
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Thalles Santos Silva

Self-Supervised Methods for Representation Learning
of Visual Features

Métodos Auto-supervisionados para Aprendizagem de
Representações Visuais

CAMPINAS
2022

Thalles Santos Silva

Self-Supervised Methods for Representation Learning of Visual
Features

Métodos Auto-supervisionados para Aprendizagem de
Representações Visuais

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/ Orientador: Prof. Dr. Gerberth Adín Ramírez Rivera

Este exemplar corresponde à versão final da
Dissertação defendida por Thalles Santos
Silva e orientada pelo Prof. Dr. Gerberth
Adín Ramírez Rivera.

CAMPINAS
2022

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Silva, Thalles Santos, 1987-
 Sa59s SilSelf-supervised methods for representation learning of visual features /

Thalles Santos Silva. – Campinas, SP : [s.n.], 2022.

 SilOrientador: Gerberth Adín Ramírez Rivera.
 SilCoorientador: Luiz Fernando Bittencourt.
 SilDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Sil1. Aprendizado de máquina. 2. Visão por computador. 3. Aprendizagem não-

supervisionada (Aprendizado do computador). 4. Aprendizado auto-
supervisionado (Aprendizado do computador). I. Ramírez Rivera, Adín, 1986-.
II. Bittencourt, Luiz Fernando, 1981-. III. Universidade Estadual de Campinas.
Instituto de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Métodos auto-supervisionados para aprendizagem de
representações visuais
Palavras-chave em inglês:
Machine learning
Computer vision
Unsupervised learning (Machine learning)
Self-supervised learning (Machine learning)
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Gerberth Adín Ramírez Rivera [Orientador]
Hélio Pedrini
Eduardo Alves do Valle Júnior
Data de defesa: 08-03-2022
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-9821-2743
- Currículo Lattes do autor: http://lattes.cnpq.br/0552190698786053

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Thalles Santos Silva

Self-Supervised Methods for Representation Learning of Visual
Features

Métodos Auto-supervisionados para Aprendizagem de
Representações Visuais

Banca Examinadora:

• Gerberth Adín Ramírez Rivera
IC/UNICAMP

• Prof. Dr. Hélio Pedrini
IC/UNICAMP

• Prof. Dr. Eduardo Alves do Valle Júnior
FEEC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 08 de março de 2022

Acknowledgments

I want to thank the State University of Campinas (UNICAMP) for accepting me into the
Masters’s degree program in Computer Science. When I started this journey, I was work-
ing full-time as a software engineer, and by that time, conciliating a full-time employee
schedule with the responsibilities of being a regular graduate student was challenging.
Luckily, UNICAMP allowed me to take courses at a slower pace, and when I finished the
coursework requirements for the Master’s degree program, UNICAMP and the Institute
of Computing (IC) accepted me as a full-time student. The journey was a bit longer than
usual, but it was worth it. I am grateful for it all.

I want to take this opportunity to thank everyone that directly or indirectly con-
tributed to this moment. This includes all the professors and my fellow students that
I had the pleasure to work with. I am sure that every conversation, collaboration, and
exchange of ideas we had, made me a little more prepared to reach this position. I cannot
forget my friends from outside academia and my girlfriend, Ariadny Ricci. The words
of encouragement gave me the strength to go ahead, even in the most challenging times.
Likewise, all of my appreciation to my supervisor, Prof. Adín Ramírez Rivera, whom I
consider a dear friend. Professor Adín has been a fantastic supervisor throughout this
time. From day one, he has pushed me toward being able to accomplish all of my goals. I
am grateful for the countless video conversations during the COVID19 outbreak and look
forward to continuing to learn from him.

Lastly, and most importantly, I dedicate this work to my family. Specially to my
mother, Maria Soledade Oliveira Santos Silva, and my father, Oscarlino Pinheiro da
Silva. The years of the COVID19 outbreak were tough for our family. We sadly lost my
mother, who was the pillar of our home and whom I loved very much. Nevertheless, I am
sure she is thrilled right now because this accomplishment would not be possible if not
for her. I like to think that my mother was directly responsible for my love of computer
science. Starting from the lessons on how to properly type on a keyboard (learned on
typewriters) to the amazing computer she gifted me when I was only a teenager, and of
course, followed by the persisting encouragement to get into a public university in Brazil,
all of it living in a minuscule city in the countryside of Bahia the state of Brazil. It seems
as though she planned it all.

I look forward to the new challenges in my academic life. If there is one thing I learned
in this process, it is that I want to continue growing and learning from the best.

Resumo

Extrair informações semanticamente relevantes de um conjunto de dados de imagens não
anotado é um dos mais complexos desafios da área de Visão Computacional. Nos últimos
anos, métodos de aprendizado auto-supervisionados conseguiram reduzir drasticamente
a grande lacuna outrora existente, entre representações obtidas de forma supervisionada
e aquelas adquiridas de forma não supervisionada. Com o crescimento ininterrupto na
captura e armazenamento de dados não estruturados, somando-se o alto custo associado
à criação de conjuntos de dados anotados, aprender características a partir de dados não
rotulados, possui o potencial de desbloquear uma série de problemas relevantes, com re-
dução significativa de custos. Esta dissertação apresenta algoritmos de aprendizado de
máquina capazes de extrair características de dados de imagens sem a necessidade de
qualquer tipo de supervisão manual. Apresentamos um panorama geral do recente para-
digma de aprendizado auto-supervisionado. Destacamos a recente evolução dos métodos,
desde a otimização de tarefas denominadas ”pretext” expandindo-se a um conjunto de mé-
todos que utiliza funções de custo contendo componentes contrastivos e não contrastivos
baseados em similaridade entre representações visuais.

Como principais contribuições, apresentamos dois novos algoritmos de aprendizado
de representações visuais auto-supervisionados. Primeiramente, apresentamos Consistent
Assignment for Representation Learning (CARL), um método auto-supervisionado, que
combina os benefícios de algoritmos clássicos de agrupamento com técnicas de auto-
supervisão. CARL aprende representações de forma não supervisionada. Nossos ex-
perimentos demonstraram que tais representações podem ser utilizadas como ponto de
partida para o aprendizado de novas tarefas, de maneira mais eficiente no que diz res-
peito à quantidade de dados. Nossos resultados se comparam a métodos atuais de última
geração em vários conjuntos de dados, incluindo CIFAR10, CIFAR100 e STL10. Apresen-
tamos um estudo aprofundado para investigar os pontos fortes e fracos do nosso método
inicial. Baseado em nossas descobertas, desenvolvemos um novo algoritmo que rivaliza
métodos atuais de aprendizado de representações não supervisionadas no ImageNet. Nos-
sos métodos aprendem representações a partir de dados completamente livres de rótulos
explícitos. Além disso, nossos experimentos demonstraram que as representações obtidas
por nossos algoritmos reduzem a necessidade de grandes conjuntos de dados anotados no
processo de aprendizado de novas tarefas. Em outras palavras, as representações apre-
endidas por Consistent Assignment of Random Partition Sets (CARP), são compactas e
transferíveis em várias tarefas de visão computacional.

Abstract

Learning semantically meaningful features from unlabeled data has been one of the most
challenging problems in Computer Vision (CV). Recently, Self-Supervised Learning (SSL)
methods have managed to drastically reduce the gap between supervised and unsupervised
pre-trained representations to learn downstream tasks. With the non-stopping growth of
unstructured data and the high costs associated with creating annotated datasets, learning
representations from unlabeled data can unlock a series of problems with significant cost
reductions. In this context, this dissertation presents a series of algorithms to perform
unsupervised representation learning from images completely free of human annotations.
We perform a comprehensive overview of the recently popular field of SSL and highlight
the evolution of self-supervised methods, from derivation and optimization of pretext
tasks to a robust framework based on similarity optimization using contrastive and non-
contrastive loss functions.

As our main contribution, we present two novel algorithms for SSL of visual represen-
tations. First, we introduce Consistent Assignment for Representation Learning (CARL),
a self-supervised method that combines the benefits of classic clustering algorithms, such
as K-Means, with SSL methods based on similarity in the embeddings space. We demon-
strate that representations learned by CARL, in an entirely label-free way, can be used
to learn new downstream tasks in a data-efficient manner. CARL’s pre-trained repre-
sentations perform equally well or better than current state-of-the-art (SOTA) methods
on various representation learning benchmarks, including CIFAR10/100 and STL10. We
conducted a thorough study to investigate the strengths and weaknesses of CARL and,
based on our findings, we developed a new algorithm capable of rivaling unsupervised
representation learning methods on the ImageNet-1M dataset. Consistent Assignment
of Random Partition Sets (CARP) learns representations using a novel randomized clus-
tering approach. We introduce a new pretext task based on random set partitions of
prototypes. Our experiments demonstrate that CARP’s representations are compact and
transferable across many vision tasks. Moreover, CARP’s representations perform equally
well against contemporary representation learning methods while offering benefits such
as small batch sizes and smaller memory footprint.

List of Figures

1.1 The power of good representations . 15
1.2 Masked Language Model . 17
1.3 Self-supervised pre-training . 20

2.1 Classic Generative Adversarial Networks (GANs) learning architecture. . . 23
2.2 Pictorial representations of a denoising autoencoder and a image Inpainting. 24
2.3 The relative patch prediction learning architecture. 25
2.4 The jigsaw puzzle prediction learning architecture. 26
2.5 The rotation prediction learning architecture. 27
2.6 Denoising auto-encoders as energy-based models. 30

3.1 The triplet loss requires an anchor, a positive, and a negative example. We
want the positive to be as close as possible to the anchor and the negative
to be as far away from the anchor as possible. Negatives within the red
circle contribute more to training convergence, while negatives in the green
region may produce trivial solutions. 34

3.2 The N-pair-mc loss positive and negative pairs. 35
3.3 Synthetic view generation as a key concept for Self-Supervised Learning

(SSL). 36
3.4 The siamese network as a key idea for SSL. 37
3.5 The A Simple Framework for Contrastive Learning of Visual Representa-

tions (SimCLR) architecture. 42

5.1 Overview of Consistent Assignment for Representation Learning (CARL)’s
learning architecture. 57

5.2 Effect of the uninformative prior’s scheduling λe on CARL’s performance. . 60
5.3 Effect of learning prototypes on the quality of the representations. 61
5.4 Examples of synthetic views for training CARL. 65
5.5 Conceptual differences between SSL methods 70

6.1 Conceptual differences between CARL and Consistent Assignment of Ran-
dom Partition Sets (CARP) . 74

List of Tables

3.1 Linear Evaluation performance of SSL methods 48

5.1 The effect of batch-sizes on Consistent Assignment for Representation Learn-
ing (CARL). 62

5.2 Linear evaluation performance of CARL. 63
5.3 Semi-supervised evaluation of CARL. 64

6.1 Linear evaluation performance of Consistent Assignment of Random Par-
tition Sets (CARP). 76

6.2 Semi-supervised evaluation of CARP. 77

List of Abbreviations and Acronyms

AI Artificial Intelligence . 14

BERT Bidirectional Encoder Representations from Transformers 16

BYOL Bootstrap Your Own Latent . 76

BoW Bag-of-words . 14

CARL Consistent Assignment for Representation Learning 80

CARP Consistent Assignment of Random Partition Sets 80

CMC Contrastive Multiview Coding . 40

CNN Convolutional Neural Networks . 77

CPC Contrastive Predictive Coding . 39

CV Computer Vision . 80

DNNs Deep Neural Networks . 28

EBMs Energy-Based Models . 31

EM Expectation-Maximization . 55

GANs Generative Adversarial Networks . 22

GPT Generative Pre-Training Transformer . 16

GPUs Graphics Processing Unit . 78

IoU Intersection over Union . 52

KL-divergence Kullback-Leibler divergence . 58

KNN K-Nearest Neighbors . 52

LLMs Large Language Models . 46

mAP mean Average Precision . 52

MI Mutual Information . 55

MLM Masked Language Modeling . 17

MLP Multilayer Perceptron . 72

MSE Mean Squared Error . 69

MoCo Momentum Contrast for Unsupervised Visual Representation Learning . . . 62

NCA Neighborhood Component Analysis . 32

NCE Noise-Contrastive Estimation . 39

NLP Natural Language Processing . 51

PCA Principal Component Analysis . 30

PCL Prototypical Contrastive Learning . 62

SEER SElf-supERvised . 46

SGD Stochastic Gradient Descent . 66

SOTA state-of-the-art . 80

SPT Self-prediction Tasks . 22

SSL Self-Supervised Learning . 80

STD Standard Deviation . 78

SVMs Support Vector Machines . 52

SimCLR A Simple Framework for Contrastive Learning of Visual Representations 76

SimSiam Simple Siamese Networks . 68

SwAV Swapping Assignments between Views . 76

TPUs Tensor Processing Units . 47

VAEs Variational Auto-Encoders . 22

Contents

Acknowledgments 5

List of Abbreviations and Acronyms 10

1 Introduction 14
1.1 Motivation . 19
1.2 Contributions . 20
1.3 Outline . 21

2 Self-Supervised Learning of Visual Representations 22
2.1 Self-Supervised Learning . 22

2.1.1 The Exemplar Pretext Task . 23
2.1.2 The Relative Patch Prediction Pretext Task 24
2.1.3 The Jigsaw Puzzle Pretext Task . 25
2.1.4 The Rotation Prediction Pretext Task 25

2.2 Limitations of Pretext Task Optimization 26
2.3 Energy-Based Models for Self-Supervised Learning 28

2.3.1 Energy-Based Models . 28
2.3.2 Contrastive and Non-contrastive Energy-Based Models 29

3 Contrastive Representation Learning 31
3.1 Supervised Contrastive Learning . 31
3.2 A Framework for Self-Supervised Learning 35

3.2.1 Synthetic View Generation . 35
3.2.2 The Joint-Embedding Architecture 37
3.2.3 The Cost Function . 38

3.3 Hard Negative Mining for Contrastive Learning 38
3.4 Contrastive Self-Supervised Learning . 39
3.5 Non-Contrastive Self-Supervised Learning 44
3.6 Broader Impact . 47

4 Datasets and Evaluation Protocols for Self-Supervised Learning 50
4.1 Datasets . 50

4.1.1 Pre-training and Validation . 51
4.2 Feature Evaluation for Self-Supervised Learning 51

4.2.1 Linear Evaluation Protocol . 52
4.2.2 Semi-Supervised Learning . 52
4.2.3 Cross-Domain Transfer . 53

5 Consistent Assignment for Representation Learning 54
5.1 Introduction and Motivation . 54
5.2 Proposal . 55
5.3 Contributions . 56
5.4 Contrastive Learning from a Clustering Perspective 56
5.5 Learning Representations by View Assignment 57

5.5.1 Preventing Trivial Solutions . 58
5.6 Hyperparameter Exploration . 60

5.6.1 Does Decreasing the KL Weight Penalty Improves Representation
Learning? . 60

5.6.2 Does the Number of General Prototypes Influence the Quality of
the Representations? . 61

5.6.3 Does the Batch Size Improves the Representations Learned by CARL? 61
5.7 Unsupervised Feature Evaluation . 62

5.7.1 Linear Evaluation . 62
5.7.2 Cross-domain transfer . 63
5.7.3 Semi-supervised learning . 63
5.7.4 Fine-tuning . 63

5.8 Implementation Details . 63
5.8.1 Datasets . 64
5.8.2 Backbones . 64
5.8.3 Augmentations . 64
5.8.4 CARL . 66
5.8.5 Other methods . 66

5.9 Relation With Other Self-supervised Methods 68

6 Consistent Assignment of Random Partition Sets 71
6.1 Motivation . 71
6.2 Towards Random Partition Sets . 72
6.3 From CARL to CARP . 73
6.4 Unsupervised Feature Evaluation . 76

6.4.1 Linear Evaluation . 76
6.4.2 Semi-supervised Learning . 76

6.5 Implementation Details . 77
6.5.1 Datasets . 77
6.5.2 Backbones . 77
6.5.3 Augmentations . 78
6.5.4 CARP . 78

7 Conclusions 80
7.1 Future Work . 80

14

Chapter 1

Introduction

In the last two decades, the field of Artificial Intelligence (AI) has seen substantial de-
velopment in research and industrial applications. Machine learning algorithms such as
Logistic Regression and Naive Bayes can recognize patterns from features and solve prob-
lems that seemed otherwise impossible to be solved by hard-coding knowledge into expert
systems. Despite their simplicity, these shallow learning algorithms can perform relatively
complex tasks such as product recommendation or learn to distinguish between spam from
non-spam emails.

More interesting, the performance of shallow learning algorithms massively depends
on the representations they receive as input [1, 2]. For instance, if we decide to build a
spam email detector using Naive Bayes, passing a large body of raw unstructured email
data to a classifier will not help. Instead, we need to find a different way to represent the
text before feeding it to the classifier. Notably, one commonly used text representation
for this kind of application is the Bag-of-words (BoW) model [3]. The idea is to represent
the text so that the importance of each word in the text is easily captured. Namely, the
term frequency of each word, which represents the number of times a word appears in the
text, is a popular text representation that can be used to train the spam filtering model.

We can see the power of good representations for training machine learning models by
looking at Figure 1.1. In this example, we might be interested in using a machine learning
model such as Logistic Regression to find a linear separation, a line in 2D, between the
blue and green circles. However, it is straightforward to see that a model that learns
linear boundaries will not succeed in such an example because there is no way to separate
the two classes using a line in this current state of the data. Luckily, if we change
the input representation so that instead of passing the raw data, we pass in the square
magnitude of the values, we will see that the data landscape will change completely, and
a linear separation between the two groups becomes evident in the feature space. Indeed,
representations matter.

Nevertheless, it is not straightforward to know beforehand how to change the data
representation in such a way so that linear separations in the feature space become evident.
Different features often have different properties that may or may not be suited to solve
a given task. Take the BoW term frequency features as an example. These features
focus on the number of occurrences of a word in the text but discard information such as
grammar and word order. For other Natural Language Processing (NLP) tasks, where the

CHAPTER 1. INTRODUCTION 15

x1

x 2

Cartesian Space (2d)

x2
1

x2 2

Feature Space

Figure 1.1. Representations matter for simple linear machine learning models such as Logistic Regres-
sion. A simple transformation, e.g., squaring the values of the raw features, might be enough to transform
the feature space into linearly separable.

semantic relationship between words is necessary, the grammar and the order in which
words appear in the text may be critical to solving that particular task. That is why
the process of hand-designing features is considered such a challenging problem. For
instance, imagine we want to build a car detector. We know that cars have some primary
characteristics that make them different from other objects. Such components, one might
argue, is the presence of wheels. In this scenario, to build car classifier, we need to have a
way to represent the wheels of various types of cars. That is where the problem becomes
complicated. After all, how could we create a wheel-detector that could generalize among
all types of existing wheels and be robust to so many combinations of light, shape, and
size distortions?

That is where Deep Neural Networks (DNNs) make a difference. With deep learning,
we do not need to care about how to manually specify a wheel detector so that it can be
robust to all types of existing wheels. Instead, by composing a series of linear and non-
linear transformations in a hierarchical pattern, DNNs have the power to learn suitable
representations by combining simple concepts to derive complex structures. In a nutshell,
a classical supervised Computer Vision (CV) classifier would take raw data as input, and
each layer iteratively refines the features from the previous layers. Thus, the neurons of the
first layers learn fine-grained features such as edges and contours from the high-frequency
input, and as the features traverse the hierarchy of layers, the subsequent neurons combine
the fine-grained features to discover more complex concepts such as object parts. Lastly,
we can use these refined representations and learn a linear classifier to map the inputs to
a number of finite classes.

From this perspective, DNNs are representation learning models. At a high level, a
typical supervised neural network has two components, (1) an encoder and (2) a linear
classifier. The encoder transforms the input data and projects it to a different subspace.
Then, the low-level representation (from the encoder) is passed to the linear classifier that
draws linear boundaries separating the classes. Hence, instead of solving a task by map-
ping representations to targets (which a classical classifier would do), representation learn-
ing aims to map representations to other representations. These learned representations

CHAPTER 1. INTRODUCTION 16

are often dense, compact, and can generalize to similar data modalities. In other words,
these representations can transfer well to other tasks and have been used to solve many
other problems in which data annotations are hard or even impossible to get. Moreover,
we can save hours of expert knowledge to create hand-designed features because learned
representations usually offer much better performance and generalization properties.

In the current AI landscape, many industrial applications depend on supervised pre-
trained models to solve different tasks for which annotated data is poorly available. The
most common way is to take a large Convolutional Neural Networks (CNN) trained in
a large annotated corpus such as the ImageNet [4], throw away its classification layer,
and use the encoder as a feature extractor. In this way, we can map a high-dimensional
input signal, such as an image, to a low-dimensional embedding vector that encodes that
image’s factors of variation. Then, we can use this new representation as input to shallow
learning algorithms such as Support Vector Machines (SVMs). This recipe has been used
with tremendous success in solving numerous industrial and research problems.

In this work, we focus on learning representations from images. However, we aim to
develop techniques in which data annotations, often acquired by manual human labelers,
are unnecessary. This activate area of research is referred to as deep unsupervised repre-
sentations learning. Here, the word ’deep’ hints that we use DNNs as the main building
blocks of such learning systems.

Deep unsupervised representation learning seeks to learn a rich set of features from
unlabeled data. The hope is that these representations will improve the performance of
many downstream tasks and reduce the necessity of human annotations every time we
seek to learn a new task. Specifically, in CV, unsupervised representation learning is one
of the foremost, long-standing class of problems that pose significant challenges to many
researchers worldwide. As computing power continues to rise and data continues to be
ubiquitously captured through multiple sensors, the need to create algorithms capable of
extracting richer patterns from raw data in a label-free way has never been so present.

In recent years, deep unsupervised representation learning has gained much attention
because of the latest breakthroughs in NLP. The successes of Bidirectional Encoder
Representations from Transformers (BERT) [5] and Generative Pre-Training Transformer
(GPT) [6], both deep learning-based models that do not require manually annotated
datasets in their training pipelines, have inspired a new generation of algorithms that
made their way to CV applications. More specifically, the recently developed field of Self-
Supervised Learning (SSL), which takes advantage of the supervision encoded in the data,
is the main driver behind the latest successes in unsupervised representation learning for
CV and NLP applications.

For example, BERT [5] is a deep unsupervised language representation model that
learns contextual representations from unstructured text. Unlike context-free models such
as word2vec or GloVe [7], which learns an embedding vector for each word independent of
context, BERT learns representations based on the context in which each word appears.
Moreover, BERT is optimized by solving a particular kind of SSL task that does not
require manually annotated data. Namely, during training, a percentage of randomly
chosen tokens are masked from the input sentence before going through the Transformer
encoder. The encoder maps the input sentence to a series of representation vectors (one

CHAPTER 1. INTRODUCTION 17

Figure 1.2. Masked Language Modeling MLM self-supervised pretraining objective used to train BERT.
As input, the system receives a sentence where some of ’the tokens have been randomly removed. The
network is trained to reconstruct the input signal, i.e., predict the missing words (tokens) given the
available context.

for each word in the sentence). These hidden vectors are subsequently passed through
a softmax layer that computes probabilities over the whole vocabulary so that the most
likely words get a higher chance of being picked. In other words, it is a filling in the
blank task where BERT aims to reconstruct the corrupted input signal from the partially
available context. The decoder is trained to output the probabilities over all possible words
so that the likely ones get a higher chance of being picked. This particular task is called
Masked Language Modeling (MLM), and it has been used with success in BERT-based
systems, including Liu et al. [8] and Lan et al.’s [9] work, refer to Figure 1.2.

Nevertheless, one very important characteristic of a system such as BERT is that,
after training, we can fine-tune the BERT parameters on downstream tasks that do not
have a lot of annotated training data. This practice usually achieves substantial accu-
racy improvements compared to training the system from scratch on downstream tasks.
Moreover, this strategy reduces one of the main bottlenecks for training DNNs: data
annotation.

Motivated by such examples, this dissertation presents a series of CV algorithms that
learn general representations to ease the process of learning downstream tasks. We focus
on the core methodologies used to develop state-of-the-art (SOTA) representation learning
algorithms using DNNs [10].

These include:

• Self-supervised models capable of learning good representations by optimizing proxy
tasks derived from the data [11, 12].

• Similarity-based methods such as the family of contrastive learning algorithms [13,
14] that seek to maximize the Mutual Information (MI) between samples [15].

• Deep unsupervised clustering techniques [16, 17] that look to categorize images by
semantic structure.

This family of techniques has given substantial progress to the field of deep unsu-
pervised representation learning. Recent work has attempted to combine these methods
with relative success [18, 19]. Here, we explored the advantages and disadvantages of these
learning algorithms and used them in conjunction to devise more effective unsupervised
learning techniques.

CHAPTER 1. INTRODUCTION 18

We focused on two main approaches to unsupervised representation learning, (1) deep
clustering and (2) SSL.

Over the years, clustering has been among the leading methods to learn the structure
non-annotated data. Classic methods, e.g., K-Means, optimize a distance metric as a
proxy to group similar images around a common centroid. Caron et al. [16, 17] have
attempted to combine classic clustering with deep learning. Moreover, Li et al. [19]
also suggest that combining clustering methods with self-supervised pretext tasks is a
prominent technique.

On the other hand, SSL is an approach to unsupervised learning, and it is concerned
with learning semantically meaningful features from unlabeled data. Approaches to SSL
usually require a strategy in which a subtask is created out of unlabeled data in such a way
that it can be optimized using traditional supervised learning techniques. This subtask, or
pretext task, acts as a proxy that makes the network learn useful representations from the
data. In other words, by solving the pretext task, the network learns good representations
that can be used to train classifiers on different downstream tasks.

While classic unsupervised methods do not use any labels during training, most of the
proposed pretext tasks use the same framework and loss functions as classic supervised
learning algorithms. Therefore, self-supervised pretext tasks also require labels for opti-
mization. However, the labels (or pseudo-labels) used to optimize these pretext tasks are
derived from the data or its attributes alone.

In general, self-supervised pretext tasks consist of taking out some parts of the data
and challenging the network to predict that missing part [20]. It can be predicting the
next word in the sentence based on the previous context or predicting the next frame of a
video based on the preceding ones. In fact, such pretext tasks have seen massive success
in NLP applications, mainly because text data is discrete. Moreover, naively applying
these same concepts to CV applications is hard because images are continuous, making
the space of possible solutions much more complex.

Besides, creating self-supervised pretext tasks might resemble the process of hand-
designing features for a classifier. It is not clear which pretext tasks work and why they
work. Nevertheless, recent SSL methods have deviated to a general form of representing
pretext tasks using a contrastive-based learning approach.

Contrastive SSL algorithms seek to learn representations by approximating similar con-
cepts while pushing apart different ones. As of this writing, contrastive learning methods
hold SOTA performance in unsupervised representation learning, making it an essential
part of this project.

This dissertation presents novel approaches for unsupervised representation learning.
We aim at combining the benefits of two popular strategies to unsupervised learning:
SSL and deep clustering. We explore the collaborative nature of both techniques and
design proxy tasks for learning generalizable visual representations that explore semantic
structure in SSL tasks.

CHAPTER 1. INTRODUCTION 19

1.1 Motivation

Throughout recent years, supervised learning has been the leading and successful recipe
for training DNNs. The availability of large, and most importantly, annotated datasets
such as the ImageNet, allowed researchers to train DNNs that learns representations in
terms of a hierarchy of concepts. These representations not only solve the task at hand,
image classification in this case, but because of its generalization properties, they can
also be used as good starting points to learn different downstream tasks such as object
detection, segmentation, pose estimation, and more.

The recipe is simple, take a large annotated vision corpus, train a CNN model, then
transfer its knowledge to solve a second task that usually does not have sufficient labels to
train a deep network from scratch. This concept, called transfer learning, has been used
successfully in many domains to solve numerous tasks and has been exhaustively used in
commercial applications. Refer to Figure 1.3 for a graphical description.

The main limiting factor to scale this recipe is acquiring annotated data. To have an
idea, the ImageNet dataset, which is a standard dataset among CV researchers, contains
14 million images with roughly 22 million concepts. However, if we compare ImageNet
to the corpus of all available internet images, ImageNet is down by approximately five
orders of magnitude [21].

Besides, if we look at the CV dataset landscape, the number of available annotated
samples reduces drastically depending on the task at hand. Consider only the most
popular CV tasks such as object classification, detection, and segmentation. In this
scenario, as the level of prediction becomes more complex (from whole-image labels to
pixel-level annotations), the number of labeled examples decreases substantially [22]. For
this reason, most of the solutions to object detection [23–25] and segmentation [26–28]
always take ImageNet pre-trained networks as starting points for optimization.

Moreover, ImageNet pre-trained models might not be the ideal solution for problems
with a significant change in the domain. That might be the case for numerous applica-
tions in health care, such as classification and detection of breast cancer metastases in
whole-slide images [29]. In such applications, the volume of curated annotated samples
is minimal if compared to all available raw data. The process of annotating such records
usually requires hours of specialized expert pathologists who need years of training to
be capable of performing such a job—in situations like this, annotating a large dataset
becomes prohibitively expensive and time-consuming.

Also, the rate at which humans annotate data cannot scale to the volume of the data
we generate. Put it in another way, if we do not know the task to be optimized a priory, it
might be very complicated and expensive to prepare a sizeable supervised dataset required
by deep learning training.

All of these examples highlight the importance of learning generalizable representa-
tions from non-annotated data. Many research areas, including semi-supervised, weakly-
supervised, and more recently, SSL, try to learn representations that can be transferred
to new tasks using just a few or not using annotated examples at all.

Semi-supervised learning [30] aims to combine the benefits of having a few annotated
observations with a much larger dataset of non-annotated examples. On the other hand,

CHAPTER 1. INTRODUCTION 20

Figure 1.3. Self-supervised pre-training for computer vision. First, a DNN is trained by optimizing a
pretext task in a self-supervised manner. Afterward, we can use the self-supervised encoder as a feature
extractor and learn a classifier on a downstream task. Using the self-supervised encoder as a starting
point reduces the requirements for large annotated datasets to learn downstream tasks.

weakly supervised learning [22] explores a large amount of noisy, and most of the time,
imprecise labels as supervised signals. Finally, SSL [31], which is the main focus of this
work, relates to devising proxy-tasks from which annotations derive from the data or its
properties. Here, by optimizing pretext tasks, the network learns useful representations
that can be transferred to optimize downstream tasks.

We can think of SSL as a pre-training step. First, a deep neural network encoder is
optimized using a self-supervised objective function. This process occurs in a label-free
way. The network learns useful representations by optimizing more general loss functions.
Second, we use the pre-trained encoder to learn new downstream tasks. The pre-trained
encoder facilitates downstream task learning by reducing the need for supervised data to
achieve high accuracy. This process is summarized in Figure 1.3.

1.2 Contributions

This dissertation describes two novel algorithms for learning representations in a self-
supervised label-free way for CV. The two approaches learn unsupervised representations
that perform equally well or better than current SOTA methods in many unsupervised
representation learning benchmarks. Unlike most contemporary work, our proposals com-
bine ideas of clustering and self-supervision in novel ways.

The main contributions of this dissertation are:

• A framework that leverages current SSL methods with clustering-based algorithms
for unsupervised representation learning. Consistent Assignment for Representation
Learning (CARL) is based on two main ideas, consistency assignment of views to
prototypes and trivial solution avoidance by penalizing non-uniform distributions
of views over prototypes.

• A novel approach to avoid collapsed solutions in joint-embedding training architec-
tures. Instead of relying upon additional pre-clustering steps using, e.g., K-Means

CHAPTER 1. INTRODUCTION 21

or non-differentiable algorithms to solve the clustering assignment problem, such as
the Sinkhorn-Knopp [32], our method avoids collapsed solutions using an end-to-end
online methodology with gradient descent.

• A method based on random partition sets that attenuate most of our previous
method’s limitations regarding batch sizing and training stability. Instead of en-
forcing consistency and uniform view assignment overall prototypes, we randomly
partition the set of trainable prototypes into disjoint blocks during optimization.
This approach improves the overall performance of the learned representations and
increases the method’s stability during training.

1.3 Outline

The rest of the dissertation proceeds as follows. We start by introducing background
concepts in Chapter 2. We present a series of self-prediction tasks for SSL, the intu-
itive reasoning behind their success in learning unsupervised representations and describe
some of the limitations of this learning approach. We continue with more introductory
concepts in Section 2.3, where we briefly present the framework of Energy-Based Mod-
els (EBMs) which is going to be extremely useful to understand modern SSL methods.
Next, in Chapter 3 we talk about contrastive and non-contrastive representation learning
methods for CV. We present a standard set of key ideas used by current SSL methods,
including our own. Then, in Chapter 4 we describe the existing methodologies to assess
the quality of unsupervised representation learning algorithms and the list of datasets
used in this dissertation to train and evaluate our methods. These evaluation protocols
were used to compare our methods with existing algorithms. The first proposal is in
Chapter 5. We introduce CARL, an unsupervised representation learning method that
combines the benefits of SSL and deep clustering. CARL is based on two main ideas, (1)
consistency assignment of views to prototypes and (2) trivial solution avoidance by penal-
izing non-uniform distributions of views over prototypes. Our second proposal is defined
in Chapter 6. Here, we describe how we can outperform the results achieved by CARL,
improving upon its main limitations by devising a novel approach based on set partitions
to learn unsupervised representations. Lastly, in Chapter 7 we close this dissertation by
pointing to future directions of SSL and describe how the methods presented in this work
can be used to learn representations from different data modalities such as video or audio
signals.

22

Chapter 2

Self-Supervised Learning of Visual
Representations

This chapter presents a revision of Self-Supervised Learning (SSL) methods for represen-
tation learning of visual features. We start by addressing some of the early methods to
devise and optimize Self-prediction Tasks (SPT) as a way to learn representations with-
out labels. In the context of SSL, a SPT is an optimization task posed at the individual
data point level. Usually, some part of the data is intentionally hidden or corrupted, and
the network is challenged to predict that missing part or property of the data from the
available information. Since the network only has access to some part of the data point,
it needs to leverage intra-sample statistics to solve the task. These tasks are also known
as pretext tasks, and they act as proxies to learn representations from unlabeled data.
When optimized using such pretext tasks, a neural network can learn features that can
generalize across different tasks and thus, ease the process of learning downstream tasks
reducing costs, including computing time and data annotation.

2.1 Self-Supervised Learning

We can view SSL as a series of prediction tasks that aim to infer missing parts of the input
from the partially visible context. In general, it relates to the idea of devising pretext
tasks to predict an occluded portion of the data from the partially observed context.
These concepts are prevalent in Natural Language Processing (NLP), where we can learn
word-embeddings by predicting neighboring words based on the surrounding context [33].

Researchers have proposed many self-supervised tasks to learn representations from
image data. For instance, generative-based pretext tasks attempt to learn the data man-
ifold by posing a reconstruction task on the input space to recover the original input
signal from a usually corrupted input. This category includes popular methods such as
Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs).

Kingma and Welling [34] proposed a Bayesian approach to VAEs where the decoder
generates data conditionally on a latent variable z while the encoder is trained to infer the
latent variable from the input. In the GANs setup, Figure 2.1, the encoder takes in the
latent variable z and learns to produce a data point x̃ = g(z) that comes from the original

CHAPTER 2. SELF-SUPERVISED LEARNING OF VISUAL REPRESENTATIONS23

Figure 2.1. To train GANs, the generator function g(·) receives a latent variable z as input and attempts
to produce a data sample x̃ that resembles an actual data point x. At the same time, the discriminator
network is trained as a critic that needs to tell apart the sample created by the generator from the real
sample from the training data.

data distribution, where the function g(·) is a neural network known as a generator.
Implementations such as BiGAN [35] trains an additional encoder function to invert

the encoding process in order to map a data point x to a latent representation z.
Another class of generative models attempts to predict the values of a high dimensional

signal, such as an image, in an autoregressive manner. These implementations make
predictions at the pixel level. Using a raster scan order, they predict the next pixel
value conditioned on the values they have seen before. Examples include PixelRNN [36],
PixelCNN [37], and ImageGPT [38]. Although representation learning may not be the
primary objective of such methods, they all have been used as feature extractors, in a
transfer learning scenario, to learn downstream tasks.

Analogous to the task of masked language modeling in NLP, masked prediction tasks
for images include denoising autoencoders and image inpainting. Vincent et al. [39] pro-
posed to learn robust representations by learning denoising autoencoders. Here, a given
input image is changed by a noise distribution that corrupts randomly chosen pixel values.
The network receives the noisy input and rebuilds the original image using a reconstruc-
tion loss in the image space, Figure 2.2.

Similarly, Pathak et al. [40] present a generative model to learn visual features by
intentionally masking a portion of the input image and challenging a deep neural network
to fill in the missing regions. Besides the reconstruction loss, the system is optimized
with an adversarial loss that further improves the reconstruction and the quality of the
representations. Refer to Figure 2.2.

2.1.1 The Exemplar Pretext Task

The Exemplar-CNN proposed by Dosovitskiy et al. [11], is an example of a self-supervised
method for learning transferable representations. Built on top of the concepts presented
by Malisiewicz et al. [41], the main idea is to devise a prediction task that treats each
image (an exemplar) and variations of it as a unique surrogate class. Each surrogate
class contains randomly transformed variations of an image. These variations, also called
views, are created by applying stochastic data transformations to the input image. Such
transformations include cropping, scaling, color distortions, and rotations. Each set of
views from the same exemplar gets assigned a unique surrogate class, and the network
is optimized to correctly classify views from the same image as belonging to the same
surrogate class. The exemplar pretext task is optimized using the cross-entropy loss and

CHAPTER 2. SELF-SUPERVISED LEARNING OF VISUAL REPRESENTATIONS24

Figure 2.2. Pictorial representations a the denoising autoencoder (top) and a contextual autoencoder
for image Inpainting (bottom). Both systems receive a corrupted image and attempt to reconstruct the
original signal.

was trained with 32 000 surrogate classes. In its time of publication, the Exemplar-CNN
outperformed the current state-of-the-art (SOTA) for unsupervised learning on several
popular benchmarks, including STL-10 [42], CIFAR-10 [43], Caltech-101 [44], and Caltech-
256 [45, 46].

Since there is a one-to-one correspondence between an image and a surrogate class,
the exemplar pretext task becomes challenging to scale to enormous datasets such as
the ImageNet with 1.3 million records. To address this limitation, Doersch and Zisser-
man [12] proposed to use the Triplet Loss [13] function as a way to scale the task to larger
datasets. In short, the exemplar pretext task is a framework that aims to train a classifier
to distinguish between different input samples. This strategy forces the network to learn
representations that are invariant to the set of data augmentations used to create the
views. Moreover, the concept of creating different views by using heavy data augmenta-
tion, now popularly referred to as instance discrimination, is one of the foundations of
current SSL methods.

2.1.2 The Relative Patch Prediction Pretext Task

A contemporary work by Doersch et al. [47] proposed the relative patch prediction pretext
task. This method introduces the idea of training a neural network to predict the relative
positions of patches in an image. The learning framework is elegantly simple. First,
a random patch is extracted from an image and used as the center relative position.
From the center patch, we can extract 1 of 8 other patches (in a grid fashion) such
that the relative position between the central patch and one of the surrounding patches
is deterministic. Given a pair of patches as input, the network is trained to learn the
relative position of the central patch with respect to its neighbor. Figure 2.3 depicts the
training architecture.

The goal is to learn a visual representation vector (an embedding) for each patch,
such that patches that share visual semantic similarities also have similar embeddings.
The relative patch prediction pretext task is optimized as an 8-way classification problem

CHAPTER 2. SELF-SUPERVISED LEARNING OF VISUAL REPRESENTATIONS25

Figure 2.3. Overview of the relative patch prediction framework. The prediction task is designed as
an 8-way classification problem where the network needs to predict the relative position of surrounding
patches concerning the central patch.

using the cross-entropy loss. The feature representations learned through the relative
patch pretext task achieved SOTA performance on the Pascal VOC 2011 [48] detection
dataset. Moreover, different from the exemplar pretext task by Dosovitskiy et al. [11],
the relative patch prediction task is much more scalable. For this reason, this work is
considered one of the first successful large-scale SSL methods.

2.1.3 The Jigsaw Puzzle Pretext Task

Similar to the relative patch prediction pretext task, Noroozi and Favaro [49] proposed
a pretext task to learn visual representations by solving jigsaw puzzles. From a single
image, the formulation involves sampling nine crops (in a grid pattern) that are shuffled
using a randomly chosen permutation pi sampled from a set of permutations P̄ . The
network receives the patches in random order, and the pretext task is to predict which
permutation was used to rearrange the image patches. Since the number of possible per-
mutations follows a factorial growth, the authors used a small subset of 1000 handpicked
permutations. The subset of 1000 permutations is chosen based on their Hamming dis-
tances. Specifically, as the average Hamming distance between the permutations grows,
the pretext task becomes harder to solve, and as a consequence, the network learns better
representations. Intuitively, generating a maximal Hamming distance permutation set
avoids cases where many permutations are very similar to one another, which would ease
the challenge imposed by the pretext task. Fig 2.4 depicts the jigsaw puzzle Convolutional
Neural Networks (CNN) architecture.

The jigsaw puzzle pretext task is formulated as a 1000-way classification task, opti-
mized using the cross-entropy loss. Training classification and detection algorithms on
top of the fixed representations leaned from the jigsaw pretext task showed advantages
over the previous methods from Doersch et al. [47] and Pathak et al. [40].

2.1.4 The Rotation Prediction Pretext Task

Gidaris et al. [50] presented another simple and yet powerful self-supervised pretext task.

CHAPTER 2. SELF-SUPERVISED LEARNING OF VISUAL REPRESENTATIONS26

Figure 2.4. Learning representations by solving jigsaw puzzles. First, 9 crops from a grid-like structure
are extracted and shuffled using a permutation pi sampled from a set of permutations P . The crops are
forwarded through a convolutional encoder using a Siamese architecture. The representations of each
patch are concatenated and forwarded through a classifier that predicts the permutation used to shuffle
the input patches.

The rotation prediction pretext task is a method to learn unsupervised visual represen-
tations by predicting which rotation angle was applied to an input image. For an input
image x and a rotation angle β (randomly picked from a set of predefined values), the
image x is rotated by an angle β and fed as input to a CNN. Then, the pretext task is
to predict which of the valid rotation angles was used to transform the input image. The
rotation prediction pretext task is designed as a 4-way classification problem with rotation
angles taken from the set {0◦, 90◦, 180◦, 270◦}. The framework is depicted in Figure 2.5.
Despite its simplicity, the rotation pretext task achieved SOTA performance on various
unsupervised feature learning benchmarks, including classification on ImageNet [4], and
transfer learning on PASCAL VOC [48].

2.2 Limitations of Pretext Task Optimization

One might ask why solving jigsaw puzzles or predicting rotation angles makes the network
learn useful representations. Although the answer to this question is still open, helpful
intuitions hint at why optimizing these pretext tasks results in learning useful visual
semantic structures from data. To excel in a task such as relative patch prediction or
jigsaw puzzle, the network needs to learn how different object parts relate to one another.
Moreover, both tasks force the network to learn spatial context structure among the image
patches. In other words, these tasks require the network to learn features that encode
spatial reasoning.

Similarly, predicting random rotations drives the network to learn orientation concepts
about objects. These concepts are well known and straightforward to humans but are very

CHAPTER 2. SELF-SUPERVISED LEARNING OF VISUAL REPRESENTATIONS27

Figure 2.5. The rotation prediction pretext task learning framework. An image is rotated by a randomly
picked angle β and then fed to a neural network. The task is designed as a 4-way classification problem in
which the network must predict which rotation angle was used to transform the input image. Originally,
the network was trained using a set of 4 rotation angles {0◦, 90◦, 180◦, 270◦}.

difficult to be encoded in computer systems. Such notions might include learning that
trees grow upwards (instead of side-ways or downward) or that a person’s head should be
on top of the shoulders, not below them. In the same way, for contextual prediction tasks
such as jigsaw and relative patch prediction, the network must learn spatial consistency
features so that it can predict that a patch containing the nose of a living creature should
go on top of the patch containing its mouth.

Another important characteristic of these pretext tasks is that they usually use the
same loss functions of regular supervised training. In fact, from an optimization stand-
point, the only substantial difference between these self-supervised methods and regular
classification algorithms is the source of labels. While training a classifier often require
human annotations, SSL extracts the supervisory signal from the data.

The idea of optimizing pretext tasks that extract training signals from the data has
gained much traction in Computer Vision (CV). It has been applied to different domains,
including video and audio-based applications [51–53]. Despite its potential, however, when
comparing supervised and self-supervised-based representations for learning downstream
tasks, early attempts to learn via self-prediction were still far behind.

Moreover, devising pretext tasks pose the disadvantage of creating the task itself.
Indeed, creating such pretext tasks can be seen as a handcrafted procedure with no guar-
antees that optimizing for a given pretext task will push the network to learn semantically
meaningful features that can transfer well to other tasks. Take the rotation prediction
pretext task as an example. One would think that increasing the set of possible angles
(from 4 to 8) would increase the quality of the final representations because the pretext
task is now more challenging. However, an ablation study using multiples of 45-degree

CHAPTER 2. SELF-SUPERVISED LEARNING OF VISUAL REPRESENTATIONS28

rotation angles (from 0◦ to 315◦) instead of multiples of 90-degrees showed that the overall
feature performance actually decreased.

Another significant drawback of these manually created self-supervised pretext tasks
is that optimizing them makes the network learn visual representations that covary with
the choice of pretext task [54]. Moreover, Kolesnikov et al. [55] have shown that the
quality of visual representations learned via pretext task optimization is very sensitive to
the choice of CNN architecture. Put it differently, the choices of network architecture and
pretext tasks seem to influence the quality of the final visual representation.

Driven by these findings, current methods [56, 57] for self-supervised visual represen-
tation learning seem to have deviated from optimizing pretext tasks to adopt a common
framework based on contrastive learning algorithms [14] with join-embedding architec-
tures. In essence, contrastive methods learn visual representations in the embedding
space by approximating pairs of representations of the same concept.

This family of methods optimizes representations in the feature space and avoids
the computation burden of reconstructing the input signal [58]. Moreover, recent con-
trastive and non-contrastive methods have achieved SOTA performance surpassing both
self-supervised pretext tasks and latent variable models [35, 59] in nearly all representation
learning benchmarks.

2.3 Energy-Based Models for Self-Supervised Learning

Thus far, we have seen many discriminative methods that allow Deep Neural Networks
(DNNs) to learn representations by solving SPT in a label-free way. Many of these tasks
propose a prediction problem at the image level. In other words, we devise a "supervised"
task in which some part of the data or specific properties are held out and used as labels
during optimization. These tasks are called "pretext tasks" or SPT because the labels
come from the data, not from human labelers. Most of the pretext tasks we have seen so
far were designed at the intra-sample level and did not consider inter-sample statistics.
Before we head our attention to contrastive and non-contrastive SSL methods, here, we
explore Energy-Based Models (EBMs) in the context of SSL. The framework of energy-
minimization as an optimization task is a very intuitive tool to understand current SSL
methods based on contrastive and non-contrastive loss functions. As we are going to see,
the framework of EBMs can be used to derive many machine learning models, such as
auto-encoder and GANs.

2.3.1 Energy-Based Models

EBMs [60] is a framework that can be used to derive many machine learning algorithms
for supervised and SSL. EBMs are especially useful to model applications in which, for a
single input, there are multiple reasonable outputs. Training an EBMs involves learning
a scalar-valued energy function, denoted by E(·), representing the compatibility between
variables. Given two variables x and y, the energy function E(x, y) outputs a low value if
y is compatible with x and a high value if y and x are incompatible. The variable x could
be anything, from an image to text data or an audio signal. Similarly, y could be anything

CHAPTER 2. SELF-SUPERVISED LEARNING OF VISUAL REPRESENTATIONS29

that is supposed to be compatible with x, such as a list of class labels, a related image, a
segmentation map, or an audio signal. In other words, EBMs pose the optimization task
as learning dependencies between configurations of input variables through a scalar-valued
energy function.

Training EBMs consists of finding the optimal set of trainable parameters that cor-
rectly shape the energy function. One common strategy is to feed the learning algorithm
with input variables x and y that share semantics. It could be a couple of face pictures
from the same person or two photos of the same chair taken from different angles. Then,
the system needs to be optimized so that a particular x can only be compatible with
observations that share similarities with it. In other words, while two face pictures from
the same person must have low energy, two face pictures from different people should be
incompatible and hence have high energy. To shape the energy function, the system needs
to learn that for compatible pairs x and y, the energy must be zero, and for incompatible
pairs, x and ȳ the energy must be greater than zero, here, ȳ represents an input variable
that is non-compatible with x.

Once EBMs are trained, inference is the process of finding a value of y that is com-
patible with x. In other words, find values of y that make the energy E(x, y) small. If
E(·) is continuous and smooth, one option is to perform gradient-based optimization to
find values of y. Since there might be multiple values of y, a different compatible value
might be found depending on where the optimization starts at the energy surface.

2.3.2 Contrastive and Non-contrastive Energy-Based Models

In the context of SSL, there are two types of EBMs: (1) contrastive and (2) non-contrastive
(regularized) methods. In contrastive methods, to shape the energy function, we need two
opposing forces: (1) an attractive and (2) a repulsive (or contrastive) force. In this setup,
we want to push down on the energy of compatible pairs, i.e. E(x, y) = 0, and push up
the energy of non-compatible pairs, E(x, ȳ) > 0, for a non-compatible input ȳ. On the
other hand, regularized methods are designed so that the volume of low energy is limited.
As a result, by only attracting compatible pairs, i.e., minimizing the energy between x

and y, we automatically maximize the energy of every other configuration of variables; in
other words, the repulsive force is free.

These two types of EBMs can be used to interpret nearly all machine learning mod-
els. For instance, Denoising Auto-Encoders [39] and GANs [61] can be interpreted as
contrastive EBMs.

For denoising auto-encoders, we want to learn a function that maps a data point x̃ from
outside the data manifold (the ones we intentionally corrupt) to a data point x that sits on
the manifold. Specifically, we have an encoder-decoder architecture in which the encoder
receives the noisy input sample x̃, compresses it to a low dimensional representation z,
and passes it to a decoder function that learns to undo the corruption on x̃ by forcing
the reconstruction ŷ to look like x. Thus, given an incompatible input sample x̃, we train
a neural network to produce samples that are compatible with the observed data. This
process assigns low energy between the reconstructed point ŷ and the original data point
x and assigns high energy between a point off the manifold x̃ and a point on the manifold

CHAPTER 2. SELF-SUPERVISED LEARNING OF VISUAL REPRESENTATIONS30

x, refer to Fig. 2.6. Note that the energy function here is the reconstruction error between
the prediction ŷ and the input image x.

Contrastive methods differ in the way they acquire negative samples for contrastive
optimization. While some methods use complex heuristics to mine a set of relevant
negatives, others abdicate the mining procedure and opt to pay the price of using a large
number of negative samples.

Figure 2.6. Denoising auto-encoders as energy-based models. A data point x is corrupted to x̃ so
that it goes off the data manifold. The auto-encoder receives the corrupted observation as input and
attempts to reconstruct it to ŷ. The system shapes the energy function by assigning low energy between
the reconstructed point ŷ and the input observation x and high energy between x̃ and x.

For GANs, we can interpret the discriminator as an energy function [62]. Here, we
want the discriminator to assign low energy for an authentic image and high energy for
a fake image that comes from the generator. At the same time, we train the generator to
produce compatible images (has low energy) with the observations from the training set.

On the other hand, methods such as Principal Component Analysis (PCA), K-Means,
and VAEs [34] can be interpreted as regularized EBMs. These methods vary in the way
they limit the information capacity of the latent variables, but since the volume of low
energy is bounded, only pushing down the energy of compatible pairs is enough to shape
the energy function.

EBMs have the advantage of being very flexible in the way we pose the problem and
perform optimization. Unlike probabilistic models, the energy is not normalized. There-
fore, we do not need normalization terms that often involve dealing with non-tractable
integrals to compute the partition function Z. Nonetheless, energy functions can be
turned into probabilities by using the Gibbs Boltzman distribution.

31

Chapter 3

Contrastive Representation Learning

In Chapter 2, we described how one could take advantage of the supervisory signal hid-
den in the data to devise and optimize pretext tasks. These pretext tasks do not require
manually annotated labels and optimizing such tasks give the network the capacity to
learn generalizable representations that can be used to learn new downstream tasks. We
also described some of the limitations regarding this algorithmic approach to learning rep-
resentations. This chapter introduces a concept that merges the instance discrimination
pretext task with joint-embedding architectures to learn unsupervised representations. As
of this writing, contrastive and non-contrastive self-supervised methods are driving un-
supervised representation learning to performance levels never seen before. Contrastive
and non-contrastive learning methods can be very well understood through the lens of
Energy-Based Models (EBMs), introduced in Section 2.3

In essence, we can describe a contrastive learning problem as follows: Given observa-
tions xa, xp, and xn where xa is an anchor, xp a positive and xn a negative, we want to
learn a model to predict a high similarity score between xa and xp and to produce a low
similarity score between xa and xn. That is,

score(xa, xp) > score(xa, xn). (3.1)

In other words, the observations xa and xp share semantic meaning and the pair (xa, xp)

represents a positive pair. On the other hand, the observation xn is designed to be
uncorrelated to xa, and the pair (xa, xn) forms a negative pair.

3.1 Supervised Contrastive Learning

Contrastive learning ideas have been extensively used in machine learning. In supervised
learning, for instance, it has been applied in a metric learning scenario where the ground
truth labels are used to draw positive and negative examples. In metric learning, xa and
xp are usually drawn as different images from the same class, such as two different images
of a shepherd dog, while xn is a random image from a different class, such as a picture of
an airplane.

As an example, Goldberger et al. [63] have proposed a supervised non-parametric
method for learning a distance measure to be used in the K-Nearest Neighbors (KNN)

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 32

algorithm. Neighborhood Component Analysis (NCA) learns a linear mapping of the
input space after which classic KNN, using the Euclidian distance, performs well. Instead
of choosing a fixed number K of neighbors and voting their classes, NCA proposes a
randomized method where an input point xi randomly selects a point xj as its neighbor
with probability pij given by the softmax of the distances, as

pij =
exp(−‖Axi −Axj‖2)∑
k 6=i exp(−‖Axi −Axk‖2)

, (3.2)

where A is the learned projection matrix, and the summation is over all data points. The
data point xi inherits the class label from its selected neighbor xj

The algorithm maximizes the expected number of data points indexed by i that will
be assigned the correct class, for all points in the dataset as:

pi =
∑
j∈Ci

pij, (3.3)

and the final objective,
LNCA =

∑
i

∑
j∈Ci

pij =
∑
i

pi, (3.4)

is to learn a metric that maximizes the expected stochastic classification score, restricted
to quadratic (Mahalanobis) distance measures.

NCA has some advantages over regular KNN for certain scenarios. It does not require
the tuning of the neighborhood size K, and it does not make assumptions over the data,
such as the shape of the class distributions or the decision surface.

Still in metric learning, Hadsell et al. [14] and Chopra et al. [64], proposed a similar
method to learning a similarity metric discriminatively. These methods employ a very
similar contrastive loss function that works on pairs of input images, defined by

L(θ, y, xi, xj) = (1− y)
1

2
(Dθ)

2 + (y)
1

2
{max(0,m−Dθ)}2 , (3.5)

where the function Dθ(·) is parameterized distance function to be learned as,

Dθ(xi, xj) = ‖gθ(xi)− gθ(xj)‖2 , (3.6)

and gθ is a neural network encoder.
The idea is simple, given a pair of training images xi and xj, and a binary label

y = {0, 1} indicating the level of compatibility between the input pair, if the pair of
inputs is meant to correlate with each other, i.e., y = 0, then we want to minimize the
distance between xi and xj, in the embedding space, using a distance function such as
the Euclidian distance, Equation (3.6).

Otherwise, if the pair of inputs xi and xj is not considered similar to one another, i.e.,
y = 1, we want to make their representations as far away from each other by at least a
margin defined by m, where m > 0.

If the distance between a negative pair (xi, xj) is smaller than the margin, they should

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 33

be pushed away from one another by at least the value of the margin. However, if the
distance between a negative pair (xi, xj) is greater than or equal to the margin, it means
that the negative xj is already at an acceptable distance from xi and it does not need to
contribute to the loss function.

To learn such invariant mapping, gθ is implemented as a siamese [65] Convolutional
Neural Networks (CNN) with trainable parameters θ. In this setup, an input pair xi and xj
are fed independently to the convolutional encoder gθ, and the respective representations
are used in Equation (3.5).

Contrastive training is particularly good for cases where the number of classes is large
or not defined in advance. A CNN trained to recognize human faces from pictures will
have access to a finite number of human faces for training. However, once deployed, the
system must be able to perform inference and recognize faces that were not present in the
training data. Moreover, the representations learned by gθ have some desired properties,
such as being compact and invariant to various geometrical transformations and lighting
conditions.

Different from the pair-wise contrastive loss, Equation (3.5), where we either sample
a positive pair or a negative pair, the triplet loss [13, 66], defined as

L =
N∑
i

max(0, Dpos −Dneg +m), (3.7)

requires at least three examples, an anchor, a positive, and a negative. The function
D(·) is a normalized squared l2-distance, as

Dpos = ‖gθ(xai)− gθ(x
p
i)‖

2
2 (3.8)

Dneg = ‖gθ(xai)− gθ(xni)‖22 , (3.9)

where gθ is a CNN that encodes a high-dimensional image signal into a low dimensional
representation vector.

Given an anchor image xa and a positive xp, the pair (xa, xp) forms a positive pair.
Similarly, an anchor and a negative example xn form a negative pair (xa, xn). The anchor
works as a relative point. The goal is twofold, we want to minimize the distance from
the positive to the anchor and to maximize the distance from the negative to the anchor.
The margin m adds a constraint such that the distance between the negative point xn

and the anchor should be at least m larger than the distance between the positive xp and
the anchor.

Hard negative mining is an essential operation for optimizing the triplet loss. Ideally,
we want to choose the most offending negatives (the ones within the red circle), which
are the ones closer to the anchor, Figure 3.1. This strategy is important because picking
easy negatives (the ones in the green square) makes the problem easy to solve (trivial)
and slows convergence.

Similarly, the triplet loss in Equation (3.9) is optimized using a siamese network archi-
tecture. Here, each of the triplet images (anchor, positive, and negative) is independently
passed through a convolutional encoder fθ, and their respective representations are used
in the loss, Equation (3.9).

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 34

Figure 3.1. The triplet loss requires an anchor, a positive, and a negative example. We want the
positive to be as close as possible to the anchor and the negative to be as far away from the anchor as
possible. Negatives within the red circle contribute more to training convergence, while negatives in the
green region may produce trivial solutions.

The contrastive pair-wise loss, Equation (3.5), and the triplet loss, Equation (3.9),
both optimize over a single negative example. Now, consider the contrastive loss in
Equation (3.5). It works on input pairs. If the two input images come from the same
class, a learning update brings the corresponding embeddings closer. If the pair of input
images are from distinct classes, the loss optimizes the neural network’s weights so that
the embeddings for the anchor and negative are far from each other.

The triplet loss shares some of the same principles. Different from the contrastive
loss, it works on inputs composed of triplets. The loss optimizes the trainable weights
so that the distance between embeddings from the same class (anchor and positive) is
smaller than the distance between embeddings coming from separate classes (anchor and
negative).

In both cases, when we push representations to be far apart, we only do it between
an anchor and a negative from a single class. This highlights the importance of negative
mining. If we only get to contrast an anchor to a single observation from a different
class, we would wish to pick the most challenging observation from that class so that our
update gets a stronger signal. Otherwise, if we only pick moderately to easy negatives,
convergence will take much longer, and poor local minima is a constant threat.

Ideally, we want to simultaneously push the anchor’s representation far away from all
other classes for every training update. Following this idea, Sohn [67] proposed an (N+1)-
tuplet loss called multi-class N -pair loss (N -pair-mc loss). The N -pair-mc loss extends
the triplet loss, Equation (3.9), by performing comparisons among many negatives instead
of just one. The objective is to identify a positive observation among N-1 negatives.

From an input pair (xai , x
p
i), and an encoder function gθ that converts inputs into low

dimensional representation vectors, the loss function is defined as

LN-pair-mc

(
{xai , x

p
i }
N
i=1 ; g

)
=

1

N

N∑
i=1

log

[
1 +

∑
j 6=i

exp(g(xai)
Tg(xpj)− g(xai)

Tg(xpi))

]
.

(3.10)

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 35

Figure 3.2. The N -pair-mc loss requires a batch containing N pairs of images. Each pair contains an
anchor and a positive observation. These are two different images from the same class, and each pair
within the batch represents a different class. For training, every pair is accompanied by an additional
N -1 observations from the other pairs within the batch to be used as negatives.

Note how a given anchor is put against many negative exemplars instead of just one.
For training, each batch contains N pairs {(xai , x

p
i)}

N
i=1. Each pair contains two distinct

images from the same class, i.e., an anchor and a positive image. Since each pair in the
batch is from a different class, the representations from the other pairs in the same batch
can be used as negatives in the loss function, Figure 3.2 depicts this process.

In a single step, the N -pair-mc loss approximates the embeddings of anchor and a
positive in the feature space while pushing the anchor away from N -1 negative represen-
tations.

3.2 A Framework for Self-Supervised Learning

Unlike metric learning, Self-Supervised Learning (SSL) is interested in learning general-
izable representations from unlabeled data. Given this constraint, it is not possible to
guarantee the sampling consistency of positives and negatives with reasonable confidence.
Put it differently, we cannot confidently draw a positive observation xp from the same class
as the anchor, nor can we sample a negative observation xn that comes from a different
class from the anchor. For this reason, recent contrastive and non-contrastive methods in
SSL rely on a well-defined framework composed of three ideas.

3.2.1 Synthetic View Generation

Data augmentation is one of the critical ingredients for the success of SSL in Computer
Vision (CV). These stochastic operations are primarily used to mimic different views
of a concept. The process of view generation is akin to the exemplar pretext task of
Dosovitskiy et al. [11]. It describes the idea of transforming an input image using random
geometric and pixel intensity transformation, Figure 5.4. The goal is to transform an input
image such that the semantic information is preserved, i.e., the class information remains
unchanged, but the overall look and feel of the image might suffer radical modifications.

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 36

Figure 3.3. Synthetic view generation is one of the key ideas behind SSL. Since there are no labels
to draw consistent positives and negatives, the workaround is to mimic different views of objects and
entities in an image using random transformations. Here, an image of a dog is transformed by a function
τ(·) such that the class information remains unchanged while the image style is modified.

In other words, random transformations are designed to introduce non-trivial varia-
tions between the views constraint to preserve the image’s semantic information. Since
we know that the two transformed images come from the same source image, we know
that they still represent the same concept despite visual differences. Hence, we can use
these views as an anchor and positive because even though they look different, we are
sure they share the same class information. The model, in turn, learns to represent the
concept that does not change between the views.

Basic augmentation techniques for self-supervised pre-training include:

• Random crop and resize

• Color distortion

• Gaussian blur

• Color jittering

• Random flip/rotation

• Random grayscaling

Despite the success, using such transformation to create synthetic views also hint about
the limitations and hidden assumptions of current SSL models. For example, consider a
pair of views generated by the composition of the data transformations listed above.
During self-supervised pre-training, a joint-embedding architecture is independently fed
with the two views and produces corresponding embeddings optimized to be similar in the
feature space. However, the data transformations used to create these views are largely
based on successfully applied techniques to solve classification tasks. Moreover, to solve a
classification task, the neural network does not need to care about some properties of the
data, such as the object’s exact location. In fact, data augmentations such as cropping and
shifting tend to corrupt the image such that the location information is lost. As a result, if
these augmentations are used to learn embeddings, the network will learn representations
that discard information such as the object’s position in the scene. Therefore, if we use
these representations to learn downstream tasks that require the object’s feature position,

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 37

such as detection and segmentation, the learned representations might not produce the
expected result.

Recent self-supervised methods learn representations by treating augmented versions
of the same record as instances of the same class [56, 57]. It is based on the assumption
that good representations must be invariant to a number of transformations. In this
context, SSL methods present a general framework to solve multiple discriminative tasks,
in the embedding space, without reconstructing the original signal. However, a problem
of current data augmentation techniques for SSL is that they are ad-hoc and specially
designed for specific data modalities.

3.2.2 The Joint-Embedding Architecture

Another important idea behind recent self-supervised methods is the joint-embedding
architecture, Figure 3.4. In this learning framework, two neural networks f(·) and g(·)
are trained to produce similar embeddings for compatible inputs x and y. The compatible
inputs x and y can be two images of the same class, such as two images of a dog, an image
and a text description of the scene, or a sequence of video frames.

The siamese architecture Bromley et al. [65], where both networks share the same set
of weights, is a particular case of the joint-embedding architecture.

Training join-embedding architectures pose the problem of avoiding collapsed solu-
tions. In such situations, the networks learn to disregard the input signals and minimize
the cost function by producing constant embeddings for all input signals.

In SSL, two views, derived from the same image, are fed to the encoders f(·) and
g(·). For each view, the encoder produces respective representation vectors used in a cost
function. The two networks f(·) and g(·) might be different functions, usually applicable
when dealing with different modalities, or they might share weights.

Figure 3.4. The siamese network is a particular instance of the joint embedding architecture. It
processes a pair of input signals independently and produces corresponding representation vectors. The
representations are fed to a cost function of choice, and the resulting scalar may be interpreted as an
energy value.

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 38

3.2.3 The Cost Function

The loss function of such methods usually produces a scalar value that can be interpreted
as an energy value. The goal is to shape the energy function such that representations
from observations that share semantic information (images from the same class) are close
to one another, while representations from images containing uncorrelated objects should
be far apart. The loss function might have an explicit contrastive term, e.g., InfoNCE [57],
or be regularized and not enforce a contrastive term explicitly.

Note that, instead of optimizing a pixel-level loss function such as the Mean Squared
Error (MSE), which is typically used by reconstruction-based methods such as [20], self-
supervised methods operate in the feature space. This characteristic offers significant
advantages. To begin, since reconstruction is not enforced during optimization, there is
no need to learn a decoder function, which significantly reduces the computational over-
head and memory footprint of training. Moreover, optimization in the feature space allows
the network to throw away information that could be useful for reconstruction but may
not contribute to learning downstream tasks. In other words, the representations’ prop-
erties that help discriminate between classes are not necessarily the same ones required
to reconstruct the input signal.

As will be apparent, the main difference among methods that utilize this learning
framework lies in the techniques they use to prevent collapsed solutions that might occur
when optimizing join-embedding architectures. Indeed, an undesired trivial solution can
be easily accomplished if the trainable weights are changed such that the network outputs
constant representation vectors for all training data points.

3.3 Hard Negative Mining for Contrastive Learning

Hard negative mining is very important for contrastive learning. Given two images x and
xn, from different classes, image xn is a hard negative for x if the embedding representation
of xn is very close to the embedding representation of x, even though they do not share
class semantics. The issue is that we also expect an image xp to have an embedding
representation closer to x if xp is a different view of the concept represented by x. For
example, if x is a picture of a car and xp is a picture of the same car under different
lighting and angle configurations, xp and xn would similarly be placed closer to x. To
avoid such situations, contrasting challenging negatives during training encourages the
model to learn representations that distinguish hard-negatives from true positives.

We can extract negatives in two different ways: explicitly and implicitly. Explicit hard
negative mining is very popular on Natural Language Processing (NLP) applications. In
CV, MoCHi Kalantidis et al. [68] proposes a hard negative mixing strategy at the feature
level that mines hard negatives by sorting the image embeddings according to similarity
to the query. Robinson et al. [69] proposed to mine negatives by learning a distribution
over hard negative pairs.

However, current SSL methods using contrastive learning rely on an implicit way
of performing hard negative sampling. These methods take advantage of the in-batch
samples and require very large batch sizes to maximize the probability of having true

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 39

hard negatives within the batch. Due to the large memory requirements of having large
batch sizes, one strategy is to employ additional data structures such as large memory
banks [56, 70]. The idea is to store a large number of feature representations from past
observations and use them as negatives.

3.4 Contrastive Self-Supervised Learning

Contrastive Predictive Coding (CPC), proposed by Oord et al. [71], was very influen-
tial for the resurgence of contrastive methods for self-supervised representation learning.
CPC is a learning framework that generalizes the notions of word2vec [72] to different
domains, including CV and Audio signal processing. Given a high dimensional sequence
of observations xt, e.g., an audio signal or a sequence of patches extracted from an image,
CPC uses a non-linear encoder genc(·) to map the sequence of input observations xt to
a corresponding sequence of latent representation vectors zt = genc(xt). Next, it uses an
autoregressive model gae(·) to summarize the representations zt, in the latent space, to
produce a contextual representation ct = gae(z) from all zt. CPC takes the context vector
ct, along with a latent representation from a future time step zt+k, and optimizes the
system to maximize the mutual information between this pair of representations.

The CPC framework was applied to different data modalities, including speech, com-
puter vision [73], NLP applications, and reinforcement learning. In all cases, the general
approach is to predict a future signal from a past contextual vector. To do that, CPC
proposes a loss function based on Noise-Contrastive Estimation (NCE) termed InfoNCE.
The idea is to frame the problem as a discriminative task where the network needs to
correctly identify pairs of positive samples among a large number of negative pairs. The
loss is defined as

LInfoNCE = −EX

[
log

s(xt+k, ct)∑
xj∈X s(xj, ct)

]
, (3.11)

where the function s(·) is a score function defined as s(xt+k, ct) = exp
(
zTt+kct

)
. In the

numerator, the pair of representations (zt+k, ct) form the positive pair. Here, the repre-
sentation vector zt+k encodes a plausible future signal for the sequence encoded in the
context vector ct. On the other hand, in the denominator, negative representations zj
form negative pairs (zj, ct) that will have their representations pushed apart in the fea-
ture space. We can interpret the information encoded on the negative representations zj
as non-plausible futures for the context vector ct. The problem is designed as an N -way
softmax classifier with one positive and N − 1 negatives.

Optimizing the InfoNCE loss, Equation (3.11), is equivalent to maximizing a lower
bound on the Mutual Information (MI) between the representations that form the positive
pair [71]. In this case, we aim to maximize the MI between the context vector ct and the
future target representations zt+k. However, in practice, such optimization requires a
large number of opposing samples.

For audio data, CPC is designed to predict a future audio section zt+k from a past
context vector ct. Thus, the future audio chunk is treated as the target, and we want to
learn a representation that can predict the actual future signal when contrasted with al-

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 40

ternative representations. To sample the negatives zj, audio chunks from different records
or sections of the same audio from different timestamps can be used.

Depending on how the negatives are sampled, the representations may learn different
semantics. For instance, if the negatives come from audio signals of different speakers,
the leaned representations might encode properties that can allow a more straightforward
classification of the speaker. In other words, if we know the downstream task in advance,
we can tweak the framework to learn representations with useful properties to solve the
task at hand.

The InfoNCE loss, Equation (3.11), is similar to the triplet loss, Equation (3.9), from
metric learning. However, instead of working with triplets, InfoNCE uses multiple neg-
ative samples. As discussed is Section 3.3, to have many negatives allows the system to
perform hard-negative mining implicitly. In the InfoNCE loss, a hard negative among the
N negatives will contribute much more to the final loss, while the easy ones will contribute
very little.

Following similar ideas, Tian et al. [74] proposed a contrastive SSL method to learn
unsupervised representations from multiple views. Contrastive Multiview Coding (CMC)
builds on top of MI maximization [15, 71]. The main idea is to learn representations
that model invariant factors across different views of an image. CMC empirically showed
that using multiple views to create positive pairs contributes towards learning better
representations.

Intuitively, having multiple positive views of the same concept allows the network to
capture more information, which translates to powerful representations.

For ImageNet training, a source image is converted to the Lab image color space. The
L and ab channels are split such that the channels L and ab, from the same image, form
the positive pair. Similarly, ab channels from randomly selected images are paired with
the anchor to form negative pairs. In the case of four positive views, the transformations
include luminance (L channel), chrominance (ab channels), depth, and semantic labels.

The positive pairs are created by considering all possible combinations of pairs of
views (i, j) such that i 6= j. Instead of using the N+1-way softmax classification with N
negatives, CMC proposes an NCE approximation of the InfoNCE loss, Equation (3.11).
According to empirical tests, the NCE approximation performed better when given the
same number of negative observations. Moreover, to sample a large number of negatives
without the need of recomputing feature vectors, CMC maintains a memory bank that
stores latent features. Finally, unsupervised representations learned by CMC on ImageNet
beat previous state-of-the-art (SOTA) methods like RotNet [50] and DeepCluster [16].

Around the same time, He et al. [56] followed by Chen et al. [75] presented Momentum
Contrast for Unsupervised Visual Representation Learning (MoCo). Similar to previous
work, MoCo uses the InfoNCE contrastive loss, Equation (3.11), combined with the in-
stance discrimination pretext task. Unlike CPC [71], MoCo does not try to learn temporal
coherent representations by modeling a context embedding and predicting a future time
step. Instead, it uses the instance discrimination pretext task in which heavy data aug-
mentation is used to synthesize positive views.

The instance discrimination pretext task follows the same ideas from the Exemplar-
CNN from Dosovitskiy et al. [11], Wu et al. [70]. The purpose is to treat every possible

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 41

transformation of a given image as belonging to the same class. In other words, we
want to treat augmented versions of the same image as different views of the same con-
cept and, hence, express the same meaning from different perspectives. In this way, the
network learns representations that map different views of the same concept to closing
neighborhoods in the feature space, while images containing different concepts have their
representations pushed apart.

MoCo uses two ResNet-50 [76] denoted query fq(·) and momentum fm(·) encoders
during training. At each iteration, from an image xi, two views are created vi = T (xi)

and vj = T (xi) by applying a function T (·) containing random augmentations. Each
network receives one of these views as input and produces respective embedding vectors
as output, zi = fq(vi) and zj = fm(vj). The pair of embeddings have their representations
pushed towards each other using a slightly different variation of the InfoNCE loss defined
as

LInfoNCE = − log
exp(sim(zi, zj)/τ)∑K
k=0 exp(sim(zi, zk)/τ)

. (3.12)

where parameter τ controls the temperature of the softmax, the sim(·) function denotes
a vector similarity function such as the cosine similarity

sim(u, v) =
uTv

‖u‖‖v‖
=

∑n
i=1 u

Tv√∑n
i=1 (u)2

√∑n
i=1 (v)2

, (3.13)

and K refers to the size of the queue containing negatives.
A queue containing 65 536 past representations is used to supply negative examples.

Since MoCo does not create context vectors, a positive pair is composed of two augmented
views of the same image (vi, vj).

The momentum encoder fm does not receive gradient updates. Instead, it is updated
as a momentum-based moving average of the query encoder training parameters. The
update equation is defined as

Wm = αWm + (1− α)Wq, (3.14)

whereWq andWm refer to the training parameters of fq and fm respectively and α ∈ [0, 1)

is the momentum coefficient, which controls by how much the fm encoder takes new
information from the fq encoder at each time step.

The momentum encoder has the advantage of decoupling the negatives from the mini-
batch. It allows scaling the framework without resorting to extremely large batch sizes,
significantly reducing the memory footprint and processing time. MoCo representations
were able to surpass supervised pre-trained representations in seven detection/segmenta-
tion tasks on PASCAL VOC [48] and MS COCO [77].

Chen et al. [57], followed by Chen et al. [78], further developed the ideas presented
in MoCo, and introduced A Simple Framework for Contrastive Learning of Visual Rep-
resentations (SimCLR). Combining simplicity and elegant design, SimCLR managed to
reduce the gap between supervised and unsupervised pre-trained representations by a con-
siderable margin. Driven by recent successes such as [79], SimCLR’s contrastive learning
framework highlights three main contributions: (1) large batch-sizes, (2) a composition

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 42

Maximize Agreement

Representationhi hj

zjzi

g(.) g(.)

f(.) f(.)

 T
t ~ T

t' ~

Figure 3.5. To create positive pairs, SimCLR randomly transforms an input image by sampling a random
transformation τ from a set of transforms T . Each view is independetly processed by the same network
and the system is trained to maximize agreement between the corresponding output representations.

of data augmentations, and (3) a non-linear projection head between the representation
and the contrastive objective. SimCLR learns representations by maximizing agreement
between augmented views of the same image. Different from MoCo, SimCLR uses two
siamese ResNet-50 encoders to produce low-level representations from the two views. The
embeddings are passed through a non-linear Multilayer Perceptron (MLP) that produces
the pair of (anchor and positive) embeddings for the contrastive objective. Figure 3.5
depicts a visual description of the SimCLR learning framework.

Unlike previous work such as MoCo [56] and PIRL [54], which use an additional mo-
mentum encoder and a queue structure to process and create negative samples, SimCLR
extracts negatives from within the training batches. Hence, to mine a sufficient number
of negatives, SimCLR uses batch-sizes as large as 8192 records, which provides a total of
16 382 negative examples per positive pair. In general, given a positive pair, the other
2(N − 1) views within the batch are treated as negatives. They also showed that normal-
ized embeddings are beneficial to contrastive learning, and carefully adjusting the tem-
perature parameter τ in the InfoNCE loss improves the learned representations. SimCLR
pre-trained representations broke the state-of-the-art benchmarks in linear classification
and semi-supervised learning using 1% and 10% of labels.

Similar techniques used to learning representations on SimCLR were used to improve
knowledge distillation models Chen et al. [78].

After SimCLR, many works have been proposed to improve upon its baseline. Tian
et al. [80] conducted a comprehensive study to investigate the necessary properties that
good views for contrastive learning should have. The proposed InfoMin principle de-
scribes two rules for constructing optimal views for contrastive learning. First, given a
downstream task T , optimal views vi and vj should retain all the essential information
from the original input image xi that can solve task T . In other words, good views should

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 43

retain all the relevant task information from the original input. Second, good views should
share as little MI as possible. If the views share too much MI, the performance of the
learned representations on downstream tasks degrades. In this sense, the InfoMin princi-
ple defines an optimal middle ground where the MI among views is minimal, as long as
it preserves the relevant information for a particular downstream task.

In this way, a good view is task-dependent, and the choice of downstream task heavily
influences how to create optimal views. For instance, if the downstream task is classifica-
tion, the positive pairs’ representations should only contain information to discriminate
between the classes. Therefore, data augmentations that corrupt the object class to a
point where it is unrecognized are not desired. Also, if the representations encode infor-
mation from irrelevant factors of variation, such as the background, these may hurt the
performance on downstream tasks.

The authors proposed learning an invertible view generator to create optimal views fol-
lowing the InfoMin principle. The generator is trained to minimize the MI between views
while maintaining the class-relevant information. After training, we can use the view
generator to train a contrastive learning encoder from scratch. The work also proposes a
composition of manually designed data augmentations that follow the InfoMin principle.
Using these manually crafted transformations, a pre-trained ResNet-50 encoder beat pre-
vious baselines, such as SimCLR, achieving a new SOTA performance on the ImageNet
linear evaluation protocol. Also, transfer learning to PASCAL VOC object detection and
COCO instance segmentation outperforms supervised pre-trained representations.

Tian et al. [81] proposed a method based on contrastive learning training to approach
the problems of (1) Neural Knowledge distillation, (2) Cross-model transfer, and (3)
Ensemble distillation. For the first, the goal is to distill a larger network, called the
teacher, into a smaller one, the student, while preserving the representation’s quality as
much as possible. In Cross-modal transfer, a larger network (the teacher) is trained in
a supervised manner using a large corpus of annotated data. The goal is to transfer
knowledge to another network (the student) trained in a different domain, possibly in a
low data regime. Lastly, in Ensemble distillation, the purpose is to transfer the knowledge
of an ensemble of N neural networks into a single student model. Here, during distillation,
the contrastive objective encourages both models, the teacher, and the student, to map
the same input to similar representations and different inputs to representations that
lie far apart in the embeddings space. In other words, the contrastive loss maximizes
a lower bound on mutual information between the teacher and student network. The
method is trained with the InfoNCE loss, Equation (3.12), and the results on distillation
managed to surpass the previous method proposed by Hinton et al. [82] that minimizes
the Kullback–Leibler (KL) divergence between the teacher and student outputs.

Apart from minor differences, recently proposed architectures using the InfoNCE loss,
Equation (3.12), are very similar. Nevertheless, contrastive learning methods significantly
reduced the performance gap between supervised and unsupervised pre-trained represen-
tations for downstream task learning.

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 44

3.5 Non-Contrastive Self-Supervised Learning

Contrastive learning methods are one of the most effective techniques to learn repre-
sentations in a label-free way. The contrastive loss is optimized such that the distance
between positive pairs is minimized while the distance among negative pairs is maxi-
mized. On the contrary, non-contrastive SSL methods do not require negative pairs to
learn representations. They solely approximate the embeddings of positive pairs in the
feature space. Non-contrastive methods have recently achieved significant results for self-
supervised representation learning. However, it is still not well understood why the joint
embedding training of such loss functions does not collapse to a trivial solution where the
embeddings are mapped to the same constant output. Recently, various works tried to
understand how these methods can be stably trained without negatives [83, 84].

Grill et al. [85] proposed Bootstrap Your Own Latent (BYOL), a SSL model with
a non-contrastive cost function for learning representations in the vision domain. The
method learns representations by approximating different views of the same image in the
feature space. However, unlike contrastive methods, it does not require negative samples
in its loss function.

BYOL comprises an asymmetric joint-embedding architecture with two independent
neural networks denoted as online and target networks. The online network is composed of
three components, (1) a ResNet-50 encoder fθ, a projection networks gθ, and a prediction
network qθ. On the other hand, the target network only contains the encoder fξ and a
projection network gξ. The encoder and projection head of the online and target networks
have equal architecture and a different set of trainable weights.

A pair of views vi and vj, extracted from a source image xi, is independently passed
through each network. For each view, BYOL produces two low dimentional vectors zi =

gθ(fθ(vi)) and zj = gξ(fξ(vj)) from the online and target networks respectively. Instead of
comparing the two embeddings directly, BYOL takes a step further and uses an additional
network qθ to predict the output of the target network. Refer to Figure 5.5 b) for a visual
description of the architecture.

Similar to He et al. [56], the weights of the target network ξ are updated as a moving
average of the online network’s weights θ.

BYOL optimizes the online network by minimizing the normalized mean square dif-
ference between the online and target output representations, as

LMSE = ‖qθ(zi)− zj‖22 , (3.15)

where, similar to contrastive methods, the representations zi and zj are projected to a unit
hypersphere (l2-normalized) before minimization. Different from the contrastive InfoNCE
loss, Equation (3.12), the mean squared error loss only approximates representations of
positive views.

Representations from a pre-trained BYOL encoder achieved SOTA performance in the
ImageNet linear evaluation protocol. For semi-supervised evaluation, BYOL also achieves
SOTA performance using a limited number of annotated observations.

Empirical tests demonstrated that BYOL is more robust to some of the main limita-

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 45

tions of SimCLR. BYOL works with smaller batch sizes without a significant decrease in
performance, and it is more robust to the set of data transformations used to create the
views.

An advantage of not having negatives is to avoid false negatives that may occur during
contrastive optimization. Most of the solutions that optimize the InfoNCE loss pick
negative samples using a random uniform distribution. Depending on the number of
classes of the dataset, the probability of picking an image of the same class as the positive
pair, and treating it as a negative, can be high. The normalized MSE loss function in
Equation (3.15) only approximates feature vectors from views created from the same
source image, which avoids the noisy signals from false negatives that might jumble the
learning signal.

Note that most contrastive and non-contrastive SSL methods often use additional
components to improve performance on downstream tasks. Popular extra components
include a momentum-encoder, a queue, or a memory bank to simulate large batch sizes or
provide a reasonable number of negatives. Simple Siamese Networks (SimSiam), proposed
by Chen and He [84], presented a study describing the importance of the main learning
components of previous SSL methods. Specifically, the investigation shows that a simple
siamese architecture without such additional components and large batch sizes can learn
representations as well as the current SOTA methods.

The work explores how to avoid trivial solutions when training join-embedding archi-
tectures in a self-supervised context and provides insights regarding why non-contrastive
methods such as BYOL do not collapse during training. The study shows that additional
momentum encoders He et al. [56] and Grill et al. [85] are not directly responsible for
avoiding trivial solutions. Moreover, in the asymmetric architecture proposed by Grill
et al. [85], the predictor network qθ is a vital component for stabilizing training of non-
contrastive methods. Without it, non-contrastive training collapses. Lastly, stopping the
gradient flow from one of the branches of the join-embedding architecture is fundamental
to avoid trivialities. Without the "stop-grad" operation, non-contrastive methods crumble
to trivial solutions.

Based on these findings, the proposed SimSiam model learns representations by op-
timizing a loss function that minimizes the negative cosine similarity between the two
embedding vectors, as

LSimSiam(xi, xj) = − qθ(zi)

‖qθ(zi))‖2
· zj
‖zj)‖2

. (3.16)

Note that, if the representation vectors are normalized, which is the case for SimSiam, the
loss in Equation (3.16) is equivalent to the l2-normalized MSE loss from BYOL, Equa-
tion (3.15). Similar to the BYOL architecture, SimSiam employs a non-simetric architec-
ture with an encoder fθ, a projection network gθ, and a preditor network qθ. However,
these components share weights between the two views, i.e., it uses a pure siamese ar-
chitecture instead of non-differentiable momentum networks, refer to Figure 5.5(c), for a
graphical description.

Following previous algorithms based on deep clustering [16, 17, 86], Caron et al. [87]
presents Swapping Assignments between Views (SwAV), a pretext task that merges ideas

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 46

from deep clustering and acSSL. The idea is to predict the probability distribution assigned
to view vi based on the probability distribution from view vj. Since both views come from
the same source image xi, we want the two views to have similar probability distributions
over the prototypes.

Different from other clustering methods for visual representation learning [19], SwAV
learns clusters online. To avoid trivial solutions, the clustering assignment task is done
under a balanced partition constraint, solved by the Sinkhorn-Knopp [32] transform algo-
rithm. The Sinkhorn-Knopp algorithm avoids the trivial solution where the loss function
is minimized by assigning all views to the same cluster. It acts as an optimal load balancer
by uniformly assigning views across all available centroids.

SwAV employs a pure siamese architecture containing a ResNet-50 encoder fθ, a pro-
jection head gθ, and an additional assigner network (a simple linear layer) denoted here
as hθ. Refer to Figure 5.5(d) to a graphical overview. The assigner function hθ learns a
set of K prototypes C = {c1, c2, ..., cK}.

Similar to other SSL methods, the two views vi and vj are mapped to a low-level
representation zi = gθ(fθ(vi)) and zj = gθ(fθ(vj)) and subsequently projected to a unit
hyper-sphere via l2-normalization of the embddings. The assigner network receives the
views’s representations as input and produces respective codes qi = hθ(zi) and qj = hθ(zj).
The codes can be interpreted as non-normalized probabilities indicating the likelihood of
a given view to belong to each of the K prototypes.

For a pair of codes qi and qj, one represents the prediction, and the other represents
the target. First, the code qj is passed through the Sinkhorn-Knopp algorithm to be used
as targets, while the prediction code qi is normalized using a temperature softmax. Then,
the cross-entropy loss

`(zi, qj) = −
∑
k

q
(k)
j log(p

(k)
i), where p

(k)
i =

exp(
zTi ck
τ

)∑
k′ exp(

zTi ck′
τ

)
, (3.17)

is optimized to tune the parameters of the system.
The cross-entropy operates on the Sinkhorn optimized codes (from one view) and the

probabilities output by the assigner (from another view). This operation is symmetrized
across the representations to form the swapped prediction task, defined as

LSwAV = `(zi, pj) + `(zj, pi). (3.18)

SwAV do not use additional momentum encoders and huge memory queues. It still
simulates larger batch sizes by storing previously computed batch representations.

The ideas of SwAV were put to the test in a challenger context. SElf-supERvised
(SEER) Goyal et al. [88] is a scaled version of SwAV designed to learn visual representa-
tions in the wild. Instead of pretraining on the carefully curated ImageNet-1k dataset, the
SEER SSL model trains a very large RegNetY [89] model containing 1.3 billion parameters
on 1 billion randomly chosen images from social media platforms. SEER demonstrated
that SSL models can learn generalizable representations from unbounded and completely
non-curated datasets. Moreover, following the recent trends of training very large Large

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 47

Language Models (LLMs), large self-supervised models also demonstrate excellent per-
formance as one-shot learners for various downstream tasks, confirming similar results
presented by Chen et al. [78].

Following a different approach, Zbontar et al. [90] proposed Barlow Twins, a non-
contrastive SSL method that learns unsupervised representations without the "non-stop"
gradient operation from previous implementations. Barlow Twins trains a join-embedding
architecture containing an encoder fθ and a projection head gθ. Unlike prior methods,
Barlow Twins avoids collapsed solutions by maximizing the information within the em-
beddings, which is done by forcing the empirical cross-correlation matrix Cij, between
the embeddings of the two views to be as close to the identity matrix as possible.

Based on the principle of "redundancy-reduction", Barlow Twins proposes a novel loss
function

LBarlowTwins =
∑
i

(1−Cii)
2 + λ

∑
i

∑
j 6=i

C2
ij, (3.19)

that combines two terms: (1) an invariance and (2) a redundancy reduction terms, and
the cross-correlation matrix C is defined as

Cij
def
=

∑
b z

a
b,iz

p
bj√∑

b

(
zab,i
)2√∑

b

(
zpb,j
)2 (3.20)

Note that Barlow Twins’ loss function operates in the components of the embedding
vectors. The first term of the loss in Equation (3.19) forces the diagonal values of the
cross-correlation matrix C to have a strong correlation value of 1. On the other hand, the
second term of Equation (3.19), forces the off-diagonal values of C to be non-correlated,
i.e., a correlation value of 0. In other words, the redundancy reduction term forces the
components of the embeddings to be non-correlated.

3.6 Broader Impact

Table 3.1 highlights the performance of several contrastive and non-contrastive SSL meth-
ods pre-trained on the ImageNet-1k dataset. Besides the steady increase in performance,
Table 3.1 reveals how small the gap between supervised and unsupervised pre-trained
representations have become.

Moreover, Table 3.1 demonstrates some of the limitations as well as architectural
choices of current SSL methods for vision. One of such limitations is the reliance that
current SOTA algorithms have on enormous batch sizes. The best methods require batch
sizes as large as 4096 observations.

To train SSL methods with such memory budgets, one needs to have access to very
expensive computational workstations with numbers of Graphics Processing Unit (GPUs)
or Tensor Processing Units (TPUs). Table 3.1 also presents the performance of current
SSL methods on semi-supervised benchmarks. Self-supervised pre-trained models are
significantly more effective in learning new tasks with very few annotated observations.

The techniques discussed in this chapter for learning representations using contrastive
and non-contrastive SSL models can be applied to different modalities. Currently, con-

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 48

Table 3.1. Performance of various contrastive and non-contrastive SSL methods for vision. The models
were pre-trained on the ImageNet-1K dataset without labels. The encoder is a ResNet-50 (RN50) without
the fully-connected layers. The performance of the learned representations is measured in terms of
linear separability using the linear evaluation protocol, Subsection 4.2.1, and semi-supervised learning,
Subsection 4.2.2.

Linear eval. Label frac.
Method Enc. Epochs Batch

size
Top-1 Top-5 1% 10% Mem.

bank
Mom.
enc

Supervised [91] RN50 100 256 76.5 48.4 80.4
MoCo-v2 [75] RN50 200 256 67.5 65536 X
SimCLR [57] RN50 200 8192 66.6
SwAV-MC [16] RN50 200 256 72.7 3840
InfoMin [80] RN50 200 70.1 89.4
SimSiam [84] RN50 200 256 68.1
OBoW-MC [92] RN50 200 256 73.8 82.9 90.7 8192 X
results of longer unsupervised training
PIRL [54] RN50 800 1024 63.6 57.2 83.8 32000
MoCo-v2 [75] RN50 800 256 71.1 X
SimSiam [57] RN50 1000 256 71.3
SeLa-v2 RN50 400 4096 71.8
DeepCluster-v2 RN50 400 4096 74.3
SimCLR [57] RN50 1000 4096 69.3 89.0 75.5 87.8
SwAV-MC [16] RN50 800 4096 75.3 78.5 89.9 3840
BYOL [85] RN50 1000 4096 74.3 91.6 78.4 89.0 X
InfoMin [80] RN50 800 73.0 91.1
Barlow Twins [90] RN50 1000 1024 73.2 91.0 79.2 89.3

CHAPTER 3. CONTRASTIVE REPRESENTATION LEARNING 49

trastive learning models are SOTA for learning speech representations from unlabeled
audio signals Baevski et al. [53]. After self-supervised pre-training, it is possible to learn
many downstream speech recognition tasks without extensive annotated audio data.

Another very promising modality for the application of SSL is medical imagery. Cre-
ating a large supervised dataset can be very expensive, even for the general case. For
the healthcare domain, however, this cost is even more pronounced. Pre-training self-
supervised encoders on various medical data modalities increase the performance on
downstream tasks and reduce the reliance on professionals to annotate large quantities of
data [93].

Moreover, since self-supervised pretext tasks are independent of the learning architec-
ture, recent methods using Transformers [5, 94], have demonstrated a very prospective
path to learn richer unsupervised representations from visual data [95].

50

Chapter 4

Datasets and Evaluation Protocols for
Self-Supervised Learning

Having covered a substantial history of recent Self-Supervised Learning (SSL) methods for
Computer Vision (CV) and established the key ideas behind the success of such unsuper-
vised algorithms, in this chapter, we introduce part of our experimentation setup. Here,
we highlight the datasets used to pre-train the SSL algorithms presented in this thesis.
We also describe the protocols to measure and compare the quality of the representations
learned by self-supervised methods.

Up to this point, we have covered many approaches to self-supervised training, from
algorithms that optimize self-prediction tasks such as the rotation prediction task, Sec-
tion 2.1.4, to recent techniques that optimize contrastive and non-contrastive cost func-
tions. To recall, the goal of SSL is to pre-train an encoder network using non-labeled
data, hoping that the representations learned by the encoder will be generalizable across
different downstream tasks. When presenting many of the self-supervised algorithms, in
Chapters 2 and 3, for many of them, we stated that they achieved a certain level of per-
formance in downstream tasks. This chapter ties the concepts of performance measures of
self-supervised models. We describe how current methods, including our own, are assessed
and explain which datasets we used to perform such evaluations.

4.1 Datasets

Many standard CV datasets are used to train representation learning models, regardless
of being supervised datasets or not. For self-supervised representation learning, classic
datasets such as the ImageNet are used to pre-train self-supervised algorithms. Note that
pre-training is done in a label-free way, i.e., we usually pretend we do not have access to
human labels.

Training on a supervised dataset such as the ImagetNet is useful for evaluation pur-
poses. Once a self-supervised encoder is pre-trained, we can use the validation/test sets
to train a downstream classification task that will serve as an assessment for the quality
of the learned representations.

It is important to note that even though we pretend not having access to the human

CHAPTER 4. DATASETS AND EVALUATION PROTOCOLS FOR
SELF-SUPERVISED LEARNING 51

labels associated with the training images, it does not make the dataset completely free
of human biases. Datasets such as the ImageNet encode human biases in different ways.
One such source of human biases in the ImageNet dataset regards the position of the
main objects on the images. Naturally, when humans take pictures of a particular object,
we tend to position the object in question to the center of the picture. Supervised and
unsupervised methods can explore this hidden bias to figure out the position of the object
or its class label. Indeed, Mo et al.’s [96] and Purushwalkam and Gupta’s [97] works
have demonstrated that current self-supervised methods based on instance discrimination
explore hidden human biases in the data to improve performance on downstream tasks.

4.1.1 Pre-training and Validation

Below, we enumerate the classic CV datasets we used for pre-training and evaluating SSL
algorithms.

CIFAR-10/100: For small to medium classes, we used the CIFAR-10/100 dataset
family. Each dataset contains 60 000, 32×32 RGB images, with 50 000 images for training
and 10 000 for testing. CIFAR-10 has 10 classes with 6000 images per class, and CIFAR-
100 has 600 images for each of the 100 classes.

STL-10: We used the STL-10 unsupervised and supervised sets for fine-tuning and
semi-supervised experiments. The unsupervised portion contains 100 000, 96 × 96 RGB
images, and the supervised set has 5000 images from 10 classes.

Downsampled ImageNet: For datasets with a significant number of classes, we used
the Tiny-ImageNet and a downsampled version of the original ImageNet dataset, referred
to as DS ImageNet. Tiny-ImageNet contains 100 000 64 × 64 RGB images balanced
across 200 different categories. The downsampled version of ImageNet has 1000 classes
with 1 281 167, 64× 64 RGB images.

ImageNet-1k: Since the majority of SSL methods report results using the ImageNet-
1k dataset, we also include it in our validation protocols. The dataset contains 1000 object
classes and includes 1 281 167 training RGB images of various sizes and 50 000 validation
images.

4.2 Feature Evaluation for Self-Supervised Learning

The main objective of representation learning is to learn compressed and transferable
representations across different tasks and domains. In this context, protocols to evaluate
the quality of self-supervised representations focus on two main objectives: linear separa-
bility and transfer learning to downstream tasks. Here, a downstream task describes the
task that we care about the most. In Natural Language Processing (NLP), for instance,
state-of-the-art (SOTA) methods may learn word embeddings by solving a pretext task
such as predicting the following words in a sentence. However, once the embeddings are
optimized, we are interested in using these features to solve relevant tasks with real-world
applications such as sentiment analysis, summarization, named entity recognition, and
others.

CHAPTER 4. DATASETS AND EVALUATION PROTOCOLS FOR
SELF-SUPERVISED LEARNING 52

Similarly, self-supervised methods learn representations by optimizing pretext tasks
such as rotation prediction, jigsaw puzzle, or instance discrimination. However, the tasks
we are most interested in, i.e., the downstream tasks, are the ones that solve real-world
problems such as object detection, segmentation, or depth estimation. For this reason,
the standard protocol to assess the quality of self-supervised features is by measuring how
good they are when solving downstream tasks.

There are two main categories for evaluating self-supervised features. In the first, we
fine-tune the pre-trained self-supervised model to solve a specific downstream task. In
the second, we use a pre-trained encoder as a fixed feature extractor to provide salient
features that can transfer prior knowledge to solve related problems.

In both scenarios, the evaluation process uses labeled data and supervised tasks such
as classification, detection, and segmentation as proxies to measure the quality of the
unsupervised representations. In other words, metrics such as classification accuracy,
Intersection over Union (IoU), or mean Average Precision (mAP) are used as proxies to
measure the quality of the representations used to learn respective downstream tasks.

4.2.1 Linear Evaluation Protocol

One of the most popular ways of measuring the quality of self-supervised representations is
by assessing the linear separability property of the embeddings. This protocol, commonly
known as linear evaluation, can be done using different methods.

A popular way of measuring linear separability is by training a linear classifier on top of
the frozen representations extracted from the self-supervised encoder. The linear classifier
can be a Support Vector Machines (SVMs) with a linear kernel or a Linear Regression
model. The linear models are optimized using features from the training portion of the
dataset, and classification accuracy on the held-out test set is reported as a measure of
quality for the representations.

An alternative and computationally cheaper strategy to measure linear separability
is training a K-Nearest Neighbors (KNN). The model is trained on top of the frozen
representations from the training set and evaluated using the test set.

The linear evaluation protocol assumes that good representations should transfer well
to other tasks with minimal effort, without non-linear complex models. Moreover, it
considers the manifold hypothesis, which states that natural high-dimensional data in the
real world lie in low-dimensional manifolds within the original high-dimensional space. In
other words, the protocol tries to evaluate the linear subspaces in which high-dimensional
non-linear data can be expressed.

4.2.2 Semi-Supervised Learning

Another commonly used protocol to evaluate self-supervised representations is to use
semi-supervised benchmarks. In this scenario, the pre-trained encoder is either used as a
frozen feature extractor or fine-tuned using small quantities of labeled data. Classic setups
usually take 1% and 10% of labeled examples from the ImageNet training data in a class-
balanced manner. The split produces two different training datasets with approximately

CHAPTER 4. DATASETS AND EVALUATION PROTOCOLS FOR
SELF-SUPERVISED LEARNING 53

12.8 and 128 images per class. In most situations, we append a task-specific model on
top of the self-supervised pre-trained encoder and use a small subset of labeled data to
optimize the system. In the case of fine-tuning, both components are jointly updated.
Otherwise, only the task-specific model receives gradient updates, and the encoder remains
fixed. This evaluation protocol emphasizes that a good set of features should not require
large quantities of human-annotated data to learn downstream tasks.

4.2.3 Cross-Domain Transfer

Lastly, self-supervised representations can also be evaluated based on how good they are
at solving tasks from different domains. The idea is to measure if the features learned on
one specific dataset are generalizable across different tasks or domains instead of being
dataset-specific. The motivation lies in the belief that good representations should transfer
well to several different domains. Usually, we use a self-supervised ImageNet pre-trained
encoder in a transfer learning setup, and possibly fine-tuned it, on different datasets such
as Cifar10 [43], Food101 [98], Birdsnap [99], Cars [100], or VOC2017 [101]. One reports
performance using the held-out test set with the respective standard metrics for each case
as a proxy for quality.

54

Chapter 5

Consistent Assignment for
Representation Learning

With the fundamental concepts and ideas of existing Self-Supervised Learning (SSL)
methods properly introduced, in this chapter, we present Consistent Assignment for Rep-
resentation Learning (CARL). This work has been presented by Silva and Ramírez Rivera [102]
in the Energy-Based Models Workshop at ICLR2021 as an ongoing work and subsequently
published at the 37th ACM/SIGAPP Symposium on Applied Computing (SAC’22). CARL
is an unsupervised learning method for visual representation learning that combines ideas
from self-supervised contrastive learning and deep clustering. By viewing contrastive
learning from a clustering perspective, CARL learns unsupervised representations by
learning a set of general prototypes that serve as energy anchors to enforce different
views of a given image to be assigned to the same prototype. Unlike contemporary work
on contrastive learning with deep clustering, CARL proposes to learn the set of general
prototypes in an online fashion, using gradient descent without the necessity of using
non-differentiable algorithms or K-Means to solve the cluster assignment problem. CARL
surpasses its competitors in many representation learning benchmarks, including linear
evaluation, semi-supervised learning, and transfer learning.

5.1 Introduction and Motivation

Unsupervised visual representation learning focuses on creating meaningful representa-
tions from data and inductive biases. As discussed in Chapter 3, methods based on
siamese neural networks [103] and contrastive loss functions [56, 57] have significantly
reduced the gap between supervised and unsupervised based representations. Indeed, for
some downstream tasks, unsupervised-based representations already surpass their super-
vised counterparts [87]. In Computer Vision (CV), approaches to unsupervised repre-
sentation learning can be categorized into three groups: (1) contrastive learning methods
using instance discrimination, (2) clustering-based methods, and (3) a mixture of the two.

Recent unsupervised representation learning methods rely on contrastive learning,
Section 3.4. These methods optimize an instance discrimination pretext task where each
image and its transformations are treated as individual classes. They compare feature

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING55

vectors of individual images intending to organize the feature space such that similar
concepts are placed closer while moving different ones farther.

On the other hand, traditional clustering methods aim to learn the data manifold by
comparing groups of features that share semantic structure based on a distance metric.
When combined with deep learning, clustering methods are often designed as two-step
algorithms. First, the complete dataset is clustered, and then the meta clustering infor-
mation, e.g., prototypes and pseudo-labels, are used as supervisory signals in a posterior
optimization task [16–18, 86].

Recent work has attempted to combine the benefits of contrastive learning and cluster-
ing [19, 87]. In particular, Expectation-Maximization (EM) approaches alternate between
finding the clusters and maximizing the Mutual Information (MI) between the embed-
dings and the cluster centroids [19]. Inspired by them, our work merges the benefits of
both approaches by bridging the gap between clustering and contrastive learning. On
one hand, we use unsupervised clustering dynamics to generate robust prototypes that
organize the feature space. On the other, we use contrastive learning to compare the
distributions of the views’ assignments w.r.t. the clusters. Our experiments show that
we can learn unsupervised visual representations that outperform existing methods by
mixing both approaches.

We can think of contrastive learning as learning clustered representations at the image
level. However, given the nature of the task, these clusters fail to capture semantic infor-
mation from the heterogeneous unknown classes since the learned clusters only comprise
representations from synthetic views of an image. Moreover, since contrastive learning
methods handle different images as negatives in the training process, even if two given im-
ages share the same class information, their representations will be pushed farther apart
from each other. In the end, each image will have its own cluster structure.

5.2 Proposal

We propose an alternative method to learn high-level features by clustering views based
on consistent assignments. Unlike previous work that uses K-Nearest Neighbors [104]
or K-Means [105] as priors to enforce (learn) a cluster mapping, our method learns the
prototypes online. While contrastive learning with instance discrimination [56, 57] poses
a classification pretext task at the image embedding level, we propose a pretext task that
operates on the assignment of views to a set of clusters. Rather than directly maximiz-
ing similarities between image embeddings, we force the distribution of positive views’
assignments to be consistent among a set of finite learnable prototypes. If the num-
ber of prototypes equals the number of observations in the dataset, we would be forcing
each cluster only to contain synthetic views of a given observation. This is equivalent to
contrastive learning with instance discrimination. However, if we set the number of pro-
totypes to be smaller than the number of observations in the dataset, by the pigeonhole
principle, the learned prototypes will not only cluster different views of an image together,
but they will also contain representations of different images that are similar enough to
be assigned to the same cluster.

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING56

Our proposal, Consistent Assignment for Representation Learning CARL, re-frames
Contrastive Learning through a clustering perspective to learn robust representations
(Section 5.4). CARL builds distributions of the similarities between the prototypes and
the image’s views (Section 5.5). To avoid collapsing the representation in a subset of
clusters, we impose an uninformative prior to CARL’s prototypes (Section 5.5.1). CARL
jointly optimizes similarity to the learned prototypes and the uninformative prior (with
a decay schedule for learning). Figure 5.1 illustrates the overall idea.

5.3 Contributions

Regarding our contributions, (i) we propose a learning framework that leverages current
contrastive learning methods with clustering-based algorithms to improve the learned
representations. Unlike contemporary work, our method proposes to learn the clusters’
assignments in an online fashion using gradient descent with no need for pre-clustering
steps, e.g., K-Means or non-differentiable methods to solve the clustering assignment
problem, such as the Sinkhorn-Knopp algorithm [32]. (ii) We contrast high-level structures
(the distributions of the views over the cluster assignments) instead of low-level ones (such
as the representations). Reasoning in this high-level space gives the representations more
robustness that translates to better performance in downstream tasks. And, (iii) unlike
contrastive learning methods that can be viewed as learning clusters containing only
synthetic transformations of a given image, our learned prototypes do not need to hold
the semantics of the data but rather become energy anchors that self-organize the space
to learn better representations. Moreover, the proposed loss function does not require
a more extensive set of negative representations, which avoids the common problem of
treating representations of the same class as negatives.

5.4 Contrastive Learning from a Clustering Perspective

Let X = {x1, x2, . . . , xN} be a dataset containing N unlabeled images. And, let a
view vi = T (xi) of an observation xi be the application of a stochastic function T that
is designed to change the content of xi subjected to preserving the task-relevant infor-
mation encoded in it. In practice, we can create as many views as needed by applying
the stochastic function T . Recent contrastive learning methods learn visual embeddings
by solving an instance discrimination pretext task that is usually optimized using the
InfoNCE loss [71] defined as

LInfoNCE = − log
exp

(
sim

(
zai , z

+
i

)
/τ
)∑M

j exp (sim (zai , zj) /τ)
, (5.1)

where zai and z+i are anchor and positive representations taken from an encoder function
f(·) such that z(·)i = f

(
v
(·)
i

)
, τ is the temperature parameter, and sim(·, ·) is a similarity

function, e.g., the cosine similarity. From a clustering perspective, the InfoNCE loss,
Equation (5.1), is minimized when all possible variants

{
vji
}
j
of an image xi are clustered

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING57

xi

vai

v+i
zai

z+i

Prototypes

Data Representations Assignments

Figure 5.1. The data is first augmented and then encoded into their representations. We learn a set of
prototypes that serve as anchors to compute a distribution of assignments. For a positive (augmented)
pair of points and for the rest of negatives we compute their agreement to the prototypes. We collect
these comparisons as distributions that we later compare. We expect that the positive examples will have
similar distributions over the assignments (cf. orange and pink distributions), while the negatives will not
(cf. purple distribution).

into the same prototype while representations from within a cluster are far apart from
representations of other clusters.

We propose an approach where, instead of comparing against other instances [56] or
prototypes of the classes [19], we learn a set of K general prototypes C = {c1, c2, . . . , cK},
K � N , against which we compare the views to determine their similarity. Instead
of maximizing a similarity function between positive embeddings of different views, as
contrastive learning methods do, we maximize the similarity between assignment vectors
of positive views to our general prototypes to promote consistency and confidence when
assigning views to clusters. That is, views must agree with high confidence in their cluster
assignments. Our method learns the prototype matrix C online using gradient descent,
and it does not require any pre-clusterization step as is typically the case for clustering-
based representation learning algorithms [16, 19]. Moreover, since the training process is
unsupervised, to avoid trivial solutions, where all images are assigned to only a handful
of prototypes, we enforce a non-informative prior over the class distribution of the views
to guide the learning process.

5.5 Learning Representations by View Assignment

As highlighted as one of the fundamental ideas behind current self-supervised methods,
we treat augmented versions of a given image as views and use them as positive examples
for optimization, refer to Section 3.2. Our objective is to transform two positive samples
into a distribution of their likelihood to belong to a set of K clusters. To do so, we encode
each view through an encoder function zi = f(vi) ∈ Rd. The encoder f(·) comprises a
backbone convolutional neural network, such as a ResNet [76], followed by a non-linear
Multilayer Perceptron (MLP) head.

Our objective is not to cluster the data in an unsupervised manner but rather to learn
a set of prototypes that will serve as anchors to differentiate views. We hypothesize that
similar views should have similar assignments w.r.t. the prototypes. Hence, to convert
the representations into these assignments, we first compare the representation zi against

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING58

all the prototypes to obtain an energy distribution

qi[j] = 〈zi, cj〉, (5.2)

where qi[j] is the j-th element of the energy distribution qi for the i-th view. We learn
the set of prototypes through a linear layer. To get a distribution of a given view over all
prototypes, we normalize the energy using the softmax function and obtain the posterior
probability distribution, i.e., the probability of assigning the view vi to the cluster k.
Hence, our normalized probability for the k-th class given our view vi is

pi[k] = P (i assigned to k | vi) =
exp(qi[k])∑K
j=1 exp(qi[j])

, (5.3)

where qi[j] denotes the j-th element of the i-th un-normalized vector output of the classifier
for the respective view.

As mentioned before, our objective is to contrast the distributions of two views’ like-
lihood w.r.t. the clusters. In CARL, the encoder and assigner operate in a siamese setup
where a pair of views from a given sample is independently transformed in its corre-
sponding distribution. To ensure the similarity between the views, we optimize the views’
distributions pai and p

+
i over the clusters in C, so that the two distributions are consistent

with one another. In other words, by learning a consistent assignment of views over the
clusters, a given prototype will be invariant to augmented versions of an input sample.
Moreover, because the number of prototypes is smaller than the number of observations
in the dataset, the clusters will contain different observations that share similarities in
the embeddings space.

We compute the similarity between the views’ distributions as their dot product

Lc = − 1

B

B∑
i

log〈pai , p+i 〉, (5.4)

where B is the size of a minibatch over which we are aggregating the samples. In the
ideal case of two one-hot vectors signaling the same perfect assignment, the dot product
above yields its maximum value of one, and the negative log is minimized.

5.5.1 Preventing Trivial Solutions

Only forcing different views, vai and v+i , to have the same cluster assignment using our
consistency loss, Equation (5.4), leads to finding a trivial solution where all representa-
tions zi end up assigned to the same cluster (or just to a handful of them). To prevent
such triviality, we force the distribution over the classes, P , to be uninformative by mini-
mizing the Kullback-Leibler divergence (KL-divergence) w.r.t. a uniform distribution, U .
Our regularization is

LKL = KL(P ‖ U) = log(K) +
∑
c∈C

p̂c log (p̂c) , (5.5)

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING59

where p̂c is the expected distribution over a minibatch of size B,

p̂c =
1

B

B∑
i

pci , (5.6)

and pci is the probability of a view vi to be assigned to a cluster c where c ∈ C. In
other words, we maximize the Shannon entropy of the average distribution of the predic-
tions. We can interpret the KL-divergence, Equation (5.5), as regularizing the encoder
f(·) to encourage the approximate posterior, Equation (5.3), to be closer to the uniform
distribution.

Minimizing the KL-divergence, Equation (5.5), will force the predictions for a given
image view vi to be spread across all clusters. Since we do not know the underlying
class distribution in advance, the KL-divergence, Equation (5.5), acts as a prior where we
assume that the observations X are uniformly assigned among all K prototypes.

By combining the consistency assignment loss, Equation (5.4), with the KL-divergence
regularization, Equation (5.5), we obtain our final learning objective

L = Lc + λeLKL, (5.7)

where λe is an epoch-dependent function that returns a scalar that prevents mode col-
lapse at the beginning of training. We observed that training is very susceptible to such
collapsing to a single assignment if not regularized. However, in practice, we noticed that
keeping a large fixed value of λe during training also prevents the encoder from learn-
ing more complex representations. Thus, we recommend a function λe that decreases as
training progresses. In theory, any decay schedule, such as an exponential or cosine, could
be used. We propose a linear decay schedule

λe(a, b) =

{
b− b−a

E
e if e ≤ E,

a otherwise,
(5.8)

where b and a denote the start and ending values of the decay, E represents the number
of epochs in which the decay will happen, and e is the epoch counter.

We noticed that mode collapse can happen in two scenarios: (1) if the regularizer is
not added to the final loss, which is equivalent to setting the KL weight penalty λe(0, 0),
or (2) if the KL weight penalty λe is set to a value below a certain threshold, cf. Figure 5.2.
In both situations, CARL finds suboptimal solutions and learns bad representations. In
practice, we found that slowly decreasing the KL weight penalty throughout training
can work twofold since it increases the quality of the representations and prevents such
trivialities during optimization. Refer to Section 5.6.1 and Figure 5.2 for an in-depth
analysis.

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING60

50 100 150 200

20

40

60

80

Training epochs
T
op

-1
ac

cu
ra

cy

λe(3, 3)

λe(2, 2)

λe(1, 1)

λe(0, 2)

λe(0, 0)

Figure 5.2. Effect of the uninformative prior’s scheduling λe on the overall performance in STL-10.
Notice that a linear decay scheduling outperforms its constant counterparts. Two situations may result
in non-optimal solutions: (1) a lower value of λe, and (2) not having the KL regularizer in the final loss.

5.6 Hyperparameter Exploration

In this section, we evaluate the effects of the primary hyperparameters of our method. For
exploring hyperparameters, we learn representations using a ResNet-18 backbone trained
for 150 epochs, and the KL weight penalty λe is linearly decayed over the first E = 100

epochs. To evaluate the multiple experimental setups, we train linear classifiers on top
of the encoder’s frozen features following the linear evaluation protocol proposed by He
et al. [56] and report average Top-1 accuracy over three independent runs.

5.6.1 Does Decreasing the KL Weight Penalty Improves Repre-
sentation Learning?

The hyperparameter λe controls the contribution of the KL regularization, Equation (5.5),
to the consistency loss, Equation (5.4). Especially at the beginning of training, a higher
contribution for the KL term avoids mode collapsing, where the network optimizes the
consistency loss, Equation (5.4) by assigning all observations to the same prototype.
Van Gansbeke et al. [106] make similar claims for the entropy regularization in their
SCAN-loss [106], and suggest a high (constant) value for the scalar hyperparameter λe to
avoid such trivialities.

We hypothesize that keeping a high value of λe throughout training prevents the
network from learning complex features. To verify this hypothesis, we trained CARL on
the STL-10 [42] unsupervised dataset for 200 epochs. We measure the performance by
training a linear classifier on top of the frozen features of the ResNet-18 backbone. We
linearly decay the magnitude of the λe hyperparameter, following Equation (5.8), from
b = 2 to a = 1 over the first E = 100 epochs instead of keeping it constant for one of the
experiments. As shown in Figure 5.2, we observe that the quality of the representations
learned by CARL benefits from decreasing the contribution of the KL regularization.
However, if the λe is decreased below a certain threshold, mode collapse may happen.

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING61

101 102 103 104

40

50

60

70

No. prototypes
T
op

-1
ac

cu
ra

cy

CIFAR-10
CIFAR-100

Figure 5.3. Effect of learning a different number of prototypes on the quality of the representations.
Empirical tests suggest an inverse U-shape curve where the optimal number of prototypes lies near one
order of magnitude w.r.t. the actual number of classes of the dataset.

5.6.2 Does the Number of General Prototypes Influence the Qual-
ity of the Representations?

To evaluate the effect of learning a different number of prototypes, we trained CARL
with ResNet-18 backbones on the CIFAR-10/100 datasets [43] for 150 epochs. For all
experiments, the KL weight term λe starts as b = 4 and is linearly decreased to a = 1.5

over the first E = 100 epochs. Figure 5.3 shows that over-clustering benefits the quality
of the learned representations and that the optimal number of general prototypes depends
on the number of actual classes of the dataset. The experiments suggest an inverse U-
shape for both datasets, and the optimal number of general prototypes lies near an order
of magnitude w.r.t. the actual number of classes.

5.6.3 Does the Batch Size Improves the Representations Learned
by CARL?

We regularize CARL using a non-informative uniform prior, Equation (5.5), applied over
the input batch. This uniform prior prevents the views’ assignment from collapsing to a
single prototype. We work over the expected distribution of assignments instead of each
individual one. This expectation raises the question of how large a sample (batch size)
should be to model different numbers of general prototypes.

Table 5.1 shows the effect of training CARL with different batch sizes and their rela-
tionship with the number of general prototypes. For this experiment, we trained CARL
on CIFAR-100 for 150 epochs. Note that to compensate for the reduced number of it-
erations (as we increase the batch size), we scale the learning rate following the recipe
proposed by Goyal et al. [107].

With smaller batches, we can see that the performance of the representations learned
by CARL degrades as the number of prototypes increases. On the other hand, large batch
sizes tend to retain high performance even when we increase the number of prototypes to
very large numbers. Indeed, the gap in performance due to the batch size can reach nearly
6 points of average accuracy when optimizing a downstream task. We hypothesize that
this is a direct effect of the sample size used to estimate the entropy in Equation (5.5). In

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING62

Table 5.1. The effect of training CARL (on CIFAR-100) with different batch sizes and general proto-
types.

Number of prototypes

Batch 10 100 500 1000 3000 5000 10000

64 35.34 38.72 38.60 37.64 35.98 35.75 34.12
128 35.25 39.43 39.50 38.97 38.38 38.59 36.33
256 34.46 40.31 40.51 40.88 39.98 38.83 39.18
512 35.01 40.91 42.559 41.23 41.06 40.61 38.65
1024 34.67 41.259 41.44 42.049 41.479 41.548 40.689

other words, as the distribution increases (with a higher number of general prototypes),
the KL regularizer requires a larger batch size to better estimate the entropy and force it
to be high, Equation (5.5).

5.7 Unsupervised Feature Evaluation

We evaluate CARL’s representations extracted from a ResNet-18 encoder and compare
its performance with different state-of-the-art methods using the linear evaluation proto-
col [56], cross-domain transfer, semi-supervised learning, and fine-tuning.

5.7.1 Linear Evaluation

We trained self-supervised models for 200 epochs, closely following their original hyper-
parameters. Refer to Section 5.8 for more details. Table 5.2 compare our results with
previous approaches on CIFAR-10/100 [43], STL-10 [42], and on a downsampled version
(DS) of the ImageNet dataset [108]. We compare the representations learned by CARL
against two methods based on instance discrimination with contrastive learning, i.e., A
Simple Framework for Contrastive Learning of Visual Representations (SimCLR) and
Momentum Contrast for Unsupervised Visual Representation Learning (MoCo) version
2, against two clustering-based methods, i.e., Prototypical Contrastive Learning (PCL)
and Swapping Assignments between Views (SwAV), and for completeness, we also include
Bootstrap Your Own Latent (BYOL), which does not rely on negatives during optimiza-
tion.

On average, CARL outperforms all major competitors in most setups and only stays
behind on early training cases (100 epochs) in the STL-10 and DS ImageNet datasets.
Unlike SimCLR and MoCo v2, our method does not use negative examples, nor does it
require a momentum-based target encoder to prevent collapsing [85].

We adapted PCL and SwAV to use a ResNet-18 encoder and kept official hyperpa-
rameters. Most of these methods were only tested on large-scale datasets, such as the
ImageNet [4], usually with very deep convolutional encoders. Thus, it naturally raises
the question of how these methods would perform on smaller datasets, using faster and
not-so-deep encoders, without enormous batch sizes and trained on modest Graphics Pro-
cessing Unit (GPUs). Our experiments highlight some of the limitations of training these

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING63

data-hungry methods on limited resources.

5.7.2 Cross-domain transfer

To evaluate how well the representations learned by CARL transfer between different
distributions, the first two columns of Table 5.3 show experimental results on cross-domain
transfer. We took a self-supervised encoder trained on the CIFAR-10 dataset and used
it as a feature extractor to train a linear classifier (for 50 epochs) to solve a 100-way
classification task using the CIFAR-100 dataset (and vice versa). Representations learned
by CARL outperform (on average) the main competitors in both setups.

5.7.3 Semi-supervised learning

The third and fourth columns of Table 5.3 report results on semi-supervised learning.
First, we trained self-supervised models (for 200 epochs) on the unsupervised portion
of the STL-10 dataset. Afterward, we fine-tuned the encoders (for 50 epochs) using
different portions (1 % and 10 %) of labeled data from the supervised set of STL-10.
Here, representations learned by CARL outperform competitors on the 10 % setup and
perform on pair with SimCLR on the more extreme case of only 1 % of labeled data.

5.7.4 Fine-tuning

Lastly, similar to the semi-supervised evaluation, the fifth column of Table 5.3 shows
results on fine-tuning the self-supervised encoder (trained on the unsupervised STL-10
for 200 epochs) using the entire supervised STL-10 dataset (for 50 epochs). CARL’s
representations outperform competitors by at most 2.43 % average accuracy.

Table 5.2. Results are reported using mean accuracy (percentage) and standard deviation over three
runs (except for DS ImageNet where we report a single run) on the linear evaluation protocol.

CIFAR-10 CIFAR-100 STL-10 DS ImageNet

Method 100 200 100 200 100 200 100 200

Supervised 87.76± 0.07 89.40± 0.22 59.23± 0.28 60.59± 0.09 73.11± 0.24 74.76± 0.25 35.06 43.50

BYOL 68.90± 0.24 76.46± 0.37 37.26± 0.47 45.68± 0.16 76.58± 0.78 79.64± 0.20 28.12 30.96
SimCLR 72.64± 0.34 75.41± 0.47 41.64± 0.14 44.94± 0.11 77.36 ± 0.39 80.57± 0.66 28.20 30.32
MoCo 65.57± 0.65 71.62± 1.04 39.12± 0.43 44.35± 0.41 71.50± 0.96 75.46± 1.28 24.82 28.67
PCL 66.37± 0.23 71.29± 0.54 35.97± 0.53 40.1 ± 07.6 69.61± 0.93 70.56± 0.41 22.60 26.18
SwAV 72.75± 0.65 75.93± 0.48 39.98± 0.83 43.20± 0.35 70.89± 0.55 74.35± 0.47 18.39 25.31
CARL 73.39 ± 0.31 78.94 ± 0.52 42.91 ± 0.26 48.85 ± 0.79 76.9 ± 01.2 81.95 ± 0.10 24.62 31.86

5.8 Implementation Details

For evaluating CARL’s performance against its competitors, all methods were trained
for 200 epochs using the same cosine learning rate scheduler and the same batch size of
256 observations. If not specified otherwise, we kept all the hyperparameters fixed as the
original implementations.

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING64

Table 5.3. Results are reported using mean accuracy (percentage) and standard deviation over three
runs. Best results in bold. Cross-Domain Transfer: We trained CARL on the unlabeled CIFAR-10
dataset and performed linear evaluation on the labeled CIFAR-100 (10 → 100), and vice versa (100 →
10). Fine-tune: We trained CARL on the unlabeled STL-10 dataset and fine-tune it on the labeled
STL-10.

Cross Domain Transfer Semi-supervised Fine-tuning

Method C-10 → C-100 C-100 → C-10 1% 10% 100%

Supervised 38.11± 0.41 68.54± 0.42 52.97± 0.07 69.87± 0.03 76.11± 0.01

BYOL 43.47± 0.20 67.23± 0.45 36.64± 0.43 65.7 ± 09.8 85.72± 0.10
SimCLR 40.39± 0.22 67.4 ± 03.0 53.66 ± 0.11 73.92± 0.26 86.97± 0.03
CARL 43.47 ± 0.02 67.89 ± 0.23 52.26± 1.14 74.85 ± 0.33 88.15 ± 0.37

5.8.1 Datasets

We opted to use many standard computer vision datasets to validate our model’s perfor-
mance. We used the CIFAR-10/100 dataset family for small to medium classes. Each
dataset contains 60 000, 32× 32 RGB images, with 50 000 images for training and 10 000

for testing. CIFAR-10 has 10 classes with 6000 images per class, and CIFAR-100 has 600

images for each of the 100 classes.
We used the STL-10 unsupervised and supervised sets for fine-tuning and semi-supervised

experiments. The unsupervised portion contains 100 000, 96 × 96 RGB images, and the
supervised set has 5000 images from 10 classes.

For datasets with many classes, we used the downsampled version of the original
ImageNet dataset, referred to as DS ImageNet. The downsampled version of ImageNet
has 1000 classes with 1 281 167, 64× 64 RGB images.

5.8.2 Backbones

For all experiments, the encoder f(·) comprises a ResNet-18 backbone followed by a
non-linear 2-hidden layer fully-connected network g(·), as a projection head. For CARL,
SwAV, and BYOL, the projection head also has batch normalization layers. The func-
tions g(f(·)) encode a view vi into a 128-dim representation zi. Specifically, the projection
head receives a 512-dim vector from the final average pooling layer of the ResNet-18 en-
coder. The hidden layer of the projection head g(·) contains 512 neurons. For all methods,
the dimensionality of the embedding vector zi and the complexity of both the encoder
and projection head are equivalent.

5.8.3 Augmentations

To construct synthetic views for optimizing CARL, we used the same pipeline of data
augmentations proposed by Chen et al. [57]. First, we apply a random crop resize op-
eration, which randomly extracts a portion of the image ranging from 0.8 % to 100 %

of the original image’s area. Second, we apply a horizontal flipping operation with a
50 % chance. There is an 80 % possibility of jittering the pixels of the image, altering its

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING65

augmentations = transforms.Compose([
transforms.RandomResizedCrop(image_size, scale=[0.08, 1.0),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(

[transforms.ColorJitter(brightness=0.8, contrast=0.8,
saturation=0.8, hue=0.2)],

p=0.8
),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(p=0.1),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],

std=[0.5, 0.5, 0.5])
])

Listing 1. Code snippet used to generate synthetic views for CARL

brightness, contrast, saturation, and hue. Then, a 20 % chance of a grayscale conversion,
a 50 % chance of gaussian blurring, followed by normalization using the dataset’s mean
and Standard Deviation (STD).

A PyTorch pseudo-code to generate synthetic views for CARL is presented in the code
Listing 1.

Using the proposed pipeline for generating synthetic views, CARL is trained with
views such as those presented in Figure 5.4.

Figure 5.4. Examples of views synthetically created using the pipeline of random transformations used
by CARL. The first two rows present transformed versions of 16 images, while the third and fourth rows
present different transformations of the same images from above.

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING66

5.8.4 CARL

CARL is trained using Stochastic Gradient Descent (SGD) with momentum and a cosine
learning rate decay scheduler [109] (without restarts) starting at 0.6 and decaying to
0.0006. We use a weight decay penalty of 5 × 10−4 and the LARS optimizer [110], but
using pure SGD produces similar results. To choose the number of general prototypes,
we follow the findings from our hyperparameter exploration, see Section 5.6. For CIFAR-
10/100, and STL-10, we trained CARL using 100 prototypes for the first dataset and 300

for the last two. Following SwAV, to train in the downsampled ImageNet dataset, we
used 3000 prototypes. The projection head of CARL contains batch normalization layers
as proposed by Grill et al. [85].

The PyTorch pseudo-code for CARL is shown in code Listing 2.

5.8.5 Other methods

To compare the performance of CARL with other implementations, except for MoCo, we
developed our versions of SimCLR, BYOL, SwAV, and PCL by adapting their original
code repositories and performing the minimal changes necessary to meet our requirements.
The core changes to the official implementations regard (1) adaptation to other datasets,
(2) support for single GPU training, (3) change of backbone encoder (from ResNet-50 to
ResNet-18), (4) when necessary, change hyperparameters to achieve better results or to
comply with our computational budget.

PCL Li et al. [19]. For training on CIFAR-10/100 and STL-10, the number of
prototypes is linearly scaled based on the number of true classes. For CIFAR-10 and
STL-10, we set the number of clusters to {250, 500, 1000}, and for CIFAR-100, we used
{2500, 5000, 10000}.

SwAV Caron et al. [87]. For CIFAR-10/100 and STL-10, we used the same number of
prototypes used to train CARL. The number of prototypes was set to 100 for CIFAR-10,
and 300 for both CIFAR-100 and STL-10. We used the standard configurations from
their original repositories to train both PCL and SwAV on the downsampled version of
the ImageNet dataset.

BYOL [85] and SimCLR [57]. We empirically found that removing the LARS opti-
mizer (from their official implementations) produced better results in our datasets.

We performed a simple grid search to find an optimal learning rate of 0.03, which
improved over original parameters.

Originally, BYOL uses a denser representation vector of 256-dim and a more complex
projection head with a hidden layer containing 4096 neurons. BYOL employs batch sizes
of 4096 observations. All methods use the same projection head architecture, and the
extra BYOL’s predictor head follows the same architecture as the projection head.

For SimCLR, we empirically found that a temperature parameter of 0.2, instead of
0.5 described in the paper [57], is best for our datasets. We could not reproduce the
original training setups for SimCLR and BYOL due to limited hardware. To ensure a
fair comparison, we used equal batch sizes of 256 for all implementations. This allows
SimCLR to produce 130 560 pairs against 256 pairs used in CARL.

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING67

def consistency_loss(inputs, targets):
loss = torch.einsum('nc,nc->n', [inputs, targets])
loss = - torch.log(loss).mean()
return loss

def kl_div(p):
return - torch.sum(p * torch.log(p), dim=1))

model: convnet + projection head
assigner: MLP classifier

for x in loader: # load a batch x containing B samples

create a pair of synthetic views for each image in the batch
v1 = aug(x)
v2 = aug(x)

z = model(cat(v1, v2)) # embeddings: 2BxD

scores = assigner(z) # prototype scores: 2BxK

scores_v1 = scores[:B]
scores_v2 = scores[B:]

convert scores to probabilities
probs_v1 = Softmax(scores_v1)
probs_v2 = Softmax(scores_v2)

consistency = 0.5 * consistency_loss(probs_v1, probs_v2.detach())
consistency += 0.5 * consistency_loss(probs_v2, probs_v1.detach())

entropy = kl_div(mean(probs_v1, dim=0))
entropy += kl_div(mean(probs_v2, dim=0))

lambda_scale = sample_kl_scalar(train_iter)

loss = consistency + lambda_scale * entropy

optimizer.zero_grad()
loss.backward() # Backward pass
optimizer.step() # Update the model's parameters

Listing 2. Pseudo-PyTorch code for CARL

Supervised. To establish an upper bound for performance comparisons, we trained
a supervised ResNet-18 using SGD and a learning rate of 0.03 with a cosine learning rate

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING68

decay (without restarts) that decreases to 0. For data augmentation, we used a lighter
version of the MoCo’s [56] augmentation pipeline composed of (1) random crop resize,
(2) random horizontal flip (50 % chance), (3) random color jitter, (4) random gray scaling
(20 % chance), and (5) random Gaussian blurring (20 % chance).

5.9 Relation With Other Self-supervised Methods

Here, we compare CARL with other self-supervised methods and further discuss their
differences and similarities. We illustrate the differences between existing self-supervised
methods and CARL in Figure 5.5.

Relations to SimCLR [57], and MoCo [56]. Different from these models, CARL
does not operate directly on the embeddings. Instead, it discretizes the embedding space
using general prototypes that serve as energy beacons. These prototypes can attract em-
beddings from different images that share enough similarity to be drawn by the same
prototype. In other words, instead of pushing apart embeddings from different images
arbitrarily, CARL indirectly clusters embeddings from different images. MoCo uses an
additional memory queue to hold negatives for contrastive training. SimCLR draws neg-
atives from within the batch of size 4096 views. Unlike both, CARL is a non-contrastive
method. It does not explicitly push the energy of incompatible pairs up in order to
shape the energy function. Instead, by reducing the energy between embeddings and
prototypes, the energy between negative embeddings is implicitly pushed up, which frees
the method from sampling negative embeddings. On the contrary, both SimCLR and
MoCo are contrastive methods and naturally need to mine negatives to shape the energy
function correctly. SimCLR uses a siamese architecture while MoCo employs two differ-
ent encoders, where one of them receives updates in forms of moving averages from the
weights of the differential encoder.

Relations to SwAV [87]. CARL shares some similarities with SwAV. Both methods
discretize the feature space into a set of finite prototypes. However, to solve the cluster
assignment problem and to avoid mode collapse of the joint embeddings training, SwAV
uses an offline algorithm from the optimal transport literature called Sinkhorn Knopp,
refer to Figure 5.5, d). Consequently, although SwAV leans the prototype vectors online,
similarly to CARL, to generate the targets, one needs to run the Sinkhorn Knopp algo-
rithm at each training iteration. On the contrary, CARL learns the general prototypes in
a completely differentiable training pipeline. The Sinkhorn Knopp algorithm is an itera-
tive, non-differentiable method and requires memory and tuning of its hyperparameters.
In practice, using the Sinkhorn Knopp to solve the clustering problem produces excellent
results with the cost of extra computing time. Another difference between CARL and
SwAV is that CARL does not require any type of normalization of its embeddings during
training. This difference applies to most SSL methods, as can be seen in Figure 5.5.

Relations to BYOL [85], Simple Siamese Networks (SimSiam) [84], and
Barlow Twins [90]. Similar to CARL, BYOL, SimSiam and Barlow Twins are non-
contrastive methods. SimSiam is very similar to BYOL, but it uses a siamese architecture
instead of a momentum-based encoder. BYOL operates a joint embedding, non-symmetric

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING69

architecture trained with a simple Mean Squared Error (MSE) loss between embeddings
of different views. Additionally to the projection head, both BYOL and SimSiam use
a predictor network, refer to Figure 5.5 b) and c) for a visual representation. BYOL
adopts the momentum-based encoder; only one of the networks receives gradient updates.
The weights of the non-differentiable network are updated with an exponential moving
average from the weights of the differentiable network. Both BYOL and SimSiam employ
the stop-gradient operation in one of the branches to avoid trivial solutions. Barlow
Twins employs a siamese architecture, Figure 5.5 e). Unlike other methods, Barlow Twins
avoids collapsed solutions by maximizing the information within the embeddings, which
is done by forcing the empirical cross-correlation matrix between the two embeddings to
be as close to the identity matrix as possible. Unlike BYOL, CARL does not employ a
momentum-based encoder, and different from the others, it does not operate directly on
the embeddings.

CHAPTER 5. CONSISTENT ASSIGNMENT FOR REPRESENTATION LEARNING70

Figure 5.5. Conceptual differences between SSL methods.

71

Chapter 6

Consistent Assignment of Random
Partition Sets

As we have seen in Chapter 5, Consistent Assignment for Representation Learning (CARL)
managed to achieve state-of-the-art (SOTA) performance in many representation learn-
ing benchmarks. Training joint-embedding architectures mainly differ in how we avoid
collapsed solutions during optimization. For CARL, the entropy term in Equation (5.5) is
the primary force that avoids training views being assigned to the same prototype. How-
ever, as demonstrated in the ablation Section 5.6, if the value of the hyperparameters λ
is not properly tuned, CARL will inevitably collapse to a trivial solution, and the learned
representations will be useless. In fact, CARL is very sensitive to the choice of hyper-
parameters such as the value of λ, the batch size, and the number of prototypes C. If
these configurations are not correctly balanced, learning representations using CARL can
be very unstable. In this chapter, we introduce a solution to these issues. We are going
to perform slight changes in the learning protocol described in Section 5.5, and devise
a novel pretext task based on the concepts of Set Partitions. We alleviate all the prob-
lems described above by working with partitions of sets. This change allows us to model
substantially larger probability distributions of general prototypes and, at the same time,
reduce the optimized probability distribution size during training. As a result, Consistent
Assignment of Random Partition Sets (CARP) can be trained faster, without relying on
large batch sizes and being much more stable to hyperparameter changes.

6.1 Motivation

Training an unsupervised system by minimizing the loss in Equation (5.7) can be very
unstable. The main limitation is how to avoid trivial solutions. If the decay schedule for
λe, described in, Subsection (5.6.1) is not tuned correctly, training collapses. For instance,
if the value of λe is too small, the consistency term wins the arms race, and the average
distribution over the batch, Equation (5.6), becomes one-hot alike, i.e., all views end up
assigned to the same prototype. If the value of λe is too large, the entropy term gets the
upper hand, and collapse is avoided. However, the process of view assignment is neglected
over the policy of distributing views uniformly, which results in poor performance of the

CHAPTER 6. CONSISTENT ASSIGNMENT OF RANDOM PARTITION SETS 72

learned representations. This phenomenon is visually described in Figure 5.2.
For a small number of general prototypes, training is more stable, and the model

avoids collapse with a simple tuning of the lambda parameter. However, for a larger
number of general prototypes, stability becomes an issue. The main problem lies with the
entropy term. For more interesting cases, when the distribution is larger, regular batch
sizes, such as 64 or 128, become too small to properly model the distribution, the signal
is too weak for most prototypes. Consequently, to avoid collapsing, we need to increase
the contribution of the entropy term or increase the batch size.

Another consequence of modeling large distributions of general prototypes with mod-
erate to small batch sizes regards distributed training. As usually implemented in most
deep learning frameworks, distributed training usually evenly splits the dataset and the
batch size over a number of parallel nodes. Unfortunately, splitting the batch size causes
individual nodes to use even smaller batch sizes, which increases the instability of the
entropy term, leading to mode collapse.

To address such limitation, we propose to decouple the loss function in Equation (5.7)
into smaller sub-problems. Instead of enforcing both consistency and uniform assignments
over all the general prototypes, we propose an optimization task over subsets or blocks of
a random partition of the general prototypes set C.

6.2 Towards Random Partition Sets

Similar to other Self-Supervised Learning (SSL) algorithms, CARP operates in a siamese
join-embeddings architecture. The setup is very similar to CARL. From an image x, we
create two views of x, denoted as vi = T (x) and vj = T (x) using a stochastic function
T that applies a set of random image transformations. The two views are forwarded
through the siamese encoder, fθ, to produce respective embedding vectors zi = fθ(x) and
zj = fθ(x).

Following clustering-based ideas, we discretize the embedding space into a set of gen-
eral prototype vectors. Note that these prototypes are not meant to represent the true
classes of the data; instead, our general prototypes can be viewed as anchors to attract
views of a given image to a commonplace in the embedding space. A function qθ, imple-
mented as a neural network, receives the representation vectors as input and outputs a
vector of energy values relating the views’ embeddings with the prototypes. Different from
CARL the assigner module qθ, is a two-layer non-linear Multilayer Perceptron (MLP).

CARL’s loss function is composed of two terms: the consistency and the entropy terms.
The consistency term learns the relations between embedding vectors and prototypes;
refer to Equation (5.4). For a pair of views, the consistency loss is optimized when the
two views are assigned to the same prototype with maximal confidence. Moreover, the
entropy term, Equation (5.5) can be viewed as a regularizer. It prevents the system from
collapsing by ensuring that, for a batch of size B, on average, each prototype roughly
receives the same number of assignments. Since we want to maximize the entropy over
assignments averaged within a batch, we can view the entropy term as enforcing a uniform
distribution relating embeddings to prototypes.

CHAPTER 6. CONSISTENT ASSIGNMENT OF RANDOM PARTITION SETS 73

Now, we introduce Partitions of sets into CARL’s learning framework.

6.3 From CARL to CARP

Given the set of K prototypes C = {c1, c2, ..., cK}, we define a partition of C as P = {Pi}i,
such that ∅ /∈ P ,

⋃
i bi = C where bi ∈ P , and bi ∩ bj = ∅ where ∀bi, bj ∈ P , and i 6= j.

We are interested in the partitions P = {Pi}i of size NP , i.e., |Pi| = NP .
Using the concept of a partition of a set, we can define a framework of pretext tasks

over partition blocks that satisfies the learning problem defined in Section 5.5. If the
size of a partition block equals the number of prototype, NB = K, then the partition P
contains only one block which is equivalent to

P = {b0} = {C} . (6.1)

If the size of the partition blocks equals NB = 1, then we have K blocks in the partition P ,
and each block has a unique prototype. Here, the learning task is equivalent to a binary
classification problem, where each output score, if normalized, expresses the likelihood of
a data point xi to independently belong to each prototype.

However, if the partition’s block size 1 < NB < K, and NB divides K, then the
partition P will be composed of blocks B = {b0, b1, ..., bNP

}, where NP = bK/NBc is the
number of blocks, and P is defined as:

P = {{b0} , {b1} , ..., {bNP
}} =

{ci, cj, ..., cv}︸ ︷︷ ︸
size NB

, ..., {ck, cq, ...cr}︸ ︷︷ ︸
size NB

 , (6.2)

where indices i, j, v, k, q, and r are unique and randomly chosen.
Instead of mapping the representations to assignments as a linear combination of all

prototypes and the views’ representations, Equation (5.2), we compare the representation
zi, for a view i against all the prototypes in a block j, as

qi,j = 〈zi, bj〉 , (6.3)

to obtain an energy distribution w.r.t. the prototypes of a particular block index by j.
Figure 6.1 (a), depicts CARP’s learning framework and compares it with CARL.

Here, qi,j is the combination of the representation from the i-th view with the proto-
types from the j-th block of the random partition.

Next, to get a distribution of a view over the prototypes of a block, we normalize
the energy using the softmax function and obtain the posterior probability distribution,
i.e., the probability of assigning the view vi to the prototypes of a block bj. Hence, our
normalized probability for a view vi to belong to the k-th class among the prototypes
within a block bj is

pi,j[k] = P (i assigned to k | vi) =
exp(qi,j[k])∑K

m=1 exp(qi,j[m])
. (6.4)

CHAPTER 6. CONSISTENT ASSIGNMENT OF RANDOM PARTITION SETS 74

Figure 6.1. Conceptual differences between CARL and CARP. The encoding process is similar. A
pair of views vi and vj are passed through a siamese encoder and projection head to produce respective
low-level representation vectors. The representation vectors are combined with a set of prototypes C,
and consistent assignment of views is enforced. Instead of modeling the entire probability distribution of
views over prototypes, CARP randomly partition the set of prototypes C. A partition P is composed of
NP blocks, and each block contains an equal number of prototypes NB . The learning task is equivalent
to CARL’s but done block-wise.

CHAPTER 6. CONSISTENT ASSIGNMENT OF RANDOM PARTITION SETS 75

To ensure the similarity between the views, we optimize the views’ distributions pai,j and
p+i,j over the prototypes of a block indexed by j, so that the two distributions are consistent
with one another. Note that superscripts a and + denote anchor and positive views. We
use the superscript +, instead of p to refer to a positive view to avoid confusion since p is
here defined as a probability distribution.

The consistency term of our partition consistency loss is now defined as,

Lc = − 1

BNP

B∑
i

NP∑
j

log
〈
pai,j, p

+
i,j

〉
. (6.5)

Following similar reasoning, the block-wise entropy term is defined as,

LKL = KL(Pj ‖ U) = log(K) +

NP∑
j

∑
c∈C

p̂cj log
(
p̂cj
)
, (6.6)

where Pj is the distribution over the prototypes of block j, and p̂cj is the expected distri-
bution over a minibatch of size B for a block j,

p̂cj =
1

B

B∑
i

pci,j, (6.7)

and pci,j is the probability of assigning a view vi to a cluster c ∈ C that belongs to a given
partition block bj.

Note that Equations (5.4) and (5.5) from CARL are very similar to Equations (6.5)
and (6.6) recently introduced. The main difference is that instead of dealing with the
entire probability distribution at once, they perform optimization block by block.

While the KL(P ‖ U) in Equation (5.5) forces the entire distribution over prototypes
C to be uniform, the proposed block-wise KL, Equation (6.6), forces uniform assignment
of views over a subset of random prototypes within partition blocks. Since the uniform
distribution over partition block bj is equivalent to the uniform distribution of the entire
set of prototypes, the regularizer in Equation (6.6) has the same effect as Equation 5.5,
with the advantage of optimizing over a small set of prototypes.

Combining partition consistency with entropy regularization, and adding the trade off
hyperparameter λe, the final objective is defined as:

L = − 1

BNP

NP∑
j

B∑
i

log
〈
pai,j, p

+
i,j

〉
+ λe

(
log(K) +

∑
c∈C

p̂cj log
(
p̂cj
))

, (6.8)

which can be simplified to

L = − 1

BNP

NP∑
j

Lc + λeLKL. (6.9)

CHAPTER 6. CONSISTENT ASSIGNMENT OF RANDOM PARTITION SETS 76

Table 6.1. Image classification with linear models. We report top-1 accuracy. Numbers are adopted
from corresponding papers. †: A Simple Framework for Contrastive Learning of Visual Representations
(SimCLR), Bootstrap Your Own Latent (BYOL), and Swapping Assignments between Views (SwAV)
use a large batch size of 4096. †: SwAV uses multi-crop augmentation and extra queue containing 3840
embeddings.

Method Epochs Top-1 Top-5
Supervised 100 76.5 -
SimCLR 200 61.9
MoCo v2 200 67.7 -
PCL v2 200 67.6 -
CARL (ours) 200 65.7 86.7
CARP (ours) 200 68.6 88.5
results of longer unsupervised training
PIRL 800 63.6 -
SimCLR 1000 69.3† 89.0†
MoCo v2 800 71.1 90.1
SimSiam 800 71.3 -
SwAV (w/o multicrop) 400 71.8 -
BYOL 1000 74.3† 71.6†
SwAV 800 75.3† -
CARP (ours) 300 70.1 89.4

6.4 Unsupervised Feature Evaluation

To measure the quality of the representations learned by CARP, we report performance
using the linear evaluation and the semi-supervised protocols on the ImageNet-1k dataset.
We compare the performance of CARP against the SOTA methods on unsupervised visual
representations learning. We report results from pre-training CARP on the unsupervised
ImageNet-1k dataset for 200 and 300 epochs.

6.4.1 Linear Evaluation

Table 6.1 shows the performance of training a linear classifier on top of the fixed represen-
tations learned by CARP. After pre-training, we learn a linear model on top of the frozen
representations from the ResNet-50 encoder for 100 epochs on ImageNet-1k labeled data.
The evaluation protocol follows Subsection 4.2.1. Among the methods pre-trained for
200 epochs, CARP achieves the best top-1 and top-5 accuracy. In the ImageNet dataset,
CARP beats CARL by 3.9 extra points of accuracy. For more extended training regimes,
CARP achieves 70.1 accuracy, which puts it on pair with other methods.

6.4.2 Semi-supervised Learning

Table 6.2 reports performance on the semi-supervised learning evaluation protocol de-
scribed in Subsection 4.2.2. After pre-training, we fine-tune the ResNet-50 encoder for 20
epochs using different portions (1% and 10%) of the ImageNet-1k labeled data. Among

CHAPTER 6. CONSISTENT ASSIGNMENT OF RANDOM PARTITION SETS 77

Table 6.2. Semi-supervised learning on ImageNet. We report top-5 accuracy on the ImageNet validation
set of self-supervised models that are finetuned on 1% or 10% of labeled data. †: SimCLR, BYOL, and
SwAV use a large batch size of 4096. †: SwAV uses multi-crop augmentation and extra queue containing
3840 embeddings. †: Barlow Twins uses a more complex projection head, batch sizes of 2048 and 8192-dim
embeddings.

Method Architecture Epochs Top-5 accuracy
1% 10%

Supervised RN50 - 48.4 80.4
SimCLR RN50 200 56.5 82.7
MoCo v2 RN50 200 66.3 84.4
PCL v2 RN50 200 73.9 85.0
CARL (ours) RN50 200 72.6 83.9
CARP (ours) RN50 200 74.5 85.3
results of longer unsupervised training
BYOL RN50 1000 78.4† 89.0†
SwAV RN50 800 78.5† 89.9†

PIRL RN50 800 57.2 83.8
Barlow Twins RN50 1000 79.2† 89.3†
SimCLR RN50 1000 75.5† 87.8†
CARP (ours) RN50 300 77.1 86.7

self-supervised methods pre-trained for 200 epochs, CARP achieved the best overall top-5
accuracy using 1% and 10% of labels. Among methods pre-trained for more than 200
epochs, CARP achieved 77.1 and 86.7 top-5 accuracy when using 1% and 10% of labeled
data, respectively. Note that SwAV, which was trained for 800 epochs, accomplished very
similar numbers.

6.5 Implementation Details

6.5.1 Datasets

In order to compare the performance of CARP against SOTA SSL methods, we use the
ImageNet-1k dataset. For more details, please refer to Section 4.1.

6.5.2 Backbones

For all experiments, the encoder f(·) comprises a ResNet-50 Convolutional Neural Net-
works (CNN) backbone followed by a non-linear 2-hidden layer MLP g(·) denoted as the
projection head. The functions g(f(·)) encode a view vi into a 128-dim representation zi.
Specifically, the projection head receives a 2048-dim vector from the final average pooling
layer of the ResNet-50 encoder. The hidden layer of the projection head g(·) contains
2048 neurons. The assigner function q(·) receives the low-dimensional representations
vector zi as input and outputs an energy vector relating the views with the prototypes in
C. The functions q(·) and g(·) have the same number of neurons and both contains batch

CHAPTER 6. CONSISTENT ASSIGNMENT OF RANDOM PARTITION SETS 78

normalization layers.

6.5.3 Augmentations

To produce synthetic views for optimizing CARP, we used the same pipeline of data
augmentations proposed by Grill et al. [85]. The pipeline for random transformations is
described below:

• Random crop resize operation: Extracts a portion of the original image, ranging
from 12.5 % to 92.5 % of the image’s size, then resize the crop to 224× 224× 3,

• Random horizontal flipping: 50 % chance,

• Pixel jittering: 80 % chance of jittering the pixels of an image, altering its brightness,
contrast, saturation, and hue,

• Random grayscale conversion: 20 % chance,

• Random gaussian blurring: 50 % chance,

• Random solarization: 20 % chance for the second view.

After, we normalize the resulting image using the dataset’s mean and Standard Devi-
ation (STD).

A PyTorch pseudo-code to generate synthetic views for CARP is presented in the code
Listing 3.

6.5.4 CARP

CARP is trained with the LARS optimizer [110] using 4 Graphics Processing Unit (GPUs)
and a total batch size of 256 images. The learning rate decay schedule follows a cosine
decay with no warm-ups or restarts; it is set to 5.4 and decays to 0.00054 throughout
training. All the learning modules have a weight decay penalty of 1× 10−6. The random
partition size is defined as NP = 12 which yields individual block sizes of NB = 250

random prototypes. Note that we reinitialize the partitions at each iteration. Lastly, the
KL weight term λe starts as b = 2.0 and decays to a = 0.15 during the first 30 epochs of
training.

CHAPTER 6. CONSISTENT ASSIGNMENT OF RANDOM PARTITION SETS 79

To create view #1
self.transform = transforms.Compose([

transforms.RandomResizedCrop(224, scale=[0.15, 0.925]),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(

[transforms.ColorJitter(brightness=0.8, contrast=0.8,
saturation=0.8, hue=0.2)],

p=0.8
),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(p=1.0),
Solarization(p=0.0),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])
])

To create view #2
self.transform_prime = transforms.Compose([

transforms.RandomResizedCrop(224, scale=[0.15, 0.925]),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(

[transforms.ColorJitter(brightness=0.8, contrast=0.8,
saturation=0.8, hue=0.2)],

p=0.8
),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(p=0.1),
Solarization(p=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])
])

Listing 3. Code snippet used to generate synthetic views for CARP. Note that the process of view
generation slightly differs for views one and two. For view number 1, we do not apply solarization, while
for view number 2, we apply solarization with a 20% chance.

80

Chapter 7

Conclusions

This dissertation presented a comprehensive overview of the existing Self-Supervised
Learning (SSL) methods for Computer Vision (CV). Most importantly, it also introduced
two novel algorithmic approaches to learn representations from unlabeled images, namely
Consistent Assignment for Representation Learning (CARL) and Consistent Assignment
of Random Partition Sets (CARP). Experiments for CARL and CARP revealed that the
two methods are effective in learning representations from unlabeled images. The rep-
resentations learned by CARL and CARP demonstrated useful generalization properties
when utilized to learn new downstream tasks. Both methods employ a novel strategy to
avoid trivial solutions in joint-embedding architectures and are end-to-end systems based
on deep clustering and SSL. The results of our methods are comparable with contempo-
rary state-of-the-art (SOTA) methods in representation learning with advantages such as
less computing time. Although our methods were introduced and trained on classic vision
datasets such as the ImageNet-1k and the CIFAR family, the techniques we proposed are
general enough to be used on any other vision modality, including medical or geospatial
imagery or different data modalities such as text or audio signals.

7.1 Future Work

SSL is interested in learning models of the world in a task-independent label-free way.
Once the model has a good understanding of general concepts, which translates to gen-
eralizable representations, the pre-trained model can be used to learn new downstream
tasks without relying upon extensive quantities of labeled examples. An auspicious di-
rection of SSL for CV is to break out from the imaging modality and use videos to learn
representations. Today, the most successful SSL methods learn representations from indi-
vidual images with no time dependency. Moreover, as we discussed in Subsection 3.2.1, to
simulate different viewpoints of an object, we rely on extensive data augmentation, which
is widely considered a manual process susceptible to human biases. Ideally, using videos
instead of images could allow us to exchange the ad-hoc data augmentations to a hier-
archical framework incorporating time dependencies between different concepts. In fact,
video data already incorporates the characteristics of the instance discrimination pretext
task, and it is a widely available source of information. If we want to learn hierarchical

CHAPTER 7. CONCLUSIONS 81

representations by observing different objects from different viewpoints, video data seem
to be a natural candidate. However, learning representations from video frames is not
trivial due to the high dimensional spaces in which image data live. In fact, recent work
by Baevski et al. [111] has attempted to learn hierarchical representations from video
data, and their results suggest that video data is a promising source of information for
unsupervised representation learning methods.

82

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[2] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 8, pp. 1798–1828, 2013.

[3] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-
Scale Hierarchical Image Database,” in CVPR09, 2009.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[6] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018.

[7] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word rep-
resentation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

[8] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining ap-
proach,” arXiv preprint arXiv:1907.11692, 2019.

[9] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert:
A lite bert for self-supervised learning of language representations,” arXiv preprint
arXiv:1909.11942, 2019.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[11] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discrim-
inative unsupervised feature learning with exemplar convolutional neural networks,”
IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 9, pp.
1734–1747, 2015.

BIBLIOGRAPHY 83

[12] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning,” in Pro-
ceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2051–
2060.

[13] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 815–823.

[14] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an in-
variant mapping,” in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 2. IEEE, 2006, pp. 1735–1742.

[15] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, and Y. Bengio, “Learning deep representations by mutual informa-
tion estimation and maximization,” arXiv preprint arXiv:1808.06670, 2018.

[16] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsuper-
vised learning of visual features,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 132–149.

[17] M. Caron, P. Bojanowski, J. Mairal, and A. Joulin, “Unsupervised pre-training
of image features on non-curated data,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 2959–2968.

[18] X. Yan, I. Misra, A. Gupta, D. Ghadiyaram, and D. Mahajan, “Clusterfit: Im-
proving generalization of visual representations,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 6509–6518.

[19] J. Li, P. Zhou, C. Xiong, R. Socher, and S. C. Hoi, “Prototypical contrastive learning
of unsupervised representations,” arXiv preprint arXiv:2005.04966, 2020.

[20] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in European
conference on computer vision. Springer, 2016, pp. 649–666.

[21] B. Marr, “How much data do we create every day? the mind-blowing
stats everyone should read,” in Forbes, "2018 (accessed July 10, 2020)".
[Online]. Available: "https://www.forbes.com/sites/bernardmarr/2018/05/21/
how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
#75335d3d60ba"

[22] M. Blaschko, P. Kumar, and B. Taskar, “Tutorial: Visual learning with weak
supervision,” in CVPR, "2013 (accessed July 10, 2020)". [Online]. Available:
"http://mpawankumar.info/tutorials/cvpr2013/index.html"

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information pro-
cessing systems, 2015, pp. 91–99.

"https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#75335d3d60ba"
"https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#75335d3d60ba"
"https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#75335d3d60ba"
"http://mpawankumar.info/tutorials/cvpr2013/index.html"

BIBLIOGRAPHY 84

[24] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in Proceedings of the IEEE international conference on computer vision,
2017, pp. 2980–2988.

[25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer vision.
Springer, 2016, pp. 21–37.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

[27] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779–788.

[28] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 40, no. 4, pp. 834–848, 2017.

[29] G. Litjens, P. Bandi, B. Ehteshami Bejnordi, O. Geessink, M. Balkenhol, P. Bult,
A. Halilovic, M. Hermsen, R. van de Loo, R. Vogels et al., “1399 h&e-stained sentinel
lymph node sections of breast cancer patients: the camelyon dataset,” GigaScience,
vol. 7, no. 6, p. giy065, 2018.

[30] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis
lectures on artificial intelligence and machine learning, vol. 3, no. 1, pp. 1–130, 2009.

[31] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep neural net-
works: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020.

[32] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,”
Advances in neural information processing systems, vol. 26, pp. 2292–2300, 2013.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[34] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[35] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” arXiv
preprint arXiv:1605.09782, 2016.

[36] A. Van Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural net-
works,” in International Conference on Machine Learning. PMLR, 2016, pp. 1747–
1756.

BIBLIOGRAPHY 85

[37] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu, “Conditional image generation with pixelcnn decoders,” arXiv
preprint arXiv:1606.05328, 2016.

[38] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever, “Gen-
erative pretraining from pixels,” in International Conference on Machine Learning.
PMLR, 2020, pp. 1691–1703.

[39] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and com-
posing robust features with denoising autoencoders,” in Proceedings of the 25th
international conference on Machine learning, 2008, pp. 1096–1103.

[40] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context
encoders: Feature learning by inpainting,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2536–2544.

[41] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms for object
detection and beyond,” in ICCV, 2011.

[42] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsuper-
vised feature learning,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 215–223.

[43] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny
images,” Journal of Software Engineering and Applications, Vol.11 No.2, February
6, 2018, 2009.

[44] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories,” in CVPR. IEEE, 2004, pp. 178–178.

[45] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.

[46] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE
transactions on pattern analysis and machine intelligence, vol. 28, no. 4, pp. 594–
611, 2006.

[47] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learn-
ing by context prediction,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1422–1430.

[48] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pas-
cal visual object classes (voc) challenge,” International journal of computer vision,
vol. 88, no. 2, pp. 303–338, 2010.

[49] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solv-
ing jigsaw puzzles,” in European Conference on Computer Vision. Springer, 2016,
pp. 69–84.

BIBLIOGRAPHY 86

[50] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by
predicting image rotations,” arXiv preprint arXiv:1803.07728, 2018.

[51] R. Arandjelovic and A. Zisserman, “Objects that sound,” in Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2018, pp. 435–451.

[52] B. Korbar, D. Tran, and L. Torresani, “Cooperative learning of audio and video
models from self-supervised synchronization,” in Advances in Neural Information
Processing Systems, 2018, pp. 7763–7774.

[53] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for
self-supervised learning of speech representations,” vol. 33, 2020, pp. 12 449–12 460.

[54] I. Misra and L. v. d. Maaten, “Self-supervised learning of pretext-invariant repre-
sentations,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 6707–6717.

[55] A. Kolesnikov, X. Zhai, and L. Beyer, “Revisiting self-supervised visual represen-
tation learning,” in Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, 2019, pp. 1920–1929.

[56] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsuper-
vised visual representation learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.

[57] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for con-
trastive learning of visual representations,” arXiv preprint arXiv:2002.05709, 2020.

[58] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” in
Advances in Neural Information Processing Systems, 2017, pp. 6306–6315.

[59] J. Donahue and K. Simonyan, “Large scale adversarial representation learning,” in
Advances in Neural Information Processing Systems, 2019, pp. 10 542–10 552.

[60] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial on energy-
based learning,” Predicting structured data, vol. 1, no. 0, 2006.

[61] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv preprint
arXiv:1406.2661, 2014.

[62] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial network,”
arXiv preprint arXiv:1609.03126, 2016.

[63] J. Goldberger, G. E. Hinton, S. Roweis, and R. R. Salakhutdinov, “Neighbourhood
components analysis,” Advances in neural information processing systems, vol. 17,
2004.

BIBLIOGRAPHY 87

[64] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively,
with application to face verification,” in 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp.
539–546.

[65] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger,
and R. Shah, “Signature verification using a “siamese” time delay neural network,”
International Journal of Pattern Recognition and Artificial Intelligence, vol. 7,
no. 04, pp. 669–688, 1993.

[66] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and
Y. Wu, “Learning fine-grained image similarity with deep ranking,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2014, pp. 1386–
1393.

[67] K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,” in
Advances in neural information processing systems, 2016, pp. 1857–1865.

[68] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus, “Hard
negative mixing for contrastive learning,” vol. 33, 2020, pp. 21 798–21 809.

[69] J. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka, “Contrastive learning with hard
negative samples,” in Inter. Conf. Learn. Represent. Wksps. (ICLRW), 2020.

[70] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via non-
parametric instance discrimination,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2018, pp. 3733–3742.

[71] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive
predictive coding,” in Wksp. Adv. Neural Inf. Process. Sys. (NeurIPSW), 2018.

[72] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural
information processing systems, 2013, pp. 3111–3119.

[73] O. J. Hénaff, A. Srinivas, J. De Fauw, A. Razavi, C. Doersch, S. Eslami, and A. v. d.
Oord, “Data-efficient image recognition with contrastive predictive coding,” arXiv
preprint arXiv:1905.09272, 2019.

[74] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” arXiv preprint
arXiv:1906.05849, 2019.

[75] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with momentum
contrastive learning,” arXiv preprint arXiv:2003.04297, 2020.

[76] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

BIBLIOGRAPHY 88

[77] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision. Springer, 2014, pp. 740–755.

[78] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton, “Big self-supervised
models are strong semi-supervised learners,” in Wksp. Adv. Neural Inf. Process. Sys.
(NeurIPSW), 2020.

[79] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representations by max-
imizing mutual information across views,” in Advances in Neural Information Pro-
cessing Systems, 2019, pp. 15 535–15 545.

[80] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola, “What makes for
good views for contrastive learning,” arXiv preprint arXiv:2005.10243, 2020.

[81] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distillation,” arXiv
preprint arXiv:1910.10699, 2019.

[82] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[83] Y. Tian, X. Chen, and S. Ganguli, “Understanding self-supervised learning dynamics
without contrastive pairs,” in Inter. Conf. Mach. Learn. (ICML). PMLR, 2021,
pp. 10 268–10 278.

[84] X. Chen and K. He, “Exploring simple siamese representation learning,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 15 750–15 758.

[85] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Do-
ersch, B. A. Pires, Z. D. Guo, M. G. Azar et al., “Bootstrap your own latent: A new
approach to self-supervised learning,” arXiv preprint arXiv:2006.07733, 2020.

[86] Y. M. Asano, C. Rupprecht, and A. Vedaldi, “Self-labelling via simultaneous clus-
tering and representation learning,” arXiv preprint arXiv:1911.05371, 2019.

[87] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsuper-
vised learning of visual features by contrasting cluster assignments,” arXiv preprint
arXiv:2006.09882, 2020.

[88] P. Goyal, M. Caron, B. Lefaudeux, M. Xu, P. Wang, V. Pai, M. Singh, V. Liptchin-
sky, I. Misra, A. Joulin et al., “Self-supervised pretraining of visual features in the
wild,” 2021.

[89] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Designing net-
work design spaces,” 2020, pp. 10 428–10 436.

[90] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins: Self-
supervised learning via redundancy reduction,” in Inter. Conf. Learn. Represent.
Wksps. (ICLRW), 2021.

BIBLIOGRAPHY 89

[91] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer, “S4l: Self-supervised semi-
supervised learning,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 1476–1485.

[92] S. Gidaris, A. Bursuc, G. Puy, N. Komodakis, M. Cord, and P. Pérez, “Online bag-
of-visual-words generation for unsupervised representation learning,” CVPR, 2020.

[93] F. C. Ghesu, B. Georgescu, A. Mansoor, Y. Yoo, D. Neumann, P. Patel, R. Vish-
wanath, J. M. Balter, Y. Cao, S. Grbic et al., “Self-supervised learning from 100
million medical images,” arXiv preprint arXiv:2201.01283, 2022.

[94] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” vol. 30, 2017.

[95] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin,
“Emerging properties in self-supervised vision transformers,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 9650–9660.

[96] S. Mo, H. Kang, K. Sohn, C.-L. Li, and J. Shin, “Object-aware contrastive learning
for debiased scene representation,” vol. 34, 2021.

[97] S. Purushwalkam and A. Gupta, “Demystifying contrastive self-supervised learning:
Invariances, augmentations and dataset biases,” vol. 33, 2020, pp. 3407–3418.

[98] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining discriminative com-
ponents with random forests,” in European conference on computer vision. Springer,
2014, pp. 446–461.

[99] T. Berg, J. Liu, S. Woo Lee, M. L. Alexander, D. W. Jacobs, and P. N. Belhumeur,
“Birdsnap: Large-scale fine-grained visual categorization of birds,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp.
2011–2018.

[100] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-
grained categorization,” in Proceedings of the IEEE international conference on com-
puter vision workshops, 2013, pp. 554–561.

[101] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes challenge 2007 (voc2007) results,” 2007.

[102] T. S. Silva and A. Ramírez Rivera, “Consistent assignment for representation learn-
ing,” in Energy Based Models Workshop-ICLR 2021, 2021.

[103] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verifica-
tion using a" siamese" time delay neural network,” Adv. Neural Inf. Process. Sys.
(NeurIPS), pp. 737–737, 1994.

[104] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric re-
gression,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

BIBLIOGRAPHY 90

[105] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information
theory, vol. 28, no. 2, pp. 129–137, 1982.

[106] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and L. Van Gool,
“Learning to classify images without labels,” arXiv preprint arXiv:2005.12320, 2020.

[107] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He, “Accurate, large minibatch SGD: Training imagenet in 1 hour,”
in IEEE Inter. Conf. Comput. Vis. Wksps. (ICCVW), 2018.

[108] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled variant of imagenet
as an alternative to the CIFAR datasets,” arXiv preprint 1707.08819, 2017.

[109] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm
restarts,” in Inter. Conf. Learn. Represent. Wksps. (ICLRW), 2016.

[110] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of convolutional net-
works,” arXiv preprint 1708.03888, 2017.

[111] A. Baevski, W.-N. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli, “data2vec: A gen-
eral framework for self-supervised learning in speech, vision and language,” arXiv
preprint arXiv:2202.03555, 2022.

	Acknowledgments
	List of Abbreviations and Acronyms
	Introduction
	Motivation
	Contributions
	Outline

	Self-Supervised Learning of Visual Representations
	Self-Supervised Learning
	The Exemplar Pretext Task
	The Relative Patch Prediction Pretext Task
	The Jigsaw Puzzle Pretext Task
	The Rotation Prediction Pretext Task

	Limitations of Pretext Task Optimization
	Energy-Based Models for Self-Supervised Learning
	Energy-Based Models
	Contrastive and Non-contrastive Energy-Based Models

	Contrastive Representation Learning
	Supervised Contrastive Learning
	A Framework for Self-Supervised Learning
	Synthetic View Generation
	The Joint-Embedding Architecture
	The Cost Function

	Hard Negative Mining for Contrastive Learning
	Contrastive Self-Supervised Learning
	Non-Contrastive Self-Supervised Learning
	Broader Impact

	Datasets and Evaluation Protocols for Self-Supervised Learning
	Datasets
	Pre-training and Validation

	Feature Evaluation for Self-Supervised Learning
	Linear Evaluation Protocol
	Semi-Supervised Learning
	Cross-Domain Transfer

	Consistent Assignment for Representation Learning
	Introduction and Motivation
	Proposal
	Contributions
	Contrastive Learning from a Clustering Perspective
	Learning Representations by View Assignment
	Preventing Trivial Solutions

	Hyperparameter Exploration
	Does Decreasing the KL Weight Penalty Improves Representation Learning?
	Does the Number of General Prototypes Influence the Quality of the Representations?
	Does the Batch Size Improves the Representations Learned by CARL?

	Unsupervised Feature Evaluation
	Linear Evaluation
	Cross-domain transfer
	Semi-supervised learning
	Fine-tuning

	Implementation Details
	Datasets
	Backbones
	Augmentations
	CARL
	Other methods

	Relation With Other Self-supervised Methods

	Consistent Assignment of Random Partition Sets
	Motivation
	Towards Random Partition Sets
	From CARL to CARP
	Unsupervised Feature Evaluation
	Linear Evaluation
	Semi-supervised Learning

	Implementation Details
	Datasets
	Backbones
	Augmentations
	CARP

	Conclusions
	Future Work

