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“It is by logic that we prove,
but by intuition that we discover.”

(Henri Poincaré)



Resumo

Em 1973, Bernstein, Gel’fand e Gel’fand publicaram um artigo sobre a homologia dos
espagos G/P, que chamaremos de variedades bandeira. L eles mostram qual é a relagao
entre a homologia gerada pela decomposicao celular de Schubert e a cohomologia usando
as classes caracteristicas de Chern dada por fibrados de retas complexas. Este trabalho
apresenta técnicas alternativas de se obter essa mesma relagao em variedades bandeira
maximais, porém utilizando o homomorfismo de Chern-Weil, que associa polinémios
P-invariantes a formas diferenciais fechadas, e portanto representantes em H*(G/P;R).
Como se sabe, cada célula de Schubert estda associada a um elemento w do grupo de
Weyl. O que fizemos foi construir formas volumes invariantes em tais células que nao
dependem da decomposicao minimal de w. Utilizando propriedades geométricas das
células de Schubert—fibracoes de esfera sobre células menores—demonstramos a dualidade
entre células e polinémios, um problema que se reduziu a integracao sobre esferas. Tais
técnicas permitem inclusive a obtencgao de resultados anadlogos para variedades bandeira
quaternidnicas. Explorando mais afundo essas variedades quaternidnicas, apresentamos
formas explicitas das classes de Pontryagin e por dltimo, como tais classes representam
uma obstrugao para existéncia de certos referenciais na variedade bandeira, provamos que

ali nao existe uma estrutura hipercomplexa invariante pela acao do grupo estrutural.

Palavras-chave: Variedades bandeira. Homologia. Cohomologia. Teoria de Chern-Weil.
Teoria de Lie. Células de Schubert. Algebra de polinémios invariantes. Decomposicio de
Bruhat.



Abstract

In 1973, Bernstein, Gel’fand and Gel’fand published a paper about the homology of the
spaces /P, which we call flag manifolds. There they showed what is the relationship
between the homology generated by the Schubert cellular decomposition and the coho-
mology using Chern characteristic classes of complex line bundles. This work presents
alternative techniques aiming to prove the same relations in maximal flag manifolds, but
using instead the Chern-Weil homomorphism, which takes P-invariant polynomials to
closed differential forms, that is, representants in H*(G/P;R). It is known that each
Schubert cell is indexed by an element w of the Weyl group. We build invariant volume
forms on each cell which does not depend on the minimal decomposition of w. Making use
of geometrical properties of the Schubert cells—sphere fibrations over smaller cells—we
have managed to demonstrate the duality between cells and polynomials, thus reducing
the problem to that of integration over spheres. Such techniques allowed us to go even
further and prove analogous results for the quaternionic maximal manifold. We deeper
explore the quaternionic manifolds and show explicit formulas for the Pontryagin classes.
Lastly, since such characteristic classes provides an obstruction for the existence of certain
frames on the manifold, we proved that there is no hypercomplex structure which is also

invariant by the structure group action.

Keywords: Flag manifolds. Homology. Cohomology. Chern-Weil theory. Lie theory. Schu-

bert cells. Invariant polynomial algebra. Bruhat decomposition.
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Introduction

This is a study on the homology and cohomology of a specific family of
homogeneous spaces, the so called flag manifolds. A first definition is given by seeing
these manifolds as collections of all chain of subspaces of a given vector space, the
chains satisfying a given form, a.k.a the flag signature. Using some basic linear algebra,
a differentiable structure of these sets is stablished by considering them as a quotient
G/Be." The case when G = Sl,(C) is done in Example 1.2 and Example 2.1. The most
known examples are the projective spaces of a vector space and, more generally, the
Grassmannians. Therefore, the methods used to compute the homology and cohomology

of the flag manifolds Fg = G/Bg are several.

For the cohomology, one method that we use, in particular, is by associating
G-invariant polynomials to closed differential forms on Fg via the Chern-Weil homo-
morphism (Theorem 1.2), therefore inducing characteristic classes on the flag, which are
widely known topological invariants (CHERN, 1946). To exemplify their importance, the
non-annihilation of these characteristic classes establishes an obstruction to the existence

of certain frames on the manifold. Theorem 3.6 is an example of a result in this direction.

For the homology, remember that for G a semisimple Lie group, one has the
Bruhat decomposition G = U BwB, where the union is taken over the elements w of the
Weyl group VW (KNAPP, 2013). By letting Bg act on G from the right, the corresponding
flag manifold Fg inherits a similar decomposition into orbits. Fix a point xg € Fg. The
closure of the orbit Bwzx, is what defines a Schubert cell S, (see section 2.2). These cells
allows us to see Fg as a CW-complex (RABELO; MARTIN, 2019), therefore it contains
information about the homology. Let dj denote the number of cells S,, such that k = 2 {(w).

By Corollary 2.1 (about the dimension), one immediately sees that

R if k is even,
Hi(F;R) =
0 otherwise.

Aware of the natural pairing between homology and cohomology, one is naturally led to

the question:

What is the relationship between the Schubert cellular structure on Fg = G/Bg
and the polynomial algebra of the structure group Be ¢

1" Unlike other more traditional studies on flag manifolds, I'll use the letter B (instead of P) to stand for

a parabolic subgroup. The reason for this is that the main object of study in this work is the mazimal
flag manifold F = G/B, where B is a Borelian subgroup. Also, the letter P is reserved for principal
bundles.
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A trio of mathematicians—Bernstein, Gel'fand and Gel’fand (BGG from now
on)—answered this question in a paper published in 1973 going by the tittle Schubert Cells
and Cohomology of the Spaces G/P (BERNSTEIN; GEL'FAND; GEL’FAND, 1973). To
each Schubert cell S, they’ve showed a formula for the corresponding invariant polynomial
P, starting from the Schubert cell associated to the maximal length wy € VW and going
down in length recursively. The main tool in the mathematical apparatus used in this
formula consisted of the “derivation” operator A, : Inv(G) — Inv(G) defined by

_ b~y (p)

Ap=——"—"5,
! v

where v is a root of g and p is an invariant polynomial. By considering the many ways
an element w € W can be decomposed, they proved the theorem stated below (for your

convenience).

Theorem 0.1. Let w € W with length l(w) = k. Let v, ...,V € b*, where by is a Cartan
subalgebra of g. Let D(-,-) be the natural pairing operator between homology and cohomology.
Then

Dus(Sus ) = Y, (Hay) - Vi (Hay,) (1)

where the sum is taken over all sequences (o, ..., o) of roots such that w =14, - T, .

In the paper by BGG, they describe the operator D in terms of the A, which
leads formulas of combinatoric nature. In chapter 2, we actually prove a similar result, but
using other perhaps more geometrical and elementary techniques. To each cell S,,, we first
build an invariant volume form described in terms of the characteristic classes of G — F.
Then we integrate it over S, leading us to a similar formula, like Equation 1. Because
each &, is related to a downward sequence of sphere fibrations, we do this integration
fundamentally by comparing the metric induced by such volume forms and the Fuclidean

metric, giving us the explicit integral

Bu(Hs) - Bl Hs) = f (Br- B,

(4m)
Notice that this formula does not depend on the choice of a minimal decomposition of w.
This is the content of Theorem 2.2. The above formula is generalized to any Chern-Weil
class f(£2)—see Theorem 2.3. The advantages of our method is that we have obtained
similar results even for non-complex flag manifolds, like the maximal flag of sl (H). See
Theorem 3.2.

Continuing, BGG used Equation 1 to investigate representations of the Weyl
group in the invariant polynomial algebra and cohomology H*(G/P). By realizing the Weyl
group as a subgroup of GG as in Equation 2.1, there is a right-action of W in I, therefore

W represents itself in the cohomology by considering the pullback operator. The authors
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proved that such representation is actually equivalent to the reqular representation of the
Weyl group. In this work, we prove an analogous result in the case of the quaternionic

maximal flag. See section 3.2.

The structure of the thesis is organized as follows. In chapter 1, the basics of the
Chern-Weil theory are established alongside notation. It follows very closely what is done
in (KOBAYASHI; NOMIZU, 1963; KOBAYASHI; NOMIZU, 1996). I've decided to put it
first (instead of adding it as an appendix) because I've explored important examples in the
middle of it. Now, chapter 2 is where the real work begins. It talks about flag manifolds
from the Lie-theoretic point of view, stating (with proofs) fundamental facts about such
spaces; it also explores the Schubert cells in great depth. The chapter ends with the main
results about the maximal flag varieties of a complex semisimple Lie group, realizing the
duality between elements of W and invariant polynomials by integration. The contents
of chapter 3 shows how the techniques developed in the previous chapter can be used to
prove analogous results to the quaternionic case. Last, but not least, it indicates how the
Weyl group acts on the polynomial algebra and cohomology and proves equivalences of
these representations and the (right) regular representation. In the appendix, I've put
some basic facts about the quaternion linear algebra, some examples that were too big or

inconvenient and some useful theorems.

I hope you enjoy!
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1 Chern-Weil Theory

A fundamental problem in topology is to find out whether two given spaces are
(topologically) equivalent, i.e., if there exists a homeomorphism between them. To answer
this question, one way is to take a deep dive into the realm of algebraic topology, a field
where all the modern tools are. In this text, we give special attention to the homology
and cohomology theory: the (co)homology of equivalent spaces are equal, one of the so
called topological invariants. Therefore, if the (co)homology of two given spaces differ,
then they can not be equivalent. Theoretically, this is all it takes, but actually compute

the homology and cohomology might not be straightforward.

The aim of this chapter is mostly to introduce preliminary concepts used in
the following chapters. This includes our main tool which is the Chern-Weil homomor-
phism defined in Theorem 1.2. This homomorphism allows us to compute characteristic
classes (elements in the homology, essentially) of natural principal bundles over the flag
manifolds. Everything involved in this construction is what we call Chern-Weil theory.
This introductory chapter follows very closely what is done in (KOBAYASHI; NOMIZU,
1963) and (KOBAYASHI; NOMIZU, 1996), so most of the proofs are skipped. Instead, we

take this opportunity to give examples and develop the main concepts.

1.1 Principal Bundles

Let M be a differentiable manifold and G a Lie group. A (differentiable)
principal bundle over M with group G is a space P and an action P x G — P satisfying

1. G acts freely on P from the right;

2. M is the quotient space of P by the equivalence relation induced by G, i.e., M = P/G

and the canonical projection 7 : P — M is differentiable;

3. P is locally trivial.

A principal bundle will be denoted by (P, M,G) or simply by P. The set P is called
the principal space, GG is the structure group, M is the base space and 7 is simply the
projection. For each x € M, the set 7~ '(z) is called the fiber over . Each fiber is a closed

submanifold of P and is diffeomorphic to G.

Example 1.1. Let G act on M x G by right multiplication on the G factor. Then
P = M x (G is a principal bundle, the so called trivial bundle. Whether any given principal

bundle P(M, G) is trivial or not is is a fundamental question in algebraic topology. Most of
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the theory developed in this thesis actually provides a toolbox to answer this; Another class
of principal bundles that we are going to explore are the quotient bundles (G, H,G/H).
Let H be a closed subgroup of G. Naturally, H acts on G from the right, so G' can be seen
as a principal bundle over G/H with structure group H. O]

Remark 1.1. Most of the objects defined in this thesis have some sort of invariant
property, allowing us to almost completely ignore the local triviality of a principal bundle,
even though it is necessary. The fact that one is able to reduce any global discussion to an
open neighborhood of a point—and by extension, to the study of the Lie algebra— is a

common feature in the study of Lie groups.

In what follows, the most important example in this text is presented.
Example 1.2. A flag in C" is a sequence
xr = (‘/i)‘/é7"'7vn—l)

where each Vj, is a subspace of C" of (complex) dimension k; and Vi,  Vi,;. The set of all
such flags is called the mazimal complex flag manifold and is denoted by F. Now, consider
the distinguished flag

xg=(E,Fy...,E, 1)l

where each Ej, is the subspace of C" spanned by the basic vectors {e; }§:1' The simple Lie

group Sl,(C) acts naturally from the left on F

g-Tr= (gE17gE27' .. 7gEn—1)-

This action is easily seen to be transitive and the stabilizer of x( is a Borel subgroup B
of S1,(C), that is, B is the subgroup of determinant one upper triangular matrices. A

well-known result about orbit and stabilizers' provides the diffeomorphism
F ~ S1,,(C)/B.

In other words, Sl,,(C) is a principal bundle over F with structure group B. O

A homomorphism of principal bundles (P, M,G) and (P', M',G’) is a pair
consisting of a differentiable map f’: P’ — P and a homomorphism f” : G’ — G denoted
by the same letter f such that f(pg) = f(p)f(g). One says that P’ is a subbundle of P if

f’ is an imbedding and f” is injective.

Let (P, M, G) be a principal bundle and take G’ to be any subgroup of G. The
structure group G is said to be reducible to G’ if P admits a subbundle (P, M,G"). In
this case, the subbundle P’ is a reduction of P to the structure group G’; and G is said to
be reducible to G'.

! This is a generalization of proposition 2.33 on (SANMARTIN, 2021)
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Example 1.3. Continuing the last example, consider the Iwasawa decomposition of the
Lie group G = S1,(C) into KAN where K = SU,,, A is the subgroup of diagonal matrices
with determinant one and N is the subgroup of upper diagonal matrices with ‘1’ in the
diagonal entries. Notice that B = AN, so K is a subbundle of G with structure group T,
the diagonal subgroup in K, also known as the maximal torus. This leads us to another

representation of the maximal flag as a quotient, namely F ~ SU,, /T O

We dedicate the rest of this section to present some results that are used to
show that in a quaternionic maximal flag, no G-invariant quaternionic structure will be

hypercomplex. See section 3.4.

Let F be a manifold on which G acts from the left. Then G acts on P x F
from the right by letting (p, f) - g = (pg, g 'f). Denote by E = P xg F the quotient
group by this action with coset denoted by [p, f]. It is known that E has a differentiable
structure such that the projection 7 : E — M given by wg[p, f] = 7(p) is differentiable
and F — M is a (general) bundle with fiber F'. More precisely, E(M, F, G, P) is said to
be the fiber bundle E over M with fiber F' associated to the principal bundle (P, M,G).

Example 1.4. Let H be a closed subgroup of G. Then H acts naturally on the quotient
space G/H from the left. Therefore, E = G xy G/H is a fiber bundle with fiber G/H
associated to the principal bundle (G, G/H, H).

Remark 1.2. A similar result is true when one considers a more general principal bundle
P, i.e., the associated bundle F is diffeomorphic to the quotient P/H. See Proposition 5.5
of Chapter I in (KOBAYASHI; NOMIZU, 1963).

A cross section of a vector bundle £ — M is a mapping ¢ : M — E such that
oo is the identity on M. Notice that local sections always exist, since P is locally trivial.
We finish this section with the following important result giving a criteria for when a

reduction is possible.

Proposition 1.1. The structure group G of (P, M, G) is reducible to a closed subgroup H
if, and only if, the associated bundle E(M,G/H,G, P) admits a cross section o : M —
E~ P/H. O

1.2 Connection theory

Let (P, M,G) be a principal bundle with projection 7 : P — M. By definition,
the map 7 is differentiable. A tangent vector X € T, P is said to be vertical if X € ker dm,,.
Let V, denote the kernel of m and v : T,P — V), is the vertical part mapping. Although in
any principal bundle, there is the notion of a vertical vector field, there is no standard way

to say that a vector is “horizontal”. The notion of horizontality is introduced by endowing
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a principal bundle with a connection. Formally, a connection on a principal bundle P is a
distribution H of subspaces in the tangent bundle T'P such that at each point p € P, one
has the direct sum

T,P=H,DV,.
We also require that this distribution is equivariant by the G-action, i.e., if Ry : P — P
denotes the right action by an element g € GG, then H must satisfy

Hpg = (Rg)s(Hyp)
where (Ry). denotes the differential.

Associated to every connection is the connection form, denoted by w. It is the
unique linear functional defined on P and taking values on the Lie algebra g such that for
a vector field X, w,X = A where A € g is such that

d tA
- (p-e) = v(Xp). (1.1)
dt|,_,

The correspondence between connections (as distributions) and connection

forms are 1:1, so on we may refer to them unambiguously simply as a connection.

The expression on the left-hand side of Equation 1.1 is called the fundamental
vector field corresponding to A € g and is denoted by A*, that is, at a point p

d
A= — cet .
i (p-e)
In short, the connection w provides a way to measure the g-change of a vector field X by

taking as a reference the exponential flows on P among different fibers.

Example 1.5. Let G = S1,,(C) and K = SU,, be the compact real form. Let (K,F,T)
be the principal bundle over the maximal flag manifold F as shown in Example 1.3. Let
xo € K denote the origin. Then 7, K = su,, which has a decomposition in terms of root
spaces g, given by

5un=t®2ua

where u, = (go @ g_o) N su, and t is the Lie algebra of T'. One particularly useful example

of an invariant connection on K is constructed by first defining the horizontal space at

Hyy = Z Ugy.

a>0

Then define H, = (L,)+Hs,, where L, is left multiplication by g € K. Notice that
Lyom =mo L, so one has the direct sum T,K = H, ®V,. Now, for any t € T

the origin to be the sum

(Ri)sHay = (Le)s 0 Ad(t ) Hay = (Li)sHay = He

because H,, is invariant by Ad(7T). Since L, commutes with R, for all t € T and g € K,

one immediately obtains the equivariance condition by the T-action. O]
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Remark 1.3. A connection on a principal bundle allows one to speak of horizontal curves
and liftings, which leads to the notion of parallel transport (in (KOBAYASHI; NOMIZU,
1963), the authors call it parallel displacement). It is known that a parallel transport
induces an isomorphism between the fibers (essentially, the group G) over the starting
and ending points. Considering it on closed loops, one arrives at the notion of holonomy
groups ®(x) which, roughly speaking, is defined as the set of G-isomorphisms derived from
the parallel transports among all closed loops at a base point x € M. See Chapter II,
Sections 3 and 4 for more on the subject; Section 8 is devoted to the proof of a theorem

on holonomy by Ambrose and Singer.

Back to the general theory. Let (P, M, G) be a principal bundle with a given
connection form w. We introduce now the notion of a curvature form on P, the covariant
derivative of a connection form. The curvature form is related to the more geometrical
notion of a curvature on vector bundles®. Precisely, the curvature form Q is a differential
form of degree 2 defined on P taking values on g. It is defined as the covariant derivative of
the curvature form w, that is, if we let h : TP — H be the projection onto the horizontal
part, then

QX,Y) =dw(hX,hY).

By definition, if X is vertical, then Q(X,Y") = 0.
Just as in the case of vector bundles, the connection form measures the non-
commutativity of the Lie bracket. Equation 1.2 is known as the structure equation.

Theorem 1.1. Let w be a connection form and ) be its curvature form. Then

du(X,Y) = _;[W(X),wof)] L O(X,Y) (1.2)

for XY e TP.

A special case of the above theorem is when all vector fields involved are

horizontal. It simplifies the structure equation, since w is a vertical form. See Chapter 11,

section V of (KOBAYASHI; NOMIZU, 1963).

Corollary 1.1. Let X and Y be horizontal vector fields on P. Then

W([X,Y]) = —2Q(X,Y).

We go back to the most important example in this text and provide an explicit
formula for the curvature. It is used in section 3.3 to give an explicit set of generators for

the cohomology of the quaternionic maximal flag.

2 The relationship between these two is presented in (SPIVAK, 1999), Addendum 3 of Chapter 8.
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Example 1.6. Let us expand on Example 1.5, where U = SU,, and an invariant connection

Hay = Z Uy

a>0

was constructed using

The associated connection form w is a left-invariant differential form, meaning that for
u,v € U, one has
(Law)o(Xy) = WLu(v)(d(Lu)v(Xv» = wy(Xy),

or simply
Liw=w VYuel.

So, for a left-invariant vector field induced by X € m, one has for any u € U that
Wy (Xy) = we(Xe) = v(X)

where v is the projection T,U — V., = kerdm,. Since the connection is left-invariant,
the induced vector field X of a horizontal X, is also horizontal (and invariant). Apply
Corollary 1.1 to get the nice formula

QX,Y) - —;v([X, Y)). (1.3)

]

1.3 Chern-Weil Homomorphism

Let G be a Lie group with Lie algebra g. A form of degree k on G is a symmetric
multilinear map

figx--xg—R.

(k factors)
If f and g are forms of degree k and [, respectively, define their product to be the form fg
of degree k + [ given by the formula

fg(Xb s 7Xk+l)

(1.4)
= Z F(Xoqys - Xo@)9(Xo@r1)s - - Xo(rr)

where ¢ runs through the permutations of {1,2,... k + [}. Clearly, one has fg = gf.
Denote by Sym,,(G) the set of all such forms of degree k and put

Sym(G) = Z Symy(G).

Then Sym(G) has the structure of a commutative (graded) algebra over R. This algebra
is called the polynomial algebra of G.
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Remark 1.4. There are two reasons for the name “polynomial algebra”: 1) I already use
“form” in “differential forms”, and 2) the polynomial algebra is isomorphic to an actual set
of polynomials. Such isomorphism is explicitly stated in (KOBAYASHI; NOMIZU, 1996),
Section 2 of Chapter 12.

A form f € Sym(G) is said to be Ad(G)-invariant if f o Ad(g) = f for all
g € G. Here the composition is being taken entry-wise. Denote by Inv(G) the set of all
Ad(G)-invariant forms. This is a (commutative) subalgebra of Sym(G). Naturally, one
defines Invy(G) = Inv(G) n Sym,,(G).

Let (P, M,G) be a principal bundle with connection form w and curvature
form €. Take f € Inv(G). Then f(Q) is the differential 2k-form defined on P by

FOQ)(X1, ..., Xop)

1 (1.5)
= @ Z Eaf(Q(XJ(1)7 XO'(Q))J s 7Q<XU(21<:—1)7 XU(Qk;)))

where ¢, denotes the sign of the permutation o on {1,2,...,2k}. Sometimes the sum in

Equation 1.5 is referred as the o-alternating sum of
f(Q(Xla X2>7 s 7Q<X2k717 X2k>)

A basic fact of the Chern-Weil theory is that any differential form £ = f(2)
is projectable in M in the sense that there exists a differential form n on M such that

7 (n) = £ where 7* is the pullback of differential forms.

The following result summarizes the constructions and results concerning the

Chern-Weil homomorphism.

Theorem 1.2 (Chern-Weil Theorem). Let (P, M, G) be a differentiable principal bundle

with projection m: P — M. Endow P with a connection form w and let ) be its curvature.

Let f € Inv(G). Then there are the following results:

1. The differential 2k-form f(S2) projects (uniquely) onto a differential 2k-form on M.
The projected form is also denoted by f(Q2);

2. The differential form f(2) on M is closed. Its de Rham cohomology class [f(€2)] €
H?*(M;R) is independent of the choice of the connection w on P. This cohomology
class is denoted simply by [f] = [f()];

3. The map
[[]: Inv(G) — H*(M;R)
foo- [f]

is an algebra homomorphism.
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The map [-] is called the Chern-Weil homomorphism and the cohomology
classes [f] are the Chern-Weil (characteristic) classes of the principal bundle 7 : P — M.

If G is a complex (real) semisimple Lie group, the Chern-Weil classes of a
principal bundle (P, M, G) are actually Chern classes (Pontryagin classes) in the standard
way, that is, they are characteristic classes of complex (real) vector bundles —see Section 3
of Chapter 12 in (KOBAYASHI; NOMIZU, 1996). Simply calling such classes “Chern-Weil
classes” makes sense because we deal with both of them: Chern classes on chapter 2 and

Pontryagin classes on chapter 3.

A book by Loring Tu ((TU, 2017)) provides a nice alternative reference for
this topic. For more on characteristic classes, see (MILNOR; STASHEFF, 1974) and
(HATCHER, 2002). A somewhat didactic presentation on this subject is found on the
lecture notes by Michael Uscher called “Vector Bundles” (see (USCHER, 2012)).
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2 Complex Flag Manifolds

In this chapter, we formally introduce the flag manifolds as a quotient of a
semisimple Lie group by a parabolic subgroup. The flag F has a CW-complex structure
given by the Schubert cells. So, in order to study the cohomology of F, we give full attention
to these cells and their properties, which are explored in section 2.2 and section 2.3. Our
aim is to construct invariant volume forms on each of those cells and integrate them to
obtain a BGG-like formula' for the case when F is maximal. The techniques used here are
different from those of BGG and can be applied to non-complex flags. We did it for the

quaternionic maximal flag of sl (H) (see chapter 3).

2.1 Flag Manifolds

The flag manifolds of a complex semisimple Lie group G are the main object
of study in this text. They are generally defined as the quotient of G' by some parabolic
group Bg. By definition, each flag manifold is naturally associated to a principal bundle
G — (G/Bg with structure group Bg, as was done in Example 1.1. The most important
example to us is given in Example 1.2) i.e., F = S1,(C)/B, where B is the minimal

parabolic subgroup of G—the Borelian subgroup (see below).

To start with, let G be a complex semisimple Lie group with Lie algebra g.
Take a Cartan subalgebra h of g and denote by II the associated set of roots. Then g has

a root space decomposition

§=h® ) ga-

aell
For a choice of a simple system of roots ¥ < II, let II" denote the set of positive roots.

The Borel subgroup B is the connected subgroup of G with Lie algebra

b:b@zga

aellt

For a subset © < ¥, let (©) be the subset of II" generated by the roots a € ©. Define the
parabolic subgroup Bg = exp bg as the connected subgroup of G with Lie algebra

b@ =b ® Z J—a-
ae(®)
The flag manifold Fg is defined as the quotient G/Bg. If O is the empty set, then Bg = B
and the corresponding flag manifold is called the mazimal flag manifold of G. In this case,

one simply writes F.

L This is Equation 1.
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Example 2.1. Just as in Example 1.2, the partial flag manifolds of G = Sl,,(C) can be
seen as a set of nested subspaces of C". For instance, the complex Grassmannian Gry(C")
is a partial flag manifold with parabolic subgroup Bg given by © = {a4}. A partial flag in
C" is obtained from the maximal flag by forgetting some of the subspaces. Which subspaces
are forgotten is indicated by the flag signature, that is, a sequence of integers (di, ..., d,)
such that dy < dy < -+ < d,, < n. When F is maximal, d,,, = m for all 0 <m < n
(equivalently, m = n). So generally speaking, a flag manifold (partial or maximal) in C" of

signature (dy,...,d,,) is a sequence of nested subspaces
r=V...,Vn)

where dim Vj, = dj, 1 < k; < n and V; < Vj1. Denote by Fg the set of all such flags in
C" (© is to be determined). It is known, by linear algebra, that G acts transitively on Fg
with isotropy given by some subgroup, say Bg. Then

Fo = G/Bo.

As the notation already suggests, Bg is the integral subgroup of the Lie algebra bg for
some set © < X. To find out what O is this, let

18 = (Ey,,FEy,,...,Ey,) €Fg

where Ej; is the subspace of C" spanned by the set of canonical vectors {e; }le. As noted,
G acts transitively on Fg, so we turn our focus to the isotropy subgroup Bg, that is, the
set of all g € G such that g - xg) = xoe. Notice that g € Bg if and only if g - B}, = E} for
each k in the signature. For E; to be fixed by g, one needs to send the canonical vectors
{e1,€9,...,€eq,} inside the space generated by themselves, or more specifically, the image
cannot involve a linear combination containing any element e for k > d; (this is the

condition). Take the matrix-block representation of

g = .
* In—di1

The submatrix g, is of size m x m. The condition on the linear combination is equivalent

to the “+” block of size (n — dy) x dy being null, which is equivalent to g - E4, = Ey4,. By

continuing this process for Ey,, Eq,, ..., Eg, , the final form of the matrix g is
gdl % e %
0 guay
g=1 . : ) :
0 0 o Gna,

The root system of sl,,(C) is of type A. Each root o is decomposed as a sum of simple
roots

OéijOéj+Oéj+1+"'+Oék,1
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where q; is short for the simple root a;;1;. Thus one immediately? sees that the isotropy
Bg corresponds to

@ = 2\{06,11, e ,Oédm}.

So, starting from the maximal signature “forgetting” an entry d; is the same as adding

the respective simple root to the isotropy. The smaller flag, the larger the isotropy. O

Other examples of interesting flag manifolds are obtained when one endows C"
with a non-degenerate bilinear form ¢, e.g., the cannonical inner product. Take G be the
group of automorphisms of C" preserving such form. Then G - xg is the set of complete

flags (V4, ..., V,_1) such that Vj and V,,_; are mutually ¢-orthogonal.

2.2 Schubert Cellular Decomposition

Each flag manifold G/Bg has a special cellular decomposition, the so called
Schubert cell decomposition and each cell is called a Schubert cell, denoted by S,,. They

come from the Bruhat decomposition.

In order to introduce the Bruhat decomposition, first consider the more general
group of invertible matrices G = Gl,(C). This example provides a good motivation for
the definitions below. It is known that any g € G' can be written as a product of the form
bwb', where b and b’ are both upper triangular matrices and w is a permutation matrix.

Therefore, one writes GG as the union of double cosets

G = UBwB

wew
where B is the set of all upper triangular matrices in G and WV is the set of all permutations
in n elements represented as n x n matrices. In the quotient space G/B, the double cosets

becomes “N-orbits” (explained below), so

G/B = U Buw -z,

wew
where xqg = 1- B is the coset class corresponding to the neutral element ‘1’ in G. Each
orbit Bw -z is what one calls a Bruhat cell, all indexed by the group W. The closure of

an orbit is what defines a Schubert cell.

Now we go back to the theory of semisimple Lie groups. Let G be a complex
semisimple Lie group and let U denote its compact real form. Let g be its Lie algebra and
h a Cartan subalgebra with root system II and ¥ the set of simple roots. The Weyl group
is first defined as the finite group generated by the reflections

RGN
ro(B) =B 2<Oz,04>

2 The the Dynkin diagram of sl,,(C) is the simplest—see Chapter 8 of (SANMARTIN, 1999).
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with respect to the simple roots a € ¥ where (-, ) is the inner product on h* defined by
the Cartan-Killing form. As an example, take the Lie algebra sl,(C) with the standard
Cartan subalgebra h of diagonal matrices. Then the Weyl group W is the permutation
group in n elements that acts in § by changing the order of the diagonal entries. In b* the

action is similarly obtained by transposition.

The Weyl group W is isomorphic to the quotient YW = Norm/T where®
Norm = Normy(h) = {ue U : Ad(u)h < b} (2.1)
is the normalizer and T' < U is the maximal torus. The Bruhat decomposition for G is*

G= | J BuwB. (2.2)
wew
This union is disjoint up to T, that is, BwB n Bw'B # ¢ if and only if wT = w'T and in
this case BwB = Bw'B. Hence the set of components BwB is in bijection with the Weyl
group W = Norm/T.

The double coset decomposition of G factors down to the maximal flag F = G/B.
As seen in the section 2.1, the Lie algebra of B is b = h@n". Set H = exph and
N =expn®. Then B= HN = NH. Let g = 1- B be the origin of this coset space and for
w € Norm, put z,, = w - xg. The double coset space BwB is projected onto N - x,,. In fact,
BwB-xy = Bw-xy = B-x,,. Because B = NH and H -z = xg, one has B -z, = N -z, (w
normalizes H). The orbits B, = N - x,, are the Bruhat cells in F. In light of Equation 2.2,
they exhaust the N-orbits and are in bijection with the Weyl group W.

More generally, in a partial flag manifold Fg = G/Bg the Bruhat cells are the
N-orbits BS = N - 22 where 2§ = 1 Bg is the origin and 2© = w - z§ with w € Norm.
The same way the cells are indexed by the Weyl group. The difference now is that the

indexing is not exact since it may happen that BS = BS, with w # w'.

Definition 2.1. A Schubert cell is denoted by S© < Fe, indexed by w € W; and is defined
as the closure of the Bruhat cell BS = N - waf.

Remark 2.1. Notice that BS = N - 29 is a submanifold of Fg since it is an orbit of a
Lie subgroup (it can be proved that any Bfu) is diffeomorphic to a Lie subgroup of N and
hence to an Euclidean space). A Schubert cell S2, on the other hand, is not in general a
submanifold. It contains the corresponding Bruhat cell BS as an open and dense subset,
which enables several computations to be worked out in SO as it were a submanifold. In
section 2.4, integration of volume forms on SS is done using this open and dense property
of the Bruhat cells.

The isomorphism is given by Theorem 4.54 of Chapter IV in (KNAPP, 2013).
4 This is Theorem 7.40 of Chapter VII in (KNAPP, 2013).
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Example 2.2. Let G = Sl1,,(C) and Lie algebra g with the standard set of simple roots
aj.j41 = Aj — A\j+1 and take F = G/B to be the maximal flag manifold. Choose av = a5, 9
and let w = r, be a simple reflection. Then z( corresponds to the distinguished flag in
Example 1.2 and w acts on the canonical vectors e; via permutation of the indices. So the
Bruhat cell B, is the N-orbit through the flag

Ty = (%,EQ,Eg,...,Enfl) e F

where V] is the one-dimensional subspace of C" spanned by e;. Each g € N is an upper
triangular matrix with ‘1’ in each entry of the diagonal. By letting N act on x,,, one sees
that

By, ={(Vi,Ey, Es,....,E, 1) : E1 #V}

which is homeomorphic to CP™\{z,}, where
o = (E1> EQ, e ,Enfl).

Its closure, that is, the Schubert cell S,, is homeomorphic CP!, which in turn is a two-
dimensional sphere. This is a feature of the Schubert cells (see Proposition 2.3 and
Corollary 2.2). O

Local properties of the cells

In what follows, local properties of B,, (and S,,) of F, mainly, are described in

terms of the indexer element w € W.

To write the tangent space of B, at x,, in terms of the root spaces, first take a

representative u € Norm of w € W. Set

n?" = Ad(u " )nt = Ad(u ) ( Z ga> = Z Ju-las

aellt aellt+

1

- —1 - —1
where w'a = aow and N¥ = u'Nu=expn® . Then

—1

By, =N -uzg = u(uNu) -2 = u(NY - ).

Since N -z = 2o, it follows that N¥ -z = <N“’_1 N N’) - 0. The root space decompo-

sition shows that N* A N~ = exp <nw_1 N n’) where
nAnT = 2 95
B

with the sum extended over the set w™'II" A II~ of roots 3 < 0 such that 8 = w™'a with

a > 0.
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Turning back to the N-orbit through z,,, it follows that
N-z,=u ((Nw_1 NN7)- x()) —u(NY" AN -z,

Hence the Bruhat cell B, = N - x,, is the orbit by z,, of the subgroup

W(N"" AN u™" = expAd(u)(n” An~) = exp ( Z g_a>

[ 1
where
I, =w(w I ATl7) =1 nw(ll) (2.3)

is the set of positive roots that are mapped into negative roots by w™'.

To write tangent vectors we use the notation X - x to stand for the value at x
of the vector field induced by X € g, namely
d
X-z=—| (e 2).
dt|,_,
More generally, if v is a vector subspace of the Lie algebra g and x is an element of a flag
manifold Fg, then
v-x={X -2eT,Fo: X ev}.
Now the tangent space T, B, of the Bruhat cell B,, at its origin z,, is the tangent space
of the w(N®"" A N~ )u"'-orbit, that is,
T:(:wa = Z J—a Ty
a€clly,
with I, = IT" nw(I17) as in Equation 2.3. This is the tangent space T, S,, to the Schubert

cell as well.

The expression for the tangent space will be used afterwards for the computation
of the integrals of Chern-Weil forms in the Schubert cells.

The tangent space T, B, = T,,5, can be written in terms of subspace of the
compact real form u. To get it for a root @ > 0 put u, =un (go D g_o). If o € 1, then
O o Ty = Uy - Ty, SO that

T By = ToySuw = . Ua Ty

a€lly,

We summarize the above discussion in the following proposition.

Proposition 2.1. The tangent space of S,, at the origin x,, coincides with the tangent
space of By, = N - z,,. It is given by
T By = D, 0o T (2.4)
a€elly,
In terms of the compact real form U, let u, = u(go @ g_o). Then
Ty, By = TS = Y Ua- Tu. (2.5)

[ 1
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To write a basis of T, B, = T.,Sw, we recall the concept of a Weyl basis for g,

which is a set of vectors X, € g, satisfying the properties

1. [Xa, X o] = Hy;
2. [ X, X5] = mapXatrps with ma s =0 if o + S is not a root.

3. The constant m, g € R satisfies m_,_5 = —mq 3.

For each root o € II", the vectors
Se =i(Xo+X o) and A, =X,— X, (2.6)
forms a real basis of u, = (go ® g_o) N u. This leads to

Corollary 2.1. The set
By ={Su A0 : acll,} (2.7)

is a real basis of T, (Sw), so the real dimension of S,, is 21(w). O

Remark 2.2. Take a reduced expression w = 74, - - - 1o, With respect to the simple roots.
It is well known that

I, = {1, ra, 00, Ty - Ty, Ok}

and that II,, is independent of the chosen reduced expression. See (SANMARTIN, 1999;
VARADARAJAN, 1974).

We take this opportunity to state another property of such vectors which is
used later in the text. This is found in (SANMARTIN, 1999).

Proposition 2.2. The vectors defined in Equation 2.6 satisfies the bracket identities:

[AO“ AB] = ma,gAa_;_g + m_aﬁAa_g,
[Sa, S5l = —mapAars — Ma,—sAap, (2.8)
[Aom Sﬁ] = ma,ﬂsoz+ﬁ + ma,—BSa—ﬁ

and

[Aa, Sa] = 2iH,.

Alternative definitions of the Schubert cells

There is an alternative way to define the Schubert cells in the maximal flag
that does not require mentioning the underlying Bruhat cells. This is done via fibrations

over a selection of partial flag manifolds. In order to do that, let w € W and let

W= "Ta, " Tay
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be a reduced decomposition with respect to the simple roots. Put ©, = {a;} and write
F; = Feo, = G/Be,. Let m; = mg, be the canonical projection F — F; of the maximal flag
onto the partial flag. In terms of flags of C", this projection acts by forgetting some entries
of each maximal flag x = (V, V5, ...V, 1), therefore changing the signature of the flag.
Then, define the fiber ezhausting maps ~; by setting

v;(A) = 71 (m;(A)), for A T.

J

Such maps are used below to (re)define the Schubert cells. For instance, the Schubert cell

in Example 2.2 is recovered by noticing that

Sy = Pya12({x0})'

Definition 2.2. Let w € W with reduced decomposition w = r,, - - - r,, with respect to

k

the simple roots. Then the Schubert cell S, is given by
Sw =750 om({zo}).

The equivalence between Definition 2.1 and Definition 2.2 is the statement of
Theorem 5.3 in (SANMARTIN, 1998).° We use the second one to provide a description of S,
as product orbit. Start with a unit length w; = r,,, it is true that S,, = v ({zo}) = Be, - %o-

For wy = r4,74,, one has

wnlaoh) =n( U ow) = U (0-n(mh).

QEB@l gEBel

The last equality follows by the equivariance of v;, since 7; is equivariant. Continuing,

notice that vo({xo}) = Be, - To, S0

Vo1 ({wo}) = U (9362 'xo) = Be, Be, - xo.

9€Be,

Following by induction, one is lead to the general formula

Suw = Bo, --

1 BC"‘) ‘x07

k

where w = r,, - - 74,. The same is true when one considers the compact real form K.

Proposition 2.3. Let w = r,, ---1o, be a reduced expression with respect to the simple
roots. Let Ko = K n Bg, where K is the compact real form of G. Then

Su = Ko, -

1 'K@ - Xo-

k

Proof. This follows almost immediately from the fact the Be, - 790 = Ko, - 79 —by the
Langlands decomposition Bg, = Ke, AN and the fact the AN - o = . n

5

In section 4, in the appendix, we explore an example of Schubert cell using both definitions.
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We end this section with a proposition that illustrates the nice behavior of the

Schubert cells under the canonical projection Fg — Fg/ and a minimal decomposition of

w e W.

Proposition 2.4. Let w = ry, ---14, be a minimal decomposition with respect to the
simple roots. Let m be the restriction of mi,, : F — Fy to S, and put w =Ty “Tap_, -
Then

1. the projection 7 : S,, — S" is an equivariant sphere fibration.
2. (Sy) = m(Sw).

3. W(Sw/) % Sk

w

Proof. item 1 Let 2§ = 7(x0). By Definition 2.2, xf is a flag of C™ that is almost complete.
The only entry that is missing is the subspace corresponding to the root ay. So the fiber over
:1:’5 is diffeomorphic to a CP! ~ S?%, because the fiber is the set of all j-dimensional vector
subspaces containing a fixed (j — 1)-dimensional which is also inside a (j + 1)-dimensional

vector subspace of C"; item 2 follows immediately by Definition 2.2
m(Sy) =mon lon(8S,) = 7(Sw)

because 7o 7! is the identity on Fj,. ]

2.3 Parametrization of the Schubert Cells

Our aim is to express the dual relationship between homology and cohomology
of F by integrating representatives of the Chern-Weil classes—closed differential forms—
over the Schubert cells which are known to be a basis of the homology. To do that, first

one needs a suitable parametrization of such cells.

Since we are dealing with semisimple complex Lie groups, the simplest case
comes from the maximal flag of sl,(C), which has a single positive root, call it . The
Weyl group is {£1} and therefore, the only non-trivial Schubert cell S,, is the whole flag

F. The non-trivial element w = r, is represented in SUy by the matrix

[0 ;]_

By what has been discussed previously, we know that S, = SU, - 2y. The proposition
below provides a useful map v of the two-dimensional ball B?> — C into SU,. This map,
composed with the canonical projection SUy — SUs/M gives a suitable parametrization of
the cell, since SUy/M ~ SU, - 2. The closed ball B? below is identified with S* x [0, 7/2]
in a way that (S* x {0}) is taken into the center and S x {r/2} is taken into the boundary
0B
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Proposition 2.5. There is a parametrization 1) : B> — SUy, such that

1. The center of B* is taken into r,, i.e., ¥(S* x {0}) = r where r is a representative

of 7o in SUs.
2. The boundary 0B%, namely S* x {r/2}, is taken into M, so
Y(0B?) -z = o.
3. The mapping B*\0B* — By, (z,t) = ¥(2,t) - 29 is a diffeomorphism.
Proof. The idea is to use the exponential map exp : suy — SU,. Notice that

SUy = mPu,

where m is the diagonal part. Consider the inclusion S x [0, 7/2] = u, given by

S'x [0,7/2] = { [toz _5'1 =1, te [0,#/2]}.

Let ¢ denote the restriction to B? of the exponential map considering such identification.
Then

2.9
zsint cost ( )

¢(z=t> = [

Notice that ¢ is not the desired mapping, since ¢(0) = Id # r. Therefore, let ¢(z,t) =
ro(z,t), ie.,

cost —zsin t]

¢(Zat) = [

zsint COSt]

—cost zsint

so ¥(0) = r; and at the boundary one has

W(z,m/2) = [S 2] e M.

This proves items item 1 and item 2.

The mapping in item 3 is the composition of ¢ with the projection SUy —
SUs/M identified with the orbit through xg. In fact, x, is the one dimensional subspace of
C? spanned by the canonical vector e, denoted by {e;). Now, the corresponding Bruhat

cell is defined as B,, = N - rzg. On one hand, the subgroup N is given by

i+
N.m0:<[j]>

SO
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for all z € C. Here, (v) indicates the one-dimensional subspace generated by v € C?. On

the other hand,
zsint
cost

If t € [0,7/2), then cost # 0 and
tant
z/z(z,t)~x0:<lz ?“ ]> ze St

This shows the diffeomorphism between B*\0B? and B,,. O

At this point, we take advantage of the notation established to emphasize the

fact the a minimal dimensional Schubert cell is homeomorphic to S2.

Corollary 2.2. A minimal dimensional Schubert cell S,, is topologically equivalent to a

two-dimensional sphere S*.

The proof below is only a sketch and the details to show the bijection are left

out, since we will need the mapping S,, — S* only.

Proof. Consider ¢(z,t) - xo; or in terms of the corresponding matrix multiplication
zsint  cost L[ | #zsint
—cost zsint| |0 —cost

where z = ¢ € S', so one can write z = cos# + isin 6. Identify (as sets) C and R?. Then

sinfsint | € S* < R®. (2.10)

—cost

—cost

0 gt cosfsint
e" sin
Sy 2 [ ] —

By letting (0,t) € [0, 7] x [—7/2,7/2], one obtains the usual spherical coordinates on the
sphere. O

Now we go back to general complex flag F, which is a flag of a complex
semisimple Lie group G with compact real form given by U. Denote the corresponding
Lie algebras by g and u. Let ¥ be the set of simple roots and take w = r, to be a
simple reflection, o € X. Denote by u(«) the Lie algebra generated by u,. It is known
that u(a) ~ suy. Denote by U(a) ~ SUj the corresponding analytical subgroup with Lie
algebra u(a). By Proposition 2.3,

Sy =U(a) - xo.

Then by Proposition 2.5, there is a map 1, : B> — U(«) satisfying those stated properties.
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Remark 2.3. One can only do this for simple roots, since for a non-simple root (3, the

orbit Nrg -z is not contained in U(f3) - xo.

The above discussion is generalized easily to Schubert cells of higher dimensions,

in light of Proposition 2.3.

Theorem 2.1. Let S, be a Schubert cell in F. Choose a minimal decomposition w =

Tay " Tay, and let 1o, : B> — U(a) be defined as before. Define the map

U B — S,

(uh""uk) — ¢a1(u1)"'¢ak(uk)'w0

where u; is of the form (zj,t;), 5 =1,..., k. Then U is a parametrization of the Schubert

cell S, in terms of the minimal decomposition for w € W.

Proof. As noted, this follows immediately from the previous discussion on the minimal

Schubert cells and we are able to write S,, as a product orbit given by Proposition 2.3. [

Remark 2.4. Note that each v, (u;) is a n x n matrix belonging to U(a) < U, the

compact real form of G.

2.4 Homology and the Main Theorem

The maximal flag manifold F of a complex semisimple Lie group G is a CW-
complex with cellular structure consisting of the Schubert cells. From Corollary 2.1,
each cell is even-dimensional. This implies the homology chain complex is zero on odd
dimensions and the corresponding homology is freely generated by the Schubert cells,
since each boundary map is null (HATCHER, 2002). The aim of this section is to prove
Theorem 2.2, which presents invariant volume forms for each Schubert cell and shows a
formula for when they are integrated over the corresponding cell. Later we generalize and
prove Theorem 2.3. A result of this kind was first proven in (BERNSTEIN; GEL’'FAND;
GEL’FAND, 1973). In this chapter, we do it using somewhat simpler techniques exploiting
various geometrical properties of the Schubert cells and a lot of Lie theory. As a bonus, the
same techniques are used to prove Theorem 3.2, the quaternionic version of Theorem 2.2

(a non-complex flag).

Recall that for w = r, (o € X), the tangent space of S, at the origin is
canonically identified with the root space u,. It was shown that &, is topologically
equivalent to a two-dimensional sphere. Theorem 1.2 asserts that the differential 2-form
a() is invariant. Since its degree coincides with the real dimension of S,, (see the remark

after Corollary 2.1), it must be a volume form. This is the content of the following lemma.
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Lemma 2.1. Let S,, be the Schubert cell associated to the simple reflection w = r,. Then
a(Q) is an invariant volume form on S,. Even more: if § is the invariant metric on S,

which induces the volume form a(2), then (Sy, ) is a sphere with radius r = /a(H,).

Proof. The differential form «(£2) is a Chern-Weil form, hence invariant; and its degree
equals the dimension of the cell S, so a(f2) is a volume form if and only if it is non-zero
when evaluated at any base of T}, (Sy) = U, - Z,. An suitable basis is B, = {S,, Aa} (see
Corollary 2.1). Their Lie bracket is [A,, So] = 20H, € m, hence €, (Sa, Aa) = iH,, (this

is a consequence of Equation 1.3 in Example 1.6). By definition (see Equation 1.5),
a(Q)z, (Say An) = @ (24, (Sa, Aa)) = a(H,) # 0.

The imaginary unit was dropped, since m ~ im. So «({2) is an invariant volume form on
Sw-

Now we prove the second part of the lemma. The local computation can be
done using the open cell B, instead of its closure S,,. Recall from Proposition 2.5 that
B, is diffeomorphic to B*\0B? which in turn can be mapped into an open cell of S?. One
such mapping is given by (see proof of Corollary 2.2)

f: B, — S?
P(et) -z, — (cost,cos@sint, sinfsint)
by letting (6,t) € [0,27) x (—m/2,7/2). Here, the map ¢ is the same as in Equation 2.9.
Notice that the diffeomorphism [0, 27) x (—7/2,7/2) — B, composed with f provides a
local chart of S°.

There is an invariant metric, say d, defined on S,, for which the corresponding
volume form is precisely a(€2). Now, on the sphere S*, one has the Riemannian metric e
induced by the Euclidean metric on R®. Let v denote the (also invariant) volume form
on S? induced by e. Up to a sign, the metrics § and € have the same group of isometries,
i.e., SO3 ~ SUy/{£Id}. This allows one to compare both metrics via the map f. There is
a constant ¢ > 0 such that «(Q2) = ¢ f*v, where f* is the pullback of differential forms.
Then, to find the radius of &, one only need to find this constant c. In fact, for any
two-dimensional sphere of radius R, their surface area is given by the formula 47 R?. Let
Rs denote the Chern-Weilian radius of S,, with respect to the metric delta, in contrast to
the Euclidean radius R, = 1 of S? with volume = 47. Then

4TRE = f a(Q) = cf v = c(4n) (2.11)
w S2
leading to Rs = +/c.

The rest of the proof is dedicated to find the value of ¢. Let I = [0,27) x
(—m/2,7/2) and take two curves 74 and s on I such that

¢ 074(0) - 2y = p075(0) - Ty = Ty
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satisfying

d d
% t=0¢ O'VA@) Ty = Ag and & t=0¢ © VS(t) C Ty = Sa

We choose v4(t) = (m,t) and vs5(t) = (7/2,1), so

¢poya(t) = e and  @ors(t) =,

A simple computation shows that the corresponding curves in S? satisfy

d d

7 t:Of (poya(t) zy) = —ey and pr . f(porys(t)  xy) = es.

Therefore,
a(Hy) = a(Q)z, (Sa, Aa) = ¢ ([*1)z, (Sa, Aa) = cv(ez, —es) = ¢
so Ry = +/a(H,). O

Remark 2.5. An alternative way to calculate the radius of such cells is achieved by
noticing first that the curve a(t) = exp(tA,) - xo is a great circle in S, and one loop is

taken when ¢ runs throughout the interval [0, 7]. Its perimeter is given by 277, so
2mr — J () ]dt = [ A, (2.12)
0

The norm in the equation above is with respect to the metric § on S, which induces
the volume form «(2). Let ¢ : SUy — SO3 be the 2 to 1 homomorphism given by

(g) v =gvg™
map ¢ induces a well-defined isomorphism ® : S,, — S € R?, g - 2 — ©(g) - e; where

, where g € SUy ~ Sp; (the unit quaternions) and v € R* ~ Im H. The

e1 is the canonical vector of R®. A direct computation shows that d®,,(A,) = 2e; and
d®,,(S,) = 2e3, both having Euclidean norm = 2. If € is the pullback by ® of the Euclidean
metric, then € is also invariant. Indeed, SO3 = ¢(SUsy) is composed of Euclidean isometries.

Again, there is a multiplying constant ¢ = a(H,) such that 0 = ce. This leads to
|Aa]l = 6(An, An)? = Vee(An, Aa)? = 24/

By Equation 2.12, we have that r = 4/c.

Now we move on to the next step, which is to build an invariant volume form

associated to each Schubert cell, including those of larger dimensions.

Lemma 2.2. Let w = r,, -+ 7o, be a minimal decomposition with respect to the simple
roots aj. Let IL, = {B1,. .., Br} where By = oy and B; = 1o, -+ 7a,_,(a;). Define

Buw =701 A Bk (2.13)

Then B,(2) is an invariant volume form on S,.
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Proof. The proof is by induction on the length of w. The case when [(w) = 1 is part of

the statement of Lemma 2.1.

Let w' =14, -+ 7o, , and suppose By = (B1 - Bre—1)() is an invariant volume
form on S,. Let 7 : S, — S.v be the sphere fibration associated to w (check Proposition

2.4). Recall that the tangent space of S,, at ¢ is isomorphic to Z U,. This means that
a€lly,
the tangent space to the fiber 71'_1(]30) at xg is the complement of 7,8, in 7T,,5,, i.e.,

T,y (7 () ~ .

From the proof of Lemma 2.1, B(£2) 4s an invariant volume form on the fibers ~ S?. By

equivariance, the pullback 7* (3,/) is also invariant on S,,. Therefore, the wedge product

Bu(2) = 7 (Bur) A Br(2) (2.14)

is a volume form for S,,, since it is a non-zero top form. The differential form (,,(2) is

also invariant, since it is a product of two invariant forms. ]

Remark 2.6. The volume form stated in Lemma 2.2 is slightly inaccurate. The precise

version is the one given in Equation 2.14. Let
w(j)zral'--rakij 7=0,....k—1,
and 7; = 7’ be the canonical sphere fibration
Uy Spi-n — Sy
The invariant form on Equation 2.14 when fully expanded is given by

Puo () = Br(€) A 77 (Bum) ()
= Be(Q) A 7 (Be-1(2) A (w2 0m1)* (B (2)) (2.15)

= Br() AT (Br—1(2)) A A (Tp—r 0 0 m)*(B1(€2)).

Notice that these differential forms commute without changing sign, since they are all of

even degree.

Theorem 2.2. Let F = U/M be a complex flag manifold with Schubert cell decomposition

F = U Sy Let w = 1y, - 14, be a minimal decomposition with respect to the simple

wew
roots cv;. Let 1L, = {B1,..., Br} where fy = a1 and B; = To, - Ta,_,(a;). Denote by Hg

the element in m such that B(H) = (H, Hg) with respect to the Cartan-Killing form. Then

1
(4m)*

This does not depend on the minimal decomposition of w.

Bu(Ha) - Gu(Hy,) = f (Br-- B)(Q). (2.16)
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Proof. Let w' = 1y, - 14, , and © : S, — S, be the sphere fibration — here we are

following the notation as in the proof of Lemma 2.2. By Fubini’s theorem (see Theorem .1

RZCH) ) ( | . mn) B9, (2.17)

where the integral between parentheses is to be interpreted as a function on S,

in the appendix)

- J Bu(9). (2.18)
1 ({z})

Because 7 is an equivariant fibration and the differential form is invariant, the function
described in Equation 2.18 is constant equals 47 8, (Hg,) — see the proof of Lemma 2.1.
So the right-hand side of Equation 2.17 becomes

47T6k<Hﬁk) s Bw’(Q) (2'19)

Notice the integral on Equation 2.19 is similar to the integral on the left-hand side of

Equation 2.17 so we can repeatedly apply Fubini’s theorem. This leads to
|, Bule) = nt satats) - i)

This formula is independent of the chosen minimal decomposition, because II,, does not

depend on this choice. See Corollary 2.1. ]

A similar results holds when one deals with the quaternionic maximal flag
manifold instead—the one corresponding to the group Sl,(H). It is an analogue of what
happens to the complex flag of Sl,,(C), essentially switching C by H in the proofs. See the

next chapter for more.

Surjectivity of the homomorphism

The Chern-Weil homomorphism [-] is, in particular, a linear transformation
of Inv(M) into H*(F;R), both seen as a vector space over R. The dual vector space of
H*(F;R) is identified with the homology H,(F), which has S,, as a basis. The Schubert
cell S, : H*(F;R) — R is defined as the linear functional

Su)([fD) = | f

Sw

where f is a closed differential form on F, therefore a representative of a class in H*(F;R).
Notice that S,, (as a manifold) has no boundary, so the integral of any exact form is zero
(by Stoke’s Theorem). This shows that the linear functional S, is well-defined.
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The dual homomorphism [-]* is a linear transformation from the dual of
H*(F;R) ~ H,(F) into Inv(M)*, the dual algebra of invariant polynomials. It is defined
by the equation

[Sul*(f) =] F(Q)

Sw
Here f(£2) is a representative of [f] for some curvature 2 on U — F. The Chern-Weil

homomorphism is surjective if the dual [-]*

is injective. This is a general fact, but we
only prove here the direction we are going to make use of, all this exploring the fact that

H*(F;R) is finite-dimensional.

Proposition 2.6. Let T : U — V be a linear transformation of vector spaces where V' is
finite dimensional. Let T* : U* — V* denote the dual transformation. If T* is injective,

then T is surjective.

Proof. The annihilator of a subset S € V is the vector subspace S° < V* defined by
SO={feV* f(s)=0V¥se S} If S° = {0} (the null-functional), then S = V. In fact,
let S* be the orthogonal complement of S according to some inner product ¢-, ) on V' (since
V is finite dimensional). Take any s € S*. Then its dual s* € V*, defined by s*(v) = (s, v),
is an element of S° = {0}. Then s* is the null-functional on V* and this can only be true
if s = 0. To finish the proof, take S = T'(U) and notice that (T(U))? = ker T* = {0} by
hypothesis, so T(U) = S = V. O

The rest of this section is dedicated to prove the surjectivity of [-] by showing
that [-]* is injective. The first step is to generalize what is done in Theorem 2.2. Suppose

there is a general formula of the form

Sito=1]

where f,, = 81 - Bk is the polynomial given in Theorem 2.2, (-, -) is a inner product on
Inv(M), ¢ # 0 is a normalization constant and f is any polinomial. In terms of dualization,

this formula is simply
[Swl*(f) = {[; fu-

If such formula is true, then the kernel of [-]* must contain only the trivial Schubert

cell—the origin zq—so [-]* is injective.

The linear functionals \; generates the algebra Inv(M). This is so because M
is a cartesian product of circles S* and the Lie algebra of S' is unidimensional, meaning

that any non-zero linear functional on R does the job.°

6 See “The Invariant Polynomial Algebra” (sub)section in the next chapter for a clearer explanation.
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Lemma 2.3. Let a be a simple root and consider w = ro, € W. Take f € Inv(M) of degree

1, that is, a linear functional on m. Then
|, @ —am ).

Proof. This proof goes in the same spirit of Lemma 2.1. Let S, and A, form the basis for
U, ~ 1T, (Sy). Then

F( )20 (Sas Aa) = f(Ha).
The 1/2 of Chern-Weil is canceled with the factor 2 of Equation 2.8. The rest follows by

integration over S, exactly as is done in the proof of Lemma 2.1. O

Theorem 2.3. Let w = r,, - - T4, be a minimal decomposition with respect to the simple
roots cv;. Let 1L, = {B1,..., Br} where fy = a1 and B; = To, - Ta,_,(a;). Denote by Hg
the element in m such that B(H) = (H, Hg) with respect to the Cartan-Killing form. Then

for any invariant polynomial f € Inv(M) of degree k, one has

J f( (2.20)

This does not depend on the minimal decomposition of w.

f(Hﬁlv .- Hﬁk 471'

Proof. First we prove for f a monomial, that is, f can be written as a product
f:Ail"'Aikl

To integrate f(§2) over S, we use Theorem .1 (Fubini), just as it was done in the proof of

Theorem 2.2, but with a minor twist by writting such integral as

Lw f(Q) = ;Ziqsw (L Aj(sz)> Ao A ..MQD (2.21)

where w' =14, -+ 7o, , and )T] means that this factor is skipped. Equation 2.21 makes
sense, since the \;(£2) commutes between each other. Then all integrals in the summand

above are equal.

The innermost integral on Equation 2.21 is a constant function on the basis
S, but the notation needs some explanation. The domain of integration is set to ug, to
mean that this integral is to be computed over the fibers of S,, — S, which has tangent
plane ~ ug, . By Lemma 2.3, this integral if 47\;(Hg, ). Now we apply induction on the
index k. Suppose Equation 2.20 is true for monomials of degree k — 1, then continuing the

expansion

jf ,ji(xj(ffﬁk)f Mo X))
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Notice that each A, appears applied to each Hpg,, so that if you expand the definition
(Equation 1.4) of the product of the A; and carefully collect terms, you arrive at the first
equality below.

(471T)k L 1) = ];Z Al(HBa(l)) o Ak(HBa(k))

- )\1 cr )\k(HBl, e 7Hﬁk)

= f(Hp,,-..,Ha,).
Let g € Inv(M) be any form of degree k. The A, generates the invariant polynomial algebra,
so g can be written as a linear combination of monomials like f above. Since [-]* is linear,

Equation 2.20 follows. This does not depend on the chosen minimal decomposition of w,

since II,, does not, meaning that the [, that appears above are always the same. O]

Corollary 2.3. The homomorphism [-] is surjective.

Proof. Suppose [S,]* is in the null-functional on Inv(M). Then, for any polynomial f
0= (S0 = | s

In light of Theorem 2.3, for every non-trivial Schubert cell S, one can find a volume
form £,/ (Q) so [Sw ]*(Buw (€2)) # 0. Therefore, S, is the trivial cell z. This shows that the

homomorphism [-]* is injective. By Proposition 2.6, the homomorphism [-] is surjective. [
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3 Quaternionic Flag Manifolds

The techniques presented in chapter 2 have the advantage that they can also
be applied to the quaternionic flag manifolds, since in this case the homology is non-trivial
only in the dimensions multiples of 4. The analogue of the main theorem in last chapter
is now Theorem 3.2. Even though there are many similarities in the complex case, it is

where they differ that makes them so interesting and worth it.

We start with section 3.1 which contains the definition of a quaternionic flag.
Most of what was done in chapter 2 can be applied here and most of the proofs can be
copier almost-verbatim, only swapping C for H, 2 for 4 here and there and so on. In those
cases, the proofs is skipped. When it is not, the differences are only highlighted. I believe
this will make the reading lighter.

In section 3.2, we go deeper on the action of the Weyl group both on the
homology and cohomology; and also on the invariant polynomial algebra. The aim of this
section is to give the kernel of the Chern-Weil homomorphism in the quaternionic case,
which T believe is new stuff. This is a known result in the complex case (BERNSTEIN;
GEL’FAND; GEL’FAND, 1973).

Now in section 3.3, we show how to represent the Chern-Weil forms [x] in
terms of volume forms on each rootspace. Chronologically speaking, this was our first
result on the matter. We explore some ideas involving various projections of the maximal
flag into smaller ones, clarifying the graded algebra nature of the cohomology of F in light
of the Leray-Hirsch theorem (put in the appendix).

Lastly, in section 3.4, we provide an application of the Chern-Weil classes [x]
by looking at them as an obstruction to the existence of certain frames on . This goes in
the direction of what was done in Conegundes’ PhD thesis (CONEGUNDES, 2019), but

here we apply it to the quaternionic maximal flag using the tools developed so far.

3.1 Quaternionic Flags

Start with the quaternionic Lie algebra. It is defined as
sl,(H) = { X € Mat,(H) : (Re(Tr))(X)=0}.
This algebra has Cartan decomposition
sl,(H) =u®ds
where s is the set of Hermitian matrices in s, (H) and

u=sp, ={XeMat,(H) : X +X*=0}
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is the set of anti-Hermitian matrices (X™ is the conjugate transpose). A maximal abelian

subalgebra in s is

a= {diag(al,...,an) esl,(H) : a, R, ZGT = 0}.
A root system is given by the linear functionals a,.; : @ — R defined by
as(H)=a,—as, 1<r,s<n
and our choice of simple root set is
Y ={ai2,.- ,Qn_1n}-

Therefore, the root spaces of (sl,,(H), a) are the sets g,,, consisting of matrices having
zero entries in every position, except (possibly) in the (r, s)-entry — the quaternionic

analogues of sl,(R) and sl,(C).

Let n = n™ be the sum of all positive root spaces. The Iwasawa decomposition

reads as
sl,(H) =u®adn

and a choice of minimal parabolic algebra is given by
p=m@adn

where m = sp, @ - - - @ sp, is the diagonal part of u.

Before we turn the discussion to the group level, let ® : Mat,,(H) — Maty, (C)

be the injective algebra homomorphism defined by the rule

A —-B
B A

where A, B € Mat,,(C). Then our choice of Lie group corresponding to sl,(H) is given by

®(A+jB) =

exponentiation. Explicitly,
Sl,(H) = { g € Mat,,(H) : det(®(g)) =1}. (3.1)
The compact part is
U =8p, ={g€Mat,(H) : g¢* = g*g =1d}

where ¢g* is the conjugate transpose of g. For the rest of the Lie groups, let M = expm
and the same for A and N, so the minimal parabolic subgroup is B = M AN. Notice that
M = Spy x -+ x Sp; (n times) is not abelian — unlike the complex and real cases. Also
notice that sp; is the set of purely imaginary quaternions with exp sp, = Sp;, the set of

unit quaternions isomorphic to the sphere S°.
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Remark 3.1. In Equation 3.1, the necessity of applying ® comes from the fact that for a
quaternionic matrix, the usual determinant is not well-defined. This is a consequence of

the non-commutativity of the quaternion algebra H.

Definition 3.1. The quaternionic maximal flag manifold is given by
F=G/B
where G = Sl,,(H) and B is the minimal parabolic subgroup.

Remark 3.2. The associated principal bundle G — [F is reducible to U — F with

structural group M, allowing one to write the compact version of the previous definition,

i.e.,
F=U/M.
The Schubert cell decomposition is indexed by the Weyl group, which in this
case is the same as the permutation group of the sequence (1,...,n). They’re denoted

by S, where w € W. The only difference between this case and the complex case is that
now the Schubert cells S,, are 4k-dimensional, where k = [(w). For instance, the lowest
dimensional orbit is actually derived from the Hopf fibration S® < S7 — S*, while in the
complex case we obtain it (in essence) from the classical fibration S' < S* — S?. Every

result in the Schubert cells section applies here with clear and easy adaptions.

The Invariant Polynomial Algebra

In the following, we present the generators of the algebra Inv(Sp,) and Inv(M).
Let Ad denote the adjoint representation of Sp,

Ad: Sp; — Gl(sp;) given by Ad(g)(X) = gXg™;

and denote by k(-,-) the Cartan-Killing form of sp, which is isomorphic to the imaginary
part of H. Up to a multiplicative constant, k is the only Ad-invariant symmetric bilinear
form on sp;, so Inv(Sp,) is generated by k. This is case n = 1 in Theorem 2.8 of Chapter
12 in (KOBAYASHI; NOMIZU, 1996).

Now, consider m = sp; ®- - - ®sp, and denote by ks the Cartan-Killing form on
the s-th entry of m. Because M = Sp, x --- x Sp, is a product group, the algebra Inv(M)
is then generated by the set {k1,..., Ky}, i.e., each form in Inv(M) is a linear combination
of monomials of type

kiR mi,...,mg = 0.

Although there are some differences, the bilinear forms x4 plays the same role as

the roots a; do in the complex case: they are the polynomials used to construct invariant
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volume forms on the Schubert cells. See the next section to check some applications

exclusive to quaternionic case.

Now, the rest of this section is devoted to make similar constructions as done
in chapter 2. We provide explicit invariant forms [x] on each of the Schubert cells with
useful properties. Comparing the complex and quaternionic, the [k] play a similar role
as the [a], but the proofs involves permutations of length 4, leading into slightly more

complex argumentation. See the proof below.

Lemma 3.1. Let F = Sp,/(Sp; x Spy) be the maximal flag of sly(H). There is only one
positive root o = g and W = {+1d}, therefore S,, = F. Let k1 and ko be the generators
of Inv(Sp; x Sp;). Choose any connection form with curvature Q2. Then k1(2) and r2(S2)

are both invariant volume forms on S,.

Proof. Let k = k1. Unlike the complex case, it is not immediate that x(2) is a volume
form. Again, one only needs to provide a basis for T, ,)F ~ u, = u N (go @® g_o) such that

k(€2) evaluated on that basis in non-zero. Let p € H. A general element in 1, is given by

0 p
-5 0 '
Then, for quaternions p and ¢, one has

(4, 4,] [—p<j+ qap 0 ] _(—9) [Im(pfi) 0 ] '

the matrix

A, =

0 —pq + qp 0  Im(pg)

A real basis for u, is given by {A;, A;, A;, Ax}. We wish to compute x(€2) at
this basis, but due to combinatoric aspect in the definition of the Chern-Weil form, in

order to simplify, rename its elements as
X1 = Al, XQ = AZ‘, X3 = Aj and X4 = Ak

Now, at the origin xy one has

Notice that

£ (o (Xo(1), X0 2))s Qo (Xo3), Xow))
= EO'H(on (X17 XQ); Qa)o (X3a X4))

for all o € ', the group generated by the permutations {(12), (34), (13)(24)}*. This group
has 8 elements, and therefore has 3 (right) lateral classes represented by I', I'(13) and

L This is so because of the symmetry and anti-symmetry of x and €, respectively.
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T'(14). Let 7 € {Id, (13), (14)}. Then,

Z € (Lo (Xo(1) Xo2))s Qao (Xo@), Xow))

oel'r

= 86K (Qmo (XT(1)7 XT(Q))7 Qg (XT(3)7 XT(4)>) :
Therefore

"Q(Q>xo (Xb X27 X37 X4)

1

=1 <8f<«' (on (X1, X2), Q0 (X, X4))

+ 8y Quy (X, X2), g (X2, X))
+ 86(14)/‘1(@330 (X4, XQ), Qmo (Xg, X1)>> .

Remember, the cannonical connection has curvature given by the projection of the bracket

onto the Lie algebra of the isotropy (see Example 1.6). Let
E,.. = diag(0,...,1,...,0)

with 1 on the r-th diagonal entry. Then each combination of Q(A,, A,) for p,q € {1,1, 7, k}

is computed below.

Q(Ar, A;) = 2iEy; — 2iEy
O(A;, Ap) = 2iFy; + 2iFay
O(A;, A;) = —2kEy, — 2kEy,
Q(Ay, Ay) = 2kEyy — 2k Fay
Q(Ag, A;) = 2j By + 2§ Fas
Q(A;, Ay) = —2jE1; + 2jEa

(3.3)

Therefore

5 (R (X1, Xs), Dy (X, X))
H(<Q$0 (X3> X2)> Q9E0 (Xla X4))
’i((Qwo (X4’ X2>7 Q:co (X37 Xl))

4
—4 (3.4)
—4

and by direct substitution in Equation 3.2, we have

8
)y (X1, Xp, X, Xa) = (4 +4+4) =420, (3.5)

Since k() is a differential form of degree 4 on a basic cell S,, which has 4 dimensions,

k() = k1(2) must be a volume form. An analogous computation shows that

KQ(Q)xO(XlaX%X&XéL) =—4#0.
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The reason for the change in sign is that x5 is the inner product on the second diagonal

entry (of opposite sign). In fact, when p = 1 and ¢ = 4, j, k, we actually have
Im(pg) = —Im(pq).
Thus each one of Equation 3.4 changes in sign. O]

Remark 3.3. Let v = dxy A dvy A dws A dvy, where x; are the coordinates with respect

to the base of u, consisting of the X; above. Then

K1(Q)py = 4V = —Ka(2) 4.

The next step is to look at the lowest dimensional non-trivial Schubert cells
inside a flag of sl (H).

Theorem 3.1. Let F be the maximal flag of sU,,(H) (n > 2). Let S,, € F be the Schubert
cell associated to the simple reflection w = r,,. Then k() and ks 1(2) are both invariant

volume forms on S,,,.

Proof. Let a = a, = Ay — A\¢41 be a simple root and 7, be the associated simple reflection.
By definition,
Sw =Ul(a) -z

where U(«) is the connected subgroup of U = Sp,, with Lie algebra
u(a) = m(a) u,

where m(«) = sp; @ sp, is the sum of terms corresponding to the s-th and (s + 1)-th
entries of m = sp; @ --- @ sp,. The Lie algebra u(a) is isomorphic to sp,. Also, at the
group level, we have U(«) ~ Sp,. Therefore, all the computations done in the proof of the
Lemma 3.1 apply. In other words, if we let {X7, X5, X3, X4} be the corresponding basis
for T,,(Sw) ~ U,, then

Rs(Q) (X1, Xo, X3, Xy) =4

and
I{S-l-l(Q) (Xh X27 X37 X4) = —4.

Parametrization of the Schubert cells

To compute the volumes of the minimal Schubert cells —or equivalently, their

radii*— one must first describe an adequate parametrization of Sp,. The essence of this

This is an immediate consequence of known formulas for the volume(R) of even-dimensional spheres of
radius R.
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parametrization is analogous to the complex case, but we make a few notes anyway. In
Proposition 2.5, we defined a map ¢ by restricting the exponential map to the image of
the closed ball in the Lie algebra u. In the quaternionic case, the same technique holds,
changing the unit complex z € S* by a unitary quaternion p € S* ¢ H. Such quaternion
can be written as exponential e? where ¢ € Im(H), so ¢ plays the same role as if in z = %.

Even more is true: one can write

q .
e? = cos(|g]) + - sin(|q|).

lq|

The next proposition is the quaternionic analogue of Proposition 2.5. Here B*
is the closed ball in H identified with S* x [0, 7/2] where S* x {0} is taken into the center.

Proposition 3.1. There is a parametrization 1 : B* — Sp, such that

1. The center of B* is taken into rq, i.c., (S* x {0}) = r where r is a representative

of 7o N Spy.
2. The boundary 0B*, namely S* x {r/2}, is taken into M, so

w(aB4) Xy = Xg.
3. The mapping BN\OB* — By, (z,t) — ¥(2,t) - 2 is a diffeomorphism.

Explicitly, the quaternionic version of the mapping is

d(p,t) = [

cost —psin t]

psint  cost
and Y = r,¢.
Now, let z,, = wz( be the origin of the Bruhat cell B, = N - x,,. Let

f: B — St c R®

el t) -z, — (cost,elsint
9(

Here (q,t) € A x [—7/2,7/2] where A < Im ~ R? is a region around 0 just big
enough to have e = S®. Let ¢ be fixed and consider the curve 7,(t) = (cost, e?sint) (the
exponential is taken here to ensure that v,(t) belongs to S*). Then ~/(0) = (0, ¢%), so by
letting g € {0, 1, j, k}, the corresponding curves are such that their tangent vector forms a

basis given by the canonical vector {es, 3, €4, e5}.

Let v to be the Euclidean volume form, which is invariant since SUy ~ SO3 up

to a sign. By similar arguments, there is a constant ¢ > 0 such that x;(Q2) = ¢f* v. By
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evaluation of such forms on the basis, on one hand by Equation 3.5, we have that ¢ = 4.

Therefore, the volume of S,, = S* is
J k() = 4J v = 4vol(S*). (3.6)
w sS4

where the volume vol(S*) of an Euclidean sphere of unitary radius is 872/3.

Now we generalize the construction of invariant volume forms for larger Schu-
bert cells and compute their volume arriving at an (quaternionic) analogue version of
Theorem 2.2.

Theorem 3.2. Let F be a quaternionic flag manifold with Schubert cell decomposition

F = U Sw. Let w = ry, - 14, be a minimal decomposition with respect to the simple

weW
roots. Define

Ko = K1 A A Kg € Inv?*(M).

Then k,(Q2) is an invariant volume form on S, and
J Kw(Q) = (vol(S*))*.

Proof. Let w' =r4, -+ 74, , and 7 : S,, — S, be the sphere fibration. By Fubini’s theorem

J @) = Lw, (Ll({x}) mm) o (40). (3.7)

where the integral between parentheses is to be interpreted as a function on S,

T — J ks(92). (3.8)
71 ({z})

Because 7 is an equivariant fibration and the differential form is invariant, the function
described in Equation 2.18 is constant, say ¢. The fiber on which this integral is evaluated
is homeomorphic to a sphere S*, so we repeat the arguments of equation Equation 3.6 to see
that ¢ is simply the volume of S* according to the volume form kg, that is, ¢ = 4vol(S*).

So the right-hand side of Equation 3.7 becomes

4vol(S*) J Ko (). (3.9)

S

Notice the integral on Equation 3.9 is similar to the integral on the left-hand side of

Equation 3.7 so we can repeatedly apply Fubini’s theorem. This leads to

J Kw(Q) = (4vol(S))*.

w
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Surjectivity of the homomorphism

The rest of this section is dovoted to prove that the Chern-Weil homomorphism,
in the quaternionic case, is also surjective. The techniques involved are analogous to those
used in the proof of Corollary 2.3. In later sections, we recover the same result using a

very different path, but still as a consequence of the Chern-Weil classes.

Let f € Inv(M) be a symmetric form of degree 2. There are real constants ¢”

such that f = Z c"k,. Let € be the cannonical choice of curvature on the principal bundle

U — F. Since }(Q) is an invariant differential form, to integrate it over a cell S,, with
w =7, (a € X), one needs only to check its value at a basis of T, (S,,). With this idea in
mind, in the next paragraphs we generalize the computations for x at the origin extending
those formulas for any f of degree 2. For that, let « = «,; be any root of sl,(H). Let
p € H. A general element in u,,, ~ H is written as A, = pE,, — pE,,, so Ay, A;, A; and
Ay, together form a basis for u,. Just as we did in Equation 3.2, one also has at the origin
o that

F(Q)a (A1, Ai Ajy Ay)

1
= E <8f (on (Ah Ai)u on (Aj’ Ak))

(3.10)
+ 86(13)f <QZ‘0 (A]a Az)7 on (Ala Ak‘))

+ Se(ua S ( Qo (A, A1), Quy (4, A1)>> .

For any rootspace u, with a = a5, Equation 3.3 generalizes to Equation 3.11.

Q(Ay, 4;) = 2E,, — 2iE,,
Q(A;, Ay) = 2iE,, + 2iE,,
Q(A;, A)) = —2kE,, — 2kE,,
(A1, Ay) = 2kE,, — 2kE,,
(Ap, Aj) = 2By + 2j Ess
O(Aj, A1) = ~2j By + 2 B,

(3.11)

Remember that each k, is an inner product on the r-th entry of m; also x, does not mix
the diagonal entries, that is, if s # r then x,(pEss, X) = 0 for all p e H and all X € m.

Because f = Z crkr, the same is true for f. So, using Equation 3.11 and this observation,
s
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the first term on the right-hand side of Equation 3.10 is

F (R0 (Ar, 43), Qo (Aj, Ay)) = f(21E,, — 2iEy, 2E,, + 2iEy,)
4(f(iEr7"a iETT) - f(ZEssy ZESS))
4

(Cr/{r (iErra iErr) — Cshs (Z‘Essa ZESS))

Each &, is an Euclidean inner product on the r-th diagonal entry of m, so
Crbir (1B, 1Ey) — Cshs(iBss, 1Egs) = ¢ — 5.

The computation of the other permutations is analogous. In short,

f(on(Ah Al)? QOEO (Aj= Ak)) = 4(07" - 05)7
f((on(Aja AZ>’ QJUo(Al? Ak)) = _4(CT - 05)7
f(on(Aka Az)7 Qx()(Aj, Al)) = _4(07" — CS).

Finally, substitute those in Equation 3.10 to obtain
f(Q)l‘o (Ala Ai> Aja Ak’) = 4(07“ - Cs)- (312)

In an attempt to do the analogous computations in the context of Theorem 2.3, it is

desired to rewrite Equation 3.12 in terms of the symmetric bilinear form f. In order to do

that, first define an inner product (-, -) on Inv(M). This algebra is generated by {x,}"_;, so
it is non-trivial only in the even-dimensional gradings Invs,.(M). On the first grading, for
instance, define the inner product by (., ks) = 9, (the “zero or one”-delta). The second

grading, as a vector space, has basis { k,ks : 1 <7 < s<n}, so define

1, (r,s) = (u,v);
<’fr’i87 ’fu'%v> = ( ) ( )
0, otherwise.

I believe it is clear how to define it for higher gradings. Note that by this definition, the
gradings Invy,. (M) are orthogonal. Then, by letting Q = (1/2)[+,] (so the constant ‘4’ is

canceled), Equation 3.12 is rewritten as
f(Q)xo (A1> Aiv Aj7 Ak) = <f7 Ry — /is>- (313)

Notation 3.1. Consider the following notation for the rest of this section:

e For a= M\, — A, let Ky = K — Ky;

* Let {f, ko) = f(Fa);
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o For f and g of degrees r and s, respectively, define

fg(’l{la R 7"{1”-"-8)
1 (3.14)
= f(’fa(lb ceey I{U(T'))g(KU(7'+1)7 s /{a(rJrs))'
(r+s)!

The next lemma is straightforward.

Lemma 3.2. Let w = r, be a simple reflection, i.e., a € 3. Let f € Invy(M) be written
as f = ECTI{T. Then

1
W Lw f(Q) = f(’fa)- (315)

Proof. The Chern-WEeil class is invariant and we are integrating it over a Schubert cell that
is a 4-dimensional sphere. We follow the idea explored in Lemma 2.1, which is to compare
the differential form f(92) to the Euclidean volume form on S*. From the calculations done
in the mentioned lemma, the constant factor is precisely f(£2)a,(A1, A, Aj, Ag) = f(Ka),

SO

| #@ = rtma) | v = vol(st) 1)
where v is the Euclidean volume form and vol(S*) is the Euclidean volume of S*. O

Theorem 3.3. Let F be a quaternionic flag manifold with Schubert cell decomposition

F = U Sw. Let w = 1y, -1, be a minimal decomposition with respect to the simple

weWw
roots. Let 11, = {B1,...,Bs} and let f € Inv(M) of degree 2s. Then

(V01<154)>Lw F(Q) = f(rpys s Rs,)- (3.16)

Sketch of proof. We only do a sketch here, because it is essentially the same computation
done in the proof of Theorem 2.3. The difficult part, perhaps, is already done in Lemma 3.2.

For instance, if f is an invariant polynomial of degree 4, then it can be written as

n

f: Z Qiyip Kiy Kig

i1,i2=1
with the symmetric coefficients. Let w = 74,74, and W' = r,,, so II,, = {f1, 52} and
Hw/ = {51} Then
L f(§2) = Z ail,izL Kiy Kiy (€2). (3.17)
3 -~ .

1112=

Now, for one term, we have

me@(g):;(Lw/m(ﬂ))(ﬁﬂg m2(9>)+;(L (@) ([ mo)

w! u52

(V01<54))2 (/{1(/{/31)%2(/152) ; /{2(/{51)/{1(,{52))

= (V01(54))2 k1Ko (K, , Ky )-
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Substitute this in Equation 3.17 and use Equation 3.14 to get
2
|, #0) = (ol ()

The computation for a polynomial f of arbitrary degree follows very closely what was

done in the proof of Theorem 2.3. O

So we obtain the same result as we did at the end of chapter 2. We skip the

proof, since it is analogous to the complex case.

Corollary 3.1. The homomorphism [-] is surjective. O

3.2 Representations of the Weyl group

In this section, two representations of the Weyl group W of sl,,(H) are explored
in order to determine the kernel of the Chern-Weil homomorphism. The spaces of such
representations are the domain and codomain of the Chern-Weil homomorphism |[-] :
Inv(M) — H*(F;R). Both of them are related to the regular representation of W.

The Weyl group of sl,(H) is the quotient W = Normy (a)/M where
Normy(a) = {ge U : Ad(g)(a) ca}

is the normalizer and a is a maximal abelian subalgebra in s. This subgroup coincides
with Normy (M). Because M (and a) are both sets of diagonal matrices, the group W is
identified with the permutation matrix group — just as it happens for sl,(R) and s[,(C).

Let F = U/M be the quaternionic maximal flag manifold. The Weyl group acts
on F from the right by R,,(zM) = Mw = zwM where w € Normy (M) is a representative
for w € W. From now on, whenever there is no risk of confusion, we use the same symbol
w for both. Notice that each R, is a homeomorphism of F and R, has fixed points if and

only if w = 1, in which case every point is fixed.

The right action of W on F induces a representation of W into the cohomo-
logy ring H*(F;R) given by R . Notice that the left action by U induces the trivial
representation on H*(IF;R), since U is connected — each homeomorphism L, is homotopic
to the identity.

The Lefschetz fixed point theorem asserts that if a homeomorphism ¢ of a
topological space has no fixed point, then its Lefschetz number L(¢) is zero. The Lefschetz

number is defined as

L(g) = Y (1) tr(¢%)

=0

where tr; is the trace of ¢* on the I-th cohomology H'(F;R).
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Proposition 3.2. The representation of W in H*(F;R) is equivalent to the reqular (right)

representation.

Proof. The cohomology H'(F) is non-trivial if and only if [ is even. Therefore,

L(Ry) = D~ tr(Ry) = > tr(Ry).

=0 =0

The last sum is the character y(w) of the representation of W in H*(IF;R). If w # 1, then
L(R,) = 0. On the other hand,

x(1) = tr(Id) = dim H*(F;R) = [W|.

The last equation follows from the fact that the elements of VW are in bijection with the

Schubert cells and those forms a basis for the homology. Therefore

0 ifw#1
x(w) =
IW| =dim H*(F;R) if w=1.
This is precisely the character of the regular representation, so they are equivalent. [

The Weyl group also represents itself in the space Inv(M), i.e., in the space

generated by the monomials

mi
Ky R mi,...,mg =0

by permutation of the indices on each monomial and extending it linearly. Each w € W

corresponds to a permutation, so
mi m _ ,m1 o ,m
w - ('l{l Y "inn) - '%w(l) I{w(nn)'

In what follows, we will verify that [] : Inv(M) — H*(IF;R) is equivariant by
the actions of W on Inv(M) and H*(F;R). First we prove a lemma.

Lemma 3.3. Let w and  be the connection and curvature forms on U — U/M. If
w € Normy (M), then Riw = Ad(w™Hw and REQ = Ad(w)Q.

Proof. The Lie algebras of M and Normy (M) are both equal to m with complement
¢ = Z u,. Not only for U — U/M, the complement ¢ also defines a connection and

a>0

curvature on the principal bundle U — U/Norm (M) which are equal to the one defined
on U — U/M. The statement in the lemma follows, since such equalities Rjw = Ad(g Hw
and R)Q = Ad(g~H)Q are valid in every principal fiber bundle (see (KOBAYASHI,;
NOMIZU, 1963), proposition 1.1 of section 1, chapter II; and section 5 of chapter IT). In

particular, it is true for w € Normy (M). m
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Proposition 3.3. Let f € Inv(M). Take w € Normy (M) to be a representative of w € W.
Then [w - f] = RL[f]. In other words, [-] : Inv(M) — H*(F;R) is equivariant by the
actions of W.

Proof. Choose w any curvature form on U and let 2 be the corresponding curvature form.
By definition of pullback

Ry (f))(Xa, .o Xok) = fF(Q)((Ra)Xi, -, (Ria)« Xon)- (3.18)

By Equation 1.5, the right-hand side of Equation 3.18 is the o-alternating sum of
FOQU((Rz)+ X1, (Ra)«X2) ..o, Q((Rap)« Xok—1, (Ra)«Xox))

which equals to

f (A0 (X, Xs), ..., Ad(0 ") QU Xop—1, Xog))
= (wf) (X1, Xa), ..., A Xap—1, Xop)). (3.19)

This equation follows because Ad(w) acts as permutation of the entries in the diagonal
matrix Q(X,, X;). The o-alternating sum of the right-hand side of Equation 3.19 is
wf(2)(Xq, ..., Xox). Notice this is all done at the level of the principal space U. One still
needs to project it down to H*(FF;R). This follows from the fact that R, om = 7o Ry,
where 7 : U — U/M. If we denote the projected form by f(Q), then 7*(f(Q)) = f(Q). O

Corollary 3.2. Let T denote the ideal of Inv(M) generated by the W-invariant forms.
Then T < ker[-].

Proof. Let f € Invg(M), k > 0, and suppose that f is W-invariant. The subspace of
H*(F;R) generated by the form [f] is also invariant, since [-] is equivariant. The represen-
tation of W in H*(F; R) is equivalent to the regular representation by Proposition 3.2. The
regular representation has only one-dimensional invariant subspace, that is, if V' = V(W) is
the freely generated vector space with basis VW, then the unique invariant one-dimensional

subspace is the one generated by the element v = Z w (to see this, remember that W

is the group of all permutations in n elements!). Orllu E}}V *(F; R), the only W-invariant one-
dimensional subspace is then H?, so the subspace generated by [f] is not one-dimensional,
that is, [f] = 0. Because [-] is a ring homomorphism, it follows that the ideal Z is also
inside ker[-]. O

The representation of the Weyl group in the quotient space Inv(M)/ker|[-] is
also equivalent to the regular representation®, just as the representation on H*(IF;R). Since
the W-actions are equivariant with respect to [-] : Inv(M) — H*(F;R), we must have
that Z is the whole kernel.

3 Chevalley’s Theorem. See section 3.6 in (HUMPHREYS, 1990)
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Corollary 3.3. The ideal generated by the WW-invariant polynomials is the kernel of the
Chern-Weil homomorphism, that is, ker[-] = Z. O

Remark 3.4. The Schubert cells provide a basis for the homology of F and its dual
is a basis for the cohomology H*(F;R). Since the representation spaces H*(F;R) and
Inv(M)/ ker|[-] are isomorphic, such dual basis provides a natural basis for the invariant

polynomial algebra (excluding the kernel).

3.3 Cohomology of the Flag

The computations done in the proof of Lemma 3.1 can be generalized to matrices
of sl,,(H). Let & = a,.s = A\ — As. Let E,.5 denote the n x n matrix consisting of 1 in the
(r, s)-entry and zero everywhere else. Then a basis for u, is given by {A}, A7, A7, Ay},
where

A;é = pErs - ﬁEsra pE H.

The bracket behaves in a similar fashion. For p, ¢ € H,
(43, 451 = (=2) (0 (pg) By + Im(g) By ) (3.20)
So, for 1 <t < n, one might have many roots a = s such that
K ([A?,A?], [A;,Ag]) £0. (3.21)

Example 3.1. Let F be the maximal flag of sl3(H). The rootspaces are those ug with
B € {12, aag, a3}. Because [u,, ug] < uygp (whichever sign provides a root), Q(u,,ug) =0
(remember that €2, is projection onto m). Therefore, the only chance of having ()., # 0
is if its entries belongs all to a single rootspace. To find out which rootspaces are these,
simply take a closer look at Equation 3.21: the brackets must have non-zero coefficient at

FEy, so the roots a,., for which the restriction of x; is non-zero are
{a,sell:r=1lors=1}.
The computations done previously reveals that
Ke(Q) (A‘f”, Agrs g, Agrs) = 14,
being positive if ¢ = r or negative if t = s (see Equation 3.20). O

We summarize the above discussion in the following proposition.

Theorem 3.4. Let F = U/M be a mazimal flag of sl,,(H), where U = Sp,, and M =

Spy x -+ - x Spy with corresponding linear algebras w and m. For a = a5 € 11, let u, be the
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corresponding rootspace and v, = V., the volume form in u, given by the coordinates with
tangent vectors { A7, Af, A7, AR}, Then for 1 <t <n and a = .,

0 r#t#Ss
Kie()ao (AT, AT, AT AT) =3 —4 r=t<s.

4 r<t=s
With respect to the volume forms v,,
fit(Q>x0 = —4 (Vl;t + -+ thl;t) + 4(Vt;t+1 + -+ Vt;n) (322)

The following matriz indicates the coefficient on each volume form v,, that appears in the

composition of £i(2)g,-

(t,t) +4 -+ +4 (3.23)

(n,n)

Remark 3.5. The volume forms v, need a little bit of explanation. They are first defined
at a root space u,, as stated in the theorem. Then it is easily extended to the whole
tangent space at the origin, since u, < T,,(F). The volume form v, is invariant by
M = Sp; x -+ x Spy, so left translation to other points of F = U/M is well-defined. This
translation does not alter volume or changes orientation, since for m € M, detm =1 and

M is connected.

There is a natural pairing between homology and closed differential forms:
to each cohomology class [f], there corresponds a homomorphism on the chains of F
defined by the integral of f over said chain. Consider the set {S, : @€ ¥ }. As we have
seen, this set is a basis of Hy(F) due to the homology being non-trivial only in even
dimensions. Theorem 3.4 can be used to find the dual basis in H*(F;R). In fact, let
a, = A\, — \r41 denote the simple roots (for now) and see [k] as an element in the dual
(Hy(F))* ~ H*(F;R) (De Rham’s Theorem). By Theorem 3.4, the restriction of [#,] is
a volume form with a certain orientation or it is null, all depending on Equation 3.22.
Therefore, one sees immediately that [#:](S,,) is # 0 if and only if j = 1. By the same
reasoning, [k1 + k2](Sq,) is # 0 if and only if j = 2 and so on. This proves the proposition

below.
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Proposition 3.4. Up to a normalization constant, the set

{[k1], [k1 + K2y -y [k + - + Bna]}

is the dual basis of { S, : a € X} < Hy(F). O

Let ¥ = {aq,...,qq} be a system of simple roots of type A;. The associated
maximal flag of sl,(H) is denoted by F (n = [ + 1). Consider the subsets © = X\{«a;}
and ©; = ¥\{ay, a;}. Their associated flag manifolds are Fg = HP" !, the quaternionic

projective space, and Fg,, the set of all quaternionic flags of signature (V1,V,,_1).

To each of these flag manifolds, there is a natural principal bundle with total
space U = Sp,,. Their respective structural groups are denoted by Mg and Mg,, and their
Lie algebras will be following the same notational pattern. Explicitly, those structure

groups are subgroups of Sp,, consisting of block diagonal matrices

Mg = Sp; X Sp,,_4 and Me, = Spy X Sp,,_o X Sp;. (3.24)

Let k; € Inv(mg) be the symmetric 2-form which is the inner product on the
first factor of mg and zero on the others. Naturally, x; is also a symmetric form on me,
by restriction of its domain. Because Mg,  Me, this restricted form, still denoted by 1,

belongs to Inv(mg, ). In general, there is the inclusion Inv(mg) < Inv(meg, ).

Lemma 3.4. Let 7 : Fo, — Fg be the canonical projection. Choose the canonical
connection forms on each flag manifold and denote by Qg and Qg, the associated curvatures.
Let k1 be the symmetric form associated to the first factor of both Mg and Meg,. Then

k1(Qo,) = ™ k1(Qo). (3.25)

Proof. Take arbitrary horizontal vectors Xi,..., Xy on the tangent space T'(Sp,,) with
respect to the chosen connection in Sp,, — Fg. Let X € T(Fg,) be a vector field such
that 7* (X)) = X,. By definition,

W*Hl(Q@)(XL s 7X4/1) = KI(Q@)(XM S 7X4)'
The right-hand side of the above equation is defined as the o-alternating sum of
HI(Q@(XD X2)7 Q@(X?n X4)) = k1 ([X17 X2]m(_)7 [X37 X4]m(_)> .

Since k; is the inner product on the (first) factor 1 of both mg and mg,, the brackets in
the last equation are only counted for their F;; component. Therefore, projection onto

me, or mg are interchangeable, because we will be applying ; right after. So

1 (1X1, Xelwo [X5, Xilo ) = 1 ([X1, Xolme,  [X5, Xilne, ).
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On the other hand, x;(Qe,)(X7,. .., X}) is the g-alternating sum of
K1 (Q@l (XL X§)7 Qeo, <X§7 Xéll)) =k ([Xia Xé]mel ) [X£§7 Xéll]m@1> :

Now, the only way to have r; ([X{,Xé]mel, [X:/;,Xﬂm@1> # 0 is if each X € ug, where
S = A — A, for any t > 1 (the projection onto my, of a bracket involving any other X’
will null first coordinate). In this case,

[lewX;]m@l = [XMXS]

mel .
This shows that k;(Qe,) and 7%k1(Qe) have the same non-zero o-alternating sum. [

Example 3.2. We now use the projections of the maximal flag onto the smaller partial
flags presented above to compute the homology of the maximal flag of sl3(H). In fact, let
Y = {a, s} and define © = ¥\ {ay} = {a;}. The maximal flag is the set of all sequences
(V1, Va) of nested quaternionic subspaces of H®, then Fg is the set { Vo cH? : By Vs }
(remember Example 2.1). Here E) is the quaternionic line generated by the canonical
vector e; € H?. Let 7 : F — Fg denote the projection (V;,V3) — V5. Then the fiber over
Ey ~ H? is the set of all V; inside Es, that is, the fiber is the quaternionic projective line
HP'. Notice that Fg is also diffeomorphic to HP?, since all V; contains the line F;. Then
again, in essence an application of Theorem .2, one has that {k4(Q2), k3(2)} (d =1 or 2)
generates H*(F;R). O

Let F be the fiber of the principal bundle Fg, — Fg, which consists of all
subspaces V,,_; containing a fixed V;. Then F is diffeomorphic to the set of flags of type
V,_ inside H" "', If we write ¥’ = {ay,...,q;}, then F = Fg where ©' = ¥\ {q,}. It is
known that this flag is isomorphic to the projective space HP™ 2, so its cohomology has a
single generator—see (HATCHER, 2002) or (BAKER, 1999).

Lemma 3.5. Let ©; = X\{ay,q}. Then for n > 2, the cohomology H*(Fe,;R) is

generated by the characteristic classes in {k}(Qe,), ki (Qeo,)}-

Proof. The formula for x,(€2) on Theorem 3.4 allows us to obtain a similar formula
specifically for k1(Qe,) and k,(Qe, ), since they are the same at both smaller and maximal

flag. Therefore
kn(Qo,) = —Vim — Vo — =+ — Up—1m (at the origin).

Let ¢ : Fgr — Fg, denote the inclusion. In terms of the tangent plane at the origin—which

is a sum of rootspaces— the inclusion ¢ is visually represented below for the case n = 5.
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Fo Fo,
SRS _ * * * * *
* * * x| T
* * * * *
* * * *
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" " " T N
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The rootspaces in tangent plane are represented by the stars with white background, the

complement is the Lie algebra of the isotropy.

Because the pullback ¢* is simply a restriction, one has

L*/{n<991) = —Von — " — Un_1im-

The form "k (2o,) is non-zero, because it is the sum of volume forms on the roots
spaces (and one cannot mix those). Therefore, it is a generator of H*(F;R) and the
Leray-Hirsch condition is met. By Theorem .2, the cohomology of Fg, is generated by
{m*k1(Qo), £n(Qe,)}. In light of Lemma 3.4, this set equals

{#1(Qe,), fin(Q6,)}-
[l

Remark 3.6. The dimension of the fiber is lesser than the dimension of the total space,
so the smallest & such that x*(Qe)* = 0 is greater than the smallest [ such t*x*(Qe)" = 0.

Our aim is to show that the set of all £(Q2) forms a set of generators of the
cohomology H*(F;R). The idea is to reduce the maximal flag by removing the first and
last roots by letting © = ¥\ {1, oy} (we call this the “comendo pelas beirada”-technique ).
The projection F' — Fg is a bundle with fiber diffeomorphic to the smaller maximal flag of
sl,_o(H). By the Leray-Hirsch argument, the H*(IF;R) is generated by generating sets for
H*(F) and H*(Fg) —the latter being given by Lemma 3.5. This process is illustrated in
Example 3.3.

Notation 3.2 (Temporary notation). Fg stands for the flag manifold of s(,, (H).

Example 3.3. Let ¥ = {1, s, a3}. Consider ©1 = ¥\{ay, a3} = {ay}. Then we have the
fibration F? < F* — Fg,.
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9 4
F F Fo,
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By Lemma 3.5, H*(Fg,;R) is generated by {r1(9), k4(Q)} and by Lemma 3.1, H*(F*; R)
is generated by either (*ky(€Q2) or t*k3(2), as indicated by the matrix representation of
the fibration above. The Leray-Hirsch condition is met, then H*(F*; R) is generated by
{k1(82), ka(2), k4 ()}, d = 2 or 3.

The case n = 5 is slightly different from the case n = 4 above, since the fibers in

this case is diffeomorphic to the maximal flag F3. Its cohomology is covered in Example 3.2.
So, a generating set for F* is {k1(92), ka(Q), xa(Q2), r5(2)}. O

Remark 3.7. We will choose the smallest d from now on.

Theorem 3.5. Let F" denote the mazimal flag manifold of sl,,(H). Choose {k1,...,kn} to
be the standard set of generators of Inv(M). For any curvature 2-form Q, H*(F";R) has

{r1(2), ka(2), .. o, K (D) P\ {Km11(2)} (3.26)

as a set of generators, where m is such that either n = 2m orn = 2m + 1.

Proof of Theorem 3.5. The proof is done via (reversed) induction on n which depends on
its parity, so regard n as equals to 2m or 2m + 1. Let F" be the maximal flag of s, (H).

Let ¥ = {a1,...,} (I =n —1) be the associated system of simple roots and define
Or = X\{ay, a0, ..., ap, g, .., -1, ), 0<k<m-—1.

So O,,_1 has either one root in it (n = 2m) or two roots left (n = 2m + 1). There is a
natural projection 7 : F" — g, whose fibers are diffeomorphic to a smaller maximal flag

manifold F" 2. This induces a fibration
F"~ 2 < F" - Fg,. (3.27)
Suppose the fibration in (3.27) satisfies the Leray-Hirsch condition. Then

H*(F;R) = H*(F" % R) ® H*(F§,; R). (3.28)
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The flag manifold F"~2 can be seen as the flag associated to the root system {avs, ..., 1} =
©1 (“comendo pelas beiradas”) which is of type A. Therefore, by repeating the process, its
cohomology is
H*(F"%R) = H*(F" 4 R) ® H*(F§, % R). (3.29)
Substitute Equation 3.29 in Equation 3.28 to arrive at
H*(F"R) = H*(F"%R) ® H*(F§,* R) ® H*(Fg; R).
Continue all the way down to the smallest non-trivial flag F*=2m=Y (.. F2 or F?) to

obtain

H*(F";R) = H*(F"2""V:R) @ H*(Fg """ ?;R) ® - - - H*(Fy; R). (3.30)
Each factor in Equation 3.30 of the form H*(]Fg:z(r_l);]R) has {k,(Q), kn_r1(Q)} as
generating set, by Lemma 3.5. Collecting all closed forms, one has

U (5, kurn ()
1<r<m—1
As for the cohomology of the remaining factor F¢, d = 2,3, we have that a generating
set is either {k,,(Q2)} or {K, (), Km+2(2)}. In any case, putting everything together, we
arrive at
{#1(82), £2(Q), -, () P\ {Fm 11 ()}

as the desired generating set for H*(F;R). O

Remark 3.8. The “left out” [k,,+1] on equation Equation 3.26 might as well be included
in the set of generators, since it can be written as a linear combination of the others. In
fact,

[£1(Q) + £2(2) + - + K, ()] =0

since it invariant by the Weyl group, so K, +1(€2) is the negative sum of the others.

The above theorem, together with Proposition 3.4, guarantees that the image
of the Chern-Weil homomorphism contains the dual basis given by the Schubert cellular

structure of IF.

Corollary 3.4. The Chern-Weil homomorphism [-] : Inv(M) — H*(F;R) is surjective.

Proof. By Proposition 3.4, the Chern-Weil class [k,] is in the dual basis of Schubert cells.
The same [k,] is also in the generating set of the algebra H*(F;R), by Theorem 3.5.

So each closed differential form f € H*(F;R) can be written as sum of products of the
[Kr]. O

Remark 3.9. The (reversed) induction on n in the proof of Theorem 3.5 is due to the

Leray-Hirsch, which we know can be applied only retroactively starting from F¢.

Remark 3.10. Putting together Corollary 3.3 and Corollary 3.4, we arrive at a complete

description of H*(F;R) in terms of the invariant polynomial algebra.
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3.4 Quaternionic Structures

The aim of this section is to present a nice application of the Chern-Weil classes
description given by Equation 3.22 to show that on the maximal flag manifold F, no

G-invariant quaternionic structure (explained below) will be hypercomplex.

Let M be a smooth manifold of real dimension 4n. The set of all linear
isomorphisms p : R* — T,M (x € M) forms the principal bundle Fr(T'M), called the
frame bundle, with structure group Gly,(R). Another important bundle is End(7T'M), the
endomorphism vector bundle, where each fiber End, (T M) over x € M is the set of all

endomorphisms of T, M.

A quaternionic structure on M is a subbundle @ € End(T'M) where each fiber
is isomorphic to the quaternion algebra H. Locally, there is a pair of anti-commuting

complex structures (7, .J) defined on an open set of M induced by the quaternions i and j.
Let H" ~ R* be the canonical right H-vector space. For each ¢ € H, define the
transformation (denoted by the same symbol)

q(v) = vg, ve H"

and let Sp; be the subset of those transformations corresponding to unitary quaternions.
The group
GlL,(H) = {g € Glin(R) : g¢ =qg VqeH}

is the centralizer of H (seen as transformations of H") in Gly,(R) and it represents the set

of all H-linear transformations of H".
Associated to a quaternionic structure Q, there is a principal subbundle P <
Fr(T'M) with structure group
Sp,GL,(H) = {qg : q € Sp, and g € Gl,,(H) }
whose fiber P, over x € M is

P, = {peFer s pgpte Q.M quH}.

Conversely, given a Sp;Gl, (H)-bundle P there corresponds a quaternionic structure Q

with fibers given by
Q,M = pHp™

where p is any element of P,. Thus we will also call the principal bundle P a quaternionic

structure.

When the base manifold is homogeneous, i.e., M = G/H, then G acts naturally
on M by the map g : z — gz and the differential (also denoted by ¢) induces a left action
on End(T'M) by composition.
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We will say that a quaternionic structure Q is G-invariant if
nggil = Qg:v

for arbitrary x and ¢. In terms of the principal bundle P, this is the same as having

g(P;) < Py, with g being composed on the left.

Given a general bundle £ — M with fiber F', one often asks whether E is
trivial or not, i.e., if there is a bundle isomorphism F ~ M x F. One way to tackle this
question is to look for the characteristic classes of F. As we have seen, for a vector bundle,

its characteristic classes are generated by the Chern-Weil classes. See Chapter 12, Section
3 (or 4) of (KOBAYASHI; NOMIZU, 1996).

Let Q@ < End(T'M) be a quaternionic structure on M. If Q is trivial, that is,
Q ~ M x H, then there is a pair of anti-commuting complex structures (I,.J) globally

defined. We call this a hypercomplex structure on M.

Take P to be the Sp,Gl,(H)-principal bundle associated to a quaternionic
structure Q. If Q is trivial, then the structure group of P is reducible to Gl,(H). In fact,
let

R, ={peP, : pg=qp YqeH}

where on the right-hand side we are identifying ¢ and (z,q) € Q,. Then R = U R, is a
reM

Gl,,(H)-subbundle of P. For any a € Gl,,(H) and v € H"

pa(vq) = p(a(vq)) = p((av)q) = (p(av))q = (pa(v))q

which shows that pa € R, and for p and 7 in the same fiber, define a = p~'r which is an
element of Gl,(H) such that pa = r.

On the other hand, given a Gl,,(H)-reduction R of Fr(T'M), one arrives at a
natural pair (I, .J) of sections for Fr(T'M): define I,,, = glog~" and similarly for J. This

discussion is summarized in the next proposition.

Proposition 3.5. A quaternionic structure P on M is hypercomplex if and only the

structure group Sp,Gl,(H) is reducible to the subgroup Gl,(H).

From now on, the base manifold considered is homogeneous (M = G/H) and

every quaternionic structure on it will be G-invariant.

Let xy be the origin of M, i.e., the class corresponding to the coset eH. The

isotropy representation is given by
p: H— GUT,,M).

Proposition 3.6. If p is injective, then G immerses itself as a subbundle of P with

structure group p(H) < Sp,Gl,,(H).
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Proof. Let fy € P,,. Then the orbit Gfy ~ G/Gpg,. Since P is G-invariant, Gg, < H.
Moreover, h3y = (3, if, and only if, h acts as the identity. Since p is injective, we must

have h = e (neutral element). Therefore G, ~ G. O

Example 3.4. Let M = G/H = Sp,/Sp; % Sp;. This is the maximal flag manifold of
sly(H). The tangent space at the origin is identified with the quaternion algebra H. The

isotropy representation is the adjoint representation given by

Ad : Sp; x Sp; — GI(H) with Ad(p, q)v = qup.

Denote by H; the first Sp,-factor of H. Then H; is a normal subgroup of H

and induces a quaternionic structure Qg on 7, M (as a vector space) by the pair
I, =Ad(i,1) and J,, = Ad(j,1).

Since Hi is normal in H, let
ngo = gQOg_l'

This is well-defined and induces a G-invariant quaternionic structure on M. Notice that

we could define another quaternionic structure on M by taking the second factor of H. [

Remark 3.11. In the example above, the isotropy representation is not injective, since
both +h € Sp; x Sp; have the same effect on H. However, this is not a problem since the
Lie algebras of both G and G/{+ Id} are equal resulting in no changes in the Chern-Weil

classes.

Now we give the relationship between the various characteristic classes defined
so far. A general result from the theory of principal bundles is given below. This is

Proposition 1.1, but restated with the adapted notation.

Proposition 3.7. The structure group G of P is reducible to a closed subgroup H if and
only if the associated bundle E = P xg G/H admits a cross section.

In our case, the groups being G = Sp,Gl,,(H) and H = Gl,,(H), the associated
bundle F is identified with P/H which in turn is a Sp,-principal bundle over M (this is
not true in general). So the existence of a cross section mentioned in the proposition is

equivalent to P/H being trivial.

The aim of this section is to relate the various Chern-Weil classes appearing in

the principal bundles GG, P and E. See Diagram 1 for a visual reference.

Let fo € Inv(Sp; ). Denote by f € Inv(Sp,; ®Gl,,(H)) the trivial extension and by
f € Inv(p(H)) the restriction of f. Here the representation is seen as p : b — sp; @ gl,, (H).
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Consider GG as a subbundle of P P
with structure group p(H) ~ H. Choose y
a connection w’ on G with curvature . o’ K
Let w be a curvature on P which extends
«' and € its curvature form. Then for any H
f € Inv(Sp; @ Gl,(H)), the restriction of

f(9Q) to G is equal to f'(Q'), therefore their Spy
M

E~P/H

projection on M are also the same, that is,

Diagram 1

[F(Q)] = [f'(Q)] e H*(M;R).  (3.31)
Now, let w be a connection in P and p : sp; @ gl,(H) — sp, the projection so
that the 1-form p o w takes values in sp;.

Proposition 3.8. The 1-form p ow projects to a (unique) differential 1-form wy on E,

i.e., if mp: P — E, then mj(wy) = pow.

Proof. We have to show that p o w is vertical and right-invariant by Gl,,(H).

We need to consider only the fundamental vector fields A* in P where A €
gl,,(H) < sp, @ gl,,(H). Notice that the verticality mentioned here is with respect to
the principal bundle P — E. One of the defining properties of a connection states that

w(A*) = A. Then pow(A*) = p(A) = 0.

For the right-invariance, let a € Gl,,(H). Then
Rf(pow) =po (Rfw) =poAd(a™?) w.
Notice that po Ad = p for a € Gl,(H). Thus po Ad(a™') - w =pow. O

Proposition 3.9. The 1-form wy is a connection on E — M. Moreover, the associated

curvature g satisfies () = p o L.

Proof. Let A* be a fundamental vector field for A € sp,. The inclusion sp, — sp, @ gl,,(H)
allows us to take the horizontal lift in P to also be the field A*. Thus

wo(A*) = pow(A*) = p(A) = A.

For the second defining property of a connection, let a € Sp;. Then for any
field X on E., we have

R¥wo(X) = wo(RaX) = pow(RaX),

where X is the horizontal lift of the vector X.
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Notice that mp o R, = R, o mp for any a € Sp,. Then Ea\)? = Ra)? and we have
pow(R,X) =poAd(a™) wX.

For a € Sp,, Ad(a) commutes with p, so R¥wy = Ad(a™") - wp. This is the second defining

property of a connection.

To prove the equation regarding the curvature forms, simply take the covariant

differential on both sides of the equation p o w = 75 (wp). O

Corollary 3.5. Let fy € Inv(Sp,) and f € Inv(Sp, x Gl,,(H)) the trivial extension. Then
fo(§0) = f(Q) in M. (3.32)

Proof. For a vector field X on M, denote its horizontal lift to P by )?, ie,ifmr: P— M,
then dr(X) = X. Notice that dmo(X) is a lift of X to E, because the diagram mentioned
earlier is commutative. Denote temporarily by f(£2)* the projection on M of the differential

form f(£2) on P. So one has

Fo(Q)* (X1, ..., Xap) = fo(Q)(dr Xy, ..., drXay)
= fo(mEQ0) (X1, ..., Xop)
= fo(pOQ)(X1,---,X2k),

where on the last equality we used Proposition 3.9. Now, by construction, the form f is zero
on gl,(H), therefore f = fyop (composition being entry-wise). Then fo(poQ) = f(Q). O

Remark 3.12. The Chern-Weil forms f,(€9)* are defined using only P, i.e., without any

mention to the bundle F.

Combining Equation 3.31 and Equation 3.32, we arrive at
F() = fo(0)*. (3.33)

By Equation 3.33, if any form f'(Q)') # 0, then E won’t be trivial. By Proposition 3.7, the
structure group Sp,Gl,,(H) is not reducible to Gl,(H) and by Proposition 3.5, the given
quaternionic structure is not hypercomplex. Thus the Chern-Weil forms of G constitutes

an obstruction for to the given quaternionic structure to be hypercomplex.

We finally arrive at the last step, that is, when M = [F the maximal flag
manifold of sl,(H), that is, G = Sp,, and H = Sp; x - -+ x Sp; (n-times). Throughout the
section, we denote by Hj the k-th factor of the group H. The subgroup H; is normal
in H for k =1,...,n. We are going to choose {k1,...,k,} as a set of generators of the
cohomology H*(FF;R).
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Example 3.5 (continuation from Example 3.4). Consider the quaternionic structure
determined by H; in F = Sp,/Sp; x Sp,. Let kg € InvSp,; be our preferred choice of
generator. Following the notation of the previous section, the form x' € Inv(p(h)) is
actually our x; which is non-zero. Therefore, by the discussion in the previous subsection,

the quaternionic structure determined by H; (or Hy for that matter) is not hypercomplex.

Our aim in this section is to show, inspired by this example, that every G-

invariant quaternionic structure Q on [F is not trivial, i.e., hypercomplex.

Remark 3.13. The discussion so far begs the question: is every G-invariant quaternionic
structure on F determined by a factor H; for some | € {1,...,n}? We do not know
yet, but this is intimately related on how the isotropy H intersects the structure group

Sp; € Sp,Gl,,(H). The answer is probably in this intersection.

In general, for kg € Inv(Sp, ), there exists real numbers a; (I = 1,...,n) such
that

/
K =aKk1+ -+ apky.

Notice that r; is zero when evaluated outside b; ~ p(bh;). Therefore, the restriction of £’ to
any b is exactly a;x;. Now, by looking at the dimension of the Lie algebras and keeping in
mind that p is injective, we conclude that there is exactly one index, say [, such that the
intersection between p(h;) and the factor sp, < sp; @ gl,,(H) is non-zero. The coefficient a;
is non-zero by construction (kg # 0). Thus we must have £’ = a;x; and the corresponding

Chern-Weil class must be # 0. This proves the final theorem below.

Theorem 3.6. Any G-invariant quaternionic structure on the mazximal flag of s\, (H) is

not hypercomplex.

In section 4 of the Appendix, there are two charts: one visually represents how
one goes back and forth from the principal bundle P to the vector bundle Q (fiber-wise)
and the other is an attempt to summarize the various extensions and restrictions done

using the several curvature forms and polynomials.
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4 Final Comments

The paper (BERNSTEIN; GEL'FAND; GEL’FAND, 1973) has inspiring results:
the integration formula for general spaces GG/P and the representations of the Weyl group.
What goes in the essence of their work is how they see the Bruhat/Schubert cells by
immerging the whole flag inside a big enough projective space, so they see F as a projective
variety.! For them, the Schubert cells appears as intersection between G//P and some
projective planes. Another aspect that differs from what was explored in here is the use of
the operator A,. We have interpreted it as a derivative operator with respect to some root
seen as a variable. For w € W of greatest length, S, is the whole space, so in this case is
easy to find a Chern-Weil class which is in the dual basis for the Schubert cells. Then,
with this volume form as starting point, they descend to the lower dimensional Schubert

cells, finding the Chern-Weil classes recursively with the aid of the operator A,.
So what did we do differently?

Inspired by those, we proved the same integration formula in the case of a
maximal flag manifold. Not only for complex ones (Theorem 2.2), but also for quaternionic
flags (Theorem 3.2). We believe the techniques developed so far sheds even more light on
the subject by arriving at the same results while using a different approach, a different
way of expressing mathematics. Considering I as a reductive homogeneous space on which
W acts, while also carefully choosing generators of the invariant polynomial algebra, we
have set ourselves directly at the heart of the beast, that is, a closed differential form of
maximum degree that is not based on the minimal decomposition of the corresponding
Weyl group element. From there, we climbed down the sphere-fibrations like a mountaineer
does with its ropes: one step at a time, checking carefully each nail and knot. From top to
bottom; and there lied the soul of said beast: the minimal dimensional (but non-trivial)
cell, which is also the most beautiful: a round two-dimensional sphere of radius the size of
a root! And there, dear reader, we can integrate just as our calculus teacher taught us.
Isn’t that beautiful?

The last paragraph is the part that inspired me the most, but there is more: we
have also managed to recover other results, such as the surjectivity and the kernel of the
Chern-Weil homomorphism, and see the Weyl group action on cohomology as the regular

representation. And a few more and minor things here and there.

! In the Appendix section 4, we show how to do it for Gry(C™). For the whole flag one needs to take in

consideration tensorial representations.
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Expectation from the future and the elephant in the room.

In terms of results and statements, not everything is new. But the path taken
to get there was our own and, during the walk, new stones were collected. Stones with

different shapes that could spark new ideas.

Now we address said elephant. A beast crazier than a maximal flag is the partial
flag manifold. The way things were done in the quaternionic maximal flag, we relied heavily
on the way the tangent plane and the rootspaces are put together. Precisely speaking,
we have seen how the curvature form is basically projection of the Lie bracket onto the
Lie algebra of the isotropy group. A few computations were greatly simplified by the
simple fact that [u,, ug] < usip, so 2 is annihilated when the entries comes from different
rootspaces. This does not happen in the partial flag manifold, because the isotropy is larger
and the rootspace u,15 can be included there, i.e., {2 won’t be necessarily annihilated
anymore. Even more, the invariant polynomial algebra gets more complicated the larger
the isotropy group. The k., does not suffice, because we know, in theory, the generators
Sp,, for n > 2. But not all is lost, since one can naturally embed the partial Schubert cells
inside the maximal flag manifold and pullback the Chern-Weil classes using this inclusion.

This seems to be the natural next step.

Another direction one could follow is to look at the other real algebras, since
the only one we took care of was sl, (H). Also, something that can be done is to try and
find similar formulas for each of the complex semisimple Lie algebras in the spirit of the
one in Theorem 3.4, using instead of the [k], a more suitable choose of functionals. For
instance, in the case of sl,,(C), such choice is given by the linear functionals A; : h — C.
Beware: applying Chern-Weil is not always possible. For instance, in the case of sl,(R),

the isotropy is discrete, so one cannot use Chern-Weil, since those have null curvature.
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The Quaternion Algebra

The quaternion algebra, denoted by H, is the algebra generated by the pair
{i,7} satisfying the relations ij = —ji and > = —1 = j°. As a real vector space, H is

identified with R* by setting {1,4, 7, k} as the canonical orthonormal basis, where k = ij.

A generic element ¢ in H is represented as a sum
q=a+1ib+ jc+ kd where a, b, c,d € R.

Another useful representation of H arises when we write ¢ = (a + bi) + j(c¢ — di) which is

a “j-sum” of complex numbers, inducing the identification H ~ C @ jC.

Similar to the complex numbers, we denote by ¢ the conjugate of a quaternion.
In terms of the representation, the conjugate is defined by ¢ = a — bi — ¢j — dk. Also

lq|* = qq@ = qq, where | - | is the Euclidean norm in R*.

Going further, we denote by H" the (right) vector space with quaternions acting
as scalars. Most of basic linear algebra results are also valid here. A fundamental difference
occurs when one considers H-linear transformations (the linearity on the right, of course).
Let ¢ be a H-linear transform of H". Then its matrix representation actually multiplies

the corresponding column vector on the left.

The space H" is identified with R*" via the morphism which takes
(ay + by + jeu + kdy, ... a, + b, + jo, + kd,) € H"
into
(ala bla C1, dla ceey Qp, bna Cn, dn) € R4n-

Notice that multiplication by ¢ and j are real linear transformations, then by considering
the previous identification, they induce the block-diagonal matrices Iy, = diag(I,...,I)
and Jy, = diag(J, ..., J) acting on the left where

0 -1 0 0 0 -1 0
1 0 0 0 0 1
I= J=
0 0 —1 1 0
0 10 0 —1 0

A quaternionic subspace then is a vector subspace that is invariant by H-
multiplication on the right. The canonical basis § = {ey,...,e,} is the one where e, =
(0,...,1,,...,0) e H".

A quaternionic maximal flag in H" is a sequence of nested quaternionic subspaces

of the form

{ycVic---cV,;cH"
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where V,. has real dimension 4r. The set of all such flags is called the maximal flag manifold
and is denoted by F.

The canonical maximal flag, usually denoted by x; is the flag
{0cEyc---CE,,CcH"

where E, = Spang{es, ..., e }.
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Vector Spaces over C and H

In this text H" and C*" are seen as right vector spaces (or modules, if you will).
This discussion serves to show that we can interchange between the matrix representations

of s, (H) when seen as quaternionic matrices or inside the set of complex matrices.

Let ¢ be the homomorphism between H™ and C*" given by

21
21 + Jwy '
n . . Zn z 2n
H"sq=2z2+jw= : — = eC
n w1 w
Zp T JWn
Wn,

The last equation is notational. Let ® be the homomorphism between gl,(H) and gl,,(C)

A -B
xeasme 40
B

given by
A
Proposition .1. p(Xq) = ®(X)p(q).
Proof. Using the fact that jz = zj for z € C, we have
Xq=(A+jB)(z + jw) = Az — Bw + j(Aw + Bz).

Then

Aw + Bz

S(Xq) = [AZ—BU)] '

On the other hand, we have

]

The product by j (from the right) in H" induces a antilinear isomorphism J

(D71

Considering this isomorphism, the Lie algebra gl,,(H) is the (real) subalgebra

on C*" given by

of gl,,,(C) composed by the elements X such that

SR HIREES
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The proof is easy and left to someone else. Define the Lie algebra sl,(H) as the set of
matrices X € gl,(H) having ReTrX = 0.

k k
The next step is to understand the homomorphism ¢ : /\ H" — /\ C?" given
by

k
The canonical action of X € gl (H) on /\ H" is given by

k
X-ql/\---/\qkzZq1A~--/\qu/\---Aqk. (1)

m=1

k
The action of gl,, (C) on /\ C?" is analogous.

Proposition .2. Let ¢, ® and ¢ be the homomorphisms previously defined. Then
AX gt A ngh) = B(X) - o(gh A A gh).

The above proposition is still true when we consider the group level action of

k
Gl,(H) acting on /\H” from the left by

9"~ ngd =g A gdh (2)

k
Lastly, let J be the antilinear isomorphism of /\ C?" given by
J' A A0R) = Tt A A TR

Proposition .3. J? = (=1)*Id and J commutes with both canonical actions, at the level

of the group or the Lie algebra.

The existence of such antilinear isomorphism is of paramount importance when

one wishes to understand the basics representations of sl,, (H).

k
Corollary .1. The representation /\H" s quaternionic when k is odd and real otherwise.

Let g = sl,(C) with the standard choice of a Cartan subalgebra b as the set
of diagonal matrices in g with zero trace. Define the linear functionals \; : h — C by
(ai,...,a,) — a;. It is known that, for 1 < k < n — 1, the functionals A\; + - - - + Ay forms
the dual basis of {H,, = Ej.\ — EkH;kH}Z;% where each H,, € b is defined by the relation

ak(-) = (Hay -
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k
Fix k in the range 1,...,n — 1. Set W = /\C" to be the wedge representation (defined
above) of degree k. By Equation 1, A = Ay + -+ + ) is the highest weight of W.
The corresponding highest vector is given by vy = e; A -+ A ex. The weight space

Wy is one-dimensional, generated by vy = e; A --- A ex. This is clear, because for any

n

v=ejy A Aey €Wandany X = (z4);;_, € g, one has

X v= (xilh + .. +(L’Z‘kz‘k)1).

Continuing, let G = S1,,(C) act on W by means of Equation 2. Consider the orbit through
G - vg. Each indecomposable element v; A --- A v, # 0 of the orbit is associated to
a k-subspace of C" generated by the elements vy,...,v;. Clearly, vector multiples are
associated to the same k-subspace. Denote by P(W) the projectivization of W according
the the natural complex structure of C". Then P(G - vy) is actually the Grassmannian
Gr(C"). In fact, let g € G such that g-vg = =y, i.e., g- v is a multiple of vy. At the level
of P(W), this means that g fixes the associated k-subspace [vy]. Using the argumentation
done in Example 2.1, we see that the isotropy of [vg] is precisely the parabolic set Bg
with © = X\ {ag}.
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Example of Schubert Cell

This section contains an explicit example of a Schubert cell using both definitions

2.1 and 2.2. First we do it using N-orbit, then using the v fibrations.

Let F be a maximal flag of Sl3(C) and consider the canonical choices for roots

in g. Let w = ry,74,. In matrix form,

Let xg = (E1, E) be our choice of an origin in F, where E; and F, are the canonical

subspaces of dimensions 1 and 2 in C3.

Notation .1. For this section, consider the notation V' (v, . .., vg) to denote the k-subspace

of C" that is generated by {v, ..., vg}.
With the new notation, zq = (V' (e1), V(e1,e2)). Then

w-xy = <V(€2), V (ea, e;;)).

The subgroup N is the set of matrices of the form

where \; € C. With this notation, we compute explicitly the form of the Bruhat cell
B, = N -wby. It is given by the set of all flags of the form

<V(ael + e3), V(aey + e, bey + ceq + 63)>.

Notice the V(ae; + e3) is always inside V' (e, e2) and it can get arbitrarily close to V(ey);
and V'(ae; + eg, bey + cey + e3) can get arbitrarily close to V' (e, es). Just take a, b and ¢
infinitely large. This means that f = (V' (e1), V (e, e2)) is in the Schubert cell S,,. In fact,
f is the only flag in S,,\B,,.

1

Onto the next definition. Let v; = 7; o m; and w' = ry,. Then

Sw = Y2 0 71{T0} = 72(Sur). (3)

First, m (z9) = (V(eq)), that is, a flag consisting of a single subspaces V = V(ey) inside
C?. Then
' (View)) ={(V1,V(er,e2)) €F : dime Vi =1} = S, (4)
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Now apply the second projection to get
mo(Su) = {() : Vi € V(er e) } = 5,5 (5)
Finally pull it back to F

Sy = (SN = {((Vi,Va) eF : Vi < Vier,e0)}. (6)

w

This illustrates how the first and second definitions of Schubert cells match. This example
also shows how the sphere fibrations appears. In fact, the projection 5 : S,, — 35072} has
fibers homeomorphic to CP* ~ S*. Consider the fibration over V (e;)

' (Viey) = {(V(er), V) : dimV, =2} .

Taking the quotient by V' (e;), this set is homeomorphic to the space of all complex lines
inside C?, which is CP".
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Useful Theorems

Below is a generalization of Fubini’s theorem from calculus adapted to differen-
tials form over a bundle. It states that if a differential form on top can be written as a
wedge product of forms on the basis and fiber, then we can integrate such form by first
integrating on the fibers, then on the basis — see (SULANKE; WINTGEN, 1972).

Theorem .1 (Fubini). Let ¢ : M — N where M, N are smooth manifolds of dimensions
m, n respectively, with m = n. Let w e Q™ " (M) and ne Q"(N), and let f : M — R be
measurable (meaning, its superposition with any map is Lebesque measurable). Assume
the set of critical values of @ has measure zero in N (again, this means the image under
any map has Lebesque measure zero). If the m-form fw A ©*n is integrable on M, then

for almost all x € N the integral

fw

o™ 1(2)

is well-defined and, moreover, when treated as a function of x and multiplied by n, it is

JM fw 'y = JN (Ll(@ fW> 1.

Next we state the Leray-Hirsh theorem, taken from (HATCHER, 2002). The

Leray-Hirsch condition that we mention throughout the text is the combination of item 1

integrable on N and

and item 2 below.

Theorem .2. Let p : E — B be a fiber bundle with fiber F' such that, for some commutative
coefficient ring R:

1. H"(F; R) is a finitely generated free R-module for each n.

2. There exist classes c; € H" (E; R) whose restrictions i*(c;) form a basis for H*(F; R)

in each fiber F', where i : F — E is the inclusion.

Then the map ® : H*(B; R) @ H*(F; R) —» H*(E; R), Y b; ®1i*(c;) = Y p*(bi) U ¢; is
i i

an isomorphism of R-modules.
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Charts

This section is an attempt to put in a single place all quaternionic structures

and characteristic classes used in section 3.4, visually indicated by the charts below.

The following table indicates the relationship between the principal and vector
bundles corresponding to quaternionic structures. The horizontal arrows indicates how to
starting from one and define the other. The vertical arrows indicates only that the lower
is the intended reduction from the upper. If such reduction is possible, then the starting

quaternionic structure would be hypercomplex.

P,={peFrM, : pHp ' = Q.M } ~ Q, = pHp~! (for any p e P,)
l l
Y Y
R,={peFrM, : pg=qp} -~ Q,M = Span{l,, J,}

The next table indicates how the various invariant polynomials x and curvatures
Q) defined in the bundles G, P or E are obtained one from another, either by extension,

restriction or induction.

0 / extended 0 induced QO

/ restricted extended
-



alternating sum, 21

borel subgroup, 23

Bruhat decomposition, 26

bundle
associated, 17
frame, 63
homomorphism, 16
Principal, 15
quotient, 16
reduction, 16
subbundle, 16
trivial, 15

cell

Bruhat, 26

Schubert, 25
comendo pelas beirada, 60
compact real form, 25
connection, 18

invariant, 18

cross section, 17

fiber exhausting map, 30

flag, 16
manifold, 23
maximal, 16, 23
partial, 24

form, 20

invariant, 21

Index

group

holonomy, 19

homomorphism

dual, 39

Lefschetz number, 53
Leray-Hirsch condition, 81

parabolic subgroup, 23

signature

flag, 24

sphere

surface area, 35

volume of S%, 49

structure

hypercomplex, 64
invariant quaternionic, 64

quaternionic, 63

structure equation, 19

subgroup

parabolic, 23

tangent space, 27

torus maximal, 17

Weyl
basis, 29
group, 25

Weyl group, 25
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