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Resumo

Estudamos os espaços simétricos são variedades flag FΘ. Mostramos que os fibrados

cotangentes dessas variedades flag também são espaços simétricos. Estudamos propriedades

dos espaços simétricos duais de FΘ como subvariedades da órbita adjunta AdpGq �HΘ para

o grupo de Lie complexo simples G. Evidenciamos que as variedades simétricas Flag são

de três tipos e os descrevemos com maior detalhe.

Palavras-chave: Órbita adjunta; variedade flag; espaço simétrico; fibrado cotangente.



Abstract

We study the symmetric spaces which are also flag manifolds FΘ. We show that the

cotangent bundles of these flags manifolds are also symmetric spaces. We study properties

of the dual symmetric spaces of FΘ as submanifolds of the adjoint orbit AdpGq �HΘ for

the complex simple Lie group G. We evidence that the flag symmetric manifolds are of

three types and we describe them in detail.

Keywords: Adjoint orbit; flag manifold; symmetric space; cotangent bundle.



List of symbols

Π Roots of an indicated complex Lie algebra.

Gσ The set of σ fixed points in G: tg P G : σpgq � gu.

FΘ Flag manifold determined by the subset Θ of simple roots.

Kp�, �q The Cartan-Killing form.

S The submanifold exp
?�1m of the cotangent bundle of the flag.

Cg Automorphism of a Lie group G, conjugation of the element g P G.

xexp hy The unique connected Lie subgroup teY1 � � � eYs : s ¥ 0, Yi P hu of the
Lie group G (indicated in the context) with Lie algebra h.

G �X The orbit of the group G in the element X. After define the action of

a group, this notation means the adjoint orbit of the group G in an

element X of the Lie algebra of G.

g �X AdpgqX, for an element g of a Lie group G and an element X of the

Lie algebra of G.

bΘ Origin of the flag manifold FΘ.

C� Lie algebra of the multipliative Lie group Czt0u.

AdgpHq Let H be a Lie subgroup of G and let g be the Lie algebra of G. Then

AdgpHq � tAdphq : gÑ g, h P Hu.

adgphq Let h be a Lie subalgebra of g. Then adgphq � tadpXq : gÑ g, X P hu.
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Introduction

The symmetric spaces have been well studied by several authors such as Berger,

Kobayashi, Nomizu, Helgason, among others. Kobayashi and Nomizu define the symmetric

spaces as triples pG, H, σq consisting of a connected Lie group G, a closed subgroup H and an

involutive automorphism σ of G such that Gσ
0 � H � Gσ, where Gσ � tg P G : σpgq � gu

and Gσ
0 is the identity (connected) component of Gσ. If pG, H, σq is a symmetric space, then

G{H is said to be an affine symmetric manifold. Let g and h be the Lie algebras of G and

H, respectively, then the symmetric Lie algebra pg, h, σq has the canonical decomposition

g � h � m satisfying rh,ms � m and rm,ms � h. If adgphq is compact, then pg, h, σq is
called an orthogonal symmetric Lie algebra. In [3], is proved that the orthogonal symmetric

Lie algebras are of compact and non-compact type. Moreover they are of four classes. The

types of symmetric spaces are related to their geometric properties as follows

Theorem 0.0.1. [3] Let pG, H, σq be a symmetric space with AdGpHq compact and let

pg, h, σq be its orthogonal symmetric Lie algebra. Take any G�invariant Riemannian

metric on G{H. Then we have.

(1) If pg, h, σq is of compact type, then G{H is a compact Riemannian symmetric space

with non-negative sectional curvature and positive-defined Ricci tensor;

(2) If pg, h, σq is of non-compact type, then G{H is a simply connected non-compact

Riemannian symmetric space with non-positive sectional curvature and negative-

definite Ricci tensor and is diffeomorphic to a Euclidean space.

In [4], Helgason shows a table with Riemannian symmetric spaces. Some of them

are: the Grassmannian SUpp� qq{SpUppq � Upqqq of complex subspaces of Cn, the space

Sppnq{Upnq of complex structures on Hn compatible with the inner product and the space

SOp2nq{Upnq of orthogonal complex structures on R2n. All these examples have orthogonal

symmetric Lie algebras.

The examples above are also described as complex flag manifolds of classical Lie

groups in [11]. Alekseevsky and Arvanitoyeorgos shows a list of all complex flag manifolds

in [11].

In [7], Berger says that the affine symmetric space G{H (resp. symmetric Lie algebra)

is said to be C-symmetric if there exists some complex structure of the vector space m,

invariant by the linear representation (AdpHq,m) [resp. (ad(h), m)]. On the other hand,

the affine symmetric space G{H (resp. the symmetric Lie algebra) is said to be semi-Kahler

if it is C-symmetric and for a fixed complex structure of m, the representation (AdpHq,m)
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[resp. (ad(h),m)] leaves invariant an Hermitian form of m, non-degenerate. Berger proved

the following proposition

Proposition 0.0.2. [7] Let pg, h, σq be a symmetric Lie algebra with g simple. The symmetric

Lie algebra is semi-Kahler if and only if the isotropy subalgebra h contains the Lie algebra

R.

If pg, h, σq is a symmetric Lie algebra, we call pg, hq by a symmetric Lie pair. Berger

gives a table of all symmetric Lie pairs indicating which are semi-Kahler. Some symmetric

semi-Kahler Lie pairs are: pslpp� q,Cq, slpp,Cq ` slpq,Cq ` C�q, psppn,Cq, slpn,Cq ` C�q
and psop2n,Cq, slpn,Cq ` C�q. Note that in those examples, the isotropy subalgebras

contain the complex vector space C, then they contain R as in Proposition 0.0.2.

The examples of semi-Kahler symmetric pairs are the cotangent bundle of the

examples of Riemannian symmetric spaces. This assertion shall be proved in this Thesis.

On the other hand, the adjoint orbit of a complex simple Lie group G has several

realization indicated in [1]. One of those realizations is as the cotangent bundle of a complex

flag manifold.

Recall that in [15] is indicated that every complex flag manifold is an homogeneous

space U{K where U is a compact real form of a complex Lie group and K � U is a

connected Lie subgroup of U . By 0.0.3, an adjoint orbit AdpGqX for a characteristic

element X in g is a vector bundle over a complex flag manifold U{K, where U is the

compact (connected) real form of G. The adjoint orbit of a complex simple Lie group G

is contained in the Lie algebra g, this allows inherit the required structures from the Lie

algebra.

Theorem 0.0.3. [1] The adjoint orbit OpHΘq �AdpGq �HΘ � G{ZΘ of the characteristic

element HΘ is a C8 vector bundle over FΘ that is isomorphic to the cotangent bundle

T �FΘ. Moreover, we can write down a diffeomorphism ι :AdpGq �HΘ Ñ T �FΘ such that

(1) ι is equivariant with respect to the (adjoint) action of U , that is, for all u P U ,

ι � Adpuq � ũ � ι,

where ũ is the lifting to T �FΘ (via the differential) of the action of u on FΘ; and

(2) the pullback of the canonical simplectic form on T �FΘ by ι is the (real) Kirillov-

Kostant-Souriaux form on the orbit.

On the other hand, considere a symmetric Lie algebra pu, k, σq. Let u � k � m be

the canonical decomposition. If we denote by g and h the complexifications of u and k,

respectively, and by σc the involutive automorphism of g induced by σ. We set

u� :� k�?�1m. (0.0.1)
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If we set σ� � σc | u�, then we obtain a symmetric subalgebra pu�, k, σ�q of pg, h, σcq, which
is called the dual of pu, k, σq.

In this work, the flag manifolds U{K are affine symmetric manifolds and the adjoint

orbits of G contains the affine symmetric manifold U�{K, where U� is the connected Lie

subgroup of G with Lie algebra u�. Again, we can inherit the required structures from the

Lie algebra g to U�{K seen as a submanifold of the adjoint orbit.

The goals of this Thesis are

� To prove that if a complex flag manifold U{K is a symmetric space, then the

cotangent bundle of U{K is a symmetric space.

� To determine an automorphism σ of G such that pU, K, σq and pG, Gσ, σq are sym-

metric spaces with G{Gσ being a realization of the cotangent bundle of U{K.

� To find Lagrangian submanifolds of the adjoint orbit G{Gσ.

This Thesis focuses in three topics, symmetric spaces, complex flag manifolds and

adjoint orbits. Chapter 1 is dedicated to introducing the fundamental concepts that will

be used throughout this work. For instance to talk about flag manifolds and adjoint orbits

the preliminaries come mostly from the San Martin’s books [6] and [5]. We define simple

real and complex Lie algebras and real forms, Lie groups, actions of a Lie group, roots

spaces, Cartan subalgebra, Cartan-Killing form and Hermitian 2-forms generated by it,

homogeneous spaces and Riemannian and symplectic manifolds. Finally, we write a section

about symmetric spaces using the references [3], [2] of Kobayashi and Nomizu.

Chapter 2 starts indicating all Riemannian symmetric spaces (in Table A.3, referenced

from [4]) that are also complex flag manifolds (in Table A.2, referenced from [15]) and

notices that they are the homogeneous spaces SUpp � qq{SpUppq � Upqqq, Sppnq{Upnq
and SOp2nq{Upnq of classes A, C and D, respectively. These manifolds are called flag

symmetric spaces. Since each of these symmetric spaces are flag manifolds, there exists a

compact Lie group U for each case acting on them. The Lie algebra of each U is a compact

real form u of a complex Lie algebra g. In [11] is proved that a complex flag manifold U{K
is determined by a subset of simple roots Θ of g, i.e. there exists an element HΘ in a fixed

Cartan subalgebra of u, such that αpHΘq � 0 for all α P Θ and K � ZUpHΘq. Thus, we
use the notation FΘ :� U{UΘ for the complex flag manifolds, where UΘ � ZUpHΘq.

We state the theorem 2.0.1, it says that there exists an HΘ as above such that if

σ :� Cexp HΘ , then pU, Uσ, σq and pG, Gσ, σq are symmetric spaces, where Uσ and Gσ are

the σ-fixed points of U and G, respectively. This theorem is not proved in Chapter 2,

however it is proved throughout chapters 3, 4 and 5. Using the result 1.2.12, referenced
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from [1], Theorem 2.0.1 indicates that the cotangent bundle T �pFΘq of the flag symmetric

spaces FΘ or the adjoint orbit AdpGqHΘ are symmetric spaces.

The symmetric Lie algebra of a flag symmetric space FΘ is pu, uΘ, σq, where we

use also the notation σ for the automorphism Adpexp HΘq of g. This symmetric Lie

algebra has the canonical decomposition u � uΘ � m. Then we denote by S the subset

Adpexpp?�1mqqHΘ of the adjoint orbit AdpGqHΘ. One of the main results is Theorem

2.1.1, it says that S is a submanifold of the adjoint orbit AdpGqHΘ and has a realization a

the dual symmetric space of FΘ. Furthermore, S is a Riemannian manifold diffeomorphic

to a vector space. If a fiber in the cotangent bundle T �FΘ intersects S, then that fiber and

S are transverse.

The examples 2.0.1 and 2.1.1 show the case of the real flag manifold SOp2q{t�Iu � S1,

which is a symmetric space. The cotangent bundle of S1 has a realization as the one-sheeted

hyperboloid Q � tpx, y, zq P R3 : x2 � y2 � z2 � 1u and it is also a symmetric space. The

flag S1 is the intersection of Q with the plane z � 0. Here we study the orbit of the

exponential of symmetric zero-trace matrices in the matrix�
1 0
0 �1

�
.

This set has a realization as the curve C � tp0, y, zq P R3 : y2 � z2 � 1, y ¡ 0u. This
curve is intuitively symmetric with respect to the axis Y , as we can see in Figure 1. In the

complex case, the generalization of this orbit is the submanifold S for the complex case.

In this example we can verify Theorem 2.1.1, replacing the submanifold S by the curve C.

Furthermore, in general the intersection of the submanifold S with the fibers of

the bundle AdpGqHΘ Ñ FΘ is either nule or a single point. Then the projection of the

cotangent bundle restricted to the submanifold S is an injective map, since each fiber

intersecting S does so in a single element. Then S is continuously deformed into a part of

the sphere FΘ.

We define symplectic form

ωpX, Y q � ImKpX, τY q, X, Y P g,

where Kp�, �q is the Cartan-Killing form and τ is the conjugation in g with respect to the

compact real form u. Since the adjoint orbit AdpGqHΘ is contained in the Lie algebra g,

the symplectic form ω induces a symplectic form in the adjoint orbit through the pullback

of ω. The submanifold S and the flag symmetric space FΘ are Lagrangian submanifold of

AdpGqHΘ with respect to ω. However, the submanifold S is not a Lagrangian submanifold

with respect to the KKS form 2.2.4.

The symmetric spaces are Riemannian considering the Cartan-Killing form as metric.

On the adjoint orbit of G, this metric is indefinite and invariant with respect to the
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symmetries. However, in the flag manifold FΘ it is the opposite of a (definite) Riemannian

structure and in the symmetric dual space it is an invariant metric by the non-compact

Lie group of symmetries. The Cartan-Killing form is the only metric that defines the affine

invariant connection with null torsion and curvature with zero covariant derivative. With

that connection, the geodesics are one-parameter subgroups and we can search geodesics

in the adjoint orbit that are projected on geodesics in the flag manifold FΘ.

We evidence that if g P G, X P u and g P G ÞÑ u P U , then the projection of the

geodesics tg expptXq � HΘutPR of the adjoint orbit AdpGqHΘ over F are also geodesics

tu expptXq � HΘutPR in the flag symmetric space FΘ. Furthermore, if g P G, Y P n�Θ and

g P G ÞÑ u P U , then the projection of the geodesics tg expptY q � HΘutPR of the adjoint

orbit AdpGqHΘ over F are also a geodesic tu �HΘu, where n�Θ is a subalgebra of g, as in

1.2.9, isomorphic to the fiber of the cotangent bundle T �pFΘq.
In the chapters 3, 4 and 5 we found the automorphisms σ of the symmetric spaces

pU, UΘ, σq, its dual symmetric space pU�, pU�qσq and pG, Gσq. We look for an element HΘ

such that gΘ :� exppHΘq and HΘ has the same centralizer in G and U , i.e.

ZGpHΘq � ZGpgΘq ZUpHΘq � ZUpgΘq. (0.0.2)

The automorphism σ is given by CgΘ for symmetric spaces and for symmetric Lie

algebras, we use the same notation σ to the automorphism AdpgΘq.
Assuming that p� q � l � 1 and p ¤ q, we get

G Slpl � 1,Cq Sppl,Cq SOp2l,Cq
Θ Σztαpu Σztαlu Σztαlu
FΘ SUpp� qq{SpUp � Uqq Spplq{Uplq SOp2lq{Uplq

T �FΘ G{SpGlpp,Cq �Glpq,Cqq G{Glpl,Cq G{Glpl,Cq

and HΘ satisfying 0.0.2 for Al, Cl and Dl cases are

?�1π

l � 1

�
qIp 0
0 �pIq

�
,

?�1π

2

�
Idl 0
0 �Idl

�
?�1π

2

�
Idl 0
0 �Idl

�
,

respectively.

Finally, in these three chapters, we proved the Proposition 2.1.2 calculating the

intersection S X pHΘ � n�Θq for each case.
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1 Preliminaries

1.1 Introduction to Lie theory

In this section we shall use L. A. B. San Martin’s books [6] and [5] as main references.

A Lie algebra is a vector space g provided with a product (breacket or commutator)

r�, �s : g� gÑ g satisying the properties:

1. The bracket r�, �s is bilinear.

2. Antisymmetry, i.e. rX, Y s � �rY, Xs, for all X, Y P g.

3. Jacobi identity:

rX, rY, Zss � rrX, Y s, Zs � rY, rX, Zss X, Y, Z P g.

A subspace h � g of a Lie algebra g is a Lie subalgebra if it is closed under the

bracket. In this case h is also a Lie algebra.

A subspace h � g is an ideal if for all Y P h, X P g, rX, Y s P h, i.e. rg, hs �spamtrX, Y s :
X P g, Y P hu � h.

An example of Lie algebra is the set glpn,Rq consisting of real n� n matrices with

bracket given by the commutator of matrices

rA, Bs � AB �BA.

A Lie group is a group that is also a differentiable manifold such that the product

operation

p : pg, hq P G�G ÞÑ gh P G

is differentiable.

Let G be a Lie group, a subgroup H � G of G is a Lie subgroup of G if H is an

immersed submanifold of G, such that the product H � H Ñ H is differentiable with

respect to the structure of H.

Example 1.1.1. Some examples of Lie groups and subgroups are:

1. The group Glpn,Rq of invertible n� n matrices over R. This group with the product

of matrices is a Lie group.
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2. If G is a Lie group, then any one-parameter subgroup texpptXq : X P g, t P Ru is a
Lie subgroup. If t ÞÑ expptXq is a closed curve, then we get an injective immersion

S1 Ñ G. Otherwise, the one-parameter group defines an injective immersion RÑ G.

3. Some linear groups that are Lie subgroups of Glpn,Rq are:

(a) The special linear group Slpn,Rq � tg P Glpn,Rq : detg � 1u,
(b) The unitary group Upnq of n� n complex matrices such that ḡT g � gḡT � 1 is

a embedding submanifold.

(c) The real symplectic group Sppn,Rq consisting of the 2n� 2n real matrices, such

that gT Jg � gJgT � J , where

J �
�

0 �idn�n

idn�n 0

�
.

4. The vector spaces of finite dimension V over R. There are abelian Lie groups with

the operation �. In particular pR,�q is a Lie group. The multiplicative groups Rzt0u
and Czt0u are also Lie groups.

Given an element g P G, the left and right translations Lg : h P G ÞÑ gh P G and

Rg : h P G ÞÑ hg P G are diffeomorphisms.

Definition 1.1.1. Let G be a Lie group. A vector field X in G is called

� right invariant if for every g P G, dpRgqhpXphqq � Xphgq, for all h P G.

� left invariant if for every g P G, dpLgqhpXphqq � Xpghq, for all h P G.

The right or left invariant fields are determined by its values at the identity element.

Hence, each element in the tangent space T1G determines a unique right invariant field

and a unique left invariant field. Denoting by Invl and Invr the sets of the left and right

invariant fields respectively, they are Lie subalgebras of the Lie algebra of all vector fields

in G.

Definition 1.1.2. A Lie algebra of the Lie group G denoted by g is one of the isomorphic

Lie algebras Invr, Invl, (T1G, r�, �sr) or (T1G, r�, �sl). We consider the Lie algebra of the

left invariant fields in G.

Example 1.1.2. The right invariant fields in Glpn,Rq has the form XApgq � Ag, with A

being a n� n matrix. The left invariant fields are YApgq � gA. In local coordinates, the

Lie bracket of two fields is given by

rX, Y s � dY pXq � dXpY q.
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For a matrix A, we get

rXA, XBspgq � BpAgq � ApBgq � XBA�AB.

On the other hand, the Lie bracket of left invariant fields is rYA, YBs � YAB�BA. Hence,

the Lie algebras Invr and Invl can be identify with the space of n� n matrices. In Invr,

the bracket is rA, Bs � BA� AB and in Invl the bracket is rA, Bs � AB �BA.

Example 1.1.3. If G is a discrete Lie group, dimG � 0 and hence g � t0u.

In [6], it is showed that the flow Xt of a (right or left) invariant vector field X in the

Lie group G is

Xtphgq � Xtphqg X P Invr.

Likewise,

gYtphq � Ytpghq Y P Invl.

Proposition 1.1.3 ([5]). Some properties of (right or left) invariant vector fields are:

� A (right or left) invariant field is complete

� If X PInvr then Xt�sp1q � XtpXsp1qq � Xsp1qXtp1q � Xtp1qXsp1q.

� If Y PInvl then Yt�sp1q � YtpYsp1qq � Ysp1qYtp1q � Ytp1qYsp1q.

Definition 1.1.4. Let X P T1G. Then, expX :� pXrqt�1p1q � pX lqt�1p1q. That defines a

map exp: gÑ G, where g � T1G is a Lie group of G.

Proposition 1.1.5. [5] The following statements hold:

1. If X PInvr then Xt �LexpptXq, i.e. Xtpgq � etXg.

2. If X PInve then Xt �RexpptXq, i.e. Xtpgq � getX .

Example 1.1.4. The right invariant field in Glpn,Rq have the form Xpgq � Ag, where

A is a n � n matrix. The exponential of matrices coincides with the exponential map

exp A �
¸
k¥0

1
k!A

k in Glpn,Rq .

Proposition 1.1.6. [5] Let G be a connected Lie group and take g P G. Then, there are

X1, � � � , Xs P g such that

g � exppX1q � � � exppXsq.

Proposition 1.1.7. [5] Let G be a Lie group with Lie algebra g. Then, for any Lie subalgebra

h � g, there exists a unique connected subgroup H � G with Lie algebra h.
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Theorem 1.1.8. [5] Every closed subgroup H of a Lie group G is a Lie subgroup. Its Lie

algebra is

hH � tX P g : @t P R, exp tX P Hu.

Theorem 1.1.9. [5] (Third Lie theorem) Let g be a real Lie algebra with dimg   8. Then

1. there exists a unique (up to isomorphism) simply connected and connected Lie group

G̃pgq with Lie algebra g;

2. if G is a connected Lie group with Lie algebra g, then G � G̃pgq{Γ, where Γ � G̃pgq
is a central discrete subgroup, i.e. Γ is contained in the center ZpG̃pgqq of G̃pgq. In
that case Γ is isomorphic to the fundamental group π1pGq.

The third Lie theorem says that if g is a real Lie algebra with finite dimension, then

there is a connected Lie group G with Lie algebra (isomorphic to) g.

We can define representations on a Lie algebra g using the left and right translations

in the Lie group G, this representations are related to each other via the exponential map.

An element g P G defines the inner automorphism Cgpxq :� gxg�1 and this automorphism

allow us to define the following representations

Definition 1.1.10. The adjoint representation Ad: G Ñ Glpgq of G in its Lie algebra g

is defined by

Adpgq :� dpCgq1. (1.1.1)

Furthemore,

g exppXqg�1 � exppAdpgqXq.

Definition 1.1.11. Let g be a Lie algebra. Its adjoint representation is the application

ad: gÑ glpgq defined by

adpXqpY q :� rX, Y s.

Example 1.1.5. In Glpn,Rq, the adjoint Adpgq coincides with the conjugation Cg, i.e. if

A P glpn,Rq and g P Glpn,Rq then AdpgqA � gAg�1.

For two subsets A and B of the Lie algebra g, we shall use the notation rA, Bs to
indicate the subspace generated by trX, Y s : X P A, Y P Bu. We define, by induction, the

following subspaces of g:

gp0q g1 � rg, gs � � � gpkq � rgpk�1q, gpk�1qs.

This sequence of ideals is known as derivative serie of g and its components are called

derivative algebras of g.
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Example 1.1.6. Let g be an algebra of upper triangular matrices

g �

$''&''%
����

� � � � �
...

. . .
...

0 � � � �

���
n�n

,//.//- .

Then g is the algebra of upper triangular matrices with zero diagonal. Hence gpkq � t0u if
k ¥ k0 for some k0 large enough.

Example 1.1.7. If g is the Lie algebra slp2,Rq, then g1 � g and hence, gpkq � g for all

k ¥ 0.

The descending central series of the Lie algebra g is defined by induction as

g1 � g g2 � rg, gs � g1 � � � gk � rg, gk�1s.

Definition 1.1.12. An algebra is solvable if some of its derivative algebras is zero, i.e.

gpk0q � 0

for some k0 ¥ 1 (and hence gpkq � 0 for all k ¥ k0).

Example 1.1.8. The algebras of upper triangular matrices are solvable.

Example 1.1.9. The algebras slpnq are not solvable since its derivative algebras coincide

with themselves.

Definition 1.1.13. A Lie algebra is called nilpotent if its descending central series vanishes

at some order, i.e.

gk0 � t0u
for some k0 ¥ 1 (and hence, gk � 0 for every k ¥ k0).

Example 1.1.10. 1. The abelian algebras are nilpotent.

2. The following matrices subalgebras are nilpotent

g �

$''&''%
����

0 � � � �
...

. . .
...

0 � � � 0

���
n�n

,//.//- g �

$''&''%
����

a � � � �
...

. . .
...

0 � � � a

���
n�n

,//.//-
3. The algebra of upper triangular matrices is not nilpotent.

Proposition 1.1.14. Let g be a finite dimensional Lie algebra. Then, there exists in g a

unique solvable ideal r � g containing each solvable ideals of g.
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Definition 1.1.15. The ideal r of Proposition 1.1.14 is called a solvable radical (or just

radical) of g. The radical of g will be denoted by rpgq.

Example 1.1.11. g is solvable if and only if rpgq � g.

Definition 1.1.16. A Lie algebra g is called semi-simple if rpgq � 0 (i.e. g contains no

soluble ideals in addition to 0).

Definition 1.1.17. A algebra g is simple if

1 The only ideals of g are 0 and g and

2 dimg � 1.

Every simple Lie algebra is semi-simple.

Example 1.1.12. The algebras slpn,Kq are simple if K has not characteristic equal to two.

We define the Cartan-Killing form in the Lie algebra g as the symmetric bilinear

form in g given by

KpX, Y q � trpadpXqadpY qq, X, Y P g. (1.1.2)

Proposition 1.1.18. [6] If ϕ is an automorphism of the Lie algebra g and X, Y, Z P g, then

(a) KpϕX, ϕY q � KpX, Y q and

(b) KprX, Y s, Zq �KpY, rX, Zsq � 0.

Theorem 1.1.19. The Cartan-Killing form of g is non-degenerate if and only if g is

semi-simple.

1.1.1 Semi-simple Lie algebras

This work is focused on studying semi-simple Lie algebras and how it can be

decomposed by its adjoint representation. Hence, we must define a Cartan subalgebra.

Definition 1.1.20. Let g be a Lie algebra. A Cartan subalgebra of g is a subalgebra h � g

satisfying

1. h is nilpotent and

2. the normalizer of h in g coincides with h. This condition is equivalent to

2’. If rX, hs � h then X P h.
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Example 1.1.13. For slp2q, the Cartan subalgebra h could be equal to#�
a 0
0 �a

�+
or
#�

0 �a

a 0

�+
,

since both h are abelian and if X P g then rh, Xs � h if and only if X P h in both of cases.

Theorem 1.1.21. [6] In complex Lie algebras, the Cartan subalgebras are conjugate.

Let g be a semi-simple Lie algebra over C and h a Cartan-subalgebra of g. The

algebra can be decomposed as

g � h` gα1 ` � � � ` gαk
,

with α1, � � � , αk the non-zero weights of the adjoint representation of h in g. These weights

will be called roots of h with respect to g and the set that contains all of them will be

denoted by Π. The spaces gαi
shall be called root spaces. Since the field is algebraically

closed, the representation of h in each gαi
is given by the matrices

adpHq �

����
αipHq �

. . .

αipHq

���
for each H P h. Furthermore, rgαi

, gαj
s � gαi�αj

.

Lemma 1.1.22. [6] Let α and β be two weights of h (roots or nule weight). If X P gα and

Y P gβ then

KpX, Y q � 0,

unless β � �α.

Corollary 1.1.23. [6] The following assertions hold:

1. The restriction of Kp�, �q to h is non-degenerate.

2. If α is a root, then �α is also a root.

3. For all X P gα, there exists Y P g�α such that KpX, Y q � 0.

Proposition 1.1.24. [6] For all H P h and every weight α, adpHq |gα� αpHqid and the

linear transformations adpHq, H P h are simultaneously diagonalizable.

Proposition 1.1.25. h is Abelian.
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The Cartan-Killing form can also be “defined” in the dual h� of h. Since Kp�, �q is a
bilinear form, it defines a map hÑ h� by

H ÞÑ αHp�q � KpH, �q.

Since the restriction of the Cartan-Kiling form to h is non-degenerate, this map is an

isomorphism between h and h�. For α P h�, its inverse image shall be denoted by Hα, i.e.

Hα is defined by

KpHα, Hq � αpHq, @H P h.

We can define a bilinear form in h�, using the same notation of the Cartan-Killing form, by

Kpα, βq � KpHα, Hβq � αpHβq � βpHαq

if α and β are linear functionals in h. This is a symmetric, non-degenerate bilinear form in

h�. This will also be called to as the Cartan-Killing form.

By the isomorphism between h and h� defined from the Cartan-Kiling form, the roots

α P Π define a finite number of special elements Hα in h. As the set of roots generates h�,

the set tHα : α P Πu generates h.
Let tv1, � � � , vlu be an ordered basis of h�Q. Let v, w P V written in coordinates as

v � a1v1 � � � � � alvl

w � b1v1 � � � � � blvl.

Fixed the lexicographic order in h�Q with respect to this basis defined by v ¤ w if v � w or

if ai   bi, where i is the first index such that the coordinates of v and w are different.

Proposition 1.1.26. [6] The Cartan-Killing form restricted to hQ (and h�Q) is an inner

product.

Definition 1.1.27. A root α P Π is simple -with respect to the fixed order- if

(i) α ¡ 0

(ii) there are no β, γ P Π such that β and γ are positive and α � β � γ.

The set of simple roots will be denoted by Σ.

Lemma 1.1.28. [6] Let β P Π with β ¡ 0. Then β is uniquely written as

β � n1α1 � � � � � nlαl

with n1, � � � , nl integers ¥ 0. In particular Σ generates h�Q.

Definition 1.1.29. A subset Σ � tα1, � � � , αlu satisfying the two conditions:
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a) Σ is a basis of h�Q and

b) each root β can be written as β � n1α1 � � � � � nlα are integer coefficients and each

of them has the same sign,

is called a simple root system.

Fixing a simple root system (or a lexicographic order), we can define

Π� � tα P Π : α ¡ 0u Π� � �Π� � tα P Π : α   0u.

Let us define the sets

n� �
¸

αPΠ�
gα n� �

¸
αPΠ�

gα.

Then

g � n� ` h` n� (1.1.3)

and n� and n� are dual by the Cartan-Killing form, since Kpgα, g�αq � 0 and Kpgα, gβq � 0
if β � �α. The algebra n� is nilpotent, since if X P gα then adpXqkgβ � gkα�β, the same

is true for n� which is isomorphic to n�. Thus b � h` n� is a subalgebra and since n� is

an ideal of b, this subalgebra is solvable. The subalgebra b is known as Borel subalgebra.

1.1.2 Semi-simple real Lie algebras

Let g be a complex Lie algebra, a real form of g is a real Lie algebra such that their

complexification is g, they are of two types compact and non-compact real forms. Every

complex algebra has a unique (up to isomorphism) compact real form and the structure

of these real forms is completly described by the complex algebra. The description of a

non-compact real form is made from the decomposition obtained intersecting it with the

compact real form (Cartan decomposition).

Let V be a real vector space and VC and its complexification. The elements of VC can

be expressed as u�?�1v, u, v P V . Writing the elements of VC as above, we can define

the conjugation σ : VC Ñ VC

σpu�?�1vq � u�?�1v.

This conjugation satisfies σ2 � 1 and it is antilinear (or sesquilinear) in VC, i.e. σ is linear

over the real vector space V and

σpzwq � z̄w z P C, w P VC.

It is clear that V � tw P VC : σpwq � wu .
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Definition 1.1.30. Let F be a complex vector space. A conjugation in F is an antilinear

transformation σ satisfying σ2 � 1.

An invertible antilinear transformation σ of g satisfying

rσX, σY s � σrX, Y s (1.1.4)

is called an anti-automorphism. Given an anti-automorphism in g, the real algebra

g0 � tX P g : σpXq � Xu

has as complexification the complex Lie algebra g.

Definition 1.1.31. Let g be a complex algebra. A real form of g is a subalgebra g0 of the

realification gR, which is the subspace of fixed points of a conjugation satisfying 1.1.4. If

that happens, g is the complexification of g0.

Example 1.1.14. In g :� slpn,Cq, let σ be the map in g given by σpAq � �ĀT for A P g.

Then σ is an automorphism. The Lie algebra of its fixed points is supnq � tA P slpn,Cq :
A � �ĀT u, and hence it is a real form of slpn,Cq.

Definition 1.1.32. A Lie algebra over R is called compact if its Cartan-Killing form is

negative defined.

Theorem 1.1.33. [6] Every semi-simple complex Lie algebra admits compact real forms. If

u1 and u2 are compact real forms of g, then there exists an automorphism of ϕ of g such

that ϕpu1q � u2 and hence the compact real forms are isomorphic to each other.

Let g be a semi-simple complex algebra and let h be a Cartan subalgebra with roots

set Π and let Σ be the simple roots set in Π. A Weyl basis of g is a basis of g consisting of

Hα, α P Σ and Xα P gα, α P Π satisfying

� rXα, X�αs � Hα and

� rXα, Xβs � mα,βXα�β with mα,β � 0 if α � β is not a root and such that mα,β �
�m�α,�β, then mα,β is real.

Given a Weyl basis, let u be a real subspace generated by

?�1Hα,

Aα :� Xα �X�α, (1.1.5)

Zα :� ?�1pXα �X�αq,

with α in the set Π� of positive roots. Then u is a compact real form.
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The Cartan-Killing form of u coincides with the restriction of the Cartan-Killing form

of g, since u is a real form. Furthermore, if two roots are not opposite, the corresponding

root spaces are orthogonal. Using the notation above

Kp?�1Hα, Aβq � Kp?�1Hα, Zβq � KpAα, Zβq � 0. (1.1.6)

We denote by hR the real subspace of h generated by tHα : α P Πu. Then, the subspace?�1h is a Cartan subalgebra of u.

Lemma 1.1.34. [6] Let τ be a conjugation with respect to the compact real form u of the

complex algebra g. Then, the expression

Hτ pX, Y q � �KpX, τY q (1.1.7)

defines a hermitian form in g.

Theorem 1.1.35. [6] Let g be a complex semi-simple Lie algebra and u a compact real form

of g. Let g0 any real form of g and let us denote by σ the corresponding conjugation. Then,

there exists an inner automorphism ϕ of g such that σ commutes with the conjugation with

respect to the compact real form ϕpuq.

Corollary 1.1.36. [6] Let u1 and u2 be compact real forms of g. Then, there exists an

automorphism ϕ of g such that ϕpu1q � u2.

The bijection between the semi-simple complex and compact Lie algebras is also

used to develop compact algebras. Actually, the compact real forms are expressed as

u � ?�1hR `
¸
α

kα, (1.1.8)

where kα is the space generated by Aα and Zα. Finally, the compact real forms of the

classical Lie algebras are:

1. supnq is a compact real form of slpn,Cq.

2. A compact real form of sopn,Cq, n ¥ 3, is sopn,Rq.

3. A compact real form of sppn,Cq, is the subalgebra of anti-hermitian matrices in

sppn,Cq. This algebra is denoted by sppnq:

sppnq � sppn,Cq X sup2nq (1.1.9)

and its elements have the form �
A �C̄

C Ā

�
(1.1.10)

with A being a n� n anti-hermitian and C being symmetric.
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Let g0 be a non-compact real form of the semi-simple complex algebra g and σ its

conjugation. If u is the compact real form of g with conjugation τ . Then

g0 � k` s,

where

k � g0 X u, s � g0 X
?�1u. (1.1.11)

This decomposition is known as Cartan decomposition of g0. The brackets of the elements

in the Cartan decomposition satisfy

rk, ks � k rk, ss � s rs, ss � k. (1.1.12)

Hence k is a subalgebra and s is invariant under the adjoint representation of k. The

subalgebra k is called the compact component of the Cartan decomposition.

The restriction of Hτ to the real form g0 is an inner product, since the Cartan-Killing

form of g0 is the restriction of the Cartan-Killing form of g.

Proposition 1.1.37. [6] Given a Cartan decomposition g0 � k` s, the involutive automor-

phism θ defined by θpXq � X if X P k and θpY q � �Y if Y P s is such that the bilinear

form

BθpX, Y q :� �KpX, θY q (1.1.13)

is an inner product in g0. Conversely, given an automorphism θ satisfying 1.1.13 is an inner

product in g and its eigenspaces determine a Cartan decomposition. The automorphism is

called Cartan involution.

Example 1.1.15. Taking g � slpn,Cq, a compact real form is u � supnq and if g0 � slpn,Rq,
then g0 X u is the subalgebra of real anti-hermitian matrices, i.e. the subalgebra sopnq of
anti-symmetric matrices. In addition, g0 X

?�1u is the subspace of real matrices X such

that
?�1X is anti-hermitian, i.e. the subspace of symmetric matrices. Then

slpn,Rq � sopn,Rq ` s

is a Cartan decomposition. The corresponding Cartan involution is θpXq � �XT , since

θ � 1 in sopn,Rq and θ � �1 in s.

The Cartan-Killing form Kg0pX, Y q of g0 is negative defined in k and positive defined

in s. If X P k and Y P s, then Kg0pX, Y q � 0.

The Lie algebra k is a maximal compact subalgebra in g0.

Theorem 1.1.38. [5] Let G0 be a connected semi-simple Lie group and let g0 � k` s be a

Cartan decomposition of its Lie algebra. Write

K � xexpky and S � exps, (1.1.14)
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where xexp ky is the unique Lie subgroup of G with Lie algebra k and S is the image of exp
in s. Then,

� G0 � SK � KS and all g P G0 is uniquely written as

g � sk or g � ks, k P K, s P S, (1.1.15)

� S is an embedding submanifold of G0, diffeomorphic to s by the embedding exp:sÑ S,

� The functions K � S Ñ G0; pk, sq ÞÑ ks and pk, sq ÞÑ sk are diffeomorphisms.

we can combine these tools of Lie theory with differential geometry for the study of

symmetric spaces. Now let’s detail some terms of differential geometry.

1.2 Foundations of differential geometry

In order to study the symmetric spaces, we must know about homogeneous spaces,

for that we shall use bibliography of San Martin ([5]) and of Kobayashi and Nomizu ([2]

and [3]).

A left action of a group G in a set X is a function that associates to g P G an

application apgq : X Ñ X and satisfy the properties:

1. ap1qpxq � x, for every x P X;

2. apghq � apgq � aphq.

A right action is defined likewise, replacing the second property by apghq � aphq�apgq.
A left action can be expressed using the notations gpxq, g � x or gx to say apgqx.

Given x P X, its orbit by G, denoted by G � x or Gx, is defined as the set

G � x � tgx P X : g P Gu.

The set Gx of the elements of G fixing x is called isotropy subgroup or stabilizer of x:

Gx � tg P G : gx � xu. (1.2.1)

It is a subgroup of G since pghqx � gphxq.

Definition 1.2.1. Let a be an action of G in X.

1. The action is said to be effective if kerpaq � tg P G : apgq � idXu � t1u, where 1 is

the identity element of G.
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2. The action is said to be free if the isotropy subgroups are equal to t1u.

3. The action is said to be transitive if X is an orbit of G, i.e. for every x, y P X,

there exists g P G such that gx � y.

An action of the Lie group G is a function ϕ : G�M Ñ M , ϕpg, xq � gx, such that

the partial function g ÞÑ ϕg, ϕgpxq � ϕpg, xq, is an homomorphism of G in the group of

the invertible transformations of M . The action is differentiable if ϕ is a differentiable

function.

Proposition 1.2.2. [6] Suppose that the action of G in X is transitive and take x P X.

Then, the map ξ : gGx P G{Gx ÞÑ gx P X is a bijection between G{Gx and X. The map

ξx is equivariant, i.e. gξxpg1Gxq � ξppgg1qGxq, g, g1 P G, that means ξx commutes with the

actions of G in G{Gx and X, respectively. Furthermore, if y � gx then ξy � ξx �Dg.

From the identification in the Proposition above, a quotient G{H is called a homo-

geneous space, as are called the sets where the groups act transitively. The point x chosen

to establish the identification of between X and G{Gx is called of origin of base of the

homogeneous space X.

Theorem 1.2.3. [5] Let G be a Lie group and let H � G be a closed subgroup. Then, there

exists a differentiable structure in G{H, compatible with the quotient topology, that satisfies

1. dimG{H � dimG� dimH.

2. The canonical projection π : G Ñ G{H is a submersion.

3. The natural action a : pg, xHq P G�G{H ÞÑ pgxqH P G{H is differentiable.

4. For each g P G, the induced map g : G{H Ñ G{H, xH ÞÑ gxH is a diffeomorphism.

The differentiable structure defined in the theorem above is called quotient differen-

tiable structure.

Definition 1.2.4. Let g be a Lie algebra and let M be a C8 manifold . Denote by ΓpTMq
the Lie algebra of vector fields in M provided with the Lie bracket. An infinitesimal action

of g in M is an homomorphism of gÑ ΓpTMq.

A differential action of G in M induces an infinitesimal action of g as follows: given

X P g and x P M , the curve in M defined by t ÞÑ etXx is differentiable. Its derivative at

the origin

X̃pxq � d

dt
petXxq |t�0� d

dt
ϕxpetXq |t�0� pdϕxq1pXq (1.2.2)

is a tangent vector in x P M . Hence, x P M ÞÑ X̃pxq P TxM defines a vector field in M .
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Proposition 1.2.5. [5] The function X P g ÞÑ X̃ P ΓpTMq is an homomorphism if g is the

Lie algebra of right invariant vector fields in G.

As a particular case of infinitesimal action, consider the action of G in G{H, where

H is a closed subgroup. In this case, if x0 � 1 �H is the origin of G{H then ϕx0 : G Ñ M ,

g ÞÑ g �x0 � gH, is the canonical projection π : G Ñ G{H. Thus, the following description

of X̃ holds

Proposition 1.2.6. [5] Let G be a Lie group and let H be a closed subgroup and denote by

π : G Ñ G{H the canonical projection. Let X be a right invariant field of G, i.e.

dπgpXpgqq � X̃pπpgqq, g P G. (1.2.3)

The corresponding differentiable action is ϵ : gÑ ΓpTMq, ϵpXq � X̃. For x P M �
G{H, we define the subspace

TxM � tX̃pxq : X P gu, (1.2.4)

for each x P M , since the action of G in M is transitive.

We can define an action on the quotient spaces. Let H � G be a subgroup and denote

by G{H the set of all cosets gH, g P G. Then the map pg, g1Hq ÞÑ gpg1Hq � pgg1qH
defines a natural left action of G in G{H. The action of G in G{H is transitive. Every

transitive action is in bijection with a quotient space of G.

In a homogeneous space M � G{H (H closed), the invariant structures are given by

their values at the origin x0 � 1 �H. Since hpx0q � x0 for every h P H, then its possible to

define a representation ρ : H ÑGlpTx0Mq of H in the tangent space Tx0M . This function

is called isotropy representation of G{H.

1.2.1 Fibre bundles

A principal bundle P pM, Hq (often denoted by P Ñ M) consists of the total space

P of the basis M , both topological spaces and of the structure group G. These spaces are

related as follows:

1. The group H acts freely to the right in P by the action R : pp, gq ÞÑ pg, p P P , g P H.

(i.e. if pg � p for some p, then g � 1.)

2. The space of the orbits of this action is M . This means that there exists a sobrejective

function π : P Ñ M , such that the orbits of H are the sets π�1txu, x P M .

3. P is locally trivial, i.e. for every x P M , there exists a neighborhood U of x and a

bijective function, named of local trivialization, Ψ : π�1pUq Ñ U � H, such that
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Ψppq � pπppq, ϕppqq, where ϕ : π�1pUq Ñ H is a function satisfying ϕppgq � ϕppqg
for every p P π�1pUq and g P H.

The bundle P Ñ M is called topological bundle if the functions in the definition are

continuous (and homeomorphisms when are bijective functions). The principal bundle is

of class Ck, k ¥ 1, if the spaces involved are differentiable manifolds of class Ck.

The fibers of the principal bundle are denoted by Px � π�1txu, x P M , or Pp �
π�1tπppqu, p P P .

Example 1.2.1. GpG{H, Hq: Let G a Lie group and H a closed subgroup of G. The group

H acts on G by the right translation. We then obtain a differentiable principal bundle

GpG{H, Hq over the base manifold G{H with structure group H.

Example 1.2.2. Let M be a differentiable manifold and TM �
¤

xPM

TxM its tangent bundle.

The bundle of linear frames of M is the set BM of all basis of TM . A linear frame u P BM

is an ordered basis tf1, � � � , fnu of some tangent space TxM , x P M . In [3] is indicated

that the general linear group GLpn,Rq acts on BM on the right and this action can be

accordingly interpreted as follows. Consider a � pai
jq P GLpn,Rq as a linear transformation

on Rn which maps ej into
¸

i

ai
jei. Then ua : Rn Ñ TxM is the composite of the following

mappings

Rn aÝÑ Rn uÝÑ TxM.

Since H acts on P on the right, we can assign to each element A P h a vector

field A� on P as follows. The action of the 1�parameter subgroup at � exp tA on P

induces a vector field on P , which will be denoted by A�. The vector field A� is called the

fundamental vector field corresponding to A, and

A Ñ pA�qu (1.2.5)

is a linear isomorphism of h onto Hu for each u P P .

Let P pM, Hq be a principal fiber bundle and F a manifold on which H acts on the

left: pa, ξq P H�F Ñ aξ P F . Can be constructed a fiber bundle EpM, F, H, P q associated
with P with standard fiber F . On the product manifold P � F , we let H act on the right

as follows: an element a P H maps pu, ξq P P � F into pua, a�1ξq P P � F , The quotient

space of P � F by this group action is denoted by E � P �H F . A differentiable structure

will be introduced in E later and at this moment E is only a set.

Example 1.2.3. Tangent bundle: Let GLpn;Rq act on Rn as above. The tangent bundle

T pMq over M is the bundle associated with BM with standard fibre R. It can be easily

shown that the fibre of TM over x P M may be considered as TxM .
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1.2.1.1 Connections

Let P pM, Hq be a principal fibre bundle over a manifold M with group H. For each

u P P , let TuP be the tangent space of P at u and Gu the subspace of TuP consisting of

vectors tangent to the fibre through u. A connection Γ in P is an assignment of a subspace

Qu of TuP to each u P P such that

(a) TuP � Hu `Qu

(b) Qua � pRaq�Qu for every u P P and a P H; where Ra is the transformation of P

induced by a P H, Rau � ua;

(c) Qu depends differentiably on u.

For each X P TuP , we define ωpXq to be the unique A P h such that pA�qu is equal

to the vertical component of X (component in Hu of TuP ). It is clear that ωpXq � 0 if

and only if X is horizontal (belongs to Qu � TuP ). The form ω is called the connection

form of the given connection Γ.

A connection in the bundle BM of linear frames P over M is called a linear connection

of M . The canonical form θ of BM is the Rn-valued 1-form on BM defined by

θpXq � u�1pπpXqq, X P TuBM, (1.2.6)

This allows us define the torsion form ϑ of a linear connection Γ by

ϑ � Dθ pexterior covariant differential of θq.

Theorem 1.2.7. [3] Let ω, ϑ be the connection form and the torsion form of a linear

connection Γ of M . Then, the first structure equation indicates that:

ϑpX, Y q � dθpX, Y q � 1
2rωpXq, ωpY qs,

where X, Y P TuBM and u P BM .

Before defining a special type of connection, we need to define a Riemannian metric

and in addition to that, we define a Riemannian manifold.

Definition 1.2.8. A Riemannian metric m in a differentiable manifold M is a correspon-

dence that associates to each point p P M an inner product mpp�, �q (i.e. a symmetric

bilinear positive defined form) in the tangent space TpM . Furthermore, m is smooth in

the sense that for any smooth vector fields X and Y , the function p ÞÑ mppXppq, Y ppqq is
smooth. A differential manifold with a given Riemannian metric is called Riemannian

manifold.
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A Riemannian metric mp�, �q in the manifold M is invariant by the action of the

group G if the elements of the group are isometries of the metric, i.e. if for each g P G and

x P M , we have

mgxpdgxu, dgxvq � mpu, vq u, v P TxM.

If M � G{H is a homogeneous space, an invariant metric is absolutely determined

by its value at the origin x0, which is an inner product in Tx0G{H invariant by the isotropy

representation.

A necessary condition to the existence of an inner product mx0 is to the image ρpHq
of H by the isotropy representation ρ be a subgroup of the orthogonal group and hence

ρpHq has compact closure. In particular, if H is compact, then G{H admits invariant

Riemannian metrics.

Let M be an n-dimensional Riemannian manifold with metric g and OpMq the bundle
of orthonormal frames over M . Every connection in OpMq determines a connection in the

bundle BM of linear frames (see [3] for details of the proof), that is, a linear connection

of M . A linear connection of M is called a metric connection if it is thus determined by a

connection in OpMq.
Among all posible metric connections, the most important is the Riemannian con-

nection (sometimes called the Levi-Civita connection) which is given by the following

theorem

Theorem 1.2.9. Every Riemannian manifold admits a unique torsion-free metric connec-

tion.

1.2.2 Complex flag manifolds

Let g be a complex semi-simple Lie algebra with Cartan subalgebra h and roots set

Π. Let Σ be a simple root system and let tHα : α P Σu Y tXα P gα : α P Πu be a fixed

(complex) Weyl basis of g. The compact real form of g is denoted by u.

An element HΘ P h is characteristic for Θ � Σ if Θ � tα P Σ : αpHΘq � 0u.
A subset Θ defines a parabolic subalgebra pΘ with parabolic subgroup PΘ and a flag

manifold FΘ � G{PΘ. In fact, the parabolic subalgebra is pΘ � `λ¥0gλ, where λ runs

through the non-negative eigenvalues of adpHΘq. Conversely, starting with H0 P h we

define ΘH0 � tα P Σ : αpH0q � 0u. For instance, FH0 � FΘh0
.

For any subset Q � Π of simples roots, we have the decomposition Q � Qs Y Qa,

Qs � QX p�Qq, Qa � QzQs and we can denote by gpQq the algebra

gpQq :� xrXα, X�αs � Hα, α P Qsy �
¸
αPQ

CXα (1.2.7)

generated by Q.
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Fixing a subset Θ � tα1, � � � , αmu � Σ of simple roots, the set of roots generated by

Θ is denoted by xΘy. We denote the intersection xΘy XΠ� by xΘy�. For each subset Θ we

get the decomposition of g:

g � n�Θ ` zΘ ` n�Θ, (1.2.8)

where

n�Θ � gpΠ�zxΘy�q
and

n�Θ � gpΠ�zxΘy�q (1.2.9)

are nilpotent subalgebras of g. Also,

zΘ � h� gpΘq

is a reductive subalgebra, with

gpΘq :� gpxΘyq � xHαyαPxΘy �
¸

αPxΘy
CXα.

Then

zΘ � zgpHΘq (1.2.10)

A parabolic subalgebra p of a complex Lie algebra g is a subalgebra wich contains a

Borel subalgebra b. In [11], Alekseevsky constructs a parabolic subalgebra from a subset

Θ � Σ of simple roots of g. A parabolic subalgebra of g has the form:

pΘ � h� gpxΘy� Y Π�q � zΘ � n�Θ �
¸

αPxΘy�
gα � b. (1.2.11)

Now we define flag manifolds associated with any connected complex semi-simple Lie group

G. A parabolic subgroup PΘ is the normalizer of pΘ in G, i.e. PΘ � tg P G : AdpgqpΘ � pΘu
and the Lie algebra of PΘ is pΘ.

Definition 1.2.10. A flag manifold of a complex semi-simple Lie group G is the quotient

M � G{PΘ of G by a parabolic subgroup PΘ.

In [11], Alekseevsky proved the following proposition about flag manifolds.

Proposition 1.2.11. [11] Let G be a Lie group with compact real form U and let PΘ be a

parabolic subgroup of G. Any flag manifold M � G{PΘ can be identified with the quocient

U{Zτ
Θ :� U{UΘ of a semi-simple compact Lie group U � G modulo Zτ

Θ � ZUpt0q, t0 P u

and, hence, with an adjoint orbit AdpUqpt0q.

Now we provide a sketch of the proof:



Chapter 1. Preliminaries 34

Proof. The decomposition in 1.2.8 induces a decomposition of some open subset of G

(connected complex semi-simple Lie group with Lie algebra g) into product of correspondent

subgroups:

Greg � N�
Θ � ZΘ �N�

Θ

with ZΘ XN�
Θ � N�

Θ XN�
Θ � teu.

The parabolic subgroup is

PΘ � ZΘ �N�
Θ

This decomposition shows that the nilpotent subgroup N�
Θ acts transitively on the

open dense subset Mreg � Greg{PΘ of the flag manifold M � G{PΘ. Hence, any complex

coordinates on N�
Θ define local complex coordinates on M .

Let τ be the involution on g with respect to the real compact form u (the same

notation is used for the Lie groups). A maximal compact subgroup Gτ �: U of G acts on

M transitively. For a fixed x P M , the isotropy subgroup in U will be denoted by Ux.

ux � uX pΘ � pτ
Θ � tX P pΘ : τX � Xu

Since the subalgebra zΘ � h� gpΘq is invariant under the involution τ and

τpn�Θq � n�Θ,

since τpXαq � �X�α for all α P Π. Then

uΘ :� pτ
Θ � zτ

Θ � hτ � pgpΘqqτ (1.2.12)

and is a compact form of the subalgebra zΘ. Therefore uΘ � zΘ X u is the centralizer of a

comutative subalgebra hΘ :� h X uΘ. On the other hand, hΘ generates a torus T in the

compact connected semi-simple Lie group U . The centralizer of a torus in a connected

compact semi-simple Lie group is connected and there exists an element t0 in
?�1hR such

that

UΘ � ZUphΘq � ZUpT q � ZUpt0q. (1.2.13)

In the Table A.2, we found all complex flag manifolds classified in [15]. We denote

the flag manifold G{PΘ by FΘ.

In [1] the cotangent bundle of the complex flag manifold FΘ is realized by the adjoint

orbit G �HΘ :�AdpGqHΘ (the realization of the cotangent bundle is with the coadjoint

orbit, however in the Example 1.3.1 this orbit is identify with the adjoint orbit) and is

also realized by the homogeneous space G{ZΘ, where ZΘ is the centralizer of HΘ in G by

the adjoint representation.
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Theorem 1.2.12. [1] The adjoint orbit OpHΘq �AdpGq �HΘ � G{ZΘ of the characteristic

element HΘ is a C8 vector bundle over FΘ that is isomorphic to the cotangent bundle

T �FΘ. Moreover, we can write down a diffeomorphism ι :AdpGq �HΘ Ñ T �FΘ such that

(1) ι is equivariant with respect to the actions of U , that is, for all u P U ,

ι � Adpuq � ũ � ι,

where ũ is the lifting to T �FΘ (via the differential) of the action of u on FΘ; and

(2) the pullback of the canonical simplectic form on T �FΘ by ι is the (real) Kirillov-

Kostant-Souriaux form on the orbit.

The projection π : G � HΘ Ñ FΘ is obtained via the action of G. The canonical

fibration gZΘ P G{ZΘ ÞÑ gPΘ P FΘ has the fiber PΘ{ZΘ. In terms of the adjoint action

the fiber is AdpPΘq �HΘ, which is the affine subspace HΘ � n�Θ (see [1]).

In [1] it is also described the isomorphism of the adjoint orbit G � HΘ with the

cotangent bundle T �FΘ. The tangent space TbΘFΘ of the flag manifold FΘ at the origin bΘ

can be identified with n�Θ and the isotropy representation UΘ ÑGlpTbΘFΘq becomes the

restriction of the adjoint representation. The subspace n�Θ is isomorphic to the dual pn�Θq�
of n�Θ via the Cartan-Killing form Kp�, �q of g. Thus, the map X P n�Θ ÞÑ KpX, �q P pn�Θq� is

an isomorphism.

1.3 Symplectic manifolds

In [1], each element of the Lie algebra g is associated with a Hamiltonian vector field

on T �FΘ and they use the fact that g is semi-simple to interchange the representations

coadjoint and adjoint via the Cartan-Killing form and thus define the moment map

T �FΘ Ñ g of the Hamiltonian action of G on the cotangent bundle. That moment map

is a diffeomorphism transforming the canonical symplectic form of T �FΘ in the Kirillov-

Kostant-Souriaux form on the adjoint orbit AdpGqHΘ. We also study the cotangent bundle

of a flag manifold as a symplectic manifold. Some definitions in [12] and [16] to understand

the symplectic manifolds are:

Definition 1.3.1. A symplectic form ω in a vector space V (dimV   8) is a non-

degenerate asymmetric bilinear form, i.e. for every x P V , there exists y P V such that

ωpx, yq � 0.

A symplectic form in a differentiable manifold M is a closed differential 2�form ω

pdω � 0q and non-degenerate.

A manifold M provided of a symplectic form is called symplectic manifold.
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Definition 1.3.2. Let pM, ωq be a 2n-dimensional symplectic manifold. A submanifold Y of

M is a Lagrangian submanifold if, at each p P Y , ωp |TpY� 0 and dimTpY � 1
2dimTpM .

1.3.1 Coadjoint representation

The coadjoint representation Ad�pgq of G on the dual g� of the Lie algebra g is

defined by Ad�pgqα � α�Adpg�1q, g P G and α P g�. Its infinitesimal representation

ad� : g Ñ glpgq is given by ad�pXqα � �α�adpXq. The group G acts on g� by the

representation Ad�. For this action, the induced vector fields X̃, X P g, are given by

X̃ �ad�pXq.
For α P g�, the coadjoint orbit Ad�pGqα is identified with the homogeneous space

G{Zα, where Zα is the closed subgroup

Zα � tg P G : α � Adpg�1q � αu.
The Lie algebra zα of Zα is given by zα � tX P g : α � adpXq � 0u. The tangent space of

Ad�pGqα at α is given by

TαpAd�pGqαq � tad�pXqα : X P gu.

The symplectic form of Kirillov-Kostant-Souriaux Ω (KKS) in the coadjoint orbit

Ad�pGqα is given by the expression

ΩαpX̃pαq, Ỹ pαqq � αrX, Y s X, Y P g. (1.3.1)

In [5] is proved that Ωα is an invariant symplectic form in Ad�pGqα � G{Zα. In addition,

the form Ω at β �Ad�pgqα � Ad�pGqα is given by

ΩβpX̃pβq, Ỹ pβqq �Ωαpdg�1
β X̃pβq, dg�1

β Ỹ pβqq
�Ωαp �Adpg�1qXpαq, �Adpg�1qY pαqq
�αrAdpg�1qX, Adpg�1qY s
�α � Adpg�1qrX, Y s.

This means

ΩβpX̃pβq, Ỹ pβqq � βrX, Y s
has the same expression used to define Ωα.

Example 1.3.1. [5] The Cartan-Killing form Kp�, �q of a Lie algebra g of the semi-simple

group G is non-degenerate and define an isomorphism W : gÑ g� by W pXqp�q � KpX, �q.
This isomorphism exchanges the adjoint and coadjoint representations, i.e.

WAdpgq �Ad�pgqW for every g P G, since K is Ad-invariant. Hence W applies dif-

feomorphically the adjoint orbits in the coadjoint orbits, this allows transform the KKS

symplectic forms Ω in the symplectic forms W �Ω in the adjoint orbits. In the semi-simple

case, the adjoint representation behaves like the coadjoint representation.
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As a comment, we indicate a Poisson structure associated with Lie algebras. If g is

any Lie algebra, its dual g� carries the Lie-Poisson structure

tF, Gupµq � xµ, rδF

δu
,
δG

δµ
sy.

Here,
δF

δu
and

δG

δµ
are the differentials of F and G considered as maps into g rather than

g��, and x, y is the pairing of g� with g. If X1, � � � , Xn form a basis for g and x1, � � � , xn

are the corresponding coordinate functions on g�, the basic bracket relations are

txi, xju �
¸
k

cijkxk,

where the cijk’s are the structure constants of g. Conversely, any Poisson structure of

the form as the last equation arises in this way from a Lie algebra. For the Lie-Poisson

structure on g, the orbits of the coadjoint representation of a connected Lie group whose

Lie algebra is g has symplectic structure defined by Kirillov-Kostant-Souriau.

1.4 Symmetric spaces

In this section we shall use Kobayashi and Nomizu’s books [3] and [2] as main

references.

Let M be a n�dimensional manifold with an affine connection. The symmetry

sx at a point x P M is a diffeomorphism of a neighborhood U onto itself which sends

exp X, X P TxM , into expp�Xq. Since the symmetry at x defined in one neighborhood U

of x and the symmetry at x defined in another neighborhood V of x coincide in U X V ,

we can legitimately speak of the symmetry at x. If tx1, � � � , xnu is a normal coordinate

system with origin at x, then sx sends px1, � � � , xnq into p�x1, � � � ,�xnq. The differential

of sx at x is equal to �Ix, where Ix is the identity transformation of TxM . The symmetry

sx is involutive in the sense that sx � sx is the identity transformation of a neighborhood

of x. If sx is an affine transformation for every x P M , then M is said to be affine locally

symmetric.

A manifold M with an affine connection is said to be affine symmetric if, for each

x P M , the symmetry sx can be extended to a global affine transformation of M .

Theorem 1.4.1. [3] A complete, simply connected, affine locally symmetric space is affine

symmetric.

Theorem 1.4.2. [3] On every affine symmetric space, the group of affine transformations

is transitive.

Kobayashi and Nomizu, in [2], proved that the group of affine transformations UpMq
of M is known to be a Lie group. Let G denote the identity component of the UpMq. The
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identity component of a Lie group acting transitively on a manifold M is itself transitive

on M , an affine symmetric space M may be written as a homogeneous space G{H.

Theorem 1.4.3. [3] Let G be the largest connected group of affine transformations of an

affine symmetric space M and H the isotropy subgroup of G at a fixed point o of M so that

M � G{H. Let so be the symmetry of M at o and σ the automorphism of G defined by

σpgq � so � g � s�1
o for g P G. (1.4.1)

Let Gσ be the closed subgroup of G consisting of elements fixed by σ. Then H lies between

Gσ and the identity component of Gσ.

From Theorem 1.4.3, Kobayashi and Nomizu suggests the following definiton. A

symmetric space is a triple pG, H, σq consisting of a connected Lie group G, a closed

subgroup H of G and an involutive automorphism σ of G such that H lies between Gσ

and the identity component of Gσ, where Gσ denotes the closed subgroup of G consisting

of all elements left fixed by σ.

We define now an infinitesimal version of a symmetric space. A symmetric Lie algebra

is a triple pg, h, σq consisting of a Lie algebra g, a subalgebra h of g, and an involutive

automorphism σ of g such that h consists of all elements of g which are left fixed by σ.

Every symmetric space pG, H, σq gives rise to a symmetric Lie algebra pg, h, σq
in a natural manner; g and h are the Lie algebras of G and H, respectively, and the

automorphism σ of g is the one induced by the automorphism σ of G by the automorphism

σ of G. Conversely, if pg, h, σq is a symmetric Lie algebra and if G is connected, simply

connected Lie group with Lie algebra g, then the automorphism σ of g induces an

automorphism σ of G and, for any subgroup H lying between Gσ and the identity

component of Gσ, the triple is a symmetric space. The pair pG, Hq is called a symmetric

pair.

A triple pG1, H 1, σ1q is called a symmetric subspace of a symmetric space pG, H, σq if
G1 is a Lie subgroup of G invariant by σ, if H 1 � G1XH and if σ1 is the restriction of σ to

G1.

Let pg, h, σq be a symmetric Lie algebra. Since σ is involutive, its eigenvalues as

a linear transformation of g are 1 and �1 and h is the eigenspace for 1. Let m be the

eigenspace of �1. The decomposition

g � h�m (1.4.2)

is called the canonical decomposition of pg, h, σq.
Proposition 1.4.4. [3] If g � h � m is the canonical decomposition of a symmetric Lie

algebra pg, h, σq, then
rh, hs � h, rh,ms � m, rm,ms � h. (1.4.3)
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Proposition 1.4.5. [3] Let pG, H, σq be a symmetric space and pg, h, σq its symmetric Lie

algebra. If g � h�m is the canonical decomposition of pg, h, σq, then

AdpHqm � m. (1.4.4)

The following theorems guarantee the existence of an invariant affine connection over

the homogeneous symmetric space G{H.

Theorem 1.4.6 (Correspondence). [3] There is a one-to-one correspondence between the

set of G-invariant connections in G (connection in the bundle GpM, Hq which is invariant

by the left translations of G) and the set of linear mappings Λm : mÑ h such that

ΛmpAdphqXq � AdphqpΛmpXqq, X P m, h P H, (1.4.5)

The correspondence is given by Λ : gÑ g

ΛpXq �
#

X, X P h,

ΛmpXq, X P m
(1.4.6)

To a G-invariant connection in G with connection form ω there corresponds the linear

mapping defined by

ΛpXq � ωu0pX̃q X P g,

where X̃ denotes the natural lift to G of a vector field X P g of M � G{H and u0 P G

fixed.

The invariant connection corresponding to Λm � 0 is called canonical connection of

pG, H, σq or G{H

Theorem 1.4.7. [natural torsion-free connection] [3] Every reductive homogeneous space

M � G{H admits a unique torsion-free G-invariant affine connection having the same

geodesics as the canonical connection. It is defined by

ΛmpXqpY q � 1
2rX, Y sm, X, Y P m. (1.4.7)

The invariant connection defined in the Theorem 1.4.7 shall called by the natural

torsion-free connection on G{H (with respect to the decompostion g � h`m). If pG, H, σq
is a symmetric space, then the homogeneous space G{H is reductive with respect to the

canonical decomposition, then rm,ms � h and the canonical connection coincides with the

natural torsion-free connection.

Theorem 1.4.8. [3] Let (G, H, σ) be a symmetric space. The canonical connection is the

only affine connection on M � G{H which is invariant by the symmetries of M .

The canonical connection makes it possible to find geodesics in symmetric spaces.
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Theorem 1.4.9. [3] With respect to the canonical connection of a symmetric space pG, H, σq,
the homogeneous space M � G{H with origin o is a (complete) affine symmetric space

with symmetries sx and possesses the following properties:

(1) For each X P m , define the curves ft � exp tX in G and xt � fto in M � G{H.

Then the curve xt is a geodesic. Conversely, every geodesic in M starting from o is

of the form ft � o � exp tX � o for some X P m.

(2) The canonical connection is complete.

In [2], an indefinite Riemannian metric is defined as a symmetric covariant tensor

field m of degree 2 which is non-degenerate at each x P M , that is, mpX, Y q � 0 for all

Y P TxpMq implies X � 0. The difference with the Riemannian metric defined in the

section 1.2.8 is that an indefinite Riemannian metric associates p P M to non-degenerate

bilinear symmetric 2�form mpp�, �q in TpM instead of an inner product.

Example 1.4.1. An indefinite Riemannian metric on a non-compact, semi-simple Lie group

is given by the Cartan-Killing form.

Theorem 1.4.10. [3] [Indefinite Riemannian metric] Let pG, H, σq be a symmetric space

with G semi-simple and let g � h�m be the canonical decomposition. Then

(1) the restriction of the Cartan-Killing form Kp�, �q of g to m defines a G-invariant

(indefinite) Riemannian metric on G{H and

(2) this (indefinite) Riemannian metric induces the canonical connection on G{H.

In Chapter IV of [2] there is a theorem saying that every Riemannian manifold

admits a unique metric connection with vanishing torsion and that connection is called

Riemannian connection (sometimes called the Levi-Civita connection). Since the canonical

connection is also torsion-free by Theorem 1.4.7, it must be the Riemannian connection.

A homogeneous space M � G{H with a G-invariant indefinite Riemannian metric is

said to be naturally reductive if it admits an AdpHq-invariant decomposition g � h`m

satisfying the condition

BpX, rZ, Y smq �BprZ, Xsm, Y q � 0, @X, Y, Z P m (1.4.8)

where Bp�, �q is an AdpHq-invariant non-degenerate symmetric bilinear form onm. Therefore,

we can say every symmetric space is naturally reductive since rX, Y sm � 0 for all X, Y P m.

Then the affine symmetric space G{H, with G semi-simple, is naturally reductive

with respect to the G�invariant indefinite Riemannian metric defined by the Cartan-

Kililng form. Furthermore, in [3] is proved that the indefinite Riemannian metric on m is
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a AdpHq-invariant, non-degenerate symmetric bilinear form that satisfies

KprZ, Xs, Y qo �KpX, rZ, Y sqo � 0, X, Y P m, Z P h, (1.4.9)

where o is the origin of G{H. This metric is invariant by both right and left translations.

1.4.1 Riemannian symmetric spaces

A Riemannian manifold M is said to be Riemannian locally (or globally) symmetric

if it is affine locally (or globally) symmetric with respect to the Riemannian connection.

Theorem 1.4.11. [3] Let M be a Riemannian symmetric space, G the largest connected

group of isometries of M and H the isotropy subgroup of G at a point o of M . Let so be the

symmetry of M at o and σ the involutive automorphism of G defined by σpgq � so � g � s�1
o

for g P G. Let Gσ be the closed subgroup of G consisting of elements fixed by σ. Then

1. G is transitive on M so that M � G{H;

2. H is compact and lies between Gσ and the identity component of Gσ.

If pG, H, σq is a symmetric space with compact AdgpHq. Let g � h � m be the

canonical decomposition. Since h and m are invariant by AdgpHq (see Proposition 1.4.5)

and since AdgpHq is compact, g admits an AdgpHq-invariant inner product with respect

to which h and m are perpendicular to each other. This inner product restricted to m

induces a G-invariant Riemannian metric on G{H. By Theorem 1.4.10, any G-invariant

Riemannian metric on G{H defines the canonical connection of G{H. Hence G{H is a

Riemannian symmetric space.

1.4.1.1 Orthogonal symmetric Lie algebras

Let pg, h, σq be a symmetric Lie algebra. Consider the Lie algebra adgphq of linear
endomorphisms of g consisting of adX where X P h. If the connected Lie group of linear

transformations of g generated by adgphq is compact, then pg, h, σq is called an orthogonal

symmetric Lie algebra. If pG, H, σq is a symmetric space such that H has a finite number

of connected components and if pg, h, σq is its symmetric Lie algebra, then AdgpHq is
compact if and only if pg, h, σq is an orthogonal symmetric Lie algebra.

Proposition 1.4.12. Let pg, h, σq be an orthogonal symmetric Lie algebra with g simple.

Let g � h�m be the canonical decomposition. Then

1. adh is irreducible on m.

2. The Cartan-Killing form K of g is (negative or positive) defined on m.
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A symmetric Lie algebra pg, h, σq is said to be effective if h contains no non-zero

ideal of g.

An effective symmetric Lie algebra pg, h, σq is irreducible if adprm,msq is irreducible
on m. If g is simple, then the symmetric Lie algebra is irreducible.

In general, an orthogonal symmetric Lie algebra pg, h, σq with g semi-simple is said

to be of compact type or non-compact type according as the Cartan-Kiling form K of g

is negative-defined or positive-defined on m.

1.4.2 The dual symmetric space

Consider an arbitrary (real) symmetric Lie algebra (g, h, σ) with canonical decompo-

sition g � h�m.

If we denote by gc and hc the complexifications of g and h, respectively, and by σc the

involutive automorphism of gc induced by σ, then (gc, hc, σc) is a symmetric Lie algebra

and pg, h, σq is a (real) symmetric subalgebra of pgc, hc, σcq. We set

g� � h�?�1m. (1.4.10)

If we set σ� � σc | g�, then we obtain a symmetric subalgebra pg�, h, σ�q of pgc, hc, σcq,
which is called the dual of pg, h, σq.

Theorem 1.4.13. [3] The irreducible orthogonal symmetric Lie algebras of compact type

are divided into the following two classes:

(I) pg, h, σq where g is a simple Lie algebra of compact type;

(II) pg�g, ∆g, σq where g is a simple Lie algebra of compact type, σ maps pX, Y q P g�g

into pY, Xq P g� g and ∆g is the diagonal of g� g.

The irreducible orthogonal symmetric Lie algebras of non-compact type are divided into the

following two classes:

(III) pg, h, σq where g is a simple Lie algebra of non-compact type which does not admit a

compatible complex structure;

(IV) pgc, g, σq where g is a simple Lie algebra of compact type, gc denotes the complexifi-

cation of g, and σ is the complex conjugation in gc with respect to g.

An orthogonal symmetric Lie algebras of type (I) is the dual of an orthogonal symmetric

Lie algebra of type (III). An orthogonal symmetric Lie algebra of type (II) is the dual of

an orthogonal symmetric Lie algebra of type (IV).
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The types of symmetric spaces are related to their geometric properties as follows.

Theorem 1.4.14. [3] Let pG, H, σq be a symmetric space with AdGpHq compact and let

pg, h, σq be its orthogonal symmetric Lie algebra. Take any G-invariant Riemannian metric

on G{H. Then we have.

(1) If pg, h, σq is of compact type, then G{H is a compact Riemannian symmetric space

with non-negative sectional curvature and positive-defined Ricci tensor;

(2) If pg, h, σq is of non-compact type, then G{H is a simply connected non-compact

Riemannian symmetric space with non-positive sectional curvature and negative-

definite Ricci tensor and is diffeomorphic to a Euclidean space.

The Riemannian symmetric manifolds with orthogonal Lie algebras of compact type

of class (I) and of non-compact type of class (III) are evidence in the Table A.3.
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2 Symetric spaces on the adjoint orbit

Let g be a complex simple Lie algebra with compact real form u and let G be a

connected Lie group with Lie algebra g. Let U{K be a complex flag manifold and assume

that the Lie algebra of U is u and the Lie algebra of K is k. Comparing the tables A.2

and A.3, we can see that the symmetric spaces which are complex flag manifolds are

SUpp� qq{SpUppq � Upqqq, Spplq{Uplq and SOp2lq{Uplq of types A,C and D respectively.

These flag manifolds are Riemannian symmetric manifolds and pu, k, σq is an orthogonal

Lie algebra of compact type and class (I).

We call flag symmetric spaces to the symmetric spaces which are also complex flag

manifolds. We shall see these spaces as homogeneous spaces with the canonical connection,

which is also an invariant connection.

Throughout chapters 3, 4 and 5, we shall prove Theorem 2.0.1, i.e. that the cotangent

bundle of a flag symmetric space is a symmetric space.

Theorem 2.0.1. Let FΘ be a flag symmetric space identified with the homogeneous space

FΘ � U{UΘ, (2.0.1)

as in Proposition 1.2.11 . Then, there exists an element HΘ in a fixed Cartan subalgebra

of the compact Lie algebra u such that for σ :� Cexp HΘ,

UΘ � tu P U : Cexp HΘpuq � uu. (2.0.2)

Moreover, let G be the complex Lie group such that U is its compact real form. Then,

the cotangent bundle of FΘ has a realization as a symmetric space.

If we use also the notation σ for Adupexp HΘq and Adgpexp HΘq, then pu, uΘ, σq and
pg, zgpHΘq, σq are symmetric Lie algebras.

This theorem shows that one element HΘ in a Cartan subalgebra determines the

automorphism σ for two symmetric spaces and then for two symmetric Lie algebras.

In this chapter we shall use the following notations: Let g be a complex simple Lie

algebra with compact real form u. Let G be a complex simple Lie group with Lie algebra

g and U the connected compact Lie subgroup of G with Lie algebra u. The flag symmetric

spaces shall be denoted by F � U{UΘ, as in Proposition 1.2.11. The σ-fixed points set in g

is denoted by

gσ � zΘ � zgpHΘq. (2.0.3)
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In addition, we shall use the notation used in the section 1.2.2 for the flag symmetric

spaces.

Moreover, the tangent space of the homogeneous space G{Gσ at the origin can be

identify by the (direct) sum

mG :� n�Θ � n�Θ

Hence, the canonical decomposition of the complex Lie algebra is

g � zΘ �mG. (2.0.4)

Since Gσ � ZΘ, the adjoint orbit of G in HΘ is G{Gσ (see 1.2.12) and its tangent

space at HΘ is isomorphic to the vector space n�Θ � n�Θ.

Analyzing the flag symmetric space U{UΘ from Theorem 2.0.1, we have that UΘ �
ZUpHΘq and by (1.2.13) and (1.2.12), the compact real form of g has the canonical

decomposition:

u � uΘ �m, (2.0.5)

where

m �
¸

αPΠ�zxΘy�
uα, (2.0.6)

with uα � SpanRpAα, Zαq as in 1.1.5, is isomorphic to the tangent space of the flag in the

origin. Then,

mG � mC (2.0.7)

where we identify mG with the complexification mC of the tangent space TbΘFΘ of FΘ

at the point bΘ :� eUΘ. Then mτ
G � tX P g, τX � Xu is identified with TbΘFΘ and the

isotropy representation of UΘ on pTbΘFΘqC can be identified with the restriction of the

adjoint representation AdgpUΘq to mG.

In the next chapters, let us characterize the flag symmetric spaces. They are only of

three classes. In the Chapters 3, 4 and 5 is proved that the involutive inner automorphism

σ mentioned in Theorem 2.0.1 is a generalized Cartan involution (extension of a Cartan

involution from a noncompact real form to a complex Lie algebra) extended from a

noncompact real form of g, denoted by g0, with Cartan decomposition

g0 � k� s, (2.0.8)

such that k � uΘ. By 1.1.11 and g � g0 �
?�1g0, we get u � k � ?�1s and the vector

subspace m is isomorphic to the symmetric part of u and we get the identification

m � ?�1s. (2.0.9)

Hence,

gσ � k�?�1k, (2.0.10)
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since σ is the Cartan involution on g0. The canonical decomposition of pg, gσ, σq is

g � pk�?�1kq � ps�?�1sq (2.0.11)

and the canonical decomposition of pu, uσ, σq is:

u � k�?�1s � uΘ �
?�1s (2.0.12)

Remark 1. A realization of the adjoint orbit in [1] is in Theorem 1.2.12. The adjoint

orbit is realized as the associated vector bundle U �ρ n
�
Θ with principal bundle U Ñ UΘ,

where ρ is the adjoint representation restricted to UΘ on n�Θ. Additionally, G � HΘ �¤
uPU

AdpuqpHΘ � n�Θq � g.

Since Lie groups here are all semi-simple, the Cartan Killng form Kp�, �q is a non-

degenerate bilinear form. Since it is invariant by automorphisms, then it is AdpHq invariant,
for H the isotropy subgroup both for the symmetric flag spaces and for the adjoint orbits.

In the case of symmetric flag spaces, the Cartan Killing form is negative definite, then

�Kp�, �q generates a U -invariant Riemannian metric on FΘ � U{UΘ and for the cotangent

bundle T �FΘ � G{ZΘ there no exists an AdpZΘq-invariant (definite) metric, because of

ZΘ is not a group of isometries.

The theory studied here is a generalization of the examples 2.0.1 and 2.1.1. We shall

show the case of an unidimensional real flag SOp2q{t�Idu which is a symmetric space and

its dual symmetric space contained in the bidimensional adjoint orbit diffeomorphic to the

cotangent bundle of SOp2q{t�Idu.

Example 2.0.1. Let us consider the base of slp2,Rq:

A �
�

0 1
1 0

�
, B �

�
1 0
0 �1

�
, C �

�
0 1
�1 0

�
. (2.0.13)

The compact Lie group

SOp2q �
#�

cos s � sin s

sin s cos s

�
: s P R

+

determines the maximal flag manifold

SOp2q �B �
#�

cos s � sin s

sin s cos s

�
�B � sinp2sqA� cosp2sqB � 0C : s P R

+
�S1 (2.0.14)

contained in the real vector space slp2,Rq a sop2q �spantA, Bu. This flag manifold is a

symmetric space since is the 1-sphere S1.
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The adjoint orbit Slp2,Rq �B :� Ad(Slp2,RqqB is the set of matrices xA� yB � zC

for x, y, z P R, with eigenvalues �1, i.e.

det
�

y x� z

x� z �y

�
� det

�
1 0
0 �1

�
. (2.0.15)

Then, the adjoint orbit Slp2,Rq �B is the one-sheeted hyperboloid

x2 � y2 � z2 � 1. (2.0.16)

This manifold has a realization as the homogeneous space Slp2,Rq{S(Glp1,Rq�Glp1,Rqq
�Slp2,Rq{R�, with R� � Rzt0u.

The cotangent bundle of S1 is also the union of fibers T �S1 �
¤

kPSOp2q
k � pB � n�q,

with n� being the Lie subalgebra of slp2,Rq defined by the upper triangular matrices. For

each element

k �
�

cos t sin t

� sin t cos t

�
P SOp2q, t P R, (2.0.17)

the fiber k � pB � n�q is the one-dimensional affine vector space

AdpkqpB � n�q :�
#�

cos t sin t

� sin t cos t

�
�
�

B �
�

0 r

0 0

��
: r P R

+

�
$&%
�� cosp2tq � r

2 sinp2tq � sinp2tq � rpcos tq2

� sinp2tq � rpsin tq2 � cosp2tq � r

2 sinp2tq

�: r P R

,.-
�tp� sinp2tq � r

2 cosp2tqqA
� pcosp2tq � r

2 sinp2tqqB � r

2C : r P Ru. (2.0.18)

A vector equation defining each fiber above is��� x

y

z

���

��� � sinp2tq
cosp2tq

0

��� r

2

��� cosp2tq
sinp2tq

1

�� r P R. (2.0.19)

Example 2.0.2. Now we show a case of low dimension of the symmetric spaces studied in

Chapter 3. Consider the Lie group G � Slp2,Cq, with compact real form U � SUp2q and
take the element in the Lie algebra u � sup2q

HΘ �
?�1π

2

�
1 0
0 �1

�
.

This element defines the maximal flag manifold FΘ � U{UΘ for Θ � H, where UΘ is the

centralizer of HΘ in U . The Lie group

SUp2q �
#�

α β

�β̄ ᾱ

�
: |α|2 � |β|2 � 1, α, β P C

+
(2.0.20)
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is diffeomorphic to the 3�sphere S3 and ZUpHΘq is the subgroup

SpUp1q � Up1qq �
#�

α 0
0 ᾱ

�
: |α|2 � 1, α P C

+

�
#�

eiθ 0
0 e�iθ

�
: θ P r0, 2πs

+
diffeomorphic to the unidimensional sphere S1.

Then the flag manifold FΘ is a symmetric space and is the Riemann sphere

SUp2q{SpUp1q � Up1qq � S3{S1 � CP 1 � S2.

The cotangent bundle of SUp2q{SpUp1q�Up1qq has a realization as the homogeneous

space

G{ZGpHΘq � Slp2,Cq{SpGLp1,Cq �GLp1,Cqq
with

SpGLp1,Cq �GLp1,Cqq �
#�

z 0
0 z�1

�
: z P C�

+
� C� � Czt0u.

In Chapter 3 we prove that in particular, the cotangent bundle of the 2�sphere is a

symmetric space, since the element HΘ is a particular case of the matrix in the equation

3.0.2. Then the homogeneous space T �pS2q � Slp2,Cq{C� is symmetric.

Furthermore we know another realization of the cotangent bundle of S2 as the adjoint

orbit of G � Slp2,Cq in HΘ

G �HΘ �
#�

z1 z2

z3 z4

�
HΘ

�
z4 �z2

�z3 z1

�
: z1z4 � z2z3 � 1, z1, z2, z3 P C

+

�
#?�1π

2

�
1� 2z2z3 �2z1z2

2z3z4 �1� 2z3z2

�
: z1z4 � z2z3 � 1, z1, z2, z3 P C

+
.

Remark 2. In the three cases of flag symmetric spaces, we have symmetric Lie algebras, in

the cotangent bundle, of the type pg, zΘ, σq with the following properties :

1. g is simple and is a vector direct sum n�Θ � zΘ � n�Θ with the relations

rzΘ, zΘs � zΘ,
�
zΘ, n�Θ

� � n�Θ,
�
zΘ, n�Θ

� � n�Θ,�
n�Θ, n�Θ

� � zΘ,
�
n�Θ, n�Θ

� � 0,
�
n�Θ, n�Θ

� � 0;
(2.0.21)

2. The canonical decomposition g � zΘ `mG is given by the direct sum

mG � n�Θ � n�Θ; (2.0.22)

3. With respect to the Cartan-Killing form K of g, the subspaces n�Θ are dual to each

other and, moreover,

Kpn�Θ, n�Θq � 0 and Kpn�Θ, n�Θq � 0 (2.0.23)
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2.1 The dual symmetric space

We study the dual symmetric spaces of the flag symmetric spaces pu, uΘ, σq. The
dual symmetric Lie algebra is the direct sum

u� � uΘ �
?�1m, (2.1.1)

with σ� �AdpeHΘq |u� . In the expressions 3.0.15, 4.0.33 and 5.0.22, we shall show that u�

is isomorphic to a classical real Lie algebra and the decomposition above is the Cartan

decomposition of u� with Cartan involution given by σ�

Let U� be the non-compact connected Lie subgroup with Lie algebra u�. This Lie

group is a real form of the complex Lie group G. In this section, we study the set

S :� Adpe
?�1mqHΘ � G �HΘ :� AdpGqHΘ. (2.1.2)

The theorems 2.1.1 and 2.1.3 are the main results of this section.

Theorem 2.1.1. Let FΘ � U{UΘ be a flag symmetric space with symmetric Lie algebra

u � uΘ �m. (2.1.3)

Then

(i) S is a submanifold of the adjoint orbit G �HΘ, with G being the complex Lie group

with compact real form U . Furthermore,

S � U�{UΘ, (2.1.4)

where U�{UΘ is the dual symmetric space of FΘ.

(ii) The submanifold S is diffeomorphic to a vector space.

(iii) This homogeneous space is a Riemannian manifold with Riemannian structure defined

by the Cartan-Killing form.

(iv) Let u � pHΘ�n�Θq be a fiber in the cotangent bundle of FΘ intersecting the submanifold

S, then both spaces are transverse.

Proof. (i) The quocient space U�{UΘ is an affine symmetric space by definition of dual

symmetric space. Since U� is a subgroup of G and UΘ � U X ZΘ, then pU�, UΘ, σ�q
is a symmetric subspace of pG, ZΘ, σq, with σ� � σ |U� . By a theorem in [3], U{UΘ

is a totally geodesic submanifold of G{ZΘ (with respect to the canonical connection

of G{ZΘ) and the canonical connnection of G{ZΘ restricted to U{UΘ coincides with

the canonical connection of G{ZΘ.
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The theorem 1.1.38 can be applied in the non-compact connected Lie group U�. Then,

U�{UΘ is diffeomorphic to expp?�1mq, which is simply connected. Furthermore, the

adjoint orbit

AdpU�qHΘ � Adpe
?�1mqAdpUΘqHΘ � Adpe

?�1mqHΘ �: S (2.1.5)

is diffeomorphic to U�{UΘ. Hence, S is diffeomorphic to expp?�1mq, and thus it is

diffeomorphic to the vector space
?�1m.

(ii) Proved in the demonstration of (i).

(iii) The tangent space of the dual symmetric space U�{UΘ at the origin is isomorphic to?�1m and the Cartan-Killing form in
?�1m is Kp?�1X,

?�1Y q � �KpX, Y q �:
xX, Y y for X, Y P m. Since m � u, then the Cartan-Killing form in

?�1m is positive

defined. The homogeneous space U�{UΘ admits invariant metrics since UΘ is compact.

A natural metric in U�{UΘ is that given by the restriction of the Cartan-Killing form

to
?�1m. Since u� is simple, then the adjoint representation in

?�1m is irreducible

and the invariant metric is essentially unique, defined by the Cartan-Killing form.

(iv) Every fiber has the form u � pHΘ � n�Θq � u � pN�
Θ �HΘq, for u P U . To say that S is

transverse to HΘ � n�Θ is equivalent to proving that for every x P S X u � pHΘ � n�Θq
must be satisfied

TxpSq � Txpu � pHΘ � n�Θqq � TxpG �HΘq, (2.1.6)

for each u P U such that S X u � pHΘ � n�Θq � H.

The Lie algebra g can be seen as the set of left invariant fields. From the equation

d

dt
pAdpetXqpY qq |t�0� rX, Y s p1q, X, Y P g, (2.1.7)

the tangent space of S at eA �HΘ � u � pHΘ�Xq � ueZ �HΘ, with A P ?�1m, X, Z P
n�Θ, u P U and eZ �HΘ � HΘ �X, is reA �HΘ,

?�1ms and the tangent space to the

fiber u � pHΘ � n�Θq at eA �HΘ is reA �HΘ, n�Θs. The sum of the two tangent spaces is

reA �HΘ,
?�1ms � reA �HΘ, n�Θs � reA �HΘ,

?�1m� n�Θs � reA �HΘ,mGs, (2.1.8)

the tangent space to the adjoint orbit G �HΘ at eA �HΘ.

Proposition 2.1.2. The intersection of S with the fiber HΘ � n�Θ is the point set tHΘu.

Proof. We shall compute the intersection of the submanifold S with the fiber HΘ � n�Θ in

the three cases of flag symmetric spaces. The results will be evidenced in 3.0.21, 4.0.40

and 5.0.27.
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The symmetry σ̃ in the submanifold S is given by

σ̃ : S Ñ S
eA �HΘ ÞÑ CeHΘ peAq �HΘ,

(2.1.9)

for A P ?�1m. Then σ̃peA �HΘq � exppAdpeHΘqAq �HΘ � exppσpAqq �HΘ � expp�Aq �HΘ,

since pu�, uΘ, σq, σ �Ad(eHΘq is a symmetric Lie algebra. Recall that we have the same

notation σ for the automorphism in the Lie group and algebra.

Theorem 2.1.3. Suppose that, for some u P U , the fiber u � pHΘ � n�Θq intersects the

submanifold S. Then, the fiber σpuq � pHΘ � n�Θq intersects S.

Proof. Each element eA �HΘ of S is an element of some fiber of the cotangent bundle and

has the form u � pHΘ �Xq � ueZ �HΘ, for some u P U and Z, X P n�Θ, since S � G �HΘ.

σ̃peA �HΘq �σ̃pueZ �HΘq
e�A �HΘ �σpuqσpeZq �HΘ

�σpuqe�Z �HΘ, Z P mG

Pσpuq � pHΘ � n�Θq. (2.1.10)

However, not every fiber intersects S. The following theorem indicates us some fibers

which does not intersect S.

Theorem 2.1.4. The fiber u � pHΘ � n�Θq does not intersect S if u � n�Θ � u� and u �HΘ R uΘ.

Proof. Let u � pHΘ � n�Θq a fiber such that u � n�Θ � u� and u � HΘ R uΘ. Suppose that

u � pHΘ � n�Θq X S � ∅. The fiber is cointained in u �HΘ � u�. If u � pHΘ �Xq P S � u�,

with X P n�Θ, then u �HΘ P u� X u � uΘ and this is a contradiction. Hence

pu � pHΘ � n�Θqq X S � ∅. (2.1.11)

Theorem 2.1.5. Let u � pHΘ�Xq P S � T �FΘ be an element that satisfies u �n�ΘXu� � t0u.
Then, the intersection of the submanifold S with the fiber u � pHΘ � n�Θq is tu � pHΘ �Xqu.

Proof. Consider an element u � pHΘ � Y q in the intersection S X u � pHΘ � n�Θq. Then
u � pHΘ � Y q � u � pHΘ � Xq � u � pY � Xq P u � n�Θ X u� � t0u, since S � u�. Hence

X � Y .
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The projection π : u � pHΘ �Xq P T �FΘ ÞÑ u �HΘ P FΘ, for u P U , X P n�Θ; restricts

to the submanifold S is an homeomorphism over πpSq. The adjoint orbit G � HΘ is a

set of matrices in g with imaginary eigenvalues, since HΘ belongs to the the Cartan

subalgebra of u. The elements in
?�1u do not intersect the adjoint orbit since adpg �

HΘq �Adpgq�adpHΘq�Adpg�1q, for each g P G, has imaginary eigenvalues and the matrices

in adp?�1uq has real eigenvalues.

Example 2.1.1. This example is the continuation of Example 2.0.1.

The symmetric part of the Cartan decomposition of slp2,Rq is generated by the

matrices A and B (see 2.0.13). Thus, the submanifold S is represented by

AdpetAqB �: expptAq �B

�
#�

cosh t sinh t

sinh t cosh t

�
�B � 0A� coshp2tqB � sinhp2tqC : t P R

+
�tp0, y, zq P R3 : y2 � z2 � 1, y ¡ 0u (2.1.12)

and it is the intersection of the hyperboloid x2 � y2 � z2 � 1 with the semi-plane

tx � 0, y ¡ 0u contained in the vector space spanRtB, Cu. Here the submanifold S is

symmetric with respect to the abelian vector subspace of slp2,Rq generated by B. Hence

we have three symmetric spaces: The hyperboloid in 2.0.16, the 1-sphere and a branch of

the hyperbola 2.1.12 contained in the plane Y Z.

Figure 1 – Real adjoint orbit.

The intersection of S with the fiber k � pB�nq is the set of the vectors xA� yB� zC

in 2.0.18, such that x � 0 and y ¡ 0. These conditions are equivalent to the system#
�2 sinp2tq � r cosp2tq � 0
2 cosp2tq � r sinp2tq ¡ 0

, t P r0, πs. (2.1.13)

This system has solution only for t P p�π

4 ,
π

4 q. Thus, the only fibers intersecting S are

k � pB�nq with k as in 2.0.17 and t P p�π

4 ,
π

4 q. The intersection is the only vector satisfying
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the equation 2.0.19 with r � 2 tanp2tq. Furthermore, note that when k is equal to

1?
2

�
1 1
�1 1

�
or 1?

2

�
1 �1
1 1

�
, (2.1.14)

then k � B is equal to �A and A, respectively. Hence, the fibers passing by �A do not

intersect the submanifold S.

We can see this results in the Figure 2. All the lines in this figure are fibers and

the sky blue lines are the fibers passing by �A. We can see how the fibers passing by the

points in the (green) semicircle of radius 1 contained in tpx, y, 0q : x P R, y ¡ 0u intersect
the submanifold S represented by the red curve.

Figure 2 – Fibers of T �pS1q and the submanifold S.

Example 2.1.2. This example is a continuation of Example 2.0.2.

The manifold S :�(expsq �HΘ, with s � ?�1m �
#�

0 b

b̄ 0

�
: b P C

+
, is

S � e
?�1m �HΘ �

$''&''%
?�1π

2

���� coshp2 |b|q � b

|b| sinhp2 |b|q
b̄

|b| sinhp2 |b|q � coshp2 |b|q

���: b P C

,//.//- (2.1.15)

The diagonal entries of the matrices in S are complex numbers with real part equal

to zero.
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The fibers of the cotangent bundle are u � pHΘ � n�q, with u �
�

α β

�β̄ ᾱ

�
P SUp2q

and each fiber is the set$'&'%
���

?�1π

2 p2 |α|2 � 1q � xαβ̄ �?�1παβ � xα2

�?�1πᾱβ̄ � xβ̄2 �
?�1π

2 p2 |α|2 � 1q � xαβ̄

��: x P C

,/./- . (2.1.16)

To find out which fibers intersect S, we are looking for elements in u � pHΘ � n�q such
that for each α and β as above, we must find if there exists x P C satisfying the following

conditions:

x̄ᾱβ � �xαβ̄ (2.1.17)
?�1πᾱβ̄ � x̄ᾱ2 � �?�1πᾱβ̄ � xβ̄2 (2.1.18)
π

2 p2 |α|
2 � 1q � Impxαβ̄q ¥ π

2 (2.1.19)

The first and second conditions come from the form of matrices in sup1, 1q and the

third condition is because, from 2.1.15, the imaginary part of the first element in the

diagonal of matrices in S is greater than
π

2 .

If β � 0, then u P SpUp1q � Up1qq and α � 0, thus the fiber is pHΘ � n�q. The
unique x P C that satisfies the three conditions above is x � 0. Hence, the intersection

pHΘ � n�q X S is tHΘu.
If α � 0, then |β| � 1 and the fiber is pHΘ � n�q. The equation 2.1.18 says us

that x � 0 and putting x � 0 in 2.1.19, we have a contradiction. Hence, the intersection

pHΘ � n�q X S is empty.

If α � 0 � β, from 2.1.17 and 2.1.18, we have the new condition

2
?�1πᾱβ � xp2 |α|2 � 1q. (2.1.20)

Here, we have two cases:

a) If 2 |α|2 � 1 � 0, then 2
?�1πᾱβ � 0. This is a contradiction, since ᾱβ � 0. Hence,

the fibers u � pHΘ � n�q with

u P
#�

α β

�β̄ ᾱ

�
: |α|2 � |β|2 � 1

2 , α, β P C

+
, (2.1.21)

has empty intersection with the manifold S.

b) If 2 |α|2 � 1 � 0, from 2.1.17 and 2.1.18, we find the complex number

x � 2π
?�1

2 |α|2 � 1
ᾱβ. (2.1.22)
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The condition 2.1.19, with x as above, becomes in the following condition

1
2   |α|2   1. (2.1.23)

Hence, pu � pHΘ � n�qq X S is not empty if

u P
#�

α β

�β̄ ᾱ

�
: 1

2   |α|2 ¤ 1, |α|2 � |β|2 � 1, α, β P C

+
. (2.1.24)

Furthermore,

pu � pHΘ � n�qq X S �
# ?�1π

2 |α|2 � 1

�
1 αβ

�ᾱβ̄ �1

�+
. (2.1.25)

Considering the basis for u:

e1 �
�

0 1
1 0

�
, e2 �

� ?�1 0
0 �?�1

�
, e3 �

�
0

?�1?�1 0

�
, (2.1.26)

the matrices in u �HΘ, with u as in 2.1.24, have the decomposition

πImpαβqe1 � π

2 p2 |α|
2 � 1qe2 � πRepαβqe3, (2.1.27)

with the second component greater than zero and

π2rImpαβqs2 � π2

4 p2 |α|
2 � 1q2 � π2rRepαβqs2 � π2

4 . (2.1.28)

This is, u � HΘ, with u as in 2.1.24, is the semi-sphere tpa, b, cq P sup2q : a2 � b2 � c2 �
π2

4 , b ¡ 0u. We can conclude that S is projected into the flag as the semi-sphere, through

the fibers.

Since the manifold S is contained in

sup1, 1q �
#�

α β

β̄ �α

�
: β P C, ᾱ � �α

+
.

We can express each of its elments as a combination of the matrices

A �
�

0 1
1 0

�
, B �

� ?�1 0
0 �?�1

�
, C �

�
0

?�1
�?�1 0

�
. (2.1.29)

In that base, the manifold S is the part of the two-sheeted hyperboloid x2� z2� y2 � �π2

4
with positive Y -component:

S �
!π

2 sin t sinhp2rq � A� π

2 coshp2rq �B � π

2 cos t sinhp2rq � C : t P r0, 2πs, r ¥ 0
)

.

(2.1.30)
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Note that, the set of matrices xA� yB � zC P sup1, 1q with determinant equal to

detpHΘq � π2

4 is the hyperboloid x2 � z2 � y2 � �π2

4 and has |W | connected components,

where W is the Weyl group of slp2,Rq. Also in this example, the flag is maximal and HΘ

is a regular element. Let w0 P W be the principal involution, then w0 � HΘ � �HΘ and

the adjoint orbit AdpSUp1, 1qqp�HΘq � �AdpSUp1, 1qqHΘ is the sheet of the hyperboloid

x2 � z2 � y2 � �π2

4 such that y   0. Thus,

tM P slp2,Rq : detpMq � π2

4 u �tpx, y, zq P R3 : x2 � z2 � y2 � �π2

4 u
�AdpSUp1, 1qqHΘ Y AdpSUp1, 1qqw0HΘ

2.2 Symplectic form

Let us define the 2�form in g,

Hτ pX, Y q � �KpX, τY q X, Y P g. (2.2.1)

It is an hermitian form in g and then

ωpX, Y q :� �ImHτ pX, Y q X, Y P g (2.2.2)

is a symplectic form in g. In [8], it was proved that this 2-form induces a symplectic form

in the adjoint orbit through the pullback of ω of the inclusion G � HΘ ãÑ g and with

Tg�HΘG �HΘ � rg, g �HΘs, for each g P G.

The flag symmetric space FΘ can be considered as the adjoint orbit AdpUq �HΘ of

the compact Lie group U , contained in u. Furthermore, the conjugation τ restricts to u is

the identity function. Then, the symplectic form above in AdpUq �HΘ is

ωpX, Y q � �ImKpX, Y q X, Y P u. (2.2.3)

The Cartan-Killing form is a symmetric 2�form and ω is anti-symmetric as well as

the Lie algebra u is real. Hence, the symplectic form in the submanifold FΘ is zero.

Now let us see who is the restriction of the symplectic form above to the submanifold

expp?�1mq � HΘ � U� � HΘ of G � HΘ. This submanifold is contained in u� and each

tangent space Tv�HΘU� �HΘ � ru�, v �HΘs, for each v P expp?�1mq, is also contained in

u�. The real Lie algebra u� is invariant by the conjugation τ . The Cartan-Killing form

restricted to u� coincides with the Cartan-Killing form of u�, since it is a real form. Then,

the symplectic form restricted to u� is equal to zero.

Theorem 2.2.1. The flag symmetric space FΘ � U{UΘ and its dual symmetric space S are

Lagrangian submanifolds of the adjoint orbit G �HΘ with the symplectic form defined in

2.2.2.
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On the other hand, the Kirillov-Kostant-Souriau symplectic form (KKS) restricted

to S is

ΩξprX, ξs, rY, ξsq � Kpξ, rX, Y sq, X, Y P u�, ξ P S. (2.2.4)

If ξ � HΘ and X � ?�1Aα, Y � ?�1Zα, for some α P Π�zxΘy�, then

ΩHΘpr
?�1Aα, HΘs, r

?�1Zα, HΘsq �KpHΘ, r?�1Aα,
?�1Zαsq

�KpHΘ,�rAα, Zαsq
�KpHΘ, 2

?�1Hαq
�2
?�1αpHΘq

�0.

Hence, the submanifold S is not Lagrangian with respect to the KKS form.

2.3 Geodesics

The tangent vector space to the adjoint orbit at the origin can be expressed in the

following ways (direct sums):

mG � m�?�1m � m� n�Θ. (2.3.1)

Hence, every X P mG have the decompositions

X � Xm �Xs, Xm P m, Xs P
?�1m (2.3.2)

X � Xm �Xf , Xm P m, Xf P n�Θ. (2.3.3)

With a canonical connection given by the Cartan-Killing form over G{ZΘ, the

maximal geodesics are the curves

γptq � πGpgexpptXqq, g P G, X P mG (2.3.4)

where πG : G Ñ G{ZΘ is the canonical projection defined by g P G ÞÑ g � o, with o � 1 �ZΘ.

The maximal geodesics in G{PΘ � U{UΘ are the curves

γUptq � πUpu expptAqq, u P U, A P m � TbΘFΘ (2.3.5)

where πU : U Ñ U{UΘ is the canonical projection defined by u P U ÞÑ u � bΘ.

Furthermore, we can define another projection

π : G{ZΘ Ñ G{PΘ Ñ U{UΘ

gZΘ ÞÑ gPΘ ÞÑ uUΘ
(2.3.6)
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The following question arises: Is the projection of a geodesic in G{ZΘ a geodesic in

U{UΘ? Here we analyze a case where the answer is yes and for this, we will focus on the

study of geodesics that pass through the origin.

From the decomposition in (2.3.3), if rXm, Xf s � 0, then expptXq � expptXmq expptXf q
and

πpexpptXq � oq � expptXmq � bΘ (2.3.7)

since Xm P m and Xf P n�Θ.

When Xf � 0, we get the geodesic γptq � gexpptXmq � o is a horizontal curve in

the vector bundle G{ZΘ Ñ U{UΘ and the projection in U{UΘ is the geodesic curve

γUptq � u expptXmq � bΘ, πGUpgq � u is the projection of G in U , and we have also the

case when Xm � 0, then the geodesic is in the fiber n�Θ and the projection of this curve on

U{UΘ is γUptq � bΘ.

From the realization T �FΘ � G{ZΘ, the elements in g � o P G{ZΘ can be viewed

as uv � HΘ � u � pHΘ � Xq P T �FΘ, with u P U, v P N�
Θ such that g � uv and v � HΘ �

HΘ � X. Thus, the projection will be u � pHΘ � Xq ÞÑ u � HΘ. Hence, for tutu � U and

tHΘ �Xt � eWt �HΘu � N�
Θ �HΘ, we get

γptq � etZ �HΘ � ute
Wt �HΘ � ut � pHΘ �Xtq. (2.3.8)

Then, the projection of the geodesic is πpγptqq � ut �HΘ. When Z P m, the geodesic

γptq � getZ � o is a horizontal curve in the vector bundle for g P G and its projection on the

flag is the geodesic γUptq � uetZ � bΘ, with πGUpgq � u P U . Moreover, when Z P n�Θ, then

γptq � g expptZq � o πÝÑ γUptq � u � bΘ

the geodesic is into the fiber u � pHΘ � n�Θq of the cotangent bundle and its vertical.
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3 Case Al

Let G be the Lie group Slpn,Cq and let U be the compact Lie group SUpnq, for
n � l� 1, with Lie algebras g and u, respectively. The corresponding flag symmetric space

is the set of Grassmannian of complex p�dimensional subspaces of Cp�q

FΘ � SUpp� qq{SpUppq � Upqqq, n � p� q, p ¤ q,

with Θ � Σztαpu � tα1 � λ1 � λ2, � � � , αp�1 � λp�1 � λp, αp�1 � λp�1 � λp�2, � � � , αl �
λl � λl�1u and each λi is given by

λi : diagta1, � � � , al�1u ÞÑ ai. (3.0.1)

The compact real form of g is u � supnq and an element in u that defines the flag

FΘ is the matrix

HΘ :� iπ

n

�
qIp 0
0 �pIq

�
P supnq � slpn,Cq. (3.0.2)

It belongs to the Cartan subalgebra of supnq and its exponential is the matrix

gΘ :� exppHΘq �
�

ei πq
n Ip 0
0 e�i pπ

n Iq

�
. (3.0.3)

Since p� q � n, then ei π
n
pp�qq � �1. So, we have eiπ q

n � eiπ p
n � �1. Therefore,

eiπ q
n � �e�iπ p

n (3.0.4)

and then

gΘ �
�

eiπ q
n Ip 0
0 �eiπ q

n Iq

�

� eiπ q
n

�
Ip 0
0 �Iq

�
:� eiπ q

n Ip,q P SUpnq

where Ip,q :�
�

Ip 0
0 �Iq

�
.

Furthermore, g2
Θ � peiπ q

n q2 � I2
p,q � e2iπ q

n � In. This verifies that pg2
Θqn � e2πqi � In � In,

i.e., g2
Θ P ZpSUpnqq, since g2

Θ is a nth root of unity.
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We shall use the same notation σ for both the symmetric automorphism for Lie

groups and algebras. Seeing that I�1
p,q � Ip,q, the inner automorphism

σ : SUpnq Ñ SUpnq
h ÞÑ CgΘphq � gΘhg�1

Θ � eiπ q
n Ip,qhe�iπ q

n I�1
p,q � Ip,qhIp,q

is an involution, because of C2
gΘ
phq � I2

p,qhI2
p,q � h, for all h P SUpnq. The fixed points set

of CgΘ in SUpnq is:

th P SUpnq : Ip,qhIp,q � hu
�th P SUpnq : Ip,q � h�1Ip,qhu � ZSUpnqpIp,qq

�
#�

ap�p bp�q

cq�p dq�q

�
P SUpnq :

�
a �b

�c d

�
�
�

a b

c d

�+

�
#�

ap�p 0
0 dq�q

�
P SUpnq

+
�SpUppq � Upqqq.

Hence, the flag manifold SUpnq{SpUppq � Upqqq is a symmetric space. The tangent

space to the flag symmetric at the origin is isomorphic to

m �
#�

0 Z

�Z̄T 0

�
: Zp�q complex matrix

+
(3.0.5)

and the symmetric pair is psupnq, uΘq, where the subalgebra uΘ consists of all elements in

supnq which are fixed by CgΘ and is the Lie algebra of SpUppq � Upqqq

uΘ �
#�

Ap�p 0
0 Bq�q

�
: trpAq � trpBq � 0, A P uppq, B P upqq

+
. (3.0.6)

In order to study the symmetry of the cotangent bundle of the flag symmetric space

FΘ, we study the centralizer of HΘ in the Lie group G,

ZSlpn,CqpHΘq �th P Slpn,Cq : AdphqHΘ � HΘu

�
#

h �
�

ap�p b

c dq�q

�
P Slpn,Cq : h

�
qIp 0
0 �pIq

�
�
�

qIp 0
0 �pIq

�
h

+

�
#

h P Slpn,Cq :
�

qa �pb

qc �pd

�
�
�

qa qb

�pc �pd

�+

�
#�

a 0
0 d

�
P Slpn,Cq : ap�p, bq�q

+
�SpGlpp,Cq �Glpq,Cqq (3.0.7)

and note that the centralizer of the matrix Ip,q in the group Slpn,Cq is
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ZSlpn,CqpIp,qq �th �
�

ap�p b

c dq�q

�
P Slpn,Cq : h

�
Ip 0
0 �Iq

�
�
�

Ip 0
0 �Iq

�
hu

�th P Slpn,Cq :
�

a �b

c �d

�
�
�

a b

�c �d

�
u

�t
�

a 0
0 d

�
P Slpn,Cq : ap�p, bq�qu

�SpGlpp,Cq �Glpq,Cqq
�ZSlpn,CqpHΘq

We can extend the inner automorphism σ � CgΘ to the complex Lie group Slpn,Cq:

CgΘ : Slpn,Cq Ñ Slpn,Cq
h ÞÑ ghg�1 � Ip,qhIp,q

(3.0.8)

and we saw that it is an involution and its fixed points set is ZSlpn,CqpIp,qq � ZSlpn,CqpHΘq �
SpGlpp,Cq �Glpq,Cqq.

Hence the cotangent bundle of FΘ, as homogeneous space,

Slpn,Cq{SpGlpp,Cq �Glpq,Cqq

is a symmetric space associated to the symmetric pair pslpn,Cq, slpp,Cq ` slpq,Cq ` C�q.
In fact, let A P spglpp,Cq � glpq,Cqq, then

A �
�

Dp�p 0
0 Bq�q

�
.

(i) If A P slpp,Cq ` slpq,Cq, then

A �
��A�

�� �Ip 0
0 p

q
Iq

����
�� Ip 0

0 �p

q
Iq

� ÞÑ A1 � p

q
.

(ii) If A R slpp,Cq ` slpq,Cq, then

A �
�

A� trpBq
�

Ip 0
0 �Iq

��
� trpBq

�
�Ip 0
0 Iq

�
ÞÑ A1 � trpBq.

In both of cases, A1 belongs to slpp,Cq ` slpq,Cq ` C�. Hence spglpp,Cq � glpq,Cqq �
slpp,Cq ` slpq,Cq ` C�. The other containment is straightforward. Thus, this symmetric
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Lie algebra is in Table A.3. Furthermore, the tangent space of that symmetric space at

the origin is isomorphic to

mG �m�?�1m

�n�Θ � n�Θ

�
#�

0 A

B 0

�
: Ap�q, Bq�p complex matrices

+
(3.0.9)

where the elements in n�Θ are the matrices in 3.0.9 with A � 0, n�Θ is the set 3.0.9 with

B � 0 and m is the set in 3.0.5.

Using the results in [1], we get

G �HΘ � G{ZΘ � T �pU{U X ZΘq � T �pU{UΘq

Then

Slpn,Cq{SpGlpp,Cq �Glpq,Cqq � T �pSUpnq{SpUppq � Upqqqq

Thus, the cotangent bundle of the flag symmetric manifold SUpnq{SpUppq � Upqqq
is also a symmetric space with the same involutive automorphism σ � CgΘ .

Note that the inner automorphism can be lifted to the Lie algebra g � slpn,Cq,
obtaining the function

σ � AdpgΘq : slpn,Cq Ñ slpn,Cq
Z ÞÑ gΘZg�1

Θ � Ip,qZIp,q.
(3.0.10)

Denote by g0 the non compact real form supp, qq of g, which elements are the n� n

complex matrices satisfying

Ip,qX � X̄T Ip,q � 0, Ip,q �
�

1p 0
0 �1q

�
. (3.0.11)

This Lie algebra is

supp, qq �
#�

Ap�p Bp�q

B̄T
q�p Cq�q

�
: A P uppq, C P upqq, trpA� Cq � 0

+
, (3.0.12)

and has the Cartan decomposition supp, qq � k� s with k � uΘ as in (3.0.6) and

s �
#�

0 B

B̄T 0

�
: Bp�q complex matrix

+
. (3.0.13)

The involution Ad(exppHΘq) in slpn,Cq,�
A B

C D

�
ÞÑ

�
A �B

�C D

�
(3.0.14)
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restricts to supp, qq is also an inner automorphism since HΘ P uΘ � k and coincides with

the Cartan involution Z P supp, qq ÞÑ �Z̄T P supp, qq.
From the definition of m in (3.0.5), we have that the vector space

?�1m coincides

with s and therefore, the dual symmetric algebra of psupnq, k, σq is

supnq� � supp, qq � k� s. (3.0.15)

In this way, as studied in the section 2.1, the dual symmetric space

SUpp, qq{SpUppq � Upqqq of SUpp � qq{SpUppq � Upqqq is a submanifold of the adjoint

orbit Slpn,Cq �HΘ (this HΘ is from the Al case).

The dual symmetric space SUpp, qq{SpUppq�Upqqq is diffeomorphic to S � exp s�HΘ.

To prove Proposition 2.1.2, let us calculate the intersection S X pHΘ � n�Θq. Initially, note
that

HΘ P pHΘ � n�Θq X AdpSq �HΘ � supp, qq X pHΘ � n�Θq, (3.0.16)

where S is the exponential of the vector space s. To calculate the intersection supp, qq X
pHΘ � n�Θq, we describe the elements of the fiber passing through the origin HΘ:���

?�1π

n
qIp Zp�q

0 �
?�1π

n
pIq

��, (3.0.17)

with Z P n�Θ. These matrices belong to supp, qq if and only if they satisfy the expression

�
Ip 0
0 �Iq

����
?�1π

n
qIp Z

0 �
?�1π

n
pIq

���
��� �

?�1π

n
qIp 0

Z̄T

?�1π

n
qIp

���
Ip 0
0 �Iq

�
� 0

which is equivalent to �
0 Z

Z̄T 0

�
� 0 ðñ Z � 0. (3.0.18)

It means that the intersection supp, qq X pHΘ � n�Θq � tHΘu. As from (4.0.36), we

conclude that

supp, qq X pHΘ � n�Θq � tHΘu. (3.0.19)

Thus,

HΘ P ppHΘ � n�Θq X Sq � pHΘ � n�Θq X supp, qq�plq � tHΘu. (3.0.20)

Hence,

pHΘ � n�Θq X S � tHΘu. (3.0.21)
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However, the fiber �HΘ � n�Θ is��� �?�1π

n
qIp 0

Zp�q

?�1π

n
pIq

�� (3.0.22)

The element HΘ is the linear combination HΘ � 2
?�1πqrHα1�2Hα2�� � ��pHαps�

2
?�1πprpq � 1qHαp�1 � pq � 2qHαp�2 � � � � � 2Hαp�q�2 �Hαl

s and

Kp?�1Hαp , HΘq � �π.
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4 Case Cl

Let G be the Lie group Sppl,Cq and U be the compact Lie group Spplq � Sppl,Cq X
SUp2lq, with Lie algebras g and u, respectively. The corresponding flag symmetric manifold

is the space of complex structures on Hl compatible with the inner product

FΘ � Spplq{Uplq

with Θ � tλ1 � λ2, � � � , λl�1 � λlu and each λi is given by

λi : diagta1, � � � , alu ÞÑ ai. (4.0.1)

The Lie algebra u :� spplq � slpl,Cq X sup2lq is the set

spplq �
#�

al�l b

�b̄ ā

�
| a P uplq, b : symmetric complex matrix

+
(4.0.2)

which is a compact real form of the Lie algebra of G, denoted by g :� sppl,Cq � tA P
Mp2l,Cq : AJ � JAT � 0u, where J �

�
0 �Idl

Idl 0

�
with J2 � �Id2l. The elements of

g are 2l � 2l complex matrices which can be represented in blocks as�
al�l b

c �aT

�
, b, c : symmetric. (4.0.3)

Since a, b, c are complex matrices, the matrix above is quaternionic. Furthermore,

the Lie group G is the set

Sppl,Cq �  
M P M2l�2lpCq : MT ΩM � Ω

(
, Ω �

�
0 1l

�1l 0

�
(4.0.4)

�
#

M �
�

A B

C D

�
: A, B, C, D P Ml�lpCq, detpMq � 1

+
(4.0.5)

and

�CT A� AT C � 0,

�CT B � AT D � Il,

�DT B �BT D � 0. (4.0.6)

An element in the Cartan subalgebra
?�1hR of the compact real form u that defines

the symmetric flag manifold is

HΘ :� π

2

� ?�1Idl 0
0 �?�1Idl

�
P spplq � sppl,Cq (4.0.7)
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and its exponential is the matrix

gΘ :� eHΘ �
� ?�1Idl 0

0 �?�1Idl

�
(4.0.8)

Since HΘ � π

2 gΘ, then the centralizer of HΘ in G,

ZΘ � ZGpgΘq. (4.0.9)

and since

g2
Θ � �Id2l P ZpUq � ZpGq, (4.0.10)

then the inner automorphism

σ � CgΘ : Sppl,Cq Ñ Sppl,Cq
h ÞÑ CgΘphq � gΘhg�1

Θ
(4.0.11)

is an involution ( σ2phq � g2
Θhg�2

Θ � hg2
Θg�2

Θ � h ) and its fixed points set is:

ZGpgΘq � ZΘ �
#

h �
�

a b

c d

�
P Sppl,Cq : a, b, c, d P Mpl,Cq, gΘh � hgΘ

+

�
#

h �
�

a b

c d

�
P Sppl,Cq : b � c � 0

+

�
#�

a 0
0 d

�
P Sppl,Cq

+
But also, �

a 0
0 d

�
P Sppl,Cq

ô
�

a 0
0 d

�T �
0 Idl

�Idl 0

��
a 0
0 d

�
�
�

0 Idl

�Idl 0

�

ô
�

0 aT d

�dT a d

�
�
�

0 Idl

�Idl 0

�
ôd � paT q�1. (4.0.12)

Then

ZΘ �
#�

a 0
0 paT q�1

�
P Sppl,Cq

+
� Glpl,Cq (4.0.13)

Thus,

G{ZGpgΘq � Sppl,Cq{Glpl,Cq (4.0.14)

is a symmetric space with symmetric pair psppl,Cq, slpl,Cq `C�q. In fact, let A P glpn,Cq.
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(i) If A P slpn,Cq, then

A �
��A�

�� �1 0

0 1
n� 1In�1

����
�� 1 0

0 � 1
n� 1In�1

� ÞÑ A1� 1
1� n

P slpn,Cq`C�.

(ii) If A R slpn,Cq, then A �
�
A� trpAq

n
In

�
� trpAq

n
In ÞÑ

�
A� trpAq

n
In

�
� trpAq

n
P

slpn,Cq ` C�.

Hence glpn,Cq � slpn,Cq ` C�. The other containment is straightforward. Hence, this

symmetric Lie algebra is in Table A.3. By adding the results in [1], the cotangent bundle

G{ZΘ � G �HΘ � T �pU{UΘq (4.0.15)

is a symmetric space. Since UΘ � ZΘ X Spplq and using the fact that Spplq � Sppl,Cq X
SUp2lq , we have that

UΘ �
#�

a 0
0 paT q�1

�
P SUp2lq : al�l complexa

+

�
#�

a 0
0 paT q�1

�
�
�

āT 0
0 ā�1

�
� Id2l

+
� Sppl,Cq

�
#�

a 0
0 paT q�1

�
P SUp2lq : al�l P Uplq

+
� Uplq. (4.0.16)

Hence, the cotangent bundle of Spplq{Uplq:

T �pSpplq{Uplqq � Sppl,Cq{Glpl,Cq (4.0.17)

is a symmetric space.

The Lie algebra g � sppl,Cq has the real normal form g0 � sppl,Rq

g0 �
#�

al�l b

c �aT

�
| b, c symmetrics

+
(4.0.18)

which has the Cartan decomposition

g0 � k� s

where

k �
#�

al�l �b

b a

�
| a P oplq, b : symmetric

+
� uplq (4.0.19)
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s �
#�

al�l b

b �a

�
: a, b symmetrics

+
. (4.0.20)

The lift of the automorphism in (4.0.11) to the Lie algebra restricted to g0 is

σ � AdpgΘq : sppl,Rq Ñ sppl,Rq
X ÞÑ AdpgΘqX � gΘXg�1

Θ .
(4.0.21)

It does not coincide with the Cartan involution θpXq � �XT . However, we have the

symmetric pairs pspplq, uplqq and psppl,Cq, slpl,Cq ` Cq, since the Lie algebra of ZΘ is

glpl,Cq � slpl,Cq ` C.

The tangent bundle of the cotangent bundle of FΘ, as a homogeneous space, at the

origin is isomorphic to

mG � n�Θ � n�Θ (4.0.22)

�
#�

0 Yl�l

Xl�l 0

�
: X, Y symmetric complex matrices

+
(4.0.23)

� m�?�1m (4.0.24)

where n�Θ is the set of matrices in (4.0.23) with X � 0 and Y � 0, respectively. The tangent
bundle of the flag symmetric manifold at the origin is isomorphic to

m �
¸

αPΠ�zxΘy�
uα (4.0.25)

�
#�

0 B

�B̄ 0

�
: Bl�l symmetric complex

+
(4.0.26)

The subspace uα �spanRtAα, Zαu is generated by Aα �
�

0 Eij � Eji

�Eij � Eji 0

�

and Zα �
�

0
?�1pEij � Ejiq?�1pEij � Ejiq 0

�
with α P Π�zxΘy� � tλi�λj, 1 ¤ i, j ¤

lu, for Ei,j � δj
i Id.

The involution σ for the symmetric Lie algebra psppl,Cq, glpl,Cq, σq is the following

automorphism, with HΘ P spplq as in 4.0.7,

AdpeHΘq :
�

Al�l B

C �AT

�
P sppl,Cq ÞÑ

�
A �B

�C �AT

�
. (4.0.27)

The involution above is also an automorphism of spplq and this symmetric Lie algebra

has the canonical decomposition

spplq � uΘ �m, (4.0.28)
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with m as in (4.0.26) and uΘ being the subalgebra such that σpW q � W , for all W P uΘ

uΘ �
#�

A 0
0 Ā

�
: A P uplq

+
� uplq. (4.0.29)

Then the dual symmetric Lie algebra of pspplq, uplq, σq must have the canonical

decomposition

spplq� � uΘ �
?�1m. (4.0.30)

The set
?�1m is the vector space satisfying σpW q � �W , for all W P ?�1m, it is#�

0 Bl�l

B̄ 0

�
: A symmetric complex matrix

+
(4.0.31)

and then

spplq� �
#�

A B

B̄ Ā

�
: A P uplq, B symmetric complex matrix

+
. (4.0.32)

Let us define the following function�
A B

B̄ Ā

�
P spplq� ÞÑ

�
RepAq � RepBq ImpBq � ImpAq
ImpAq � ImpBq RepAq � RepBq

�
P sppl,Rq. (4.0.33)

It is an isomorphism of Lie algebras since A P uplq and B is symmetric. The function above

is known as the Cayley transform. Furthermore,

uΘ � k � uplq, ?�1m � s, (4.0.34)

where spplq � k � s is the Cartan decomposition indicated in 4.0.19 and 4.0.20. Hence,

the dual symmetric Lie algebra is isomorphic to psppl,Rq, k, θq, with θ being the Cartan

involution θpXq � ΩXΩ�1, where Ω is as in 4.0.4.

The function defined in 4.0.33 transforms HΘ P spplq in

ĤΘ :�
?�1π

2

�
0 �Il�l

Il�l 0

�
P sppl,Rq. (4.0.35)

The dual symmetric space Spplq�{UΘ � Sppl,Rq{Uplq is diffeomorphic to S �
exp

?�1m �HΘ � exp s � ĤΘ. To prove Proposition 2.1.2, let us calculate the intersection

S X pHΘ � n�Θq. Initially, note that

HΘ P pHΘ � n�Θq X S � spplq� X pHΘ � n�Θq. (4.0.36)

To calculate the intersection spplq� X pHΘ � n�Θq, we describe the elements of the fiber

passing through the origin HΘ:$'&'%
���

?�1π

2 Il�l Z

0 �
?�1π

2 Il�l

��: Z P Ml�lpCq

,/./- . (4.0.37)
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with Z P n�Θ. These matrices belong to spplq� if and only if they belong to the set in

4.0.32, i.e. Z is a symmetric complex matrix and �Z̄ � 0. It means that the intersection

spplq� X pHΘ � n�Θq � tHΘu. As from (4.0.36), we conclude that

spplq� X pHΘ � n�Θq � tHΘu. (4.0.38)

Thus,

HΘ P ppHΘ � n�Θq X Sq � pHΘ � n�Θq X spplq� � tHΘu. (4.0.39)

Hence,

pHΘ � n�Θq X S � tHΘu. (4.0.40)

The element HΘ is the linear combination 2πpl � 1q?�1rHλ1�λ2 � 2Hλ2�λ3 � � � � �
pl � 1qHλl�1�λl

s � lpl � 1qπ?�1H2λl
and

Kp?�1H2λl
, HΘq � �4πpl � 1q.
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5 Case Dl

Let G be the Lie group SOp2l,Cq and U be the compact Lie subgroup SOp2lq, with
Lie algebras g :� sop2l,Cq �

#�
a b

�bT d

�
P glp2l,Cq : al�l, dl�l skew � symmetric

+
and

u :� sop2lq respectively. The corresponding symmetric flag manifold is the space of

orthogonal complex structures on R2l

FΘ � SOp2lq{Uplq

with Θ � tλ1 � λ2, � � � , λl�1 � λlu and Σ � ΘY tλl�1 � λlu where each λi was defined in

4.0.1.

As sop2l,Cq is defined over an algebraically closed field; if two not degenerated

quadratic forms are equivalents, then the algebras of anti-symmetric matrices with respect

to the quadratic forms are both isomorphic.

Let be suppose that

F �
�

0 Il

Il 0

�
, f � 1?

2

� ?�1Il Il

Il

?�1Il

�
. (5.0.1)

Then

F � fT I2lf (5.0.2)

and hence, the Lie algebra is isomorphic to

g1 � tA P slp2l,Cq : AF � FAT � 0u (5.0.3)

Thus, A P sop2l,Cq if and only if fAf�1 P g1. In other words fsop2l,Cqf�1 � g1

and the algebras sop2l,Cq and g1 are isomorphic. To facilitate the process, we will use the

Lie algebra g1 instead of sop2lq. We shall denote by G1 the connected Lie group with Lie

algebra g1.

In [6], a Cartan subalgebra of g1 is

h �
#�

Λ 0
0 �Λ

�
: Λl�l diagonal matrix

+
. (5.0.4)

An element in the Cartan subalgebra
?�1hR of the compact real form fuf�1 �

fsop2lqf�1 that defines the symmetric flag manifold FΘ is

ĤΘ :� π

2
?�1

�
Il�l 0
0 �Il�l

�
P ?�1hR � g1 (5.0.5)
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and

gΘ :� exppĤΘq �
?�1

�
Il�l 0
0 �Il�l

�
. (5.0.6)

Note that

g2
Θ � �Id2l P ZpG1q (5.0.7)

Thus, the inner automorphism

σ � CgΘ : G1 Ñ G1

A ÞÑ CgΘpAq � gΘAg�1
Θ

is an involution, by 5.0.7, because of pCgΘq2pAq � g2
ΘApg�1

Θ q2 � A. Let’s calculate the fixed

points set, which is the centralizer of gΘ in G1. Since HΘ � π

2 gΘ, then ZG1pHΘq � ZG1pgΘq,
in fact

ZG1pgΘq �tA P G1 : CgΘpAq � Au
�tA P G1 : gΘAg�1

Θ � Au
�tA P G1 : HΘA � π

2 AgΘu

�t
�

xl�l y

z wl�l

�
P G1 : HΘA � π

2
?�1

�
x �y

z �w

�
u

�tA �
�

xl�l y

z wl�l

�
P G1 : HΘA �

���
?�1π

2 x �
?�1π

2 y?�1π

2 z �
?�1π

2 w

��u
�tA �

�
xl�l y

z wl�l

�
P G1 : HΘA � AHΘu

�ZG1pHΘq. (5.0.8)

On the other hand, the set of fixed points of σ �AdpgΘq (which coincides with 4.0.27)

in g1 is #
A �

�
a b

c �aT

�
P g1 : a, b, c, d P Mpl,Cq, gΘAg�1

Θ � A

+

�
#

A �
�

a b

c �aT

�
P g1 : b � 0 � c

+

�t
�

a 0
0 �aT

�
P slp2l,Cqu

�glpl,Cq. (5.0.9)

Using (5.0.8) and (5.0.9), we can see that

G{ZΘ � SOp2l,Cq{Glpl,Cq
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is a symmetric space. Its corresponding symmetric pair is psop2l,Cq, slpl,Cq `C�q. In fact,

the prove of this is in 4. Hence, this symmetric Lie algebra is in Table A.3. By adding the

results in [1], the cotangent bundle

G{ZΘ � G �HΘ � T �pU{UΘq

is a symmetric space. In order to find out the set UΘ. Since U � SOp2lq, let us use the

matrix HΘ � f�1ĤΘf P sop2lq. This matrix is

HΘ :� π

2

�
0 Idl

�Idl 0

�
P sop2l,Rq � sop2l,Cq. (5.0.10)

Then

UΘ �
#

u �
�

a b

c d

�
P SOp2lq : a, b P Ml�lpRq, uHΘ � HΘu

+

�
#�

al�l �b

b a

�
P Slp2l,Rq : aaT � bbT � Il�l, baT � abT

+
�ta� ib P Glpl,Cq : pa� ibqpa� ibq� � Idu
�Uplq (5.0.11)

Hence, the cotangent bundle of SOp2lq{Uplq:

T �pSOp2lq{Uplqq � SOCp2lq{Glpl,Cq (5.0.12)

is also a symmetric space.

The tangent space of the cotangent bundle of FΘ at the origin is isomorphic to

mG � n�Θ � n�Θ

� m�?�1m

�
#�

0 Al�l

Bl�l 0

�
: A, B anti� symmetric complex

+
(5.0.13)

where n�Θ are isomorphic to the subalgebras of matrices in 5.0.13 with X � 0 and Y � 0,
respectively. The tangent space of the flag symmetric manifold at the origin bΘ is isomorphic

to

m �
¸

Π�zxΘy�
uα (5.0.14)

�
#�

A B

B �A

�
: A, B P soplq

+
. (5.0.15)
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Another real form of sop2l,Cq is g0 :� so�p2lq :� slpl,HqX sop2l,Cq and its elements

are 2l � 2l complex matrices of the form�
Z1 Z2

�Z̄2 Z̄1

�
, ZT

1 � �Z1, Z̄2
T � Z2, (5.0.16)

where Z1 and Z2 are l � l complex matrices.

The involution σ in g0 coincides with the Cartan involution and then, the Lie algebra

g0 has the Cartan decomposition g0 � k� s with k � uΘ � uplq is the Lie algebra of UΘ

and s � ?�1m.

In order to prove Proposition 2.1.2 let us study the intersection of the submanifold

S � exp s � HΘ with the fiber passing through the origin. The dual symmetric space

SOp2lq�{SpUppq � Upqqq is diffeomorphic to S and the dual symmetric Lie algebra of

psop2lq�, uΘ, σq, with σ �Ad(exppHΘqq (5.0.10) being the function

σ :
�

A Bl�l

�BT D

�
P sop2lq� ÞÑ

�
D BT

�B A

�
P sop2lq�, (5.0.17)

is

sop2lq� � uplq � ?�1m, (5.0.18)

with m as in (5.0.15) and uΘ as the subalgebra isomorphic to uplq:#�
Z1 Z2

�Z2 Z1

�
: Z1 P soplq, Z2 symmetric matrix

+
� so�p2lq X sop2lq (5.0.19)

Then

?�1m �
#� ?�1A

?�1B?�1B �?�1A

�
: A, B P soplq

+
� so�p2nq X ?�1sop2lq. (5.0.20)

Since HΘ P so�p2lq � slpl,Hq X sop2l,Cq, then σ is an automorphism of so�p2lq and
coincides with σ�. Hence, the dual symmetric Lie algebra is

so�p2lq � sop2lqσ �?�1m (5.0.21)

�
#�

Z1 Z2

�Z̄2 Z̄1

�
: Z1 P sopl,Cq, Z̄T

2 � Z2

+
. (5.0.22)

Let us consider the isomorphism of sop2n,Cq with the algebra in 5.0.3. Thus, the

fiber via this isomorphism is the affine vector space �HΘ � n�Θ defined by

ĤΘ � fn�Θf�1 �

$'&'%
���

?�1π

2 Il Y

0 �
?�1π

2 Il

��: Y P sopl,Cq

,/./- . (5.0.23)
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Since fsop2n,Cqf�1 � g1, with f as in (5.0.1) and g1 in (5.0.3), we can back to the

original fiber, calculating f�1Mf , for every M P �HΘ � n�Θ, where

f�1 �

���� �
?�1?

2
Il

1?
2

Il

1?
2

Il �
?�1?

2
Il

���.

Then, HΘ � n�Θ �$'&'%f�1

���
?�1π

2 Il Y

0 �
?�1π

2 Il

��f �

��� �
?�1

2 Y
π

2 Il � 1
2Y

�π

2 Il � 1
2Y

?�1
2 Y

��: Y P sopl,Cq

,/./- .

(5.0.24)

Thus, the elements of the fiber has the form�� 1
2ImpY q π

2 Il � 1
2RepY q

�π

2 Il � 1
2RepY q �1

2ImpY q

��?�1

�� �1
2 RepY q 1

2ImpY q
1
2ImpY q 1

2RepY q

�, (5.0.25)

with Y P sopl,Cq. Furthermore, the dual symmetric Lie algebra sop2lq�, is the set of

matrices�
A�?�1C B �?�1D

�B �?�1D A�?�1C

�
�
�

A B

�B A

�
�?�1

�
C D

D �C

�
, (5.0.26)

with A, C, D P sopl,Rq and B being a real symmetric matrix.

Looking at the real part of matrices in (5.0.25) and comparing with the real part of

matrices in (5.0.26), we can conclude that a matrix in the fiber belongs to sop2lq� if and

only if ImpY q and RepY q are equal to the null matrix, and then Y � 0. Hence

pHΘ � n�Θq X sop2lq� � tHΘu. (5.0.27)

The element ĤΘ is the linear combination 2πpl � 1q?�1rHλ1�λ2 � 2Hλ2�λ3 � � � � �
pl � 2qHλl�2�λl�1s � pl � 1qπ?�1rpl � 2qHλl�1�λl

� lHλl�1�λl
s and

Kp?�1Hλl�1�λl
, ĤΘq � �4πpl � 1q.
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6 Conclusions and open questions

The cotangent bundle of a flag symmetric space FΘ � U{UΘ is an affine sym-

metric manifold. There exists an element HΘ P ?�1hR in the Cartan subalgebra of u

such that gΘ :� exp HΘ satisfies ZUpHΘq � ZUpgΘq, UΘ � ZUpHΘq and pU, UΘ, σq and
pG, ZGpHΘq, σq are symmetric spaces for σ � CgΘ .

The projection T �FΘ Ñ FΘ induces an injective map from the submanifold S to the

flag symmetric space FΘ. The submanifold S is a Lagrangian submanifold of the cotangent

bundle T �FΘ with the symplectic form ImKp�, τ �q given by the Cartan-Killing form K and

the conjugation τ with respect to the compact real form u.

Considering the canonical connection defined by the Cartan-Killing form, the

geodesics are one-parameter curves. We asked ourselves the question whether the projection

of a geodesic in the cotangent bundle was a geodesic on the flag manifold, however that

question was only answered for geodesics on fibers and on the zero section, which are

trivial cases, therefore the question is open.

Another realization of the adjoint orbit indicated in [1] is that of submanifold of a

product of flag manifolds, the cotangent bundle is the orbit of the diagonal action of the

group G passing through the origin in the product of the flag manifold FΘ with its dual

flag. This orbit is dense in the compact manifold. An interesting problem would be to see

what the S manifold is like inside in that realization, in addition to its geodesics, which

are uniparametric curves, and its projection on the flag manifold FΘ.

In Tojo’s paper [10] it is shown that every flag manifold U{UΘ is a k-symmetric space.

A natural question is: Does the automorphism of order k on U extended to G also make the

cotangent fibration of the flag manifold a k-symmetric space, and will the automorphism

σ be inner? In fact, the problem of whether the cotangent bundle of any flag manifold is

k-symmetric was an inspiration for this Thesis and allows us to continue to deepen our

study.



77

Bibliography

[1] E. Gasparim, L. Grama and L. A. B. San Martin, Adjoint orbits of semi-simple Lie

groups and Lagrangian Submanifolds, EMS , (2014).

[2] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 1, No. 2, New

York, London, (1963).

[3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol II. (1969),

Interscience Publishers.

[4] S. Helgason, Differential geometry and symmetric spaces, Vol. 341. American Mathe-

matical Soc., (2001).

[5] L. A. B. San Martin, Grupos de lie, (2012).

[6] L. A. B. San Martin, Algebras de Lie, Unicamp, (2010).

[7] M. Berger, ”Les espaces symétriques noncompacts,” Annales scientifiques de l’École
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A Appendix

A.1 Classical semi-simple Lie algebras

This list of classical Lie algebras with its real forms are in chapter 12 of [6].

Complex

algebra

Compact real

form

Type Non-compact real forms

Al,
l ¥ 1
n � l � 1

slpn,Cq supnq
AI slpn,Rq
AII slpn{2,Hq, n even

AIII supp, qq, p ¤ q, p� q � n

Bl, l¥ 2 sop2l�1,Cq sop2l � 1q BI sopp, qq , p ¤ q , p� q � 2l � 1
Cl,
l ¥ 3 sppl,Cq spplq �

sppl,Cq X sup2lq
CI sppl,Rq
CII sppp, qq, p� q � l

Dl,
l ¥ 4 sop2l,Cq sop2lq DI sopp, qq, p ¤ q, p� q � 2l

DIII slpl,Hq X sop2l,Cq

A.2 Complex flag manifolds

The complex flag manifolds of the classical Lie groups are classified in [15]. Here,

consider n � n1 � � � � � ns, n1 ¥ � � � ¥ ns ¥ 1 and l � l1 � � � � � lk �m, l1 ¥ � � � ¥ lk ¥ 1,
k, m ¥ 0.

Flag manifold

A SUpnq{SpUpn1q � � � � � Upnsqq
B SOp2l � 1q{Upl1q � � � � � Uplkq � SOp2m� 1q
C Spplq{Upl1q � � � � � Uplkq � Sppmq
D SOp2lq{Upl1q � � � � � Uplkq � SOp2mq
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A.3 Symmetric spaces

In [4] we found the following table, which is a characterization of irreducible Rie-

mannian symmetric spaces of type I and III (see the theorems 1.4.13 and 1.4.14), with

p � q � n. The symmetric spaces in red and blue are the flag symmetric spaces and its

dual symmetric spaces respectively.

Compact symmetric space Non-compact symmetric type

AI SUpnq{SOpnq Slpn,Rq{SOpnq
AII SUp2nq{Sppnq SU�p2nq{Sppnq
AIII SUpp� qq{SpUppq � Upqqq SUpp, qq{SpUppq � Upqqq
BDI SOpp� qq{SOppq � SOpqq SOopp, qq{SOppq � SOpqq
DIII SOp2nq{Upnq SO�p2nq{Upnq
CI Sppnq{Upnq Sppn,Rq{Upnq
CII Sppp� qq{Spppq � Sppqq Sppp, qq{Spppq � Sppqq

In [7], Berger shows a list of all symmetric Lie algebras (g, h, σq that we will show

here. The symmetric Lie algebras showed in chapters 3, 4 and 5 are in pink in the following

tables.

g h

slpn,Rq sopnq
slpn,Cq sopn,Cq
slp2n,Cq sppn,Cq
slp2n,Cq su�p2nq
slpn,Cq slpp,Cq � slpn� p,Cq � C�

slpn,Cq supp, n� pq
slpn,Rq slpp,Rq � slpn� p,Rq � sop2q
slpn,Rq sopp, n� pq
slp2n,Rq sppn,Rq
slp2n,Rq slpn,Cq � sop2q
supn,Rq sopnq
su�p2nq sppnq
sup2nq sppnq
supp, qq suppq � supqq � sop2q
su�p2nq su�p2pq � sup2n� 2pq � sop2q
su�p2nq sppp, n� pq
su�p2nq so�p2nq
su�p2nq slpn,Cq � sop2q
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g h

supp, n� pq supk, hq�supp�k, n�k�hq�sop2q
supp, n� pq sopp, n� pq
sup2p, 2n� 2pq sppp, n� pq
supn, nq so�p2nq
supn, nq sppn,Rq
supn, nq slpn,Cq � sop2q
so�p2nq supnq � sop2q
sop2nq supnq � sop2q
sop2n,Cq slpn,Cq � C�

sop2n,Cq so�p2nq
sopp, n� pq soppq � sopn� pq
sopnq soppq � sopn� pq
sop2, n� 2q sopn� 2q � sop2q
sopnq sopn� 2q � sop2q
sopn,Cq sopp,Cq � sopn� p,Cq
sopn,Cq sopn� 2q � C�

sopn,Cq sopp, n� pq
so�p2n,Cq so�p2pq � so�p2n� 2pq
so�p2nq so�p2n� 2q � sop2q
so�p2nq sopn,Cq
so�p2nq supp, n� pq � sop2q
so�p4nq su�p2nq � sop2q
sopp, n� pq sopk, hq � sopp� k, n� h� pq
sopp, n� pq sopp� 2, n� pq � sop2q
sopp, n� pq sopp� 2, n� pq � sop2q
sop2p, 2n� 2pq supp, n� pq � sop2q
sopn, nq slpn,Rq � sop2q
sopn, nq sopn,Cq
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g h

sppn,Rq supnq � sop2q
sppn,Cq slpn,Cq � C�

sppn,Cq sppn,Rq
sppq, n� qq sppqq � sppn� qq
sppnq sppqq � sppn� qq
sppn,Cq sppq,Cq � sppn� q,Cq
sppn,Cq sppq, n� qq
sppn,Rq sppq,Rq � sppn� q,Rq
sppn,Rq sppq, n� qq � sop2q
sppn,Rq sppq, n� qq � sop2q
spp2n,Rq sppn,Cq
sppi, n� iq supk, hq � supi� k, n� k � hq
sppp, n� pq supp, n� pq � sop2q
sppn, nq su�p2nq � sop2q
sppn, nq sppn,Cq
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