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Abstract

The nominal anuran species Crossodactylus gaudichaudii Duméril and Bibron, 1841 and Crossodactylus aeneus 

Müller, 1924 are indistinguishable based on adult and larval morphology, being subject of taxonomic doubts. Here, 

we describe the karyotypes of C. gaudichaudii and C. aeneus, using classical and molecular cytogenetic markers. 

In addition, we used sequences of the H1 mitochondrial DNA to infer their phylogenetic relationships by Maximum 

Likelihood (ML) and Maximum Parsimony (MP) approaches and species delimitation test (by bPTP approach). The 

karyotypic data do not differentiate C. gaudichaudii and C. aeneus in any of the chromosome markers assessed. 

In both phylogenetic analyses, C. gaudichaudii and C. aeneus were recovered into a strongly supported clade. 

The species delimitation analysis recovered the specimens assigned to C. gaudichaudii and C. aeneus as a single 

taxonomic unit. Taken the cytogenetic and genetic results together with previous studies of internal and external 

morphology of tadpoles and biacoustic pattern, C. gaudichaudii and C. aeneus could not be differentiated, which 

supports the hypothesis that they correspond to the same taxonomic unit, with C. aeneus being a junior synonym 

of C. gaudichaudii.
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Introduction

The genus Crossodactylus (Hylodidae) includes 14 

species of diurnal frogs that inhabit streams banks, ranging 

from Alagoas state in northeastern Brazil to Rio Grande do 

Sul state in southern Brazil, and being found in southern 

Paraguay and northern Argentina (Carcerelli and Caramaschi, 

1993; Frost, 2020). Historically, the taxonomic investigation 

of the Crossodactylus species has been based on phenotypic 

features, that is, the external and internal morphology of 

adults and larvae, bioacoustics, and morphometric parameters 

(Caramaschi and Sazima, 1985; Pimenta et al., 2014; 2015). 

Although species of Crossodactylus were included in some 

molecular phylogenetic inferences (e.g., Pyron and Wiens, 

2011; Grant et al., 2017), a phylogenetic analysis focused on 

this genus remain to be done.

Based on the morphological and morphometric 

evidence, Caramaschi and Sazima (1985) recognized three 

Crossodactylus species groups, the Crossodactylus 

gaudichaudii, Crossodactylus trachystomus, and 

Crossodactylus schmidti (monotypic) species groups. 

However, Pimenta et al. (2014) questioned the validity of 

the analysis of morphometric characters in this genus, given 

that many characters overlap extensively between species 

(except in Crossodactylus grandis). Because of the phenotypic 

similarities of the Crossodactylus species, more reliable and 

conclusive taxonomic studies will require the systematic 

integration of morphological and molecular evidence.

One clear example of this taxonomic dilemma is found in 

the two species of the C. gaudichaudii group, C. gaudichaudii 

and C. aeneus, which have overlapping geographic ranges in 

southeastern Brazil, where they occur predominantly in the 

states of São Paulo and Rio de Janeiro (Frost, 2020). The 

original description of C. gaudichaudii lacks details on the 

type locality, which was identified only as “Brazil” (Duméril 
and Bibron, 1841; Guibé, 1948), although Bokermann (1966) 

suggested that the city of Rio de Janeiro was the most probable 

type locality of the species. The type locality of C. aeneus is 

given as “Barreira” in the Serra dos Órgãos range (Müller, 
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1924), locality currently belonging to the municipality of 

Guapimirim, in Rio de Janeiro state, Brazil. The uncertainties 

with regard to the geographic distribution of these species 

have been magnified by overlapping bioacoustic parameters 
(Pimenta et al., 2008, 2015) and both the external (Francioni 

and Carcerelli, 1993; Silva-Soares et al., 2015) and internal 

oral morphology of the tadpoles (Weber and Caramaschi, 2006; 

Silva-Soares et al., 2015). These characters have failed to 

provide reliable diagnostic traits that confirm their taxonomic 
status as independent evolutionary lineages (Faivovich, 1998; 

Weber and Caramaschi, 2006; Silva-Soares et al., 2015).

To answer if C. aeneus is a valid species, we aimed 

to contribute to the assessment of this taxonomic problem 

comparing C. gaudichaudii and C. aeneus based on a detailed 

characterization of their karyotypes and on genetic analyses 

of H1 mitochondrial DNA sequences (12S+tRNA-val+16S).

Material and Methods 

Crossodactylus aeneus and C. gaudichaudii 

sampling

We sampled the type locality of C. aeneus and the city 

of Rio de Janeiro, which is the most probable type locality 

of C. gaudichaudii (see Bokermann, 1966). Three adult C. 

gaudichaudii specimens (ZUEC 17569–17571) were collected 

from Parque Lage in the Tijuca Forest in the municipality of 

Rio de Janeiro, Rio de Janeiro state, Brazil (22°57’29” S, 
43°12’38” W, 129 m), and one topotype of C. aeneus (tadpole, 

ZUEC 20459) was collected from Barreira, near the Soberbo 

River in the municipality of Guapimirim, Rio de Janeiro state, 

Brazil (22°29’19” S, 43°00’43” W, 582 m).
We also analyzed three adult specimens (ZUEC 17578–

17580) from the Parque Natural Municipal da Taquara (PNMT) 

in the municipality of Duque de Caxias, Rio de Janeiro state, 

Brazil (22°35’23” S, 43°13’38” W, 241 m) (Figure 1). These 

specimens were compared with specimens from collections 

(Table S1), original descriptions of C. gaudichaudii and C. 

aeneus, and literature information about the species occurrence. 

PNMT are located on the geographical region named “Serra 
dos Órgãos”, slope of Petrópolis, the same mountain region of 
the type locality of C. aeneus (Figure 1). Hence, because no 

morphological distinction was noted between the specimens 

from Duque de Caxias and those from the type locality of 

C. aeneus or, those specimens used for this species description, 

we tentatively assigned to C. aeneus the specimens from 

Duque de Caxias.

The collection of specimens was authorized by the 

Brazilian Institute for the Environment and Renewable Natural 

Resources (IBAMA – Process number 21619-1). All collected 

specimens were fixed and deposited in the Museum of Zoology 
“Professor Adão José Cardoso” of the University of Campinas 
(ZUEC), in Campinas, São Paulo, Brazil. Details of the location 

Figure 1 – Localities of the specimens assigned as C. gaudichaudii and C. aeneus analyzed in the present work. ▲ Crossodactylus gaudichaudii from 

Parque Lage, Rio de Janeiro city (probable type locality of this species – see text for detail); ■ Crossodactylus aeneus from the Taquara Municipal Natural 

Park (PNMT), municipality of Duque de Caxias; ● Crossodactylus aeneus (topotype) from Barreira, municipality of Guapimirim; and ◆ Crossodactylus 

aeneus from Reserva Ecológica de Guapiaçu, Cachoeiras de Macacu (Amaral et al., 2019).
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and voucher number information is summarized in Table S2. 

For the analyses described below, tissue samples were 

extracted from specimens anesthetized with 5% Lidocaine 

(applied to the skin), following the recommendations of the 

Herpetological Animal Care and Use Committee (HACC) of 

the American Society of Ichthyologists and Herpetologists 

(available at http//www.asih.org).

Extraction of the DNA

The genomic DNA was extracted from liver or muscle 

tissue, previously maintained at -80 °C, from three C. 

gaudichaudii specimens and four C. aeneus (Table S2). The 

tissue was lysed in TNES (50 mM Tris–HCl, pH 7.5, 400 

mM NaCl, 20 mM EDTA, and 0.5% SDS) supplemented 

with proteinase K (100 μg/mL) at 56 °C for approximately 3 
hours. After lysis, the samples were treated with RNAse (50 

μg/mL), and NaCl was added to a final concentration of ~1.7 
M. The DNA was precipitated in isopropyl alcohol, washed 

in ethanol (70%), and rehydrated in TE (10 mM Tris–HCl, 

1 mM EDTA, pH 8). For quality control and to quantify the 

genomic DNA, the samples were electrophoresed in 0.8% 

agarose gel and analyzed by spectrophotometry.

Mitochondrial DNA sequencing

To generate data for the genetic distance, phylogenetic, 

and species delimitation analyses, sequences of the H1 

mitochondrial DNA (that comprise the 12S rRNA, Val-tRNA, 

and 16S rRNA genes) were obtained by PCR using the primer 

pairs MVZ 59 (Graybeal, 1997)/Titus I (Titus and Larson, 

1996) and 12L13 (Feller and Hedges, 1998)/16Sbr (Palumbi 

et al., 2002). The amplified products were electrophoresed in 
1% agarose gels and then purified using the GFX PCR and 
Gel Band DNA Purification kit (GE Healthcare) according to 
the manufacturer’s instructions. The samples were sequenced 

using the BigDye Terminator kit (Applied Biosystems), with 

the primers MVZ 59, MVZ 50 (Graybeal, 1997), 12L13 

(Feller and Hedges, 1998), Titus I (Titus and Larson, 1996), 

16L2a, 16H10 (Hedges, 1994), 16sAR, and 16sBR (Palumbi 

et al., 2002).

The products of the sequencing reactions were purified 
by precipitation in 80% ethanol and centrifugation at 1,200 

rpm for 30 minutes, and were then washed in 70% ethanol 

and centrifuged for 10 minutes. Once dried, the products were 

resuspended in loading dye (Blue-Dextran-EDTA/Formamide, 

1:5), denatured for 3 minutes at 94 °C, and then transferred 

to automatic sequencer. The sequences were edited using the 

Bioedit software, available at http://www.jwbrown.mbio.ncsu.

edu/BioEdit/bioedit.html (Hall, 1999).

DNA sequence analyses

The mitochondrial DNA dataset included sequences 

from three individuals of C. gaudichaudii and four C. aeneus, 

and all the H1 or partial 16S gene sequences available in the 

GenBank for Crossodactylus species (Table S2), including 

three partial sequences of the 16S rRNA gene of C. aeneus from 

Reserva Ecológica de Guapiaçu, Cachoeiras de Macacu, Rio 
de Janeiro, Brazil (Amaral et al., 2019; Figure 1). Therefore, 

we included sequences of C. aeneus, C. caramaschii (C. 

gaudichaudii species group), C. werneri (C. dispar species 

complex), C. trachystomus (C. trachystomus species group), 

and C. schmidti (C. schmidti species group). We also included 

Megaelosia goeldii and Hylodes phylodes as representatives of 

the two other genera comprised in the Hylodidae family, and 

representatives of Alsodidae, which has been inferred as the 

sister group of Hylodidae (Pyron and Wiens, 2011; Grant et 

al., 2017) (for details, see Table S2). The dataset was aligned 

using the MAFFT v7 application (Katoh et al., 2019) and 

generated a matrix composed of the 2,369 bp. 

The phylogenetic analyses were based on the Maximum 

Likelihood (ML) and Maximum Parsimony (MP) approaches. 

For the ML analysis, the GTR substitution model was inferred 

by MrModeltest v2.3 (Nylander, 2004) as the best model 

of evolution. The unpartitioned DNA matrix sequence was 

implemented in RAxML (Kozlov et al., 2019) with estimate 

stationary base frequencies, executing 10 separate searches 

with different starting trees. The bootstrap analysis was 
performed using 100 replicates to assess the statistical support 

of clades. The MP analyses were conducted in TNT v1.5 

(Goloboff and Catalano, 2016) using the new technology 
search option (the best length was hit 100 times), including 

sectorial searches, ratchet, tree drifting, and tree fusing. The 

gaps were considered as fifth state and support of the edges 
was evaluated by bootstrap analysis with 1,000 replicates.

Uncorrected p-distances among and within clades of 

interest were calculated using MEGA X (Kumar et al., 2018). 

This analysis was conducted with the mitochondrial H1 and 

also with the partial fragments of the 16S rRNA gene. Gaps 

and missing data were deleted in pairwise comparisons.

To assess the taxonomic status of C. gaudichaudii and 

C. aeneus, we used the cladogram inferred in the RAxML 

analysis to employ a tree-based species delimitation test, 

using the Poisson Tree Process (PTP) model (Zhang et al., 

2013). We used the bPTP version of the PTP method, available 

on the webserver (http://species.h-its.org/ptp/). The bPTP 

analysis was run with all parameters set at default except the 

MCMC, which was set at 500,000 generations. The outgroup 

was removed to improve the delimitation results as suggest 

by server.

Classical cytogenetic preparations

Mitotic metaphases were obtained from cell suspensions 

of the intestinal epithelium from three C. gaudichaudii 

specimens and four C. aeneus (Table S2) previously treated 

with colchicine (King and Rofe, 1976, with modifications 
from Gatto et al., 2018). The chromosomes were stained 

with Giemsa (10%) and then C-banded (King, 1980). The 

slides were processed using the Ag-NOR method (Howell 

and Black, 1980) to detect the Nucleolus Organizer Regions 

(NORs). The metaphasic chromosomes were photographed 

under an Olympus BX-60 microscope and classified according 
to Green and Sessions (1991).

Fluorescent in situ hybridization (FISH) 

The FISH experiments were carried out on specimens 

ZUEC 17569 and ZUEC 17579 (Table S2), which represent 

the populations of Rio de Janeiro and Duque de Caxias, 

respectively. The PcP190 satellite DNA sequence previously 

isolated from C. gaudichaudii by Vittorazzi et al. (2014) was 
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amplified to obtain chromosomal probes. For this, one cloned 
fragment was amplified by PCR in the presence of digoxigenin-
dUTP (Roche) and primers T7 and SP6, which flank the 
connection site of the pGEM-T Easy Vector (Promega). The 

probes were mixed with salmon DNA (1 ng/μL of probe) 
and precipitated in ethanol. The DNA was dissolved in a 

hybridization buffer at pH 7 composed of deionized formamide 
(50%), 2 x SSC, phosphate buffer (40 mM), Denhardt’s 
solution, SDS (1%), and dextran sulfate (10%). The in situ 

hybridization technique was based on Viegas-Péquignot 

(1992), with modifications for the detection of digoxigenin-
labeled probes with anti-DIG-Rhodamine (Roche).

The microsatellites (CA)
15

 and (GATA)
8
 oligonucleotides 

were marked directly with Cy5-fluorochrome at the 5’ end 
during synthesis (Sigma-Aldrich) and used as probes in FISH 

assays that followed the protocol of Kubat et al. (2008), under 

high stringency (77%) conditions. Images of the hybridized 

metaphase chromosomes were captured with an Olympus BX-
60 microscope and edited with the Image-Pro Plus program 

(Media Cybernetics).

Results

Phylogenetic inferences and species delimitation 

based on mitochondrial DNA sequences

All Crossodactylus species were recovered into one 

strongly supported sister-clade of Hylodes phyllodes + 

Megaelosia goeldii in the ML and MP analyses. The species 

C. werneri, C. trachystomus, C. caramaschii and C. schmidti 

formed the sister-group of a clade composed of C. gaudichaudii 

and C. aeneus, however, with low bootstrap support (Figure 2 

and Figure S1).

The clade containing C. gaudichaudii and C. aeneus 

was strongly supported in both analyses. The C. gaudichaudii 

specimens (from Rio de Janeiro city) and those specimens 

of C. aeneus from Guapimirim and Cachoeiras de Macacu 

formed two distinctive groups in both phylogenetic inferences; 

however, the relationships of C. aeneus from Duque de Caxias 

differed in both analyses. In the ML analysis, the three C. 

aeneus specimens from Duque de Caxias were grouped 

together with those three C. gaudichaudii specimens, however, 

Figure 2 – Phylogenetic relationships among the Crossodactylus species analyzed in the present study, inferred by maximum likelihood analysis of a 

2,369-bp H1 mitochondrial DNA sequence matrix. The gray box shows the clade of C. gaudichaudii and C. aeneus obtained in the Maximum Parsimony 

analysis. Note the incongruence recovered to the specimens from Duque de Caxias (for complete tree, see Figure S1). The numbers at each node indicate 

the bootstrap values (values below 50 have been omitted). The blue blocks indicate the partitions recovered by the bPTP analysis of the Crossodactylus 

specimens.
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without bootstrap support (Figure 2). In contrast, in the MP 

analysis, C. aeneus was recovered as monophyletic, with all 

the specimens assigned to this species clustered together in a 

low supported clade (61% of bootstrap - Figure 2). 

The genetic distances between C. gaudichaudii and 

C. aeneus were low, with average uncorrected p-distance 

of 1.7% to the partial 16S (minimum 1.5% and maximum 

1.9%) and 2% to H1 sequence (minimum 1.8% and maximum 

2.3%) (average values in Table 1). Genetic distances within C. 

aeneus ranged from 0% to 0.8% in 16S sequence while within 

the C. gaudichaudii population ranged from 0% to 0.1% in 

16S sequences. As the specimens of C. aeneus from Duque 

de Caxias grouped differently in the ML and MP analyses, 
we also considered these specimens separately in additional 

comparisons. In 16S sequences, the specimens from Duque 

de Caxias differed from the remaining C. aeneus specimens in 

0.8%, and from C. gaudichaudii in 1.5%. The average genetic 

distance of C. gaudichaudii and C. aeneus against the other 

species included in the analysis (C. werneri, C. trachystomus, 

C. caramaschii and C. schmidti) ranged from 7.4% to 10.7% 

in 16S sequences (Table 1). 

The bPTP species delimitation method recognized C. 

caramaschii, C. trachystomus, C. werneri and C. schmidti as 

independent taxonomic units, which reinforces the capacity of 

this procedure to delimit species of Crossodactylus (Figure 2). 

In addition, the bPTP approach recovered C. gaudichaudii 

and C. aeneus as a single partition, with a Bayesian support 

of 0.94, supporting the hypothesis that the specimens assigned 

to these species belong to a single species (Figure 2).

Cytogenetic analysis

The specimens assigned to both C. gaudichaudii and 

C. aeneus had a diploid number of 2n = 26 chromosomes, 

with a karyotype composed of six metacentric pairs (1, 4, 9, 

11-13), five submetacentric pairs (2, 6–8 and 10), and two 
subtelocentric pairs (pairs 3 and 5) (Figure 3a, f). An extensive 

Table 1 – Uncorrected p-distances (in percentage) based on partial 16S rDNA (bottom triangle) and H1 mitochondrial DNA (top triangle) of the Crossodactylus 

species analyzed in the present study. Gray cells show intraspecific variation of the partial 16S rDNA (left) and H1 mitochondrial DNA (right).

Species 1 2 3 4 5 6 7 8

1. C. aeneus (Guapimirim - Topotype) -/- 1.6 - 2 10.4 - - -

2. C. aeneus (Duque de Caxias) 0.7 0/0.5 - 2 10.4 - - -

3. C. aeneus (Cachoeiras de Macacu) 0.1 0.8 0.1/- - - - - -

4. C. gaudichaudii (Rio de Janeiro city) 1.7 1.5 1.8 0/0.1 10.2 - - -

5. C. schmidti 7.4 7.6 7.6 7.4 0/0 - - -

6. C. trachystomus 8.6 8.2 8.6 8.2 6.7 -/- - -

7. C. caramaschii 9.2 8.7 9.2 7.4 6.8 6.4 0.2/- -

8. C. werneri 10.5 10.7 10.4 9.6 6.3 6.5 5.6 0/-

Figure 3 - Karyotypes of C. gaudichaudii and C. aeneus. Chromosomes stained with Giemsa (a, f); The secondary constrictions in the long arm of pair 8 

coincide with the NOR, which were silver-impregnated by the Ag-NOR method, as shown in insets b and g. Dark planks show chromosome hybridized 

with probes for the PcP190 satellite DNA (c, h), (CA)
15 

microsatellite repeat (d,i), and (GATA)
8 
microsatellite repeat in (e,j). Bar = 10 µm.
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secondary constriction was observed in the long arm of the 

homologs of pair 8 in some metaphases, which coincides with 

NOR. On the other hand, smaller secondary constrictions were 

also seen and consequently, in these cases, the NOR-bearing 

chromosome pair could be classified as pair 8 according to its 
size. Therefore, despite a secondary constriction increased the 

chromosome size in most metaphases, we classified the NOR-
bearing chromosome pair as pair 8 to reflect our hypothesis 
of chromosomal homology when we compare the karyotypes 

described here with karyotypes previously described to other 

Crossodactylus species (Beçak, 1968; De Lucca et al., 1974; 

Aguiar-Jr et al., 2004; Amaro, 2005). The C-banding technique 

detected a weak centromeric heterochromatin signal in some 

of the chromosome pairs of both karyotypes. As the C-banding 

data were insufficient for discussion, we show these results 
in Figure S2.

A conspicuous PcP190 satellite DNA cluster was found 

in the centromeric region of the homologs of pair 1 in both 

species (Figure 3c, h), while the mapping of the microsatellite 

repeats (CA)
15

 (Figure 3d,i) and (GATA)
8
 (Figure 3e,j) 

revealed hybridization signals in the terminal regions of all 

the chromosomes in all the specimens assigned to both C. 

gaudichaudii and C. aeneus. 

Discussion 

Chromosomal analysis of C. gaudichaudii and C. aeneus 

showed the same diploid (2n) and fundamental (FN) numbers 

previously reported to C. caramaschii (Aguiar-Jr et al., 2004; 

Amaro, 2005), C. dispar (De Lucca et al., 1974), C. grandis 

(Beçak, 1968) and C. schmidti (Amaro, 2005), suggesting an 

overall similarity among the Crossodactylus karyotypes. The 

NOR located in a small-sized biarmed chromosome pair is 

a common feature within Crossodactylus species, as NORs 

were detected on the long arm of pair 8 in karyotypes of C. 

caramaschii (Aguiar-Jr et al., 2004), C. schmidti (Amaro, 

2005), C. gaudichaudii, and C. aeneus (present study).

Cytogenetic data have provided important insights 

into interspecific comparisons in many groups, helping in 
evolutionary analyses. In cytogenetic studies of anurans, 

the NOR has been used as a valuable chromosome marker 

for the differentiation of species (Schmid et al., 2014) 

and even populations (Silva et al., 1999; Quinderé et al., 

2009; Nascimento et al., 2019), although in several cases, 

the location of the NOR varies little among closely-related 

species (Busin et al., 2008; Cardozo et al., 2011). When we 

compared the karyotypes of C. gaudichaudii and C. aeneus 

based on diploid number, FN, NOR location, mapping of 

PcP190 satellite DNA and mapping of (CA)
15

 and (GATA)
8
 

microsatellite clusters, no differences were found. Therefore, 
the cytogenetic traits described here to C. gaudichaudii and 

C. aeneus provide insufficient evidence for the differentiation 
of these two species.

The PcP190 satellite DNA was first described in the 
anuran Physalaemus cuvieri (Vittorazzi et al., 2011), and this 

satellite DNA family was subsequently detected in a number 

of anuran species, with a species-specific sequence variant 
being found in C. gaudichaudii (Vittorazzi et al., 2014). The 

data available on the PcP190 indicate that this satellite DNA 

family is a valuable chromosomal marker for karyotypic 

comparisons of the anurans. The chromosomal hybridization 

of PcP190 markers has revealed major interspecific differences 
in closely-related Physalaemus species, and differentiated the 
karyotypes of at least three P. cuvieri populations (Vittorazzi 

et al., 2014), later pointed as species (Lourenço et al., 2015). 

In the present analysis of C. gaudichaudii and C. aeneus, 

however, no clear differentiation of the karyotypes was found. 
The chromosomes of C. gaudichaudii and C. aeneus 

present an accumulation of each analyzed microsatellite 

motifs, primarily in the subterminal regions of both arms, 

a pattern observed in the karyotype of a number of other 

anuran species (Peixoto et al., 2015, 2016; Ernetti et al., 

2019). The enrichment of microsatellites in subterminal 

chromosomal regions may play a fundamental role in the 

stabilization and function of these regions in the eukaryotic 

chromosome (Buschiazzo and Gemmell, 2006; Richard et 

al., 2008; Torres et al., 2011), and has been found in several 

different vertebrate groups (Cioffi et al., 2011; Ruiz-Ruano 

et al., 2015; Peixoto et al., 2015, 2016; Oliveira et al., 2017).

The phylogenetic analyses based on the mitochondrial 

H1 fragment clustered all the specimens assigned to C. 

gaudichaudii and C. aeneus in a highly supported monophyletic 

group, which is the sister-clade of the C. trachystomus+C. 

caramaschii+C. schmidti+C. werneri clade. The C. aeneus 

specimens from Duque de Caxias, which is located in the same 

mountain range as the type locality of C. aeneus, clustered 

with a topotype of C. aeneus in the MP analysis, whereas they 

were grouped together with specimens of C. gaudichaudii in 

the ML analysis. Such uncertainty about the relationships of 

these specimens reinforces the taxonomic issues concerning 

C. gaudichaudii and C. aeneus. In addition, it agrees with the 

bPTP analysis, which assembled all the specimens assigned 

to C. gaudichaudii and C. aeneus in the same partition, as 

belonging to a single species. The genetic distance analysis 

was also congruent with these previous inferences, as low 

genetic divergence was found between specimens assigned to 

C. gaudichaudii and C. aeneus. While the genetic distances 

between C. gaudichaudii and C. aeneus ranged from 1.5% 

to 1.9% in the partial 16S rRNA gene, the other pairs of 

Crossodactylus species analyzed here varied between 7.4% 

and 10.7%, reflecting high levels of genetic diversification 
among valid species of this genus. These genetic distances 

estimated between C. gaudichaudii and C. aeneus were also 

below the threshold of 3% proposed by Fouquet et al. (2007) 

and Lyra et al. (2017) to flag candidate species based on 
this gene marker. Therefore, the genetic divergence among 

the specimens assigned to C. gaudichaudii and C. aeneus 

could represent population structure rather than interspecific 
variation.

In the past, other nomen had been synonymized with C. 

gaudichaudii (Limnocharis fuscus Bell, 1843; Elosia vomerina 

Girard, 1853; Phyllobates brasiliensis De Witte, 1830). Here, 

taken the cytogenetic and genetic results together with previous 

studies of internal and external morphology of tadpoles 

(Francioni and Carcerelli, 1993; Weber and Caramaschi, 2006; 

Silva-Soares et al., 2015) and biacoustic pattern (Pimenta et 

al., 2015), we notice that C. gaudichaudii and C. aeneus could 

not be differentiated, which supports the hypothesis that they 
correspond to the same taxonomic unit, with C. aeneus being 

a new junior synonym of C. gaudichaudii.
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