a
a
a
a
a
a
a
a
a
a
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
.
.
.
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
0
0
0
0
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
.
.
.
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
.
.
.
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
4
0
'
h
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
0
0
0
0
0
0
0
0
0
0
0
0
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
.
.
.
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
c
a
f
e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6 7 8

M
ul

ti-
Fr

am
e

1
M

ul
ti-

Fr
am

e
0

21

4
3

7
8

6
5

Chapter 5 – Design, Verification, and Silicon Prototyping 185

5.2.4 CRYPTO4OTN

The following simulation results show the main functionalities of the complete integrated

Crypto4OTN design. The overall simulation spans over five complete multi-frames, with

padded ODU frames generated by the test bench driver being fed into the client side

interface of the Crypto4OTN block and looped back in the line side.

Verilog force statements in the test bench driver simulate and generate control signals at

the required time instants, also configuring the Control Engine sub-block with the

following parameters:

tx_key_0 = 256'hbaba01aabb0000000000000...00000000000000000000000;
tx_key_1 = 256'hcafe02ccdd0000000000000...00000000000000000000000;

tx_iv_csid = 32'h22aa22bb;

rx_key_0 = 256'hbaba01aabb0000000000000...00000000000000000000000;
rx_key_1 = 256'hcafe02ccdd0000000000000...00000000000000000000000;

Figure 5.20 shows simulation waveforms corresponding to the main signals of the external

input and output interfaces of the Crypto4OTN block, on the client and line sides, as well

as some internal signals of the Control Engine sub-block.

The waveforms show the MFS input and output synchronization pulses (1, 3, and 5),

corresponding to the client and line side input data (2, 4) and client side output data (6).

During the first multi-frame, the bit 0 of rx_session_state register is asserted (9), simulating

a software layer request for crypto session establishment. The same is done some time later

with the tx_session_state register (8), followed by a key change request (12). This crypto

session establishment process is described in Section 3.6.1.

In multi-frame 2, both TX and RX session status bit (10, 11) indicate an active crypto

session. Data tampering is also simulated, with authentication TAG mismatches being then

indicated by the corresponding output signal (7).

Later, a second software layer TX key change request is also simulated (13) with both TX

and RX keys being changed from ‘0’ (14, 15) to ‘1’ (16) in the last multi-frame.

A second view of the same waveforms is shown in Figure 5.21, with more details on the

crypto session establishment process. Arrows over the received_iv data indicate the CSKS

8-bit code word.

Chapter 5 – Design, Verification, and Silicon Prototyping 186

The RX processor controller receives an IV sequence with CSKS = 0xff (4), transmitted

by the TX processor for synchronization purposes. After the TX session start (6) and key

change (12) requests, the TX processor controller waits for the next MFS pulse (start of

multi-frame 1) and then transmits a new IV sequence with CSKS = 0x00. This new code

word is received by the RX processor controller (5) and is decoded to ‘0’ (indicating key

0) at MFAS = 252, as described in Table 4.22 of Section 4.3.11.2.

Crypto session is then established in both TX and RX processors after the next MFS pulse

(start of multi-frame 2). Both tx_session_status and rx_session_status registers show 0x01

(15), indicating key ‘0’ as the active one, as well as the session establishment.

The state transitions of the TX and RX processor controller finite state machines are

indicated by tx_ctrl_fsm_st and rx_ctrl_fsm_st signals (8–11), according to the state

diagrams shown in Figure 4.26 and Figure 4.29.

Figure 5.22 brings a detailed view of these waveforms, showing the data tampering

simulation. Arrows indicate the locations in the 3rd, 5th, 8th, and 9th frames where the

encrypted data looped back at the line side interface were tampered with by inserting

(forcing) a 640-bit word in the second bus cycle of these frames.

A magnified view of the line side input data (ipy_data_rx_in signal) shows the FAS right

after the FS pulse (6), with MFAS = 0x0a (7) indicating frame number 10 and the 640-bit

tampered word (8) in the following cycle (0xfaca00000…00000).

A section of the client side output data (ipy_data_rx_out signal) is also presented in a

magnified view, showing the tampered output data (10) in frames 8–11 replaced by zeros

(authentication blocking enabled) and the corresponding authentication TAG matching

indication (11).

Figure 5.23 shows the correspondence between the TX and RX calculated TAG

mismatches and the authentication TAG matching indication, such as in (6) and (4).

The simulation results for data encryption are shown in Figure 5.24. The line side data are

replaced by an AIS-like pattern (5) while the TX crypto session is not established. OPU

encrypted data (4) are then available after a 26-cycle TX processing (pipeline) delay (6).

Chapter 5 – Design, Verification, and Silicon Prototyping 187

Simulated data are also presented in this same figure, showing the 640-bit clear (2) and

encrypted (4) data from the beginning of the first frame of multi-frame 2. The OTN FAS

(0xf6f6f6282828) can be clearly distinguished, followed by the MFAS counter starting at

0x00 right after the MFS pulse.

Figure 5.25 shows the client side output decrypted (clear) data (7) being available after a

6-frame delay (5) from the line side input encrypted data (4), corresponding to the store-

and-forward delay created by the Authentication Buffer sub-block to wait for the evaluation

of the TAG matching condition, as described in Section 4.3.10 and Figure 4.23.

Again, simulated data are also presented, showing the 640-bit clear (2), encrypted (4), and

decrypted (7) data from the beginning of the first frame of multi-frame 2.

Figure 5.26 brings another view of these waveforms, with simulation results for the hitless

key change process. During the active crypto sessions in multi-frame 2, a software layer

TX key change request is simulated (9). The TX processor controller waits for the next

MFS pulse (start of multi-frame 3) and then transmits a new IV sequence with CSKS =

0xff (encoding the key ‘1’).

The new code word is decoded to ‘1’ by the RX processor controller at MFAS = 252 in

multi-frame 3, and both TX and RX keys are hitless changed (10) at the new crypto session

starting in multi-frame 4. Registers tx_session_status and rx_session_status show 0x03

(11), indicating the active key ‘1’ and the session establishment.

A magnified received_iv signal waveform (5) is also presented, showing the CSID (12),

the CBID (13), the CSKS = 0x00 at CPID = 0xc0 or 192 (15), and the CSKS changing to

0xff (14) at CPID = 0xc1 or 193 (16).

Finally, Figure 5.27 evidences the hitless key change process by showing the TX and RX

calculated TAG matching conditions (5) right in the end of multi-frame 3 and in the

beginning of multi-frame 4, leading to non-disrupted decrypted (clear) data (4) at the client

side output.

The previous CBID (7) is restarted to zero (8) after the key change process, corresponding

to the beginning of a new crypto session.

Chapter 5 – Design, Verification, and Silicon Prototyping 188

Figure 5.20 – Simulation waveforms (I) for the Crypto4OTN block.

M
ul

ti-
Fr

am
e

0
M

ul
ti-

Fr
am

e
1

M
ul

ti-
Fr

am
e

2
M

ul
ti-

Fr
am

e
3

M
ul

ti-
Fr

am
e

4

2

7

4 6

8

9
10

16

1:
 C

lie
nt

si
de

in
pu

t M
FS

 p
ul

se
5:

 C
lie

nt
si

de
ou

tp
ut

 M
FS

 p
ul

se
9:

 R
X

se
ss

io
n

st
ar

t r
eq

ue
st

13
: T

X
ke

y
ch

an
ge

re
qu

es
t(

II)

2:
 C

lie
nt

si
de

in
pu

t d
at

a
6:

 C
lie

nt
si

de
ou

tp
ut

da
ta

10
: T

X
ac

tiv
e

se
ss

io
n

st
at

us
 b

it
14

: T
X

ke
y

0

3:
 L

in
e

si
de

in
pu

t M
FS

 p
ul

se
7:

 A
ut

he
nt

ic
at

io
n

TA
G

 m
is

m
at

ch
es

11
: R

X
ac

tiv
e

se
ss

io
n

st
at

us
 b

it
15

: R
X

ke
y

0

4:
 L

in
e

si
de

in
pu

t d
at

a
8:

 T
X

se
ss

io
n

st
ar

t r
eq

ue
st

12
: T

X
ke

y
ch

an
ge

re
qu

es
t(

I)
16

: T
X

&
R

X
ke

y
1

1 3 5

11
13

15

14
12

Chapter 5 – Design, Verification, and Silicon Prototyping 189

Figure 5.21 – Simulation waveforms (II) for the Crypto4OTN block.

M
ul

ti-
Fr

am
e

1
M

ul
ti-

Fr
am

e
0

1 2 3

4
5

6

7
8 13

10
12

11
14

15
1:

 C
lie

nt
si

de
in

pu
t M

FS
 p

ul
se

5:
 R

ec
ei

ve
d

IV
 w

ith
C

SK
S

=
0x

00
9:

 T
X

FS
M

 in
 “T

X_
AC

TI
VE

_S
ES

SI
O

N
” s

ta
te

13
: T

X
ke

y
0

2:
 L

in
e

si
de

in
pu

t M
FS

 p
ul

se
6:

 T
X

se
ss

io
n

st
ar

t r
eq

ue
st

10
: R

X
FS

M
 in

 “R
X_

KE
Y_

D
EC

” s
ta

te
14

: R
X

ke
y

0

3:
 C

lie
nt

si
de

ou
tp

ut
 M

FS
 p

ul
se

7:
 R

X
se

ss
io

n
st

ar
t r

eq
ue

st
11

: R
X

FS
M

 in
 “R

X_
AC

TI
VE

_S
ES

SI
O

N
” s

ta
te

15
: T

X
&

R
X

se
ss

io
n

st
at

us
 re

gi
st

er
s

4:
 R

ec
ei

ve
d

IV
 w

ith
C

SK
S

=
0x

ff
8:

 T
X

FS
M

 in
 “T

X_
KE

Y_
C

H
AN

G
E”

 s
ta

te
12

: T
X

ke
y

ch
an

ge
re

qu
es

t

9

Chapter 5 – Design, Verification, and Silicon Prototyping 190

Figure 5.22 – Simulation waveforms (III) for the Crypto4OTN block.

1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

M
ul

ti-
Fr

am
e

2
1 2

3
4

8

1:
 C

lie
nt

si
de

in
pu

t M
FS

 p
ul

se
4:

 D
at

a
ta

m
pe

rin
g

in
 fr

am
e

#1
0

7:
 M

FA
S

=
0x

0a
 (1

0)
10

: T
am

pe
re

d
ou

tp
ut

 d
at

a

2:
 L

in
e

si
de

in
pu

t M
FS

 p
ul

se
5:

 T
am

pe
re

d
cr

yp
to

pa
ck

et
8:

 T
am

pe
re

d
da

ta
 in

 fr
am

e
#1

0
11

: A
ut

he
nt

ic
at

io
n

TA
G

 m
is

m
at

ch

3:
 C

lie
nt

si
de

ou
tp

ut
 M

FS
 p

ul
se

6:
 L

in
e

si
de

in
pu

t F
S

pu
ls

e
9:

 C
lie

nt
si

de
ou

tp
ut

 F
S

pu
ls

e

Ta
m

pe
re

d
O

ut
pu

t D
at

a

6

10
th

11
th

5

7

9
10

11

Chapter 5 – Design, Verification, and Silicon Prototyping 191

Figure 5.23 – Simulation waveforms (IV) for the Crypto4OTN block.

M
ul

ti-
Fr

am
e

2

1 2 5
6

7 8

3

11
129 10

4

1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

1:
 C

lie
nt

si
de

in
pu

t M
FS

 p
ul

se
4:

 A
ut

he
nt

ic
at

io
n

TA
G

m
is

m
at

ch
7:

 T
X

FS
M

 in
 “T

X_
AC

TI
VE

_S
ES

SI
O

N
” s

ta
te

10
: R

X
ac

tiv
e

se
ss

io
n

st
at

us
 b

it

2:
 L

in
e

si
de

in
pu

t M
FS

 p
ul

se
5:

 R
ep

la
ce

m
en

ts
ig

na
ld

is
ab

le
8:

 R
X

FS
M

 in
 “R

X_
AC

TI
VE

_S
ES

SI
O

N
” s

ta
te

11
: R

X
ke

y
0

3:
 C

lie
nt

si
de

ou
tp

ut
 M

FS
 p

ul
se

6:
 T

X
&

R
X

ca
lc

ul
at

ed
TA

G
 m

is
m

at
ch

9:
 T

X
ac

tiv
e

se
ss

io
n

st
at

us
 b

it
12

: T
X

&
R

X
se

ss
io

n
st

at
us

 re
gi

st
er

s

Chapter 5 – Design, Verification, and Silicon Prototyping 192

Figure 5.24 – Simulation waveforms (V) for the Crypto4OTN block.

M
ul

ti-
Fr

am
e

2

6

1
3

5

7

6
4
0
'
h
f
6f
6
f
62
8
28
2
8
0
0
a
aa
a
a
aa
a
aa
a
a
a
a
0
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1

e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1

6
4
0
'
h
f
6f
6
f
62
8
28
2
8
0
0
a
aa
a
a
aa
a
aa
a
a
a
a
8
a
0
2
e
f
4
c
0
0
8
e
1
b
a
4
f
0
0
f
9
0
2
8
f
c
8
8
0
d
e
b
8
0
7
7
e
5
3
2
5
b
6
1
6
7
6
f
e
6
6
a

8
b
c
b
f
7
a
9
2
3
8
0
0
6
e
7
5
9
4
d
8
b
b
3
2
7
3
d
d
5
5
2
3
0
4
5
4
6
0
2
3
3
1
1
b
4
2
c
4
d
5
2
1
4
1
1
c
6
b
1
e
3
5
b
f
4
a
f
6
b
e
8
c
c
e
4
4
9
c
4

2

4

2 4

1:
 C

lie
nt

si
de

in
pu

t M
FS

 p
ul

se
3:

 L
in

e
si

de
in

pu
t M

FS
 p

ul
se

5:
 L

in
e

si
de

in
pu

t r
ep

la
ce

d
da

ta
7:

R
ep

la
ce

m
en

ts
ig

na
ld

is
ab

le

2:
 C

lie
nt

si
de

in
pu

t c
le

ar
da

ta
4:

 L
in

e
si

de
in

pu
t e

nc
ry

pt
ed

da
ta

6:
 T

X
pr

oc
es

so
r p

ip
el

in
e

de
la

y
8:

 T
X

ac
tiv

e
se

ss
io

n
st

at
us

 b
it

8

Chapter 5 – Design, Verification, and Silicon Prototyping 193

Figure 5.25 – Simulation waveforms (VI) for the Crypto4OTN block.

6
4
0
'
h
f
6f
6
f
62
8
28
2
8
0
0
a
aa
a
a
aa
a
aa
a
a
a
a
0
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1

e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1

6
4
0
'
h
f
6f
6
f
62
8
28
2
8
0
0
a
aa
a
a
aa
a
aa
a
a
a
a
8
a
0
2
e
f
4
c
0
0
8
e
1
b
a
4
f
0
0
f
9
0
2
8
f
c
8
8
0
d
e
b
8
0
7
7
e
5
3
2
5
b
6
1
6
7
6
f
e
6
6
a

8
b
c
b
f
7
a
9
2
3
8
0
0
6
e
7
5
9
4
d
8
b
b
3
2
7
3
d
d
5
5
2
3
0
4
5
4
6
0
2
3
3
1
1
b
4
2
c
4
d
5
2
1
4
1
1
c
6
b
1
e
3
5
b
f
4
a
f
6
b
e
8
c
c
e
4
4
9
c
4

2 4

6
4
0
'
h
f
6f
6
f
62
8
28
2
8
0
0
a
aa
a
a
aa
a
aa
a
a
a
a
0
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1

e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1
e
1

7

1

3

7
5

9

8

6

2

4

1:
 C

lie
nt

si
de

in
pu

t M
FS

 p
ul

se
4:

 L
in

e
si

de
in

pu
t e

nc
ry

pt
ed

da
ta

7:
 C

lie
nt

si
de

ou
tp

ut
 d

ec
ry

pt
ed

(c
le

ar
) d

at
a

2:
 C

lie
nt

si
de

in
pu

t c
le

ar
da

ta
5:

 S
to

re
-a

nd
-fo

rw
ar

d
de

la
y

8:
 T

X
&

R
X

ca
lc

ul
at

ed
TA

G
 m

at
ch

in
g

3:
 L

in
e

si
de

in
pu

t M
FS

 p
ul

se
6:

 C
lie

nt
si

de
ou

tp
ut

 M
FS

 p
ul

se
9:

 R
ec

ei
ve

d
IV

 w
ith

C
PI

D
 =

 0
x8

0
(1

28
)

M
ul

ti-
Fr

am
e

2

Chapter 5 – Design, Verification, and Silicon Prototyping 194

Figure 5.26 – Simulation waveforms (VII) for the Crypto4OTN block.

M
ul

ti-
Fr

am
e

3
M

ul
ti-

Fr
am

e
2

1 2 3

7 8

4

6

14

16
15

1:
 C

lie
nt

si
de

in
pu

t M
FS

 p
ul

se
5:

 R
ec

ei
ve

d
IV

9:
 T

X
ke

y
ch

an
ge

re
qu

es
t

13
: C

BI
D

 =
 0

x0
1

2:
 L

in
e

si
de

in
pu

t M
FS

 p
ul

se
6:

 R
ec

ei
ve

d
IV

 w
ith

C
SK

S
=

0x
ff

10
: T

X
&

R
X

ke
y

ch
an

ge
s

14
: C

SK
S

ch
an

gi
ng

to
0x

ff

3:
 C

lie
nt

si
de

ou
tp

ut
 M

FS
 p

ul
se

7:
 T

X
ac

tiv
e

se
ss

io
n

st
at

us
 b

it
11

: T
X

&
R

X
se

ss
io

n
st

at
us

 re
gi

st
er

s
15

: C
PI

D
 =

 0
xc

0
(1

92
)

4:
 A

ut
he

nt
ic

at
io

n
TA

G
 m

is
m

at
ch

es
8:

 R
X

ac
tiv

e
se

ss
io

n
st

at
us

 b
it

12
: C

SI
D

 =
 0

x2
2a

a2
2b

b
16

: C
PI

D
 =

 0
xc

1
(1

93
)

9

11
12

13

10

5

5

Chapter 5 – Design, Verification, and Silicon Prototyping 195

Figure 5.27 – Simulation waveforms (VIII) for the Crypto4OTN block.

M
ul

ti-
Fr

am
e

4
M

ul
ti-

Fr
am

e
3

1 2

9
H

itl
es

s
Ke

y
C

ha
ng

e

6

4

1:
 C

lie
nt

si
de

in
pu

t M
FS

 p
ul

se
4:

 N
on

-d
is

ru
pt

ed
ou

tp
ut

 d
ec

ry
pt

ed
(c

le
ar

)d
at

a
7:

 C
BI

D
 =

 0
x0

1
10

: R
X

ke
y

1
(c

ha
ng

e)

2:
 L

in
e

si
de

in
pu

t M
FS

 p
ul

se
5:

 T
X

&
R

X
ca

lc
ul

at
ed

TA
G

 m
at

ch
in

g
8:

 C
BI

D
 =

 0
x0

0
(re

st
ar

te
d)

11
: T

X
&

R
X

se
ss

io
n

st
at

us
 re

gi
st

er
s

3:
 C

lie
nt

si
de

ou
tp

ut
 M

FS
 p

ul
se

6:
 C

SK
S

=
0x

ff
9:

 T
X

ke
y

1
(c

ha
ng

e)

3

7
8

5

10
11

Chapter 5 – Design, Verification, and Silicon Prototyping 196

5.3 100G OTN PROCESSOR

CPQD has leaded a challenging project aiming at the development of a 100 Gbit/s OTN

processor ASSP device for the Brazilian telecom industry, featuring the 100G AES-GCM

Cryptography Engine described in Chapter 4 to provide the establishment of secure

communication links. In its first silicon release, the ASSP handles OTU4 signals only,

making it suitable for regenerator applications or cryptography-enabled terminal

transponders.

A hardware functional architecture block diagram is depicted in Figure 5.28, with the

Crypto4OTN block (highlighted in the middle of the TX and RX processor lineups)

performing encryption in one direction and decryption in the other.

Figure 5.28 – CPQD’s 100G OTN Processor ASSP hardware functional architecture block diagram.

In the TX processor client side interface, a 111.8 Gbit/s OTU4 signal is received in 10 lanes

of 11.18 Gbit/s, each of which being handled by a SerDes (serializer/deserializer) device

with a 64-bit input/output bus running at 174.70 MHz. Recovered data are first processed

by an optical transport layer (OTL) IP block, featuring functions like lane deskew and

reordering. OTN aligned frames follow then to the FEC decoder, where errors are detected

and corrected using the redundancy information. In the sequence, the Framer block allows

for overhead termination and monitoring, and a FIFO memory block provides clock

domain separation.

At this point, data are ready to be forwarded to the line side, being processed by another

Framer (for new overhead insertion), the FEC encoder (for redundancy calculation and

insertion), and the OTL4.10 encoder (generating the multilane data stream). Alternatively,

when establishing a secured OTN communication link, the Crypto4OTN engine performs

its cryptography functions right in the middle of this processing chain.

Group of
10 SerDes

Rx - Tx

1
2

10

1
2

10

OTL4.10
Decoder

OTL4.10
Encoder

FEC
Decoder

Framer
Rx

CPU
Interface

PLLs

100G OTN Processor

FIFO
Mem. Encryption FEC

Encoder
Framer

Tx
OTL4.10
Encoder

Group of
10 SerDes

Rx - Tx

1
2

10

1
2

10
FEC

Encoder
Framer

Tx
FIFO

Mem. Decryption FEC
Decoder

Framer
Rx

OTL4.10
Decoder

Client Side
Interface

Line Side
Interface

TX Processor

RX Processor
PLLsCrypto4OTN

Chapter 5 – Design, Verification, and Silicon Prototyping 197

The same functions are applied for the RX processor, with data being received in the line

side and transmitted to the client side. In this design, the OTN scrambling function, which

ensures a minimum number of transitions in the bit stream (breaking long sequences of

consecutive digits) in order to facilitate synchronization and clock recovery, was embedded

into the OTL4.10 block. A CPU interface block with a dedicated configuration register

bank was also implemented, allowing an external CPU/MCU to manage and monitor all

the internal functional blocks.

5.3.1 CHIP DESIGN AND MANUFACTURING

The 100G OTN Processor design flow, including the Crypto4OTN block, was based on

Cadence (RTL simulation, verification, and physical design) and Synopsys (synthesis)

tools. The complete ASSP design was later fully verified using the Universal Verification

Methodology (UVM) [131, 132], including post-synthesis simulations and static timing

analysis.

The ASSP manufacturing was done at TSMC (Taiwan Semiconductor Manufacturing

Company) using the 40 nm general purpose technology in a multi-layer mask (MLM)

program, a cost-effective strategy for chip prototyping or small volume production runs, as

it reduces costs by combining many mask layers into a single reticle.

Chip conception, architecture, front-end design, and verification was done by CPQD, while

the back-end (physical) design was built up with the partnership of other national and

international institutions. The front-end RTL design was focused on the OTN, FEC [133],

and the 100G AES-GCM Cryptography Engine [134] solutions, with complex mixed-

signal blocks such as the SerDes and phase-locked loop (PLL) devices being licensed from

silicon IP providers.

The 40 nm technology node was adopted as a good cost and performance tradeoff at the

time of development and tape-out (2013–2017), considering the high data rates and logic

circuit density, as well as the availability of the critical IP solutions — SerDes and PLLs.

Typical core clock frequencies in this node are below 400 MHz, what demands parallel

processing of the high-speed signals. Both 100 Gbit/s (111.8 Gbit/s) client and line side

interfaces are made up of 10 lanes of 11.18 Gbit/s, which are internally parallelized by

SerDes IP blocks, creating a 640-bit wide data path running below 180 MHz.

Chapter 5 – Design, Verification, and Silicon Prototyping 198

Table 5.1 shows the hierarchical area distribution of the Crypto4OTN design (top block

and sub-blocks), as reported by the synthesis tool.

 Hierarchical Cell Absolute Total Area (µm2) Percent Total Area

Top Level Design crypto4otn 2930205.2904 100.0

TX Processor
Lineup

loopback_mux_client_loopback 3658.8888 0.1

crypto_engine_tx 936325.2176 32.0

oh_inserter 5959.1448 0.2

repl_sig_gen 4066.1964 0.1

flow_control_tx 73466.0843 2.5

RX Processor
Lineup

loopback_mux_line_loopback 3663.1224 0.1

oh_extractor 5580.5904 0.2

crypto_engine_rx 936353.4416 32.0

auth_buffer 829702.7142 28.3

flow_control_rx 73470.6707 2.5

Controller control_engine 57956.5735 2.0

Table 5.1 – Crypto4OTN block hierarchical area distribution.

Table 5.2 brings some of the chip and package main parameters, and Figure 5.29 shows

pictures of the packaged device, with and without the heat spreader top cover.

Die size 7 × 10 mm
Gate count ≈ 8 M gates
Data path width 640 bits
Core frequency 180 MHz
Package type FCBGA – Flip Chip Ball Grid Array
Package ball count 1369 balls
Package size 37.5 × 37.5 mm

Table 5.2 – 100G OTN Processor chip and package parameters.

Figure 5.29 – Packaged FCBGA 100G OTN Processor ASSP pictures.

Chapter 5 – Design, Verification, and Silicon Prototyping 199

5.4 CHIP PROTOTYPE TESTING

Several tests were planned for the chip prototypes in order to preliminarily validate the

main IP blocks and the overall main functionalities. The CPU interface and the SerDes IP

blocks constitute the main access ports for the 100G OTN Processor device, being then the

first ones to be tested and verified.

Some mixed-signal and digital IP blocks had already been validated in a Test Chip [25]

previously designed to allow for exercising the design flow tool set, procedures, and the

manufacturing chain. These include the SerDes, PLLs, CPU interface, and OTL4.10

blocks.

For the 100G OTN Processor ASSP, the idea was to generate OTN traffic using a protocol

analyzer equipment, inject data in the client side input interface, loop them back in the line

side, and then return to the OTN protocol analyzer from the client side output. In this way,

each individual block could be tested by configuring the bypass and loopback modes as

needed in the other blocks of the TX and RX processor chains.

Figure 5.30 shows a setup diagram of the planned test environment, with a JDSU ONT-

512 protocol analyzer being connected to a C form-factor pluggable (CFP) optical module

in the evaluation board by a 20-lane multi-fiber push-on (MPO) cable.

Figure 5.30 – 100G OTN Processor test environment setup diagram.

5.4.1 EVALUATION BOARD

Figure 5.31 shows a 3D model of the evaluation board (EVB) developed and manufactured

to allow for testing and characterization of the 100G OTN Processor ASSP using an OTN

protocol analyzer test equipment.

JDSU ONT-512
Protocol Analyzer

CFP
Optical
Module

100G
OTN

ProcessorMPO
Cable

CFP
Optical
Module

MPO
Loopback
Module

Evaluation Board

Command
Line

Interface

Chapter 5 – Design, Verification, and Silicon Prototyping 200

Figure 5.31 – 3D model of the evaluation board developed for the 100G OTN Processor.

The CPU module (used for accessing the 100G OTN Processor configuration registers) is

external, not integrated into the EVB. There are two options: NXP tower system

microcontrollers (like the K60 series) or the BeagleBone single board computer (SBC).

In order to simplify the design, power supply circuits were not incorporated. The necessary

voltages are provided by external sources connected to a set of terminal blocks available in

the EVB. Several SMA RF coaxial connections have been included for accessing the clock

signals (input and output) of the 100G OTN Processor. On-board oscillators can also be

used to generate the necessary clock signals. A DE-9 connector provides access to the

management data input/output (MDIO) interface of each set of SerDes, allowing their

configuration to be carried out during the testing phase.

Figure 5.32 shows a picture of the manufactured EVB with the 100G OTN Processor

device soldered on the printed circuit board (PCB). Slots and connectors for 100 Gbit/s

CFP optical modules can be seen in both sides of the ASSP, providing access to the client

and line side interfaces.

CFP Optical Module

100G OTN Processor
(Soldered ASSP or BGA Socket)

CFP Optical Module

Power and Clock
Connections

SERDES MDIO
Connection

Single Board
Computer Module

(BeagleBone)

Microcontroller Module
(K60 Tower)

On-Board
Oscillators

Chapter 5 – Design, Verification, and Silicon Prototyping 201

Figure 5.32 – Evaluation board designed and manufactured for testing the

100G OTN Processor ASSP.

The 100G OTN Processor device can also be mounted on a ball grid array (BGA) socket,

as shown in the pictures of Figure 5.33. This allows for an easy device exchanging during

the testing phase.

Figure 5.33 – BGA socket for the 100G OTN Processor assembly and testing.

A picture showing the completely mounted EVB, with a soldered 100G OTN Processor

(under a heatsink), the CFP optical modules, the CPU module (BeagleBone Black), and a

USB-MDIO conversion board is shown in Figure 5.34.

Chapter 5 – Design, Verification, and Silicon Prototyping 202

Figure 5.34 – 100G OTN Processor evaluation board with the CPU (SBC) and CFP modules installed.

Figure 5.35 shows the setup prepared for the EVB bring-up and the preliminary tests of the

100G OTN Processor. It is part of the overall arrangement depicted in Figure 5.30, with an

additional digital oscilloscope for elementary signal measurements.

Figure 5.35 – Setup for EVB bring-up and preliminary tests of the 100G OTN Processor.

5.4.2 CPU INTERFACE TESTING

An application was developed and implemented in the selected CPU module (BeagleBone

Black) based on two processes (one written in Python and the other, in C language) running

under the embedded Linux operating system. The first provides a command-line interface

(CLI) that enables read and write access to the various registers of the 100G OTN

Processor, while the second controls the data bus according to the protocol of the ASSP

Chapter 5 – Design, Verification, and Silicon Prototyping 203

CPU interface sub-block. After bringing the EVB up and debugging the CLI code,

preliminary register access tests were performed.

Most logic blocks (or, in some cases, groups of blocks) of the device have a test register

dedicated for writing and reading operations, as well as another one programmed with the

version of the RTL code, as shown in Table 5.3.

Block Test Register
Address

RTL Version
Register Address RTLVersion

sys_ctrl 0x0 0x1 0x100
pllwrp_sysb 0x100 0x101 0x100
crypto4otn 0x200 0x201 0x100

xco4 #1 0x4000 0x4001 0x100
gfec100 #1 0x5C80 0x5C81 0x100
otl410 #1 0x5D00 0x5D01 0x100
xco4 #2 0x8200 0x8201 0x100

gfec100 #2 0x9E80 0x9E81 0x100
otl410 #2 0x9F00 0x9F01 0x100

sd10wrp #1 0xA000 - -
dpll_0 #1 0xC100 0xC101 0x100
dpll_1 #1 0xC140 0xC141 0x100
dpll_2 #1 0xC180 0xC181 0x100

sd10wrp #2 0xCE40 - -
dpll_0 #2 0xEF40 0xEF41 0x100
dpll_1 #2 0xEF80 0xEF81 0x100
dpll_2 #2 0xEFC0 0xEFC1 0x100

cbr_framer 0xFFE0 0xFFE1 0x100

Table 5.3 – Test and RTL version registers for each block (or group of blocks) of the 100G OTN Processor.

Figure 5.36 shows the results of the CLI commands for (a) writing and (b) reading of a

dataset (0xA001, 0xB002, ..., 0xBF18) to/from all test registers of Table 5.3. The

correspondence in the observed values evidences the correct operation of the configuration

register access interface. Figure 5.36 (c) shows the values read back from the RTL version

registers (not available for the blocks sd10wrp #1 and sd10wrp #2). Again, the

correspondence in the observed values certifies the desired operation.

Chapter 5 – Design, Verification, and Silicon Prototyping 204

Figure 5.36 – Results of the CLI commands for the 100G OTN Processor test register data (a) writing and

(b) reading, and (c) RTL version register reading.

5.4.3 SERDES TESTING

The SerDes bring-up and testing were carried out with a USB-MDIO converter module

connected to the EVB. MDIO signals of each set of SerDes, which are made available in

dedicated pins of the ASSP, were routed to a DE-9 connector mounted in the EVB, as

shown on top of the picture in Figure 5.34.

The configuration of the SerDes parameters can also be done through some registers

accessed by the CLI described in Section 5.4.2. However, the use of the MDIO interface

brings the advantage of enabling the use of a configuration and testing software (with a

graphical user interface), developed and supplied by the SerDes IP provider.

Preliminary tests with the SerDes blocks were done with the use of loopback connections

in one of the main ASSP interfaces (client or line side), provided by an interconnection

module similar to a CFP — a passive break-out module, as shown in Figure 5.37 — which

enables access to all the TX and RX lanes of the CFP connector. A single-channel

11.18 Gbit/s differential electrical loopback connection is shown in Figure 5.38.

All channels were tested in this way with two EVBs populated with a soldered 100G OTN

Processor. On a third board, using the BGA socket, the communication with the ASSP

through the CLI was achieved, but there was no successful SerDes loopback test result.

One of those two EVBs with the soldered ASSP had problems in the client side interface,

while the other, in the line side. Tests were done by a bit error rate tester (BERT) module

integrated into the SerDes IP block.

(a) (b) (c)

Chapter 5 – Design, Verification, and Silicon Prototyping 205

Figure 5.37 – CFP passive break-out module.

Figure 5.38 – CFP passive break-out module with a single-channel 11.18 Gbit/s differential electrical

loopback connection.

Once the SerDes blocks were working properly, the tests proceeded with an attempt to

connect the CFP optical modules, together with the use of an MPO loopback adapter, as

shown in Figure 5.39.

Chapter 5 – Design, Verification, and Silicon Prototyping 206

Figure 5.39 – Multi-fiber push on loopback adapter.

The strategy was to try getting the same previous results obtained with the SerDes electrical

loopbacks. Nevertheless, several unsuccessful attempts were carried out with the available

EVBs and different CFP modules.

The SerDes circuit incorporates an eye diagram analyzer that allows observing the high-

speed serial signal using the manufacturer's configuration software connected via the

MDIO interface.

Figure 5.40 shows the results obtained with the electrical loopback (using the CFP passive

break-out module). Bit transitions are clearly observed, creating the characteristic eye

diagram shape. Figure 5.41, on the other hand, shows the corresponding signal without the

expected transitions obtained from the tests with the CFP module and the MPO loopback

adapter.

Figure 5.40 – Eye diagram of an 11.18 Gbit/s signal received by one of the SerDes showing bit transitions.

Chapter 5 – Design, Verification, and Silicon Prototyping 207

Figure 5.41 – Eye diagram of an 11.18 Gbit/s signal received by one of the SerDes without bit transitions.

The MPO loopback adapter was then substituted by an optical connection with a second

CFP module installed in the OTN traffic protocol analyzer equipment (JDSU ONT-512).

Figure 5.42 shows the main components of the test arrangement depicted in Figure 5.30.

Figure 5.42 – 100G OTN Processor EVB test setup with a JDSU ONT-512 OTN traffic analyzer.

None of the additional tests was successful, and, after a thorough investigation work, a

classical problem was finally detected in the EVB: the RX signals from the CFP,

corresponding to the data outputs, were incorrectly connected to the TX outputs of the

ONT-512 Power
Supplies

EVBMPO
Connections

Chapter 5 – Design, Verification, and Silicon Prototyping 208

100G OTN Processor. In the same way, the TX signals of the CFP, corresponding to the

data inputs, were connected to the RX inputs of the ASSP.

The previous SerDes tests were successful because of the use of electrical connections (via

RF cables) for the TX-RX loopback, creating an effective output-to-input connection in the

ASSP despite the PCB routing inversion on the CFP connector.

5.4.4 IP BLOCK TESTING

The mistake in the EVB design, described in the last section, made it impossible to continue

testing on this platform. Consequently, the ASSP IP blocks, including of course the 100G

AES-GCM Cryptography Engine, could not be tested.

A small CFP Cross Adapter card was designed and manufactured in an attempt to solve the

interconnection mistake between the CFP modules and the ASSP, as shown in Figure 5.43.

A detailed view on the right-hand side shows how TX and RX lanes are crossed to correct

the input/output connections of the high-speed interface.

Figure 5.43 – CFP Cross Adapter card designed to correct the interconnection mistake

between a CFP module and the ASSP.

The CFP module is assembled in this card, which is then inserted in the original ASSP

EVB CFP slot, as shown in Figure 5.44.

TX/RX Lane
Crossings

Chapter 5 – Design, Verification, and Silicon Prototyping 209

Figure 5.44 – CFP Cross Adapter card inserted on the ASSP EVB CFP slot.

New tests were then performed using the ONT-512 protocol analyzer. As depicted in

Figure 5.45, a successful (nearly error-free) SerDes parallel bus loopback was achieved

with 100 Gbit/s PRBS data.

Figure 5.45 – Successful SerDes parallel bus loopback with 100 Gbit/s PRBS data.

When configuring the equipment to generate the OTN protocol, however, it changes the

bit rate to 111.8 Gbit/s (OTU4), corresponding to 11.18 Gbit/s per lane. Although the

SerDes worked properly at this data rate with the electrical loopback, as described in

Section 5.4.3, this was not the case using the CFP module with the CFP Cross Adapter

card. The ONT-512 protocol analyzer could not establish a data link in any lane.

A couple of reasons may explain this — frequency response problems in the small sections

of high-speed PCB transmission lines on the CFP Cross Adapter card and/or performance

issues with some sub-modules of the SerDes IP block.

In the first assumption, high-speed digital signal integrity may be degraded by the poor

frequency response of the low-cost dielectric material (FR-4) used in the PCB stack-up

CFP Cross Adapter

JDSU ONT-512
Protocol Analyzer

CFP
Optical
Module

100G
OTN

ProcessorMPO
Cable

100 Gbit/s PRBS Data

Chapter 5 – Design, Verification, and Silicon Prototyping 210

construction. Ideally, this should be compensated by the SerDes preemphasis (in the

transmission path) and digital equalizer (in the reception path), which invert the frequency

response of the PCB lossy channel [25].

The second hypothesis relates to the performance of the high-speed PLLs and clock

recovery circuits within the SerDes IP block. During the Test Chip [25] evaluation and

testing, the SerDes IP provider had suggested increasing the core supply voltage since the

integrated PLL was apparently not responding very well at 11.18 Gbit/s data rates. This

was also tried with the 100G OTN Processor with no meaningful results.

Despite the frustrating attempt to use the EVB for the ASSP IP block testing, this can still

be done through a Debug Module also designed and implemented in the 100G OTN

Processor, which allows for testing the complete TX and RX data paths using a standard

JTAG test access port, together with a custom software that needs to be developed to

generate, collect, and analyze data.

As depicted in Figure 5.46 a Debug Generator sub-block inserts software-generated data

in the beginning of both TX and RX processor data paths. A Debug Monitor sub-block at

the end of each chain collects data (with triggering functionalities), which are then sent to

an external computer through the JTAG interface port.

The 100G OTN Processor remains yet to be fully tested and validated using this technique.

Figure 5.46 – Debug Module (generator and monitor) implemented in the 100G OTN Processor.

Group of
10 SerDes

Rx - Tx

1
2

10

1
2

10

OTL4.10
Decoder

OTL4.10
Encoder

FEC
Decoder

Framer
Rx

CPU
Interface

PLLs

100G OTN Processor

FIFO
Mem. Encryption FEC

Encoder
Framer

Tx
OTL4.10
Encoder

Group of
10 SerDes

Rx - Tx

1
2

10

1
2

10
FEC

Encoder
Framer

Tx
FIFO

Mem. Decryption FEC
Decoder

Framer
Rx

OTL4.10
Decoder

Client Side
Interface

Line Side
Interface

TX Processor

RX Processor
PLLsCrypto4OTN

Debug
Generator

Debug
Monitor

Debug
Monitor

Debug
GeneratorJTAG

211

Chapter 6

CONCLUSIONS AND FINAL REMARKS

This work reported the conception, architectural design, RTL design, verification, and a

40 nm silicon prototyping of a 100 Gbit/s AES-GCM Cryptography Engine solution

specifically developed to secure high-speed OTN communication links.

Systemic aspects were addressed, with emphasis on the use of a block cipher infrastructure

properly adapted to enable data integrity and confidentiality over the inherently insecure

OTN protocol. The logic architecture was described in a top-down approach, showing

implementation details related to the generation and transport of cryptographic packets,

encryption overhead construction, key change, and the necessary synchronization

mechanisms.

Chip and ASSP manufacturing parameters of a 100 Gbit/s OTN processor device

developed by CPQD and integrating the proposed cryptography solution were also

presented, along with laboratory prototype evaluations.

Chapter 2 briefly described optical transport technologies, highlighting their frame

structure and protection mechanisms. Security threats in optical networks were also

overviewed, with a few considerations regarding software-defined and disaggregated

optical networks.

Cryptographic systems were then presented after some relevant mathematical background,

starting with the main concepts related to data encryption and authentication, briefing over

their historical evolution, presenting the main definitions relating to encryption,

authentication, and symmetric/asymmetric cryptosystems as well as some details of the

AES algorithm, and stepping into quantum cryptography.

The final sections showed some of the cryptographic modes of operation, with emphasis

on the most relevant in the scope of this work (Galois/Counter Mode), the quantum

Chapter 6 – Conclusions and Final Remarks 212

computing threats endangering classical encryption algorithms, as well as their quantum-

resistant counterparts of post-quantum cryptography.

Chapter 3 described the entire architecture of the cryptographic system developed for the

establishment of secure links in OTN systems, with emphasis on the concepts of

cryptographic session, block, and packet, as well as details about the role of the hardware

and software layers, the generation and transport of the encryption overhead data (TAG,

AAD, and IV) necessary for the link operation, the error or failure recovery mechanisms,

and the cryptographic session management.

Chapter 4 presented the 100G AES-GCM Cryptography Engine, designed and

implemented according to the conceived systemic architecture solution, with its features,

characteristics, operation modes, configuration procedures, hardware functional

architecture, partitioning of the logic building blocks, and implementation details.

The design, verification, and 40 nm silicon prototyping of the proposed solution was shown

in Chapter 5. All the 100G AES-GCM Cryptography Engine functional logic blocks were

implemented within the Crypto4OTN top module, and each one was coded in the Verilog

hardware description language aiming at the subsequent logic synthesis phase.

Functional verification of the complete cryptographic solution during the RTL design

phase was also described, with digital simulations based on a regular test bench module

being explained and demonstrated by timing diagrams and signal waveforms, evidencing

the overall functionality of some sub-blocks and the complete integrated Crypto4OTN

design.

The last sections presented the 8M gate 40 nm 100 Gbit/s OTN processor ASSP developed

by CPQD for the Brazilian telecom industry, integrating the 100G AES-GCM

Cryptography Engine, as well as the laboratory test setups, procedures, and main results.

Chapter 6 – Conclusions and Final Remarks 213

6.1 MAIN CONTRIBUTIONS

The author's main contributions were the systemic and functional architecture design of the

cryptographic solution for optical transport networks, as well as the RTL design and

verification (through functional digital simulations) of almost all the logic blocks that make

up the 100G AES-GCM Cryptography Engine.

He also actively participated in the design of the 100G OTN Processor ASSP developed

by CPQD for the Brazilian telecom industry, in the development of the command-line

interface software for its evaluation board, and in the laboratory prototype tests.

6.2 REMARKS AND FUTURE WORK SUGGESTIONS

Being driven by the original requirements of the 100G OTN Processor, the development

of the 100G AES-GCM Cryptography Engine was tailored to the specificities of the OTN

protocol structure.

Recent contributions of the ITU-T Study Group 15 [135–139] have presented questions

and proposals for a multi-vendor interoperable OTN Security (OTNsec) standard [140].

Alternative encryption procedure candidates are being considered, such as the OTN

Encryption Procedure (OEP) and the Generic Encryption Procedure (GEP). The first one

carries OTNsec specific overheads inside the OxU (OPU/ODU/OTU) overhead, while the

second, in the OPU or FEC payload area.

It has also been proposed that OTNsec must not occupy all reserved overhead bits and bytes

in the OPU, ODU, and OTU overhead areas, what implies, in the conception of the 100G

AES-GCM Cryptography Engine, larger crypto packets in order to accommodate the size

of the necessary TAG and IV fields and, consequently, a higher store-and-forward latency.

The OTN technology is now in the beyond 100G (B100G) era, extending data rates over

100 Gbit/s and introducing a new Flexible OTN (FlexO) [141] interface with its own secure

transport architecture (FlexOsec) [142].

Future works could review the latest ITU-T SG15 contributions and develop cryptography

solutions in accordance with these new multi-vendor interoperable OTNsec concepts.

Chapter 6 – Conclusions and Final Remarks 214

The feasibility and possible advantages of transferring the asymmetric encryption protocol

used to exchange keys in an OTN link, such as the Elliptic Curve Diffie–Hellman (ECDH),

from the software to the hardware layer could also be investigated. In this case,

cryptographic protocol messages could be transmitted through the general communication

channel (GCC) bytes of the OTN overhead.

Without the OTN protocol restrictions, a Standalone AES-GCM Cryptography Module

could also be developed. A terminal communication unit capable of establishing secure

point-to-point Ethernet links, for instance, would provide confidentiality and integrity to

transmitted data in untrusted network domains. It could operate either in low (100 Mbit/s)

or high-speed (1/10/100 Gbit/s) data rates. Client data mapping procedures, as well as the

encryption overhead container, would be the main research goals in this case.

Aiming at the current quantum-safe security trends, a hardware interface could be designed

and implemented to integrate the 100G AES-GCM Cryptography Engine (or any other

symmetric-key encryption module) with a quantum key distribution system, possibly with

a standardized QKD interface such as the European OpenQKD project [83] and the work

of the European Telecommunications Standards Institute (ETSI) [84].

Current high-end FPGA technology allows for a complete prototyping or even final

deployment of the cryptography solution hardware layer, turning concepts, demonstrations,

and products into reality without the risks and costly efforts of high-speed digital IC design

and manufacturing.

215

REFERENCES
[1] S. Aleksic, “Towards Fifth-Generation (5G) Optical Transport Networks”. 2015 17th International

Conference on Transparent Optical Networks (ICTON), pp. 1–4, 2015.

https://doi.org/10.1109/ICTON.2015.7193532.

[2] Xiang Liu, “Evolution of Fiber-Optic Transmission and Networking Toward the 5G Era”. iScience,

vol. 22, pp. 489–506, 2019. https://doi.org/10.1016/j.isci.2019.11.026.

[3] J. Pedro, N. Costa, and S. Pato, “Optical Transport Network Design Beyond 100 Gbaud [Invited]”.

IEEE/OSA Journal of Optical Communications and Networking, vol. 12, no. 2, pp. A123–A134,

February 2020. https://doi.org/10.1364/JOCN.12.00A123.

[4] Zhou He and Fanjian Hu, “Research on Novel Modulation Format Apol-FSK for Optical Transport

Network of 5G”. Optics Communications, vol. 474, 126055, 2020.

https://doi.org/10.1016/j.optcom.2020.126055.

[5] Gorshe, S., “A Tutorial on ITU-T G.709 Optical Transport Networks (OTN)”. PMC-Sierra,

white paper, document ID: PMC-2081250, issue 2, June 2011.

[6] M. Carroll, J. Roese, and T. Ohara, “The Operator's View of OTN Evolution”.

IEEE Communications Magazine, vol. 48, no. 9, pp. 46–52, September 2010.

https://doi.org/10.1109/MCOM.2010.5560586.

[7] Paul Littlewood, Fady Masoud, and Malcolm Loro, “Optical Transport Networking”. Ciena Expert

Series, 2015. Available at: https://media.ciena.com/documents/Experts_Guide_to_OTN_ebook-

Utilities-Edition.pdf. Accessed 21 April 2023.

[8] Andreas Schubert, “G.709 – The Optical Transport Network (OTN)”. Viavi, white paper, 2021.

Available at: https://www.viavisolutions.com/en-us/literature/g709-optical-transport-network-otn-

white-papers-books-en.pdf. Accessed 21 April 2023.

[9] D. Cavendish, “Evolution of Optical Transport Technologies: from SONET/SDH to WDM”.

IEEE Communications Magazine, vol. 38, no. 6, pp. 164–172, June 2000.

https://doi.org/10.1109/35.846090.

[10] “Interfaces for the Optical Transport Network (OTN)”. ITU-T recommendation G.709/Y.1331, 2020.

[11] “Optical Transport Network Global Market Report”. The Business Research Company, 2023.

Available at: https://www.thebusinessresearchcompany.com/report/optical-transport-network-

global-market-report. Accessed 21 April 2023.

https://doi.org/10.1109/ICTON.2015.7193532
https://doi.org/10.1016/j.isci.2019.11.026
https://doi.org/10.1364/JOCN.12.00A123
https://doi.org/10.1016/j.optcom.2020.126055
https://doi.org/10.1109/MCOM.2010.5560586
https://media.ciena.com/documents/Experts_Guide_to_OTN_ebook-Utilities-Edition.pdf
https://media.ciena.com/documents/Experts_Guide_to_OTN_ebook-Utilities-Edition.pdf
https://www.viavisolutions.com/en-us/literature/g709-optical-transport-network-otn-white-papers-books-en.pdf
https://www.viavisolutions.com/en-us/literature/g709-optical-transport-network-otn-white-papers-books-en.pdf
https://doi.org/10.1109/35.846090
https://www.thebusinessresearchcompany.com/report/optical-transport-network-global-market-report
https://www.thebusinessresearchcompany.com/report/optical-transport-network-global-market-report

References 216

[12] J. Justesen, K. J. Larsen, and L. A. Pedersen, “Error Correcting Coding for OTN”.

IEEE Communications Magazine, vol. 48, no. 9, pp. 70–75, September 2010.

https://doi.org/10.1109/MCOM.2010.5560589.

[13] S. V. Kartalopoulos, “A Primer on Cryptography in Communications”. IEEE Communications

Magazine, vol. 44, no. 4, pp. 146–151, April 2006. https://doi.org/10.1109/MCOM.2006.1632662.

[14] S. V. Kartalopoulos, “Quantum Cryptography for Secure Optical Networks”. IEEE International

Conference on Communications, Glasgow, UK, pp. 1311–1316, 2007.

https://doi.org/10.1109/ICC.2007.221.

[15] K. Guan, J. Kakande, and J. Cho, “On Deploying Encryption Solutions to Provide Secure

Transport-as-a-Service (TaaS) in Core and Metro Networks”. 42nd European Conference on Optical

Communication (ECOC), pp. 1–3, 2016.

[16] Cho J. Y., “Securing Optical Networks by Modern Cryptographic Techniques”. NordSec 2019.

Lecture Notes in Computer Science, vol. 11875. Springer, Cham, 2019.

https://doi.org/10.1007/978-3-030-35055-0_8.

[17] Dilip Kumar Sharma, Ningthoujam Chidananda Singh, Daneshwari A Noola, Amala Nirmal Doss,

and Janaki Sivakumar, “A Review on Various Cryptographic Techniques & Algorithms”.

Materials Today, vol. 51, part 1, pp. 104–109, 2022. https://doi.org/10.1016/j.matpr.2021.04.583.

[18] Rachelle Miller, “The OSI Model: An Overview”. SANS Institute, white paper, 2001. Available at:

https://www.sans.org/white-papers/543/. Accessed 21 April 2023.

[19] Xinmiao Zhang and K. K. Parhi, “High-Speed VLSI Architectures for the AES Algorithm”.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 9, pp. 957–967,

September 2004. https://doi.org/10.1109/TVLSI.2004.832943.

[20] L. Henzen and W. Fichtner, “FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet

Applications”. Proceedings of ESSCIRC, Seville, Spain, pp. 202–205, 2010.

https://doi.org/10.1109/ESSCIRC.2010.5619894.

[21] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Efficient and High-Performance Parallel

Hardware Architectures for the AES-GCM”. IEEE Transactions on Computers, vol. 61, no. 8,

pp. 1165–1178, August 2012. https://doi.org/10.1109/TC.2011.125.

[22] A. P. Anusha Naidu and P. K. Joshi, “FPGA Implementation of Fully Pipelined Advanced

Encryption Standard”. 2015 International Conference on Communications and Signal Processing

(ICCSP), pp. 649–653, 2015. https://doi.org/10.1109/ICCSP.2015.7322568.

https://doi.org/10.1109/MCOM.2010.5560589
https://doi.org/10.1109/MCOM.2006.1632662
https://doi.org/10.1109/ICC.2007.221
https://doi.org/10.1007/978-3-030-35055-0_8
https://doi.org/10.1016/j.matpr.2021.04.583
https://www.sans.org/white-papers/543/
https://doi.org/10.1109/TVLSI.2004.832943
https://doi.org/10.1109/ESSCIRC.2010.5619894
https://doi.org/10.1109/TC.2011.125
https://doi.org/10.1109/ICCSP.2015.7322568

References 217

[23] B. Buhrow, K. Fritz, B. Gilbert, and E. Daniel, “A Highly Parallel AES-GCM Core for

Authenticated Encryption of 400 Gb/s Network Protocols”. International Conference on

ReConFigurable Computing and FPGAs (ReConFig), Riviera Maya, Mexico, pp. 1–7, 2015.

https://doi.org/10.1109/ReConFig.2015.7393321.

[24] David Smekal, Jan Hajny, and Zdenek Martinasek, “Comparative Analysis of Different

Implementations of Encryption Algorithms on FPGA Network Cards”. IFAC-PapersOnLine,

vol. 51, no. 6, pp. 312–317, 2018. https://doi.org/10.1016/j.ifacol.2018.07.172.

[25] E. Mobilon, R. Bernardo, and L. R. Monte, “100 Gbit/s Optical Transport Network 40 nm Test Chip

Design and Prototyping”. SBMO/IEEE MTT-S International Microwave and Optoelectronics

Conference (IMOC), Águas de Lindóia, pp. 1–5, 2017.

https://doi.org/10.1109/IMOC.2017.8121108.

[26] R. Bernardo, A. H. Salvador, E. Mobilon, L. R. Monte, S. Boisclair, and A. Warshawsky,

“Design and FPGA Implementation of a 100 Gbit/s Optical Transport Network Processor”.

23rd International Conference on Field Programmable Logic and Applications, Porto, Portugal,

pp. 1–4, 2013. https://doi.org/10.1109/FPL.2013.6645601.

[27] Anton A. Huurdeman. The Worldwide History of Telecommunications. John Wiley & Sons,

ISBN 9780471205050, 2003. https://doi.org/10.1002/0471722243.

[28] D. Y. Al-Salameh, M. T. Fatehi, W. J. Gartner, S. Lumish, B. L. Nelson, and K. K. Raychaudhuri,

“Optical Networking”. Bell Labs Technical Journal, vol. 3, no. 1, pp. 39–61, January-March 1998.

https://doi.org/10.1002/bltj.2092.

[29] “MPLS Technology White Paper”. New H3C Technologies, 2020. Available at:

https://www.h3c.com/en/Support/Resource_Center/EN/Home/Switches/00-

Public/Trending/Technology_White_Papers/MPLS_Technology_WP-6W100/.

Accessed 21 April 2023.

[30] William Stallings. Cryptography and Network Security – Principles and Practice. Seventh edition,

Pearson, ISBN 9781292158587, 2017.

[31] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineering – Design

Principles and Practical Applications. Wiley Publishing, Inc., ISBN 9780470474242, 2010.

[32] Shu Lin. An Introduction to Error-Correcting Codes. Prentice-Hall, USA,

ISBN 9780134828107, 1970.

[33] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland

Publishing Company, Netherlands, ISBN 9780444850096, 1977.

[34] “Forward Error Correction for Submarine Systems”. ITU-T recommendation G.975, October 2000.

https://doi.org/10.1109/ReConFig.2015.7393321
https://doi.org/10.1016/j.ifacol.2018.07.172
https://doi.org/10.1109/IMOC.2017.8121108
https://doi.org/10.1109/FPL.2013.6645601
https://doi.org/10.1002/0471722243
https://doi.org/10.1002/bltj.2092
https://www.h3c.com/en/Support/Resource_Center/EN/Home/Switches/00-Public/Trending/Technology_White_Papers/MPLS_Technology_WP-6W100/
https://www.h3c.com/en/Support/Resource_Center/EN/Home/Switches/00-Public/Trending/Technology_White_Papers/MPLS_Technology_WP-6W100/

References 218

[35] “Switched OTN for Regional Carrier Networks”. Fujitsu, white paper, 2013. Available at:

https://www.fujitsu.com/ca/en/imagesgig5/OTN-for-Regional-Carriers.pdf.

Accessed 21 April 2023.

[36] “The Role of OTN Switching in 100G & Beyond Transport Networks”. Coriant, white paper, 2015.

Available at: https://www.ofcconference.org/getattachment/90c0e6a4-08c1-45fb-a7f2-

2957d444dc7d/The-Role-of-OTN-Switching-in-100G-Beyond-Transpo.aspx.

Accessed 21 April 2023.

[37] M. L. Jones, “Mapping and Transport Standard for OTU4”. 2010 Conference on Optical Fiber

Communication (OFC/NFOEC), pp. 1–3, 2010. https://doi.org/10.1364/NFOEC.2010.NTuB2.

[38] “Forward Error Correction for High Bit-Rate DWDM Submarine Systems”.

ITU-T recommendation G.975.1, 2004.

[39] “OTU4 Long-Reach Interface”. ITU-T recommendation G.709.2/Y.1331.2, 2018.

[40] Govind P. Agrawal. Fiber-Optic Communication Systems. Second edition, John Wiley & Sons,

USA, ISBN 9780471175407, 1997.

[41] Govind P. Agrawal. Nonlinear Fiber Optics. Second edition, Academic Press, USA,

ISBN 9780120451425, 1995.

[42] T. Huang, F. Qi, and F. Gao, “Failure Detection and Localization in OTN Based on Optical Power

Analysis”. 2010 Second International Conference on Communication Software and Networks,

pp. 46–51, 2010. https://doi.org/10.1109/ICCSN.2010.68.

[43] M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical Layer Security in Fiber-Optic Networks”.

IEEE Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 725–736, September

2011. https://doi.org/10.1109/TIFS.2011.2141990.

[44] N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-Layer Security in Evolving

Optical Networks”. IEEE Communications Magazine, vol. 54, no. 8, pp. 110–117, August 2016.

https://doi.org/10.1109/MCOM.2016.7537185.

[45] M. Zafar Iqbal, H. Fathallah, and N. Belhadj, “Optical Fiber Tapping: Methods and Precautions”.

8th International Conference on High-Capacity Optical Networks and Emerging Technologies,

pp. 164–168, 2011. https://doi.org/10.1109/HONET.2011.6149809.

[46] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,

“Software-Defined Networking: A Comprehensive Survey”. Proceedings of the IEEE, vol. 103,

no. 1, pp. 14-76, 2015. https://doi.org/10.1109/JPROC.2014.2371999.

https://www.fujitsu.com/ca/en/imagesgig5/OTN-for-Regional-Carriers.pdf
https://www.ofcconference.org/getattachment/90c0e6a4-08c1-45fb-a7f2-2957d444dc7d/The-Role-of-OTN-Switching-in-100G-Beyond-Transpo.aspx
https://www.ofcconference.org/getattachment/90c0e6a4-08c1-45fb-a7f2-2957d444dc7d/The-Role-of-OTN-Switching-in-100G-Beyond-Transpo.aspx
https://doi.org/10.1364/NFOEC.2010.NTuB2
https://doi.org/10.1109/ICCSN.2010.68
https://doi.org/10.1109/TIFS.2011.2141990
https://doi.org/10.1109/MCOM.2016.7537185
https://doi.org/10.1109/HONET.2011.6149809
https://doi.org/10.1109/JPROC.2014.2371999

References 219

[47] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and W. Kellerer, “Software Defined

Optical Networks (SDONs): A Comprehensive Survey”. IEEE Communications Surveys &

Tutorials, vol. 18, no. 4, pp. 2738-2786, 2016. https://doi.org/10.1109/COMST.2016.2586999.

[48] R. Alvizu et al., “Comprehensive Survey on T-SDN: Software-Defined Networking for Transport

Networks”. IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2232-2283, 2017.

https://doi.org/10.1109/COMST.2017.2715220.

[49] Open and Disaggregated Transport Network (ODTN) project website. Available at:

https://opennetworking.org/odtn/. Accessed 21 April 2023.

[50] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in Software Defined Networks:

A Survey”. IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2317–2346, 2015.

https://doi.org/10.1109/COMST.2015.2474118.

[51] H. Davenport. The Higher Arithmetic – An Introduction to The Theory of Numbers. Eighth edition,

Cambridge University Press, ISBN 9780521722360, 2008.

[52] Joseph H. Silverman. A Friendly Introduction to Number Theory. Fourth edition, Pearson,

ISBN 9780321816191, 2012.

[53] Paar, Christof and Pelzl, Jan. Understanding Cryptography – A Textbook for Students and

Practitioners. Springer, ISBN 9783642041006, 2010.

[54] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, ISBN 9780849385230, 1997.

[55] Boudot, F., Gaudry, P., Guillevic, A., Heninger, N., Thomé, E., Zimmermann, P., “Comparing the

Difficulty of Factorization and Discrete Logarithm: A 240-Digit Experiment”. Advances in

Cryptology – CRYPTO 2020. Lecture Notes in Computer Science, vol 12171. Springer, Cham, 2020.

https://doi.org/10.1007/978-3-030-56880-1_3.

[56] D. Kahn. The Codebreakers – The Story of Secret Writing. Macmillan, New York,

ISBN 9780025604605, 1967.

[57] Singh, Simon. The Code Book – The Secret History of Codes and Code-Breaking. Fourth State,

London, ISBN 9781857028799, 1999.

[58] Image of a “Scytale” device. Available at:

https://commons.wikimedia.org/w/index.php?title=File:Skytale.png&oldid=4477453.

Accessed 21 April 2023.

https://doi.org/10.1109/COMST.2016.2586999
https://doi.org/10.1109/COMST.2017.2715220
https://opennetworking.org/odtn/
https://doi.org/10.1109/COMST.2015.2474118
https://doi.org/10.1007/978-3-030-56880-1_3
https://commons.wikimedia.org/w/index.php?title=File:Skytale.png&oldid=4477453

References 220

[59] Image representing the Caesar cipher. Available at:

https://commons.wikimedia.org/wiki/File:Caesar_cipher_left_shift_of_3.svg.

Accessed 21 April 2023.

[60] Picture of a metallic cipher disk. Available at:

https://commons.wikimedia.org/wiki/File:CipherDisk2000.jpg. Accessed 21 April 2023.

[61] Image of the “Tabula Recta”. Available at:

https://commons.wikimedia.org/wiki/File:Vigen%C3%A8re_square_shading.svg.

Accessed 21 April 2023.

[62] P. C. J. Hill, “Vigenère Through Shannon to Planck – A Short History of Electronic Cryptographic

Systems”. IEEE History of Telecommunications Conference, pp. 41–46, 2008.

https://doi.org/10.1109/HISTELCON.2008.4668712.

[63] Dirk Rijmenants, Cipher Machines and Cryptology Website. Available at:

https://www.ciphermachinesandcryptology.com/. Accessed 21 April 2023.

[64] Picture of the Enigma cryptography machine. Available at:

https://commons.wikimedia.org/wiki/File:EnigmaMachine.jpg. Accessed 21 April 2023.

[65] 3D image of the Enigma cryptography machine rotors. Available at:

https://commons.wikimedia.org/wiki/File:Enigma_rotor_set.png. Accessed 21 April 2023.

[66] Picture of the Enigma cryptography machine plug board. Available at:

https://commons.wikimedia.org/wiki/File:Enigma-plugboard.jpg. Accessed 21 April 2023.

[67] Auguste Kerckhoffs, “La Cryptographie Militaire”. Journal des Sciences Militaires,

vol. 9, pp. 5–38, 1883.

[68] C. E. Shannon, “Communication Theory of Secrecy Systems”. The Bell System Technical Journal,

vol. 28, no. 4, pp. 656–715, October 1949. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x.

[69] W. Diffie and M. Hellman, “New Directions in Cryptography”. IEEE Transactions on Information

Theory, vol. 22, no. 6, pp. 644–654, November 1976. https://doi.org/10.1109/TIT.1976.1055638.

[70] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems”. Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

https://doi.org/10.1145/359340.359342.

[71] Bravyi S., Dial O., Gambetta J. M., Gil D., and Nazario Z., “The Future of Quantum Computing

with Superconducting Qubits”. Journal of Applied Physics. vol. 132, 160902, 2022.

https://doi.org/10.1063/5.0082975.

https://commons.wikimedia.org/wiki/File:Caesar_cipher_left_shift_of_3.svg
https://commons.wikimedia.org/wiki/File:CipherDisk2000.jpg
https://commons.wikimedia.org/wiki/File:Vigen%C3%A8re_square_shading.svg
https://doi.org/10.1109/HISTELCON.2008.4668712
https://www.ciphermachinesandcryptology.com/
https://commons.wikimedia.org/wiki/File:EnigmaMachine.jpg
https://commons.wikimedia.org/wiki/File:Enigma_rotor_set.png
https://commons.wikimedia.org/wiki/File:Enigma-plugboard.jpg
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/359340.359342
https://doi.org/10.1063/5.0082975

References 221

[72] A. V. Sergienko (editor). Quantum Communications and Cryptography.

CRC Press (Taylor & Francis), ISBN 9780849336843, 2006.

[73] Bennett, Charles H. et al., “Quantum Cryptography”. Scientific American, vol. 267, no. 4,

pp. 50–57, 1992. https://www.jstor.org/stable/24939253.

[74] Bennett, C. H., Bessette, F., Brassard, G., et al., “Experimental Quantum Cryptography”.

Journal of. Cryptology, vol. 5, pp. 3–28, 1992. https://doi.org/10.1007/BF00191318.

[75] Ralph C. Merkle, “Secure Communications Over Insecure Channels”. Communications of the ACM,

vol. 21, no. 4, pp.294–299, 1978. https://doi.org/10.1145/359460.359473.

[76] “Understanding Quantum Cryptography”. ID Quantique, white paper, 2020. Available at:

https://www.quantumcommshub.net/wp-content/uploads/2020/09/Understanding-Quantum-

Cryptography_White-Paper.pdf. Accessed 21 April 2023.

[77] Bennett, C. H. and Brassard, G., “Quantum Cryptography: Public Key Distribution and Coin

Tossing”. Proceedings of the International Conference on Computers, Systems & Signal Processing,

Bangalore, India, pp. 175-17, 1984. https://doi.org/10.48550/arXiv.2003.06557.

[78] Z. Yuan et al., “10-Mb/s Quantum Key Distribution”. Journal of Lightwave Technology, vol. 36,

no. 16, pp. 3427–3433, 2018. https://doi.org/10.1109/JLT.2018.2843136.

[79] MagiQ company website. Available at: https://www.magiqtech.com/. Accessed 21 April 2023.

[80] KETS company website. Available at: https://kets-quantum.com/. Accessed 21 April 2023.

[81] ID Quantique company website. Available at: https://www.idquantique.com/.

Accessed 21 April 2023.

[82] Toshiba company website. Available at: https://www.global.toshiba/ww/products-solutions/security-

ict/qkd.html. Accessed 21 April 2023.

[83] OpenQKD project website. Available at: https://openqkd.eu/. Accessed 21 April 2023.

[84] European Telecommunications Standards Institute (ETSI). Industry Specification Group on

Quantum Key Distribution website. Available at: https://www.etsi.org/committee/qkd.

Accessed 21 April 2023.

[85] “ID Quantique, SK Telecom & Nokia Secure Optical Transport System Using Quantum Key

Distribution (QKD)”. Press release, 2018. Available at: https://www.idquantique.com/idq-sk-

telecom-nokia-secure-optical-transport-system-using-qkd/. Accessed 21 April 2023.

https://www.jstor.org/stable/24939253
https://doi.org/10.1007/BF00191318
https://doi.org/10.1145/359460.359473
https://www.quantumcommshub.net/wp-content/uploads/2020/09/Understanding-Quantum-Cryptography_White-Paper.pdf
https://www.quantumcommshub.net/wp-content/uploads/2020/09/Understanding-Quantum-Cryptography_White-Paper.pdf
https://doi.org/10.48550/arXiv.2003.06557
https://doi.org/10.1109/JLT.2018.2843136
https://www.magiqtech.com/
https://kets-quantum.com/
https://www.idquantique.com/
https://www.global.toshiba/ww/products-solutions/security-ict/qkd.html
https://www.global.toshiba/ww/products-solutions/security-ict/qkd.html
https://openqkd.eu/
https://www.etsi.org/committee/qkd
https://www.idquantique.com/idq-sk-telecom-nokia-secure-optical-transport-system-using-qkd/
https://www.idquantique.com/idq-sk-telecom-nokia-secure-optical-transport-system-using-qkd/

References 222

[86] “ADVA to play key role in OPENQKD project pioneering market-ready quantum-safe

communications”. Press release, 2020. Available at: https://www.adva.com/en/newsroom/press-

releases/20200128-adva-to-play-key-role-in-openqkd-project. Accessed 21 April 2023.

[87] Joan Daemen and Vincent Rijmen, “AES Proposal: Rijndael”. Available at:

https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-

development/rijndael-ammended.pdf. Accessed 21 April 2023.

[88] “Advanced Encryption Standard (AES)”. FIPS Publication 197, National Institute of Standards and

Technology (NIST), 2001.

[89] Joan Daemen and Vincent Rijmen. The Design of Rijndael – The Advanced Encryption Standard

(AES). Second edition, Springer, ISBN 9783662607688, 2020.

https://doi.org/10.1007/978-3-662-60769-5.

[90] Image representing the AES algorithm Substitute Bytes transformation. Available at:

https://commons.wikimedia.org/wiki/File:AES-SubBytes.svg. Accessed 21 April 2023.

[91] Image representing the AES algorithm Shift Rows transformation. Available at:

https://commons.wikimedia.org/wiki/File:AES-ShiftRows.svg. Accessed 21 April 2023.

[92] Image representing the AES Algorithm Mix Columns transformation. Available at:

https://commons.wikimedia.org/wiki/File:AES-MixColumns.svg. Accessed 21 April 2023.

[93] Image representing the AES algorithm Add Round Key transformation. Available at:

https://commons.wikimedia.org/wiki/File:AES-AddRoundKey.svg. Accessed 21 April 2023.

[94] Morris Dworkin, “Recommendation for Block Cipher Modes of Operation: Methods and

Techniques”, NIST Special Publication 800-38A, 2001.

[95] Rolf Oppliger. Cryptography 101 – From Theory to Practice. Artech House,

ISBN 9781630818463, 2021.

[96] S. Goldwasser and S. Micali, “Probabilistic Encryption and How to Play Mental Poker Keeping

Secret All Partial Information”. Proc. 14th Symposium on Theory of Computing,

pp. 365–377, 1982. https://doi.org/10.1145/800070.802212.

[97] Image of the Tux penguin, Linux mascot created in 1996 by Larry Ewing with GIMP.

lewing@isc.tamu.edu. Available at: https://commons.wikimedia.org/wiki/File:Tux.jpg.

Accessed 21 April 2023.

[98] Image derived from the Tux penguin, Linux mascot created in 1996 by Larry Ewing with GIMP,

encrypted with the ECB mode of operation. lewing@isc.tamu.edu. Available at:

https://commons.wikimedia.org/wiki/File:Tux_ecb.jpg. Accessed 21 April 2023.

https://www.adva.com/en/newsroom/press-releases/20200128-adva-to-play-key-role-in-openqkd-project
https://www.adva.com/en/newsroom/press-releases/20200128-adva-to-play-key-role-in-openqkd-project
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://doi.org/10.1007/978-3-662-60769-5
https://commons.wikimedia.org/wiki/File:AES-SubBytes.svg
https://commons.wikimedia.org/wiki/File:AES-ShiftRows.svg
https://commons.wikimedia.org/wiki/File:AES-MixColumns.svg
https://commons.wikimedia.org/wiki/File:AES-AddRoundKey.svg
https://doi.org/10.1145/800070.802212
mailto:lewing@isc.tamu.edu
https://commons.wikimedia.org/wiki/File:Tux.jpg
mailto:lewing@isc.tamu.edu
https://commons.wikimedia.org/wiki/File:Tux_ecb.jpg

References 223

[99] Image derived from the Tux penguin, Linux mascot created in 1996 by Larry Ewing with GIMP,

encrypted with the CBC or CTR mode of operation. lewing@isc.tamu.edu. Available at:

https://commons.wikimedia.org/wiki/File:Tux_secure.jpg. Accessed 21 April 2023.

[100] Morris Dworkin, “Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode

(GCM) and GMAC”. NIST Special Publication 800-38D, 2007.

[101] A. Satoh, “High-Speed Parallel Hardware Architecture for Galois Counter Mode”. IEEE

International Symposium on Circuits and Systems, New Orleans, LA, USA, pp. 1863–1866, 2007.

https://doi.org/10.1109/ISCAS.2007.378278.

[102] E. Savaş and Ç. K. Koç, “Finite Field Arithmetic for Cryptography”. IEEE Circuits and Systems

Magazine, vol. 10, no. 2, pp. 40–56, 2010. https://doi.org/10.1109/MCAS.2010.936785.

[103] T. Chen, W. Huo, and Z. Liu, “Design and Efficient FPGA Implementation of Ghash Core for

AES-GCM”. International Conference on Computational Intelligence and Software Engineering,

Wuhan, China, pp. 1–4, 2010. https://doi.org/10.1109/CISE.2010.5676905.

[104] McGrew D. A. and Viega J., “The Security and Performance of the Galois/Counter Mode (GCM) of

Operation”. Progress in Cryptology – INDOCRYPT 2004. Lecture Notes in Computer Science,

vol. 3348, pp. 343–355. Springer, Berlin, Heidelberg, 2004.

https://doi.org/10.1007/978-3-540-30556-9_27.

[105] McGrew David and Viega John, “The Security and Performance of the Galois/Counter Mode of

Operation (Full Version)”. IACR Cryptology ePrint Archive, report 2004/193. Available at:

https://eprint.iacr.org/2004/193.pdf. Accessed 21 April 2023.

[106] Antoine Joux, “Authentication Failures in NIST Version of GCM”. National Institute of Standards

and Technology (NIST), 2006. Available at: https://csrc.nist.gov/csrc/media/projects/block-cipher-

techniques/documents/bcm/joux_comments.pdf. Accessed 21 April 2023.

[107] Niels Ferguson, “Authentication Weaknesses in GCM”. Microsoft Corporation, 2005. Available at:

https://csrc.nist.rip/CSRC/media/Projects/Block-Cipher-

Techniques/documents/BCM/Comments/CWC-GCM/Ferguson2.pdf. Accessed 21 April 2023.

[108] Venkateswaran Kasirajan. Fundamentals of Quantum Computing – Theory and Practice. Springer,

ISBN 9783030636883, 2021. https://doi.org/10.1007/978-3-030-63689-0.

[109] Daniel D. Stancil and Gregory T. Byrd. Principles of Superconducting Quantum Computers.

John Wiley & Sons, Inc., ISBN 9781119750727, 2022.

[110] Thomas Wong. Introduction to Classical and Quantum Computing. Rooted Grove,

ISBN 9798985593105, 2022.

mailto:lewing@isc.tamu.edu
https://commons.wikimedia.org/wiki/File:Tux_secure.jpg
https://doi.org/10.1109/ISCAS.2007.378278
https://doi.org/10.1109/MCAS.2010.936785
https://doi.org/10.1109/CISE.2010.5676905
https://doi.org/10.1007/978-3-540-30556-9_27
https://eprint.iacr.org/2004/193.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf
https://csrc.nist.rip/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/CWC-GCM/Ferguson2.pdf
https://csrc.nist.rip/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/CWC-GCM/Ferguson2.pdf
https://doi.org/10.1007/978-3-030-63689-0

References 224

[111] Arute, F. et al., “Quantum Supremacy Using a Programmable Superconducting Processor”.

Nature, vol. 574, pp. 505–510, 2019. https://doi.org/10.1038/s41586-019-1666-5.

[112] Pan, F., Chen, K., and Zhang, P., “Solving the Sampling Problem of the Sycamore Quantum

Circuits”. Physical Review Letters, vol. 129, no. 9, pp. 090502, 2022.

https://doi.org/10.1103/PhysRevLett.129.090502.

[113] Zhong, H.-S. et al., “Quantum Computational Advantage Using Photons”. Science, vol. 370,

no. 6523, pp. 1460–1463, 2020. https://doi.org/10.1126/science.abe8770.

[114] Madsen, L. S., Laudenbach, F., Askarani, M. F., et al., “Quantum Computational Advantage with a

Programmable Photonic Processor”. Nature, vol. 606, pp. 75–81, 2022.

https://doi.org/10.1038/s41586-022-04725-x.

[115] Ladd, T., Jelezko, F., Laflamme, R., et al., “Quantum computers”. Nature, vol. 464, pp. 45–53,

2010. https://doi.org/10.1038/nature08812.

[116] Sen, A. and Rezai, K., “Comparing Qubit Platforms in the Race to Feasible Quantum Computing”.

Journal of Student Research, vol. 10, no. 4, 2021. https://doi.org/10.47611/jsrhs.v10i4.2236.

[117] P. W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”.

Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134,

1994. https://doi.org/10.1109/SFCS.1994.365700.

[118] Lov K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”. Proceedings of the

28th ACM Symposium on Theory of Computing (STOC), pp. 212–219, 1996.

https://doi.org/10.1145/237814.237866. Updated version available at

https://doi.org/10.48550/arXiv.quant-ph/9605043.

[119] Michele Mosca and Marco Piani, “2021 Quantum Threat Timeline Report”. Global Risk Institute,

2022. Available at: https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/.

Accessed 21 April 2023.

[120] National Academies of Sciences, Engineering, and Medicine. Quantum Computing – Progress and

Prospects. The National Academies Press, ISBN 9780309479691, 2019.

https://doi.org/10.17226/25196.

[121] IBM 2022 Development Roadmap. Available at: https://www.ibm.com/quantum/roadmap.

Accessed 21 April 2023.

[122] Bernstein, D., Lange, T., “Post-Quantum Cryptography”. Nature, vol. 549, pp. 188–194, 2017.

https://doi.org/10.1038/nature23461.

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.129.090502
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/nature08812
https://doi.org/10.47611/jsrhs.v10i4.2236
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1145/237814.237866
https://doi.org/10.48550/arXiv.quant-ph/9605043
https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/
https://doi.org/10.17226/25196
https://www.ibm.com/quantum/roadmap
https://doi.org/10.1038/nature23461

References 225

[123] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen (editors). Post-Quantum Cryptography.

Springer Berlin, Heidelberg, ISBN 9783540887010, 2009.

https://doi.org/10.1007/978-3-540-88702-7.

[124] Joseph, D., Misoczki, R., Manzano, M., et al., “Transitioning Organizations to Post-Quantum

Cryptography”. Nature, vol. 605, pp. 237–243, 2022. https://doi.org/10.1038/s41586-022-04623-2.

[125] “Transitioning to a Quantum-Secure Economy”. World Economic Forum, white paper, 2022.

Available at: https://www.weforum.org/whitepapers/transitioning-to-a-quantum-secure-economy.

Accessed 21 April 2023.

[126] “IEEE Standard for SystemVerilog – Unified Hardware Design, Specification, and Verification

Language”. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), February 2018.

https://doi.org/10.1109/IEEESTD.2018.8299595.

[127] R. Ginosar, “Metastability and Synchronizers: A Tutorial”. IEEE Design & Test of Computers,

vol. 28, no. 5, pp. 23–35, September-October 2011. https://doi.org/10.1109/MDT.2011.113.

[128] Mohit Arora. The Art of Hardware Architecture – Design Methods and Techniques for Digital

Circuits. Springer, ISBN 9781461403968, 2012. https://doi.org/10.1007/978-1-4614-0397-5.

[129] ModelSim® simulation tool. Available at: https://eda.sw.siemens.com/en-US/ic/modelsim/.

Accessed 21 April 2023.

[130] Lawrence E. Bassham III, “The Advanced Encryption Standard Algorithm Validation Suite

(AESAVS)”. National Institute of Standards and Technology (NIST), 2002.

[131] “Universal Verification Methodology (UVM) 1.2 User’s Guide”. Accellera Systems Initiative, 2015.

Available at:

https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf.

Accessed 21 April 2023.

[132] Pankaj S. Vitankar and A. K. Kureshi, “UVM Architecture for Verification”. International Journal

of Electronics and Communication Engineering & Technology, vol. 7, no. 3, pp. 29–37, 2016.

[133] A. Salvador, D. Carvalho, C. Nakandakare, E. Mobilon, J. C. de Oliveira, and D. S. Arantes,

“100 Gbit/s FEC for OTN Protocol: Design Architecture and Implementation Results”.

International Telecommunications Symposium (ITS), São Paulo, Brazil, pp. 1–5, 2014.

https://doi.org/10.1109/ITS.2014.6947951.

[134] Eduardo Mobilon and Dalton Soares Arantes, “100 Gbit/s AES-GCM Cryptography Engine for

Optical Transport Network Systems: Architecture, Design and 40 nm Silicon Prototyping”.

Microelectronics Journal, vol. 116, 105229, ISSN 0026-2692, 2021.

https://doi.org/10.1016/j.mejo.2021.105229.

https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1038/s41586-022-04623-2
https://www.weforum.org/whitepapers/transitioning-to-a-quantum-secure-economy
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/MDT.2011.113
https://doi.org/10.1007/978-1-4614-0397-5
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://doi.org/10.1109/ITS.2014.6947951
https://doi.org/10.1016/j.mejo.2021.105229

References 226

[135] “Considerations on OTNsec: GEP and OEP”. Contribution SG15-C.1683,

ITU-T Study Group 15, 2020.

[136] “OTNSec at the ODU Layer”. Contribution SG15-C-1841, ITU-T Study Group 15, 2020.

[137] “Further Considerations on OTNsec Using L1GCM Based OTN Encryption Procedure”.

Contribution SG15-C.1984, ITU-T Study Group 15, 2020.

[138] “Overhead Usage for OxUsec”. Contribution SG15-C-2083, ITU-T Study Group 15, 2020.

[139] “Further OTN Security Considerations”. Contribution SG15-C.2483, ITU-T Study Group 15, 2021.

[140] “Optical Transport Network Security”. ITU-T Series G Supplement 76, 2021.

[141] “Flexible OTN Short-Reach Interfaces”. ITU-T recommendation G.709.1/Y.1331.1, 2018.

[142] “Flexible OTN Short-Reach Interfaces”. ITU-T recommendation G.709.1/Y.1331.1,

Amendment 2, 2020.

227

Appendix A

CONFIGURATION REGISTER

MEMORY MAP

Table A.1 shows the 100G AES-GCM Cryptography Engine configuration register

memory map. They can be accessed by the software layer through the CPU interface,

according to their types: read only (R), write only (W), or read and write (RW).

Each register is further described in the subsequent sections.

Name Address Type Description

1 ips_access_tst 0x00 RW 16-bit dummy register provided for writing and reading
access tests.

2 rtl_version 0x01 R Shows the implementation revision and version data of
the Crypto4OTN block.

3 blk_rst 0x02 W Used to reset the Crypto4OTN block.

4 blk_ctr 0x03 RW Used to control the main functionalities of the
Crypto4OTN block.

5 (RESERVED) 0x07 – 0x04 – Reserved for future use.

6 tx_intr_status 0x08 R TX processor status of interrupt events.

7 tx_intr_mask 0x09 RW TX processor interrupt request mask.

8 tx_intr_hist 0x0a RW TX processor history of interrupt events.

9 rx_intr_status 0x0b R RX processor status of interrupt events.

10 rx_intr_mask 0x0c RW RX processor interrupt request mask.

11 rx_intr_hist 0x0d RW RX processor history of interrupt events.

12 tx_proc_ctrl 0x0e RW TX processor control.

13 tx_session_state 0x0f RW TX processor crypto session state control.

14 tx_session_status 0x10 R TX processor crypto session status.

15 tx_session_period 0x12 – 0x11 RW TX processor session period.

16 tx_session_threshold 0x14 – 0x13 RW TX processor session period threshold.

17 tx_key_reuse_period 0x16 – 0x15 RW TX processor key reuse period.

18 tx_conseq_act 0x17 RW TX processor consequent actions.

19 tx_key_0 0x27 – 0x18 W TX processor crypto session 256-bit key 0.

Appendix A – Configuration Register Memory Map 228

Name Address Type Description

20 tx_key_1 0x37 – 0x28 W TX processor crypto session 256-bit key 1.

21 tx_key_change 0x38 W TX processor key change control.

22 tx_aad_buffer 0x3a – 0x39 RW TX processor additional authenticated data buffer.

23 tx_aad_capture 0x3b W TX processor additional authenticated data buffer capture
control.

24 tx_iv_csid 0x3d – 0x3c RW TX processor IV crypto session ID.

25 tx_iv_cbid 0x3f – 0x3e R TX processor IV crypto block ID.

26 tx_iv_cpid 0x41 – 0x40 R TX processor IV crypto packet ID.

27 tx_calc_tag 0x49 – 0x42 R TX processor calculated authentication TAG.

28 tx_repl_signal_pattern 0x4a RW TX processor replacement signal pattern.

29 tx_cnt_latch 0x4b W TX processor counter latch control.

30 rx_proc_ctrl 0x4c RW RX processor control.

31 rx_session_state 0x4d RW RX processor crypto session state control.

32 rx_session_status 0x4e R RX processor crypto session status.

33 rx_session_period 0x50 – 0x4f RW RX processor session period.

34 rx_session_threshold 0x52 – 0x51 RW RX processor session period threshold.

35 rx_key_reuse_period 0x54 – 0x53 RW RX processor key reuse period.

36 rx_conseq_act 0x55 RW RX processor consequent actions.

37 rx_key_0 0x65 – 0x56 W RX processor crypto session 256-bit key 0.

38 rx_key_1 0x75 – 0x66 W RX processor crypto session 256-bit key 1.

39 rx_aad_buffer 0x77 – 0x76 R RX processor additional authenticated data buffer.

40 rx_iv_csid 0x79 – 0x78 R RX processor IV crypto session ID.

41 rx_iv_cbid 0x7b – 0x7a R RX processor IV crypto block ID.

42 rx_iv_cpid 0x7d – 0x7c R RX processor IV crypto packet ID.

43 rx_calc_tag 0x85 – 0x7e R RX processor calculated authentication TAG.

44 rx_rcvd_tag 0x8d – 0x86 R RX processor received authentication TAG.

45 rx_cnt_latch 0x8e W RX processor counter latch control.

46 rx_cs_cnt_clear 0x8f W RX processor crypto session counter clear control.

47 rx_cs_cnt 0x91 – 0x90 R RX processor crypto session counter.

48 rx_cp_cnt_clear 0x92 W RX processor crypto packet counter clear control.

49 rx_cp_cnt 0x95 – 0x93 R RX processor crypto packet counter.

50 rx_loa_window_mask 0x99 – 0x96 RW RX processor loss of authentication window mask.

51 rx_loa_cnt_threshold 0x9a RW RX processor loss of authentication counter threshold.

52 rx_loa_fail_cnt_clear 0x9b W RX processor loss of authentication failure counter clear
control.

53 rx_loa_fail_cnt 0x9d – 0x9c R RX processor loss of authentication failure counter.

Appendix A – Configuration Register Memory Map 229

Name Address Type Description

54 rx_tag_fail_cnt_clear 0x9e W RX processor authentication TAG failure counter clear
control.

55 rx_tag_fail_cnt 0xa0 – 0x9f R RX processor authentication TAG failure counter.

56 rx_csks_bit_cnt_clear 0xa1 W RX processor CSKS bit counter clear control.

57 rx_csks_bit0_cnt 0xa3 – 0xa2 R RX processor CSKS bit 0 counter.

58 rx_csks_bit1_cnt 0xa5 – 0xa4 R RX processor CSKS bit 1 counter.

59 rx_csks_hist_cnt_clear 0xa6 W RX processor CSKS histogram counter clear control.

60 rx_csks_bit0_hist_cnt 0xac – 0xa7 R RX processor CSKS bit 0 histogram counter.

61 rx_csks_bit1_hist_cnt 0xb2 – 0xad R RX processor CSKS bit 1 histogram counter.

62 (RESERVED) 0xff – 0xb3 – Reserved for future use.

Table A.1 – 100G AES-GCM Cryptography Engine configuration register map.

A.1.1 IPS_ACCESS_TST – IPS ACCESS TEST

Used to write and read 16-bit data into/from the block, in order to check the IPS data bus

access. This is for testing purposes only and does not affect the block functionality.

Bit Name Description

15:0 IPS_TST
Data used to test the IPS access.
Both hard and soft reset forces all zeros asynchronously by ipg_hard_async_reset_b and
ipg_soft_reset_sync_b, respectively.

Table A.2 – Description of the register ips_access_tst.

A.1.2 RTL_VERSION – CRYPTO4OTN RTL VERSION

Stores version and revision information for the Crypto4OTN implementation.

The format is: 8 bits for major number and 8 bits for minor number. This register starts

with 0x0100 and is updated only when a new version of the block is released for tape-out

or as an IP.

Bit Name Description

15:8 RTL_VER
Stores a binary number that represents the version of the Crypto4OTN RTL implementation.
This value is not affected by soft or hard reset.

7:0 RTL_REV
Stores a binary number that represents the revision of the Crypto4OTN RTL implementation.
This value is not affected by soft or hard reset.

Table A.3 – Description of the register rtl_version.

Appendix A – Configuration Register Memory Map 230

A.1.3 BLK_RST – CRYPTO4OTN BLOCK RESET

Used to reset the Crypto4OTN block, without affecting configuration register values.

Bit Name Description

8 RX_RST

RX processor reset. It does not affect configuration register values.
This bit is cleared by hardware.
‘0’ – Normal operation.
‘1’ – Reset.

0 TX_RST

TX processor reset. It does not affect configuration register values.
This bit is cleared by hardware.
‘0’ – Normal operation.
‘1’ – Reset.

Table A.4 – Description of the register blk_rst.

A.1.4 BLK_CTR – BLOCK CONTROL

Controls the main functionalities of the Crypto4OTN block (TX and RX data paths).

Bit Name Description

15:12 RX_FLOW_CTRL_LEVELTHR
RX data path flow control FIFO level threshold setting. Used to trigger data request
assertion in “pull” mode. Minimum value is RX_FLOW_CTRL_LEVELTHR = 2.
FIFO level threshold value = 4 × RX_FLOW_CTR_LEVELTHR.

11 RX_FLOW_CTRL_MODE
RX data path flow control operation mode.
‘0’ – Push mode.
‘1’ – Pull mode.

10 LINE_LOOP
Line side far-end loopback mode control.
‘0’ – Line side far-end loopback disabled.
‘1’ – Line side far-end loopback enabled, without normal traffic disruption.

9 RX_BYP
RX data path bypass control.
‘0’ – RX data path bypass disabled.
‘1’ – RX data path bypass enabled.

8 RX_ENA
RX data path enable control.
‘0’ – RX data path disabled and all output ports de-asserted (at logic ‘0’).
‘1’ – RX data path enabled.

7:4 TX_FLOW_CTRL_LEVELTHR
TX data path flow control FIFO level threshold setting. Used to trigger data request
assertion in “pull” mode. Minimum value is TX_FLOW_CTRL_LEVELTHR = 2.
FIFO level threshold value = 4 × TX_FLOW_CTR_LEVELTHR.

3 TX_FLOW_CTRL_MODE
TX data path flow control operation mode.
‘0’ – Push mode.
‘1’ – Pull mode.

2 CLI_LOOP
Client side far-end loopback mode control.
‘0’ – Client side far-end loopback disabled.
‘1’ – Client side far-end loopback enabled, without normal traffic disruption.

1 TX_BYP
TX data path bypass control.
‘0’ – TX data path bypass disabled.
‘1’ – TX data path bypass enabled.

0 TX_ENA
TX data path enable control.
‘0’ – TX data path disabled and all output ports de-asserted (at logic ‘0’).
‘1’ – TX data path enabled.

Table A.5 – Description of the register blk_ctr.

Appendix A – Configuration Register Memory Map 231

A.1.5 RESERVED – RESERVED REGISTER

Bit Name Description
15:0 RES Reserved bits.

Table A.6 – Description of the register (RESERVED).

A.1.6 TX_INTR_STATUS – TX PROCESSOR INTERRUPT STATUS

Status of the interrupt signal sources in the TX processor. All bits are active-high.

Bit Name Description
7 FLOW_FIFO_FULL TX processor flow control FIFO full indication.

6 FLOW_FIFO_EMPTY TX processor flow control FIFO empty indication.

5 MFS_WDOG TX processor MFS watchdog expired.

4 IPY_SSF ipy_ssf_tx port asserted.

3 IPY_TSF ipy_tsf_tx port asserted.

2 SE_EXPD TX processor crypto session expired (CBID counter > tx_session_period).

1 SE_AEXP TX processor crypto session about to expire (CBID counter > tx_session_threshold).

0 SE_CSD TX processor crypto session closed (SESSION_STATUS = 0).

Table A.7 – Description of the register tx_intr_status.

A.1.7 TX_INTR_MASK – TX PROCESSOR INTERRUPT MASK

Each bit masks the corresponding interrupt request in the tx_intr_hist register.

Asserted bits disable (mask) the corresponding interrupt requests.

Bit Name Description
7 FLOW_FIFO_FULL TX processor flow control FIFO full indication.

6 FLOW_FIFO_EMPTY TX processor flow control FIFO empty indication.

5 MFS_WDOG TX processor MFS watchdog expired.

4 IPY_SSF ipy_ssf_tx port asserted.

3 IPY_TSF ipy_tsf_tx port asserted.

2 SE_EXPD TX processor crypto session expired (CBID counter > tx_session_period).

1 SE_AEXP TX processor crypto session about to expire (CBID counter > tx_session_threshold).

0 SE_CSD TX processor crypto session closed (SESSION_STATUS = 0).

Table A.8 – Description of the register tx_intr_mask.

A.1.8 TX_INTR_HIST – TX PROCESSOR INTERRUPT REQUEST HISTORY

Stores interrupts requested by their individual sources (and masked by tx_intr_mask

register). An asserted valid bit generates an interrupt request if its corresponding bit mask

is de-asserted in the tx_intr_mask register.

Appendix A – Configuration Register Memory Map 232

Once a bit is active, it can only be deactivated by writing ‘1’ into the corresponding bit or

through a global reset. The blk_rst register does not deactivate the bits in this register.

Bit Name Description
7 FLOW_FIFO_FULL TX processor flow control FIFO full indication.

6 FLOW_FIFO_EMPTY TX processor flow control FIFO empty indication.

5 MFS_WDOG TX processor MFS watchdog expired.

4 IPY_SSF ipy_ssf_tx port asserted.

3 IPY_TSF ipy_tsf_tx port asserted.

2 SE_EXPD TX processor crypto session expired (CBID counter > tx_session_period).

1 SE_AEXP TX processor crypto session about to expire (CBID counter ≥ tx_session_threshold).

0 SE_CSD TX processor crypto session closed (SESSION_STATUS = 0).

Table A.9 – Description of the register tx_intr_hist.

A.1.9 RX_INTR_STATUS – RX PROCESSOR INTERRUPT STATUS

Status of the interrupt signal sources in the RX processor. All bits are active-high.

Bit Name Description
10 LOA Loss of Authentication failure detected in the counting sliding window.

9 TAG_FAIL Authentication failure detected in the received crypto packet.

8 SE_KEY_CGD RX processor crypto session key changed.

7 FLOW_FIFO_FULL RX processor flow control FIFO full indication.

6 FLOW_FIFO_EMPTY RX processor flow control FIFO empty indication.

5 MFS_WDOG RX processor MFS watchdog expired.

4 IPY_SSF ipy_ssf_rx port asserted.

3 IPY_TSF ipy_tsf_rx port asserted.

2 SE_EXPD RX processor crypto session expired (rx_iv_cbid > rx_session_period).

1 SE_AEXP RX processor crypto session about to expire (rx_iv_cbid > rx_session_threshold).

0 SE_CSD RX processor crypto session closed (SESSION_STATUS = 0).

Table A.10 – Description of the register rx_intr_status.

A.1.10 RX_INTR_MASK – RX PROCESSOR INTERRUPT MASK

Each bit masks the corresponding interrupt request in the rx_intr_hist register.

Asserted bits disable (mask) the corresponding interrupt requests.

Bit Name Description
10 LOA Loss of Authentication failure detected in the counting sliding window.

9 TAG_FAIL Authentication failure detected in the received crypto packet.

8 SE_KEY_CGD RX processor crypto session key changed.

7 FLOW_FIFO_FULL RX processor flow control FIFO full indication.

6 FLOW_FIFO_EMPTY RX processor flow control FIFO empty indication.

5 MFS_WDOG RX processor MFS watchdog expired.

Appendix A – Configuration Register Memory Map 233

Bit Name Description
4 IPY_SSF ipy_ssf_rx port asserted.

3 IPY_TSF ipy_tsf_rx port asserted.

2 SE_EXPD RX processor crypto session expired (rx_iv_cbid > rx_session_period).

1 SE_AEXP RX processor crypto session about to expire (rx_iv_cbid > rx_session_threshold).

0 SE_CSD RX processor crypto session closed (SESSION_STATUS = 0).

Table A.11 – Description of the register rx_intr_mask.

A.1.11 RX_INTR_HIST – RX PROCESSOR INTERRUPT REQUEST HISTORY

Stores interrupts requested by their individual sources (and masked by rx_intr_mask

register). An asserted valid bit generates an interrupt request if its corresponding bit mask

is de-asserted in the rx_intr_mask register.

Once a bit is active, it can only be deactivated by writing ‘1’ into the corresponding bit or

through a global reset. The blk_rst register does not deactivate the bits in this register.

Bit Name Description
10 LOA Loss of Authentication failure detected in the counting sliding window.

9 TAG_FAIL Authentication failure detected in the received crypto packet.

8 SE_KEY_CGD RX processor crypto session key changed.

7 FLOW_FIFO_FULL RX processor flow control FIFO full indication.

6 FLOW_FIFO_EMPTY RX processor flow control FIFO empty indication.

5 MFS_WDOG RX processor MFS watchdog expired.

4 IPY_SSF ipy_ssf_rx port asserted.

3 IPY_TSF ipy_tsf_rx port asserted.

2 SE_EXPD RX processor crypto session expired (rx_iv_cbid > rx_session_period).

1 SE_AEXP RX processor crypto session about to expire (rx_iv_cbid > rx_session_threshold).

0 SE_CSD RX processor crypto session closed (SESSION_STATUS = 0).

Table A.12 – Description of the register rx_intr_hist.

A.1.12 TX_PROC_CTRL – TX PROCESSOR CONTROL

Controls the main functionalities of the TX processor.

Bit Name Description

15 FORCE_SSF
ipy_ssf_tx output port level control.
‘0’ – The ipy_ssf_tx port is controlled by hardware.
‘1’ – High level (asserted). The output is forced to ‘1’.

11 SCRAMBLER ODU overhead scrambler enable control. Active-high. When enabled, encryption overhead bytes
(TAG, AAD, and IV) are scrambled right before being inserted in the ODU overhead.

10 KDF Key derivation function enable control. Active-high. When enabled, key values are scrambled
before being used by the AES-GCM cryptography algorithm.

Appendix A – Configuration Register Memory Map 234

Bit Name Description

9:8 OP_MODE

Crypto session operation mode.
‘00’ – Authenticated encryption.
‘01’ – Authentication-only.
‘10’ – Encryption-only.

2 FORCE_REPLSIG

Replacement signal generation activation control.
‘0’ – Replacement signal generation is commanded by the TX processor controller.
‘1’ – Replacement signal generation is activated, outputting the data pattern selected by
(REPL_SIG_SEL).

1 REPLSIG_ENA

Replacement signal generation enable control.
‘0’ – Replacement signal generation is disabled.
‘1’ – Replacement signal generation is enabled, outputting the data pattern selected by
(REPLSIG_SEL) when requested by the TX processor controller (depending on the session state
and consequent action).

0 REPLSIG_SEL
Replacement signal selection.
‘0’ – AIS-like pattern is generated as a replacement signal.
‘1’ – User defined pattern (tx_repl_signal_pattern) is generated as a replacement signal.

Table A.13 – Description of the register tx_proc_ctrl.

A.1.13 TX_SESSION_STATE – TX CRYPTO SESSION STATE CONTROL

Controls crypto session state in the TX processor.

Bit Name Description

0 SESSION_STATE
Crypto session state bit, controlled by software to change the state of the crypto session.
 0’ – Force session state to “not established” (insecure).
‘1’ – Request session establishment.

Table A.14 – Description of the register tx_session_state.

A.1.14 TX_SESSION_STATUS – TX CRYPTO SESSION STATUS

Crypto session status in the TX processor.

Bit Name Description

1 ACTIVE_KEY
Active key indication. This bit indicates which key (0 or 1) is active and being used for encryption.
‘0’ – Key 0 is the active key.
‘1’ – Key 1 is the active key.

0 SESSION_STATUS
Crypto session status bit, controlled by hardware to indicate the status of the crypto session.
‘0’ – Session not established (insecure).
‘1’ – Session established (secure).

Table A.15 – Description of the register tx_session_status.

A.1.15 TX_SESSION_PERIOD – TX CRYPTO SESSION PERIOD

32-bit value that specifies the number of crypto blocks that make up a crypto session in the

TX processor. Each crypto block is aligned with MFAS = 0, corresponding to 256 OTN

frames and lasting for about 300 µs.

Appendix A – Configuration Register Memory Map 235

Bit Name Description
15:0 SESSION_PERIOD 32-bit value that specifies the number of crypto blocks that make up a crypto session.

Table A.16 – Description of the register tx_session_period.

A.1.16 TX_SESSION_THRESHOLD – TX SESSION PERIOD THRESHOLD

32-bit value that specifies the session period counter threshold above which the session-

about-to-expire interrupt will be asserted in the TX processor.

Bit Name Description
15:0 SESSION_THRESHOLD 32-bit value that specifies the session period counter threshold.

Table A.17 – Description of the register tx_session_threshold.

A.1.17 TX_KEY_REUSE_PERIOD – TX KEY REUSE PERIOD

32-bit value that specifies the period (number of crypto blocks) for the reuse of the current

key in the case of session expiration in the TX processor.

Bit Name Description

15:0 KEY_REUSE_PERIOD 32-bit value that specifies the period (number of crypto blocks) for the reuse of the current key
in the case of session expiration.

Table A.18 – Description of the register tx_key_reuse_period.

A.1.18 TX_CONSEQ_ACT – TX CONSEQUENT ACTIONS

Defines consequent actions for the TX processor, which are applicable only for active

crypto sessions (SESSION_STATUS = 1).

Bit Name Description

11:8 SESSION_EXP

Consequent action selection for the case of session expiration.
‘0000’ – None.
‘0001’ – Assert ipy_ssf_tx and close the crypto session in the current direction.
‘0010’ – Assert ipy_ssf_tx and close both crypto sessions in the current and opposite directions.
‘0011’ – Reuse current key during a limited period determined by tx_key_reuse_period register. When
the key reuse period expires, assert ipy_ssf_tx and close the crypto session in the current direction.
‘0100’ – Reuse current key during a limited period determined by tx_key_reuse_period register. When
the key reuse period expires, assert ipy_ssf_tx and close both crypto sessions in the current and opposite
directions.
‘0101’ – Close the crypto session in the current direction.
‘0110’ – Close both crypto sessions in the current and opposite directions.
‘0111’ – Reuse current key during a limited period determined by tx_key_reuse_period register. When
the key reuse period expires, close the crypto session in the current direction.
‘1000’ – Reuse current key during a limited period determined by tx_key_reuse_period register. When
the key reuse period expires, close both crypto sessions in the current and opposite directions.

Appendix A – Configuration Register Memory Map 236

Bit Name Description

1:0 IPY_TSF_TX

Consequent action selection for the case of ipy_tsf_tx signal detection.
‘00’ – None.
‘01’ – Close the crypto session in the current direction.
‘10’ – Generate replacement signal and keep the crypto session active in the current direction.

Table A.19 – Description of the register tx_conseq_act.

A.1.19 TX_KEY_0 – TX CRYPTO SESSION KEY 0

Crypto session 256-bit key 0 used for encryption and authentication in the TX processor.

Bit Name Description
15:0 SESSION_KEY Crypto session 256-bit key.

Table A.20 – Description of the register tx_key_0.

A.1.20 TX_KEY_1 – TX CRYPTO SESSION KEY 1

Crypto session 256-bit key 1 used for encryption and authentication in the TX processor.

Bit Name Description
15:0 SESSION_KEY Crypto session 256-bit key.

Table A.21 – Description of the register tx_key_1.

A.1.21 TX_KEY_CHANGE – TX KEY CHANGE CONTROL

Controls crypto session key change in the TX processor.

Bit Name Description

0 KEY_CHANGE

Indicates that a new 256-bit key is ready in the selected register (key 0 or key 1) to be used for the
next crypto session and triggers the key change process.
A new CSID must also have been provided in the tx_iv_csid register before assertion of this bit.
This bit is cleared by hardware.
‘0’ – No session key change.
‘1’ – Session key change request.

Table A.22 – Description of the register tx_key_change.

A.1.22 tx_aad_buffer – TX ADDITIONAL AUTHENTICATED DATA BUFFER

32-bit additional authenticated data provided by the software layer in the TX processor.

Bit Name Description
15:0 AAD 32-bit additional authenticated data.

Table A.23 – Description of the register tx_aad_buffer.

Appendix A – Configuration Register Memory Map 237

A.1.23 tx_aad_capture – TX AAD CAPTURE CONTROL

Controls AAD value capturing from the corresponding register buffer for transmission in

the next crypto packet in the TX processor.

Bit Name Description

0 AAD_CAPTURE
Indicates that a new 32-bit AAD value is ready in the corresponding register buffer to be captured for
transmission in the next crypto packet. Active-high.
This bit is cleared by hardware.

Table A.24 – Description of the register tx_aad_capture.

A.1.24 TX_IV_CSID – TX IV CRYPTO SESSION ID

32-bit crypto session identification number provided by the software layer in the TX

processor to form the fixed field of the initialization vector. This CSID value is captured

by hardware only right before the start of a new crypto session.

Bit Name Description
15:0 CSID 32-bit crypto session identification number.

Table A.25 – Description of the register tx_iv_csid.

A.1.25 TX_IV_CBID – TX IV CRYPTO BLOCK ID

32-bit crypto block identification number generated by hardware in the TX processor to

form the invocation field of the initialization vector.

Bit Name Description
15:0 CBID 32-bit crypto block identification number.

Table A.26 – Description of the register tx_iv_cbid.

A.1.26 TX_IV_CPID – TX IV CRYPTO PACKET ID

24-bit crypto packet identification number generated by hardware in the TX processor to

form the invocation field of the initialization vector.

Bit Name Description
15:0 CPID 24-bit crypto packet identification number.

Table A.27 – Description of the register tx_iv_cpid.

Appendix A – Configuration Register Memory Map 238

A.1.27 TX_CALC_TAG – TX CALCULATED AUTHENTICATION TAG

128-bit authentication TAG generated by hardware in the TX processor.

Bit Name Description
15:0 TAG 128-bit authentication TAG.

Table A.28 – Description of the register tx_calc_tag.

A.1.28 TX_REPL_SIGNAL_PATTERN – TX REPLACEMENT SIGNAL PATTERN

16-bit user defined pattern to be used as a replacement signal in the TX processor,

according to the configuration of the tx_proc_ctrl register.

Bit Name Description

15:0 REPL_SIG_PATTERN 16-bit user defined pattern to be repeatedly concatenated to make up a replacement signal in
the TX processor, according to the configuration of the tx_proc_ctrl register.

Table A.29 – Description of the register tx_repl_signal_pattern.

A.1.29 TX_CNT_LATCH – TX COUNTER LATCH CONTROL

Controls the latching circuits of all TX processor counters, triggering the data sampling

process before reading operations.

Bit Name Description

0 CNT_LATCH
Sample and hold command for all TX processor counters. Active-high.
This bit is cleared by hardware.

Table A.30 – Description of the register tx_cnt_latch.

A.1.30 RX_PROC_CTRL – RX PROCESSOR CONTROL

Controls the main functionalities of the RX processor.

Bit Name Description

15 FORCE_SSF
ipy_ssf_rx output port level control.
‘0’ – The ipy_ssf_rx port is controlled by hardware.
‘1’ – High level (asserted). The output is forced to ‘1’.

14 SSF_SE_ENA

ipy_ssf_rx output port response to the RX processor crypto session state.
‘0’ – The ipy_ssf_rx port response is disabled.
‘1’ – The ipy_ssf_rx port response is enabled. ipy_ssf_rx is asserted when the crypto session is
inactive.

11 SCRAMBLER

ODU overhead scrambler enable control. Active-high. When enabled, encryption overhead bytes
(TAG, AAD, and IV) are scrambled right after being extracted from the ODU overhead. Since data
have being previously scrambled in the TX processor side, repeating this operation here corresponds
to a descrambling function.

Appendix A – Configuration Register Memory Map 239

Bit Name Description

10 KDF Key derivation function enable control. Active-high. When enabled, key values are scrambled before
being used by the AES-GCM cryptography algorithm.

9:8 OP_MODE

Crypto session operation mode.
‘00’ – Authenticated encryption.
‘01’ – Authentication-only.
‘10’ – Encryption-only.

7 FORCE_AUTAG
auth_tag_matching output port level control.
‘0’ – The auth_tag_matching port is controlled by hardware.
‘1’ – High level (asserted). The output is forced to ‘1’ by the software layer.

6 AUTAG_ENA
auth_tag_matching output port enable control.
‘0’ – The auth_tag_matching port is disabled (forced to ‘0’).
‘1’ – The auth_tag_matching port is enabled.

1 AUTH_BLOCK

Authentication blocking when operating in “store-and-forward” mode.
‘0’ – OPU data are forwarded regardless of the authentication TAG matching indication status, which
is updated at every crypto packet.
‘1’ – OPU data (overhead and payload) are replaced by zero in the case of a TAG mismatch.

0 AUTH_DELAY

Authentication delay when operating in “Authenticated Encryption” or “Authentication-only” modes.
‘0’ – Cut-through mode. OPU data are available to the client side with no extra authentication delay.
TAG matching indication comes after a delay equivalent to 6 ODU frames (hardware architecture
pipelining not included).
‘1’ – Store-and-forward mode. OPU data are stored and delivered to the client side together with a
TAG matching indication only after TAG verification, with a delay equivalent to 6 ODU frames
(hardware architecture pipelining not included).

Table A.31 – Description of the register rx_proc_ctrl.

A.1.31 RX_SESSION_STATE – RX CRYPTO SESSION STATE CONTROL

Controls crypto session state in the RX processor.

Bit Name Description

0 SESSION_STAT
E

Crypto session state bit, controlled by software to change the state of the crypto session.
‘0’ – Force session state to “not established” (insecure).
‘1’ – Request session establishment.

Table A.32 – Description of the register rx_session_state.

A.1.32 RX_SESSION_STATUS – RX CRYPTO SESSION STATUS

Crypto session status in the RX processor.

Bit Name Description

1 ACTIVE_KEY
Active key indication. This bit indicates which key (0 or 1) is active and being used for decryption.
‘0’ – Key 0 is the active key.
‘1’ – Key 1 is the active key.

0 SESSION_STATUS
Crypto session status bit, controlled by hardware to indicate the status of the crypto session.
‘0’ – Session not established (insecure).
‘1’ – Session established (secure).

Table A.33 – Description of the register rx_session_status.

Appendix A – Configuration Register Memory Map 240

A.1.33 RX_SESSION_PERIOD – RX CRYPTO SESSION PERIOD

32-bit value that specifies the number of crypto blocks that make up a crypto session in the

RX processor. Each crypto block is aligned with MFAS = 0, corresponding to 256 OTN

frames and lasting for about 300 µs.

Bit Name Description
15:0 SESSION_PERIOD 32-bit value that specifies the number of crypto blocks that make up a crypto session.

Table A.34 – Description of the register rx_session_period.

A.1.34 RX_SESSION_THRESHOLD – RX SESSION PERIOD THRESHOLD

32-bit value that specifies the session period counter threshold above which the session-

about-to-expire interrupt will be asserted in the RX processor.

Bit Name Description
15:0 SESSION_THRESHOLD 32-bit value that specifies the session period counter threshold.

Table A.35 – Description of the register rx_session_threshold.

A.1.35 RX_KEY_REUSE_PERIOD – RX KEY REUSE PERIOD

32-bit value that specifies the period (number of crypto blocks) for the reuse of the current

key in the case of session expiration in the RX processor.

Bit Name Description

15:0 KEY_REUSE_PERIOD 32-bit value that specifies the period (number of crypto blocks) for the reuse of the current key
in the case of session expiration.

Table A.36 – Description of the register rx_key_reuse_period.

A.1.36 RX_CONSEQ_ACT – RX CONSEQUENT ACTIONS

Defines consequent actions for the RX processor, which are applicable only for active

crypto sessions (SESSION_STATUS = 1).

Appendix A – Configuration Register Memory Map 241

Bit Name Description

11:8 SESSION_EXP

Consequent action selection for the case of session expiration.
‘0000’ – None.
‘0001’ – Assert ipy_ssf_rx and close the crypto session in the current direction.
‘0010’ – Assert ipy_ssf_rx and close both crypto sessions in the current and opposite directions.
‘0011’ – Reuse current key during a limited period determined by rx_key_reuse_period register. When
the key reuse period expires, assert ipy_ssf_rx and close the crypto session in the current direction.
‘0100’ – Reuse current key during a limited period determined by rx_key_reuse_period register. When
the key reuse period expires, assert ipy_ssf_rx and close both crypto sessions in the current and opposite
directions.
‘0101’ – Close the crypto session in the current direction.
‘0110’ – Close both crypto sessions in the current and opposite directions.
‘0111’ – Reuse current key during a limited period determined by rx_key_reuse_period register. When
the key reuse period expires, close the crypto session in the current direction.
‘1000’ – Reuse current key during a limited period determined by rx_key_reuse_period register. When
the key reuse period expires, close both crypto sessions in the current and opposite directions.

7:5 LOA

Consequent action selection for the case of loss of authentication (LOA).
‘000’ – None.
‘001’ – Close the crypto session in the current direction.
‘010’ – Close both crypto sessions in the current and opposite directions.
‘011’ – Assert ipy_ssf_rx and close the crypto session in the current direction.
‘100’ – Assert ipy_ssf_rx and keep the crypto session active in the current direction.
‘101’ – Assert ipy_ssf_rx and close both crypto sessions in the current and opposite directions.

4:2 TAG_FAIL

Consequent action selection for the case of TAG mismatch (TAG_FAIL).
‘000’ – None.
‘001’ – Close the crypto session in the current direction.
‘010’ – Close both crypto sessions in the current and opposite directions.
‘011’ – Assert ipy_ssf_rx and close the crypto session in the current direction.
‘100’ – Assert ipy_ssf_rx and keep the crypto session active in the current direction.
‘101’ – Assert ipy_ssf_rx and close both crypto sessions in the current and opposite directions.

1:0 IPY_TSF_RX

Consequent action selection for the case of ipy_tsf_rx signal detection.
‘00’ – None.
‘01’ – Close the crypto session in the current direction.
‘10’ – Close both crypto sessions in the current and opposite directions.

Table A.37 – Description of the register rx_conseq_act.

A.1.37 RX_KEY_0 – RX CRYPTO SESSION KEY 0

Crypto session 256-bit key 0 used for decryption and authentication in the RX processor.

Bit Name Description
15:0 SESSION_KEY Crypto session 256-bit key.

Table A.38 – Description of the register rx_key_0.

A.1.38 RX_KEY_1 – RX CRYPTO SESSION KEY 1

Crypto session 256-bit key 1 used for decryption and authentication in the RX processor.

Bit Name Description
15:0 SESSION_KEY Crypto session 256-bit key.

Table A.39 – Description of the register rx_key_1.

Appendix A – Configuration Register Memory Map 242

A.1.39 RX_AAD_BUFFER – RX ADDITIONAL AUTHENTICATED DATA BUFFER

32-bit additional authenticated data extracted from the encryption overhead of the received

crypto packet.

Bit Name Description
15:0 AAD 32-bit additional authenticated data.

Table A.40 – Description of the register rx_aad_buffer.

A.1.40 RX_IV_CSID – RX IV CRYPTO SESSION ID

32-bit crypto session identification number extracted from the encryption overhead of the

received crypto packet. Before reading operations, data must be sampled using the

rx_cnt_latch control register.

Bit Name Description
15:0 CSID 32-bit crypto session identification number.

Table A.41 – Description of the register rx_iv_csid.

A.1.41 RX_IV_CBID – RX IV CRYPTO BLOCK ID

32-bit crypto block identification number extracted from the encryption overhead of the

received crypto packet. Before reading operations, data must be sampled using the

rx_cnt_latch control register.

Bit Name Description
15:0 CBID 32-bit crypto block identification number.

Table A.42 – Description of the register rx_iv_cbid.

A.1.42 RX_IV_CPID – RX IV CRYPTO PACKET ID

24-bit crypto packet identification number extracted from the encryption overhead of the

received crypto packet. Before reading operations, data must be sampled using the

rx_cnt_latch control register.

Bit Name Description
15:0 CPID 24-bit crypto packet identification number.

Table A.43 – Description of the register rx_iv_cpid.

Appendix A – Configuration Register Memory Map 243

A.1.43 RX_CALC_TAG – RX CALCULATED AUTHENTICATION TAG

128-bit authentication TAG generated by hardware in the RX processor. Before reading

operations, data must be sampled using the rx_cnt_latch control register.

Bit Name Description
15:0 TAG 128-bit authentication TAG.

Table A.44 – Description of the register rx_calc_tag.

A.1.44 RX_RCVD_TAG – RX RECEIVED AUTHENTICATION TAG

128-bit authentication TAG extracted from the encryption overhead of the received crypto

packet. Before reading operations, data must be sampled using the rx_cnt_latch control

register.

Bit Name Description
15:0 TAG 128-bit authentication TAG.

Table A.45 – Description of the register rx_rcvd_tag.

A.1.45 RX_CNT_LATCH – RX COUNTER LATCH CONTROL

Controls the latching circuits of all RX processor counters, as well as rx_iv_csid,

rx_iv_cbid, rx_iv_cpid, rx_calc_tag, and rx_rcvd_tag registers, triggering the data

sampling process before reading operations.

Bit Name Description

0 CNT_LATCH
Sample and hold command for all RX processor counters. Active-high.
This bit is cleared by hardware.

Table A.46 – Description of the register rx_cnt_latch.

A.1.46 RX_CS_CNT_CLEAR – RX CRYPTO SESSION COUNTER CLEAR

Crypto session counter clear control.

Bit Name Description

0 CLEAR
Counter clear control. This bit is cleared by hardware.
‘0’ – Normal counter operation.
‘1’ – Counter clear.

Table A.47 – Description of the register rx_cs_cnt_clear.

Appendix A – Configuration Register Memory Map 244

A.1.47 RX_CS_CNT – RX CRYPTO SESSION COUNTER

32-bit non-wrap-around crypto session counter. It indicates the number of crypto session

establishment events, up to 232.

Bit Name Description

15:0 CS_CNT 32-bit non-wrap-around crypto session counter. It is incremented in the ‘0’ → ’1’ transitions of
SESSION_STATUS and after key changes.

Table A.48 – Description of the register rx_cs_cnt.

A.1.48 RX_CP_CNT_CLEAR – RX CRYPTO PACKET COUNTER CLEAR

Crypto packet counter clear control.

Bit Name Description

0 CLEAR
Counter clear control. This bit is cleared by hardware.
‘0’ – Normal counter operation.
‘1’ – Counter clear.

Table A.49 – Description of the register rx_cp_cnt_clear.

A.1.49 RX_CP_CNT – RX CRYPTO PACKET COUNTER

38-bit non-wrap-around crypto packet counter. It indicates the number of crypto packets

within an active crypto session, up to 232 × 64 = 238.

Bit Name Description

15:0 CP_CNT 38-bit non-wrap-around crypto packet counter. It is incremented when SESSION_STATUS = 1 and
MFAS[1:0] = 0 and is cleared at the beginning of crypto sessions (after key changes).

Table A.50 – Description of the register rx_cp_cnt.

A.1.50 RX_LOA_WINDOW_MASK – RX LOSS OF AUTHENTICATION

WINDOW MASK

64-bit value that masks the 64-bit sliding window inside which authentication failures are

counted to assert loss of authentication (LOA) indication.

Bit Name Description

15:0 LOA_WINDOW_MASK
64-bit value masking the LOA counting sliding window. MSB corresponds to the current
crypto packet TAG matching status (TAG_FAIL). Other bits correspond to previous crypto
packets. LSB masks the 64th oldest crypto packet.

Table A.51 – Description of the register rx_loa_window_mask.

Appendix A – Configuration Register Memory Map 245

A.1.51 RX_LOA_CNT_THRESHOLD – RX LOSS OF AUTHENTICATION

COUNTER THRESHOLD

7-bit value (0 to 64) that specifies the threshold above which the authentication failure

counting asserts the loss of authentication (LOA) indication.

Bit Name Description
6:0 LOA_CNT_THRESHOLD 7-bit value (0 to 64) specifying the threshold for LOA assertion.

Table A.52 – Description of the register rx_loa_cnt_threshold.

A.1.52 RX_LOA_FAIL_CNT_CLEAR – RX LOSS OF AUTHENTICATION FAILURE

COUNTER CLEAR

Loss of authentication failure counter clear control.

Bit Name Description

0 CLEAR
Counter clear control. This bit is cleared by hardware.
‘0’ – Normal counter operation.
‘1’ – Counter clear.

Table A.53 – Description of the register rx_loa_fail_cnt_clear.

A.1.53 RX_LOA_FAIL_CNT – RX LOSS OF AUTHENTICATION

FAILURE COUNTER

32-bit non-wrap-around LOA failure event counter. It indicates the number of loss of

authentication (LOA) failure events within an active crypto session, up to 232.

Bit Name Description

15:0 LOA_FAIL_CNT
32-bit non-wrap-around counter showing the number of loss of authentication (LOA) events. It is
incremented at every ‘0’ → ‘1’ transition of LOA and is cleared at the beginning of crypto sessions
(after key changes).

Table A.54 – Description of the register rx_loa_fail_cnt.

A.1.54 RX_TAG_FAIL_CNT_CLEAR – RX AUTHENTICATION TAG FAILURE

COUNTER CLEAR

Authentication TAG failure counter clear control.

Appendix A – Configuration Register Memory Map 246

Bit Name Description

0 CLEAR
Counter clear control. This bit is cleared by hardware.
‘0’ – Normal counter operation.
‘1’ – Counter clear.

Table A.55 – Description of the register rx_tag_fail_cnt_clear.

A.1.55 RX_TAG_FAIL_CNT – RX AUTHENTICATION TAG FAILURE COUNTER

32-bit non-wrap-around TAG_FAIL event counter. It indicates the number of crypto

packets with TAG mismatch failure (TAG_FAIL) within an active crypto session, up to

232.

Bit Name Description

15:0 TAG_FAIL_CNT
32-bit non-wrap-around counter showing the number of crypto packets with authentication failure. It
is incremented at every TAG mismatch (TAG_FAIL) and is cleared at the beginning of crypto
sessions (after key changes).

Table A.56 – Description of the register rx_tag_fail_cnt.

A.1.56 RX_CSKS_BIT_CNT_CLEAR – RX CSKS BIT COUNTER CLEAR

CSKS bit ‘0’ and bit ‘1’ counter clear control.

Bit Name Description

0 CLEAR
Counter clear control for both bit ‘0’ and bit ‘1’ counters. This bit is cleared by hardware.
‘0’ – Normal counter operation.
‘1’ – Counter clear.

Table A.57 – Description of the register rx_csks_bit_cnt_clear.

A.1.57 RX_CSKS_BIT0_CNT – RX CSKS BIT 0 COUNTER

32-bit wrap-around counter of total received bits ‘0’ in the crypto session key selection

FEC code word, up to 232. It is updated after every crypto block.

Bit Name Description

15:0 CSKS_BIT0_CNT
32-bit wrap-around counter of total received bits ‘0’ in the crypto session key selection FEC code
word.
It is updated after every crypto block.

Table A.58 – Description of the register rx_csks_bit0_cnt.

A.1.58 RX_CSKS_BIT1_CNT – RX CSKS BIT 1 COUNTER

32-bit wrap-around counter of total received bits ‘1’ in the crypto session key selection

FEC code word, up to 232. It is updated after every crypto block.

Appendix A – Configuration Register Memory Map 247

Bit Name Description

15:0 CSKS_BIT1_CNT
32-bit wrap-around counter of total received bits ‘1’ in the crypto session key selection FEC code
word.
It is updated after every crypto block.

Table A.59 – Description of the register rx_csks_bit1_cnt.

A.1.59 RX_CSKS_HIST_CNT_CLEAR – RX CSKS HISTOGRAM

COUNTER CLEAR

CSKS bit ‘0’ and bit ‘1’ histogram counter clear control.

Bit Name Description

0 CLEAR
Counter clear control for both bit ‘0’ and bit ‘1’ counters. This bit is cleared by hardware.
‘0’ – Normal counter operation.
‘1’ – Counter clear.

Table A.60 – Description of the register rx_csks_hist_cnt_clear.

A.1.60 RX_CSKS_BIT0_HIST_CNT – RX CSKS BIT 0 HISTOGRAM COUNTER

96-bit non-wrap-around histogram counter of received bits ‘0’ in the crypto session key

selection FEC code word. It is updated after every crypto block.

Bit Name Description

15:0 CSKS_BIT0_HIST_CNT

96-bit non-wrap-around histogram counter of received bits ‘0’ in the crypto session key
selection FEC code word.
It is subdivided into four 24-bit counters that are incremented after every crypto block,
depending on the total bit count within the 504-bit CSKS FEC code word (in the last crypto
block).
[95:72] – 24-bit counter incremented if 378 < total bit ‘0’ count < 505.
[71:48] – 24-bit counter incremented if 252 < total bit ‘0’ count < 377.
[47:24] – 24-bit counter incremented if 126 < total bit ‘0’ count < 251.
[23:0] – 24-bit counter incremented if total bit ‘0’ count < 125

Table A.61 – Description of the register rx_csks_bit0_hist_cnt.

A.1.61 RX_CSKS_BIT1_HIST_CNT – RX CSKS BIT 1 HISTOGRAM COUNTER

96-bit non-wrap-around histogram counter of received bits ‘1’ in the crypto session key

selection FEC code word. It is updated after every crypto block.

Appendix A – Configuration Register Memory Map 248

Bit Name Description

15:0 CSKS_BIT1_HIST_CNT

96-bit non-wrap-around histogram counter of received bits ‘1’ in the crypto session key
selection FEC code word.
It is subdivided into four 24-bit counters that are incremented after every crypto block,
depending on the total bit count within the 504-bit CSKS FEC code word (in the last crypto
block).
[95:72] – 24-bit counter incremented if 378 < total bit ‘1’ count < 505.
[71:48] – 24-bit counter incremented if 252 < total bit ‘1’ count < 377.
[47:24] – 24-bit counter incremented if 126 < total bit ‘1’ count < 251.
[23:0] – 24-bit counter incremented if total bit ‘1’ count < 125

Table A.62 – Description of the register rx_csks_bit1_hist_cnt.

A.1.62 RESERVED – RESERVED REGISTER

Bit Name Description
15:0 RES Reserved bits.

Table A.63 – Description of the register (RESERVED).

249

Appendix B

DIGITAL INTEGRATED CIRCUIT

DESIGN FLOW

Figure B.1 represents, in a simplified way, the main phases of a traditional digital integrated

circuit design flow used by CPQD in the design and implementation of the 100G OTN

Processor device.

Figure B.1 – Digital integrated circuit design flow used by CPQD.

Modeling & Validation

Fuctional Verification

Synthesis & Integration

Floor Planning

Place & Route
(P&R)

Physical
Verification

Final Timing Simulation

Tape-Out (GDSII)

Automatic Test Pattern
Generation (ATPG)

Fail Simulation

Test Vector
Transferring

Boundary Scan
BIST Insertion

Scan Insertion

RTL Design

Technical Requirements and Architecture Design

DFT

DFT

DFT

DFT

DFT

Appendix B – Digital Integrated Circuit Design Flow 250

B.1 FRONT-END PHASE

B.1.1 TECHNICAL SPECIFICATIONS

The design flow starts with the technical specification, when all the characteristics of the

integrated circuit are defined according to the proposed functional conception.

B.1.2 ARCHITECTURE DESIGN

It is one of the most important phases of the design flow and can be divided into functional

and device architecture. The first deals with the hardware structures for implementing the

desired functionalities, while the second, comprises the study and definition of physical

parameters such as the number of pins, type of chip packaging, type of chip assembly on

the chosen package, etc.

The functional architecture conception follows a top-down design methodology, with a

macro-level definition of the desired functionalities, followed by a process of subdivision

into smaller partitions up to the level where they can be implemented by a corresponding

hardware structure. Thus, a high-level block diagram (top diagram) is obtained, with each

block being expanded into new lower-level diagrams.

The device architecture design also comprises the definition of its manufacturing process

technology (or technology node). Design for test (DFT) parameters are also studied in this

phase, with specification results that will guide the coding stages for implementing test

structures.

The documents generated in this phase provide the necessary inputs for the execution of

the entire project.

B.1.3 MODELING AND VALIDATION

In this phase, behavioral models that represent the functionalities of each block of the chip

are created using languages such as Verilog, System Verilog, C, C++, System C, and even

dedicated tools such as MATLAB®.

They are designed to behave like the functional blocks of the integrated circuit, allowing

for the validation of its functionality. Typically, they are also reused during the verification

Appendix B – Digital Integrated Circuit Design Flow 251

phase, serving as a reference (golden models) for the comparison of results during tests

carried out in a computational environment.

B.1.4 RTL DESIGN

From the documentation generated in the architecture design phase, which includes

specifications for each functional block, the work of modeling the hardware structures

necessary for implementing the desired functionalities can be started. The RTL design is

then created using a specific language for hardware description.

Simple simulations for preliminary functional verification are also performed in this phase,

where the behavior of the input and output signals of the logic block is evaluated.

Partial logic syntheses may be necessary, when RTL codes are converted into a physical

hardware implementation in terms of logic cells (logic gates, flip-flops, etc.), allowing for

the analysis of timing requirements such as propagation time, operating speed, etc.

B.1.5 FUNCTIONAL VERIFICATION

Starting from the same reference documentation used in the RTL design, test bench

modules are coded for functional verification of each logic block developed for the device.

A typical test bench structure includes some mechanism for generating stimuli that are

injected into the design or block under test (DUT) and a corresponding monitor or set of

monitors that analyze the data produced by the DUT, comparing them to the expected

results (according to the block specification, generated in the architecture design). The

computer models generated in the modeling stage can also be used as a reference (golden

models) for comparing the results.

The generated stimuli depend on the coverage desired for the verification process.

Typically, random sequences are used to check for the occurrence of any unexpected result

or behavior. The same structure applies to testing a set of interconnected blocks or even

the complete chip design (top design test).

Special techniques are applied to achieve specific goals, such as code coverage, formal

verification, and emulation. The first analyzes whether all sections of an RTL code are

exercised in a test scenario. The second has an approach of formal proof of system

Appendix B – Digital Integrated Circuit Design Flow 252

functionality represented by mathematical models. The last one corresponds to a

prototyping technique of the entire chip (or some of its blocks) in hardware, usually on

FPGA platforms, aiming at the execution of test cases in an accelerated way.

The verification phase consumes many computational resources, which requires powerful

workstations or dedicated servers with high processing and storage capacity.

B.1.6 BOUNDARY SCAN

Usually, the development strategy considers the use of special design for test (DFT)

techniques, through the insertion of scanning mechanisms (boundary scan) and self-test

modules (built-in self-test – BIST), also described and modeled in RTL.

B.1.7 SYNTHESIS AND INTEGRATION

In the final step of the front-end stage, with all the functional blocks implemented in RTL

and verified, all the IP cores are integrated into a top design to create the application

conceived in the architecture design.

Then, the top synthesis process converts the RTL description of each functional block into

a physical hardware implementation in terms of a netlist of logic cells (logic gates, flip-

flops, etc.) available in a library provided by the foundry, generating files that feed the

physical design phases in the back-end stage. These cells are interconnected according to

the logic design of the block, and the synthesis process can be optimized to the area, power,

and electrical length aspects of the chip (directly related to the signal propagation times).

A static timing analysis (STA) is performed as part of the optimization process, so that the

resulting circuit meets the design frequency specification. Changes in the architecture of

one or more functional blocks of the device may be required until all performance

parameters are achieved.

Before the start of the physical implementation, scan chains are inserted to enable the

manufacturing validation tests. This technique makes it possible to put the chip into a test

mode, when the flip-flops are chained together in a shift register configuration, allowing

for the insertion of a test pattern or vector that is shifted at each clock cycle until it is

extracted and analyzed at the end of the chain.

Appendix B – Digital Integrated Circuit Design Flow 253

B.2 BACK-END PHASE

B.2.1 PLACE AND ROUTE

This phase begins with a preliminary planning of the silicon layout (floor planning),

defining the format, block partitions, power rings, connection points (pads), etc. Macro

cells, such as memories and some specific IP cores, are also placed at this time.

Then, the placement process of the logic cells is carried out automatically within the areas

defined in the preliminary layout floor planning.

Another important activity in this phase is the clock tree definition. Since the flip-flops of

a synchronous design are scattered within a certain area of the silicon die, clock signals

must be driven to the circuits so that all pulses reach their destination at the same time,

regardless of different electrical lengths. This synchronization is obtained through a clock

tree synthesis (CTS) process, performed automatically and characterized by the insertion

of buffers to adjust the propagation delays along the different paths of the signal

distribution network.

The interconnection of cells and macro blocks is then performed in the routing activity. It

is done automatically in many design parts, but manually in others, as in the case of power

connections and mixed-signal (analog and digital) blocks.

In the final stage, delay parameters are extracted (RC extraction) for use in an STA analysis

that compares the physical design performance — in terms of operating speed, propagation

times, etc. — with the design requirements.

Another important analysis is that of equivalence between the RTL design and the netlist

of the logic gates in the physical design (gate netlist), since new components or structures

may have been inserted at this stage (such as the clock tree buffers). This process is known

as logic equivalence checking (LEC).

B.2.2 PHYSICAL VERIFICATION

A final verification phase is carried out directly on the silicon layout physical design,

evaluating whether the behavior of the structures to be implemented (transistors,

connections, etc.) corresponds to the expected functionality.

Appendix B – Digital Integrated Circuit Design Flow 254

The layout versus schematic (LVS) analysis checks the equivalence between the silicon

layout (transistors) and the functional design (represented by the schematic or netlist).

Additionally, manufacturing restrictions related to the process technology used, such as

minimum spacing, thicknesses, etc., are also verified through the design rule checking

(DRC) analysis.

B.2.3 AUTOMATIC TEST PATTERN GENERATION (ATPG)

According to the methodology and test strategy adopted for the integrated circuit design, a

set of patterns or vectors is developed and generated at this stage to perform structural tests

on the chip, through automatic test pattern generation (ATPG) tools.

B.2.4 FAIL SIMULATION

In this phase, techniques such as fault grading and fault simulation are used to verify the

coverage achieved by the proposed set of test vectors. In the first case, probabilistic

techniques are used. It is faster but less accurate, so it is commonly used during the

structural test development (ATPG) phase. The second case uses deterministic techniques,

being much slower and, therefore, used to obtain additional coverage for fabrication.

B.2.5 VECTOR TEST TRANSFERRING

The test vectors must be converted to a suitable format to be used by the automated test

equipment (ATE), which will carry out the functional and structural validation tests of the

chip under production.

B.2.6 TAPE-OUT

This is the final phase in which the integrated circuit manufacturing files are transferred to

the foundry. The term tape-out dates back to the time when artwork designs for printed

circuit boards were produced using black adhesive tape.

GDSII (Graphic Design System) is a standardized binary database file format used by the

industry to exchange data corresponding to the integrated circuit artwork design.

255

Appendix C

ODU OH INSERTER SUB-BLOCK

RTL CODE LISTING

The Verilog code listing below corresponds to the RTL design modeling of the ODU OH

Inserter sub-block.

Input and output ports are defined right in the beginning, followed by the declaration of

register variables (storage elements, not necessarily synthesizable) and wires (used for

connecting different elements).

The fb_pol wire is then initialized with the feedback polynomial coefficients.

A concurrent sequential process named input_register_seq_proc (sensitive to ipg_clk_sys

and reset_sync_b) registers (stores) the values of the TAG, AAD, and IV input signals.

Another concurrent sequential process named cp_clk_cnt_seq_proc handles a crypto

packet wrap-around frame clock counter, which is incremented at every clock cycle when

the valid_in signal is asserted and cleared right after an MFS pulse.

The overhead data insertion and scrambling functions are carried out by a combinational

and a sequential process.

The first one, named oh_variable_update_comb_proc, updates the variable registers res1

and res2 with the TAG, AAD, or IV input data (previously stored in the registers tag_buf,

aad_buf, and iv_buf). Data selection depends on the crypto packet frame clock counter,

since the RES fields of the ODU frames within a crypto packet transport different

encryption overhead parameters. When the scrambler_ena signal is enabled, 16-bit PRBS

words are XOR combined with the updated data.

The second, named oh_insertion_seq_proc, effectively inserts the updated ODU overhead

RES fields into the output frames.

Appendix C – ODU OH Inserter Sub-Block RTL Code Listing 256

The last coding block is a concurrent sequential process named lfsr_seq_proc, which

creates a 16-bit LFSR that generates PRBS words at every clock cycle.

// +FHDR---
// Copyright (c) CPqD. All rights reserved
// --
// FILE NAME: oh_inserter.v
// AUTHOR: Eduardo Mobilon
// --
// PURPOSE: Overhead inserter module, responsible for the insertion of encryption
// overhead data (TAG, AAD, and IV) into padded ODU overhead RES fields.
// --
// KEYWORDS: Overhead, RES.
// --
// REUSE ISSUES:
// Reset Strategy:
// Clock Domains:
// Critical Timing:
// Test Features:
// Asynchronous I/F:
// Scan Methodology:
// Synthesizable (y/n): y
// Other:
// --
// RELEASE HISTORY:
// VERSION : DATE : AUTHOR : DESCRIPTION
// 1.0 : 07-MAY-2015 : Eduardo Mobilon : Initial version.
// 1.1 : 08-JUN-2015 : Eduardo Mobilon : Removal of some input signals.
// 1.2 : 06-AGO-2015 : Eduardo Mobilon : 'enable' port included.
// 1.3 : 16-OCT-2015 : Eduardo Mobilon : 'aad_write' and 'iv_write' combined
// in just one 'aad_iv_write' port.
// 1.4 : 27-OCT-2015 : Eduardo Mobilon : LFSR implementation bug fixing.
// 1.5 : 05-NOV-2015 : Eduardo Mobilon : 'fail_in' and 'fail_out' ports included.
// 1.6 : 02-DEC-2015 : Eduardo Mobilon : Replacement of some conditional operators (?:)
// because of code coverage problems.
// -FHDR---

module oh_inserter #(
 // Parameters
 parameter IPY_DW = 640 // Yellow line interface data width
) (
 // Inputs
 input wire reset_sync_b, // Synchronous active-low hard reset
 input wire ipg_clk_sys, // Green line interface clock at 180 MHz.
 input wire [IPY_DW-1:0] data_in, // Padded ODU data.
 input wire valid_in, // Padded ODU data valid.
 input wire fs_in, // Padded ODU frame start pulse.
 input wire mfs_in, // Padded ODU multi-frame start pulse.
 input wire fail_in, // Fail signal.
 input wire [127:0] tag, // TAG value.
 input wire [31:0] aad, // AAD value.
 input wire [95:0] iv, // IV value.
 input wire tag_write, // TAG write pulse.
 input wire aad_iv_write, // AAD and IV write pulse.
 input wire scrambler_ena, // Scrambler enable control.
 input wire enable, // Block enable control.

 // Outputs
 output reg [IPY_DW-1:0] data_out, // Padded ODU data.
 output reg valid_out, // Padded ODU data valid.
 output reg fs_out, // Padded ODU frame start pulse.
 output reg mfs_out, // Padded ODU multi-frame start pulse.
 output reg fail_out // Fail signal.

);

// +--
// | Variables
// +--
 reg [15:0] lfsr; // Linear feedback shift register.
 reg [9:0] cp_clk_cnt; // Crypto packet clock counter.

 reg [127:0] tag_buf; // TAG value buffer.
 reg [31:0] aad_buf; // AAD value buffer.
 reg [95:0] iv_buf; // IV value buffer.

 integer i; // Index variable.

 wire [16:0] fb_pol; // Feedback polynomial.

 wire [111:0] oh_row2; // ODU Overhead row 2.
 wire [111:0] oh_row4; // ODU Overhead row 4.

Appendix C – ODU OH Inserter Sub-Block RTL Code Listing 257

 wire [527:0] pyld; // ODU payload.

 reg [15:0] res1; // ODU OH reserved field 1 (2 bytes).
 reg [47:0] res2; // ODU OH reserved field 2 (6 bytes).

// +--
// | Variable & signal initialization
// +--
 assign fb_pol = 17'b11101010110000011; // x16 + x15 + x14 + x12 + x10 + x8 + x7 + x + 1

// +--
// | OH data input register
// +--
 always @(posedge ipg_clk_sys, negedge reset_sync_b)
 begin : input_register_seq_proc
 if (!reset_sync_b) begin
 tag_buf <= 128'd0;
 aad_buf <= 32'd0;
 iv_buf <= 96'd0;
 end else begin
 if (enable) begin
 if (tag_write) begin
 tag_buf <= tag;
 end
 if (aad_iv_write) begin
 aad_buf <= aad;
 iv_buf <= iv;
 end
 end // if (enable)
 end
 end // input_register_seq_proc

// +--
// | Crypto packet frame clock counter
// +--
 always @(posedge ipg_clk_sys, negedge reset_sync_b)
 begin : cp_clk_cnt_seq_proc
 if (!reset_sync_b) begin
 cp_clk_cnt <= 10'd0;
 end else begin
 if (enable) begin
 if (valid_in) begin
 if (mfs_in) begin
 cp_clk_cnt <= 10'd0;
 end else begin
 if (cp_clk_cnt < 10'd767) begin
 cp_clk_cnt <= cp_clk_cnt + 10'd1;
 end else begin
 cp_clk_cnt <= 10'd0;
 end
 end
 end // if (valid_in)
 end // if (enable)
 end
 end // cp_clk_cnt_seq_proc

// +--
// | OH data insertion and scrambler
// +--
// Depending on the state of 'scrambler_ena' input port, OH data are scrambled by a simple XOR
// operation between data and repeated copies of the 16-bit word generated by a 16-bit LFSR.
// For synchronization purposes, scrambling occurs at the moment of OH field insertion.

 // Frame overhead fields
 assign oh_row2 = {res1, data_in[623:528]}; // 14-byte OH row 2.
 assign oh_row4 = {data_in[639:576], res2}; // 14-byte OH row 4.

 // Frame payload field
 assign pyld = data_in[527:0];

 // OH field variable update
 always @*
 begin : oh_variable_update_comb_proc
 // Variable default values (preventing Latch synthesis)
 res1 = data_in[639:624];
 res2 = data_in[575:528];

 case (cp_clk_cnt)
 48: // OH Line 2 --- Crypto packet frame 1 ---
 begin
 if (scrambler_ena) begin
 res1 = tag_buf[127:112] ^ lfsr;
 end else begin
 res1 = tag_buf[127:112];

Appendix C – ODU OH Inserter Sub-Block RTL Code Listing 258

 end
 end
 144: // OH Line 4
 begin
 if (scrambler_ena) begin
 res2 = tag_buf[111:64] ^ {3{lfsr}};
 end else begin
 res2 = tag_buf[111:64];
 end
 end
 240: // OH Line 2 --- Crypto packet frame 2 ---
 begin
 if (scrambler_ena) begin
 res1 = tag_buf[63:48] ^ lfsr;
 end else begin
 res1 = tag_buf[63:48];
 end
 end
 336: // OH Line 4
 begin
 if (scrambler_ena) begin
 res2 = tag_buf[47:0] ^ {3{lfsr}};
 end else begin
 res2 = tag_buf[47:0];
 end
 end
 432: // OH Line 2 --- Crypto packet frame 3 ---
 begin
 if (scrambler_ena) begin
 res1 = aad_buf[31:16] ^ lfsr;
 end else begin
 res1 = aad_buf[31:16];
 end
 end
 528: // OH Line 4
 begin
 if (scrambler_ena) begin
 res2 = iv_buf[95:48] ^ {3{lfsr}};
 end else begin
 res2 = iv_buf[95:48];
 end
 end
 624: // OH Line 2 --- Crypto packet frame 4 ---
 begin
 if (scrambler_ena) begin
 res1 = aad_buf[15:0] ^ lfsr;
 end else begin
 res1 = aad_buf[15:0];
 end
 end
 720: // OH Line 4
 begin
 if (scrambler_ena) begin
 res2 = iv_buf[47:0] ^ {3{lfsr}};
 end else begin
 res2 = iv_buf[47:0];
 end
 end
 endcase
 end // oh_variable_update_comb_proc

 // OH field insertion
 always @(posedge ipg_clk_sys, negedge reset_sync_b)
 begin : oh_insertion_seq_proc
 if (!reset_sync_b) begin
 data_out <= {IPY_DW{1'b0}};
 valid_out <= 1'b0;
 fs_out <= 1'b0;
 mfs_out <= 1'b0;
 fail_out <= 1'b0;
 end else begin
 if (enable) begin
 if (valid_in) begin
 valid_out <= 1'b1;
 fs_out <= fs_in;
 mfs_out <= mfs_in;
 fail_out <= fail_in;

 case (cp_clk_cnt)
 48: // OH Line 2 --- Crypto packet frame 1 ---
 begin
 data_out <= {oh_row2, pyld};
 end
 144: // OH Line 4
 begin
 data_out <= {oh_row4, pyld};
 end

Appendix C – ODU OH Inserter Sub-Block RTL Code Listing 259

 240: // OH Line 2 --- Crypto packet frame 2 ---
 begin
 data_out <= {oh_row2, pyld};
 end
 336: // OH Line 4
 begin
 data_out <= {oh_row4, pyld};
 end
 432: // OH Line 2 --- Crypto packet frame 3 ---
 begin
 data_out <= {oh_row2, pyld};
 end
 528: // OH Line 4
 begin
 data_out <= {oh_row4, pyld};
 end
 624: // OH Line 2 --- Crypto packet frame 4 ---
 begin
 data_out <= {oh_row2, pyld};
 end
 720: // OH Line 4
 begin
 data_out <= {oh_row4, pyld};
 end
 default: // Remaining data (no OH insertion)
 begin
 data_out <= data_in;
 end
 endcase
 end else begin
 valid_out <= 1'b0;
 end // if (valid_in)
 end else begin
 data_out <= {IPY_DW{1'b0}};
 valid_out <= 1'b0;
 fs_out <= 1'b0;
 mfs_out <= 1'b0;
 fail_out <= 1'b0;
 end // if (enable)
 end
 end // oh_insertion_seq_proc

// +--
// | Linear feedback shift register
// +--
// A linear feedback shift register (LFSR) of 16 stages with feedback polynomial
// x16 + x15 + x14 + x12 + x10 + x8 + x7 + x + 1 is used to generate
// 2^16-1 distinct 16-bit words, being reinitialized at every multi-frame
// (after an MFS pulse) with the sequence '0x5555'.
// Shifting occurs at every clock cycle, only when 'valid_in' input port is active.
// The LFSR must be implemented with internal feedback construction
// (modular or Galois type) with x16 as the MSB.
 always @(posedge ipg_clk_sys, negedge reset_sync_b)
 begin : lfsr_seq_proc
 if (!reset_sync_b) begin
 lfsr <= 16'd0;
 end else begin
 if (enable) begin
 if (valid_in) begin
 // 16-stage Galois LFSR
 if (scrambler_ena) begin
 if (mfs_in) begin
 lfsr <= 16'h5555;
 end else begin
 for (i=15; i>0; i=i-1) begin // x^n and x^0 coefficients are always included.
 if (fb_pol[i]) begin
 lfsr[i] <= lfsr[i-1] ^ lfsr[15];
 end else begin
 lfsr[i] <= lfsr[i-1];
 end
 end
 lfsr[0] <= lfsr[15];
 end
 end
 end // if (valid_in)
 end // if (enable)
 end
 end // lfsr_seq_proc

endmodule

	Front Cover
	Title Page
	Catalog Data
	Thesis Committee
	Dedication
	Acknowledgments
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Acronyms
	Contents
	Chapter 1 Introduction
	1.1 Background and Purpose
	1.2 Thesis Outline
	1.3 Author Contributions
	1.4 Subject Related Author’s Works
	1.4.1 Patent
	1.4.2 Journal Published Paper
	1.4.3 Conference Proceeding Papers
	1.4.4 Computer Program Registration

	Chapter 2 Optical Transport Technologies and Cryptography
	2.1 Introduction
	2.2 Optical Transport Networks
	2.3 Security Threats in Optical Networks
	2.4 Mathematical Background for Cryptography
	2.4.1 Number theory
	2.4.1.1 Divisibility
	2.4.1.2 Prime Numbers
	2.4.1.3 The Euclidean Algorithm
	2.4.1.4 Modular Arithmetic and Congruence
	2.4.1.5 Fermat’s and Euler’s Theorems

	2.4.2 Abstract Algebra and Finite (Galois) Fields
	2.4.2.1 Groups
	2.4.2.2 Rings
	2.4.2.3 Fields

	2.4.3 Polynomial Arithmetic in Extension Fields
	2.4.4 One-Way and Trapdoor Functions
	2.4.4.1 Integer Factorization Problem
	2.4.4.2 Discrete Logarithm Problem

	2.4.5 Hash Functions

	2.5 Cryptographic Systems
	2.5.1 Historical Evolution
	2.5.2 Symmetric and Asymmetric Cryptography
	2.5.3 Quantum Cryptography

	2.6 Advanced Encryption Standard – AES
	2.6.1 Substitute Bytes
	2.6.2 Shift Rows
	2.6.3 Mix Columns
	2.6.4 Add Round Key
	2.6.5 Round Key Derivation

	2.7 Modes of Operation
	2.7.1 Galois/Counter Mode – GCM
	2.7.2 GCM Security Aspects

	2.8 Quantum Threat and Post Quantum Cryptography

	Chapter 3 OTN Cryptographic System Architecture
	3.1 OTN Cryptographic Link
	3.2 Crypto Session, Crypto Block, and Crypto Packet
	3.3 Hardware and Software Layers
	3.3.1 Hardware Layer Control
	3.3.2 Establishment and Management of Crypto Sessions
	3.3.3 Key Management

	3.4 Encryption Overhead Frame
	3.4.1 Authentication TAG
	3.4.2 AAD
	3.4.3 IV
	3.4.4 Encryption Overhead Transmission Format

	3.5 Error or Failure Recovery and Session Management
	3.5.1 Hardware Recovery and Consequent Actions
	3.5.2 Software Recovery
	3.5.3 Loss of Authentication and TAG Mismatch
	3.5.4 Session-About-to-Expire Interrupt
	3.5.5 Session Key Reuse

	3.6 Configuration and Performance Monitoring Procedures
	3.6.1 Crypto Session Establishment
	3.6.1.1 RX Side
	3.6.1.2 TX Side

	3.6.2 Crypto Session Key Change
	3.6.2.1 TX Side

	3.6.3 Use of Additional Authenticated Data (AAD)
	3.6.4 Performance Monitoring Counters

	Chapter 4 100G AES-GCM Cryptography Engine
	4.1 Features and Characteristics
	4.2 Operation Modes
	4.3 Hardware Functional Architecture
	4.3.1 Nomenclature for Signals and Buses
	4.3.2 Clock and Reset
	4.3.3 Crypto4OTN Block
	4.3.4 Loopback Mux Sub-Block
	4.3.5 Data Path Flow Control Sub-Block
	4.3.6 OPU Cryptography Engine Sub-Block
	4.3.6.1 OPU Drop Sub-Block
	4.3.6.2 OPU Add Sub-Block
	4.3.6.3 AES-GCM Sub-Block
	4.3.6.4 Crypto Engine Control Sub-Block

	4.3.7 ODU OH Inserter Sub-Block
	4.3.7.1 Scrambling Function

	4.3.8 ODU OH Extractor Sub-Block
	4.3.8.1 Descrambling Function

	4.3.9 Replacement Signal Generator Sub-Block
	4.3.10 Authentication Buffer Sub-Block
	4.3.11 Control Engine Sub-Block
	4.3.11.1 TX Processor Controller
	4.3.11.2 RX Processor Controller
	4.3.11.3 Register and Reset Controller

	Chapter 5 Design, Verification, and Silicon Prototyping
	5.1 Crypto4OTN Block Design and Testing
	5.1.1 RTL Design
	5.1.2 Test Bench Design

	5.2 Functional Simulations
	5.2.1 OPU Cryptography Engine
	5.2.2 ODU OH Inserter and Extractor
	5.2.3 Replacement Signal Generator
	5.2.4 Crypto4OTN

	5.3 100G OTN Processor
	5.3.1 Chip Design and Manufacturing

	5.4 Chip Prototype Testing
	5.4.1 Evaluation Board
	5.4.2 CPU Interface Testing
	5.4.3 SerDes Testing
	5.4.4 IP Block Testing

	Chapter 6 Conclusions and Final Remarks
	6.1 Main Contributions
	6.2 Remarks and Future Work Suggestions

	References
	Appendix A Configuration Register Memory Map
	A.1.1 ips_access_tst – IPS Access Test
	A.1.2 rtl_version – Crypto4otn RTL Version
	A.1.3 blk_rst – Crypto4OTN Block Reset
	A.1.4 blk_ctr – Block Control
	A.1.5 RESERVED – Reserved Register
	A.1.6 tx_intr_status – TX Processor Interrupt Status
	A.1.7 tx_intr_mask – TX Processor Interrupt Mask
	A.1.8 tx_intr_hist – TX Processor Interrupt Request History
	A.1.9 rx_intr_status – RX Processor Interrupt Status
	A.1.10 rx_intr_mask – RX Processor Interrupt Mask
	A.1.11 rx_intr_hist – RX Processor Interrupt Request History
	A.1.12 tx_proc_ctrl – TX Processor Control
	A.1.13 tx_session_state – TX Crypto Session State Control
	A.1.14 tx_session_status – TX Crypto Session Status
	A.1.15 tx_session_period – TX Crypto Session Period
	A.1.16 tx_session_threshold – TX Session Period Threshold
	A.1.17 tx_key_reuse_period – TX Key Reuse Period
	A.1.18 tx_conseq_act – TX Consequent Actions
	A.1.19 tx_key_0 – TX Crypto Session Key 0
	A.1.20 tx_key_1 – TX Crypto Session Key 1
	A.1.21 tx_key_change – TX Key Change Control
	A.1.22 tx_aad_buffer – TX Additional Authenticated Data Buffer
	A.1.23 tx_aad_capture – TX AAD Capture Control
	A.1.24 tx_iv_csid – TX IV Crypto Session ID
	A.1.25 tx_iv_cbid – TX IV Crypto Block ID
	A.1.26 tx_iv_cpid – TX IV Crypto Packet ID
	A.1.27 tx_calc_tag – TX Calculated Authentication TAG
	A.1.28 tx_repl_signal_pattern – TX Replacement Signal Pattern
	A.1.29 tx_cnt_latch – TX Counter Latch Control
	A.1.30 rx_proc_ctrl – RX Processor Control
	A.1.31 rx_session_state – RX Crypto Session State Control
	A.1.32 rx_session_status – RX Crypto Session Status
	A.1.33 rx_session_period – RX Crypto Session Period
	A.1.34 rx_session_threshold – RX Session Period Threshold
	A.1.35 rx_key_reuse_period – RX Key Reuse Period
	A.1.36 rx_conseq_act – RX Consequent Actions
	A.1.37 rx_key_0 – RX Crypto Session Key 0
	A.1.38 rx_key_1 – RX Crypto Session Key 1
	A.1.39 rx_aad_buffer – RX Additional Authenticated Data Buffer
	A.1.40 rx_iv_csid – RX IV Crypto Session ID
	A.1.41 rx_iv_cbid – RX IV Crypto Block ID
	A.1.42 rx_iv_cpid – RX IV Crypto Packet ID
	A.1.43 rx_calc_tag – RX Calculated Authentication TAG
	A.1.44 rx_rcvd_tag – RX Received Authentication TAG
	A.1.45 rx_cnt_latch – RX Counter Latch Control
	A.1.46 rx_cs_cnt_clear – RX Crypto Session Counter Clear
	A.1.47 rx_cs_cnt – RX Crypto Session Counter
	A.1.48 rx_cp_cnt_clear – RX Crypto Packet Counter Clear
	A.1.49 rx_cp_cnt – RX Crypto Packet Counter
	A.1.50 rx_loa_window_mask – RX Loss of Authentication Window Mask
	A.1.51 rx_loa_cnt_threshold – RX Loss of Authentication Counter Threshold
	A.1.52 rx_loa_fail_cnt_clear – RX Loss of Authentication Failure Counter Clear
	A.1.53 rx_loa_fail_cnt – RX Loss of Authentication Failure Counter
	A.1.54 rx_tag_fail_cnt_clear – RX Authentication TAG Failure Counter Clear
	A.1.55 rx_tag_fail_cnt – RX Authentication TAG Failure Counter
	A.1.56 rx_csks_bit_cnt_clear – RX CSKS Bit Counter Clear
	A.1.57 rx_csks_bit0_cnt – RX CSKS Bit 0 Counter
	A.1.58 rx_csks_bit1_cnt – RX CSKS Bit 1 Counter
	A.1.59 rx_csks_hist_cnt_clear – RX CSKS Histogram Counter Clear
	A.1.60 rx_csks_bit0_hist_cnt – RX CSKS Bit 0 Histogram Counter
	A.1.61 rx_csks_bit1_hist_cnt – RX CSKS Bit 1 Histogram Counter
	A.1.62 RESERVED – Reserved Register

	Appendix B Digital Integrated Circuit Design Flow
	B.1 Front-End Phase
	B.1.1 Technical Specifications
	B.1.2 Architecture Design
	B.1.3 Modeling and Validation
	B.1.4 RTL Design
	B.1.5 Functional Verification
	B.1.6 Boundary Scan
	B.1.7 Synthesis and Integration

	B.2 Back-End Phase
	B.2.1 Place and Route
	B.2.2 Physical Verification
	B.2.3 Automatic Test Pattern Generation (ATPG)
	B.2.4 Fail Simulation
	B.2.5 Vector Test Transferring
	B.2.6 Tape-Out

	Appendix C ODU OH Inserter Sub-Block RTL Code Listing

