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RESUMO
O conceito de imunovigilância postula que o sistema imune é capaz de detectar e eliminar
células anormais no nosso organismo. Este processo é bastante complexo, envolvendo
um grande número de diferentes tipos de células e citocinas que de maneira organizada
podem combater o surgimento e desenvolvimento de tumores. A imunoterapia busca
melhorar esta resposta imune de maneira a usar as próprias células do hospedeiro no
combate ao câncer, aliada a outras terapias como quimioterapia e radioterapia. Nesta
tese, propomos modelos matemáticos baseados em equações diferenciais ordinárias para
descrever o desenvolvimento de um tumor avascular no organismo do hospedeiro e suas
interações com as células imunes. No primeiro capítulo, propomos um modelo simples que
descreve a dinâmica entre tumor e tecido saudável levando em consideração a existência de
duas linhagens de células tumorais distintas a depender do acúmulo de mutações. Através
da análise qualitativa e simulação do modelo, observa-se que quando a mutação ocorre
de maneira lenta tem-se a formação de uma massa tumoral heterogênea, em que as duas
linhagens podem coexistir, mas a medida que esta taxa aumenta a célula mais mutada
tende a sobrepor a outra. No capítulo 2 propomos um modelo que representa o ciclo
da imunidade tumoral desde a captura dos neoantígenos pelas células dendríticas até a
ativação dos linfócitos efetores. Por meio da análise dos pontos de equilíbrio do sistema
e suas respectivas estabilidades de acordo com o conjunto de parâmteros, observa-se
que quando a resposta tecidual do hospedeiro é forte, o crescimento do tumor pode ser
interrompido e as células tumorais eliminadas, no entanto dependendo da agressividade
do mesmo, se a resposta imune não for eficiente o tumor irá se desenvolver. Quando a
resposta tecidual é fraca a cura deixa de ser uma possibilidade, mas o tumor pode ser
levado a um estado de remissão, a depender da resposta imune. Entretanto, quanto maior
a agressividade do tumor, mais resistente ele é ao sistema imune, de modo a requerer uma
eficácia cada vez maior para entrar em remissão. O efeito do tratamento imunoterápico
foi testado simulando o modelo proposto, pacientes com tumores muito agressivos ou
sistemas imunes comprometidos não se beneficiam do tratamento. Quando o tratamento
surte efeito, ele deve se estender até que o tumor atinja um tamanho crítico a partir do
qual não será capaz de se desenvolver novamente e entrará em remissão.

Palavras-chave: modelagem matemática, evasão tumoral, atividade antitumoral, equações
diferenciais ordinárias, imunoterapia.



ABSTRACT
The concept of immunosurveillance postulates that the immune system can detect and
eliminate abnormal cells in our body. This process is quite complex, involving a large
number of different types of cells and cytokines that, in an organized way, can fight the
emergence and development of tumors. Immunotherapy seeks to improve this immune
response to use the host’s cells to fight cancer, combined with other therapies such as
chemotherapy and radiotherapy. In this thesis, we propose mathematical models based on
ordinary differential equations to describe the development of an avascular tumor in the
host organism and its interactions with immune cells. In the first chapter, we propose a
simple model that describes the dynamics between tumor and healthy tissue, taking into
account the existence of two distinct tumor cell lines depending on the accumulation of
mutations. According to qualitaive analysis and model simulation, when the mutation
occurs slowly, there is the formation of a heterogeneous tumor mass, in which the two
lineages can coexist, but as this rate increases, the most mutated cell tends to overlap the
other. In chapter 2 we propose a model that represents the cycle of tumor immunity from
the capture of neoantigens by dendritic cells to the activation of effector lymphocytes.
Based on the analysis of the equilibrium points of the system and their respective stabilities
according to the parameter set, it is observed that when the tissue response of the host is
strongWhen the host tissue response is strong, tumor growth can be stopped and tumor
cells eliminated, however depending on the aggressiveness of the host, if the immune
response is not efficient the tumor will develop. When the tissue response is weak, the
cure is no longer a possibility, but the tumor can be controlled, however the greater the
aggressiveness of the tumor, the more resistant it is to the immune system so that it
requires increasing efficiency to enter remission. The effect of immunotherapy treatment
was tested by simulating the proposed model, patients with very aggressive tumors or
compromised immune systems do not benefit from the treatment. When the treatment is
effective, it must extend until the tumor reaches a critical size beyond which it will not be
able to grow again and will go into remission.

Keywords: mathematical modeling, tumor evasion, antitumoral activity, ordinary differ-
ential equations, immunotherapy.
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Introdução

Em todos os países do mundo o câncer é a principal causa de morte e uma
importante barreira para o aumento da expectativa de vida da população (1). De acordo
com a Organização Mundial da Saúde (OMS), o câncer é a primeira ou segunda maior
causa de morte antes dos 70 anos em 112 dos 183 países do mundo (2). Por conta disso, a
busca por novas e melhores terapias é constantemente alvo de pesquisas.

O tratamento com drogas anticancerígenas é comumente categorizado em qua-
tro classes diferentes: quimioterapia, que envolve um grande grupo de drogas citotóxicas
que interferem na divisão celular e na síntese de DNA; terapia hormonal, que envolve
medicamentos que interferem na sinalização do crescimento por meio de receptores hormo-
nais nas células cancerígenas; terapia alvo, que consiste em um novo grupo de anticorpos e
inibidores de quinase de pequenas moléculas que visam especificamente proteínas que estão
envolvidas em vias de sinalização de crescimento em células cancerígenas; e imunoterapia,
que visa a indução ou aumento de respostas imunes anticancerígenas (3). Este último, vem
ganhando espaço e interesse ao longo das ultimas décadas, de forma que precisamos cada
vez mais compreender todos os mecanismos envolvidos na resposta imune antitumoral.

A modelagem matemática é uma ferramenta importante no estudo dos mais
diversos problemas médicos e biológicos. Usando tais modelos podemos testar diferentes
cenários, hipóteses e teorias, na tentativa de confirmar ou mesmo refutá-las, sem nos
preocupar, por exemplo, com questões éticas além de diminuir o uso de animais em testes,
o que torna este tipo de abordagem vantajosa e prática. Estudos teóricos também são
importantes e úteis pois geram insights a respeito dos mecanismos complexos existentes
nos processos biológicos.

A oncologia matemática visa o estudo dos problemas relacionados ao crescimento
tumoral utilizando ferramentas matemáticas e computacionais. Por meio dos mais diversos
modelos propostos, é possível dar luz aos diversos questionamentos sobre o surgimento
e desenvolvimento do câncer. De fato, a modelagem matemática e computacional é de
grande importância para testes experimentais e protocolos de tratamento, com a vantagem
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de poderem ser repetidos inúmeras vezes, sem possíveis danos a saúde dos pacientes e sem
o alto custo financeiro decorrente dos experimentos em laboratório e testes clínicos.

Nesta tese propomos e analisamos modelos matemáticos baseados em equações
diferenciais ordinárias para representar o crescimento tumoral e sua intereção com as
células do hospedeiro além da resposta imune desencadeada. O objetivo principal é gerar
informação teórica a respeito da dinâmica envolvendo tumor-hospedeiro-imunidade, o que
nos permite elucidar as possibilidades de cura, remissão e até mesmo recidiva tumoral, além
de dar suporte à simulação de protocolos de tratamento, em especial os imunoterápicos.

No Capítulo 1 consideramos a interação entre tumor e células saudáveis do
hospedeiro, por meio de um modelo que considera a competição entre estas células e a
pressão seletiva que uma exerce sobre a outra. Além disso, dois fenótipos diferentes de
células tumorais foram considerados no modelo, diferenciados pela quantidade de mutações
que cada um carrega. Assumimos que o acúmulo de mutação em um dos tipos de células faz
com que, ao longo do tempo, ela se diferencie em um segundo tipo que apresenta diferentes
parâmetros em relaçõ a primeira. O intuito é estudar as condições e situações em que a
massa tumoral será formada por somente um ou ambos tipos de células. Esta informação
é importante pois diferentes linhagens de células tumorais podem apresentar diferentes
imunogenicidades e resistência a tratamentos, impactando na dinâmica e possíveis terapias
a serem aplicadas.

No Capítulo 2 propomos e analizamos um modelo para o ciclo da imunidade
tumoral, considerando os mecanismos envolvidos na ativação da resposta imune antitumoral,
deste a captura dos neoantígenos pelas células dentríticas até a apresentação dos mesmos
aos linfócitos no linfonodo regional. Avaliamos também os impactos dos mecanismos de
evasão usados pelo tumor para escapar da resposta imune e como eles afetam a dinâmica do
sistema. Finalmente, o modelo proposto pode ser usado para simular o uso de imunoterapias
no tratamente de tumores, avaliar seus impactos e também limitações.

Por fim, apresentamos as conclusões desta tese e indicamos perspectivas futuras
para continuação desta pesquisa. Os capítulos foram escritos em formato de artigo, em
inglês, para publicação em periódicos internacionais. As demais partes da tese, como
introdução e conclusão, estão escritas em português.
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Chapter 1
A Mathematical Model of Tumor Growth
Considering Mutation Accumulation

Abstract. Tumor heterogeneity describes differences between the abnormal cells within
a tumor. As a result of this heterogeneity, the bulk tumor might include different cells
harboring distinct molecular signatures with differential levels of sensitivity to treatment. In
this work, we propose a mathematical model for cancer onset and progression, considering
three populations: normal cells, type-1 tumor cells, which carry only a few mutations, and
type-2 tumor cells, which carry more mutations. The genetic instability was included by
a linear flux from type-1 to type-2 cells. Mathematical analysis was performed in detail.
Results indicate that cancer onset can be prevented if the host body response is strong against
both types of tumor cells. The formation of heterogeneous or homogeneous tumors depends
on the mutation rate. For fast mutation accumulation, the model predicts a homogeneous
tumor mass, since the mutated cells overpower the nonmutated ones. On the other hand
for a low mutation rate, both types of cells can coexist and a heterogeneous tumor mass is
predicted. Both situations may occur for an intermediary mutation rate according to tissue
response and tumor aggressiveness.

Keywords: tumor heterogeneity; genetic instability; tumor growth, stability; bifurcations.

1.1 INTRODUCTION
Tumor heterogeneity is the observation that different tumor cells show distinct

phenotypic features, including cellular morphology, metabolism, gene expression, prolifera-
tion, and metastatic potential. For instance, whenever a cell divides, a few mutations are
acquired leading to a diverse population of cancer cells (4, 5, 6). These subpopulations may
possess an evolutionary advantage over the others within the tumor microenvironment,
and these subclones may become dominant in the tumor over time (7, 8). Also, hetero-



Chapter 1. A Mathematical Model of Tumor Growth Considering Mutation Accumulation 16

geneity is a significant challenge in cancer treatment since the tumor cells may exhibit
different sensitivities to therapeutic drugs. Therefore, understanding and characterizing
heterogeneity may guide the creation of more refined treatment strategies to yield higher
efficacy (9).

Mutations in tumor cells can also generate neoantigens which may be recognized
by the host immune system and trigger an antitumor immune response (10). The total
number of mutations found in the DNA of cancer cells is called tumor mutational burden
(TMB). Recent studies have suggested that tumors that have a high number of mutations
appear to be more likely to respond to certain types of immunotherapy (11, 12, 13, 14),
so the TMB is being used as a type of predictive biomarker.

Mathematical models have been used to help address questions associated with
carcinogenesis and cancer evolution through multiple stages, in which somatic mutations
accumulate to initiate malignancy (15). The models in literature have used different
approaches, such as ordinary differential equations (16, 17, 18, 19, 20), partial differential
equations (21, 22) and also computational models (23). Spencer et al.(16) developed a
model considering angiogenesis, apoptosis, and genetic instability to investigate which
pathway instigated the fastest tumor growth based on breast cancer data. Alvarez, Barbuto
e Venegeroles(20), in turn, proposed a model for the cancer immunosurveillance which
focused on the phenotypic heterogeneity of tumor cells, regarding the differences of
immunogenicities. The model considers two types of tumor cells and two kinds of effector
cells and describes phenomena such as tumor dormancy, robustness, and immunoselection
over tumor heterogeneity, the immunoediting hypothesis (24, 25). The model proposed here
is similar to the model in (19), where an Ordinary Differential Equation based model was
developed considering three populations: normal, premalignant, and cancer cells, including
genetic instability as an enabling characteristic of tumor progression. Their results indicate
that apoptosis and tissue repair system are the first barriers against tumor progression,
and also show that the presence of aggressive cancer cells opens the way to the survival of
less adapted premalignant cells. The differences between the models include the mutation
rate, which is considered linear in our study, and the interaction between tumor cells: we
consider that both types of tumor cells compete for the same carrying capacity and such
competition has several consequences in the system behavior.

In this study, we address the role of mutations in tumor evolution using a
model of clonal evolution within a growing tumor. The model is based on a system of
three nonlinear ordinary differential equations, describing three cell populations: normal
cells, type 1 of tumor cells, which carry only a few mutations, and type 2 of tumor cells,
which carry more mutations. The genetic instability of tumor cells is included in the model
by the transition from type 1 cells to type 2 due to mutation accumulation. Our goal
is to perform qualitative and quantitative extensive analyses in the parameter space to
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entirely describes the model behavior, providing insightful information about the role
of heterogeneity in cancer onset. The paper is organized as follows. In Section 1.2 the
model is presented. In Section 1.3 the analysis of the model is performed. Discussions and
conclusion are presented in Section 1.4.

1.2 MATHEMATICAL MODELLING
We propose a mathematical model consisting of a system of ordinary differential

equations describing the interactions between tumor cells and healthy tissue cells. The
tumor cells are divided into two phenotypes according to the number of mutations they
carry, the tumor mutational burden TMB. More mutated tumor cells tend to be recognized
by the host body more easily, while less mutated cells may go unnoticed. The model does
not include several aspects of tumor growth and immune response but can provide us
information about the dynamics between these cells, which are useful to understand more
complex and accurate models.

Three state variables are considered: Nptq represents the normal cells or healthy
tissue cells, A1ptq corresponds to the tumor cells which presents low tumor mutational
burden (TMB), and A2ptq stands for the mutated tumor cells presenting high TBM. The
hypothesis behind the model are the following.

The production of normal cells is related to the maintenance of a homeostatic
state, through the natural replenishment of old and dead cells, and it does not depend
directly on the total number of living normal cells, but is an intrinsic property of the tissue
(26). For this reason, we consider a constant recruitment rn of normal cells and a natural
mortality rate µn, which implies in a homeostatic state given by rn{µn. Also, the presence
of tumor cells causes several negative effects in the tissue, like suppression of immune cells
(27, 15), the release of death signals (15) and also increasing the local acidity (28, 29).
Parameters b1 and b2 encompass all these effects or, simply, they represent the competition
between tissue and tumor. The equation describing the dynamics of healthy tissue is given
by

dN

dt
� rnloomoon

Recruitment

�pb1A1N � b2A2Nqloooooooooomoooooooooon
Competition

� µnNloomoon
Natural mortality

(1.1)

The proliferation of tumor cells is independent of the tissue’s structure, and
they keep their growth program due to the self-sufficiency in growth signals (30). So we
consider a logistic growth to tumor cells, being r1 and r2 the intrinsic growth rates for A1

and A2 cells, µ1, µ2 the respective mortality rates and K the tumor carrying capacity for
both types of tumor cells.
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In the same way that the tumor harms healthy cells, normal cells also cause
damage to tumor cells, due to competition by space or nutrients for example, which we
will call tissue response and is represented by the parameters c1 and c2. Due to genetic
instability, A1 cells mutate and turn into A2 cells according to the mutation rate α. TO
keep the model tractable and as simple as possible, we assumed α as a constant flux which
representing that the mutation accumulation is a natural process which do not depends
on external factors.

The equations for tumor cells dynamics are given by:

dAi

dt
� riAi

�
1� A1 � A2

K



loooooooooooomoooooooooooon

Tumor growth

� ciNAiloomoon
Competition

� p�1qiαA1loooomoooon
Mutational accumulation

� µiAiloomoon
Natural mortality

, (1.2)

for i � 1, 2. The mutation accumulation term represents the flux, positive or negative,
between A1 and A2 cells.

In Figure 1.1 we present a flowchart describing the interactions among the cell
populations.

Figure 1.1 – Flow diagram of heterogeneous tumor growth model.

Normal cells

Mutation

Co
m

pe
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Tumor cells Mutated tumor cells
(Immune evasion) (Immune rejection)

The model parameters are described in table 1.1.

Finally, the full model is given by:
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Table 1.1 – Parameters of heterogeneous tumor growth model

Parameter Description Value Unity
rn Healthy cells recruitment rate 102 cell day�1

µn Healthy cells natural mortality rate 0.01 day�1

r1 Type 1 tumor cells intrinsic growth rate 0.05 day�1

r2 Type 2 tumor cells intrinsic growth rate 0.04 day�1

µ1 Type 1 tumor cells natural mortality rate 0.02 day�1

µ2 Type 2 tumor cells natural mortality rate 0.03 day�1

K Tumor carrying capacity 7.5� 103 cells
b1, b2 Tumor cells aggressiveness Variable cell day�1

c1, c2 Tissue response to tumor cells Variable cell day�1

α Mutation rate Variable day�1

$'''''&
'''''%

dN

dt
� rn � b1A1N � b2A2N � µnN

dA1

dt
� r1A1

�
1� A1 � A2

K



� c1NA1 � αA1 � µ1A1

dA2

dt
� r2A2

�
1� A1 � A2

K



� c2NA2 � αA1 � µ2A2

(1.3)

In the next sections, the analysis and numerical simulations of system (1.3)
will be performed to describe the existence and stability of equilibrium points.

1.3 MODEL ANALYSIS
In this section, a mathematical analysis of system (1.3) is performed. The

equilibrium points are obtained by setting derivatives in (1.3) equal to zero and the
stability analysis is performed by the eigenvalues of the Jacobian Matrix JpN, A1, A2q
evaluated at each equilibrium.

Before we start the equilibrium points analysis, consider Ω as the subset of R3

defined by
Ω �

"
pN, A1, A2q P R3

� | N ¤ rn

µn

and A1 � A2 ¤ IK

r

*
, (1.4)

where I � r � µ, being r � max tr1, r2u and µ � min tµ1, µ2u.

Theorem 1 (Invariant Set). Model (1.3) is invariant in Ω, that is, taking an initial
condition in Ω, the solutions remain in Ω.

Proof. We need to show that the flow of the system (1.3) at the borders of Ω points into
the region, that is, to analyze the signal of the derivatives at the border of Ω and show
that, taking an initial condition in Ω, the state variables can not assume negative values
nor goes to infinity. Figure 1.2 illustrates the invariant set Ω.
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Figure 1.2 – Invariant set Ω for system (1.3)

Let us analyse the five borders described in Figure 1.2 piqN � 0, piiqA1 � 0,
piiiqA2 � 0, pivqN � rn{µn and pvqA1 � A2 � IK{r.

(i) If N � 0 then from the first equation in (1.3) we obtain dN{dt � rn ¡ 0, so
N � 0 ñ dN{dt ¡ 0 and N can not assume negative values.

(ii) Clearly, A1 � 0 ñ dA1{dt � 0, which means that the orbits remain at the border
and A1 is nonnegative in Ω.

(iii) If A2 � 0 then dA2{dt � αA1 ¥ 0. So, A2 is also nonnegative.

(iv) If N � rn{µn then dN{dt � p�b1A1 � b2A2qrn{µn ¤ 0. Moreover, if N ¥ rn{µn ñ
dN{dt ¤ 0 and the orbits goes into Ω.

(v) If A1 � A2 � IK{r then

dpA1 � A2q
dt

� pr1A1 � r2A2q
�

1� A1 � A2

K



�Npc1A1 � c2A2q � µ1A1 � µ2A2

¤ rpA1 � A2qq
�

1� A1 � A2

K



� µpA1 � A2q

� IpA1 � A2q
�

1� r

IK
pA1 � A2q

	
� 0,

so, A1 � A2 � IK{r ñ dpA1 � A2q
dt

¤ 0.

Therefore, the flow of system (1.3) at the border of Ω points into Ω, and the solutions can
not scape from the invariant set.
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1.3.1 TUMOR-FREE EQUILIBRIUM

The trivial equilibrium or tumor-free equilibrium is given by

P0 � pN�
0 , A�

1 , A�
2q �

�
rn

µn

, 0, 0



. (1.5)

The Jacobian Matrix evaluated at P0 can be written as

JpP0q �

�
�����

�µn �b1
rn

µn

�b2
rn

µn

0 r1 � α � µ1 � c1
rn

µn

0

0 α r2 � µ2 � c2
rn

µn

�
����� ,

whose eigenvalues are

λ1 � �µn, λ2 � rn

µn

pcth
1 � c1q, λ3 � rn

µn

pcth
2 � c2q

where
cth

1 � µn

rn

R1 cth
2 � µn

rn

R2 (1.6)

for R1 � pr1�α�µ1q and R2 � pr2�µ2q, which can be interpreted as the net reproduction
rate of tumor cells A1 and A2, respectively. We assume that these net rates are positive,
otherwise the tumor cells will be extinct.

So, the tumor-free equilibrium point P0 is stable if, and only if, c2 ¡ cth
2 and

c1 ¡ cth
1 , which means that if the tissue response against both tumor cells is high, then

the normal cells can eliminate the tumor cells. Notice that the host body needs to present
a good response against both phenotypes of tumor cells, and not only one. The net rates
Ri increase the thresholds cth

i and the risk of tumor onset, that is, more proliferative
tumors settle in the host more easily. Moreover, the fraction µn{rn which appears in both
thresholds can be written as µn{rn � 1{N�

0 , where N�
0 is the normal cells equilibrium state

in absence of a tumor, or the homoeostatic state. So, increasing the homoeostatic state
decreases the thresholds cth

i and consequently decreases the risk of tumor onset.

1.3.2 BOUNDARY EQUILIBRIUM POINTS

The boundary equilibrium is obtained when one of the tumor populations is
zero, which corresponds to a homogeneous tumor mass. Since there is the flux α from A1

to A2, there is no equilibrium point such that A1 � 0 and A2 � 0, which means that, the
proposed model allows the existence of homogeneous tumor composed only by high TBM
cells, which is supposed to be easily recognized by the immune system.

The boundary equilibrium is obtained taking A1 � 0, and can be written as

Pb � pN�, A�
1 , A�

2q �
�

rn

b2A�
2 � µn

, 0, A�
2



.
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where A�
2 is a root of the second degree polynomial p2pA�

2q � a2pA�
2q2 � a1A

�
2 � a0, whose

coefficients are given by

a2 � b2r2

K
, a1 � pr2 � µ2qpbth

2 � b2q, a0 � rnpc2 � cth
2 q, (1.7)

and the parameters bth
2 and cth

2 are

bth
2 � µnr2

Kpr2 � µ2q and cth
2 � µnpr2 � µ2q

rn

.

1.3.2.1 EXISTENCE

The existence of boundary equilibria is determined by the analysis of polynomial
p2pA�

2q in (1.7) and using the Descartes rule of signs (31). The discriminant of p2pA�
2q is

given by
∆ � pr2 � µ2q2pbth

2 � b2q2 � 4b2r2

K
rnpc2 � cth

2 q.

Let us define bth
2∆ as the biggest value of b2 (if there are more than one possible) such that

∆ � 0, which can be written as

bth
2∆ � bth

2 � 2τ � 2
b

τpbth
2 � τq, for τ � r2rnpc2 � cth

2 q
Kpr2 � µ2q2

The existence of boundary equilibriums is summarized as follow:

1. If c2 ¡ cth
2 and b2   bth

2∆, then there is no boundary equilibrium.

2. If c2 ¡ cth
2 and b2 ¡ bth

2∆, then there are two boundary equilibriums, P 1
b and P 2

b .

3. If c2   cth
2 there will always be a single boundary equilibrium P 2

b .

Notice that the existence of boundary equilibriums is determined by the inte-
raction between normal cells N and high TMB tumor cells A2. Parameters related to the
A1 cells do not interferer in the existence of boundary equilibrium points.

When the tissue response against cancer is strong and the tumor aggressiveness
is low (case 1 above), the boundary equilibrium does not exist. Increasing b2 two boundary
equilibrium states appear in the dynamics (case 2). Finally, if the tissue response is weak
(case 3) a single boundary equilibrium exists regardless of the aggressiveness parameter b2.

1.3.2.2 STABILITY

Let P 1
b and P 2

b be the boundary equilibrium points determined in the previous
subsection. The Jacobian Matrix evaluated at the boundary equilibrium is given by
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JpP i
b q �

�
�����

�b2A
�
2 � µn �b1N

� �b2N
�

0 r1

�
1� A�

2
K



� c1N

� � α � µ1 0

�c2A
�
2 α � r2A

�
2

K
�r2A

�
2

K

�
����� (1.8)

The characteristic polynomial of the matrix in (1.8) can be written as

pbpλq � pb
1pλqpb

2pλq (1.9)

where

pb
1pλq � r1

�
1� A�

2
K



� c1N

� � α � µ1 � λ

pb
2pλq � λ2 �

�
b2A

�
2 � µn � r2A

�
2

K



λ� A�

2 p2a2A
�
2 � a1q .

So, the boundary equilibrium points will be stable if both polynomials, pb
1, and

pb
2, have negative real-part roots.

Firstly, let us analyse pb
2. We already know that there up two boundary equili-

briums, A1�
2 � �a1 �

?
∆

2a2
and A2

2� �
�a1 �

?
∆

2a2
. Notice now that, if p2a2A

�
2 � a1q   0,

then, by Descartes’ rule os signs, pb
2 has a positive real root. On the other hand if

p2a2A
�
2 � a1q ¡ 0, then pb

2 has roots with negative real part. Substituting the expressions
for A1�

2 and A2�
2 we have

A1�
2
�
2a2A

1�
2 � a1

� � �A1�
2

?
∆   0 and A2�

2
�
2a2A

2�
2 � a1

� � A2�
2

?
∆ ¡ 0.

So, we conclude that the boundary equilibrium P 1
b , when it exists, is always unstable. On

the other hand, P 2
b ’s stability is determined by the eigenvalue related to polynomial pb

1,
since pb

2 has roots with negative real part.

Now, let us analyze the polynomial pb
1. Notice that this polynomial contains

parameters related to the A1 cells, so the interaction between the two types of tumor cells
will determine if the boundary equilibrium is stable or not. Increasing r1 (or equivalently
decreasing c1 and α) the eigenvalue related to pb

1 tends to become positive, which means
that, if the tumor microenvironment is favorable to A1, the boundary equilibrium must
be unstable, and a heterogeneous tumor mass is expected. On the other hand, if the
environment does not benefit the less mutated cells A1, then the mutated cells A2 may
eliminate (by competition) the other cells and the boundary equilibrium becomes stable,
corresponding to a homogeneous tumor.

When A1 cells are suppressed from model (1.3), the system of equations is the
same presented in (32), and the analysis of the boundary equilibria is quite similar. The
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main difference is related to the polynomial pb
1 which represents the interaction between the

two types of tumor cells. In (32), the stability of the tumor state can be easily determined
and depends on the relation between A2 and N , however when A1 cells are included, the
competition between tumor cells plays a role to determine if the tumor phenotypes will
coexist or not, that is, the boundary equilibria is stable or not.

1.3.3 INTERNAL EQUILIBRIUM POINTS

In this section we analyse the existence and stability of the internal equilibrium
points P � � pN�, A�

1 , A�
2q of system (1.3). Due to the complexity to find the expressions

for N�, A�
1 and A�

2 , we assume that b1 � b2 � b and c1 � c2 � c, that is, the competition
terms between tumor and healthy tissue are equal for both types of tumor cells.

The internal equilibrium point P � � pN�, A�
1 , A�

2q has entries

N� � rn

b1A�
1 � b2A�

2 � µn

, A�
1 � A�

2
pr1 � r2q

�
1� A2

K

�� µ2 � µ1 � α

pr1 � r2qA�
2{K � α

(1.10)

where A�
2 is a root of the polynomial

pIpA�
2q � q0 � q1A

�
2 � q2pA�

2q26 (1.11)

whose coefficients are given by

q0 � α2rnpc� cth
1 q

q1 � α

K

�
2Rrnpc� cth

1 q � pR � UqR1Kpbth
1 � bq� (1.12)

q2 � 1
K2

�
cR2rn � pRpα � µ1q � r1UqpbKpR � Uq �Rµnq

�

with R � r1 � r2, U � µ2 � µ1, R1 � r1 � µ1 � α and

bth
1 � r1µn

KR1
, cth

1 � R1µn

rn

. (1.13)

Two options must be considered regarding the parameters R and U . In the
first one, we assume that the mutations are unfavorable to tumor cells, that is, the less
mutated tumor cells A1 are more proliferative and presents a smaller mortality rate than
the A2 cells, which means that r1 ¡ r2 and µ1   µ2, implying R ¡ 0 and U ¡ 0. The
other option is to consider that the mutations are favorable to tumor cells, increasing the
proliferation and decreasing the apoptosis of A2 cells, that is, r2 ¡ r1, µ2   µ1, implying
R   0 and U   0.

Let us first analyze the unfavorable mutation case, in which R, U ¡ 0. Tumor
cells that present more mutation can be, in general, more easily recognized and eliminated
by the immune system, and also are more sensitive to the immunotherapies, so the case in
which R ¡ 0 and U ¡ 0 corresponds to the worst situation for treatment successful since
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we assuming that the A1 cells, which are more resistant to immune response, are also more
proliferative (r1 ¡ r2 and µ1   µ2), which turn them even more hard to eliminate. The
favorable case will be commented after.

By the Descartes’ Rule of Signs, polynomial pIpA�
2q has the following behaviour:

1. If c   cth
1 than there is a single positive root A�

2 .

2. If c ¡ cth
1 and b   bth

1∆ then there is no positive roots.

3. If c ¡ cth
1 and b ¡ bth

1∆ then there are two positive roots.

where bth
1∆ is the value of b, with bth

1∆ ¡ bth
1 , such that the discriminant of polynomial (1.11)

is equal to zero.

Notice that the roots above described not necessarily are biological-feasible
equilibrium points of system (1.3) since the expression for A�

1 in (1.10) can be negative
for some values of A�

2 . So, after determine the roots, we need to verify is the expression
for A1 is positive.

As we pointed, the existence of internal equilibrium points is determined by
the position of b and c in comparison to bth

1 and cth
1 , while for the existence of boundary

equilibrium points we need to compare b and c with bth
2 and cth

2 respectively. Since each
parameters must be compared to two thresholds, it is important to know the relative
position between bth

1 and bth
2 , and between cth

1 and cth
2 in order to determine the existence

of boundary and internal equilibrium points for different combinations of the parameters b

and c.

Firstly, for cth
1 and cth

2 we have that

cth
1 � cth

2 � µn

rn

pr1 � µ1 � α � r2 � µ2q

� µn

rn

pR � U � αq

� µn

rn

pαc � αq.

So, the relative position between cth
1 and cth

2 are determined by the mutation
rate α. If α ¡ αc � R � U , then cth

2 ¡ cth
1 , or if α   αc, then cth

2   cth
1 .

For bth
1 and bth

2 we have that

bth
1 � bth

2 � µn

rn

�
r1

R1
� r2

R2




� r2µn

rnR1R2

�
α � r1µ2 � r2µ1

r2




� r2µn

rnR1R2
pα � αbq .
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Thus, denoting αb � r1µ2 � r2µ1

r2
we obtain that, if α ¡ αb then bth

1 ¡ bth
2 , or if

α   αb, then bth
1   bth

2 .

Now, let us compare αc and αb as follows:

αc � αb � pr1 � r2q � pµ2 � µ1q �
�

r1µ2 � r2µ1

r2




� 1
r2

�
r1r2 � r2

2 � r2µ2 � r2µ1 � r1µ2 � r2µ1
�

� 1
r2
pr1 � r2qpr2 � µ2q

¥ 0

Therefore, αc ¡ αb. Using this, we must analyze three different cases according
to the mutation rate α, which are

1. α ¡ αc, which implies cth
1   cth

2 and bth
1 ¡ bth

2 .

2. α   αb, which implies cth
1 ¡ cth

2 and bth
1   bth

2 .

3. αb   α   αc, which implies cth
1 ¡ cth

2 and bth
1 ¡ bth

2 .

CASE 1: HIGH MUTATION RATE (α ¡ αc)

Let us first consider the case in which the A1 cells rapidly turn into A2 cells,
that is, α is high.

The existence of internal equilibrium points is determined by the roots of
polynomial (1.11). In addiction, we need to verify if, given a root A�

2 , the expression for A�
1

is positive. So, observe that, since we assume R, U ¡ 0 and α ¡ αc, from the expression
for A�

1 in (1.10) we have that

A�
1 ¥ 0 ô A�

2
pr1 � r2q

�
1� A2

K

�� µ2 � µ1 � α

pr1 � r2qA2{K � α
¥ 0

ô R

�
1� A2

K



� U � α ¥ 0

ô A�
2 ¤

K

R
pαc � αq   0

So, to obtain A�
1 ¡ 0, it is necessary that A�

2   0, which means that when
α ¡ αc there is no internal equilibrium, and the model dynamics contains only the trivial
and the boundary equilibriums. Therefore, when a high mutation rate is considered, the
less mutated cells A1 are excluded from the system dynamics, and only one type of tumor
cells may coexist with the healthy cells. Therefore, considering a high mutation rate causes
the formation of a homogeneous tumor mass.
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To confirm that behavior, we perform numerical simulations considering several
values of b and c. For each combination, we analyze the existence and the stability (by
the Jacobian matrix) of the tumor-free state, the boundary equilibrium points, and the
internal equilibrium points. The results are depicted in Figure 1.3, where P0 stands for the
trivial equilibria, P 1

b and P 2
b stands for the boundary equilibrium points. The equilibrium

points inside squares are stable, while the others are unstable.

Figure 1.3 – Existence and stability diagram for α ¡ αc

Three distinct regions can be observed in Figure 1.3. In region I, when c   cth
2 ,

the boundary equilibria P 2
b is globally stable, while the tumor-free state is unstable. In

region II we have that c ¡ cth
2 and b ¡ bth

2∆, so there are two boundary equilibrium points
and there is bistability between the tumor-free state P0 and the boundary equilibria P 2

b ,
while P 1

b is an unstable boundary equilibrium point which divides the basins of attraction,
so the initial condition determines if tumor will progress or disappear. Finally, region III,
which is also called the cure regime, corresponds to the situation where tumor onset is not
possible since the tumor-free state is the only one equilibrium point in the dynamics, and
also it is stable.

To illustrate the transitions between these regimes, Figure 1.4 presents a
bifurcation diagram. In 1.4a we horizontally go through Figure 1.3, fixing b and varying
the tissue response c, transiting from I to II and III. In 1.4b we vertically go through
Figure 1.3, fixing c and varying the tumor aggressiveness b, transiting from region III to
II. The blue color corresponds to stable points, while the red color represents the unstable
ones.
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Figure 1.4 – Bifurcation diagram for α ¡ αc.
(a) (b)

Figure 1.4a shows that, as we increase the tissue response c, system (1.3)
approaches the curing regime III, passing through regimes I and II. On the other hand,
from Figure 1.4b, increasing the tumor aggressiveness b, the model exists the curing regime
III and approach II, exemplifying the tumor onset.

CASE 2: LOW MUTATION RATE (α   αb)

Let us consider now a small flux α from A1 to A2 such that α   αb, that is,
tumor cells slowly accumulate mutations. As we previously described, in this case we have
that cth

1 ¡ cth
2 and bth

1   bth
2 .

The stability analysis of the equilibrium points and the existence of internal
equilibria (considering the condition imposed in expression (1.10)) was done by numerical
simulations. For several combinations of parameters b and c, we analyzed the existence
and the stability (using the eigenvalues of Jacobian Matrix) of the trivial equilibrium point
P0, the boundary equilibriums P 1

b and P 2
b , and also the internal equilibriums P1 and P2.

Figure 1.5 illustrates the qualitative behavior of system (1.3). Equilibrium
points inside squares are stable, while the others are unstable.

In all the simulations, for several values of α, the positivity condition for A�
1 in

the internal equilibria (1.10) is always satisfied, so the low flux α   αb allows the existence
of the internal equilibria for every combination of parameters c and b.

When the tissue response is weak, c   cth
2 (regime I in Figure 1.5), even though

the boundary equilibria exists, it is unstable, while the internal equilibria P2 is stable.
Taking cth

2   c   cth
1 we observe two regimes which are delimited by bth

2∆: above this curve,
region II, the internal equilibria is stable and two boundary equilibriums appear, but both
are unstable, while for b   bth

2∆, region III, the boundary states do not exists.
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Figure 1.5 – Existence and stability diagram for α   αb

Finally, when the tissue response is strong, c ¡ cth
1 ¡ cth

2 , the tumor-free state
becomes stable. For b   bth

1∆, region VI, the cure state P0 is globally stable (tumor onset is
not possible). Increasing b such that b ¡ bth

1∆, the internal equilibria appears and there is
bistability between P2 and P0. When b ¡ bth

2∆ the boundary states appear, however they
are always unstable.

Furthermore, observe in Figure 1.5 that whenever the internal equilibrium P2

exists, it is stable. On the other hand, the boundary equilibrium points, P1 and P2, are
always unstable, when they exist. So, when a slow mutation rate is considered, the boundary
equilibrium points do not interfere in the system’s qualitative behavior, which is guided
only by the trivial equilibria and the internal equilibrium points. In other words, when α

is small, there always be two types of tumor cells interacting and always a heterogeneous
tumor mass.

Similarly to the previous case, we present in Figure 1.6 a bifurcation diagram
illustrating the transition among the regimes. In Figure 1.6a we horizontally go through
Figure 1.5, fixing b and varying the tissue response c, transiting from the region I to
II, then III, V, and VI. In Figure 1.6b we vertically go through Figure 1.5, fixing c and
varying the tumor aggressiveness b, transiting from region VI to V and VI. The blue color
corresponds to stable points, while the red color represents the unstable ones.

Even if the boundary equilibrium exists, it is not interfering in the dynamics
since it is always unstable, represented by the red curves on the left in Figure 1.6a and
on the right in 1.6b. Since these states are always unstable, the dynamics considering
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Figure 1.6 – Bifurcation diagram for α   αb.
(a) (b)

α   αb can be summarized in only three different regimes: in the first one, when c   cth
1 ,

the internal equilibria P2 is globally stable (regions I, II, and III). In the second one,
the tumor-free state is globally stable (region VI), and finally the third regime presents
bistability between P2 and P0 (regimes IV and V).

Although the existence of the boundary equilibrium does not affect the dynamics,
their presence is important for two reasons. First, even though it is unstable, it is still
an equilibrium point, so if we manage to eliminate the A1 cells, using chemotherapy for
example, they will not proliferate again. Second, the boundary equilibrium must exist
so that we can transition from case 1 (α ¡ αc) to case 2 (α   αb) as we decrease the
mutation rate, that is, the boundary equilibria is no longer stable, but it still exists. This
situation will be better clarified during the next session.

CASE 3: INTERMEDIARY MUTATION RATE (αc ¡ α ¡ αb)

As showed, when α ¡ αc, system dynamics is guided by the boundary points,
on the other hand, when α   αb, the internal points guide the system dynamics. Equiva-
lently, a fast mutation generates a homogeneous tumor, while slow mutation generates a
heterogeneous one. Now, let us deal with the case with an intermediary mutation rate:
αc ¡ α ¡ αb. In this case, we already showed that cth

1 ¡ cth
2 and bth

1 ¡ bth
2 .

Similar to the previous case, the analysis was done using numerical simulations
in which we determine the existence and the stability of the boundary equilibrium points
and the internal equilibrium points for several combinations of parameters b and c. The
simulations show that different behaviors occur according to the value of α, as it gets
closer to the threshold αc.

Firstly, let us start with αc ¡ α ¡ αb, but α close to the inferior threshold
αb. Figure 1.4 illustrates the system behavior. The curve denoted by s is related to the
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condition for A�
1 ¡ 0 and above this curve one of the internal equilibria disappear since

the biological-feasible condition is no longer satisfied. Again, P0 stands for the trivial
equilibria, P 1

b and P 2
b stand for the boundary equilibrium points, and P1 and P2 stand for

the internal equilibrium points. The equilibrium points inside squares are stable, while the
others are unstable.

Figure 1.7 – Existence and stability diagram for αb   α   αc, when α is close to αb

Nine different regimes are observed in Figure 1.7. Taking c   cth
2 we have regions

I and II which are separated by the curve s: under the curve (I) the internal equilibria P2

is stable while the boundary equilibria are unstable, crossing s (II), P2 disappear and the
boundary equilibria becomes stable.

If cth
2   c   cth

1 and b   bth
2∆, then the internal equilibria is stable (region V).

Increasing b such that b ¡ bth
2∆, two boundary equilibriums appear, both unstable. Finally,

increasing even more b and crossing the positivity condition s (region III), the internal
equilibria disappear and the boundary state P 2

b becomes stable.

When c ¡ cth
1 the tumor-free state P0 is stable. In this case four regions appear,

delimited by bth
1∆, bth

2∆ and s. In region IX (b   bth
1∆), P0 is globally stable; in region VIII

(bth
1∆   b   bth

2∆) two internal equilibrium points appear, being one stable and the other
unstable. Increasing b such that b ¡ bth

2∆ (VII) the boundary points P 1
b and P 2

b appear as
unstable states. Finally, above s(region VI), P2 disappears and the boundary equilibria P 2

b

becomes stable.
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Remember that, when α ¡ αc the condition for A�
1 in the internal equilibria

is not satisfied, so the dynamics approach the boundary equilibria. On the other hand,
when α   αb that condition is always satisfied and system (1.3) approaches the internal
equilibria. However, in Figure 1.7 we observe that the curve s divide the dynamics: above
that curve, the boundary equilibria is always stable, while under curve s the internal
equilibria are the stable one. So, depending on the parameters c and b, the model can
approach both types of equilibrium points.

The transition among the different regions is illustrated in Figure 1.8 by
bifurcation diagrams. In Figure 1.8a we vertically go through Figure 1.7, varying the tumor
aggressiveness b, fixing c such that cth

2   c   cth
1 , and transiting from region V to IV and

III. In Figure 1.8b we also vary b, but fixing c ¡ cth
1 , transition among regions IX, VIII,

VII and VI. In Figures 1.8c and 1.8d we vary the parameter c for two different choices of
b, horizontally going through Figure 1.7.

Figure 1.8 – Bifurcation diagrams for αb   α   αc.
(a) (b)

(c) (d)

In all figures, we notice the existence of two curves, one is related to the
boundary equilibria, and the other is related to the internal equilibria. In Figures 1.8a
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and 1.8b, we start in a region where the internal equilibria is stable and the boundary
equilibrium points do not exist. Then, the boundary equilibrium points appear as unstable
states in the regions IV, for Figure 1.8a, and VII for 1.8b. Finally, the bifurcations for
boundary and internal equilibria collapses, and the boundary equilibria become stable
(regions III and VI for 1.8a and 1.8b, respectively).

Figures 1.8c and 1.8d are similar, but starting with a stable boundary equilibria
in region I. Then, the internal equilibria appear and the boundary equilibria lose their
stability. In these figures, we also observe when the trivial state P0 becomes stable in
regions VI, VII, VIII, and IX.

When α gets close to the superior threshold αc, the qualitative behavior may
change. Notice that, increasing α, the the value of cth

1 decreases and bth
1 increases, so the

curve bth
1∆ approach bth

2∆ and region IX (where there is only P0) advances over regions V
and VIII. Furthermore, increasing α, the positivity condition A�

1 ¡ 0 in (1.10) becomes
more difficult to be satisfied, which means that the curve s is somehow displaced to the
right, and regions II, IV, and VII decrease in size. Summarizing, if α approach the upper
threshold αc, regions II, IV, V, VII and VIII start to disappear. Notice that these are the
regions in which the internal equilibrium is stable, thus as α approaches αc, Figure 1.7
becomes similar to Figure 1.3, in which α ¡ αc.

To exemplify the transition from α   αb to α ¡ αc, we took the bifurcation
diagram in Figure 1.6b, corresponding to the case α   αb, and start to increase α until
α ¡ αc. Our goal is to observe the transition between the diagrams 1.6b, for α   αb, and
1.4b, in which α ¡ αc.

Figure 1.9 depicts the transition among the cases as we increase the mutation
rate α. Figure 1.9a corresponds to the case in which α   αb and is exactly the same
figure that we presented in 1.6b. Notice that in this figure, the curve which represents the
boundary equilibria is inside the curve representing the internal equilibria, and these two
curves do not intercept.

Increasing α we go to Figure 1.9b, in which the upper branch of the internal
equilibria curve touches the upper branch of the boundary equilibria curve, and from this
point the boundary equilibria become stable. As we increase α, the point at which the
curves intersect moves to the left, along the upper branch of the boundary equilibria curve.
In Figures 1.9d and 1.9e, the internal equilibria curve starts from the lower branch of the
boundary equilibria curve, so in these two figures the stable internal equilibria disappear
and there is only the unstable one. Finally, when α surpasses the threshold αc, represented
in Figure 1.9f, the internal equilibria curve collapses in the lower branch of the boundary
equilibria curve. This is the same figure we presented in 1.4b

Thus, increasing α the internal equilibria curve approaches the boundary
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Figure 1.9 – Transition from case 2, α   αb, to case 1, α ¡ αc. For the parameters in
Table (1.1) we obtained αb � 0.0175 and αc � 0.02

(a) α � 0.015 pα   αbq (b) α � 0.0181 (αc ¡ α ¡ αb)

(c) α � 0.0187 (αc ¡ α ¡ αb) (d) α � 0.0192 (αc ¡ α ¡ αb)

(e) α � 0.0195 (αc ¡ α ¡ αb) (f) α � 0.022 pα ¡ αcq

equilibria curve in such a way that the curves collapse and the internal equilibria disappear,
illustrating the transition from case 2 (α   αb) to case 1 (α ¡ αc). Observe that, as we
increase the mutation rate, the boundary equilibria firstly appears as an unstable state, to
then becomes stable when α is high enough, which also causes the exclusion of the internal
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equilibria.

In all the diagrams, we are assuming that the mutations are unfavorable to
tumor cells (r1 ¡ r2 and µ1   µ2). Now, let us briefly discuss what happens if we assume
that the mutations in tumor cells increase their proliferation and decrease the apoptosis,
which means that, the mutated cells A2 are benefited. In the model, this assumption is
equivalent to take r2 ¡ r1 and µ2   µ1, which implies R, U   0 in the polynomial pIpA�

2q
in (1.11).

Taking R, U   0 we have that αb, αc   0 which implies cth
1   cth

2 and bth
1 ¡ bth

2

regardless the mutation rate α, and a single case must be analyzed. Furthermore, by
numerical simulations, we observed that in this situation the positivity condition given in
(1.10) is not satisfied for any value of α, b and c, so there are no internal equilibria and
the qualitative behavior is the same described Figure 1.3 related to the case 1: α ¡ αc.
Therefore, when the mutations benefit the A2 cells, system (1.3) has no internal equilibria,
which means that the more mutated cells can eliminate the others since the environment is
favorable to them. Equivalently, A1 cells have to be more efficient than A2 cells (regarding
proliferation and apoptosis) to remain in the TME and not be excluded by competition.

1.4 DISCUSSION AND CONCLUSIONS
A mathematical model consisting of a system of ordinary differential equations

was proposed to describe cancer onset and establishment at a normal tissue, considering
two types of tumor cells according to the number of mutations they carry. The proliferation
of each type of tumor cell is independent of the other, however, both types compete by the
same carrying capacity. Also, a continuous flux from the less mutated cells to the more
mutated ones was considered to capture the effects of genetic instability as a factor that
enhances the probabilities of mutations.

The model considering the same tumor aggressiveness and tissue response for
both tumor cells was studied in detail. The analysis predicts that tumor onset can be
prevented if the host body response is strong against both types of tumor cells. The higher
the healthy cells homeostatic state, the lower the risk of tumor onset, or equivalently, the
higher the net growth rate of tumor cells, the higher the risk of tumor onset. Even though
the tumor-free state is stable, increasing the aggressiveness of tumor cells (which is related
to the amount of damage caused to the tissue), the model presents bistability between the
trivial state and a nontrivial one (boundary or internal, depending on the parameters).
Therefore, since the tumor-free state is locally stable, only a few abnormal cells do not
cause tumor onset, which is possible only in the presence of numerous mutated cells.

The existence of nontrivial equilibria was characterized in the entire parameter
space, and the stability analysis of these equilibria was done numerically. The boundary
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equilibrium points correspond to the situation where one type of tumor cells can not survive
in the tumor microenvironment (TME), which causes the formation of a homogeneous
tumor mass. The internal points, in turn, present the coexistence of both types of tumor
cells, characterizing tumor heterogeneity. If tumor cells take advantage of those mutations,
increasing their proliferation (R   0) and decreasing their apoptosis (U   0), then the
mutated tumor cells overpower the others and exclude them from system dynamics, that is,
there are no heterogeneity in this case. In contrast, when the mutations do not benefit tumor
cells, the coexistence of type-1 and type-2 tumor cells becomes possible, and the mutation
rate plays a role to determine the existence of a homogeneous or heterogeneous tumor.
Under high genomic instability (α ¡ αc), that is, when tumor cells rapidly accumulate
mutations and transit from type-1 cells to type-2, the less mutated tumor cells are not
able to survive and the remaining tumor is composed by only one type of tumor cells,
so a fast mutation generates homogeneous tumors. On the other hand, a small mutation
rate (α   αb) allows the survival of less mutated cells and, in this case, we observed the
formation of a heterogeneous tumor. The intermediary case (αb   α   αc) corresponds to
a transition between the two cases presented above. There is a relation between tumor
aggressiveness and tissue response, given by the curve s in figure 1.7, which determines
tumor heterogeneity: above this relation, we observe the formation of a homogenous tumor
composed of the more mutated cells, on the other hand, under this relation the tumor is
heterogeneous and both types of cells coexist in TME. As the mutation rate is increased,
we observed that the regime presenting heterogeneity starts to disappear, while the regime
presenting homogeneity increases, illustrating the transition between the cases with low
and high genetic instability.

Due to complexity, the full model considering different aggressiveness and tissue
responses for each type of tumor cells was not completely analyzed in this study. Including
different tissue responses c1 and c2 means that one type of tumor cells is more resistant to
the tissue pressure. Therefore, we expect that when c1   c2 the probability of coexistence
is increased, on the other hand, if c2   c1, then the boundary equilibria must appear more
frequently, so choosing different combinations of c1 and c2 we benefit one of the tumor
cells phenotypes and the system behavior must change. Appendix 1.A contains a brief
analysis of the case c1 � c2.

This study contributes to the understanding of tumor onset and progression
regarding tumor heterogeneity, and it can also be used as a basis for building more accurate
models by incorporating other phenomena. In the next works, we will extend it by including
the antitumor immune response and treatments, like chemotherapy and immunotherapy.
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APPENDIX

1.A MODELING DIFFERENT TISSUE RESPONSES FOR TUMOR
CELLS

The full model considering different aggressiveness (b1 � b2) and different tissue
responses (c1 � c2) for each type of tumor cells was not completely analyzed in this study.
To give an example of how these assumptions may change the model dynamics, we analyze
in this section the case in which there are different tissue responses against the two types
of tumor cells, that is, c1 � c2. The mutations in tumor cells affect their growth and death
processes, the expression of neoantigens and/or their resistance to drugs and immune
response (7, 8), but not necessarily these cells become more (or less) aggressive, so for
simplicity, we keep the assumption that b � b1 � b2.

When we consider c � c1 � c2, we have one parameter (c) to be compared
with two thresholds, cth

1 and cth
2 , so we need to know the relative position between these

thresholds, which is affected by the mutation rate α: if α ¡ αc then cth
2 ¡ cth

1 , and if
α   αc, then cth

2   cth
1 , as we discuss in Section 1.3.3. However, if we consider c1 � c2,

then the parameter c1 must be compared with cth
1 , while c2 must be compared with cth

2 ,
so the relative position between the thresholds is no longer necessary. So, the three cases
that we analysed in Section 1.3.3 must appear mixed when we consider different c1 and c2.
Also, notice that the expressions for cth

1 and cth
2 in (1.6) do not change when we consider

different tissue responses c1 and c2.

Moreover, taking different tissue responses also affects the existence of internal
equilibrium points. The positivity condition for A�

1 given in (1.10) can know be written as

A�
1 � A�

2
p r1c2

c1
� r2q

�
1� A2

K

�� µ2 � pµ1�αqc2
c1

p r1c2
c1

� r2qA�
2{K � α

. (1.14)

being A�
2 a positive root of a second degree polynomial which we will not present here

due to its complexity. In (1.10) the parameter c appears only in the expression for A�
2 , but

now c1 and c2 appear explicitly in the expression for A�
1 .

Different from Section 1.3.3, when c1 � c2, we can not divide the analysis
in cases according to α. Furthermore, by numerical simulations, we observed several
scenarios for different combinations of c1, c2 and α. We are not interested in presenting
a full analysis, but only give an example of the model dynamics when different tissue
responses are considered. So, we present in this appendix a particular case considering
α � 0.022, which is the same value used in the high mutation rate case in Section 1.3.3.

In Figure 1.10 we present the system behavior taking α � 0.022 and varying c1

for a fixed c2   cth
2 (a) and c2 ¡ cth

2 (b).
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Figure 1.10 – Existence and stability diagram for c1 � c2 considering α � 0.022 and fixed
c2.

(a) (b)

When c2   cth
2 , Figure 1.10a, we observe two regimes, in the first one (I) the

tissue pressure under A1 cells is weak, allowing their survival and the formation of a
heterogeneous tumor mass. As we increase c1, the A2 cells overpower the others and the
internal equilibria disappear while the boundary one becomes stable (II). Therefore, the
coexistence of both tumor cells is possible under high genetic instability since c1 is small,
which not occurs when c1 � c2. The curve denoted by s̃ corresponds to the positivity
condition given in (1.14).

In Figure 1.10b we observe the dynamics for c2 ¡ cth
2 . Notice that this figure

is similar to the transitory case presented in Figure 1.7, but containing a new regime
in which there is no internal equilibria, denoted by region VI. Remember that when we
consider c1 � c2 and α � 0.022 (see figure 1.3) the internal equilibria does not appear in
the dynamics, however using the same mutation rate we obtained a different behavior for
c1 � c2, which is similar to the transitory case (considering intermediary α). As we increase
c1, due to high pressure under A1 cells, the internal equilibrium points lose stability and
then disappear from the dynamics, remaining only the tumor-free state and the boundary
equilibria, similar to Figure 1.3 (high mutation rate case). Therefore, Figure 1.10 is, in a
way, a mix of cases 1 (α ¡ αc) and 3 (αb   α   αc) presented in Section 1.3.3.

Now, let us present in Figure 1.11 the existence and stability for c1 � c2 but
fixing c1 and varying c2.

In Figure 1.11 we vary c2 and obtained the same regions that we obtained in
Figure 1.10, but in different positions. Increasing c1 we are benefiting the A2 cells, so the
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Figure 1.11 – Existence and stability diagram for c1 � c2 considering α � 0.022 and fixed
c1.

(a) (b)

boundary equilibria becomes stable in rightmost regions. On the other hand, increasing c2

the A1 cells are benefited and the coexistence becomes possible, so the internal equilibria
appears in the rightmost regions of Figure 1.11. Therefore, different combinations of these
parameters can benefit one or another type of tumor cells, so the internal (or boundary)
equilibria can arise in cases where this was not possible when we assume c1 � c2.

Although we present only one particular case in this appendix, it is useful
to understand the role of c1 and c2 in the heterogeneity of the tumor mass and give us
insights for new studies.
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Chapter 2
Mathematical Modelling of Tumor-Immune
Cycle Encompassing Tumor Evasion

Abstract. Cancer can be characterized by the uncontrolled development of abnormal cells
as a result of the accumulation of genetic alterations and the loss of normal cellular
regulatory processes. These cells generate neoantigens which can be detected by the immune
system, triggering T cell responses that recognize and eliminate cancer cells. However,
tumor cells may use several mechanisms to avoid the immune response. In this work, we
propose a mathematical model for tumor-immune interaction and tumor evasion consisting
in a system of ordinary differential equations. Results predict that nonaggressive tumors
can be controlled by the tissue pressure and by the action of the immune cells, while the
aggressive ones overpower the healthy cells and show resistance to immune response, which
is increased by the tumor evasion mechanisms. The model also predicts that the tumor
aggressiveness, the evasion mechanisms, and other factors play a role in the efficacy of
immunotherapeutic treatments.

Keywords: tumor growth, immune response, tumor evasion, bifurcations, basins of attrac-
tion.

2.1 INTRODUCTION
Cancer is a leading cause of death worldwide, accounting for an estimated 9.6

million deaths in 2018 (33). Cancer arises from the uncontrolled proliferation and spread
of abnormal cells that have lost their normal cellular regulatory processes. The lethality of
malignant tumors is associated with their unregulated proliferative activity, the resistance
to death and the ability to invade host tissues and metastasize (34, 35).

The concept of immunosurveillance was proposed by Macfarlane Burnet in the
1950s and state that the host immune system is capable of recognizing and destroying
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transformed cells (36). The main response of the immune system to tumors is by T-cells,
the neoantigens are presented on MHC class I molecules like viral antigens, which allows
the cytotoxic T lymphocytes to recognize the tumor cells as abnormal and kill them
(37, 38, 39, 34).

Chen e Mellman(10) describes the Cancer-Immunity cycle as a series of stepwise
events that must be initiated and allowed to proceed and expand iteratively in order to
lead to effective killing of cancer cells. The neoantigens released by tumor cells are captured
by dendritc cells (DCs), which, in turn, present it on MHCI and MHCII molecules to
T-cells in the regional lymph node, resulting in the priming and activation of effector
CD4� and CD8� lymphocytes. Finally, these effector T cells traffic to the tumor site,
where recognizes the target tumor cells and kill them.

However, the anticancer immune response is not optimized. The tumor antigens
may not be recognized and correctly presented, T cells may be inhibited from infiltrating
the tumor and several other mechanisms are used to avoid the immune system (40). For
example, tumor cells express the programmed death-ligand 1 (PD-L1), which engages
the programmed death-1 (PD-1) receptor on activated T cells, transducing a signal to
inhibit T cell proliferation and function. By secreting cytokines like TGF-β, IL-10, IL-4
and IL-13, tumor cells inhibit the activity of macrophages and lymphocytes, creating an
immunossupressive tumor microenvironment (41, 42).

Several mathematical models of tumor-host-immune interactions have been
proposed in recent literature. Fassoni e Yang(32) developed a toy model for the interaction
between healthy cells and cancer cells without the immune response. The model exibits
three regimes: cancer cure, cancer onset and an intermediary regime with bistability
between these two states. Although this model do not consider immune cells, it provide
theoretical insights about cancer onset which can be compared to the model proposed
here.

Pillis, Radunskaya e Wiseman(43) proposed a model based on a system of
ODEs considering the adaptative immune response, by CD8� lymphocytes, and the innate
response, by natural killers cells. Several regimes of tumor growth, control, and elimination
were found, and the model tracked the different roles played by both responses in tumor
elimination, suggesting that interactions between other immune cell types have an effect
on the response. A similar model was proposed in (44), but considering the dynamics of
binding/detachment of CD8� lymphocytes to tumor cells, which lead to tumor escape
from immune system. Another tumor scape machanisms was examined in (45), in which
the effects of TGF � β suppression on T-cell response were considered, and in (46), in
which the role of regulatory T cells was analysed together the effect of some cytokines in
tumor dynamics, like TGF � β, IL-10 and IL-2.

In the context of state variables and compartments, the model proposed in this



Chapter 2. Mathematical Modelling of Tumor-Immune Cycle Encompassing Tumor Evasion 42

paper has similarities with the the model in (47), in which the cells interactions occur
in two different levels, the prostate gland compartment, which consider the interactions
among tumor cells, macrophages and immune cells, and the lymphoid tissue compartment,
which concerns the T-cell priming and differentiation.

According to these assumptions, we proposed a tumor growth model based on
a system of nonlinear ordinary differential equations considering the antigen presentation,
T cell priming and the tumor evasion mechanisms, which occur in two levels: the tumor
microenvironment level and in lymph node level. The model is presented in section 2.2
and the results are in section 2.3. In section 2.4 we discuss the results and its implications
in cancer immunotherapy. The conclusions are in section 2.5.

2.2 MATERIALS AND METHODS

2.2.1 MATHEMATICAL MODELING

We proposed a mathematical model consisting of a system of ODEs to represent
the tumor immune cycle including the evasion mechanisms. Two levels are considered in
the model: the tumor microenvironment (TME), which corresponds to the tissue where
the tumor cells are proliferating, and the lymph node (LN) level, representing the regional
lymph node where T-cell priming occurs.

In the TME level, six state variables are considered: Aptq represents the tumor
cells, Nptq stands for the normal cells, Cptq corresponds to the cytotoxic T lymphocytes
(CTL), Cdptq stands for the disabled CTLs by tumor cells, Dptq denotes the immature
dendritic cells (DCs), and Daptq stands for the activated (mature) DCs. The antigen
presentation and T-cell activation occur in the lymph node (LN) level, in which five other
state variables are considered: the lymph node DCs Dalptq, the naïve CD4� and CD8�

lymphocytes, denoted respectively by Hvptq and Cvptq, and the effector CD4� and CD8�

lymphocytes at the lymph node: Hlptq and Clptq.
We start by presenting the dynamics of these populations, then we present the

model parameters, and finally the model equations.

A constant production of healthy tissue cells N , dendritic cells D, and naïve
immune cells (Hv and Cv) is considered in the vital dynamics, denoted respectively by
rn, rd, rh and rc, instead of a density-dependent one. The production of new cells is not
related to living cells in the tissue, but it is related to the maintenance of a homeostatic
state, through the natural replenishment of old and dead cells (26), so the constant
recruitment rate was considered in the model. Moreover, all of the cells considered in the
model presents a natural mortality rate µ�, changing the sub-index according to each state
variable.
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On the other hand, tumor cells proliferate independent of the tissue structure
in which they are located, so we consider a density-dependent growth for tumor cells
by logistic law, being ra the intrinsic growth rate, µa the natural mortality rate and K

the tumor carrying capacity. This assumption means that the tumor cells have limited
resources and can not proliferate indistinctly, which is a reasonable assumption for avascular
tumors. To keep the model as simple as possible, we are not considering the phenomena of
angiogenesis, i.e., the formation of new blood vessels to feed the tumor cells (48, 49).

The tumor cells and healthy cells damage each other according to the parameters
b and c, which in a simple way, represents all the negative effects caused by tumor cells in
the tissue and vice-versa, like the competition by nutrients and space, toxicity, and so on
(15, 28, 29, 27).

Antigen presentation occurs in the following way: the immature DCs (D) catch
neoantigens and become mature ones (Da) according to the parameter γ. Then, these cells
transit to the regional lymph node at a flux ϕd and present the neoantigens at a rate σh

to the naïve CD4� lymphocytes, which differentiate into effector CD4� lymphocytes.

The effector CD4� lymphocytes stimulate the differentiation of naïve CD8�

cells into effector cytotoxic T-lymphocytes (CTLs) at a rate σc. Finally the effector CD8�

cells transit back to the TME at a flux ϕc, where they kill tumor cells, being β the killing
rate.

The effector lymphocytes in the lymph node can clone themselves, which is
called clonal expansion (34). In the model, the parameters θh and θc correspond to the
lymphocytes cloning rates, and the clonal expansions of CD4� and CD8� cells are included
in our model respectively by the terms

Θh � θhDal

�
1� Hl

Qh



and Θc � θcHl

�
1� Cl

Qc



.

Notice that, the CD4� clonal expansion depends on Ddal, that is, depends on
the presence of neoantigens, which means that the greater the number of DCs carrying
neoantigens, the greater the cloning expansion, furthermore there is no clonal processes
in the absence of neoantigens. The clonal expansion of CD8� cells, in turn, depends
on the cytokines produced by the CD4� cells, like the interleukin-2, IL2 (34). For both
lymphocytes, we assume that the clonal expansion can not occur indefinitely, but It is
limited by the carrying capacities Qh and Qc.

As previously described, tumor cells can avoid the immune response in several
ways. In this model, two evasion mechanisms are included: first, tumor cells disrupt the
maturation processes of DCs, being ν the disruption rate. Second, tumor cells may inhibit
CTLs in the TME, turning them into disabled CTLs (Cd). Parameter ρ represents the
inhibition rate of CTLs by tumor cells. The disabled CTLs stay at the TME, however
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they do not interfere in tumor control. Also, these cells may be reactivated at a rate τ .

The flowchart in Figure 2.1 illustrates the system dynamics highlighting the
parameters related to cellular interactions and transitions between the different levels.
The parameters corresponding to cellular production, proliferation and natural death are
omitted.
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Figure 2.1 – The tumour-immune interactions and T-cell priming. Dashed lines indicate
proliferation/activation or inhibition. Blocked arrows indicate killing/blocking.
Sharp arrows indicate transition/differentiation.

Based on the above descriptions and in the flowchart given by Figure 2.1, we
propose the following model to describe the tumor-immune cycle:

TME

$'''''''''''''''&
'''''''''''''''%

dN

dt
� rn � bNA� µnN

dA

dt
� raA

�
1� A

K



� cAN � βAC � µaA

dC

dt
� qϕcCl � ρAC � µcC � τCd

dCd

dt
� ρAC � pτ � µcqCd

dD

dt
� rd � γAD � µdD

dDa

dt
� γAD � νADa � pϕd � µdaqDa

(2.1)
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LN

$'''''''''''&
'''''''''''%

dDal

dt
� pϕdDa � µdalDal

dHv

dt
� rh � σhHvDal � µhvHv

dHl

dt
� σhHvDal �ΘhHl � µhlHl

dCv

dt
� rc � σcCvHl � µcvCv

dCl

dt
� σcCvHl �ΘcCl � pϕc � µclqCl

(2.2)

Table 2.1 contains the state variables used in the model, where volt corresponds
to the volume of the tissue where cancer is installed, for instance lung, kidneys, etc, and
volln corresponds to the volume of the regional lymph node where T-cell activation occurs.

Since DCs and CTLs traffic between TME and LN, and each level has different
characteristics (like volume, density, etc), we introduce two parameters, p and q, related
to the density fitness during level transition. Table 2.1 contains the units used for each
variable. Notice that C has unit depending on the volume of the TME, however these cells
come from Cl cells, whose unit depends on the LN volume. So, to correct the variable’s
dimensions, the flux ϕc of CTLs entering in the TME must be multiplied by the correction
factor p, whose unit is volt{volln, in order to fit the dimension of CTLs equation. Similarly,
the flux of DCs entering in the lymph node must be multiplied by the factor p, whose unit
is volln{volt. We can also assume p, q   1 to represent the lose of cells during the traffic.

Table 2.1 – State variables of the tumor-immune model (2.1)-(2.2)

Description Unit
TME Variables

A Tumor cells cell{volt
N Healthy tissue cells cell{volt

C Cytotoxic T Lymphocytes cell{volt

Cd Disabled CTLs cell{volt

D Immature Dendritic cells cell{volt

Da Mature dendritic cells cell{volt
LN Variables

Hv Naïve CD4� cells cell{volln
Hl Effector CD4� cells in LN cell{volln
Cv Naïve CD8� cells cell{volln
Cl Effector CD8� cells in LN cell{volln

Dal Mature dendritic cells in LN cell{volln

The model parameters are summarized in table 2.2

Since the main idea of this work is provide theoretical information about cancer
onset and its interaction with the immune system, we keep the model as general as possible
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Table 2.2 – Tumor-immune model parameters.

Parameter Description Value Reference
rn Recruitment rate of Normal cells 105 rcellsday�1 (50, 51, 52)
rd Recruitment rate of DCs 5� 102 (53)

rc, rh Recruitment rate of Naive lymphocytes 103 (53)
ra Tumor intrinsic growth rate 4.3� 10�1 (54)
µa Tumor natural death rate 0.143 Assumed
µn Normal cells natural death rate 0.143 (55)
µd DCs natural death rate 0.01 (53)

µda, µdal Mature DCs natural death rate 0.02 (53)
µhv, µcv Naive lymphocytes natural death rate 0.1 (53)
µh, µc Effector lymphocytes natural death rate 0.3 (53, 56)

K Tumor carrying capacity 5.25� 105 Assumed
b Tumor cells aggressiveness Allowed to vary
c Tissue response to tumor cells Allowed to vary
γ Antigen presentation coefficient 10�4 (54)
ϕd DCs flux to lymph node 0.9 (57, 58)
ϕc Effector CD8� flux to TME 0.9 (53)
p, q Density fitness coefficients 0.5 (57, 58)

σh, σc Naïve lymphocytes activation rate 10�3 (59)
θh, θc, Effector CD4� and CD8� cloning rates Allowed to vary
Qh, Qc CD4� and CD8� carrying capacity in LN 1010 (60)

τ Disabled CTLs recovery rate 0 -
β Tumor killing rate by CTLs Allowed to vary
ρ CTLs blocking coefficient by tumor cells 10�6 Assumed
ν DCs disruption coefficient by tumor cells 5� 10�5 Assumed

and do not consider a specific kind of cancer, however the equations and parameter
values can be adapted to represent the tumor proliferation in different organs and tissues.
Moreover, the proposed model does not consider the innate immune response and the
presence of, for instance, natural killer cells. In appendix 2.A we present a toy model
considering such kind of cells and determine that the efficiency of the innate response may
control or not tumor progression, therefore we are assuming in model 2.1-2.2 that this
innate response was already overpowered by tumor cells.

The analysis of system (2.1)-(2.2) will be discussed in the following section.

2.2.2 MODEL ANALYSIS

For the mathematical analysis we assume for simplicity that the disabled CTLs
can not be reactivated, τ � 0. Thus, the equation for Cd can be decoupled from model
(2.1)-(2.2) and will be omitted in the analysis from now on. Also, we firstly consider that
θh, θc � 0, that is, there is no clonal expansion, since it significantly increase the complexity
of the system equations and difficult the qualitative analysis related to the existence and
stability of equilibrium points. In section 2.3.3 we discuss the effect of clonal expansion in
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the tumor-immune dynamics.

In appendix 2.B we show that model 2.1-2.2 is well-posed and biologically
feasible, that is, the state variables will not assume negative values neither goes to infinity
once we choose a valid initial condition.

The equilibrium points are obtained by setting the derivatives in system (2.1)-
(2.2) equal to zero. To solve the related algebric system, we determined an expression for
the equilibrium point of each variable in terms of the tumor population A� and obtained a
polynomial equation related to that variable. Finding the positive roots of this equation we
are able to determine the other variables and the equilibrium points of system (2.1)-(2.2).

To analyse the polynomial equation related to A� we use the Descartes Rule
of Signs (61), that is, the signal alternations among the coefficients gives us the possible
number of positive roots and consequently the number of equilibrium points, which will
depend on the combination of the model parameters.

To stability analysis of the equilibrium points, we numerically obtained the
eigenvalues of jacobian matrix of system (2.1)-(2.2) evaluated at each equilibrium point.
Using bifurcations diagrams we determined the equilibrium points and obtained the related
eigenvalues, classifying them as stable, when all the eigenvalues has negative real part, or
as unstable, otherwise.

Let us show here a summary of the mathematical analysis, whose detailed
presentation are available at 2.C. Firstly, we introduce the trivial equilibrium point, or
tumor-free state, and then the possibilities of existence of nontrivial equilibrium points.

2.2.2.1 TRIVIAL EQUILIBRIUM POINT

Let us present the analysis of the trivial equilibrium point, or tumor-free state,
which is given by

P0 �
�
N̄ , Ā, C̄, D̄, D̄a, D̄al, H̄v, H̄l, C̄v, C̄l

� �
�

rn

µn

, 0, 0,
rd

µd

, 0, 0,
rh

µhv

, 0,
rc

µcv

, 0



. (2.3)

in which there is only the healthy cells, immature DCs and naïve lymphocytes in their
respective homoeostatic states. This equilibrium point always exists, and its stability is
determined by the following result:

Theorem 2. The tumor-free state P0 in (2.3) is locally stable if, and only if c ¡ cth, where

cth � µnRA

rn

� Ra

N0
, with RA � ra � µa. (2.4)

Proof. Let J0 � JpP0q be the Jacobian Matrix evaluated at P0, whose spectrum is given
by

σJpJ0q �
"
�µc,�µcv,�µd,�µdal,�µhl,�µhv,�µn,�pµcl � ϕcq,�pµda � ϕdq, rnpcth � cq

µn

*
,
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Therefore, all eigenvalues are real negatives, except rnpcth � cq
µn

, which will be negative if,

and only if, c ¡ cth, condition that which guarantee the tumor-free state stability.

The term RA corresponds to the net reproduction rate of tumor cells, which
we are assuming to be positive, while N0 is the homoeostatic state of healthy cells in the
absence of tumor population. Therefore, if and only if the host body response against
cancer is strong, then this state is stable and the cure is possible.

2.2.2.2 NONTRIVIAL EQUILIBRIUM POINT

Let P̄ � �
N̄ , Ā, C̄, D̄, D̄a, D̄al, H̄v, H̄l, C̄v, C̄l

�
be an arbitrary equilibrium point

of system (2.1)-(2.2). The trivial equilibrium point P0 is obtained taking Ā � 0, while the
nontrivial states, or tumor states, have Ā � 0.

Setting the system equations equal to zero and solving the related algebric
system we obtained that the expressions for N̄ , D̄, D̄a, D̄al, H̄v, H̄l, C̄v, C̄l and C̄ can
be written in terms of Ā, which, in turn, is a root of the fifth-degree polynomial given
in (2.9). In previous section we observed that the host body response determines if the
cure is possible or not, according to the threshold cth. Tumor onset, on the other hand,
also depends on its aggressiveness according to the threshold bth � µnra

RaK
. We classify the

tumor as aggressive if b ¡ bth and nonaggressive if b ¤ bth.

The existence of tumor states will be presented considering the combinations
of host body response and tumor aggressiveness in the following way:

CASE 1: c ¡ cth AND b   bth

There is no signal alternation among the coefficients of polynomial (2.9),
therefore, by the Descartes rule of signs, there is no tumor state in this situation.

CASE 2: c ¡ cth AND b ¡ bth

According to the coefficients of polynomial (2.9) two tumor states appear when
the aggressiveness b reach a critical value, denominated b̃th, with b̃th ¡ bth. The stability of
each equilibrium point was determined analysing the eigenvalues of the Jacobian matrix
evaluated at each point, being one of them stable and the other unstable.

In this case there is bistability between the tumor-free state and the stable tumor
state. The unstable one, in turn, divides the basins of attraction of the stable equilibrium
points, which means that, the unstable state is a critical value for the initial tumor size:
if it is bigger than the stable state, tumor progress, but if it is smaller than the critical
value, tumor will be eliminated. Figures 2.6 and 2.8 in Appendix 2.C presents a bifurcation
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diagram illustrating the appearance of the equilibrium points as the aggressiveness is
increased.

CASE 3: c   cth AND b ¡ bth

When we consider that c   cth there always be at least one signal alternation
among the polynomial coefficients, therefore, there is at least one tumor state in this
situation.

Considering b ¡ bth, we observed the existence of one or three tumor equilibrium
points, depending on the immune response. Let βc

1 and βc
2 be the critical values for the

citotoxic action of lymphocytes β, defined in (2.8) in Appendix 2.C, which determine three
distinct situations, which are:

i. Low Immune Action (β   βc
1): there is a single tumor equilibrium point, which is

stable.

ii. Medium Immune Action (βc
1   β   βc

2): there is three tumor equilibrium points. The
first one, with more tumor burden, is stable; the second one, with medium burden,
is unstable; the last one is stable and has only a fell tumor cells. The unstable state
divides the basins of attraction of the other two tumor states, so the initial tumor
size determines if it will grow to the bigger state, or shrink to the smallest state.

iii. High Immune Action (β ¡ βc
2): there is only one tumor state, but with a low tumor

burden.

To illustrate the transition among these situations and the appearance/di-
sappearance of the tumor states according to β, Figure 2.7 in appendix 2.C contains
a bifurcation diagram. The behavior observed here is compatible with the hysteresis
phenomenon presented in (61). In the course of the work, we will discuss this occurrence
in more detail.

CASE 4: c   cth AND b   bth

Similar to previous case, there will always be at least one tumor state in this
situation. When the evasion parameters ν and ρ are small, then there is a single tumor
state, which is stable.

However, as these parameters are increased, two other tumor states may appear
and the systems bevahior is the same discussed above: for β   βc

1 there s a single tumor
state, for βc

1   β   βc
2 there are three tumor states, two of them are stable and one is

unstable. Finally, when β ¡ βc
2 there is only one tumor state, which is stable. Therefore, if

we consider ν and ρ high, then the case 4 (c   cth and b   bth) has the same behavior of
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case 3 (c   cth and b ¡ bth), thus the evasion parameters ν and ρ induce the hysteresis
phenomena in case 4, which does not exists in the absence (nor for small values) of these
parameters.

Actually, ν and ρ are responsible for facilitating the establishment of the tumor
in all the cases presented above, either increasing the size of the tumor state or increasing
its basin of attraction, requiring better immune and tissue responses to control tumor
growth.

All the situations presented are discussed and analyzed in detail in 2.C together
with bifurcations diagrams illustrating the system’s behavior. In the next section, we will
present the biological interpretations of this mathematical analysis.

2.3 RESULTS
Let us interpret the mathematical results done in previous sections and present

their biological implications.

Firstly, let us deal with the tumor-free state, given in (2.3) whose stability
is determined by the threshold cth. Parameter c corresponds to the host tissue response
against cancer. According to theorem 2, if this response is strong (c ¡ cth) the tumor-free
state P0 is stable and the tumor onset may be avoided; on the other hand, if the host
body response is weak c   cth, then P0 is unstable and the tumor progress. Furthermore,
the higher the tumor net growth rate RA, the higher cth, so the tissue response c needs to
be bigger to control cancer onset, that is, more proliferative tumors require better tissue
responses to be suppressed. On the other hand, if the homoeostatic N0 is high, then cth is
small and healthy cells can control tumor cells more easily.

Moreover, the stability of P0 does not depend on the immune system, and
the possibility of cure is determined only by the host body response. It happens because
T-cells are triggered only in the presence of tumor cells. Although the immune system
does not determine P0’s stability, it is important in tumor control, which will be discussed
throughout this work.

The host body and immune system may lead cancer to cure, when all the
abnormal cells are eliminated, or to remission, when the tumor cells are decreased and
not be detected, and symptoms disappear, although cancer still may be in the body. The
cancer may come back to the same place as the original (primary) tumor or to another
place in the body, which is called a recurrent cancer (62).

Since the possibility of cure is determined by cth, we divided the results in
two cases according to the tissue response parameter: strong response c ¡ cth and weak
response c   cth.
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2.3.1 STRONG TISSUE RESPONSE (c ¡ cth)

When we combine a strong tissue response (c ¡ cth) with a nonaggressive tumor
(b   bth), them the tumor-free state is the only one equilibrium point of system (2.1)-(2.2),
therefore the tumor onset is not possible. We can interpret this situation as a healthy host
with a non-aggressive tumor, therefore the host body can control tumor progression and
eliminate it since P0 is the unique biological-feasible stable steady state of the dynamical
system.

When the tumor is aggressive (b ¡ b̃th) two tumor equilibrium points appear,
one stable and the other unstable, as presented in 2.2.2.2. Let A� be the tumor burden
of the stable state, while A� is the tumor burden of the unstable state. In this situation
if the tumor initial size is lesser than A�, then the host body eliminates the abnormal
cells, going to the tumor-free state. On the other hand if the initial size is bigger than A�,
the host body can not control tumor progression, which will grow to the stable state A�.
Furthermore, the more aggressive the tumor is, the lesser is A�, which means that smaller
tumors may also progress if they are strongly aggressive. Figure 2.2 illustrates the systems
behavior for the strong tissue response case.

Figure 2.2 – Possible outcomes considering the tumor initial size and its aggressiveness
for the strong tissue response case (c ¡ cth)

The introduction of the immune response affects tumor onset and progression
in several ways. Firstly, increasing the killing rate β also increases the critical value b̃th,
therefore the stronger the cytotoxic action of lymphocytes, the more aggressive the tumor
needs to be in order to escape and grow, otherwise, it will be eliminated by the host’s
response. Furthermore, the immune response decreases the value of A�, that is, it decreases
the size of the tumor in equilibrium, and also increases the value of A�, thus hindering
tumor growth, since its initial size will need to be bigger.

However, the evasion mechanisms work to do the opposite. Increasing the
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parameters ν and ρ decreases the value of β̃th, so more evasive tumors can progress even
with low aggressiveness. Furthermore, these parameters also affect tumor equilibrium,
increasing A� and decreasing A�, thus allowing tumors to grow even if they are initially
small. In Appendix 2.C we present the analysis of system behavior and the role of
parameters β, ν and ρ in details, also the Figures 2.6 and 2.8 illustrate the cases discussed
above.

2.3.2 WEAK TISSUE RESPONSE (c   cth)

Now, let us deal with the weak tissue response (c   cth). In this situation,
the tumor-free state is unstable, thus there is no possibility of cure, but tumor can be
controlled in a remission situation, as we will present.

Firstly, let us consider a nonaggressive tumor, b   bth. In this case, there
always be a single tumor state, therefore, the abnormal cells will always achieve this
equilibrium since the tumor-free state is unstable. However, the cytotoxic action of
lymphocytes decreases the tumor size in the equilibrium, therefore, improving the killing
rate β the tumor size can be small and remain in remission. The evasion mechanisms, on
the other hand, inhibit the immune response and difficult tumor control, so the effort of
the lymphocytes needs to be bigger to lead to the remission in case of evasive tumors.

On the other hand, if we consider an aggressive tumor, b ¡ bth, three different
situations may occur according to the immune response, as we discuss in section 2.2.2.2.
Figure 2.3 illustrates the possibilities in the weak tissue response case considering the
three levels for immune response and the tumor initial size.

Figure 2.3 – Possible outcomes considering the tumor initial size and the lymphocytes
cytotoxic action for the weak tissue response case (c   cth)

When we consider low immune action (β   βc
1) there is a single tumor equi-

librium point with a huge number of cells, lets say A�. Since the lymphocytes can not
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control the tumor grow, it will increase its size until achieve the equilibrium. For medium
immune action (βc

1   β   βc
2), three tumor states appear: the first one, similar to previous

case, is stable and has numerous cells, denoted also by A�. The second one, also stable,
has only a few cells, which we characterize as the remission state. Finally the third one is
an unstable state whose tumor burden is denoted by A�. If the tumor initial size is bigger
than A�, than it will grow to the value A�, however, if the initial size is lesser than A�,
then the tumor cells go to the remission state. Finally, for high immune action (β ¡ βc

2)
there is only the remission state, therefore the lymphocytes always control the tumor and
keep it at low level.

The Figure 2.3 also shows us that, when it comes to aggressive tumors, there
is resistance to remission. For instance, consider a situation where the immune response is
low (the left region in figure) and the tumor mass is big, close to its equilibrium value.
Suppose that the action of lymphocytes is improved (by therapies, for instance) walking
then to the central region of the figure. Although there is a possibility of remission in this
region, the tumor does not regress because its size is bigger than the value of A�, since
we start from a tumor close to equilibrium. The remission only happens when we reach
the right region of the figure, that is, when β ¡ βc

2. So, the existence of the intermediary
regime (mathematically equivalent to the hysteresis) implies tumor resistance.

Now, consider a host with high immune action and a tumor in remission, that
is, we start in the right region of the figure. If the lymphocytes loose strength somehow,
due to tumor interference or external facts, reducing the parameter β and entering in
central region, the tumor cells remain in low level until the microenvironment becomes
favourable, that is, until β   βc

1. At this point the abnormal cells start to proliferate and
tumor goes from the remission state to the equilibrium value occurring a tumor relapse.

As we discussed, nonaggressive tumors (b   bth) do not have such an inter-
mediary regime, since there is a single nontrivial equilibrium point. Thus, they are not
resistant, which means that increasing lymphocytes action leads to remission without
passing through the hysteresis region. The evasion mechanisms ν and ρ, however, affect
this behavior and induce the appearance of the transient region even for nonaggressive
tumors. Figure 2.9 in the appendix shows this transition as we increase ν and ρ. Thus,
when there is evasion, even less aggressive tumors resist remission, showing the same
behavior as aggressive ones. Furthermore, increasing the value of the parameters ν and
ρ also increases the value of βc

2, that is, the central region of the Figure 2.3 gets bigger,
needing stronger cytotoxic action to lead the tumor to remission.
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2.3.3 ASSESSING THE EFFECTS OF CLONAL EXPANSION IN TUMOR-
IMMUNE INTERACTIONS

In this section we briefly discuss the effects of clonal expansion in the systems
behavior and its biological implications, so we investigate how parameters θh and θc change
the diagrams 2.2 and 2.3. Similar to previous section, we divide the results considering
strong and weak tissue response.

STRONG TISSUE RESPONSE

Since the cloning processes increases the lymphocytes population, it is expected
that tumor control will be facilitated as we increase the cloning rates θh and θc. Indeed,
the value of β̄th is increased when we include the cloning rates, which means that the
tumor must be more aggressive to avoid elimination. Figure 2.10b in appendix illustrates
how the cloning rates displace β̄th forward, hindering tumor progression in the host body.

In addition to increasing the value of β̄th, clonal expansion also affects the
critical value A� which determines, from the initial tumor population, whether it will grow
or be eliminated. We observed that, once a certain aggressiveness b is fixed, the higher the
cloning rate, the higher the value of A�, that is, the initial size of the tumor mass needs
to be bigger to settle down in host body. However, at a certain point, increase even more
the cloning rate does not increase A�, instead of it, a new stable tumor equilibrium point
arises, which is illustrated in Figure 2.12 of the appendix 2.C.3. In this case, the clonal
expansion creates an intermediary tumor state, therefore, even if the host body can not
eliminate the cancer cells, it may keep them in a middle level instead of allows it grown to
the tumor state and reach a bigger size.

Several simulations were done to understand the model dynamics in this
situation. In general, we observe that the tumor always presents a rapid growth at the
beginning, due to high aggressiveness, which in turn generates a strong immune response
because of the high clonal expansion, thus controlling the tumor growth. At this point,
depending on the initial population of tumor cells and the host body parameters, we
observe the three outcomes highlighted above: i) the tumor is able to recover and evades
the immune response, growing and achieving tumor equilibrium; ii) the immune response
can be efficient and eliminate it; iii) when there is a certain balance of forces, the tumor
goes into intermediate equilibrium, with a relatively low tumor burden.

In the appendix 2.C.3 we present in more detail the dynamics that arise with
the high cloning rate, the emergence of this new equilibrium and the dependence on initial
conditions.
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WEAK TISSUE RESPONSE

The model bahavior in this case is presented in Diagram 2.3 and summarized
as follows: regime I with β   βc

1 presents tumor progression; regime II with βc
1   β   βc

2

presents two outcomes, tumor progression and tumor remission, depending on the initial
burden; and regime III with β ¡ βc

2 always leads to tumor remission.

Including the clonal expansion, we observed that the values of βc
1 and βc

2

decrease, so the first region corresponding to tumor progression becomes smaller, while
the second and third regions are displaced backward. Therefore, even for low values of
the killing rate β, the immune response is able to lead the tumor to remission and avoid
its progression. In Appendix 2.C the Figure 2.12 illustrates the curves being displaced
backward as we increase θh and θc. Notice that when these parameters are high enough the
tumor progression region I does not exists, therefore, when the clonal expansion is strong,
the remission state exists regardless the value of β and tumor can be easily controlled.

However, we observe that considering a high cloning rate, a limit cycle arises
around the remission equilibrium point. This means that the tumor population will not
be constant at the remission state, but it will oscillate around the equilibrium point,
periodically. In figures 2.13 and 2.14 of the appendix 2.C we discuss the emergence and
mathematical implications of this type of solution, here we will pay attention to the
biological interpretation.

When the tumor population starts to increase beyond the state of remission,
the immune response is triggered and quickly proliferate (due to the high cloning rate)
eliminating the tumor cells. When the tumor is almost eliminated (below the state of
remission), the immune response also diminishes, allowing the tumor to grow again. When
it reaches a high value, a new immune response will be activated, restarting the cycle
described above.

Since these oscillations occur around the remission state, which has only a few
tumor cells, the periodically increase and decrease of tumor size may not be detectable,
depending on the limit cycles amplitude. In the appendix 2.C we observe that the amplitude
of the oscillations is associated with the killing rate β so that the smaller this parameter,
the greater the oscillation, that is, the more the tumor can grow before being slowed down
by the immune response. On the other hand, the bigger β, the smaller the oscillation, since
tumor cells are quickly controlled by lymphocytes. This is also related to the period of the
cycle, the greater the oscillation, the longer the time needed for the tumor to recover and
grow again (the time between two oscillations), while for high β the oscillations are small
and therefore the time between them is short. Figure 2.15 illustrates the oscillations in the
tumor population for different values of β.
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2.4 DISCUSSION

2.4.1 IMMUNOTHERAPY: THEORETICAL INSIGHTS

The immunotherapy consists of mobilizing the immune system to treat cancer
(63, 64). Promising new therapies have emerged in the treatment of selected cancers,
including immune checkpoint inhibition therapies (65), like anti-PD-1 and anti-PD-L1 (66),
the CAR T-cells therapies (67), non-specific immune stimulation and treatment vaccines,
which improves the immune cells’ skills to fight cancer .

In system (2.1)-(2.2), such therapies may interfere in the model parameters,
especially in the killing rate β and in the tumor evasion parameters ν and ρ. Simply, let
us simulate the use of, for instance, immune checkpoint inhibition therapies, assuming
that the treatment is able to decrease the value of the evasion parameters ν and ρ. We are
not considering equations for the drug concentration, neither complex interactions among
these drugs and the immune cells; our purpose is to obtain insights about immunotherapy
using model (2.1)-(2.2) as simple as possible.

Firstly, let us consider the strong tissue response case, c ¡ cth. We already know
that when b ¡ b̃th the tumor may grown or be eliminated, depending on its initial size. Also,
ν and ρ allows the progression of less aggressive tumors, so when the therapy starts, ν and
ρ will be decreased and consequently the the value of b̃th will be displaced forward. Figure
2.4a illustrates it, the black lines correspond to the dynamic without treatment, while the
blue lines represent the dynamics during treatment. The curve A� and Ã� correspond to
the critical tumor initial size with no treatment and during treatment, respectively. Above
each one, the tumor progress, while under them, the dynamics goes to cure.

To illustrate the treatment successful or failure, consider two patients, each
one presenting a different tumor aggressiveness and a different initial tumor population,
given in diagram 2.4a by the points P1 and P2.

Notice that, both patients, in the abscence of treatment (black line) has initial
size bigger than A�, therefore the tumor population will increase until achieve the tumor
state. When the therapy is introduced (blue curve), the patient P1 has tumor aggressiveness
lesser then β̃th

1, so the only possbility is the cure state, therefore tumor cells start to
decrease and approach zero.

When treatment stops, the dynamics goes back to the black lines, therefore if
the remaining tumor population after treatment is bigger than A�, the treatment will fail
since the tumor will start to increase again, on the other hand, if after treatment there are
less than A� tumor cells, the treatment success and the dynamics goes to cure.

In Figure 2.4b we illustrate the treatment failure and successful: starting with
the same initial condition, we present the simulation in which there is no treatment (so
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Figure 2.4 – Immunotherapy scheme and simulation in the strong tissue response case
(a) Immunotherapy scheme (b) Numerical simulations

the population increases until the equilibrium) and two treatment simulations. In the
first one, the treatment stops at t � 50, and the number of tumor cells increases since
the reduction was not enough to achieve the critical value A�, so treatment fails. In the
second simulation, the treatment was extended up to t � 100, and after that, the tumor
cells remain decreasing until its elimination, representing a treatment successful.

Now, notice that even during treatment, the patient P2 remains in the tumor
progression region, that is, to the right of β̃th

1 and with initial size bigger than Ã�, so the
tumor keeps proliferating and this patient does not respond to the treatment.

A similar analysis was done for the weak tissue response case, c   cth, which is
presented in Figure 2.5. Here, during treatment the the curves will be displaced backward,
so lesser killing rates β will be able to reduce the tumor population to the remission
state. Again, the black lines correspond to the absence of treatment, while the blue lines
represents the dynamics during treatment.

Figure 2.5 – Immunotherapy scheme and simulation in the strong tissue response case
(a) Immunotherapy scheme (b) Numerical simulations
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Firstly, consider the patient P1. Since his/her killing rate β is such that β   βc
1,

the only one equilibrium point is the tumoral state, so when the treatment stops, whatever
is the remaining tumor population, it will always increase and approach the tumoral
state. In other words, treatment will fail in patients with a weak immune response, whose
parameter β is lesser than β1.

Now, for patient P2. In the absence of treatment, this points belongs to the
tumor progression region, since it has βc

1   β   βc
2 and the initial size is bigger than

A�, therefore the tumor will proliferate. During the treatment, the curves are displaced
backward and now the patient belongs to the remission region, since β ¡ β

1

2, and so
the tumor cells will decrease. Analogous to previous case, when the treatment stops, the
systems dynamic goes back to the black lines; if the remaining tumor population is lesser
than A�, treatment will success, otherwise the abnormal cell will start to proliferate again.
Figure 2.5b illustrates both situations.

Therefore, two key factors determine the successful of immunotherapy. The
first one depends on the carachteristics of tumor cells and how the host body responds
to them. Patients carrying aggressive and evasive tumors may not respond to treatment.
The same occurs for weakened patients, who present low killing rate (β) and weak tissue
response (c). The second factor is the treatment’s duration: even if the relation tumor-host
body allows immunotherapy success, if the treatment stops before the tumor size achieve
the critical value A�, treatment will fail. It is important to mention that this kind of
therapy also has side effects, which are not included in our analysis. Therefore, there is a
limit for the drug concentration in the host body and treatment duration, thus impairing
the performance of immunotherapy.

Furthermore, other types of treatment can be used together, before or even
after immunotherapy in an attempt to fight cancer, such as chemotherapy or targeted
therapies. A more detailed study on immunotherapy, including the equations for drugs,
toxicity, and joint treatments, will be carried out in future works.

2.4.2 THE ROLE OF THE IMMUNE SYSTEM IN CANCER DYNAMICS

In this study, we developed a mathematical model for the tumor-immune
interaction considering T-cell priming and tumor evasion mechanisms. The model provides
us information about how the tumor onset may be prevented or controlled by the tissue
and T-cells, and also the effects of tumor evasion in the efficiency of the immune system.

The immune response has a direct effect on tumor cells, by β, but also an
indirect effect which we will discuss now. In system (2.1)-(2.2), the competition terms
between the tumor and the healthy tissue are given by cN in the tumor equation, and bA

in the healthy tissue equation. Due to the killing rate β, the immune response decreases
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the number of tumor cells A, then the competition term bA also decreases, that is, the
population of healthy cells is less pressured by competition and can proliferate more. Since
there are more healthy cells, the term cN of total competition in A increases, as if the
effect of competition in A becomes stronger. Therefore, the immune response not only
direct eliminates tumor cells but also interferes in the interaction of tumor-healthy tissue.

In the absence of an immune system, model (2.1)-(2.2) is quite similar to the
model proposed by Fassoni e Yang(32), which corresponds to a mathematical model for
the interaction between tumor cells and healthy tissue cells. This model exhibits three
regimes: in the first one cancer onset is not possible since the cancer cure state is globally
stable; the second regime presents bistability between cancer and the cancer cure states;
in the third regime, the cancer state is globally stable. This qualitative behavior is similar
to those presented here, since the immune response affects the competition terms as we
discussed. The combination of an aggressive tumor with a weak tissue response is the
worst situation for the host body. In the absence of an immune response, the healthy cells
are overpowered by cancer cells and tumor progression occurs (32).

When the immune response is included, the CTLs can control tumor mass,
leading the dynamics to a remission state. Nonaggressive tumors are more easily controlled
by the immune cells, that is, a little increase in the killing rate β is enough to decrease the
tumor state population to a small value. However, aggressive tumors present resistance to
be destroyed due to the hysteresis effect. The number of tumor cells remains high until
β reach a critical value βc

2 when the tumor state jumps down to the remission state. We
also observed that the hysteresis may explain tumor recurrence cases since as β decreases,
the tumor population remains at a low level until the point that the killing rate is small
enough, and the equilibrium point jumps up from the remission state to the tumor state,
and the tumor starts to proliferate.

Tumor evasion plays an important role in tumor onset and progression. Including
such mechanisms in the dynamics, we observed an increase in the tumor equilibrium
population, also facilitating tumor to settle down in host body, even the less aggressive
ones. Furthermore, nonaggressive tumors presented the hysteresis phenomena, which is
not noticed in the absence of evasion, which means that, due to these mechanisms, even
nonaggressive tumors show resistance to be eliminated. Also, the effort of the immune
system to control tumor needs to be even bigger when the evasion mechanisms are included.

The model proposed by Pillis, Radunskaya e Wiseman(43) considered the T-cell
interactions with natural killer cells. Similar to the results in our model, the author found
several regimes of tumor growth, control, removal and also periodic solutions. Although
the model did not include any suppressive effects, the importance of the innate immune
response in that work suggests that other immune cells, like the natural killer cells, have an
effect on the tumor dynamics, and may be included in our future works. Arciero, Jackson e
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Kirschner(45), in turn, focused in the suppressive effects, specially by the regulatory T-cells.
These cells inhibit CTLs action in the TME, creating an immunosuppressed environment.
The presence of these cells affects the tumor growth and control and also may be included
in future works.

Furthermore, some tumor cells may be more immunogenic than the others due
to the accumulation of mutation, measured by the mutation burden (11). In Chapter 1
we analyzed a simple model considering two distinct tumor phenotypes according to the
mutational accumulation; our next step is to include this cell differentiation in system
(2.1)-(2.2) together another aspects of the antitumor response.

2.5 CONCLUSION
We proposed a mathematical model describing the tumor-immune cycle consi-

dering antigen presentation, T cell priming and the evasion mechanisms used by tumor
cells to avoid the CTLs and disrupt the antigen presentation. The results showed that
the total tumor elimination is only possible in a healthy body host which presents a
strong tissue response against tumor cells. Otherwise, the tumor cells can not be totally
eliminated, but can be controlled and reduced to a low burden with the help of immune
cells.

The damage caused by tumor cells in the healthy tissue plays a role in the
tumor maintenance. Nonaggressive tumors, which cause less damage, can be controlled by
the tissue pressure and by the immune cells action. Tumors which cause more damage,
the aggressive ones, overpower the healthy cells and show resistance to immune response.

Tumor evasion is the main barrier faced by the immune system to fight cancer
since these mechanisms increase tumor resistance. Nonaggressive tumors are more easily
eliminated and have no resistance in the absence of tumor evasion. However, when including
such mechanisms, it was noted that even nonaggressive tumors showed resistance to the
action of CTLs. Aggressive tumors benefit even more from these mechanisms and make
T-cell action even more difficult.

We also discussed about the use of immunotherapy, which is a good alternative
in cancer treatment, however, some patients may not benefit from this type of treatment,
whose efficiency depends on the combination of some factors: tumor aggressiveness, host
body response, immune response, and the tumor ability to avoid immune system. In
general, patients with weakened immune system and tissue response, together aggressive
and evasive tumors patients with weakened immune systems do not respond well to
immunotherapy. Also, the treatment’s duration needs to be enough to decrease tumor
population and change the basin of attraction, otherwise, the treatment fails.
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Understanding the key processes in tumor–immune cycle is extremely important
to the development and optimization of effective treatments, especially immunotherapies.
The model presented here helps to understand these interactions, providing theoretical
insights which are useful to the formulation of more complex and accurate models.

APPENDIX

2.A MODELLING THE INNATE IMMUNE RESPONSE
In this section we present a toy model considering the innate immune response

against cancer. Only two state variables are considered: tumor cells A and the innate
immune cells M , corresponding to macrophages, natural-killers and other cells which form
the first barrier to eliminate pathogens. These cells circulate in the host body patrolling
the tissues and searching viruses, bacterias and abnormal cells, therefore we assume in
our model a constant recruitment rm of circulating cells into the tumor microenvironment
(TME). Tumor cells, on the other hand, proliferate according to the intrinsic growth
rate ra, and are limited by the TME carrying capacity K. The immune cells recognize
and eliminate the tumor cells at a rate δ. Paremeters µa and µm stands for the natural
mortality rate of tumor and immune cells, respectively.

Based on these assumption we proposed the following model for the interaction
between cancer and innate immune response:

dA

dt
� raA

�
1� A

K



� δMA� µaA (2.5)

dM

dt
� rm � µmM

The equilibrium points of model (2.5) are obtained setting its equations to zero
and solving the corresponding system.

From the second equation we have that the value of M at the equilibrium is
M� � rm{µm. Substituting in the first equation, we obtain two equilibrium points: the
tumor-free state P0 � pA�, M�q � p0, rm{µnq and the tumor equilibrium:

P � � pA�, M�q �
�

Krm

raµm

pδth � δq, rm

µm



(2.6)

where δth � µmpra � µaq{rm. Therefore, the tumor state P � is biologically feasible if, and
only if, δ   δth, otherwise the tumor population are negative.

Let us analyse the stability of the two equilibrium points. Let JpA�, M�q be
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the Jacobian Matrix related to system (2.5) given by

JpA�, M�q �
�
� ra

�
1� A�

K



� raA�

K
� δM� � µa 0

�δA� �µm

�
�

The eigenvalues of the Jacobian matrix evaluated at the tumor-free state (JpP0q)
are given by λ1 � �µm and λ2 � prm{µmqpδth � δq. So, the tumor-free state is stable if,
and only if, δ ¡ δth, and unstable otherwise. Similarly, the eigenvalues related to the tumor
state P � are λ1 � �µm and λ2 � prm{µmqpδ � δthq. Therefore, the tumor state is stable if,
and only if, δ   δth, and unstable otherwise.

This result show us that, if the innate response is accurate (δ ¡ δth) the tumor
is eliminated by immune cells. On the other hand, if the response is not good enough,
tumor evade from immune cells and settle down in the host body.

2.B INVARIANCE
Let Ω be the biologically-feasible domain for system (2.1)-(2.2), which is given

by

Ω �  pN, A, C, D, Da, Dal, Hv, Hl, Cv, Clq P R10
� | N ¤ rn{µn; A ¤ IaK{ra;

D �Da �Dal ¤ rd{µmax
d ; Hv ¤ rh{µhv; Hl ¤ Hmax; Cv ¤ rc{µcv;

Cl ¤ Cmax; C ¤ qϕcCmax

µc

*
.

where Ia � ra � µa, µmax
d � max tµd, µda, µdalu, Hmax � max

"
Qh,

σhrhrd

µhvµhlµmax
d

*
and

Cmax � max
"

Qc,
σcrcHmax

µcvpϕc � µclq
*

.

Let us show that the set Ω defined in (2.7) is an invariant set for system
(2.1)-(2.2). We need to show that the flux of system (2.1)-(2.2) at the border of Ω points
into the invariant set, that is, we analyse the derivatives at the borders of Ω.

First, It is easy to see that, if the state variable assumes zero, then the derivative
of the corresponding equation is zero or positive, that is, if x � 0 then dx{dt ¥ 0, for
x � N, A, D, Da, Dal, Hv, Hl, Cv, Cl and C. Therefore the flux in these borders points into
Ω, or equivalently, at x � 0, the derivatives are positive and the populations must increase,
do not assuming negative values.

Now, let us show that each population are limited and can not go to infinity,
remaining in the invariant set Ω.

For the healthy cells population, notice that
dN

dt
� rn � bNA� µnN ¤ rn � µnN,
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so when N � rn{µn we have that dN

dt
¤ 0.

For the tumor cells population:

dA

dt
� raA

�
1� A

K



� cAN � βAC � µaA

¤ raA

�
1� A

K



� µaA

� IaA

�
1� ra

IaK
A



.

So, if A � IaK

ra

then dA

dt
¤ 0.

For the DCs equation, we have that

dpD �Da �Dalq
dt

� rd � νADa � p1� pqϕdDa � µdD � µdaDa � µdalDal

¤ rd � p1� pqϕdDa � µmax
d pD �Da �Dalq

¤ rd � µmax
d pD �Da �Dalq, since we assume p ¤ 1.

Therefore, at the border D �Da �Dal � rd

µmax
d

we have that dpD �Da �Dalq
dt

¤ 0.

The Hv equation satisfies:

dHv

dt
� rh � σhHvDal � µhvHv ¤ rh � µhvHv,

so, when Hv � rh{µhv we have that dHv

dt
¤ 0.

Using that Hv ¤ rh{µhv and Dal ¤ rd{µmax
d in Ω, the equation for Hl can be

written as
dHl

dt
� σhHvDal � µhlHl � θhDal

�
1� Hl

Qh



Hl

¤ σh
rh

µhv

rd

µmax
d

� µhlHllooooooooooomooooooooooon
♢

� θh
rd

µmax
d

�
1� Hl

Qh



Hlloooooooooooomoooooooooooon

△

.

Notice that, if Hl � Hmax, then we have that Hl ¥ Qh, which implies that
the expression △ is less than or equal to zero. Equivalently, Hl � Hmax implies Hl ¥

σhrhrd

µhvµhlµmax
d

and consequently, the expression ♢ is less than or equal to zero. Therefore, at

the border H � Hmax we have that dHl

dt
¤ 0.

For Cv, we have that

dCv

dt
� rc � σcCvHl � µcvCv ¤ rc � µcvCv,

so, when Cv � rc{µcv we have that dCv

dt
¤ 0.
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We use the fact that Hl ¤ Hmax and Cv ¤ rc{µcv and obtain that
dCl

dt
� σcCvHl � pϕc � µclqCl � θcHl

�
1� Cl

Qc



Cl

¤ σc
rc

µcv

Hmax � pϕc � µclqCllooooooooooooooomooooooooooooooon
♢

� θcHmax

�
1� Cl

Qc



Clloooooooooooomoooooooooooon

△

.

Similar to Hl, if we take Cl � Cmax, then Cl ¥ Qc and Cl ¥ σcrcHmax

µcvpϕc � µclq , which implies

that the expressions ♢ and △ are less than or equal to zero, resulting that dCl

dt
¤ 0.

Finally, for C:
dC

dt
� qϕcCl � ρAC � µcC

¤ qϕcCmax � µcC,

and if C � qϕcCmax

µc

, then dC

dt
¤ 0

Therefore, the flux at the borders of system (2.1)-(2.2) points into Ω. That is,
taking an initial condition in Ω, the solutions will not go to infinity, or assume negative
values. Equivalently, the solutions can not escape from the domain Ω and the system
(2.1)-(2.2) is invariant in this set.

2.C MATHEMATICAL ANALYSIS OF THE TUMOR-IMMUNE
MODEL

In this section, we detailed show the mathematical analysis of system (2.1)-(2.2).
We assume for simplicity that the disabled CTLs can not be reactivated, τ � 0. Thus,
the equation for Cd can be decoupled from model (2.1)-(2.2) and will be omitted in the
analysis from now on.

The equilibrium points are obtained by setting the derivatives in system (2.1)-
(2.2) equal to zero, and the stability analysis is performed by the eigenvalues of the
Jacobian Matrix JpN, A, C, D, Da, Dal, Hv, Hl, Cv, Clq related to the dynamical system.

Firstly we analyse the model without the evasion mechanisms and then introduce
such parameters to observe how they may change the systems behavior. Finally, we analyse
the cloning processes and its effect in the model dynamics.

2.C.1 SUBMODEL WITHOUT CLONAL EXPANSION AND TUMOR EVA-
SION

Initially, to better understanding the effect of tumor evasion on system (2.1)-
(2.2), it is important to analyze the behavior of this system without such mechanisms
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(ν � ρ � 0). The clonal expansion is also removed in this section (θH � θC � 0) to simplify
the model analysis.

Let P̄ � �
N̄ , Ā, C̄, D̄, D̄a, D̄al, H̄v, H̄l, C̄v, C̄l

�
be an arbitrary equilibrium point

of system (2.1)-(2.2).

The trivial equilibrium point P0 was analysed in section 2.2.2.1, so here restrict
the results here to the nontrivial equilibrium points, or tumor states. The expressions for
N̄ , D̄, D̄a, D̄al, H̄v, H̄l, C̄v, C̄l and C̄ can be written in terms of Ā, which, in turn, is a
root of the polynomial

ppĀq � a0 � a1Ā� a2Ā
2 � a3Ā

3, (2.7)

whose coefficients are $''''&
''''%

a0 � ũµdrnpc� cthq
a1 � w̃µnpβ � β1qγ � ũµdRApbth � bq
a2 � w̃bpβ � β2qγ � ũµdbpra{Kq
a3 � pũ� ṽqγbpra{Kq

where ũ � µcµcvµdalµhµhvpµcl � ϕcqpµda � ϕdq, ṽ � pσhrdµcϕdpµcl � ϕcqpσcrh � µcvµhq and
w̃ � pqσhσcrdrcrhϕcϕd are positive constants and

bth � µnra

RAK
, β1 � RA

ũ� ṽ

w̃

pcth � cq
cth

, β2 � RA
ũ� ṽ

w̃

pb� bthq
b

. (2.8)

Let us start considering c ¡ cth, which implies that P0 is stable. Notice now
that, if b   bth (nonaggressive tumor), then β1, β2   0 and all the coefficients ai in (2.7)
are positive. So, by Descartes’ Rule of Signs, the unique non-negative equilibrium is the
tumor-free state.

Now, let us analyze the case in which b ¡ bth and c ¡ cth, or equivalently, an
aggressive tumor in a healthy host. In this situation a0, a3 ¡ 0 and β1   0, so the number
of tumor states are determined by the signal of the coefficients a1 and a2.

Notice that, even for b ¡ bth, if b is close to bth then a1 and a2 may be positive
and, in this case, there is no nontrivial equilibrium, or tumor states. However, as we
increase b, these coefficients become negative and, according to the Descartes’Rule of Signs,
there are 0 or 2 tumor states. On the other hand, the killing rate β appears in the positive
terms of both coefficients, so the higher β, the lower the risk of tumor onset.

To illustrate the appearance of the tumor states, we present in Figure 2.6 a
bifurcation diagram using the parameter set in Table 2.2. The vertical axis represents the
positive roots Ā of polynomial (2.7) varying the tumor aggressiveness b for different values
of β, considering a fixed value c ¡ cth. The stability analysis was done by the eigenvalues
of Jacobian matrix of system (2.1)-(2.2), the blue color represents the stable points, while
the red color represents the unstable points.
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Figure 2.6 – Bifurcation diagram for the strong tissue response case, c ¡ cth. Stable states
are in blue, and unstable states in red.

From Figure 2.6, while b   bth there is no tumoral state and the solutions go
to the tumor-free state. However, for b ¡ b̃th (b̃th ¡ bth), two tumoral states appear, one
stable and the other unstable, being b̃th the value of b for which the nontrivial equilibrium
appears. In this case, there is bistability between the stable tumor-state and the tumor-free
state. The introduction of the immune response, by the parameter β, displaces b̃th forward,
reduce tumor population size and also the basin of attraction of the tumor state. Thus,
the better the immune response, the more aggressive the tumor must be to establish itself
in the host.

Now, let us consider the case c   cth, which means that the tumor-free state
P0 is unstable, so tumor cells can not be totally eliminated. Also, in polynomial (2.7) we
have that a0   0 and a3 ¡ 0, which implies that there will always be at least one signal
alternation, and consequently at least one tumor state.

Firstly, consider b   bth, which implies β2   0 and a2 ¡ 0, so regardless of
the a1 signal, there is a single signal alternation and a single tumor state P �. Therefore,
the combination of a nonaggressive tumor with a weak tissue response guarantees the
existence of a unique tumoral state.

Let us consider now an aggressive tumor, b ¡ bth. We already show the existence
of at least one tumor state, notice now that, if a1 ¡ 0 and a2   0 the there are three signal
alternations among the coefficients, so by Descartes’ Rule of Signs, there are one or three
tumor states. To analyse this possibility, let γ1 and γ2 be

γ1 � ũµdRApb� bthq
w̃µnpβ � β1q γ2 � ũµdbpra{Kq

w̃bpβ2 � βq ,

with β1 and β2 defined in (2.8). Notice that, if β1   β   β2 and γ ¡ max tγ1; γ2u, than we
have a1 ¡ 0 and a2   0. However, β1   β   β2 makes sense only if β1   β2, or equivalently
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β2 � β1 ¡ 0, which can be written as

β2 � β1 � cpũ� ṽqRA

cthw̃

�
1� bthcth

bc



.

Then, to obtain a1 ¡ 0 and a2   0 the following conditions must be satisfied:
(i) pbthcthq{bc   1, (ii) γ ¡ max tγ1; γ2u and (iii) β1   β   β2 .

To confirm the existence of three nontrivial equilibrium points, we performed
numerical simulations considering satisfied the conditions (i) and (ii) and varying β. We
expect that the three tumor states must appear in a subset of rβ1; β2s, for instance for
β P rβc

1; βc
2s � rβ1; β2s.

Figure 2.7 presents a bifurcation diagram representing the situation described
above, the vertical axis corresponds to the positive roots of polynomial (2.7) as we vary
β for a fixed value b ¡ bth and c   cth. The blue color corresponds to the stable points
and the red color to the unstable ones. The tumor-free state P0 was omitted in Figure 2.7
since it is unstable.

Figure 2.7 – Bifurcation diagram for weak tissue response case, c   cth. Stable states are
in blue, and unstable states in red

In Figure 2.7, three different regimes occur as we increase the killing rate β.
In regime I, with a low killing rate β   βc

1, there is a single stable tumor state (denoted
by P up) with a high tumor burden. As we increase the killing rate, the model goes to
regime II, for βc

1   β   βc
2, in which other two tumor states appear, a stable one with

low tumor burden, P dw, and an unstable one; so there is bistability between two different
tumoral states: P up and P dw. Finally, in the third regime with β ¡ βc

2, there is a single
stable tumoral state P dw with low tumor burden. So, as we increase β the model transit
from a regime with a huge tumor population (I) to a regime in which cancer can be
controlled (III), passing through a transient region with two stable tumoral states (II).
This bifurcation phenomena is called hysteresis.

The appearance of hysteresis indicates a resistance of the tumor to be eliminated
by CTLs. Nonaggressive tumors are more easily controlled since the tumor burden decreases
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continuously as we increase β. For the aggressive ones, however, the tumor burden remains
high (P up) while β   βc

2, and only when β ¡ βc
2, it jumps down from P up to P dw, that is,

the parameter β needs to be bigger than βc
2 to reduce the tumor population to the tumor

control state.

Summing up, the tumor elimination (P0 stable) is only possible in a healthy
host with a good tissue response (c ¡ cth), and the tumor onset is determined by the
relation between tumor aggressiveness (b) and CTLs killing rate (β). In the case of a weak
tissue response (c   cth), tumor onset can not be prevented, but can be controlled by the
immune system, which in turn, finds resistance to eliminate aggressive tumors due to the
hysteresis.

2.C.2 THE EVASION MECHANISMS IN THE TUMOR-IMMUNE CYCLE
MODEL

In this section, we analyze how the tumor evasion mechanisms affect the
dynamic described in previous subsection. So, let us consider now that ν, ρ � 0, bit keeping
θh � θc � 0.

Let P̄ � �
N̄ , Ā, C̄, D̄, D̄a, D̄al, H̄v, H̄l, C̄v, C̄l

�
be an arbitrary equilibrium point.

The expressions for N̄ , D̄, D̄a, D̄al, H̄v, H̄l, C̄v, C̄l and C̄ can be written as a function of
Ā, which, in this case, is a root of the following 5th degree polynomial :

a0 � a1Ā� a2Ā
2 � a3Ā

3 � a4Ā
4 � a5Ā

5, (2.9)

whose coefficients are given by
$'''''''''&
'''''''''%

a0 � ũµcµdpµda � ϕdqrnpc� cthq
a1 � k1γ � k2

a2 � k3γ � k4

a3 � k5γ � k6

a4 � k7γ � k8

a5 � γρνbpra{Kqũ

(2.10)

being ũ � µcµcvµdalµhµhvpµcl � ϕcqpµda � ϕdq, ṽ � pσhrdµcϕdpµcl � ϕcqpσcrh � µcvµhq,
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w̃ � pqσhσcrdrcrhϕcϕd and the terms ki given by

k1 � w̃µnpβ � β1q
k2 � �ũµcµdpµda � ϕdqRApb� bthq � pρpµda � ϕdq � νµcqũµdrnpcth � cq
k3 � w̃bpβ � β̃2q
k4 � �νµdũpµcRApb� bthq � ρrnpcth � cqq � ũµdRApb� bthqpρ̃� ρq
k5 � �νũpµcRApb� bthq � ρrnpcth � cqq � pũpµda � ϕdq � ṽqRApb� bthqpρ̃� ρq
k6 � νũµdRApb� bthqpρ̃� ρq � ρbpra{Kqµdũpµda � ϕdq
k7 � νũRApb� bthqpρ̃� ρq � ρbpra{Kqpũpµda � ϕdq � ṽq
k8 � νρbpra{Kqµdũ

(2.11)
where

ρ̃ � braµc

KRApb� bthq and β̃2 � β2 � ρrnpũpµda � ϕdq � ṽqpcth � cq � νµcũrnpcth � cq
w̃b

.

Firstly, let us consider a strong tissue response, c ¡ cth. When b   bth, notice
that β1, β2, ρ̃   0, therefore ai ¡ 0, i � 1, . . . , 5. So, the tumor-free state is the only one
biological-feasible equilibrium point, and It is also a stable equilibrium point. This is the
same situation we found when there is no tumor evasion. On the other hand, when b ¡ bth,
due to complexity of coefficients (2.10) we can not analytically determine the existence of
tumor states. Therefore, we assess the effect of tumor evasion for c ¡ cth by numerical
simulations. Figure 2.8 presents the existence of tumor states according to b for different
values of ν(a) and ρ (b). Again, let us denote by b̃th the value of b for which the tumor
states appear.

Figure 2.8 – Bifurcation diagram for strong tissue response considering the tumor evasion
mechanisms.

(a) (b)

While the immune response displace b̃th forward and decreases the tumor state
basin of attraction (see Figure 2.6), the evasion mechanisms do the opposite: the critical
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value b̃th is displaced backward and the tumor state basin of attraction is increased, that
is, the evasion parameters facilitate tumor onset. So, the inclusion of parameters ν and
ρ for case c ¡ cth do not change the qualitative behavior of system (2.1)-(2.2), but they
allow tumor onset to lower b values, that is, less aggressive tumors may settle down in
host body.

From now on, we use ν � 1� 10�5 and ρ � 5� 10�5 in the simulations where
these parameters are fixed.

Now, let us deal with the case c   cth. Firstly, consider b   bth, which implies
β2, ρ̃   0 and consequently a0   0 and a4, a5 ¡ 0. We show that, in this situation, when
any evasion mechanisms is included, there is a single tumor state regardless of the value of
β, however, notice that if ν � 0 and ρ � 0, then there are one or three signal alternations,
so the hysteresis phenomena may happens even for nonaggressive tumor as consequence of
the evasion mechanisms. To illustrate it, we perform a bifurcation diagram in Figure 2.9,
varying the killing rate β for different values of ν and ρ. The stable states are in blue and
the unstable states in red, and for simplicity we use ν � ρ.

Figure 2.9 – Bifurcation diagram for weak tissue response case considering the tumor
evasion mechanisms.

When ν � ρ � 0, there is a single tumor state, whose tumor population
decreases as we increase β. Notice that if β ¡ 0.015, the tumor population is close to
zero, which means that the tumor onset is under control. Introducing tumor evasion, the
shape of the curve change, and another two tumoral states appear, generating the same
hysteresis effect discussed in Figure 2.7. Thus, the evasion mechanisms allow hysteresis
even for nonaggressive tumors, which is not possible when ν � ρ � 0. In other words,
nonaggressive tumors also show resistance to be eliminated by the immune system, which
in turn, needs to be more effective to lead the tumor mass to the tumor control state.
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Finally, consider now an aggressive tumor, b ¡ bth. From section 2.C.1 , if
ν � ρ � 0 and β1   β   β2, then there are three tumoral states. Let us analyse how the
parameters ν and ρ affect the coefficients in (2.10).

Firstly, notice that k7 can be written as k7 � k6

µd

� ρbraṽ

K
, so k7   0 implies

that

k7   0 ñ k6

µd

� ρbraṽ

K
  0

ñ k6   �µdρbraṽ

K
  0,

thus, k7   0 ñ k6   0. Moreover, since b� bth ¡ 0 and cth � c ¡ 0, notice that

k5   pũpµda � ϕdq � ṽqRApb� bthqpρ̃� ρq. (2.12)

The expression RApb � bthqpρ̃ � ρq appears in k7 and substituting it in (2.12)
the above relation, we obtained that

k5   pũpµda � ϕdq � ṽq
νũ

pk7 � ρbpra{Kqpũpµda � ϕdq � ṽqq
and then, k7   0 ñ k5   0.

Notice now that, since k8 ¡ 0, then a4   0 only if k7   0, which in turn
implies k6, k5   0 and consequently a3   0. So, if in the particular case where b ¡ bth and
c   cth, we conclude that a4   0 ñ a3   0 and there is no signal alternation between
these coefficients, which guarantee that there is no possibility of five signal alternations or
five tumoral states. Therefore, similar to the previous cases, there are one or three tumoral
states.

Let us consider first that ρ   ρ̃. In this case, k6 ¡ 0, consequently k7 ¡ 0 and
a4 ¡ 0. Also, note that

k5 � �νũpµcRApb� bthq � ρrnpcth � cqqlooooooooooooooooooooomooooooooooooooooooooon
 0

�pũpµda � ϕdq � ṽqRApb� bthqpρ̃� ρqloooooooooooooooooooooomoooooooooooooooooooooon
¡0

,

look that ν appears in the negative term, so if It is small, then k5 ¡ 0 and a3 ¡ 0, otherwise,
k5 ¡ 0 and the coefficient a3 may turn into negative. So, if ν and ρ are small, the existence
of three signal alternations is restrict to the case when a1 ¡ 0 and a2   0. Since k2   0, β

must be greater than β1 to ensure that a1 ¡ 0. Similarly, to ensure a2   0 we need β   β̃2,
and then, the possibility of three tumoral states occurs if β1   β   β̃2. This situation is
similar to that described in the model with absence of evasion mechanisms, but here we
can see that β̃2 ¡ β2, so the interval in which there are three tumoral states is increased
by the parameters ν and ρ.

As we increase ν and when ρ ¡ ρ̃, the coefficient a3 becomes negative. In this
case, regardless a4 signal, there always be one signal alternation among a3, a4, and a5, so
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there are more signal combinations among the coefficients ai allowing the existence of three
tumoral states. To confirm these results, we perform numerical simulations considering
ρ   ρ̃ and ρ ¡ ρ̃ for several values os ν. The diagrams obtained are similar to presented
in Figure 2.7 and Figure 2.9, and for this reason they will not be presented here. In all
the simulations we observed the hysteresis phenomena previously described, that is, a
single tumor state P up for low β, followed by bistability between the tumor state P up

(with high tumor population) and the tumor control state P dw (low tumor population)
when β1   β   β̃2, and finally a single stable tumor control state P dw for high β. Also,
we observe that increasing ν and ρ, the value of β̃2 is also increased, that is, the evasion
mechanisms increase the region with bistability, equivalently, increase the hysteresis, so
tumor control can only be achieved with higher killing rate β.

Summing up, the tumor evasion mechanisms may affect the model dynamics,
increasing tumor state basin of attraction and facilitating its onset. For weak tissue response,
hysteresis and tumor resistance can be observed in both, aggressive and nonaggressive
tumors. Also, the better the tumor evasion, the more efficient the immune response needs
to be to control tumor population.

2.C.3 THE CLONAL EXPANSION IN TUMOR-IMMUNE DYNAMICS

In this section, we discuss the effect of the clonal expansion in the dynamics.
Due to the complexity of system (2.1)-(2.2) when the clonal expansion is included, we
are not able to write the equilibrium state variables as a function of Ā and determine a
polynomial ppĀq like in the other sections, so we use numerical methods to obtain the
equilibrium points of system (2.1)-(2.2) and to establish their stabilities. Therefore, to
investigate the effect in the model dynamics, we rebuild the bifurcation diagrams in Figure
2.8, for strong tissue response, and in Figure 2.9, for weak tissue response, for different
values of θ � θh � θc, but keeping fixed values for ν and ρ.

STRONG TISSUE RESPONSE

Firstly, let us start considering the strong tissue response case, c ¡ cth. Figure
2.10 presents a bifurcation diagram considering different cloning rates θ, as we vary
parameter b.

In Figure 2.10a the left curve consider no cloning rate, so the dynamics is the
same presented in figure 2.6, that is, there is bistability between the tumor state, the blue
curve from above, and the tumor-free state, which do not appear in this figure due to
logarithmic scale. The red curve in the middle corresponds to the unstable state, which
divides the basins of attraction. As we increase the cloning rate, the red curve is displaced
up, increasing the tumor-free state’s basin of attraction. However, at a certain point, the
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Figure 2.10 – The effect of the cloning rate θ in tumor dynamics considering c ¡ cth.
(a) (b)

cloning rate is no more able to displace the unstable curve, and starts to deform it, creating
two more equilibrium points.

In figure 2.10b, we observe in details the deformed curve. In region I the red line
corresponds to the unstable tumor state, separating the stable states’s basins of attraction.
Therefore, in this state tumor and immune response are in balance, any disturbance
favorable to the tumor leads the system to tumor equilibrium, while disturbances favorable
to the immune response lead to the tumor-free state.

In region II the clonal expansion deformed the curve and two more states
appear, one stable and the other unstable. The upper unstable state is similiar to the one
in region I, perturbations around this state will lead the system to the tumor state from
above, or to the intermediary tumor state. Therefore, although the cloning rate is not able
to increase the tumor-free basin of attraction, it creates an intermediary state with less
tumor cells in a certain range of tumor aggressiveness. Moreover, notice that there is a
small interval in which the intermediary tumor state is unstable, in this case the dynamics
approach to this state initially, but after some time goes away since it is unstable.

On the other hand, the lower unstable state, which appear in regions II and
III, behaves differently. This state no longer divides the basins of attractions of the nearby
stable states. In fact, any unfavorable disturbance to the tumor leads directly to the
tumor-free state, however, favorable disturbances do not always lead to one of the tumor
balances. In Figure 2.11 we illustrate the behavior of the upper unstable branch (a) and
the lower one (b), fixing b � 0.0015 and perturbing the tumor population.

In Figure 2.11a a perturbation of a single cell in the unstable state leads to the
tumor state (A0 � A��1), or to the tumor-free state (A0 � A��1), as expected. However,
in figure 2.11b the lower unstable state behaves differently: any negative perturbation
leads to the tumor-free state, but taking the initial condition above the equilibrium, for
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Figure 2.11 – Numerical simulations perturbing the tumor population around the equili-
brium points in figure 2.10

(a) (b)

instance A0 � 1.2A�, the tumor population increases initially and then decreases to zero.
If we also consider D0 � D�{2, the tumor decrease and then increasing again, reaching the
intermediary tumor state. In fact, all the performed simulations have the same behavior,
tumor increases at the beginning, then decreases; and, according to the initial condition, it
decreases to tumor-free state or recover and grow to one of the tumor states. To understand
why it happens, we need to analyse each variable of the unstable states, which are presented
in Table 2.3

Table 2.3 – State variable values at the equilibrium points in figure 2.10

Tumor-free state Lower Unstable State Upper Unstable State
A 0 107 5204
N 700000 330004 12580
D 50000 19218 632
Da 0 335 534
Dal 0 7527 12006
Hv 10000 5705 4544
Hl 0 2805 7817
H 0 63 332
Cv 10000 7809 5612
Cl 0 296 690
C 0 246 555

In the lower unstable state, there is a small tumor mass and only a few effector
lymphocytes, joining this to the high tumor aggressiveness, the cells rapidly proliferate and
tumor mass increase. However, the immune response is not completely triggered, there are
a lot of DCs which will be activated when tumor increases, starting the immune response.
Also, due to the high cloning rates, the number of effector lymphocytes rapidly increases
and, consequently, reduce the tumor mass. According to the combination of the initial
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condition of each variable, this immune response may be effective and eliminate tumor
cells, or the tumor evade and growth to one of the tumor states.

WEAK TISSUE RESPONSE

Now, let us consider the weak tissue response case, c ¡ cth. In Figure 2.12 we
rebuild the bifurcation diagram of figure 2.7 considering different values for the parameters
θh and θc to investigate how the cloning affects the model dynamics.

Figure 2.12 – The effect of cloning in the weak tissue response diagram, being θh � θc � θ.

As we increase cloning, the curves are displaced to the left, so that the value of
β required for the immune system to be able to control tumor growth becomes smaller
and smaller and, consequently, becomes more difficult for the tumor to establish itself in
the body host.

Also, when we have θ � 2.5� 10�5 the corresponding curve crosses the vertical
axis and the hysteresis starts to disappear. Note also that in this case the lower branch
of the curve, representing the control or remission state, has an unstable region (in red),
while in the other curves it was always stable (in blue). To further investigate this, we
present in Figure 2.13 the diagrams of two distinct values of cloning rate, representing the
above-described situation.

In figure 2.13a we can see that the hysteresis still remains: in region II we have
the existence of the tumor state and also the control/remission state; while in regime III
there is only the remission state. In the figure 2.13b the bifurcation diagram has crossed
the vertical axis and the hysteresis starts to disappear. In fact, if we further increase the
value of the cloning rates, region II will disappear and there will only be the remission
state, for any value of β.

Now notice that in both figures the lower branch (representing the remission
equilibrium) becomes unstable when β   β�. For instance, taking β � 1 � 10�4 in the
figure 2.13a the tumor state is the only stable one, in the figure 2.13b, for β � 4� 10�4,
there is no stable equilibrium point. Let us discuss it.
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Figure 2.13 – Bifurcation diagrams considering high cloning rate for the weak tissue
response case. The blue color corresponds to stable states, while the red
color represents the unstable ones.
(a) θ � 2.4� 10�5 (b) θ � 4� 10�5

At β � β� a Hopf bifurcation was observed: the remission state has a pair of
complex eigenvalues whose real part becomes positive for β   β�, and a periodic solution
(or limit cycle) arises around the remission state. In Figure 2.14 we present two trajectories
to illustrate the appearance of the periodic solution when β   β�. Figure 2.14a contains
the A� C plane in which the black squares represent the initial point of each trajectory
and the asterisk (�) corresponds to the remission state. Figure 2.14b contains the time
evolution of the tumor for each trajectory.

Figure 2.14 – Numerical simulations of system (2.2)-(2.1) considering θ � 2.4 � 10�5,
β � 1.8� 10�4.

(a) Dynamical trajectories in A� C plane. (b) Tumor temporal evolution.

In the blue trajectory, we take an initial condition close to the remission state,
where all the state variables are at the equilibrium value, excepts A. In this simulation,
we observe that the trajectory oscillates around the equilibrium and approaches the limit
cycle. Taking an initial condition outside the limit cycle, the solution may also approaches
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the periodic solution, like in the green trajectory. So, the limit cycle is stable. On the other
hand, if the initial condition is far from the remission state, the trajectory may approach
tumor state. Therefore, there is bistability between the limit cycle and the tumor state.

The amplitude and period of the limit cycle are related to the value of β. The
smaller this parameter, the greater the amplitude of the solutions and the greater the
time between the peaks, consequently, as β approaches β� the amplitude of the limit cycle
decreases until it collapses in the equilibrium point exactly at β � β�, from then on the
remission state becomes stable.

To illustrate this, we present in figure 2.15 simulations considering different
values for the parameter β.

Figure 2.15 – Effect of killing rate β on amplitude and periodicity of the limit cycles.
(a) Dynamical trajectory in A� C plane (b) Tumor temporal evolution

This same behavior occurs in the figure 2.13b: the emergence of the limit cycle
for β   β�. Note that in this case there is a region where the remission equilibrium is the
only one that exists. In this case, for any initial condition used, the trajectories always
approach the limit cycle, no matter how far they are from the remission state, since tumor
equilibrium does not exist in this region. Figure 2.16 illustrates the behavior of the system
in this situation.

Remember that both, clonal expansion and antigen presentation, only occur in
the presence of tumor cells, so the more tumor cells, the greater the antigen presentation
and lymphocytes activation, or equivalently, the fewer tumor cells, the lesser the activation
of lymphocytes. The existence of periodic solutions can be biologically interpreted as
follows: tumor cells trigger an immune response, which contains a huge number of CTLs
due to unlimited clonal expansion. These CTLs decrease the tumor population, remaining
only a few cells. As a consequence, the clonal expansion and antigen presentation decrease,
since there are only a few tumor cells, and CTLs start to dye by apoptosis. Decreasing
the number of immune cells makes TME favorable to tumor progression, so tumor cells
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Figure 2.16 – Numerical simulations of the limit cycle for θ � 4� 10�5 and β � 4� 10�4.
(a) Dynamical trajectory in A� C plane. (b) Tumor temporal evolution.

start to proliferating again, which, in turn, trigger a new immune response and restart the
cycle, characterizing the periodic solutions.
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Conclusão e Perspectivas Futuras

Nesta tese foram propostos e analisados modelos matemáticos para a interação
tumor-hospedeiro-imunidade considerando diversos aspectos da resposta imune antitumoral
além dos mecanismos usados pelos tumores para evadir o sistema imune. Os modelos,
apensar de teóricos e generalistas, podem servir de base para uma melhor compreensão
da resposta imunológica contra tumores, além de gerar perspectivas sobre o uso de
imunoterapias e abrir caminhos para futuras pesquisas abordando tipos específicos de
neoplasias com suas particularidades e tratamentos.

No Capítulo 1 propomos um modelo simplista que aborda a resposta do
hospedeiro à presença de tumor contendo dois tipos diferentes de células, diferenciadas
pela carga mutacional: as células do tipo 1 acumulam mutações ao longo do tempo e
assim passam a ser definidas como células do tipo 2. Por meio da análise deste modelo,
determinos as condições sob as quais teremos a formação de um tumor heterogêneo, com
ambas células existindo, ou homogêneo, quando a célula do tipo 2 é capaz de deslocar a
primeira. Inicialmente observamos que, ao considerar que o fenótipo mais mutado possui
um fitness melho, isto é, maior taxa de replicação e menos mortalidade natrual, então
estas células sempre irão deslocar as demais e ocorrerá sempre a formação de um tumor
homogêneo. Por outro lado, quando as células do tipo 1 possuem melhor fitness elas podem
se estabelecer no hospedeiro a depender principalmente da taxa de acúmulo de mutações
α. Quando o acúmulo de mutações ocorre de maneira rápida, α elevado, então sempre
ocorrerá o desaparecimento das células menos mutadas e uma sobreposição das células do
tipo 2. Por outro lado, quando a mutação ocorre de maneira bastente lenta as células do
tipo 1 sempre irão de estabelecer, formando assim uma massa tumoral composta pelos dois
tipos celulares. Por fim, a região transiente determinado por um valor de α intermediário
permite ambas situações: uma relação entre b e c passa a determinar se a massa tumoral
será homogênea ou heterogênea.

No Capítulo 2 propomos um modelo matemático considerando a formação
da resposta imune antitumoral, desde o reconhecimento dos neoantúgenos pelas células
dendríticas, até a ativação dos linfócitos efetores CD4� e CD8� no linfonodo regional.
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Com base nas análises qualitativas e de simulações numéricas foi possível caracterizar
regiões do espaço paramétrico em que ocorrerão cura, progressão, remissão ou mesmo
recidiva tumoral. Quando a resposta tecidual do hospedeiro é forte e a agressividade
tumoral é baixa então o próprio corpo do hospedeiro será capaz de eliminar as células
tumorais, por outro lado se o tumor for agressivo então ele poderá progredir a depender a
massa tumoral inicial. No caso de uma resposta tecidual fraca do hospedeiro, a cura não é
mais uma possibilidade, no entanto as células imunes podem levar o tumor à remissão,
mantendo o número de células anormais em níveis baixos e não perceptíveis. Ainda nesta
situação, observamos que o tumor apresenta uma resistência natural á resposta imune, que
necessita atingir um valor específico para poder derrubar a defesa das células neoplásicas.
Os mecanismos de evasão tumoral desempanham um papel crucial e se mostraram o ponto
chave para progressão do tumor. Quanto maiores os valores destes parâmetros, maior é
a resistência do tumor à ação imune e mais eficiente precisa ser a resposta antitumoral
para que a remissão seja alcançada. Inclusive tumores pouco agressivos apresentam tal
resistência quando a evasão tumoral é incluída no modelo, mostrando que esta ainda
é a principal barreira enfrentada pelo hospedeiro no controle da progressão. Também
avaliamos algumas características da expansão clonal dos linfócitos, como isto afeta a
dinâmica do modelo e suas implicações biológicas e matemáticas.

Por fim, usamos o modelo de resposta imune proposto no capítulo 2 para simular
o uso de tratamentos imunoterápicos em pacientes. Especificamente, simulamos que a
aplicação de certas drogas, como os inibidores de checkpoints imunológico, podem inibir
os mecanismos de evasão temporariamente. Ao fazer isso, um paciente que se encontra
em uma situação de progressão tumoral pode ser "levado"a um regime de remissão, sendo
assim o número de células tumorais começa a diminiur enquanto o tratamento é aplicado.
Se o tratamento durar tempo suficiente para que a população tumoral atinja o nível crítico,
então mesmo após seu interrompimento o tumor não mais continuará crescendo, por
outro lado se o tratamento for interrompido antes deste ponto crítico, as células tumorais
voltam a progredir. Além disso, pacientes com baixa resposta tecidual ou um sistema
imune comprometido podem não responder ao tratamento, independende da sua duração,
conforme simulações realizadas.

Ao longo do trabalho percebemos como a dinâmica tumoral pode se apresentar
complexa, com diversas particularidades que devem ou não ser abordadas dependendo
dos objetivos de estudo, do tumor a ser analisado, dentre outros fatores. Ainda que os
modelos apresentados aqui sejam teóricos, foi possível extrair informação a cerca do papel
da resposta imune que poderão dar luz a diversas questões além de abrir caminhos para
estudos futuros, especialmente no que tange á imunoterapia e combinações de diferentes
tratamentos como quimioterapia e terapia alvo.

Na próxiuma sessão abordaremos alguns assuntos que foram levantados ao
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longo do desenvolvimento deste trabalho mas não devidamente concluídos, sendo assim de
interesse para trabalhos futuros e contiação direta dos estudos que foram desenvolvidos
nesta tese.

CÉLULAS T REGULADORAS NA DINÂMICA TUMOR-IMUNIDADE
As células T reguladoras (Tregs) compreendem um conjunto de células imu-

nosupressoras que desempenham um papel importante na manutenção da homeostase,
auxiliando no controle da autominudade, processos inflamatórios, tolerância materno-fetal,
controlando assim a ação do sistema imune contra o próprio organismo (68).

A atividade supressora das Tregs pode ocorrer por contato célula-célula, ou
de maneira independente. Os principais mecanismos utilizados por estas células para o
controle das repostas imunes incluem a secreção de citocinas supressoras, checkpoints
imunológicos, citotoxidade, de forma a causar a lise de células inflamatórias, dificultar
a atividade dos linfócitos T atuando na exaustão dessas células e/ou consumindo IL-2,
citoncina envolvida na proliferação dos linfócitos (69, 70).

As células tumorais secretam uma série de quimiocinas que recrutam Tregs ao
microambiente tumoral, onde são capazes de suprimir a resposta imune e contribuir para
o desenvolvimento de um microambiente imunossuprimido, promovendo assim a evasão
das células tumorais e facilitando o desenvolvimento do tumor (71). Além disso, células
CD4� normais podem ser convertidas em Tregs no microambiente tumoral. Deste modo,
grandes infiltrados de células Tregs normalmente estão associados a prognósticos ruins.

Nesta seção apresentaremos brevemente o efeito destas céluas na dinâmica
tumor-imunidade descrita no capítulo 2. Para isto, iremos considerar que parte das linfócitos
efetores CD4� presentes no linfonodo (denotados por Hl) irão migrar para o microambiente
tumoral, se apresentando como células T reguladoras, denotadas por H. Esta migração,
como já mencionado, é dependente do estímulo gerado pelas células tumorais, de modo que
o fluxo de Hl para H será representado pela expressão ϕrA{pg�Aq. Uma vez no linfonodo
as Tregs irão atrapalhar a ação citotóxica dos linfócitos efetores C por meio da taxa de
supressão denotada pelo parâmetro ξ. As equações que representam as variáveis Hl, H

e C estão apresentadas abaixo, todas as demais variáveis possuem as mesmas equações
apresentadas no modelo 2.1-2.2.

$'''''&
'''''%

dHl

dt
� σhHvDal � θhHlDal

�
1� Hl

Qh



� µhHl � ϕrA

g � A
Hl

dR

dt
� r

ϕrA

g � A
Hl � µrH

dC

dt
� qϕcCl � ρ1A1C � ρ2A2C � ξHC � µcC � τCd

(2.13)
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Para analisar o efeito das células Tregs nós reconstrímos os diagramas de
bifurcação apresentados no capítulo anterior para diferentes valores dos parâmetros ϕr e
ξ, que correspondem respectivamente ao fluxo de Tregs para o microambiente tumoral
e o efeito supressor destas células sobre os linfócitos T citotóxicos. No geral, pôde-se
observar que o efeitos destas células na dinâmica do modelo são similares aos mecânismos
de evasão representados por ν e ρ. No caso de resposta tecidual forte, ficou evidente
que aumentar tanto ϕr, quanto ξ, diminui a agressividade tumoral necessária para que o
tumor se estabeleça, de maneira similar ao que foi mostrado no diagrama 2.8, sendo assim
tumores menos agressivos podem se estabelecer no hospedeiro. De modo semelhante, para
uma fraca resposta tecidual, observou-se que as Tregs facilitam o surgimento da histerese,
além de aumentar o valor de β necessário para que o sistema imune consiga levar o tumor
à remissão. Os grágicos obtidos ao aumentarmos o valor da taxa de supressão ξ é similar
ao caso apresentado em 2.9 e por isso não será mostrado aqui.

A principal consequência decorrente da inclusão de tais células no modelo foi
observada quando aumentamos as taxas de clonagem ϕc e ϕh dos linfócitos efetores. Uma
vez que assumimos que uma parcela das células CD4� migra para o linfonodo como Tregs,
a expansão clonal passa a ter um efeito ambiguo: ela aumenta a população de linfócitos
efetores e por consequência a população de CTLs no microambiente tumoral, mas por
outro lado aumenta também a população de Tregs que inibe o funcionamento dos CTLs,
assim impulsionando e suprimindo a resposta imune simultâneamente.

Para o caso de resposta tecidual forte, ao simularmos diferentes combinações
dos parâmetros ξ, θh, θc e β, encontramos a possibilidade de mais de uma histerese, isto
é, poderão surgir mais regiões com três pontos de equilíbrio tumoral ou mesmo regiões
com cinco pontos de equilíbrio. Para ilustrar tal situação apresentamos na Figura 2.17 a
existência e estabilidade dos pontos de equilíbrio á medida que aumentamos β, fixados
ξ, θh e θc

Figure 2.17 – Efeito das Tregs na dinâmica tumoral considerando alta taxa de clonagem e
resposta tecidual forte.
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Veja que, inicialmente, para valores baixos de β, o único ponto de equilíbrio
existente é P up, com uma alta carga tumoral. Á medida que aumentamos a taxa de morte
pelos CTLS (β), observamos o surgimento de um segundo ponto de equilíbrio tumoral
P md, neste caso h;a bistabilidade entre os pontos, e podemos inferir que o sistema imune é
capaz de reduzir a população tumoral para um estágio menor, mas ainda não o suficiente
para controlá-lo. Aumentando ainda mais β o ponto de equilíbrio de controle P dw surge
na dinâmica. Note que para um determinado intervalo os três pontos de equilíbrio podem
coexistir. Quando β se torna grande P dw se torna o único equilíbrio existente e portanto o
sistema imune é capaz de controlar o tumor.

Portanto, quando incluímos as células Tregs, o sistema imune não é capaz de
levar o tumor ao estágio de controle de forma direta, mas antes disso precisa passar por
um equilíbrio intermediário, no qual a massa tumoral está presente, porém reduzida em
comparação ao equilíbrio superior P up.

Este comportamento pode afetar o uso de tratementos baseados em imuno
terapia. No capítulo 2 abordamos como o uso de tal tratamento poderia ser simulado,
usando o fato de que a terapia deslocaria as curvas apresentadas. Aqui o mesmo pode ser
feito, no entanto, uma vez que existêm mais pontos de equilíbrio, mais desfechos possíveis
podem ser observados, além da remissão ou progressão tumoral.

A depender da combinação dos parâmetros as regiões de existência de cada
equilíbrio tumoral pode mudar, aumentando ou reduzindo as regiões de histerese a depender
de ξ, β e da taxa de clonagem. Sendo assim, mais análises e simulações devem ser feitas
para melhor caracterizar a dinâmica do sistema proposto.

MODELANDO DIFERENTES IMUNOGENICIDADES NA RESPOSTA
CELULAR ANTITUMORAL

No Capítulo 1 propomos um modelo simples descrevendo a dinâmica tumor-
hospedeiro considerando duas populações tumorais, diferenciadas pelo acúmulo de mutações.
A partir da análise do modelo e de simulações numéricas verificamos que, a depender do
fitness de cada fenótipo tumoral e da relação tumor-hospedeiro, a célula com maior carga
mutacional poderia deslocar a menos mutada e extingui-la do hospedeiro, ou então ambas
poderiam coexitir, formando um tumor heterogêneo neste aspecto.

No segundo capítulo, por outro lado, analisamos um modelo para a interação
tumor-hospedeiro-imunidade, considerando um único tipo de célula tumoral. Através de
simulações numéricas nós caracterizamos as possibilidades de cura, remissão e recidiva a
partir das repostas imunes.

É de se saber que a carga mutacional de um tumor pode ser utilizada para
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predizer a reposta a um tratamento imunoterápico pois, espera-se que o sistema imune
seja capaz de encontrar e eliminar tais células com maior ou menor facilidade. Deste modo,
a pressão exercida pelo sistema imune pode alterar a seleção das células mais ou menos
mutadas no microambiente tumoral que estudamos no primeiro capítulo. Com base nisso,
propomos aqui um modelo unificando os capítulos 1 e 2, isto é, um modelo que incorpora
duas populações tumorais diferenciadas pelo acúmulo de carga mutacional juntamente com
a resposta imune do hospedeiro. A ideia é modelar que cada população tumoral apresenta
uma imunogenicidade diferente, ou seja, iremos assumir que tumores que carregam mais
mutações desencadeiam mais resposta imune e são eliminados mais facilmente.

As variáveis incluídas no modelo são apresentadas na tabela 2.4

Table 2.4 – Variáveis do modelo unificado 2.14-2.15

Description Unit
TME Variables

A1 Tumor cells cell{volt
A2 Mutated Tumor cells cell{volt
N Healthy tissue cells cell{volt

C Cytotoxic T Lymphocytes (CTLs) cell{volt

Cd Disabled CTLs cell{volt

H Regulatory T cells (Tregs) cell{volt

D Dendritic cells cell{volt

Da Activated dendritic cells cell{volt
LN Variables

Hv Naïve CD4� cells cell{volln
Hl Effector CD4� cells in LN cell{volln
Cv Naïve CD8� cells cell{volln
Cl Effector CD8� cells in LN cell{volln

Dal Activated dendritic cells in LN cell{volln

Na figura abaixo apresentamos um diagrama que ilustra a dinâmica do sistema.
Veja que o modelo é essencialmente o mesmo apresentado no capítulo 2, porém incluindo
duas populações tumorais, A1 e A2 de modo que o acúmulo de mutações diferencia as
células do tipo 1 para o tipo 2. Além disso, consideramos também o recrutamento de
células T reguladoras para o microambiente tumoral, conforme foi discutido na seção
anterior.

Baseado neste diagrama, apresentamos abaixo as equações que descrevem a
dinâmica do modelo.
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Figure 2.18 – Diagrama ilustrativo da dinâmica celulas proposta no modelo unificado
2.14-2.15

TME
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dN

dt
� rn � b1NA1 � b2NA2 � µnN

dA1

dt
� r1A1

�
1� A1 � A2
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� αA1 � c1A1N � β1A1C � µ1A1

dA2

dt
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�
1� A1 � A2
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� αA1 � c2A2N � β2A2C � µ2A2

dC

dt
� qϕcCl � ρ1A1C � ρ2A2C � ξHC � µcC � τCd

dCd

dt
� ρ1A1C � ρ2A2C � ξHC � pτ � µcqCd

dR

dt
� r

ϕrA

g � A
Hl � µrH

dD

dt
� rd � γ1A1D � γ2A2D � µdD

dDa

dt
� γ1A1D � γ2A2D � ν1A1Da � ν2A2Da � pϕd � µdaqDa

(2.14)
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dt
� pϕdDa � µdalDal
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dt
� rh � σhHvDal � µhvHv
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dt
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Hl
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dt
� rc � σcCvH � µcvCv

dCl

dt
� σcCvH � θcClH

�
1� Cl

Qc



� pϕc � µclqCl

(2.15)

Os parâmetros usados na modelagem estão descritos na tabela 2.4.
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Table 2.5 – Parâmetros do modelo unificado 2.14-2.15

Parameter Description Value Reference
rn Recruitment rate of Normal cells 105 (50, 51, 52)
rd Recruitment rate of DCs 5� 102 (53)

rc, rh Recruitment rate of Naive lymphocytes 103 (53)
r1 (r2) Tumor intrinsic growth rate 4.3� 10�1 (54)
µ1 (µ2) Tumor natural death rate 0.02 Assumed

µn Normal cells natural death rate 0.143 (55)
µd Immature DCs natural death rate 0.01 (53)

µda, µdal Mature DCs natural death rate 0.02 (53)
µhv, µcv Naive lymphocytes natural death rate 0.1 (53)
µh, µc Effector lymphocytes natural death rate 0.3 (53, 56)

K Tumor carrying capacity 0.75� 106 Assumed
b1, b2 Tumor cells aggressiveness Variable
c1, c2 Tissue response to tumor cells Variable

α Mutation rate Variable
γ1 (γ2) Antigen presentation coefficient 10�4 (54)

ϕd DCs flux to lymph node 0.9 (57, 58)
ϕc Effector CD8� flux to TME 0.9 (53)
ϕr Tregs flux to TME 0.9 (53)

p, q, r Density fitness coefficients 0.5 (57, 58)
σh, Naïve CD4� activation rate 10�3 (59)
σc Naïve CD8� activation rate 10�3 (59)
w Proportion of Treg cells 0.1

θh, θc, Effector CD4� and CD8� cloning rates Assumed
θr Treg cloning rate Assumed

Qh, Qc CD4� and CD8� carrying capacity in LN 104 (60)
ξ CTLs suppression by Tregs Assumed
τ Disabled CTLs recovery rate 0 -
β Tumor killing rate by CTLs Variable
ρ CTLs blocking coefficient by tumor cells Assumed
ν DCs disruption coefficient by tumor cells Assumed

Devido a alta complexidade das equações em 2.14-2.15, o modelo unificado será
estudado por meio de simulações numéricas. A ideia é que em trabalhos futuros possamos
explorar o impacto da diferença de imunogenicidade nas populações tumorais na formação
de tumores heterogêneos e como a pressão exercida pela resposta imune pode selecionar um
fenótipos tumorais ou então permitir a formação de tumores heterogêneos pois, enquanto
as células mais mutadas possuem um melhor fitnees, como assumimos no capítulo 1, elas
também são mais facilmente reconhecidas e eliminadas pelo sistema imune, deste modo
ao mesmo tempo que elas se beneficiam por um lado, perdem pelo outro, o que pode
mudar os perfis tumorais quye observamos no capítulo 1. Além disso, nesta nova situação a
imunoterapia pode apresentar resultas interessantes e diferentes das simulações realizadas
no capítulo 2, pois ao impulsionarmos a resposta imune iremos consequentemente eliminar
mais células tumorais com alta carga mutacional, enquanto que as demais podem passar
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despercecibas, o que irá interferir no resultado do tramamento ou mesmo na alteração da
dinâmica inerente do modelo proposto.

Assim, os modelos apresentados nesta tese além de gerarem informações rele-
vantes e insights teóricos acerca da imunidade contra tumores, também abre espaço para
o desenvolvimento de outros estudos relevantes para o tema.
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