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Resumo
Em 1973, Bernstein, Gel’fand e Gel’fand publicaram um artigo sobre a homologia dos
espaços G{P , que chamaremos de variedades bandeira. Lá eles mostram qual é a relação
entre a homologia gerada pela decomposição celular de Schubert e a cohomologia usando
as classes características de Chern dada por fibrados de retas complexas. Este trabalho
apresenta técnicas alternativas de se obter essa mesma relação em variedades bandeira
maximais, porém utilizando o homomorfismo de Chern-Weil, que associa polinômios
P -invariantes à formas diferenciais fechadas, e portanto representantes em H˚

pG{P ;Rq.
Como se sabe, cada célula de Schubert está associada a um elemento w do grupo de
Weyl. O que fizemos foi construir formas volumes invariantes em tais células que não
dependem da decomposição minimal de w. Utilizando propriedades geométricas das
células de Schubert—fibrações de esfera sobre células menores—demonstramos a dualidade
entre células e polinômios, um problema que se reduziu à integração sobre esferas. Tais
técnicas permitem inclusive a obtenção de resultados análogos para variedades bandeira
quaterniônicas. Explorando mais afundo essas variedades quaterniônicas, apresentamos
formas explícitas das classes de Pontryagin e por último, como tais classes representam
uma obstrução para existência de certos referenciais na variedade bandeira, provamos que
ali não existe uma estrutura hipercomplexa invariante pela ação do grupo estrutural.

Palavras-chave: Variedades bandeira. Homologia. Cohomologia. Teoria de Chern-Weil.
Teoria de Lie. Células de Schubert. Álgebra de polinômios invariantes. Decomposição de
Bruhat.



Abstract
In 1973, Bernstein, Gel’fand and Gel’fand published a paper about the homology of the
spaces G{P , which we call flag manifolds. There they showed what is the relationship
between the homology generated by the Schubert cellular decomposition and the coho-
mology using Chern characteristic classes of complex line bundles. This work presents
alternative techniques aiming to prove the same relations in maximal flag manifolds, but
using instead the Chern-Weil homomorphism, which takes P -invariant polynomials to
closed differential forms, that is, representants in H˚

pG{P ;Rq. It is known that each
Schubert cell is indexed by an element w of the Weyl group. We build invariant volume
forms on each cell which does not depend on the minimal decomposition of w. Making use
of geometrical properties of the Schubert cells—sphere fibrations over smaller cells—we
have managed to demonstrate the duality between cells and polynomials, thus reducing
the problem to that of integration over spheres. Such techniques allowed us to go even
further and prove analogous results for the quaternionic maximal manifold. We deeper
explore the quaternionic manifolds and show explicit formulas for the Pontryagin classes.
Lastly, since such characteristic classes provides an obstruction for the existence of certain
frames on the manifold, we proved that there is no hypercomplex structure which is also
invariant by the structure group action.

Keywords: Flag manifolds. Homology. Cohomology. Chern-Weil theory. Lie theory. Schu-
bert cells. Invariant polynomial algebra. Bruhat decomposition.
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Introduction

This is a study on the homology and cohomology of a specific family of
homogeneous spaces, the so called flag manifolds. A first definition is given by seeing
these manifolds as collections of all chain of subspaces of a given vector space, the
chains satisfying a given form, a.k.a the flag signature. Using some basic linear algebra,
a differentiable structure of these sets is stablished by considering them as a quotient
G{BΘ.1 The case when G “ SlnpCq is done in Example 1.2 and Example 2.1. The most
known examples are the projective spaces of a vector space and, more generally, the
Grassmannians. Therefore, the methods used to compute the homology and cohomology
of the flag manifolds FΘ “ G{BΘ are several.

For the cohomology, one method that we use, in particular, is by associating
G-invariant polynomials to closed differential forms on FΘ via the Chern-Weil homo-
morphism (Theorem 1.2), therefore inducing characteristic classes on the flag, which are
widely known topological invariants (CHERN, 1946). To exemplify their importance, the
non-annihilation of these characteristic classes establishes an obstruction to the existence
of certain frames on the manifold. Theorem 3.6 is an example of a result in this direction.

For the homology, remember that for G a semisimple Lie group, one has the
Bruhat decomposition G “

ď

BwB, where the union is taken over the elements w of the
Weyl group W (KNAPP, 2013). By letting BΘ act on G from the right, the corresponding
flag manifold FΘ inherits a similar decomposition into orbits. Fix a point x0 P FΘ. The
closure of the orbit Bwx0 is what defines a Schubert cell Sw (see section 2.2). These cells
allows us to see FΘ as a CW-complex (RABELO; MARTIN, 2019), therefore it contains
information about the homology. Let dk denote the number of cells Sw such that k “ 2 lpwq.
By Corollary 2.1 (about the dimension), one immediately sees that

HkpF;Rq “

$

&

%

Rdk if k is even,

0 otherwise.

Aware of the natural pairing between homology and cohomology, one is naturally led to
the question:

What is the relationship between the Schubert cellular structure on FΘ “ G{BΘ

and the polynomial algebra of the structure group BΘ?
1 Unlike other more traditional studies on flag manifolds, I’ll use the letter B (instead of P ) to stand for

a parabolic subgroup. The reason for this is that the main object of study in this work is the maximal
flag manifold F “ G{B, where B is a Borelian subgroup. Also, the letter P is reserved for principal
bundles.
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A trio of mathematicians—Bernstein, Gel’fand and Gel’fand (BGG from now
on)—answered this question in a paper published in 1973 going by the tittle Schubert Cells
and Cohomology of the Spaces G/P (BERNSTEIN; GEL’FAND; GEL’FAND, 1973). To
each Schubert cell Sw, they’ve showed a formula for the corresponding invariant polynomial
Pw, starting from the Schubert cell associated to the maximal length w0 P W and going
down in length recursively. The main tool in the mathematical apparatus used in this
formula consisted of the “derivation” operator Aγ : InvpGq Ñ InvpGq defined by

Aγp “
p ´ wγppq

γ
,

where γ is a root of g and p is an invariant polynomial. By considering the many ways
an element w P W can be decomposed, they proved the theorem stated below (for your
convenience).

Theorem 0.1. Let w P W with length lpwq “ k. Let γ1, . . . , γk P h˚, where h is a Cartan
subalgebra of g. Let Dp¨, ¨q be the natural pairing operator between homology and cohomology.
Then

DwpSw, γ1 ¨ ¨ ¨ γkq “
ÿ

γ1pHα1q ¨ ¨ ¨ γkpHαk
q (1)

where the sum is taken over all sequences pα1, . . . , αkq of roots such that w “ rα1 ¨ ¨ ¨ rαk
.

In the paper by BGG, they describe the operator D in terms of the Aγ , which
leads formulas of combinatoric nature. In chapter 2, we actually prove a similar result, but
using other perhaps more geometrical and elementary techniques. To each cell Sw, we first
build an invariant volume form described in terms of the characteristic classes of G Ñ F.
Then we integrate it over Sw leading us to a similar formula, like Equation 1. Because
each Sw is related to a downward sequence of sphere fibrations, we do this integration
fundamentally by comparing the metric induced by such volume forms and the Euclidean
metric, giving us the explicit integral

β1pHβ1q ¨ ¨ ¨ βkpHβk
q “

1
p4πqk

ż

Sw

pβ1 ¨ ¨ ¨ βkqpΩq.

Notice that this formula does not depend on the choice of a minimal decomposition of w.
This is the content of Theorem 2.2. The above formula is generalized to any Chern-Weil
class fpΩq—see Theorem 2.3. The advantages of our method is that we have obtained
similar results even for non-complex flag manifolds, like the maximal flag of slnpHq. See
Theorem 3.2.

Continuing, BGG used Equation 1 to investigate representations of the Weyl
group in the invariant polynomial algebra and cohomology H˚

pG{P q. By realizing the Weyl
group as a subgroup of G as in Equation 2.1, there is a right-action of W in F, therefore
W represents itself in the cohomology by considering the pullback operator. The authors
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proved that such representation is actually equivalent to the regular representation of the
Weyl group. In this work, we prove an analogous result in the case of the quaternionic
maximal flag. See section 3.2.

The structure of the thesis is organized as follows. In chapter 1, the basics of the
Chern-Weil theory are established alongside notation. It follows very closely what is done
in (KOBAYASHI; NOMIZU, 1963; KOBAYASHI; NOMIZU, 1996). I’ve decided to put it
first (instead of adding it as an appendix) because I’ve explored important examples in the
middle of it. Now, chapter 2 is where the real work begins. It talks about flag manifolds
from the Lie-theoretic point of view, stating (with proofs) fundamental facts about such
spaces; it also explores the Schubert cells in great depth. The chapter ends with the main
results about the maximal flag varieties of a complex semisimple Lie group, realizing the
duality between elements of W and invariant polynomials by integration. The contents
of chapter 3 shows how the techniques developed in the previous chapter can be used to
prove analogous results to the quaternionic case. Last, but not least, it indicates how the
Weyl group acts on the polynomial algebra and cohomology and proves equivalences of
these representations and the (right) regular representation. In the appendix, I’ve put
some basic facts about the quaternion linear algebra, some examples that were too big or
inconvenient and some useful theorems.

I hope you enjoy!
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1 Chern-Weil Theory

A fundamental problem in topology is to find out whether two given spaces are
(topologically) equivalent, i.e., if there exists a homeomorphism between them. To answer
this question, one way is to take a deep dive into the realm of algebraic topology, a field
where all the modern tools are. In this text, we give special attention to the homology
and cohomology theory: the (co)homology of equivalent spaces are equal, one of the so
called topological invariants. Therefore, if the (co)homology of two given spaces differ,
then they can not be equivalent. Theoretically, this is all it takes, but actually compute
the homology and cohomology might not be straightforward.

The aim of this chapter is mostly to introduce preliminary concepts used in
the following chapters. This includes our main tool which is the Chern-Weil homomor-
phism defined in Theorem 1.2. This homomorphism allows us to compute characteristic
classes (elements in the homology, essentially) of natural principal bundles over the flag
manifolds. Everything involved in this construction is what we call Chern-Weil theory.
This introductory chapter follows very closely what is done in (KOBAYASHI; NOMIZU,
1963) and (KOBAYASHI; NOMIZU, 1996), so most of the proofs are skipped. Instead, we
take this opportunity to give examples and develop the main concepts.

1.1 Principal Bundles
Let M be a differentiable manifold and G a Lie group. A (differentiable)

principal bundle over M with group G is a space P and an action P ˆ G Ñ P satisfying

1. G acts freely on P from the right;

2. M is the quotient space of P by the equivalence relation induced by G, i.e., M “ P {G

and the canonical projection π : P Ñ M is differentiable;

3. P is locally trivial.

A principal bundle will be denoted by pP,M,Gq or simply by P . The set P is called
the principal space, G is the structure group, M is the base space and π is simply the
projection. For each x P M , the set π´1

pxq is called the fiber over x. Each fiber is a closed
submanifold of P and is diffeomorphic to G.

Example 1.1. Let G act on M ˆ G by right multiplication on the G factor. Then
P “ M ˆG is a principal bundle, the so called trivial bundle. Whether any given principal
bundle P pM,Gq is trivial or not is is a fundamental question in algebraic topology. Most of
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the theory developed in this thesis actually provides a toolbox to answer this; Another class
of principal bundles that we are going to explore are the quotient bundles pG,H,G{Hq.
Let H be a closed subgroup of G. Naturally, H acts on G from the right, so G can be seen
as a principal bundle over G{H with structure group H.

Remark 1.1. Most of the objects defined in this thesis have some sort of invariant
property, allowing us to almost completely ignore the local triviality of a principal bundle,
even though it is necessary. The fact that one is able to reduce any global discussion to an
open neighborhood of a point—and by extension, to the study of the Lie algebra— is a
common feature in the study of Lie groups.

In what follows, the most important example in this text is presented.

Example 1.2. A flag in Cn is a sequence

x “ pV1, V2, . . . , Vn´1q

where each Vk is a subspace of Cn of (complex) dimension k; and Vk Ď Vk`1. The set of all
such flags is called the maximal complex flag manifold and is denoted by F. Now, consider
the distinguished flag

x0 “ pE1, E2 . . . , En´1q P F

where each Ek is the subspace of Cn spanned by the basic vectors teju
k
j“1. The simple Lie

group SlnpCq acts naturally from the left on F

g ¨ x “ pgE1, gE2, . . . , gEn´1q.

This action is easily seen to be transitive and the stabilizer of x0 is a Borel subgroup B

of SlnpCq, that is, B is the subgroup of determinant one upper triangular matrices. A
well-known result about orbit and stabilizers1 provides the diffeomorphism

F « SlnpCq{B.

In other words, SlnpCq is a principal bundle over F with structure group B.

A homomorphism of principal bundles pP,M,Gq and pP 1,M 1, G1
q is a pair

consisting of a differentiable map f 1 : P 1
Ñ P and a homomorphism f2 : G1

Ñ G denoted
by the same letter f such that fppgq “ fppqfpgq. One says that P 1 is a subbundle of P if
f 1 is an imbedding and f2 is injective.

Let pP,M,Gq be a principal bundle and take G1 to be any subgroup of G. The
structure group G is said to be reducible to G1 if P admits a subbundle pP 1,M,G1

q. In
this case, the subbundle P 1 is a reduction of P to the structure group G1; and G is said to
be reducible to G1.
1 This is a generalization of proposition 2.33 on (SANMARTIN, 2021)
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Example 1.3. Continuing the last example, consider the Iwasawa decomposition of the
Lie group G “ SlnpCq into KAN where K “ SUn, A is the subgroup of diagonal matrices
with determinant one and N is the subgroup of upper diagonal matrices with ‘1’ in the
diagonal entries. Notice that B “ AN , so K is a subbundle of G with structure group T ,
the diagonal subgroup in K, also known as the maximal torus. This leads us to another
representation of the maximal flag as a quotient, namely F « SUn{T .

We dedicate the rest of this section to present some results that are used to
show that in a quaternionic maximal flag, no G-invariant quaternionic structure will be
hypercomplex. See section 3.4.

Let F be a manifold on which G acts from the left. Then G acts on P ˆ F

from the right by letting pp, fq ¨ g “ ppg, g´1fq. Denote by E “ P ˆG F the quotient
group by this action with coset denoted by rp, f s. It is known that E has a differentiable
structure such that the projection πE : E Ñ M given by πErp, f s “ πppq is differentiable
and E Ñ M is a (general) bundle with fiber F . More precisely, EpM,F,G, P q is said to
be the fiber bundle E over M with fiber F associated to the principal bundle pP,M,Gq.

Example 1.4. Let H be a closed subgroup of G. Then H acts naturally on the quotient
space G{H from the left. Therefore, E “ G ˆH G{H is a fiber bundle with fiber G{H

associated to the principal bundle pG,G{H,Hq.

Remark 1.2. A similar result is true when one considers a more general principal bundle
P , i.e., the associated bundle E is diffeomorphic to the quotient P {H. See Proposition 5.5
of Chapter I in (KOBAYASHI; NOMIZU, 1963).

A cross section of a vector bundle E Ñ M is a mapping σ : M Ñ E such that
π ˝ σ is the identity on M . Notice that local sections always exist, since P is locally trivial.
We finish this section with the following important result giving a criteria for when a
reduction is possible.

Proposition 1.1. The structure group G of pP,M,Gq is reducible to a closed subgroup H
if, and only if, the associated bundle EpM,G{H,G, P q admits a cross section σ : M Ñ

E « P {H.

1.2 Connection theory
Let pP,M,Gq be a principal bundle with projection π : P Ñ M . By definition,

the map π is differentiable. A tangent vector X P TpP is said to be vertical if X P ker dπp.
Let Vp denote the kernel of π and v : TpP Ñ Vp is the vertical part mapping. Although in
any principal bundle, there is the notion of a vertical vector field, there is no standard way
to say that a vector is “horizontal”. The notion of horizontality is introduced by endowing
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a principal bundle with a connection. Formally, a connection on a principal bundle P is a
distribution H of subspaces in the tangent bundle TP such that at each point p P P , one
has the direct sum

TpP “ Hp ‘ Vp.

We also require that this distribution is equivariant by the G-action, i.e., if Rg : P Ñ P

denotes the right action by an element g P G, then H must satisfy

Hp¨g “ pRgq˚pHpq

where pRgq˚ denotes the differential.

Associated to every connection is the connection form, denoted by ω. It is the
unique linear functional defined on P and taking values on the Lie algebra g such that for
a vector field X, ωpX “ A where A P g is such that

d

dt

ˇ

ˇ

ˇ

ˇ

t“0
pp ¨ etA

q “ vpXpq. (1.1)

The correspondence between connections (as distributions) and connection
forms are 1:1, so on we may refer to them unambiguously simply as a connection.

The expression on the left-hand side of Equation 1.1 is called the fundamental
vector field corresponding to A P g and is denoted by A˚, that is, at a point p

A˚
p “

d

dt

ˇ

ˇ

ˇ

ˇ

t“0
pp ¨ etA

q.

In short, the connection ω provides a way to measure the g-change of a vector field X by
taking as a reference the exponential flows on P among different fibers.

Example 1.5. Let G “ SlnpCq and K “ SUn be the compact real form. Let pK,F, T q

be the principal bundle over the maximal flag manifold F as shown in Example 1.3. Let
x0 P K denote the origin. Then Tx0K “ sun which has a decomposition in terms of root
spaces gα given by

sun “ t ‘
ÿ

αą0
uα

where uα “ pgα ‘ g´αq X sun and t is the Lie algebra of T . One particularly useful example
of an invariant connection on K is constructed by first defining the horizontal space at
the origin to be the sum

Hx0 “
ÿ

αą0
uα.

Then define Hg “ pLgq˚Hx0 , where Lg is left multiplication by g P K. Notice that
Lg ˝ π “ π ˝ Lg, so one has the direct sum TgK “ Hg ‘ Vg. Now, for any t P T

pRtq˚Hx0 “ pLtq˚ ˝ Adpt´1
qHx0 “ pLtq˚Hx0 “ Ht

because Hx0 is invariant by AdpT q. Since Lg commutes with Rt for all t P T and g P K,
one immediately obtains the equivariance condition by the T -action.
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Remark 1.3. A connection on a principal bundle allows one to speak of horizontal curves
and liftings, which leads to the notion of parallel transport (in (KOBAYASHI; NOMIZU,
1963), the authors call it parallel displacement). It is known that a parallel transport
induces an isomorphism between the fibers (essentially, the group G) over the starting
and ending points. Considering it on closed loops, one arrives at the notion of holonomy
groups Φpxq which, roughly speaking, is defined as the set of G-isomorphisms derived from
the parallel transports among all closed loops at a base point x P M . See Chapter II,
Sections 3 and 4 for more on the subject; Section 8 is devoted to the proof of a theorem
on holonomy by Ambrose and Singer.

Back to the general theory. Let pP,M,Gq be a principal bundle with a given
connection form ω. We introduce now the notion of a curvature form on P , the covariant
derivative of a connection form. The curvature form is related to the more geometrical
notion of a curvature on vector bundles2. Precisely, the curvature form Ω is a differential
form of degree 2 defined on P taking values on g. It is defined as the covariant derivative of
the curvature form ω, that is, if we let h : TP Ñ H be the projection onto the horizontal
part, then

ΩpX, Y q “ dωphX, hY q.

By definition, if X is vertical, then ΩpX, Y q “ 0.

Just as in the case of vector bundles, the connection form measures the non-
commutativity of the Lie bracket. Equation 1.2 is known as the structure equation.

Theorem 1.1. Let ω be a connection form and Ω be its curvature form. Then

dωpX, Y q “ ´
1
2rωpXq, ωpY qs ` ΩpX, Y q (1.2)

for X, Y P TP .

A special case of the above theorem is when all vector fields involved are
horizontal. It simplifies the structure equation, since ω is a vertical form. See Chapter II,
section V of (KOBAYASHI; NOMIZU, 1963).

Corollary 1.1. Let X and Y be horizontal vector fields on P . Then

ωprX, Y sq “ ´2 ΩpX, Y q.

We go back to the most important example in this text and provide an explicit
formula for the curvature. It is used in section 3.3 to give an explicit set of generators for
the cohomology of the quaternionic maximal flag.
2 The relationship between these two is presented in (SPIVAK, 1999), Addendum 3 of Chapter 8.
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Example 1.6. Let us expand on Example 1.5, where U “ SUn and an invariant connection
was constructed using

Hx0 “
ÿ

αą0
uα.

The associated connection form ω is a left-invariant differential form, meaning that for
u, v P U , one has

pL˚
uωqvpXvq “ ωLupvqpdpLuqvpXvqq “ ωvpXvq,

or simply
L˚

uω “ ω @u P U.

So, for a left-invariant vector field induced by X P m, one has for any u P U that

ωupXuq “ ωepXeq “ vpXq

where v is the projection TeU Ñ Ve “ ker dπe. Since the connection is left-invariant,
the induced vector field X of a horizontal Xe is also horizontal (and invariant). Apply
Corollary 1.1 to get the nice formula

ΩpX, Y q “ ´
1
2vprX, Y sq. (1.3)

1.3 Chern-Weil Homomorphism
Let G be a Lie group with Lie algebra g. A form of degree k on G is a symmetric

multilinear map
f : g ˆ ¨ ¨ ¨ ˆ g

(k factors)
Ñ R.

If f and g are forms of degree k and l, respectively, define their product to be the form fg

of degree k ` l given by the formula

fgpX1, . . . , Xk`lq

“
1

pk ` lq!
ÿ

σ

fpXσp1q, . . . , XσpkqqgpXσpk`1q, . . . , Xσpk`lqq
(1.4)

where σ runs through the permutations of t1, 2, . . . , k ` lu. Clearly, one has fg “ gf .
Denote by SymkpGq the set of all such forms of degree k and put

SympGq “
ÿ

k

SymkpGq.

Then SympGq has the structure of a commutative (graded) algebra over R. This algebra
is called the polynomial algebra of G.
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Remark 1.4. There are two reasons for the name “polynomial algebra”: 1) I already use
“form” in “differential forms”, and 2) the polynomial algebra is isomorphic to an actual set
of polynomials. Such isomorphism is explicitly stated in (KOBAYASHI; NOMIZU, 1996),
Section 2 of Chapter 12.

A form f P SympGq is said to be AdpGq-invariant if f ˝ Adpgq “ f for all
g P G. Here the composition is being taken entry-wise. Denote by InvpGq the set of all
AdpGq-invariant forms. This is a (commutative) subalgebra of SympGq. Naturally, one
defines InvkpGq “ InvpGq X SymkpGq.

Let pP,M,Gq be a principal bundle with connection form ω and curvature
form Ω. Take f P InvpGq. Then fpΩq is the differential 2k-form defined on P by

fpΩqpX1, . . . , X2kq

“
1

p2kq!
ÿ

σ

ϵσfpΩpXσp1q, Xσp2qq, . . . ,ΩpXσp2k´1q, Xσp2kqqq
(1.5)

where ϵσ denotes the sign of the permutation σ on t1, 2, . . . , 2ku. Sometimes the sum in
Equation 1.5 is referred as the σ-alternating sum of
fpΩpX1, X2q, . . . ,ΩpX2k´1, X2kqq.

A basic fact of the Chern-Weil theory is that any differential form ξ “ fpΩq

is projectable in M in the sense that there exists a differential form η on M such that
π˚

pηq “ ξ where π˚ is the pullback of differential forms.

The following result summarizes the constructions and results concerning the
Chern-Weil homomorphism.

Theorem 1.2 (Chern-Weil Theorem). Let pP,M,Gq be a differentiable principal bundle
with projection π : P Ñ M . Endow P with a connection form ω and let Ω be its curvature.

Let f P InvpGq. Then there are the following results:

1. The differential 2k-form fpΩq projects (uniquely) onto a differential 2k-form on M .
The projected form is also denoted by fpΩq;

2. The differential form fpΩq on M is closed. Its de Rham cohomology class rfpΩqs P

H2k
pM ;Rq is independent of the choice of the connection ω on P . This cohomology

class is denoted simply by rf s “ rfpΩqs;

3. The map
r¨s : InvpGq Ñ H˚

pM ;Rq

f ÞÑ rf s

is an algebra homomorphism.
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The map r¨s is called the Chern-Weil homomorphism and the cohomology
classes rf s are the Chern-Weil (characteristic) classes of the principal bundle π : P Ñ M .

If G is a complex (real) semisimple Lie group, the Chern-Weil classes of a
principal bundle pP,M,Gq are actually Chern classes (Pontryagin classes) in the standard
way, that is, they are characteristic classes of complex (real) vector bundles —see Section 3
of Chapter 12 in (KOBAYASHI; NOMIZU, 1996). Simply calling such classes “Chern-Weil
classes” makes sense because we deal with both of them: Chern classes on chapter 2 and
Pontryagin classes on chapter 3.

A book by Loring Tu ((TU, 2017)) provides a nice alternative reference for
this topic. For more on characteristic classes, see (MILNOR; STASHEFF, 1974) and
(HATCHER, 2002). A somewhat didactic presentation on this subject is found on the
lecture notes by Michael Uscher called “Vector Bundles” (see (USCHER, 2012)).
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2 Complex Flag Manifolds

In this chapter, we formally introduce the flag manifolds as a quotient of a
semisimple Lie group by a parabolic subgroup. The flag F has a CW-complex structure
given by the Schubert cells. So, in order to study the cohomology of F, we give full attention
to these cells and their properties, which are explored in section 2.2 and section 2.3. Our
aim is to construct invariant volume forms on each of those cells and integrate them to
obtain a BGG-like formula1 for the case when F is maximal. The techniques used here are
different from those of BGG and can be applied to non-complex flags. We did it for the
quaternionic maximal flag of slnpHq (see chapter 3).

2.1 Flag Manifolds
The flag manifolds of a complex semisimple Lie group G are the main object

of study in this text. They are generally defined as the quotient of G by some parabolic
group BΘ. By definition, each flag manifold is naturally associated to a principal bundle
G Ñ G{BΘ with structure group BΘ, as was done in Example 1.1. The most important
example to us is given in Example 1.2, i.e., F “ SlnpCq{B, where B is the minimal
parabolic subgroup of G—the Borelian subgroup (see below).

To start with, let G be a complex semisimple Lie group with Lie algebra g.
Take a Cartan subalgebra h of g and denote by Π the associated set of roots. Then g has
a root space decomposition

g “ h ‘
ÿ

αPΠ
gα.

For a choice of a simple system of roots Σ Ď Π, let Π` denote the set of positive roots.
The Borel subgroup B is the connected subgroup of G with Lie algebra

b “ h ‘
ÿ

αPΠ`

gα.

For a subset Θ Ď Σ, let xΘy be the subset of Π` generated by the roots α P Θ. Define the
parabolic subgroup BΘ “ exp bΘ as the connected subgroup of G with Lie algebra

bΘ “ b ‘
ÿ

αPxΘy

g´α.

The flag manifold FΘ is defined as the quotient G{BΘ. If Θ is the empty set, then BΘ “ B

and the corresponding flag manifold is called the maximal flag manifold of G. In this case,
one simply writes F.
1 This is Equation 1.
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Example 2.1. Just as in Example 1.2, the partial flag manifolds of G “ SlnpCq can be
seen as a set of nested subspaces of Cn. For instance, the complex Grassmannian GrkpCn

q

is a partial flag manifold with parabolic subgroup BΘ given by Θ “ tαku. A partial flag in
Cn is obtained from the maximal flag by forgetting some of the subspaces. Which subspaces
are forgotten is indicated by the flag signature, that is, a sequence of integers pd1, . . . , dmq

such that d1 ă d2 ă ¨ ¨ ¨ ă dm ă n. When F is maximal, dm “ m for all 0 ă m ă n

(equivalently, m “ n). So generally speaking, a flag manifold (partial or maximal) in Cn of
signature pd1, . . . , dmq is a sequence of nested subspaces

x “ pV1, . . . , Vmq

where dim Vk “ dk, 1 ă kj ă n and Vj Ă Vj`1. Denote by FΘ the set of all such flags in
Cn (Θ is to be determined). It is known, by linear algebra, that G acts transitively on FΘ

with isotropy given by some subgroup, say BΘ. Then

FΘ “ G{BΘ.

As the notation already suggests, BΘ is the integral subgroup of the Lie algebra bΘ for
some set Θ Ă Σ. To find out what Θ is this, let

xΘ
0 “ pEd1 , Ed2 , . . . , Edmq P FΘ

where Ek is the subspace of Cn spanned by the set of canonical vectors teju
k
j“1. As noted,

G acts transitively on FΘ, so we turn our focus to the isotropy subgroup BΘ, that is, the
set of all g P G such that g ¨ xΘ

0 “ xΘ
0 . Notice that g P BΘ if and only if g ¨ Ek “ Ek for

each k in the signature. For Ed1 to be fixed by g, one needs to send the canonical vectors
te1, e2, . . . , ed1u inside the space generated by themselves, or more specifically, the image
cannot involve a linear combination containing any element ek for k ą d1 (this is the
condition). Take the matrix-block representation of

g “

«

gd1 ˚˚

˚ gn´d1

ff

.

The submatrix gm is of size m ˆ m. The condition on the linear combination is equivalent
to the “˚” block of size pn ´ d1q ˆ d1 being null, which is equivalent to g ¨ Ed1 “ Ed1 . By
continuing this process for Ed2 , Ed3 , . . . , Edm , the final form of the matrix g is

g “

»

—

—

—

—

–

gd1 ˚ ¨ ¨ ¨ ˚

0 gd2´d1 ¨ ¨ ¨ ˚

... ... . . . ...
0 0 ¨ ¨ ¨ gn´dm

fi

ffi

ffi

ffi

ffi

fl

.

The root system of slnpCq is of type A. Each root αjk is decomposed as a sum of simple
roots

αjk “ αj ` αj`1 ` ¨ ¨ ¨ ` αk´1
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where αl is short for the simple root αl;l`1. Thus one immediately2 sees that the isotropy
BΘ corresponds to

Θ “ Σztαd1 , . . . , αdmu.

So, starting from the maximal signature “forgetting” an entry dj is the same as adding
the respective simple root to the isotropy. The smaller flag, the larger the isotropy.

Other examples of interesting flag manifolds are obtained when one endows Cn

with a non-degenerate bilinear form φ, e.g., the cannonical inner product. Take G be the
group of automorphisms of Cn preserving such form. Then G ¨ x0 is the set of complete
flags pV1, . . . , Vn´1q such that Vk and Vn´k are mutually φ-orthogonal.

2.2 Schubert Cellular Decomposition
Each flag manifold G{BΘ has a special cellular decomposition, the so called

Schubert cell decomposition and each cell is called a Schubert cell, denoted by Sw. They
come from the Bruhat decomposition.

In order to introduce the Bruhat decomposition, first consider the more general
group of invertible matrices G “ GlnpCq. This example provides a good motivation for
the definitions below. It is known that any g P G can be written as a product of the form
bwb1, where b and b1 are both upper triangular matrices and w is a permutation matrix.
Therefore, one writes G as the union of double cosets

G “
ď

wPW
BwB

where B is the set of all upper triangular matrices in G and W is the set of all permutations
in n elements represented as nˆ n matrices. In the quotient space G{B, the double cosets
becomes “N -orbits” (explained below), so

G{B “
ď

wPW
Bw ¨ x0,

where x0 “ 1 ¨ B is the coset class corresponding to the neutral element ‘1’ in G. Each
orbit Bw ¨ x0 is what one calls a Bruhat cell, all indexed by the group W . The closure of
an orbit is what defines a Schubert cell.

Now we go back to the theory of semisimple Lie groups. Let G be a complex
semisimple Lie group and let U denote its compact real form. Let g be its Lie algebra and
h a Cartan subalgebra with root system Π and Σ the set of simple roots. The Weyl group
is first defined as the finite group generated by the reflections

rαpβq “ β ´ 2xβ, αy

xα, αy
α

2 The the Dynkin diagram of slnpCq is the simplest—see Chapter 8 of (SANMARTIN, 1999).
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with respect to the simple roots α P Σ where x¨, ¨y is the inner product on h˚ defined by
the Cartan-Killing form. As an example, take the Lie algebra slnpCq with the standard
Cartan subalgebra h of diagonal matrices. Then the Weyl group W is the permutation
group in n elements that acts in h by changing the order of the diagonal entries. In h˚ the
action is similarly obtained by transposition.

The Weyl group W is isomorphic to the quotient W “ Norm{T where3

Norm “ NormU phq “ tu P U : Adpuqh Ă h u (2.1)

is the normalizer and T Ă U is the maximal torus. The Bruhat decomposition for G is4

G “
ď

wPW
BwB. (2.2)

This union is disjoint up to T , that is, BwB XBw1B ‰ H if and only if wT “ w1T and in
this case BwB “ Bw1B. Hence the set of components BwB is in bijection with the Weyl
group W “ Norm{T .

The double coset decomposition of G factors down to the maximal flag F “ G{B.
As seen in the section 2.1, the Lie algebra of B is b “ h ‘ n`. Set H “ exp h and
N “ exp n`. Then B “ HN “ NH. Let x0 “ 1 ¨B be the origin of this coset space and for
w P Norm, put xw “ w ¨ x0. The double coset space BwB is projected onto N ¨ xw. In fact,
BwB ¨x0 “ Bw ¨x0 “ B ¨xw. Because B “ NH and H ¨x0 “ x0, one has B ¨xw “ N ¨xw (w
normalizes H). The orbits Bw “ N ¨ xw are the Bruhat cells in F. In light of Equation 2.2,
they exhaust the N -orbits and are in bijection with the Weyl group W .

More generally, in a partial flag manifold FΘ “ G{BΘ the Bruhat cells are the
N -orbits BΘ

w “ N ¨ xΘ
w where xΘ

0 “ 1 ¨ BΘ is the origin and xΘ
w “ w ¨ xΘ

0 with w P Norm.
The same way the cells are indexed by the Weyl group. The difference now is that the
indexing is not exact since it may happen that BΘ

w “ BΘ
w1 with w ‰ w1.

Definition 2.1. A Schubert cell is denoted by SΘ
w Ď FΘ, indexed by w P W ; and is defined

as the closure of the Bruhat cell BΘ
w “ N ¨ wxΘ

0 .

Remark 2.1. Notice that BΘ
w “ N ¨ xΘ

w is a submanifold of FΘ since it is an orbit of a
Lie subgroup (it can be proved that any BΘ

w is diffeomorphic to a Lie subgroup of N and
hence to an Euclidean space). A Schubert cell SΘ

w , on the other hand, is not in general a
submanifold. It contains the corresponding Bruhat cell BΘ

w as an open and dense subset,
which enables several computations to be worked out in SΘ

w as it were a submanifold. In
section 2.4, integration of volume forms on SΘ

w is done using this open and dense property
of the Bruhat cells.
3 The isomorphism is given by Theorem 4.54 of Chapter IV in (KNAPP, 2013).
4 This is Theorem 7.40 of Chapter VII in (KNAPP, 2013).
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Example 2.2. Let G “ SlnpCq and Lie algebra g with the standard set of simple roots
αj; j`1 “ λj ´ λj`1 and take F “ G{B to be the maximal flag manifold. Choose α “ α1; 2

and let w “ rα be a simple reflection. Then x0 corresponds to the distinguished flag in
Example 1.2 and w acts on the canonical vectors ej via permutation of the indices. So the
Bruhat cell Bw is the N -orbit through the flag

xw “ pV1, E2, E3, . . . , En´1q P F

where V1 is the one-dimensional subspace of Cn spanned by e2. Each g P N is an upper
triangular matrix with ‘1’ in each entry of the diagonal. By letting N act on xw, one sees
that

Bw “ t pV1, E2, E3, . . . , En´1q : E1 ‰ V1 u

which is homeomorphic to CP1
ztx0u, where

x0 “ pE1, E2, . . . , En´1q.

Its closure, that is, the Schubert cell Sw is homeomorphic CP1, which in turn is a two-
dimensional sphere. This is a feature of the Schubert cells (see Proposition 2.3 and
Corollary 2.2).

Local properties of the cells

In what follows, local properties of Bw (and Sw) of F, mainly, are described in
terms of the indexer element w P W .

To write the tangent space of Bw at xw in terms of the root spaces, first take a
representative u P Norm of w P W . Set

nw´1
“ Adpu´1

qn`
“ Adpu´1

q

˜

ÿ

αPΠ`

gα

¸

“
ÿ

αPΠ`

gw´1α,

where w´1α “ α ˝ w and Nw´1
“ u´1Nu “ exp nw´1 . Then

Bw “ N ¨ ux0 “ upu´1Nuq ¨ x0 “ upNw´1
¨ x0q.

Since N ¨ x0 “ x0, it follows that Nw´1
¨ x0 “

´

Nw´1
X N´

¯

¨ x0. The root space decompo-

sition shows that Nw´1
X N´

“ exp
´

nw´1
X n´

¯

where

nw´1
X n´

“
ÿ

β

gβ

with the sum extended over the set w´1Π`
X Π´ of roots β ă 0 such that β “ w´1α with

α ą 0.
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Turning back to the N -orbit through xw, it follows that

N ¨ xw “ u
´

pNw´1
X N´

q ¨ x0

¯

“ upNw´1
X N´

qu´1
¨ xw.

Hence the Bruhat cell Bw “ N ¨ xw is the orbit by xw of the subgroup

upNw´1
X N´

qu´1
“ exp Adpuqpnw´1

X n´
q “ exp

˜

ÿ

αPΠw

g´α

¸

where
Πw “ wpw´1Π`

X Π´
q “ Π`

X wpΠ´
q (2.3)

is the set of positive roots that are mapped into negative roots by w´1.

To write tangent vectors we use the notation X ¨ x to stand for the value at x
of the vector field induced by X P g, namely

X ¨ x “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0
petX

¨ xq.

More generally, if v is a vector subspace of the Lie algebra g and x is an element of a flag
manifold FΘ, then

v ¨ x “ tX ¨ x P TxFΘ : X P vu.

Now the tangent space TxwBw of the Bruhat cell Bw at its origin xw is the tangent space
of the upNw´1

X N´
qu´1-orbit, that is,

TxwBw “
ÿ

αPΠw

g´α ¨ xw

with Πw “ Π`
XwpΠ´

q as in Equation 2.3. This is the tangent space TxwSw to the Schubert
cell as well.

The expression for the tangent space will be used afterwards for the computation
of the integrals of Chern-Weil forms in the Schubert cells.

The tangent space TxwBw “ TxwSw can be written in terms of subspace of the
compact real form u. To get it for a root α ą 0 put uα “ u X pgα ‘ g´αq. If α P Πw then
g´α ¨ xw “ uα ¨ xw so that

TxwBw “ TxwSw “
ÿ

αPΠw

uα ¨ xw

We summarize the above discussion in the following proposition.

Proposition 2.1. The tangent space of Sw at the origin xw coincides with the tangent
space of Bw “ N ¨ xw. It is given by

TxwBw “
ÿ

αPΠw

g´α ¨ xw. (2.4)

In terms of the compact real form U , let uα “ upgα ‘ g´αq. Then

TxwBw “ TxwSw “
ÿ

αPΠw

uα ¨ xw. (2.5)



2.2. SCHUBERT CELLULAR DECOMPOSITION 29

To write a basis of TxwBw “ TxwSw, we recall the concept of a Weyl basis for g,
which is a set of vectors Xα P gα satisfying the properties

1. rXα, X´αs “ Hα;

2. rXα, Xβs “ mα,βXα`β with mα,β “ 0 if α ` β is not a root.

3. The constant mα,β P R satisfies m´α,´β “ ´mα,β.

For each root α P Π`, the vectors

Sα “ ipXα ` X´αq and Aα “ Xα ´ X´α (2.6)

forms a real basis of uα “ pgα ‘ g´αq X u. This leads to

Corollary 2.1. The set
Bw “ tSα, Aα : α P Πw u (2.7)

is a real basis of TxwpSwq, so the real dimension of Sw is 2 lpwq.

Remark 2.2. Take a reduced expression w “ rα1 ¨ ¨ ¨ rαk
with respect to the simple roots.

It is well known that
Πw “ tα1, rα1α2, . . . , rα1 ¨ ¨ ¨ rαk´1αku

and that Πw is independent of the chosen reduced expression. See (SANMARTIN, 1999;
VARADARAJAN, 1974).

We take this opportunity to state another property of such vectors which is
used later in the text. This is found in (SANMARTIN, 1999).

Proposition 2.2. The vectors defined in Equation 2.6 satisfies the bracket identities:

rAα, Aβs “ mα,βAα`β ` m´α,βAα´β,

rSα, Sβs “ ´mα,βAα`β ´ mα,´βAα´β, (2.8)
rAα, Sβs “ mα,βSα`β ` mα,´βSα´β

and
rAα, Sαs “ 2iHα.

Alternative definitions of the Schubert cells

There is an alternative way to define the Schubert cells in the maximal flag
that does not require mentioning the underlying Bruhat cells. This is done via fibrations
over a selection of partial flag manifolds. In order to do that, let w P W and let

w “ rα1 ¨ ¨ ¨ rαk
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be a reduced decomposition with respect to the simple roots. Put Θj “ tαju and write
Fj “ FΘj

“ G{BΘj
. Let πj “ πΘj

be the canonical projection F Ñ Fj of the maximal flag
onto the partial flag. In terms of flags of Cn, this projection acts by forgetting some entries
of each maximal flag x “ pV1, V2, . . . , Vn´1q, therefore changing the signature of the flag.
Then, define the fiber exhausting maps γj by setting

γjpAq “ π´1
j pπjpAqq, for A Ď F.

Such maps are used below to (re)define the Schubert cells. For instance, the Schubert cell
in Example 2.2 is recovered by noticing that

Sw “ γα12ptx0uq.

Definition 2.2. Let w P W with reduced decomposition w “ rα1 ¨ ¨ ¨ rαk
with respect to

the simple roots. Then the Schubert cell Sw is given by

Sw “ γk ˝ ¨ ¨ ¨ ˝ γ1ptx0uq.

The equivalence between Definition 2.1 and Definition 2.2 is the statement of
Theorem 5.3 in (SANMARTIN, 1998).5 We use the second one to provide a description of Sw

as product orbit. Start with a unit length w1 “ rα1 , it is true that Sw “ γ1ptx0uq “ BΘ1 ¨x0.
For w2 “ rα1rα2 , one has

γ2γ1ptx0uq “ γ2

´

ď

gPBΘ1

g ¨ x0

¯

“
ď

gPBΘ1

´

g ¨ γ2ptx0uq

¯

.

The last equality follows by the equivariance of γj, since πj is equivariant. Continuing,
notice that γ2ptx0uq “ BΘ2 ¨ x0, so

γ2γ1ptx0uq “
ď

gPBΘ1

´

gBΘ2 ¨ x0

¯

“ BΘ1BΘ2 ¨ x0.

Following by induction, one is lead to the general formula

Sw “ BΘ1 ¨ ¨ ¨BΘk
¨ x0,

where w “ rα1 ¨ ¨ ¨ rαk
. The same is true when one considers the compact real form K.

Proposition 2.3. Let w “ rα1 ¨ ¨ ¨ rαk
be a reduced expression with respect to the simple

roots. Let KΘ “ K X BΘ, where K is the compact real form of G. Then

Sw “ KΘ1 ¨ ¨ ¨KΘk
¨ x0.

Proof. This follows almost immediately from the fact the BΘj
¨ x0 “ KΘj

¨ x0 —by the
Langlands decomposition BΘj

“ KΘj
AN and the fact the AN ¨ x0 “ x0.

5 In section 4, in the appendix, we explore an example of Schubert cell using both definitions.
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We end this section with a proposition that illustrates the nice behavior of the
Schubert cells under the canonical projection FΘ Ñ FΘ1 and a minimal decomposition of
w P W .

Proposition 2.4. Let w “ rα1 ¨ ¨ ¨ rαk
be a minimal decomposition with respect to the

simple roots. Let π be the restriction of πtαku : F Ñ Fk to Sw and put w1
“ rα1 ¨ ¨ ¨ rαk´1.

Then

1. the projection π : Sw Ñ Sk
w is an equivariant sphere fibration.

2. πpSwq “ πpSw1q.

3. πpSw1q « Sk
w.

Proof. item 1 Let xk
0 “ πpx0q. By Definition 2.2, xk

0 is a flag of Cn that is almost complete.
The only entry that is missing is the subspace corresponding to the root αk. So the fiber over
xk

0 is diffeomorphic to a CP 1
« S2, because the fiber is the set of all j-dimensional vector

subspaces containing a fixed pj ´ 1q-dimensional which is also inside a pj ` 1q-dimensional
vector subspace of Cn; item 2 follows immediately by Definition 2.2

πpSwq “ π ˝ π´1
˝ πpSwq “ πpSw1q

because π ˝ π´1 is the identity on Fk.

2.3 Parametrization of the Schubert Cells
Our aim is to express the dual relationship between homology and cohomology

of F by integrating representatives of the Chern-Weil classes—closed differential forms—
over the Schubert cells which are known to be a basis of the homology. To do that, first
one needs a suitable parametrization of such cells.

Since we are dealing with semisimple complex Lie groups, the simplest case
comes from the maximal flag of sl2pCq, which has a single positive root, call it α. The
Weyl group is t˘1u and therefore, the only non-trivial Schubert cell Sw is the whole flag
F. The non-trivial element w “ rα is represented in SU2 by the matrix

r “

«

0 1
´1 0

ff

.

By what has been discussed previously, we know that Sw “ SU2 ¨ x0. The proposition
below provides a useful map ψ of the two-dimensional ball B2

Ă C into SU2. This map,
composed with the canonical projection SU2 Ñ SU2{M gives a suitable parametrization of
the cell, since SU2{M « SU2 ¨ x0. The closed ball B2 below is identified with S1

ˆ r0, π{2s

in a way that pS1
ˆ t0uq is taken into the center and S1

ˆ tπ{2u is taken into the boundary
BB2.
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Proposition 2.5. There is a parametrization ψ : B2
Ñ SU2 such that

1. The center of B2 is taken into rα, i.e., ψpS1
ˆ t0uq “ r where r is a representative

of rα in SU2.

2. The boundary BB2, namely S1
ˆ tπ{2u, is taken into M , so

ψpBB2
q ¨ x0 “ x0.

3. The mapping B2
zBB2

Ñ Bw, pz, tq ÞÑ ψpz, tq ¨ x0 is a diffeomorphism.

Proof. The idea is to use the exponential map exp : su2 Ñ SU2. Notice that

su2 “ m ‘ uα

where m is the diagonal part. Consider the inclusion S1
ˆ r0, π{2s ãÝÑ uα given by

S1
ˆ r0, π{2s “

#«

0 ´tz̄

tz 0

ff

: |z| “ 1, t P r0, π{2s

+

.

Let ϕ denote the restriction to B2 of the exponential map considering such identification.
Then

ϕpz, tq “

«

cos t ´z̄ sin t
z sin t cos t

ff

. (2.9)

Notice that ϕ is not the desired mapping, since ϕp0q “ Id ‰ r. Therefore, let ψpz, tq “

rϕpz, tq, i.e.,

ψpz, tq “

«

z sin t cos t
´ cos t z̄ sin t

ff

so ψp0q “ r; and at the boundary one has

ψpz, π{2q “

«

z 0
0 z̄

ff

P M.

This proves items item 1 and item 2.

The mapping in item 3 is the composition of ψ with the projection SU2 Ñ

SU2{M identified with the orbit through x0. In fact, x0 is the one dimensional subspace of
C2 spanned by the canonical vector e1, denoted by xe1y. Now, the corresponding Bruhat
cell is defined as Bw “ N ¨ rx0. On one hand, the subgroup N is given by

N “

#«

1 z

0 1

ff

: z P C

+

so

N ¨ rx0 “ x

«

z

1

ff

y
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for all z P C. Here, xvy indicates the one-dimensional subspace generated by v P C2. On
the other hand,

ψpz, tq ¨ x0 “ x

«

z sin t
cos t

ff

y.

If t P r0, π{2q, then cos t ‰ 0 and

ψpz, tq ¨ x0 “ x

«

z tan t
1

ff

y z P S1.

This shows the diffeomorphism between B2
zBB2 and Bw.

At this point, we take advantage of the notation established to emphasize the
fact the a minimal dimensional Schubert cell is homeomorphic to S2.

Corollary 2.2. A minimal dimensional Schubert cell Sw is topologically equivalent to a
two-dimensional sphere S2.

The proof below is only a sketch and the details to show the bijection are left
out, since we will need the mapping Sw ÞÑ S2 only.

Proof. Consider ψpz, tq ¨ x0; or in terms of the corresponding matrix multiplication
«

z sin t cos t
´ cos t z̄ sin t

ff«

1
0

ff

“

«

z sin t
´ cos t

ff

where z “ eiθ
P S1, so one can write z “ cos θ ` i sin θ. Identify (as sets) C and R2. Then

Sw Q

«

eiθ sin t
´ cos t

ff

ÞÑ

»

—

–

cos θ sin t
sin θ sin t
´ cos t

fi

ffi

fl

P S2
Ď R3. (2.10)

By letting pθ, tq P r0, πs ˆ r´π{2, π{2s, one obtains the usual spherical coordinates on the
sphere.

Now we go back to general complex flag F, which is a flag of a complex
semisimple Lie group G with compact real form given by U . Denote the corresponding
Lie algebras by g and u. Let Σ be the set of simple roots and take w “ rα to be a
simple reflection, α P Σ. Denote by upαq the Lie algebra generated by uα. It is known
that upαq « su2. Denote by Upαq « SU2 the corresponding analytical subgroup with Lie
algebra upαq. By Proposition 2.3,

Sw “ Upαq ¨ x0.

Then by Proposition 2.5, there is a map ψα : B2
Ñ Upαq satisfying those stated properties.
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Remark 2.3. One can only do this for simple roots, since for a non-simple root β, the
orbit Nrβ ¨ x0 is not contained in Upβq ¨ x0.

The above discussion is generalized easily to Schubert cells of higher dimensions,
in light of Proposition 2.3.

Theorem 2.1. Let Sw be a Schubert cell in F. Choose a minimal decomposition w “

rα1 ¨ ¨ ¨ rαk
and let ψαj

: B2
Ñ Upαq be defined as before. Define the map

Ψ : B2k
Ñ Sw

pu1, . . . , ukq ÞÑ ψα1pu1q ¨ ¨ ¨ψαk
pukq ¨ x0

where uj is of the form pzj, tjq, j “ 1, . . . , k. Then Ψ is a parametrization of the Schubert
cell Sw in terms of the minimal decomposition for w P W.

Proof. As noted, this follows immediately from the previous discussion on the minimal
Schubert cells and we are able to write Sw as a product orbit given by Proposition 2.3.

Remark 2.4. Note that each ψαj
pujq is a n ˆ n matrix belonging to Upαq Ď U , the

compact real form of G.

2.4 Homology and the Main Theorem
The maximal flag manifold F of a complex semisimple Lie group G is a CW-

complex with cellular structure consisting of the Schubert cells. From Corollary 2.1,
each cell is even-dimensional. This implies the homology chain complex is zero on odd
dimensions and the corresponding homology is freely generated by the Schubert cells,
since each boundary map is null (HATCHER, 2002). The aim of this section is to prove
Theorem 2.2, which presents invariant volume forms for each Schubert cell and shows a
formula for when they are integrated over the corresponding cell. Later we generalize and
prove Theorem 2.3. A result of this kind was first proven in (BERNSTEIN; GEL’FAND;
GEL’FAND, 1973). In this chapter, we do it using somewhat simpler techniques exploiting
various geometrical properties of the Schubert cells and a lot of Lie theory. As a bonus, the
same techniques are used to prove Theorem 3.2, the quaternionic version of Theorem 2.2
(a non-complex flag).

Recall that for w “ rα (α P Σ), the tangent space of Sw at the origin is
canonically identified with the root space uα. It was shown that Sw is topologically
equivalent to a two-dimensional sphere. Theorem 1.2 asserts that the differential 2-form
αpΩq is invariant. Since its degree coincides with the real dimension of Sw (see the remark
after Corollary 2.1), it must be a volume form. This is the content of the following lemma.



2.4. HOMOLOGY AND THE MAIN THEOREM 35

Lemma 2.1. Let Sw be the Schubert cell associated to the simple reflection w “ rα. Then
αpΩq is an invariant volume form on Sw. Even more: if δ is the invariant metric on Sw

which induces the volume form αpΩq, then pSw, δq is a sphere with radius r “
a

αpHαq.

Proof. The differential form αpΩq is a Chern-Weil form, hence invariant; and its degree
equals the dimension of the cell Sw so αpΩq is a volume form if and only if it is non-zero
when evaluated at any base of TxwpSwq “ uα ¨ xw. An suitable basis is Bw “ tSα, Aαu (see
Corollary 2.1). Their Lie bracket is rAα, Sαs “ 2iHα P m, hence ΩxwpSα, Aαq “ iHα (this
is a consequence of Equation 1.3 in Example 1.6). By definition (see Equation 1.5),

αpΩqxwpSα, Aαq “ α pΩxwpSα, Aαqq “ αpHαq ‰ 0.

The imaginary unit was dropped, since m « im. So αpΩq is an invariant volume form on
Sw.

Now we prove the second part of the lemma. The local computation can be
done using the open cell Bw instead of its closure Sw. Recall from Proposition 2.5 that
Bw is diffeomorphic to B2

zBB2 which in turn can be mapped into an open cell of S2. One
such mapping is given by (see proof of Corollary 2.2)

f : Bw Ñ S2

ϕpeiθ, tq ¨ xw ÞÑ pcos t, cos θ sin t, sin θ sin tq
by letting pθ, tq P r0, 2πq ˆ p´π{2, π{2q. Here, the map ϕ is the same as in Equation 2.9.
Notice that the diffeomorphism r0, 2πq ˆ p´π{2, π{2q Ñ Bw composed with f provides a
local chart of S2.

There is an invariant metric, say δ, defined on Sw for which the corresponding
volume form is precisely αpΩq. Now, on the sphere S2, one has the Riemannian metric ϵ
induced by the Euclidean metric on R3. Let ν denote the (also invariant) volume form
on S2 induced by ϵ. Up to a sign, the metrics δ and ϵ have the same group of isometries,
i.e., SO3 « SU2{t˘Idu. This allows one to compare both metrics via the map f . There is
a constant c ą 0 such that αpΩq “ c f˚ν, where f˚ is the pullback of differential forms.
Then, to find the radius of Sw, one only need to find this constant c. In fact, for any
two-dimensional sphere of radius R, their surface area is given by the formula 4πR2. Let
Rδ denote the Chern-Weilian radius of Sw with respect to the metric delta, in contrast to
the Euclidean radius Rϵ “ 1 of S2 with volume = 4π. Then

4πR2
δ “

ż

Sw

αpΩq “ c

ż

S2
ν “ c p4πq (2.11)

leading to Rδ “
?
c.

The rest of the proof is dedicated to find the value of c. Let I “ r0, 2πq ˆ

p´π{2, π{2q and take two curves γA and γS on I such that

ϕ ˝ γAp0q ¨ xw “ ϕ ˝ γSp0q ¨ xw “ xw
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satisfying

d

dt

ˇ

ˇ

ˇ

ˇ

t“0
ϕ ˝ γAptq ¨ xw “ Aα and d

dt

ˇ

ˇ

ˇ

ˇ

t“0
ϕ ˝ γSptq ¨ xw “ Sα.

We choose γAptq “ pπ, tq and γSptq “ pπ{2, tq, so

ϕ ˝ γAptq “ etAα and ϕ ˝ γSptq “ etSα .

A simple computation shows that the corresponding curves in S2 satisfy

d

dt

ˇ

ˇ

ˇ

ˇ

t“0
f pϕ ˝ γAptq ¨ xwq “ ´e2 and d

dt

ˇ

ˇ

ˇ

ˇ

t“0
f pϕ ˝ γSptq ¨ xwq “ e3.

Therefore,

αpHαq “ αpΩqxwpSα, Aαq “ c pf˚νqxwpSα, Aαq “ c νpe3,´e2q “ c

so Rδ “
a

αpHαq.

Remark 2.5. An alternative way to calculate the radius of such cells is achieved by
noticing first that the curve aptq “ expptAαq ¨ x0 is a great circle in Sw and one loop is
taken when t runs throughout the interval r0, πs. Its perimeter is given by 2πr, so

2πr “

ż π

0
}a1

ptq}dt “ }Aα}π. (2.12)

The norm in the equation above is with respect to the metric δ on Sw which induces
the volume form αpΩq. Let φ : SU2 Ñ SO3 be the 2 to 1 homomorphism given by
φpgq ¨ v “ gvg´1, where g P SU2 « Sp1 (the unit quaternions) and v P R3

« ImH. The
map φ induces a well-defined isomorphism Φ : Sw Ñ S2

P R3, g ¨ x0 ÞÑ φpgq ¨ e1 where
e1 is the canonical vector of R3. A direct computation shows that dΦx0pAαq “ 2e2 and
dΦx0pSαq “ 2e3, both having Euclidean norm “ 2. If ϵ is the pullback by Φ of the Euclidean
metric, then ϵ is also invariant. Indeed, SO3 “ φpSU2q is composed of Euclidean isometries.
Again, there is a multiplying constant c “ αpHαq such that δ “ c ϵ. This leads to

}Aα} “ δpAα, Aαq
1
2 “

?
c ϵpAα, Aαq

1
2 “ 2

?
c.

By Equation 2.12, we have that r “
?
c.

Now we move on to the next step, which is to build an invariant volume form
associated to each Schubert cell, including those of larger dimensions.

Lemma 2.2. Let w “ rα1 ¨ ¨ ¨ rαk
be a minimal decomposition with respect to the simple

roots αj. Let Πw “ tβ1, . . . , βku where β1 “ α1 and βj “ rα1 ¨ ¨ ¨ rαj´1pαjq. Define

βw “ β1 ^ ¨ ¨ ¨ ^ βk. (2.13)

Then βwpΩq is an invariant volume form on Sw.
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Proof. The proof is by induction on the length of w. The case when lpwq “ 1 is part of
the statement of Lemma 2.1.

Let w1
“ rα1 ¨ ¨ ¨ rαk´1 and suppose βw1 “ pβ1 ¨ ¨ ¨ βk´1qpΩq is an invariant volume

form on Sw1 . Let π : Sw Ñ Sw1 be the sphere fibration associated to w (check Proposition
2.4). Recall that the tangent space of Sw at x0 is isomorphic to

ÿ

αPΠw

uα. This means that

the tangent space to the fiber π´1
px0q at x0 is the complement of Tx0Sw1 in Tx0Sw, i.e.,

Tx0

`

π´1
px0q

˘

« uβk
.

From the proof of Lemma 2.1, βkpΩq is an invariant volume form on the fibers « S2. By
equivariance, the pullback π˚

pβw1q is also invariant on Sw. Therefore, the wedge product

βwpΩq “ π˚
pβw1q ^ βkpΩq (2.14)

is a volume form for Sw, since it is a non-zero top form. The differential form βwpΩq is
also invariant, since it is a product of two invariant forms.

Remark 2.6. The volume form stated in Lemma 2.2 is slightly inaccurate. The precise
version is the one given in Equation 2.14. Let

wpjq
“ rα1 ¨ ¨ ¨ rαk´j

j “ 0, . . . , k ´ 1,

and πj “ πw
j be the canonical sphere fibration

πj : Swpj´1q Ñ Swpjq .

The invariant form on Equation 2.14 when fully expanded is given by

βwp0qpΩq “ βkpΩq ^ π˚
1 pβwp1qqpΩq

“ βkpΩq ^ π˚
1 pβk´1pΩqq ^ pπ2 ˝ π1q

˚
pβwp2qpΩqq (2.15)

...
“ βkpΩq ^ π˚

1 pβk´1pΩqq ^ ¨ ¨ ¨ ^ pπk´1 ˝ ¨ ¨ ¨ ˝ π1q
˚
pβ1pΩqq.

Notice that these differential forms commute without changing sign, since they are all of
even degree.

Theorem 2.2. Let F “ U{M be a complex flag manifold with Schubert cell decomposition
F “

ď

wPW
Sw. Let w “ rα1 ¨ ¨ ¨ rαk

be a minimal decomposition with respect to the simple

roots αj. Let Πw “ tβ1, . . . , βku where β1 “ α1 and βj “ rα1 ¨ ¨ ¨ rαj´1pαjq. Denote by Hβ

the element in m such that βpHq “ xH,Hβy with respect to the Cartan-Killing form. Then

β1pHβ1q ¨ ¨ ¨ βkpHβk
q “

1
p4πqk

ż

Sw

pβ1 ¨ ¨ ¨ βkqpΩq. (2.16)

This does not depend on the minimal decomposition of w.
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Proof. Let w1
“ rα1 ¨ ¨ ¨ rαk´1 and π : Sw Ñ Sw1 be the sphere fibration — here we are

following the notation as in the proof of Lemma 2.2. By Fubini’s theorem (see Theorem .1
in the appendix)

ż

Sw

βwpΩq “

ż

Sw1

ˆ
ż

π´1ptxuq

βkpΩq

˙

βw1pΩq. (2.17)

where the integral between parentheses is to be interpreted as a function on Sw1

x ÞÑ

ż

π´1ptxuq

βkpΩq. (2.18)

Because π is an equivariant fibration and the differential form is invariant, the function
described in Equation 2.18 is constant equals 4π βkpHβk

q — see the proof of Lemma 2.1.
So the right-hand side of Equation 2.17 becomes

4π βkpHβk
q

ż

Sw1

βw1pΩq. (2.19)

Notice the integral on Equation 2.19 is similar to the integral on the left-hand side of
Equation 2.17 so we can repeatedly apply Fubini’s theorem. This leads to

ż

Sw

βwpΩq “ p4πq
k β1pHβ1q ¨ ¨ ¨ βnpHβk

q.

This formula is independent of the chosen minimal decomposition, because Πw does not
depend on this choice. See Corollary 2.1.

A similar results holds when one deals with the quaternionic maximal flag
manifold instead—the one corresponding to the group SlnpHq. It is an analogue of what
happens to the complex flag of SlnpCq, essentially switching C by H in the proofs. See the
next chapter for more.

Surjectivity of the homomorphism

The Chern-Weil homomorphism r¨s is, in particular, a linear transformation
of InvpMq into H˚

pF;Rq, both seen as a vector space over R. The dual vector space of
H˚

pF;Rq is identified with the homology H˚pFq, which has Sw as a basis. The Schubert
cell Sw : H˚

pF;Rq Ñ R is defined as the linear functional

pSwqprf sq “

ż

Sw

f

where f is a closed differential form on F, therefore a representative of a class in H˚
pF;Rq.

Notice that Sw (as a manifold) has no boundary, so the integral of any exact form is zero
(by Stoke’s Theorem). This shows that the linear functional Sw is well-defined.
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The dual homomorphism r¨s
˚ is a linear transformation from the dual of

H˚
pF;Rq « H˚pFq into InvpMq

˚, the dual algebra of invariant polynomials. It is defined
by the equation

rSws
˚
pfq “

ż

Sw

fpΩq

Here fpΩq is a representative of rf s for some curvature Ω on U Ñ F. The Chern-Weil
homomorphism is surjective if the dual r¨s

˚ is injective. This is a general fact, but we
only prove here the direction we are going to make use of, all this exploring the fact that
H˚

pF;Rq is finite-dimensional.

Proposition 2.6. Let T : U Ñ V be a linear transformation of vector spaces where V is
finite dimensional. Let T ˚ : U˚

Ñ V ˚ denote the dual transformation. If T ˚ is injective,
then T is surjective.

Proof. The annihilator of a subset S Ď V is the vector subspace S0
Ď V ˚ defined by

S0
“ t f P V ˚

| fpsq “ 0 @ s P S u. If S0
“ t0u (the null-functional), then S “ V . In fact,

let SK be the orthogonal complement of S according to some inner product x¨, ¨y on V (since
V is finite dimensional). Take any s P SK. Then its dual s˚

P V ˚, defined by s˚
pvq “ xs, vy,

is an element of S0
“ t0u. Then s˚ is the null-functional on V ˚ and this can only be true

if s “ 0. To finish the proof, take S “ T pUq and notice that pT pUqq
0

“ kerT ˚
“ t0u by

hypothesis, so T pUq “ S “ V .

The rest of this section is dedicated to prove the surjectivity of r¨s by showing
that r¨s

˚ is injective. The first step is to generalize what is done in Theorem 2.2. Suppose
there is a general formula of the form

xf, fwy “
1
c

ż

Sw

f

where fw “ β1 ¨ ¨ ¨ βk is the polynomial given in Theorem 2.2, x¨, ¨y is a inner product on
InvpMq, c ‰ 0 is a normalization constant and f is any polinomial. In terms of dualization,
this formula is simply

rSws
˚
pfq “ c xf, fwy.

If such formula is true, then the kernel of r¨s
˚ must contain only the trivial Schubert

cell—the origin x0—so r¨s
˚ is injective.

The linear functionals λj generates the algebra InvpMq. This is so because M
is a cartesian product of circles S1 and the Lie algebra of S1 is unidimensional, meaning
that any non-zero linear functional on R does the job.6

6 See “The Invariant Polynomial Algebra” (sub)section in the next chapter for a clearer explanation.
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Lemma 2.3. Let α be a simple root and consider w “ rα P W. Take f P InvpMq of degree
1, that is, a linear functional on m. Then

ż

Sw

fpΩq “ 4π fpHαq.

Proof. This proof goes in the same spirit of Lemma 2.1. Let Sα and Aα form the basis for
uα « Tx0pSwq. Then

fpΩqx0pSα, Aαq “ fpHαq.

The 1{2 of Chern-Weil is canceled with the factor 2 of Equation 2.8. The rest follows by
integration over Sw exactly as is done in the proof of Lemma 2.1.

Theorem 2.3. Let w “ rα1 ¨ ¨ ¨ rαk
be a minimal decomposition with respect to the simple

roots αj. Let Πw “ tβ1, . . . , βku where β1 “ α1 and βj “ rα1 ¨ ¨ ¨ rαj´1pαjq. Denote by Hβ

the element in m such that βpHq “ xH,Hβy with respect to the Cartan-Killing form. Then
for any invariant polynomial f P InvpMq of degree k, one has

fpHβ1 , . . . , Hβk
q “

1
p4πqk

ż

Sw

fpΩq (2.20)

This does not depend on the minimal decomposition of w.

Proof. First we prove for f a monomial, that is, f can be written as a product

f “ λi1 ¨ ¨ ¨λik
.

To integrate fpΩq over Sw, we use Theorem .1 (Fubini), just as it was done in the proof of
Theorem 2.2, but with a minor twist by writting such integral as

ż

Sw

fpΩq “
1
k

k
ÿ

j“1

´

ż

Sw1

˜

ż

uβk

λjpΩq

¸

λ1 ¨ ¨ ¨ pλj ¨ ¨ ¨λkpΩq

¯

(2.21)

where w1
“ rα1 ¨ ¨ ¨ rαk´1 and pλj means that this factor is skipped. Equation 2.21 makes

sense, since the λjpΩq commutes between each other. Then all integrals in the summand
above are equal.

The innermost integral on Equation 2.21 is a constant function on the basis
Sw1 , but the notation needs some explanation. The domain of integration is set to uβk

to
mean that this integral is to be computed over the fibers of Sw Ñ Sw1 which has tangent
plane « uβk

. By Lemma 2.3, this integral if 4πλjpHβk
q. Now we apply induction on the

index k. Suppose Equation 2.20 is true for monomials of degree k ´ 1, then continuing the
expansion

ż

Sw

fpΩq “
4π
k

k
ÿ

j“1

´

λjpHβk
q

ż

Sw1

λ1 ¨ ¨ ¨ {λjpΩq ¨ ¨ ¨λkpΩq

¯

“
p4πqk

k

k
ÿ

j“1

´

λjpHβk
q ¨ λ1 ¨ ¨ ¨ {λjpΩq ¨ ¨ ¨λkpHβ1 , . . . ,yHβj

, . . . , Hβk
q

¯
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Notice that each λ˚ appears applied to each Hβ˚
, so that if you expand the definition

(Equation 1.4) of the product of the λi and carefully collect terms, you arrive at the first
equality below.

1
p4πqk

ż

Sw

fpΩq “
1
k!

ÿ

σ

λ1pHβσp1q
q ¨ ¨ ¨λkpHβσpkq

q

“ λ1 ¨ ¨ ¨λkpHβ1 , . . . , Hβk
q

“ fpHβ1 , . . . , Hβk
q.

Let g P InvpMq be any form of degree k. The λ˚ generates the invariant polynomial algebra,
so g can be written as a linear combination of monomials like f above. Since r¨s

˚ is linear,
Equation 2.20 follows. This does not depend on the chosen minimal decomposition of w,
since Πw does not, meaning that the β˚ that appears above are always the same.

Corollary 2.3. The homomorphism r¨s is surjective.

Proof. Suppose rSws
˚ is in the null-functional on InvpMq. Then, for any polynomial f

0 “ rSws
˚
pfq “

ż

Sw

fpΩq.

In light of Theorem 2.3, for every non-trivial Schubert cell Sw1 one can find a volume
form βw1pΩq so rSw1s

˚
pβw1pΩqq ‰ 0. Therefore, Sw is the trivial cell x0. This shows that the

homomorphism r¨s
˚ is injective. By Proposition 2.6, the homomorphism r¨s is surjective.
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3 Quaternionic Flag Manifolds

The techniques presented in chapter 2 have the advantage that they can also
be applied to the quaternionic flag manifolds, since in this case the homology is non-trivial
only in the dimensions multiples of 4. The analogue of the main theorem in last chapter
is now Theorem 3.2. Even though there are many similarities in the complex case, it is
where they differ that makes them so interesting and worth it.

We start with section 3.1 which contains the definition of a quaternionic flag.
Most of what was done in chapter 2 can be applied here and most of the proofs can be
copier almost-verbatim, only swapping C for H, 2 for 4 here and there and so on. In those
cases, the proofs is skipped. When it is not, the differences are only highlighted. I believe
this will make the reading lighter.

In section 3.2, we go deeper on the action of the Weyl group both on the
homology and cohomology; and also on the invariant polynomial algebra. The aim of this
section is to give the kernel of the Chern-Weil homomorphism in the quaternionic case,
which I believe is new stuff. This is a known result in the complex case (BERNSTEIN;
GEL’FAND; GEL’FAND, 1973).

Now in section 3.3, we show how to represent the Chern-Weil forms rκs in
terms of volume forms on each rootspace. Chronologically speaking, this was our first
result on the matter. We explore some ideas involving various projections of the maximal
flag into smaller ones, clarifying the graded algebra nature of the cohomology of F in light
of the Leray-Hirsch theorem (put in the appendix).

Lastly, in section 3.4, we provide an application of the Chern-Weil classes rκs

by looking at them as an obstruction to the existence of certain frames on F. This goes in
the direction of what was done in Conegundes’ PhD thesis (CONEGUNDES, 2019), but
here we apply it to the quaternionic maximal flag using the tools developed so far.

3.1 Quaternionic Flags
Start with the quaternionic Lie algebra. It is defined as

slnpHq “ tX P MatnpHq : pRepTrqqpXq “ 0 u .

This algebra has Cartan decomposition

slnpHq “ u ‘ s

where s is the set of Hermitian matrices in slnpHq and

u “ spn “
␣

X P MatnpHq : X ` X̄˚
“ 0

(



3.1. QUATERNIONIC FLAGS 43

is the set of anti-Hermitian matrices (X˚ is the conjugate transpose). A maximal abelian
subalgebra in s is

a “

#

diagpa1, . . . , anq P slnpHq : ar P R,
ÿ

r

ar “ 0
+

.

A root system is given by the linear functionals αrs : a Ñ R defined by

αrspHq “ ar ´ as, 1 ď r, s ď n

and our choice of simple root set is

Σ “ tα12, . . . , αn´1;nu.

Therefore, the root spaces of pslnpHq, aq are the sets gαrs consisting of matrices having
zero entries in every position, except (possibly) in the pr, sq-entry — the quaternionic
analogues of slnpRq and slnpCq.

Let n “ n` be the sum of all positive root spaces. The Iwasawa decomposition
reads as

slnpHq “ u ‘ a ‘ n

and a choice of minimal parabolic algebra is given by

p “ m ‘ a ‘ n

where m “ sp1 ‘ ¨ ¨ ¨ ‘ sp1 is the diagonal part of u.

Before we turn the discussion to the group level, let Φ : MatnpHq Ñ Mat2npCq

be the injective algebra homomorphism defined by the rule

ΦpA ` jBq “

«

A ´B̄

B Ā

ff

where A,B P MatnpCq. Then our choice of Lie group corresponding to slnpHq is given by
exponentiation. Explicitly,

SlnpHq “ t g P MatnpHq : detpΦpgqq “ 1 u . (3.1)

The compact part is

U “ Spn “ t g P MatnpHq : gg˚
“ g˚g “ Id u

where g˚ is the conjugate transpose of g. For the rest of the Lie groups, let M “ expm

and the same for A and N , so the minimal parabolic subgroup is B “ MAN . Notice that
M “ Sp1 ˆ ¨ ¨ ¨ ˆ Sp1 (n times) is not abelian — unlike the complex and real cases. Also
notice that sp1 is the set of purely imaginary quaternions with exp sp1 “ Sp1, the set of
unit quaternions isomorphic to the sphere S3.
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Remark 3.1. In Equation 3.1, the necessity of applying Φ comes from the fact that for a
quaternionic matrix, the usual determinant is not well-defined. This is a consequence of
the non-commutativity of the quaternion algebra H.

Definition 3.1. The quaternionic maximal flag manifold is given by

F “ G{B

where G “ SlnpHq and B is the minimal parabolic subgroup.

Remark 3.2. The associated principal bundle G Ñ F is reducible to U Ñ F with
structural group M , allowing one to write the compact version of the previous definition,
i.e.,

F “ U{M.

The Schubert cell decomposition is indexed by the Weyl group, which in this
case is the same as the permutation group of the sequence p1, . . . , nq. They’re denoted
by Sw, where w P W . The only difference between this case and the complex case is that
now the Schubert cells Sw are 4k-dimensional, where k “ lpwq. For instance, the lowest
dimensional orbit is actually derived from the Hopf fibration S3 ãÝÑ S7

Ñ S4, while in the
complex case we obtain it (in essence) from the classical fibration S1 ãÝÑ S3

Ñ S2. Every
result in the Schubert cells section applies here with clear and easy adaptions.

The Invariant Polynomial Algebra

In the following, we present the generators of the algebra InvpSp1q and InvpMq.
Let Ad denote the adjoint representation of Sp1

Ad : Sp1 Ñ Glpsp1q given by AdpgqpXq “ gXg´1;

and denote by κp¨, ¨q the Cartan-Killing form of sp1 which is isomorphic to the imaginary
part of H. Up to a multiplicative constant, κ is the only Ad-invariant symmetric bilinear
form on sp1, so InvpSp1q is generated by κ. This is case n “ 1 in Theorem 2.8 of Chapter
12 in (KOBAYASHI; NOMIZU, 1996).

Now, consider m “ sp1 ‘ ¨ ¨ ¨ ‘ sp1 and denote by κs the Cartan-Killing form on
the s-th entry of m. Because M “ Sp1 ˆ ¨ ¨ ¨ ˆ Sp1 is a product group, the algebra InvpMq

is then generated by the set tκ1, . . . , κnu, i.e., each form in InvpMq is a linear combination
of monomials of type

κm1
1 ¨ ¨ ¨κmn

n , m1, . . . ,ms ě 0.

Although there are some differences, the bilinear forms κs plays the same role as
the roots αj do in the complex case: they are the polynomials used to construct invariant
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volume forms on the Schubert cells. See the next section to check some applications
exclusive to quaternionic case.

Now, the rest of this section is devoted to make similar constructions as done
in chapter 2. We provide explicit invariant forms rκs on each of the Schubert cells with
useful properties. Comparing the complex and quaternionic, the rκs play a similar role
as the rαs, but the proofs involves permutations of length 4, leading into slightly more
complex argumentation. See the proof below.

Lemma 3.1. Let F “ Sp2{pSp1 ˆ Sp1q be the maximal flag of sl2pHq. There is only one
positive root α “ α12 and W “ t˘Idu, therefore Sw “ F. Let κ1 and κ2 be the generators
of InvpSp1 ˆ Sp1q. Choose any connection form with curvature Ω. Then κ1pΩq and κ2pΩq

are both invariant volume forms on Sw.

Proof. Let κ “ κ1. Unlike the complex case, it is not immediate that κpΩq is a volume
form. Again, one only needs to provide a basis for Tx0F « uα “ u X pgα ‘ g´αq such that
κpΩq evaluated on that basis in non-zero. Let p P H. A general element in uα is given by
the matrix

Ap “

«

0 p

´p̄ 0

ff

.

Then, for quaternions p and q, one has

rAp, Aqs “

«

´pq̄ ` qp̄ 0
0 ´p̄q ` q̄p

ff

“ p´2q

«

Imppq̄q 0
0 Impp̄qq

ff

.

A real basis for uα is given by tA1, Ai, Aj, Aku. We wish to compute κpΩq at
this basis, but due to combinatoric aspect in the definition of the Chern-Weil form, in
order to simplify, rename its elements as

X1 “ A1, X2 “ Ai, X3 “ Aj and X4 “ Ak.

Now, at the origin x0 one has

κpΩqx0pX1,X2, X3, X4q

“
1
4!
ÿ

σ

ϵσκ
`

Ωx0pXσp1q, Xσp2qq,Ωx0pXσp3q, Xσp4qq
˘

.

Notice that

κ
`

Ωx0pXσp1q,Xσp2qq,Ωx0pXσp3q, Xσp4qq
˘

“ ϵσκ
`

Ωx0pX1, X2q,Ωx0pX3, X4q
˘

for all σ P Γ, the group generated by the permutations tp12q, p34q, p13qp24qu
1. This group

has 8 elements, and therefore has 3 (right) lateral classes represented by Γ, Γp13q and
1 This is so because of the symmetry and anti-symmetry of κ and Ω, respectively.
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Γp14q. Let τ P tId, p13q, p14qu. Then,
ÿ

σPΓτ

ϵσκ
`

Ωx0pXσp1q, Xσp2qq,Ωx0pXσp3q, Xσp4qq
˘

“ 8ϵτκ
`

Ωx0pXτp1q, Xτp2qq,Ωx0pXτp3q, Xτp4qq
˘

.

Therefore

κpΩqx0pX1, X2, X3, X4q

“
1
4!

˜

8κ
´

Ωx0pX1, X2q,Ωx0pX3, X4q

¯

` 8ϵp13qκ
´

Ωx0pX3, X2q,Ωx0pX1, X4q

¯

` 8ϵp14qκ
´

Ωx0pX4, X2q,Ωx0pX3, X1q

¯

¸

.

(3.2)

Remember, the cannonical connection has curvature given by the projection of the bracket
onto the Lie algebra of the isotropy (see Example 1.6). Let

Err “ diagp0, . . . , 1, . . . , 0q

with 1 on the r-th diagonal entry. Then each combination of ΩpAp, Aqq for p, q P t1, i, j, ku

is computed below.

ΩpA1, Aiq “ 2iE11 ´ 2iE22

ΩpAj, Akq “ 2iE11 ` 2iE22

ΩpAj, Aiq “ ´2kE11 ´ 2kE22

ΩpA1, Akq “ 2kE11 ´ 2kE22

ΩpAk, Aiq “ 2jE11 ` 2jE22

ΩpAj, A1q “ ´2jE11 ` 2jE22

(3.3)

Therefore

κ
`

Ωx0pX1, X2q,Ωx0pX3, X4q
˘

“ 4
κ
`

pΩx0pX3, X2q,Ωx0pX1, X4q
˘

“ ´4
κ
`

pΩx0pX4, X2q,Ωx0pX3, X1q
˘

“ ´4

(3.4)

and by direct substitution in Equation 3.2, we have

κpΩqx0pX1, X2, X3, X4q “
8
4!p4 ` 4 ` 4q “ 4 ‰ 0. (3.5)

Since κpΩq is a differential form of degree 4 on a basic cell Sw which has 4 dimensions,
κpΩq “ κ1pΩq must be a volume form. An analogous computation shows that

κ2pΩqx0pX1, X2, X3, X4q “ ´4 ‰ 0.
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The reason for the change in sign is that κ2 is the inner product on the second diagonal
entry (of opposite sign). In fact, when p “ 1 and q “ i, j, k, we actually have

Imppq̄q “ ´Impp̄qq.

Thus each one of Equation 3.4 changes in sign.

Remark 3.3. Let ν “ dx1 ^ dx2 ^ dx3 ^ dx4, where xj are the coordinates with respect
to the base of uα consisting of the Xj above. Then

κ1pΩqx0 “ 4 ν “ ´κ2pΩqx0 .

The next step is to look at the lowest dimensional non-trivial Schubert cells
inside a flag of slnpHq.

Theorem 3.1. Let F be the maximal flag of slnpHq (n ě 2). Let Sw Ď F be the Schubert
cell associated to the simple reflection w “ rαs. Then κspΩq and κs`1pΩq are both invariant
volume forms on Sw.

Proof. Let α “ αs “ λs ´ λs`1 be a simple root and rα be the associated simple reflection.
By definition,

Sw “ Upαq ¨ x0

where Upαq is the connected subgroup of U “ Spn with Lie algebra

upαq “ mpαq ‘ uα

where mpαq “ sp1 ‘ sp1 is the sum of terms corresponding to the s-th and ps ` 1q-th
entries of m “ sp1 ‘ ¨ ¨ ¨ ‘ sp1. The Lie algebra upαq is isomorphic to sp2. Also, at the
group level, we have Upαq « Sp2. Therefore, all the computations done in the proof of the
Lemma 3.1 apply. In other words, if we let tX1, X2, X3, X4u be the corresponding basis
for Tx0pSwq « uα, then

κspΩqpX1, X2, X3, X4q “ 4

and
κs`1pΩqpX1, X2, X3, X4q “ ´4.

Parametrization of the Schubert cells

To compute the volumes of the minimal Schubert cells —or equivalently, their
radii2— one must first describe an adequate parametrization of Sp2. The essence of this
2 This is an immediate consequence of known formulas for the volumepRq of even-dimensional spheres of

radius R.
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parametrization is analogous to the complex case, but we make a few notes anyway. In
Proposition 2.5, we defined a map ϕ by restricting the exponential map to the image of
the closed ball in the Lie algebra u. In the quaternionic case, the same technique holds,
changing the unit complex z P S1 by a unitary quaternion p P S3

Ă H. Such quaternion
can be written as exponential eq where q P ImpHq, so q plays the same role as iθ in z “ eiθ.
Even more is true: one can write

eq
“ cosp|q|q `

q

|q|
sinp|q|q.

The next proposition is the quaternionic analogue of Proposition 2.5. Here B4

is the closed ball in H identified with S3
ˆ r0, π{2s where S3

ˆ t0u is taken into the center.

Proposition 3.1. There is a parametrization ψ : B4
Ñ Sp2 such that

1. The center of B4 is taken into rα, i.e., ψpS3
ˆ t0uq “ r where r is a representative

of rα in Sp2.

2. The boundary BB4, namely S3
ˆ tπ{2u, is taken into M , so

ψpBB4
q ¨ x0 “ x0.

3. The mapping B4
zBB4

Ñ Bw, pz, tq ÞÑ ψpz, tq ¨ x0 is a diffeomorphism.

Explicitly, the quaternionic version of the mapping is

ϕpp, tq “

«

cos t ´p̄ sin t
p sin t cos t

ff

and ψ “ rαϕ.

Now, let xw “ wx0 be the origin of the Bruhat cell Bw “ N ¨ xw. Let

f : Bw Ñ S4
Ă R5

ϕpeq, tq ¨ xw ÞÑ pcos t, eq sin tq

Here pq, tq P A ˆ r´π{2, π{2s where A Ă Im « R3 is a region around 0 just big
enough to have eA

“ S3. Let q be fixed and consider the curve γqptq “ pcos t, eq sin tq (the
exponential is taken here to ensure that γqptq belongs to S4). Then γ1

qp0q “ p0, eq
q, so by

letting q P t0, i, j, ku, the corresponding curves are such that their tangent vector forms a
basis given by the canonical vector te2, e3, e4, e5u.

Let ν to be the Euclidean volume form, which is invariant since SU2 « SO3 up
to a sign. By similar arguments, there is a constant c ą 0 such that κ1pΩq “ cf˚ ν. By
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evaluation of such forms on the basis, on one hand by Equation 3.5, we have that c “ 4.
Therefore, the volume of Sw “ S4 is

ż

Sw

κpΩq “ 4
ż

S4
ν “ 4 volpS4

q. (3.6)

where the volume volpS4
q of an Euclidean sphere of unitary radius is 8π2

{3.

Now we generalize the construction of invariant volume forms for larger Schu-
bert cells and compute their volume arriving at an (quaternionic) analogue version of
Theorem 2.2.

Theorem 3.2. Let F be a quaternionic flag manifold with Schubert cell decomposition
F “

ď

wPW
Sw. Let w “ rα1 ¨ ¨ ¨ rαs be a minimal decomposition with respect to the simple

roots. Define
κw “ κ1 ^ ¨ ¨ ¨ ^ κs P Inv2s

pMq.

Then κwpΩq is an invariant volume form on Sw and
ż

Sw

κwpΩq “ pvolpS4
qq

s.

Proof. Let w1
“ rα1 ¨ ¨ ¨ rαs´1 and π : Sw Ñ Sw1 be the sphere fibration. By Fubini’s theorem

ż

Sw

κwpΩq “

ż

Sw1

ˆ
ż

π´1ptxuq

κspΩq

˙

κw1pΩq. (3.7)

where the integral between parentheses is to be interpreted as a function on Sw1

x ÞÑ

ż

π´1ptxuq

κspΩq. (3.8)

Because π is an equivariant fibration and the differential form is invariant, the function
described in Equation 2.18 is constant, say c1. The fiber on which this integral is evaluated
is homeomorphic to a sphere S4, so we repeat the arguments of equation Equation 3.6 to see
that c1 is simply the volume of S4 according to the volume form κs, that is, c1

“ 4 volpS4
q.

So the right-hand side of Equation 3.7 becomes

4 volpS4
q

ż

Sw1

κw1pΩq. (3.9)

Notice the integral on Equation 3.9 is similar to the integral on the left-hand side of
Equation 3.7 so we can repeatedly apply Fubini’s theorem. This leads to

ż

Sw

κwpΩq “ p4 volpS4
qq

s.
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Surjectivity of the homomorphism

The rest of this section is dovoted to prove that the Chern-Weil homomorphism,
in the quaternionic case, is also surjective. The techniques involved are analogous to those
used in the proof of Corollary 2.3. In later sections, we recover the same result using a
very different path, but still as a consequence of the Chern-Weil classes.

Let f P InvpMq be a symmetric form of degree 2. There are real constants cr

such that f “
ÿ

r

crκr. Let Ω be the cannonical choice of curvature on the principal bundle

U Ñ F. Since fpΩq is an invariant differential form, to integrate it over a cell Sw with
w “ rα (α P Σ), one needs only to check its value at a basis of Tx0pSwq. With this idea in
mind, in the next paragraphs we generalize the computations for κ at the origin extending
those formulas for any f of degree 2. For that, let α “ αrs be any root of slnpHq. Let
p P H. A general element in uαrs « H is written as Ap “ pErr ´ p̄Ess, so A1, Ai, Aj and
Ak together form a basis for uα. Just as we did in Equation 3.2, one also has at the origin
x0 that

fpΩqx0pA1, Ai, Aj, Akq

“
1
4!

˜

8f
´

Ωx0pA1, Aiq,Ωx0pAj, Akq

¯

` 8ϵp13qf
´

Ωx0pAj, Aiq,Ωx0pA1, Akq

¯

` 8ϵp14qf
´

Ωx0pAk, Aiq,Ωx0pAj, A1q

¯

¸

.

(3.10)

For any rootspace uα with α “ αrs, Equation 3.3 generalizes to Equation 3.11.

ΩpA1, Aiq “ 2iErr ´ 2iEss

ΩpAj, Akq “ 2iErr ` 2iEss

ΩpAj, Aiq “ ´2kErr ´ 2kEss

ΩpA1, Akq “ 2kErr ´ 2kEss

ΩpAk, Aiq “ 2jErr ` 2jEss

ΩpAj, A1q “ ´2jErr ` 2jEss.

(3.11)

Remember that each κr is an inner product on the r-th entry of m; also κr does not mix
the diagonal entries, that is, if s ‰ r then κrppEss, Xq “ 0 for all p P H and all X P m.
Because f “

ÿ

r

crκr, the same is true for f . So, using Equation 3.11 and this observation,
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the first term on the right-hand side of Equation 3.10 is

f
`

Ωx0pA1, Aiq,Ωx0pAj, Akq
˘

“ fp2iErr ´ 2iEss, 2iErr ` 2iEssq

“ 4
`

fpiErr, iErrq ´ fpiEss, iEssq
˘

“ 4
`

crκrpiErr, iErrq ´ csκspiEss, iEssq
˘

.

Each κr is an Euclidean inner product on the r-th diagonal entry of m, so

crκrpiErr, iErrq ´ csκspiEss, iEssq “ cr ´ cs.

The computation of the other permutations is analogous. In short,

f
`

Ωx0pA1, Aiq,Ωx0pAj, Akq
˘

“ 4pcr ´ csq,

f
`

pΩx0pAj, Aiq,Ωx0pA1, Akq
˘

“ ´4pcr ´ csq,

f
`

Ωx0pAk, Aiq,Ωx0pAj, A1q
˘

“ ´4pcr ´ csq.

Finally, substitute those in Equation 3.10 to obtain

fpΩqx0pA1, Ai, Aj, Akq “ 4pcr ´ csq. (3.12)

In an attempt to do the analogous computations in the context of Theorem 2.3, it is
desired to rewrite Equation 3.12 in terms of the symmetric bilinear form f . In order to do
that, first define an inner product x¨, ¨y on InvpMq. This algebra is generated by tκru

n
r“1, so

it is non-trivial only in the even-dimensional gradings Inv2rpMq. On the first grading, for
instance, define the inner product by xκr, κsy “ δs

r (the “zero or one”-delta). The second
grading, as a vector space, has basis tκrκs : 1 ď r ď s ď n u, so define

xκrκs , κuκvy “

$

&

%

1, pr, sq “ pu, vq;

0, otherwise.

I believe it is clear how to define it for higher gradings. Note that by this definition, the
gradings Inv2rpMq are orthogonal. Then, by letting Ω “ p1{2qr¨, ¨s (so the constant ‘4’ is
canceled), Equation 3.12 is rewritten as

fpΩqx0pA1, Ai, Aj, Akq “ xf, κr ´ κsy. (3.13)

Notation 3.1. Consider the following notation for the rest of this section:

• For α “ λr ´ λs, let κα “ κr ´ κs;

• Let xf, καy “ fpκαq;
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• For f and g of degrees r and s, respectively, define

fgpκ1, . . . , κr`sq

“
1

pr ` sq!
ÿ

σ

fpκσp1q, . . . , κσprqqgpκσpr`1q, . . . , κσpr`sqq.
(3.14)

The next lemma is straightforward.

Lemma 3.2. Let w “ rα be a simple reflection, i.e., α P Σ. Let f P Inv2pMq be written
as f “

ÿ

r

crκr. Then

1
volpS4q

ż

Sw

fpΩq “ fpκαq. (3.15)

Proof. The Chern-Weil class is invariant and we are integrating it over a Schubert cell that
is a 4-dimensional sphere. We follow the idea explored in Lemma 2.1, which is to compare
the differential form fpΩq to the Euclidean volume form on S4. From the calculations done
in the mentioned lemma, the constant factor is precisely fpΩqx0pA1, Ai, Aj, Akq “ fpκαq,
so

ż

Sw

fpΩq “ fpκαq

ż

S4
ν “ volpS4

qfpκαq

where ν is the Euclidean volume form and volpS4
q is the Euclidean volume of S4.

Theorem 3.3. Let F be a quaternionic flag manifold with Schubert cell decomposition
F “

ď

wPW
Sw. Let w “ rα1 ¨ ¨ ¨ rαs be a minimal decomposition with respect to the simple

roots. Let Πw “ tβ1, . . . , βsu and let f P InvpMq of degree 2s. Then
ˆ

1
volpS4q

˙s ż

Sw

fpΩq “ fpκβ1 , . . . , κβsq. (3.16)

Sketch of proof. We only do a sketch here, because it is essentially the same computation
done in the proof of Theorem 2.3. The difficult part, perhaps, is already done in Lemma 3.2.
For instance, if f is an invariant polynomial of degree 4, then it can be written as

f “

n
ÿ

i1,i2“1
ai1i2κi1κi2

with the symmetric coefficients. Let w “ rα1rα2 and w1
“ rα1 , so Πw “ tβ1, β2u and

Πw1 “ tβ1u. Then
ż

Sw

fpΩq “

n
ÿ

i1i2“1
ai1,i2

ż

Sw

κi1κi2pΩq. (3.17)

Now, for one term, we have
ż

Sw

κ1κ2pΩq “
1
2

´

ż

Sw1

κ1pΩq

¯´

ż

uβ2

κ2pΩq

¯

`
1
2

´

ż

Sw1

κ2pΩq

¯´

ż

uβ2

κ1pΩq

¯

“
`

volpS4
q
˘2
ˆ

κ1pκβ1qκ2pκβ2q ` κ2pκβ1qκ1pκβ2q

2

˙

“
`

volpS4
q
˘2
κ1κ2pκβ1 , κβ2q.
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Substitute this in Equation 3.17 and use Equation 3.14 to get
ż

Sw

fpΩq “
`

volpS4
q
˘2
fpκβ1 , κβ2q.

The computation for a polynomial f of arbitrary degree follows very closely what was
done in the proof of Theorem 2.3.

So we obtain the same result as we did at the end of chapter 2. We skip the
proof, since it is analogous to the complex case.

Corollary 3.1. The homomorphism r¨s is surjective.

3.2 Representations of the Weyl group
In this section, two representations of the Weyl group W of slnpHq are explored

in order to determine the kernel of the Chern-Weil homomorphism. The spaces of such
representations are the domain and codomain of the Chern-Weil homomorphism r¨s :
InvpMq Ñ H˚

pF;Rq. Both of them are related to the regular representation of W .

The Weyl group of slnpHq is the quotient W “ NormU paq{M where

NormU paq “ t g P U : Adpgqpaq Ă a u

is the normalizer and a is a maximal abelian subalgebra in s. This subgroup coincides
with NormU pMq. Because M (and a) are both sets of diagonal matrices, the group W is
identified with the permutation matrix group — just as it happens for slnpRq and slnpCq.

Let F “ U{M be the quaternionic maximal flag manifold. The Weyl group acts
on F from the right by RwpxMq “ xMw̄ “ xw̄M where w̄ P NormU pMq is a representative
for w P W . From now on, whenever there is no risk of confusion, we use the same symbol
w for both. Notice that each Rw is a homeomorphism of F and Rw has fixed points if and
only if w “ 1, in which case every point is fixed.

The right action of W on F induces a representation of W into the cohomo-
logy ring H˚

pF;Rq given by R˚
w. Notice that the left action by U induces the trivial

representation on H˚
pF;Rq, since U is connected — each homeomorphism Lg is homotopic

to the identity.

The Lefschetz fixed point theorem asserts that if a homeomorphism ϕ of a
topological space has no fixed point, then its Lefschetz number Lpϕq is zero. The Lefschetz
number is defined as

Lpϕq “
ÿ

lě0
p´1q

l trlpϕ
˚
q

where trl is the trace of ϕ˚ on the l-th cohomology H l
pF;Rq.
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Proposition 3.2. The representation of W in H˚
pF;Rq is equivalent to the regular (right)

representation.

Proof. The cohomology H l
pFq is non-trivial if and only if l is even. Therefore,

LpRwq “
ÿ

lě0
p´1q

l trlpR
˚
wq “

ÿ

lě0
trlpR

˚
wq.

The last sum is the character χpwq of the representation of W in H˚
pF;Rq. If w ‰ 1, then

LpRwq “ 0. On the other hand,

χp1q “ trpIdq “ dimH˚
pF;Rq “ |W |.

The last equation follows from the fact that the elements of W are in bijection with the
Schubert cells and those forms a basis for the homology. Therefore

χpwq “

$

&

%

0 if w ‰ 1

|W | “ dimH˚
pF;Rq if w “ 1.

This is precisely the character of the regular representation, so they are equivalent.

The Weyl group also represents itself in the space InvpMq, i.e., in the space
generated by the monomials

κm1
1 ¨ ¨ ¨κmn

n , m1, . . . ,ms ě 0

by permutation of the indices on each monomial and extending it linearly. Each w P W
corresponds to a permutation, so

w ¨ pκm1
1 ¨ ¨ ¨κmn

n q “ κm1
wp1q

¨ ¨ ¨κmn

wpnq
.

In what follows, we will verify that r¨s : InvpMq Ñ H˚
pF;Rq is equivariant by

the actions of W on InvpMq and H˚
pF;Rq. First we prove a lemma.

Lemma 3.3. Let ω and Ω be the connection and curvature forms on U Ñ U{M . If
w̄ P NormU pMq, then R˚

w̄ω “ Adpw̄´1
qω and R˚

w̄Ω “ Adpw̄´1
qΩ.

Proof. The Lie algebras of M and NormU pMq are both equal to m with complement
c “

ÿ

αą0
uα. Not only for U Ñ U{M , the complement c also defines a connection and

curvature on the principal bundle U Ñ U{NormU pMq which are equal to the one defined
on U Ñ U{M . The statement in the lemma follows, since such equalities R˚

gω “ Adpg´1
qω

and R˚
gΩ “ Adpg´1

qΩ are valid in every principal fiber bundle (see (KOBAYASHI;
NOMIZU, 1963), proposition 1.1 of section 1, chapter II; and section 5 of chapter II). In
particular, it is true for w̄ P NormU pMq.
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Proposition 3.3. Let f P InvpMq. Take w̄ P NormU pMq to be a representative of w P W.
Then rw ¨ f s “ R˚

w̄rf s. In other words, r¨s : InvpMq Ñ H˚
pF;Rq is equivariant by the

actions of W.

Proof. Choose ω any curvature form on U and let Ω be the corresponding curvature form.
By definition of pullback

R˚
w̄pfpΩqqpX1, . . . , X2kq “ fpΩqppRw̄q˚X1, . . . , pRw̄q˚X2kq. (3.18)

By Equation 1.5, the right-hand side of Equation 3.18 is the σ-alternating sum of

fpΩ ppRw̄q˚X1, pRw̄q˚X2q , . . . ,Ω ppRw̄q˚X2k´1, pRw̄q˚X2kqq

which equals to

f
`

Adpw̄´1
qΩpX1, X2q, . . . ,Adpw̄´1

qΩpX2k´1, X2kq
˘

“ pwfqpΩpX1, X2q, . . . ,ΩpX2k´1, X2kqq. (3.19)

This equation follows because Adpw̄q acts as permutation of the entries in the diagonal
matrix ΩpXr, Xsq. The σ-alternating sum of the right-hand side of Equation 3.19 is
wfpΩqpX1, . . . , X2kq. Notice this is all done at the level of the principal space U . One still
needs to project it down to H˚

pF;Rq. This follows from the fact that Rw ˝ π “ π ˝ Rw̄,
where π : U Ñ U{M . If we denote the projected form by f̄pΩq, then π˚

pf̄pΩqq “ fpΩq.

Corollary 3.2. Let I denote the ideal of InvpMq generated by the W-invariant forms.
Then I Ď kerr¨s.

Proof. Let f P InvkpMq, k ą 0, and suppose that f is W-invariant. The subspace of
Hk

pF;Rq generated by the form rf s is also invariant, since r¨s is equivariant. The represen-
tation of W in H˚

pF;Rq is equivalent to the regular representation by Proposition 3.2. The
regular representation has only one-dimensional invariant subspace, that is, if V “ V pWq is
the freely generated vector space with basis W , then the unique invariant one-dimensional
subspace is the one generated by the element v “

ÿ

wPW
w (to see this, remember that W

is the group of all permutations in n elements!). On H˚
pF;Rq, the only W-invariant one-

dimensional subspace is then H0, so the subspace generated by rf s is not one-dimensional,
that is, rf s “ 0. Because r¨s is a ring homomorphism, it follows that the ideal I is also
inside kerr¨s.

The representation of the Weyl group in the quotient space InvpMq{ kerr¨s is
also equivalent to the regular representation3, just as the representation on H˚

pF;Rq. Since
the W-actions are equivariant with respect to r¨s : InvpMq Ñ H˚

pF;Rq, we must have
that I is the whole kernel.
3 Chevalley’s Theorem. See section 3.6 in (HUMPHREYS, 1990)
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Corollary 3.3. The ideal generated by the W-invariant polynomials is the kernel of the
Chern-Weil homomorphism, that is, kerr¨s “ I.

Remark 3.4. The Schubert cells provide a basis for the homology of F and its dual
is a basis for the cohomology H˚

pF;Rq. Since the representation spaces H˚
pF;Rq and

InvpMq{ kerr¨s are isomorphic, such dual basis provides a natural basis for the invariant
polynomial algebra (excluding the kernel).

3.3 Cohomology of the Flag
The computations done in the proof of Lemma 3.1 can be generalized to matrices

of slnpHq. Let α “ αrs “ λr ´ λs. Let Ers denote the n ˆ n matrix consisting of 1 in the
pr, sq-entry and zero everywhere else. Then a basis for uα is given by tAα

1 , A
α
i , A

α
j , A

α
k u,

where
Aα

p “ pErs ´ p̄Esr, p P H.

The bracket behaves in a similar fashion. For p, q P H,

rAα
p , A

α
q s “ p´2q

´

Imppq̄qErr ` Impp̄qqEss

¯

. (3.20)

So, for 1 ď t ď n, one might have many roots α “ αrs such that

κt

´

rAα
1 , A

α
i s, rAα

j , A
α
k s

¯

‰ 0. (3.21)

Example 3.1. Let F be the maximal flag of sl3pHq. The rootspaces are those uβ with
β P tα12, α23, α13u. Because ruα, uβs Ă uα˘β (whichever sign provides a root), Ωpuα, uβq “ 0
(remember that Ωx0 is projection onto m). Therefore, the only chance of having κtpΩqx0 ‰ 0
is if its entries belongs all to a single rootspace. To find out which rootspaces are these,
simply take a closer look at Equation 3.21: the brackets must have non-zero coefficient at
Ett, so the roots αrs for which the restriction of κt is non-zero are

tαrs P Π : r “ l or s “ l u .

The computations done previously reveals that

κtpΩq

´

Aαrs
1 , Aαrs

i , Aαrs
j , Aαrs

k

¯

“ ˘4,

being positive if t “ r or negative if t “ s (see Equation 3.20).

We summarize the above discussion in the following proposition.

Theorem 3.4. Let F “ U{M be a maximal flag of slnpHq, where U “ Spn and M “

Sp1 ˆ ¨ ¨ ¨ ˆ Sp1 with corresponding linear algebras u and m. For α “ αrs P Π, let uα be the
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corresponding rootspace and να “ νrs the volume form in uα given by the coordinates with
tangent vectors tAα

1 , A
α
i , A

α
j , A

α
k u. Then for 1 ď t ď n and α “ αrs,

κtpΩqx0pAα
1 , A

α
i , A

α
j , A

α
k q “

$

’

’

’

&

’

’

’

%

0 r ‰ t ‰ s

´4 r “ t ă s

4 r ă t “ s

.

With respect to the volume forms να,

κtpΩqx0 “ ´4
´

ν1;t ` ¨ ¨ ¨ ` νt´1;t

¯

` 4
´

νt;t`1 ` ¨ ¨ ¨ ` νt;n

¯

(3.22)

The following matrix indicates the coefficient on each volume form νrs that appears in the
composition of κtpΩqx0.

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

p1, 1q ´4
. . . ...

. . . ´4
pt, tq `4 ¨ ¨ ¨ `4

. . .
. . .

pn, nq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.23)

Remark 3.5. The volume forms να need a little bit of explanation. They are first defined
at a root space uα, as stated in the theorem. Then it is easily extended to the whole
tangent space at the origin, since uα Ă Tx0pFq. The volume form να is invariant by
M “ Sp1 ˆ ¨ ¨ ¨ ˆ Sp1, so left translation to other points of F “ U{M is well-defined. This
translation does not alter volume or changes orientation, since for m P M , detm “ 1 and
M is connected.

There is a natural pairing between homology and closed differential forms:
to each cohomology class rf s, there corresponds a homomorphism on the chains of F
defined by the integral of f over said chain. Consider the set t Sα : α P Σ u. As we have
seen, this set is a basis of H4pFq due to the homology being non-trivial only in even
dimensions. Theorem 3.4 can be used to find the dual basis in H4

pF;Rq. In fact, let
αr “ λr ´ λr`1 denote the simple roots (for now) and see rκs as an element in the dual
pH4pFqq

˚
« H4

pF;Rq (De Rham’s Theorem). By Theorem 3.4, the restriction of rκrs is
a volume form with a certain orientation or it is null, all depending on Equation 3.22.
Therefore, one sees immediately that rκ1spSαj

q is ‰ 0 if and only if j “ 1. By the same
reasoning, rκ1 ` κ2spSαj

q is ‰ 0 if and only if j “ 2 and so on. This proves the proposition
below.
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Proposition 3.4. Up to a normalization constant, the set

trκ1s, rκ1 ` κ2s, . . . , rκ1 ` ¨ ¨ ¨ ` κn´1su

is the dual basis of t Sα : α P Σ u Ă H4pFq.

Let Σ “ tα1, . . . , αlu be a system of simple roots of type Al. The associated
maximal flag of slnpHq is denoted by F (n “ l ` 1). Consider the subsets Θ “ Σztα1u

and Θ1 “ Σztα1, αlu. Their associated flag manifolds are FΘ “ HP n´1, the quaternionic
projective space, and FΘ1 , the set of all quaternionic flags of signature pV1, Vn´1q.

To each of these flag manifolds, there is a natural principal bundle with total
space U “ Spn. Their respective structural groups are denoted by MΘ and MΘ1 , and their
Lie algebras will be following the same notational pattern. Explicitly, those structure
groups are subgroups of Spn consisting of block diagonal matrices

MΘ “ Sp1 ˆ Spn´1 and MΘ1 “ Sp1 ˆ Spn´2 ˆ Sp1. (3.24)

Let κ1 P InvpmΘq be the symmetric 2-form which is the inner product on the
first factor of mΘ and zero on the others. Naturally, κ1 is also a symmetric form on mΘ1

by restriction of its domain. Because MΘ1 Ď MΘ, this restricted form, still denoted by κ1,
belongs to InvpmΘ1q. In general, there is the inclusion InvpmΘq Ď InvpmΘ1q.

Lemma 3.4. Let π : FΘ1 Ñ FΘ be the canonical projection. Choose the canonical
connection forms on each flag manifold and denote by ΩΘ and ΩΘ1 the associated curvatures.
Let κ1 be the symmetric form associated to the first factor of both MΘ and MΘ1. Then

κ1pΩΘ1q “ π˚κ1pΩΘq. (3.25)

Proof. Take arbitrary horizontal vectors X1, . . . , X4 on the tangent space T pSpnq with
respect to the chosen connection in Spn Ñ FΘ. Let X 1

r P T pFΘ1q be a vector field such
that π˚

pX 1
rq “ Xr. By definition,

π˚κ1pΩΘqpX 1
1, . . . , X

1
4q “ κ1pΩΘqpX1, . . . , X4q.

The right-hand side of the above equation is defined as the σ-alternating sum of

κ1pΩΘpX1, X2q,ΩΘpX3, X4qq “ κ1

´

rX1, X2smΘ , rX3, X4smΘ

¯

.

Since κ1 is the inner product on the (first) factor 1 of both mΘ and mΘ1 , the brackets in
the last equation are only counted for their E11 component. Therefore, projection onto
mΘ1 or mΘ are interchangeable, because we will be applying κ1 right after. So

κ1

´

rX1, X2smΘ , rX3, X4smΘ

¯

“ κ1

´

rX1, X2smΘ1
, rX3, X4smΘ1

¯

.
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On the other hand, κ1pΩΘ1qpX 1
1, . . . , X

1
4q is the σ-alternating sum of

κ1pΩΘ1pX 1
1, X

1
2q,ΩΘ1pX 1

3, X
1
4qq “ κ1

´

rX 1
1, X

1
2smΘ1

, rX 1
3, X

1
4smΘ1

¯

.

Now, the only way to have κ1

´

rX 1
1, X

1
2smΘ1

, rX 1
3, X

1
4smΘ1

¯

‰ 0 is if each X 1
r P uβ, where

β “ λ1 ´ λt, for any t ą 1 (the projection onto mθ1 of a bracket involving any other X 1

will null first coordinate). In this case,

rX 1
r, X

1
ssmΘ1

“ rXr, XssmΘ1
.

This shows that κ1pΩΘ1q and π˚κ1pΩΘq have the same non-zero σ-alternating sum.

Example 3.2. We now use the projections of the maximal flag onto the smaller partial
flags presented above to compute the homology of the maximal flag of sl3pHq. In fact, let
Σ “ tα1, α2u and define Θ “ Σztα2u “ tα1u. The maximal flag is the set of all sequences
pV1, V2q of nested quaternionic subspaces of H3, then FΘ is the set

␣

V2 Ă H3 : E1 Ă V2
(

(remember Example 2.1). Here E1 is the quaternionic line generated by the canonical
vector e1 P H3. Let π : F Ñ FΘ denote the projection pV1, V2q ÞÑ V2. Then the fiber over
E2 « H2 is the set of all V1 inside E2, that is, the fiber is the quaternionic projective line
HP 1. Notice that FΘ is also diffeomorphic to HP 1, since all V2 contains the line E1. Then
again, in essence an application of Theorem .2, one has that tκdpΩq, κ3pΩqu (d “ 1 or 2)
generates H˚

pF;Rq.

Let F be the fiber of the principal bundle FΘ1 Ñ FΘ, which consists of all
subspaces Vn´1 containing a fixed V1. Then F is diffeomorphic to the set of flags of type
Vn´2 inside Hn´1. If we write Σ1

“ tα2, . . . , αlu, then F “ FΘ1 where Θ1
“ Σ1

ztαlu. It is
known that this flag is isomorphic to the projective space HP n´2, so its cohomology has a
single generator—see (HATCHER, 2002) or (BAKER, 1999).

Lemma 3.5. Let Θ1 “ Σztα1, αlu. Then for n ą 2, the cohomology H˚
pFΘ1 ;Rq is

generated by the characteristic classes in tκ˚
1pΩΘ1q, κ˚

npΩΘ1qu.

Proof. The formula for κrpΩq on Theorem 3.4 allows us to obtain a similar formula
specifically for κ1pΩΘ1q and κnpΩΘ1q, since they are the same at both smaller and maximal
flag. Therefore

κnpΩΘ1q “ ´ν1;n ´ ν2;n ´ ¨ ¨ ¨ ´ νn´1;n (at the origin).

Let ι : FΘ1 ãÝÑ FΘ1 denote the inclusion. In terms of the tangent plane at the origin—which
is a sum of rootspaces— the inclusion ι is visually represented below for the case n “ 5.
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FΘ1 FΘ1

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

»

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ι
ãÝÑ

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚

»

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The rootspaces in tangent plane are represented by the stars with white background, the
complement is the Lie algebra of the isotropy.

Because the pullback ι˚ is simply a restriction, one has

ι˚κnpΩΘ1q “ ´ν2;n ´ ¨ ¨ ¨ ´ νn´1;n.

The form ι˚κ˚
npΩΘ1q is non-zero, because it is the sum of volume forms on the roots

spaces (and one cannot mix those). Therefore, it is a generator of H˚
pF ;Rq and the

Leray-Hirsch condition is met. By Theorem .2, the cohomology of FΘ1 is generated by
tπ˚κ1pΩΘq, κnpΩΘ1qu. In light of Lemma 3.4, this set equals

tκ1pΩΘ1q, κnpΩΘ1qu.

Remark 3.6. The dimension of the fiber is lesser than the dimension of the total space,
so the smallest k such that κ˚

npΩΘq
k

“ 0 is greater than the smallest l such ι˚κ˚
npΩΘq

l
“ 0.

Our aim is to show that the set of all κpΩq forms a set of generators of the
cohomology H˚

pF;Rq. The idea is to reduce the maximal flag by removing the first and
last roots by letting Θ “ Σztα1, αlu (we call this the “comendo pelas beirada”-technique ).
The projection F Ñ FΘ is a bundle with fiber diffeomorphic to the smaller maximal flag of
sln´2pHq. By the Leray-Hirsch argument, the H˚

pF;Rq is generated by generating sets for
H˚

pFq and H˚
pFΘq —the latter being given by Lemma 3.5. This process is illustrated in

Example 3.3.

Notation 3.2 (Temporary notation). Fn
Θ stands for the flag manifold of slnpHq.

Example 3.3. Let Σ “ tα1, α2, α3u. Consider Θ1 “ Σztα1, α3u “ tα2u. Then we have the
fibration F2 ãÝÑ F4

Ñ FΘ1 .
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F2 F4 FΘ1

˚ ˚

˚ ˚

»

–

fi

fl

ι
ãÝÑ

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

»

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

»

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

By Lemma 3.5, H˚
pFΘ1 ;Rq is generated by tκ1pΩq, κ4pΩqu and by Lemma 3.1, H˚

pF2;Rq

is generated by either ι˚κ2pΩq or ι˚κ3pΩq, as indicated by the matrix representation of
the fibration above. The Leray-Hirsch condition is met, then H˚

pF4;Rq is generated by
tκ1pΩq, κdpΩq, κ4pΩqu, d “ 2 or 3.

The case n “ 5 is slightly different from the case n “ 4 above, since the fibers in
this case is diffeomorphic to the maximal flag F3. Its cohomology is covered in Example 3.2.
So, a generating set for F5 is tκ1pΩq, κdpΩq, κ4pΩq, κ5pΩqu.

Remark 3.7. We will choose the smallest d from now on.

Theorem 3.5. Let Fn denote the maximal flag manifold of slnpHq. Choose tκ1, . . . , κnu to
be the standard set of generators of InvpMq. For any curvature 2-form Ω, H˚

pFn;Rq has

tκ1pΩq, κ2pΩq, . . . , κnpΩquztκm`1pΩqu (3.26)

as a set of generators, where m is such that either n “ 2m or n “ 2m ` 1.

Proof of Theorem 3.5. The proof is done via (reversed) induction on n which depends on
its parity, so regard n as equals to 2m or 2m` 1. Let Fn be the maximal flag of slnpHq.
Let Σ “ tα1, . . . , αlu (l “ n ´ 1) be the associated system of simple roots and define

Θk “ Σztα1, α2, . . . , αk, αl´k, . . . , αl´1, αlu, 0 ď k ď m ´ 1.

So Θm´1 has either one root in it (n “ 2m) or two roots left (n “ 2m ` 1). There is a
natural projection π : Fn

Ñ FΘ1 whose fibers are diffeomorphic to a smaller maximal flag
manifold Fn´2. This induces a fibration

Fn´2 ãÝÑ Fn
Ñ FΘ1 . (3.27)

Suppose the fibration in (3.27) satisfies the Leray-Hirsch condition. Then

H˚
pFn;Rq “ H˚

pFn´2;Rq b H˚
pFn

Θ1 ;Rq. (3.28)
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The flag manifold Fn´2 can be seen as the flag associated to the root system tα2, . . . , αl´1u “

Θ1 (“comendo pelas beiradas”) which is of type A. Therefore, by repeating the process, its
cohomology is

H˚
pFn´2;Rq “ H˚

pFn´4;Rq b H˚
pFn´2

Θ2 ;Rq. (3.29)

Substitute Equation 3.29 in Equation 3.28 to arrive at

H˚
pFn;Rq “ H˚

pFn´4;Rq b H˚
pFn´2

Θ2 ;Rq b H˚
pFn

Θ1 ;Rq.

Continue all the way down to the smallest non-trivial flag Fn´2pm´1q (i.e. F2 or F3) to
obtain

H˚
pFn;Rq “ H˚

pFn´2pm´1q;Rq b H˚
pFn´2pm´2q

Θm´1 ;Rq b ¨ ¨ ¨H˚
pFn

Θ1 ;Rq. (3.30)

Each factor in Equation 3.30 of the form H˚
pFn´2pr´1q

Θr
;Rq has tκrpΩq, κn´r`1pΩqu as

generating set, by Lemma 3.5. Collecting all closed forms, one has
ď

1ďrďm´1
tκrpΩq, κn´r`1pΩqu.

As for the cohomology of the remaining factor Fd, d “ 2, 3, we have that a generating
set is either tκmpΩqu or tκmpΩq, κm`2pΩqu. In any case, putting everything together, we
arrive at

tκ1pΩq, κ2pΩq, . . . , κnpΩquztκm`1pΩqu

as the desired generating set for H˚
pF;Rq.

Remark 3.8. The “left out” rκm`1s on equation Equation 3.26 might as well be included
in the set of generators, since it can be written as a linear combination of the others. In
fact,

rκ1pΩq ` κ2pΩq ` ¨ ¨ ¨ ` κnpΩqs “ 0

since it invariant by the Weyl group, so κm`1pΩq is the negative sum of the others.

The above theorem, together with Proposition 3.4, guarantees that the image
of the Chern-Weil homomorphism contains the dual basis given by the Schubert cellular
structure of F.

Corollary 3.4. The Chern-Weil homomorphism r¨s : InvpMq Ñ H˚
pF;Rq is surjective.

Proof. By Proposition 3.4, the Chern-Weil class rκrs is in the dual basis of Schubert cells.
The same rκrs is also in the generating set of the algebra H˚

pF;Rq, by Theorem 3.5.
So each closed differential form f P H˚

pF;Rq can be written as sum of products of the
rκrs.

Remark 3.9. The (reversed) induction on n in the proof of Theorem 3.5 is due to the
Leray-Hirsch, which we know can be applied only retroactively starting from Fd.

Remark 3.10. Putting together Corollary 3.3 and Corollary 3.4, we arrive at a complete
description of H˚

pF;Rq in terms of the invariant polynomial algebra.



3.4. QUATERNIONIC STRUCTURES 63

3.4 Quaternionic Structures
The aim of this section is to present a nice application of the Chern-Weil classes

description given by Equation 3.22 to show that on the maximal flag manifold F, no
G-invariant quaternionic structure (explained below) will be hypercomplex.

Let M be a smooth manifold of real dimension 4n. The set of all linear
isomorphisms p : R4n

Ñ TxM (x P M) forms the principal bundle FrpTMq, called the
frame bundle, with structure group Gl4npRq. Another important bundle is EndpTMq, the
endomorphism vector bundle, where each fiber EndxpTMq over x P M is the set of all
endomorphisms of TxM .

A quaternionic structure on M is a subbundle Q Ď EndpTMq where each fiber
is isomorphic to the quaternion algebra H. Locally, there is a pair of anti-commuting
complex structures pI, Jq defined on an open set of M induced by the quaternions i and j.

Let Hn
« R4n be the canonical right H-vector space. For each q P H, define the

transformation (denoted by the same symbol)

qpvq “ vq, v P Hn

and let Sp1 be the subset of those transformations corresponding to unitary quaternions.
The group

GlnpHq “ t g P Gl4npRq : gq “ qg @ q P H u

is the centralizer of H (seen as transformations of Hn) in Gl4npRq and it represents the set
of all H-linear transformations of Hn.

Associated to a quaternionic structure Q, there is a principal subbundle P Ď

FrpTMq with structure group

Sp1GlnpHq “ t qg : q P Sp1 and g P GlnpHq u

whose fiber Px over x P M is

Px “
␣

p P FrMx : pqp´1
P QxM @q P H

(

.

Conversely, given a Sp1GlnpHq-bundle P there corresponds a quaternionic structure Q
with fibers given by

QxM “ pHp´1

where p is any element of Px. Thus we will also call the principal bundle P a quaternionic
structure.

When the base manifold is homogeneous, i.e., M “ G{H, then G acts naturally
on M by the map g : x ÞÑ gx and the differential (also denoted by g) induces a left action
on EndpTMq by composition.
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We will say that a quaternionic structure Q is G-invariant if

gQxg
´1

“ Qgx

for arbitrary x and g. In terms of the principal bundle P , this is the same as having
gpPxq Ď Pgx with g being composed on the left.

Given a general bundle E Ñ M with fiber F , one often asks whether E is
trivial or not, i.e., if there is a bundle isomorphism E « M ˆ F . One way to tackle this
question is to look for the characteristic classes of E. As we have seen, for a vector bundle,
its characteristic classes are generated by the Chern-Weil classes. See Chapter 12, Section
3 (or 4) of (KOBAYASHI; NOMIZU, 1996).

Let Q Ď EndpTMq be a quaternionic structure on M . If Q is trivial, that is,
Q « M ˆ H, then there is a pair of anti-commuting complex structures pI, Jq globally
defined. We call this a hypercomplex structure on M .

Take P to be the Sp1GlnpHq-principal bundle associated to a quaternionic
structure Q. If Q is trivial, then the structure group of P is reducible to GlnpHq. In fact,
let

Rx “ t p P Px : pq “ qp @q P H u

where on the right-hand side we are identifying q and px, qq P Qx. Then R “
ď

xPM

Rx is a

GlnpHq-subbundle of P . For any a P GlnpHq and v P Hn

papvqq “ ppapvqqq “ pppavqqq “ pppavqqq “ ppapvqqq

which shows that pa P Rx and for p and r in the same fiber, define a “ p´1r which is an
element of GlnpHq such that pa “ r.

On the other hand, given a GlnpHq-reduction R of FrpTMq, one arrives at a
natural pair pI, Jq of sections for FrpTMq: define Igx0 “ gI0g

´1 and similarly for J . This
discussion is summarized in the next proposition.

Proposition 3.5. A quaternionic structure P on M is hypercomplex if and only the
structure group Sp1GlnpHq is reducible to the subgroup GlnpHq.

From now on, the base manifold considered is homogeneous (M “ G{H) and
every quaternionic structure on it will be G-invariant.

Let x0 be the origin of M , i.e., the class corresponding to the coset eH. The
isotropy representation is given by

ρ : H Ñ GlpTx0Mq.

Proposition 3.6. If ρ is injective, then G immerses itself as a subbundle of P with
structure group ρpHq Ď Sp1GlnpHq.
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Proof. Let β0 P Px0 . Then the orbit Gβ0 « G{Gβ0 . Since P is G-invariant, Gβ0 Ď H.
Moreover, hβ0 “ β0 if, and only if, h acts as the identity. Since ρ is injective, we must
have h “ e (neutral element). Therefore Gβ0 « G.

Example 3.4. Let M “ G{H “ Sp2{Sp1 ˆ Sp1. This is the maximal flag manifold of
sl2pHq. The tangent space at the origin is identified with the quaternion algebra H. The
isotropy representation is the adjoint representation given by

Ad : Sp1 ˆ Sp1 Ñ GlpHq with Adpp, qqv “ qvp̄.

Denote by H1 the first Sp1-factor of H. Then H1 is a normal subgroup of H
and induces a quaternionic structure Q0 on Tx0M (as a vector space) by the pair

Ix0 “ Adpi, 1q and Jx0 “ Adpj, 1q.

Since H1 is normal in H, let
Qgx0 “ gQ0g

´1.

This is well-defined and induces a G-invariant quaternionic structure on M . Notice that
we could define another quaternionic structure on M by taking the second factor of H.

Remark 3.11. In the example above, the isotropy representation is not injective, since
both ˘h P Sp1 ˆ Sp1 have the same effect on H. However, this is not a problem since the
Lie algebras of both G and G{t˘ Idu are equal resulting in no changes in the Chern-Weil
classes.

Now we give the relationship between the various characteristic classes defined
so far. A general result from the theory of principal bundles is given below. This is
Proposition 1.1, but restated with the adapted notation.

Proposition 3.7. The structure group G of P is reducible to a closed subgroup H if and
only if the associated bundle E “ P ˆG G{H admits a cross section.

In our case, the groups being G “ Sp1GlnpHq and H “ GlnpHq, the associated
bundle E is identified with P {H which in turn is a Sp1-principal bundle over M (this is
not true in general). So the existence of a cross section mentioned in the proposition is
equivalent to P {H being trivial.

The aim of this section is to relate the various Chern-Weil classes appearing in
the principal bundles G, P and E. See Diagram 1 for a visual reference.

Let f0 P InvpSp1q. Denote by f P InvpSp1 ‘GlnpHqq the trivial extension and by
f 1

P InvpρpHqq the restriction of f . Here the representation is seen as ρ : h Ñ sp1 ‘ glnpHq.
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P

G

��

H

��

G

??

H

$$

E « P {H

Sp1yy
M

Diagram 1

Consider G as a subbundle of P
with structure group ρpHq « H. Choose
a connection ω1 on G with curvature Ω1.
Let ω be a curvature on P which extends
ω1 and Ω its curvature form. Then for any
f P InvpSp1 ‘ GlnpHqq, the restriction of
fpΩq to G is equal to f 1

pΩ1
q, therefore their

projection on M are also the same, that is,

rfpΩqs “ rf 1
pΩ1

qs P H˚
pM ;Rq. (3.31)

Now, let ω be a connection in P and p : sp1 ‘ glnpHq Ñ sp1 the projection so
that the 1-form p ˝ ω takes values in sp1.

Proposition 3.8. The 1-form p ˝ ω projects to a (unique) differential 1-form ω0 on E,
i.e., if π0 : P Ñ E, then π˚

0 pω0q “ p ˝ ω.

Proof. We have to show that p ˝ ω is vertical and right-invariant by GlnpHq.

We need to consider only the fundamental vector fields A˚ in P where A P

glnpHq Ď sp1 ‘ glnpHq. Notice that the verticality mentioned here is with respect to
the principal bundle P Ñ E. One of the defining properties of a connection states that
ωpA˚

q “ A. Then p ˝ ωpA˚
q “ ppAq “ 0.

For the right-invariance, let a P GlnpHq. Then

R˚
app ˝ ωq “ p ˝ pR˚

aωq “ p ˝ Adpa´1
q ¨ ω.

Notice that p ˝ Ad “ p for a P GlnpHq. Thus p ˝ Adpa´1
q ¨ ω “ p ˝ ω.

Proposition 3.9. The 1-form ω0 is a connection on E Ñ M . Moreover, the associated
curvature Ω0 satisfies π˚

0 pΩ0q “ p ˝ Ω.

Proof. Let A˚ be a fundamental vector field for A P sp1. The inclusion sp1 ãÑ sp1 ‘glnpHq

allows us to take the horizontal lift in P to also be the field A˚. Thus

ω0pA˚
q “ p ˝ ωpA˚

q “ ppAq “ A.

For the second defining property of a connection, let a P Sp1. Then for any
field X on E, we have

R˚
aω0pXq “ ω0pRaXq “ p ˝ ωpĆRaXq,

where X̃ is the horizontal lift of the vector X.
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Notice that π0 ˝Ra “ Ra ˝ π0 for any a P Sp1. Then ĆRaX “ Ra
rX and we have

p ˝ ωpRa
rXq “ p ˝ Adpa´1

q ¨ ω rX.

For a P Sp1, Adpaq commutes with p, so R˚
aω0 “ Adpa´1

q ¨ ω0. This is the second defining
property of a connection.

To prove the equation regarding the curvature forms, simply take the covariant
differential on both sides of the equation p ˝ ω “ π˚

0 pω0q.

Corollary 3.5. Let f0 P InvpSp1q and f P InvpSp1 ˆ GlnpHqq the trivial extension. Then

f0pΩ0q “ fpΩq in M. (3.32)

Proof. For a vector field X on M , denote its horizontal lift to P by rX, i.e., if π : P Ñ M ,
then dπp rXq “ X. Notice that dπ0p rXq is a lift of X to E, because the diagram mentioned
earlier is commutative. Denote temporarily by fpΩq

˚ the projection on M of the differential
form fpΩq on P . So one has

f0pΩ0q
˚
pX1, . . . , X2kq “ f0pΩ0qpdπ rX1, . . . , dπ rX2kq

“ f0pπ˚
0 Ω0qp rX1, . . . , rX2kq

“ f0pp ˝ Ωqp rX1, . . . , rX2kq,

where on the last equality we used Proposition 3.9. Now, by construction, the form f is zero
on glnpHq, therefore f “ f0 ˝ p (composition being entry-wise). Then f0pp ˝ Ωq “ fpΩq.

Remark 3.12. The Chern-Weil forms f0pΩ0q
˚ are defined using only P , i.e., without any

mention to the bundle E.

Combining Equation 3.31 and Equation 3.32, we arrive at

f 1
pΩ1

q
˚

“ f0pΩ0q
˚. (3.33)

By Equation 3.33, if any form f 1
pΩ1

q ‰ 0, then E won’t be trivial. By Proposition 3.7, the
structure group Sp1GlnpHq is not reducible to GlnpHq and by Proposition 3.5, the given
quaternionic structure is not hypercomplex. Thus the Chern-Weil forms of G constitutes
an obstruction for to the given quaternionic structure to be hypercomplex.

We finally arrive at the last step, that is, when M “ F the maximal flag
manifold of slnpHq, that is, G “ Spn and H “ Sp1 ˆ ¨ ¨ ¨ ˆ Sp1 (n-times). Throughout the
section, we denote by Hk the k-th factor of the group H. The subgroup Hk is normal
in H for k “ 1, . . . , n. We are going to choose tκ1, . . . , κnu as a set of generators of the
cohomology H˚

pF;Rq.
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Example 3.5 (continuation from Example 3.4). Consider the quaternionic structure
determined by H1 in F “ Sp2{Sp1 ˆ Sp1. Let κ0 P InvSp1 be our preferred choice of
generator. Following the notation of the previous section, the form κ1

P Invpρphqq is
actually our κ1 which is non-zero. Therefore, by the discussion in the previous subsection,
the quaternionic structure determined by H1 (or H2 for that matter) is not hypercomplex.

Our aim in this section is to show, inspired by this example, that every G-
invariant quaternionic structure Q on F is not trivial, i.e., hypercomplex.

Remark 3.13. The discussion so far begs the question: is every G-invariant quaternionic
structure on F determined by a factor Hl for some l P t1, . . . , nu? We do not know
yet, but this is intimately related on how the isotropy H intersects the structure group
Sp1 Ď Sp1GlnpHq. The answer is probably in this intersection.

In general, for κ0 P InvpSp1q, there exists real numbers al (l “ 1, . . . , n) such
that

κ1
“ a1κ1 ` ¨ ¨ ¨ ` anκn.

Notice that κl is zero when evaluated outside hl « ρphlq. Therefore, the restriction of κ1 to
any hl is exactly alκl. Now, by looking at the dimension of the Lie algebras and keeping in
mind that ρ is injective, we conclude that there is exactly one index, say l, such that the
intersection between ρphlq and the factor sp1 Ď sp1 ‘ glnpHq is non-zero. The coefficient al

is non-zero by construction (κ0 ‰ 0). Thus we must have κ1
“ alκl and the corresponding

Chern-Weil class must be ‰ 0. This proves the final theorem below.

Theorem 3.6. Any G-invariant quaternionic structure on the maximal flag of slnpHq is
not hypercomplex.

In section 4 of the Appendix, there are two charts: one visually represents how
one goes back and forth from the principal bundle P to the vector bundle Q (fiber-wise)
and the other is an attempt to summarize the various extensions and restrictions done
using the several curvature forms and polynomials.
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4 Final Comments

The paper (BERNSTEIN; GEL’FAND; GEL’FAND, 1973) has inspiring results:
the integration formula for general spaces G{P and the representations of the Weyl group.
What goes in the essence of their work is how they see the Bruhat/Schubert cells by
immerging the whole flag inside a big enough projective space, so they see F as a projective
variety.1 For them, the Schubert cells appears as intersection between G{P and some
projective planes. Another aspect that differs from what was explored in here is the use of
the operator Aγ . We have interpreted it as a derivative operator with respect to some root
seen as a variable. For w P W of greatest length, Sw is the whole space, so in this case is
easy to find a Chern-Weil class which is in the dual basis for the Schubert cells. Then,
with this volume form as starting point, they descend to the lower dimensional Schubert
cells, finding the Chern-Weil classes recursively with the aid of the operator Aγ.

So what did we do differently?

Inspired by those, we proved the same integration formula in the case of a
maximal flag manifold. Not only for complex ones (Theorem 2.2), but also for quaternionic
flags (Theorem 3.2). We believe the techniques developed so far sheds even more light on
the subject by arriving at the same results while using a different approach, a different
way of expressing mathematics. Considering F as a reductive homogeneous space on which
W acts, while also carefully choosing generators of the invariant polynomial algebra, we
have set ourselves directly at the heart of the beast, that is, a closed differential form of
maximum degree that is not based on the minimal decomposition of the corresponding
Weyl group element. From there, we climbed down the sphere-fibrations like a mountaineer
does with its ropes: one step at a time, checking carefully each nail and knot. From top to
bottom; and there lied the soul of said beast: the minimal dimensional (but non-trivial)
cell, which is also the most beautiful: a round two-dimensional sphere of radius the size of
a root! And there, dear reader, we can integrate just as our calculus teacher taught us.
Isn’t that beautiful?

The last paragraph is the part that inspired me the most, but there is more: we
have also managed to recover other results, such as the surjectivity and the kernel of the
Chern-Weil homomorphism, and see the Weyl group action on cohomology as the regular
representation. And a few more and minor things here and there.

1 In the Appendix section 4, we show how to do it for GrkpCnq. For the whole flag one needs to take in
consideration tensorial representations.
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Expectation from the future and the elephant in the room.

In terms of results and statements, not everything is new. But the path taken
to get there was our own and, during the walk, new stones were collected. Stones with
different shapes that could spark new ideas.

Now we address said elephant. A beast crazier than a maximal flag is the partial
flag manifold. The way things were done in the quaternionic maximal flag, we relied heavily
on the way the tangent plane and the rootspaces are put together. Precisely speaking,
we have seen how the curvature form is basically projection of the Lie bracket onto the
Lie algebra of the isotropy group. A few computations were greatly simplified by the
simple fact that ruα, uβs Ă uα˘β, so Ω is annihilated when the entries comes from different
rootspaces. This does not happen in the partial flag manifold, because the isotropy is larger
and the rootspace uα˘β can be included there, i.e., Ω won’t be necessarily annihilated
anymore. Even more, the invariant polynomial algebra gets more complicated the larger
the isotropy group. The κr does not suffice, because we know, in theory, the generators
Spn for n ě 2. But not all is lost, since one can naturally embed the partial Schubert cells
inside the maximal flag manifold and pullback the Chern-Weil classes using this inclusion.
This seems to be the natural next step.

Another direction one could follow is to look at the other real algebras, since
the only one we took care of was slnpHq. Also, something that can be done is to try and
find similar formulas for each of the complex semisimple Lie algebras in the spirit of the
one in Theorem 3.4, using instead of the rκs, a more suitable choose of functionals. For
instance, in the case of slnpCq, such choice is given by the linear functionals λj : h Ñ C.
Beware: applying Chern-Weil is not always possible. For instance, in the case of slnpRq,
the isotropy is discrete, so one cannot use Chern-Weil, since those have null curvature.
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The Quaternion Algebra
The quaternion algebra, denoted by H, is the algebra generated by the pair

ti, ju satisfying the relations ij “ ´ji and i2 “ ´1 “ j2. As a real vector space, H is
identified with R4 by setting t1, i, j, ku as the canonical orthonormal basis, where k “ ij.

A generic element q in H is represented as a sum

q “ a ` ib ` jc ` kd where a, b, c, d P R.

Another useful representation of H arises when we write q “ pa ` biq ` jpc ´ diq which is
a “j-sum” of complex numbers, inducing the identification H « C ‘ jC.

Similar to the complex numbers, we denote by q̄ the conjugate of a quaternion.
In terms of the representation, the conjugate is defined by q̄ “ a ´ bi ´ cj ´ dk. Also
}q}2

“ qq̄ “ q̄q, where } ¨ } is the Euclidean norm in R4.

Going further, we denote by Hn the (right) vector space with quaternions acting
as scalars. Most of basic linear algebra results are also valid here. A fundamental difference
occurs when one considers H-linear transformations (the linearity on the right, of course).
Let φ be a H-linear transform of Hn. Then its matrix representation actually multiplies
the corresponding column vector on the left.

The space Hn is identified with R4n via the morphism which takes

pa1 ` ib1 ` jc1 ` kd1, . . . , an ` ibn ` jcn ` kdnq P Hn

into
pa1, b1, c1, d1, . . . , an, bn, cn, dnq P R4n.

Notice that multiplication by i and j are real linear transformations, then by considering
the previous identification, they induce the block-diagonal matrices I4n “ diagpI, . . . , Iq

and J4n “ diagpJ, . . . , Jq acting on the left where

I “

»

—

—

—

—

–

0 ´1 0 0
1 0 0 0
0 0 0 ´1
0 0 1 0

fi

ffi

ffi

ffi

ffi

fl

J “

»

—

—

—

—

–

0 0 ´1 0
0 0 0 1
1 0 0 0
0 ´1 0 0

fi

ffi

ffi

ffi

ffi

fl

A quaternionic subspace then is a vector subspace that is invariant by H-
multiplication on the right. The canonical basis β “ te1, . . . , enu is the one where er “

p0, . . . , 1r, . . . , 0q P Hn.

A quaternionic maximal flag in Hn is a sequence of nested quaternionic subspaces
of the form

t0u Ď V1 Ď ¨ ¨ ¨ Ď Vn´1 Ď Hn
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where Vr has real dimension 4r. The set of all such flags is called the maximal flag manifold
and is denoted by F.

The canonical maximal flag, usually denoted by x0 is the flag

t0u Ď E1 Ď ¨ ¨ ¨ Ď En´1 Ď Hn

where Er “ SpanHte1, . . . , eru.
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Vector Spaces over C and H
In this text Hn and C2n are seen as right vector spaces (or modules, if you will).

This discussion serves to show that we can interchange between the matrix representations
of slnpHq when seen as quaternionic matrices or inside the set of complex matrices.

Let φ be the homomorphism between Hn and C2n given by

Hn
Q q “ z ` jw “

»

—

—

–

z1 ` jw1
...

zn ` jwn

fi

ffi

ffi

fl

ÞÑ

»

—

—

—

—

—

—

—

—

—

—

–

z1
...
zn

w1
...
wn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

«

z

w

ff

P C2n.

The last equation is notational. Let Φ be the homomorphism between glnpHq and gl2npCq

given by

X “ A ` jB ÞÑ

«

A ´B̄

B Ā

ff

.

Proposition .1. φpXqq “ ΦpXqφpqq.

Proof. Using the fact that jz “ z̄j for z P C, we have

Xq “ pA ` jBqpz ` jwq “ Az ´ B̄w ` jpĀw ` Bzq.

Then

φpXqq “

«

Az ´ B̄w

Āw ` Bz

ff

.

On the other hand, we have

ΦpXqφpqq “

«

A ´B̄

B Ā

ff«

z

w

ff

“

«

Az ´ B̄w

Bz ` Āw

ff

“ φpXqq.

The product by j (from the right) in Hn induces a antilinear isomorphism J

on C2n given by

J

˜«

z

w

ff¸

“

«

´w̄

z̄

ff

.

Considering this isomorphism, the Lie algebra glnpHq is the (real) subalgebra
of gl2npCq composed by the elements X such that

JX

˜«

z

w

ff¸

“ XJ

˜«

z

w

ff¸

@ z, w P Cn.
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The proof is easy and left to someone else. Define the Lie algebra slnpHq as the set of
matrices X P glnpHq having ReTrX “ 0.

The next step is to understand the homomorphism ϕ :
k
ľ

Hn
Ñ

k
ľ

C2n given
by

ϕpq1
^ ¨ ¨ ¨ ^ qk

q “ φpq1
q ^ ¨ ¨ ¨ ^ φpqk

q.

The canonical action of X P glnpHq on
k
ľ

Hn is given by

X ¨ q1
^ ¨ ¨ ¨ ^ qk

“

k
ÿ

m“1
q1

^ ¨ ¨ ¨ ^ Xqm
^ ¨ ¨ ¨ ^ qk. (1)

The action of gl2npCq on
k
ľ

C2n is analogous.

Proposition .2. Let φ, Φ and ϕ be the homomorphisms previously defined. Then

ϕpX ¨ q1
^ ¨ ¨ ¨ ^ qk

q “ ΦpXq ¨ ϕpq1
^ ¨ ¨ ¨ ^ qk

q.

The above proposition is still true when we consider the group level action of

GlnpHq acting on
k
ľ

Hn from the left by

g ¨ q1
^ ¨ ¨ ¨ ^ qk

“ gq1
^ ¨ ¨ ¨ ^ gqk. (2)

Lastly, let J̃ be the antilinear isomorphism of
k
ľ

C2n given by

J̃pv1
^ ¨ ¨ ¨ ^ vk

q “ Jv1
^ ¨ ¨ ¨ ^ Jvk.

Proposition .3. J̃2
“ p´1q

kId and J̃ commutes with both canonical actions, at the level
of the group or the Lie algebra.

The existence of such antilinear isomorphism is of paramount importance when
one wishes to understand the basics representations of slnpHq.

Corollary .1. The representation
k
ľ

Hn is quaternionic when k is odd and real otherwise.

Let g “ slnpCq with the standard choice of a Cartan subalgebra h as the set
of diagonal matrices in g with zero trace. Define the linear functionals λj : h Ñ C by
pa1, . . . , anq ÞÑ aj . It is known that, for 1 ď k ď n´ 1, the functionals λ1 ` ¨ ¨ ¨ ` λk forms
the dual basis of tHαk

“ Ek;k ´Ek`1;k`1u
n´1
k“1 where each Hαk

P h is defined by the relation

αkp¨q “ xHαk
, ¨y.
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Fix k in the range 1, . . . , n´ 1. Set W “

k
ľ

Cn to be the wedge representation (defined
above) of degree k. By Equation 1, λ “ λ1 ` ¨ ¨ ¨ ` λk is the highest weight of W .
The corresponding highest vector is given by v0 “ e1 ^ ¨ ¨ ¨ ^ ek. The weight space
Wλ is one-dimensional, generated by v0 “ e1 ^ ¨ ¨ ¨ ^ ek. This is clear, because for any
v “ ei1 ^ ¨ ¨ ¨ ^ eik

P W and any X “ pxijq
n
i,j“1 P g, one has

X ¨ v “ pxi1i1 ` ¨ ¨ ¨ ` xikik
q v.

Continuing, let G “ SlnpCq act on W by means of Equation 2. Consider the orbit through
G ¨ v0. Each indecomposable element v1 ^ ¨ ¨ ¨ ^ vk ‰ 0 of the orbit is associated to
a k-subspace of Cn generated by the elements v1, . . . , vk. Clearly, vector multiples are
associated to the same k-subspace. Denote by P pW q the projectivization of W according
the the natural complex structure of Cn. Then P pG ¨ v0q is actually the Grassmannian
GrkpCn

q. In fact, let g P G such that g ¨ v0 “ ˚ v0, i.e., g ¨ v0 is a multiple of v0. At the level
of P pW q, this means that g fixes the associated k-subspace rv0s. Using the argumentation
done in Example 2.1, we see that the isotropy of rv0s is precisely the parabolic set BΘ

with Θ “ Σztαku.
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Example of Schubert Cell
This section contains an explicit example of a Schubert cell using both definitions

2.1 and 2.2. First we do it using N -orbit, then using the γ fibrations.

Let F be a maximal flag of Sl3pCq and consider the canonical choices for roots
in g. Let w “ rα1rα2 . In matrix form,

w “

»

—

–

1
1

1

fi

ffi

fl

.

Let x0 “ pE1, E2q be our choice of an origin in F, where E1 and E2 are the canonical
subspaces of dimensions 1 and 2 in C3.

Notation .1. For this section, consider the notation V pv1, . . . , vkq to denote the k-subspace
of Cn that is generated by tv1, . . . , vku.

With the new notation, x0 “ pV pe1q, V pe1, e2qq. Then

w ¨ x0 “

´

V pe2q, V pe2, e3q

¯

.

The subgroup N is the set of matrices of the form
»

—

–

1 a b

1 c

1

fi

ffi

fl

where λj P C. With this notation, we compute explicitly the form of the Bruhat cell
Bw “ N ¨ wb0. It is given by the set of all flags of the form

´

V pae1 ` e2q, V pae1 ` e2, be1 ` ce2 ` e3q

¯

.

Notice the V pae1 ` e2q is always inside V pe1, e2q and it can get arbitrarily close to V pe1q;
and V pae1 ` e2, be1 ` ce2 ` e3q can get arbitrarily close to V pe1, e2q. Just take a, b and c

infinitely large. This means that f “ pV pe1q, V pe1, e2qq is in the Schubert cell Sw. In fact,
f is the only flag in SwzBw.

Onto the next definition. Let γj “ π´1
j ˝ πj and w1

“ rα1 . Then

Sw “ γ2 ˝ γ1tx0u “ γ2pSw1q. (3)

First, π1px0q “ pV pe2qq, that is, a flag consisting of a single subspaces V “ V pe2q inside
C3. Then

π´1
1 pV pe2qq “ t pV1, V pe1, e2qq P F : dimC V1 “ 1 u “ Sw1 . (4)
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Now apply the second projection to get

π2pSw1q “ t ppV1qq : V1 Ď V pe1, e2q u “ Stα2u

w1 . (5)

Finally pull it back to F

Sw “ π´1
2 pStα2u

w1 q “ t pV1, V2q P F : V1 Ă V pe1, e2q u . (6)

This illustrates how the first and second definitions of Schubert cells match. This example
also shows how the sphere fibrations appears. In fact, the projection π2 : Sw Ñ Stα2u

w1 has
fibers homeomorphic to CP 1

« S2. Consider the fibration over V pe1q

π´1
2 pV pe1qq “ t pV pe1q, V2q : dim V2 “ 2 u .

Taking the quotient by V pe1q, this set is homeomorphic to the space of all complex lines
inside C2, which is CP 1.
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Useful Theorems
Below is a generalization of Fubini’s theorem from calculus adapted to differen-

tials form over a bundle. It states that if a differential form on top can be written as a
wedge product of forms on the basis and fiber, then we can integrate such form by first
integrating on the fibers, then on the basis — see (SULANKE; WINTGEN, 1972).

Theorem .1 (Fubini). Let φ : M Ñ N where M , N are smooth manifolds of dimensions
m, n respectively, with m ě n. Let ω P Ωm´n

pMq and η P Ωn
pNq, and let f : M Ñ R be

measurable (meaning, its superposition with any map is Lebesgue measurable). Assume
the set of critical values of φ has measure zero in N (again, this means the image under
any map has Lebesgue measure zero). If the m-form fω ^ φ˚η is integrable on M , then
for almost all x P N the integral

ż

φ´1pxq

fω

is well-defined and, moreover, when treated as a function of x and multiplied by η, it is
integrable on N and

ż

M

fω ^ φ˚η “

ż

N

ˆ
ż

φ´1pxq

fω

˙

η.

Next we state the Leray-Hirsh theorem, taken from (HATCHER, 2002). The
Leray-Hirsch condition that we mention throughout the text is the combination of item 1
and item 2 below.

Theorem .2. Let p : E Ñ B be a fiber bundle with fiber F such that, for some commutative
coefficient ring R:

1. Hn
pF ;Rq is a finitely generated free R-module for each n.

2. There exist classes cj P Hkj pE;Rq whose restrictions i˚pcjq form a basis for H˚
pF ;Rq

in each fiber F , where i : F Ñ E is the inclusion.

Then the map Φ : H˚
pB;Rq bR H

˚
pF ;Rq Ñ H˚

pE;Rq,
ÿ

ij

bi b i˚pcjq ÞÑ
ÿ

ij

p˚
pbiq Y cj is

an isomorphism of R-modules.
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Charts
This section is an attempt to put in a single place all quaternionic structures

and characteristic classes used in section 3.4, visually indicated by the charts below.

The following table indicates the relationship between the principal and vector
bundles corresponding to quaternionic structures. The horizontal arrows indicates how to
starting from one and define the other. The vertical arrows indicates only that the lower
is the intended reduction from the upper. If such reduction is possible, then the starting
quaternionic structure would be hypercomplex.

Px “ t p P FrMx : pHp´1 Ď QxM u oo // Qx “ pHp´1 (for any p P Px)

�� ��

Rx “ t p P FrMx : pq “ qp u oo // QxM “ SpantIx, Jxu

The next table indicates how the various invariant polynomials κ and curvatures
Ω defined in the bundles G, P or E are obtained one from another, either by extension,
restriction or induction.

G // P // E

Ω1 extended // Ω induced // Ω0

κ1 oo restricted
κ oo extended

κ0
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Leray-Hirsch condition, 81

parabolic subgroup, 23

signature
flag, 24

sphere
surface area, 35
volume of S4, 49

structure
hypercomplex, 64
invariant quaternionic, 64
quaternionic, 63

structure equation, 19
subgroup

parabolic, 23
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