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Abstract

Sand ripples are commonly observed in both nature and industry. For exam-
ple, they are found on riverbeds and in oil pipelines that transport sand. In
both natural and industrial cases, ripples increase friction between the bed
and fluid and are related to flooding, high pressure drops, and transients.
Ripples appear when sediments are entrained as bed load (a mobile granular
layer) and are usually considered to be the result of initial bedforms that
eventually saturate. Given the small aspect ratio of the initial bedforms,
linear analyses can be used to understand the formation of ripples. This
paper presents a linear stability analysis of a granular bed under a turbulent
flow of a liquid. This analysis takes into consideration all the main mecha-
nisms and parameters involved in the turbulent liquid case, including some
important parameters that have not yet been considered together such as
the bed compactness and the bed-load threshold shear stress. The results
of this analysis are compared with published experimental results and they
show good agreement.
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1. Introduction

Turbulent flows of liquids in the presence of sand are frequent in both
nature and industry. Some examples of such flows include river flows, ocean
flows, and oil-water-sand flows in petroleum pipelines. Under moderate shear
stresses, a granular bed is formed that is not fluidized by the liquid, and the
sand is carried as a mobile layer in contact with the fixed part of the sand
bed. This mode of transport is known as bed load.

A granular bed entrained as bed load may induce the formation of ripples
and dunes [1]. Ripples are bedforms whose wavelengths scale with the grain
diameter but not with the flow depth [2, 3]. They are usually considered
to be a result of initially two-dimensional bedforms that saturate eventually
[4, 5]. Dunes are bedforms whose wavelengths scale with both the flow field
and the flow depth [2, 3] and may be considered as the result of coalescence
of ripples [6, 7, 8, 9]. Ripples and dunes increase friction between the bed
and fluid and are related to flooding, high pressure drops, and transients.
Although of importance, the formation of aquatic ripples has not yet been
completely understood.

Many studies have been conducted in the past decades on the stability
of granular beds sheared by fluids, most of them employing linear stability
techniques [10, 11, 12, 13, 3, 14, 15, 16, 17]. Although this approach has
been criticized in the case of aquatic dunes [8, 9], it is justified in the case
of aquatic ripples given the small aspect ratio of the initial bedforms from
which ripples are formed.

More recently, Franklin [4] described the main mechanisms of ripple for-
mation and presented a linear stability analysis for the specific case of tur-
bulent liquid flows far from the threshold for grain displacement [1, 2]. The
analysis gave expressions for the wavelength, growth rate, and celerity of
initial bedforms and demonstrated their variation with fluid stresses, grain
diameters, and local slope. However, the analysis neglected the effects of
the bed-load threshold shear stress, bed compactness, and settling velocity
on bed stability. To the best of the author’s knowledge, a complete linear
analysis that considers all the physical effects (including the threshold effects
and bed compactness) has not yet been performed.

Franklin [5] presented a nonlinear stability analysis within the same scope
as one of his previous papers [4]. This nonlinear analysis, based on the weakly
nonlinear approach [18], showed that the initial bed instabilities saturate, be-
cause of which the wavelengths of ripples can be predicted by linear analyses
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even if ripples observed in nature are in a nonlinear regime.
This paper addresses the formation of sand ripples under turbulent flows

of liquids, and presents a linear stability analysis that predicts the growth
rate, celerity and length scale of the initial instabilities from which ripples
are formed. The present analysis is different from previous works in that it
considers all the main physical effects, including the threshold shear stress
for grain displacement and bed compactness.

Section 2 describes the physics and main equations involved in the linear
stability analysis. Section 3 presents the results of the stability analysis and
compares it with published experimental results. Section 4 concludes the
paper.

2. Linear Stability

Franklin [4] presented a linear stability analysis of a granular bed sheared
by a turbulent liquid flow, without free-surface effects. The absence of a free
surface is justified in the case of ripples, as these forms do not scale with the
flow depth. Franklin’s analysis was based on four equations, which describe
the mass conservation of granular matter, fluid flow perturbation caused by
the bed shape, the transport of granular matter by a fluid flow, and the
relaxation effects related to the transport of grains. Although Franklin [4]
presented the main mechanisms of ripple formation, he neglected the effects
of the threshold shear stress for grain displacement, the bed compactness,
and the settling velocity of grains on bed stability.

The linear model presented next is derived from that presented in Franklin
[4]. This model is constructed in two dimensions, which is justified by Squire’s
theorem [19]. The model considers all the main mechanisms and effects in-
volved in ripple formation; therefore, the stability analysis is more compre-
hensive than previous ones. The main equations, including those of Franklin
[4], are presented next for completeness of the paper; their development is
reported in detail in Franklin [4].

2.1. Conservation equations

The conservation equations used in this analysis are the mass conservation
of granular matter and the momentum balance between the liquid and the
grains. The mass conservation of grains in two dimensions relates the local
height of the bed, h, to the local transport rate (volumetric) of grains per
unit width q:
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∂h

∂t
+

1

φ

∂q

∂x
= 0, (1)

where t is the time, x is the longitudinal direction and φ is the bed compact-
ness. The momentum balance between the liquid and the grains is usually
obtained by dimensional analysis, as there is no consensus about the rheology
of granular matter. Semi-empirical momentum balances between the liquid
and the grains were proposed in the previous decades, and the obtained ex-
pressions relate the bed-load transport rate to the shear stress caused by
fluid flow on a granular bed. The expression proposed by Meyer-Peter and
Müller [20], one of the most frequently used transport rate equations, is based
on data from exhaustive experiments, and for this reason, it is used in the
present model. The volumetric transport rate of grains per unit width q0 for
a fully developed flow [20] is given by

q0 = D1 (τ0 − τth)
3/2 , (2)

where τ0 is the shear stress on the granular bed caused by the fully devel-
oped flow (the unperturbed, basic state flow described next) and τth is the
threshold shear stress for the incipient motion of grains [1]. D1 is given by:

D1 =
8

ρ3/2 [(S − 1) g]
, (3)

where ρ is the specific mass of the liquid, S = ρp/ρ, ρp is the specific mass
of the grain material and g is the acceleration of gravity. According to Eq.
3, D1 is constant for given fluid and grain types.

There is not a universal expression for the bed-load transport rate; on
the contrary, there are several empirical and semi-empirical laws, many of
them with the same functional form of the Meyer-Peter and Müller [20] equa-
tion. Usually, the only difference is a multiplicative prefactor. Because the
transport rate equations are semi-empirical laws, experimental uncertainties
are included in the multiplicative prefactor. In addition, high uncertainties
are present in the determination of the threshold shear stress τth because
the threshold for incipient motion depends on the surface density of the
moving grains. Charru et al. (2004) [21] showed that the surface density
of moving grains decays due to an increase in bed compactness, caused by
the rearrangement of grains, known as armoring, which leads to an increase
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in the threshold shear rate for the bed load. The adoption of given val-
ues for the multiplicative prefactor and for the threshold Shields number,
θth = τth [(ρp − ρ) gd]−1, does not change the conclusions of the following
analysis.

2.2. Basic state

The basic state corresponds to a fully-developed turbulent boundary layer
over a flat granular bed. For a two-dimensional boundary layer in a hydraulic
rough regime, the fluid velocity profile is given by [22]

u =
u∗

κ
ln

(

y

y0

)

, (4)

where u(y) is the longitudinal component of the mean velocity, κ = 0.41 is
the von Kármán constant, y is the vertical distance from the bed, y0 is the
roughness length and u∗ = ρ−1/2τ

1/2
0 is the shear velocity.

In the steady state regime without spatial variations (flat bed), the fully
developed fluid flow is given by Eq. 4. In this case, the fluid flow and
the flow rate of grains are in equilibrium. This means that the available
momentum for transporting grains as bed load is limited because part of the
fluid momentum is transferred to the moving grains, which in turn transfer
a part of the transferred fluid momentum to the fixed layers of the granular
bed, until an equilibrium condition is reached. The equilibrium transport
rate of grains is called saturated transport rate and is given by Eq. 2.

2.3. Perturbations

The origin of perturbations in this problem is the initial undulation of
the granular bed. The bed undulation causes deviations from the basic state
in both the fluid flow and the bed-load transport rate, thereby perturbing
them. If the bed undulation is of a small aspect ratio, as is expected for
initial instabilities, the perturbations in the fluid flow and in the transport
rate may be assumed as being small and a linear model can be used. The
equations for these perturbations are presented next.

In the previous decades, many analytical works were focused on the per-
turbation of a turbulent boundary layer by bedforms. Among them, we cite
Jackson and Hunt [23], Hunt et al. [24], and Weng et al. [25] here. Sauer-
mann [26] and Kroy et al. [27, 28] simplified the results of Weng et al. [25]
for surface stress and obtained an expression containing only the dominant
physical effects of the perturbation. For a hill with local height h and a
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length 2L between the half-heights, they obtained the perturbation of the
longitudinal shear stress (dimensionless):

τ̂k = Ah(|k|+ iBk), (5)

where A and B are considered as constants, k = 2πλ−1 is the longitudinal
wavenumber (λ is the wavelength), and i =

√
−1. The shear stress on the

bed surface is given as

τ = τ0(1 + τ̂). (6)

When the fluid flow is perturbed by the undulated bed, the bed-load
transport rate varies locally. If equilibrium is assumed between the fluid
flow and the bed-load transport rate, which is equivalent to neglecting the
inertia of grains, then the transport rate is locally saturated and obtained
by replacing τ0 in Eq. 2 with τ (Eq. 6). A convenient way to express this
perturbed-saturated transport rate qsat is:

qsat
q0

= (1 +D2τ)
3/2 , (7)

where D2 = τ0 (τ0 − τth)
−1 is a term that quantifies how far the flow is

from the threshold. This term has a singularity at τ0 = τth. Fourrière et
al. (2010) [8] proposed a more sophisticated expression for the perturbed-
saturated transport rate, however, the form used here (Eq. 7) is simpler
while allowing to analyze threshold effects.

In the case of a spatially varying perturbed flow, a relaxation effect exists
between the fluid and the grains owing to the inertia of the latter [29]. For
this reason, the bed-load transport rate will lag behind the fluid flow by
a certain distance, which is usually referred to as saturation length, Lsat.
Andreotti et al. [29] proposed the following expression taking into account
the relaxation effect:

∂q

∂x
=

qsat − q

Lsat

. (8)

For the specific case of bed load under liquid flows, Charru (2006) [16]
proposed that the saturation length Lsat is proportional to a deposition length
ld =

u∗

Us

d:

Lsat = Csat
u∗

Us

d, (9)
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where Us is the settling velocity of a single grain and Csat is a constant of
proportionality. The saturation length given by Eq. 9 is experimentally
supported by Franklin and Charru (2011) [30].

Pähtz et al. (2013) [31] and Pähtz et al. (2014) [32] proposed a more gen-
eral saturation length, suitable for both liquid and gas flows. The proposed
expression is also supported by experimental measurements, including the
results of Franklin and Charru (2011) [30]. However, as the present paper
concerns only liquid flows, Eq. 9 is preferred.

Another parameter affecting bed stability is the local slope of the bed:
the gravitational field weakens the transport of grains over positive slopes.
One simple way to take into account this effect is to compute the effective
shear stress perturbation by replacing B in Eq. 5 with Be = B − Bg/A so
that the perturbed stress takes into consideration the grain weight and the
shear between the grains, in addition to the shear caused by the fluid flow
[16].

2.4. Solution

Taking into account that the initial instabilities are of a small aspect
ratio, solutions h and q to Eqs. 1, 6, 7, and 8 are plane waves. They can be
decomposed into their normal modes as follows:

h(x, t) = Hei(kx−Ωt) + c.c., (10)

q(x, t)

q0
= 1 +Qei(kx−Ωt) + c.c., (11)

where k ∈ R, k = 2πλ−1 is the wavenumber in the x direction, λ ∈ R is the
wavelength in the x direction, H ∈ C and Q ∈ C are the amplitudes, and
c.c. denotes “complex conjugate”. Let Ω ∈ C, Ω = ω + iσ, where ω ∈ R

is the angular frequency and σ ∈ R is the growth rate. Inserting the normal
modes in Eqs. 1, 6, 7, and 8 gives the following system:

[

σ − iω (1/φ)ikq0
(3/2)D2A (|k|+ iBek) −(1 + ikLsat)

] [

H
Q

]

=

[

0
0

]

. (12)

The non-trivial solution of Eq. 12 gives the growth rate (Eq. 13) and
the angular frequency of initial instabilities. The phase velocity is given by
c = ω/k (Eq. 14).
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σ =
3

2

Aq0D2

φ

k2 (Be − |k|Lsat)

1 + (kLsat)
2 , (13)

c =
3

2

Aq0D2

φ

|k| (1 + BeLsat|k|)
(

1 + (kLsat)
2)2

. (14)

The most unstable mode corresponds to the maximum of the growth
rate. Considering ∂σ/∂k = 0 and within a long-wave approximation, i.e.,
(kLsat)

2 ≪ 1, the most unstable wavenumber kmax, wavelength λmax, growth
rate σmax, and celerity cmax are, respectively, given as

kmax ≈ 2

3

Be

Lsat

, (15)

λmax ≈ 3π

Be

Lsat, (16)

σmax ≈ 2

9

AB3
eD2

φ

q0
(Lsat)2

, (17)

cmax ≈ ABeD2

φ

q0
Lsat

. (18)

3. Stability results

The growth rate and the celerity, as expressed in Eqs. 13 and 14, respec-
tively, are computed next using the known values of coefficients A and B,
whereas some other terms, such as φ, u∗, d and Bg, are varied in order to
analyze their effects on stability. For the entire analysis, it was considered
that A = 3.2 and B = 0.3 because these are typical values for aquatic ripples
[33]; further, Us was computed by the Schiller–Naumann correlation [34].
With regard to Csat, no experimental measurements have yet been reported
for the aquatic case [33]. Then, Csat = 5 was adopted on the basis of the
aeolian case, whose constant of proportionality is 4.4 [17].

The values of Bg and u∗ are directly linked to the effects of gravity and
fluid flow, respectively, and so, they are used next as the parameters to be
varied. For small variations in grain diameter and flow far from the threshold
(i.e., D2 ≈ 1), variations in d do not affect D2 and do not imply significant
variations in the settling velocity Us. Therefore, in this case, the values of
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Figure 1: (a) Growth rate σ as a function of wavenumber k. (b) Phase velocity c as a
function of wavenumber k. The graphs are parameterized by the shear velocity u∗.

d are directly linked to relaxation effects. Most previous stability analyses
were conducted in this way, although shear stresses are close to threshold
values when bed load occurs in water. However, close to the threshold and
within large ranges of d, variations in d cause considerable variations in the
settling velocity as well as in the threshold shear stress. In this case, d is
closed linked to effects of threshold shear stress.

This section presents the variation of all these parameters and analyzes
the influences of gravity, fluid velocities, relaxation, compactness, and thresh-
old on initial instabilities. Whenever possible, the obtained diagrams are
plotted in dimensional form in order to directly compare the stability out-
puts with experimental data.

3.1. Stability diagrams

Figures 1 to 6 show the growth rates σ and phase velocities c as functions
of the wavenumber k, parameterized by u∗, φ, Bg, and d. The curves σ(k)
correspond to long-wave instabilities, where the long wavenumbers are always
stable. Using σ(k), it is possible to identify the unstable regions and the most
unstable modes. For the corresponding wavenumbers, the celerity curves
c(k) give the celerity of each mode (usually, only the most unstable and the
cutoff modes are of interest). Unless where deliberately varied or explicitly
mentioned, the following values are fixed: d = 0.1mm, u∗ = 0.01m/s, φ =
0.6, Bg = 0, ρ = 1000 kg/m3, ρp = 2500 kg/m3, and µ = 10−3 Pa.s. These
values are typical for bed-load transport of sand in water.

Figures 1(a) and 1(b), respectively, show the growth rate σ and the phase
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Figure 2: (a) Growth rate σ as a function of wavenumber k. (b) Phase velocity c as a
function of wavenumber k. The graphs are parameterized by the bed compactness φ.

velocity c as functions of the wavenumber k. For obtaining these curves, the
shear velocity was varied between 0.01m/s and 0.06m/s while the remaining
terms were kept constant. The direction of growth in u∗ is shown also in these
figures.

For the most unstable mode, these curves agree with the vari-
ation obtained with the long-wave approximation. For the growth
rate, celerity, and wavenumber, Eqs. 15, 17, and 18 predict

kmax ∼ u−1
∗
, σmax ∼ u2

∗
(u2

∗
− u2

th)
−1

(u2
∗
− u2

th)
3/2

u−2
∗
, and cmax ∼

u2
∗
(u2

∗
− u2

th)
−1

(u2
∗
− u2

th)
3/2

u−1
∗

as given by the wavenumbers corresponding
to the maxima in Fig. 1(a).

Far from the threshold, u∗ ≫ uth and σmax ∼ u∗, cmax ∼ u2
∗
, and

kmax ∼ u−1
∗
, just as predicted by previous analyses where the threshold ef-

fects were neglected (e.g., [4]). This behavior approaches situations where
shear velocities are high for the corresponding grain diameters (or the diam-
eters are small for the corresponding shear velocities), for instance, curves
for high u∗ (the three leftmost curves) in Fig. 1(a). However, the behavior is
different when the shear velocities are moderate for the corresponding grain
diameters, as is the case of the curves for low u∗ (the three rightmost curves)
in Fig. 1(a).

In liquids, bed load is never too far from threshold. Therefore, threshold
effects cannot be neglected and Eqs. 13–18 are then used.

Figures 2(a) and 2(b), respectively, show the growth rate σ and the phase
velocity c as functions of the wavenumber k. For obtaining these curves, the
bed compactness was varied between 0.6 and 1, while the remaining terms
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Figure 3: (a) Growth rate σ as a function of wavenumber k. (b) Phase velocity c as a
function of wavenumber k. The graphs are parameterized by the gravity coefficient Bg.

were kept constant. The direction of growth in φ is also shown in these
figures.

As predicted by Eqs. 15–18, the behaviors of the growth rate and the
celerity of the most unstable mode are σmax ∼ φ−1 and cmax ∼ φ−1, respec-
tively, whereas the wavenumber and wavelength do not vary with φ.

In practical situations, the bed compactness is φ ≈ 0.6 and the dispersion
around this value is small. As the growth rate and the celerity vary as a unit
power of 1/φ, the influence of the bed compactness on the growth rate and
celerity may be neglected.

Figures 3(a) and 3(b), respectively, show the growth rate σ and the phase
velocity c as functions of the wavenumber k. For obtaining these curves, the
gravity coefficient Bg was varied between 0 and 0.02 and the remaining terms
were kept constant. The direction of growth in Bg is shown in these figures.

Figure 3(a) shows that σmax decreases as Bg increases. This agrees with
Eq. 17, which predicts σmax ∼ (B − Bg/A)

3. However, the value of Bg has
not been determined experimentally and can only be estimated by dimen-
sional analysis. In the case of water, it is estimated to be ord(0.01) [16], where
the term ord denotes order of magnitude. As B = ord(0.1) and A = ord(1),
the effects of Bg on σ are not very pronounced, as is expected for water given
the low relative weight of grains and the lubricating effect of water. Figure
3(a) shows that the wavenumber decreases linearly with the growth of Bg, in
accordance with Eq. 15, which predicts kmax ∼ −Bg. Then, gravity effects
tend to increase the most unstable wavelength, and the same occurs for the
cutoff wavelength. Further, Fig. 3(b) shows that the celerity remains almost
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Figure 4: (a) Growth rate σ as a function of wavenumber k. (b) Phase velocity c as
a function of wavenumber k. The graphs are parameterized by varying only the grain
diameter d.

unchanged by Bg, which (considering the orders of magnitude of A, B, and
Bg) agrees with Eq. 18. Finally, gravity effects in water are smaller than
other effects, and given the large uncertainties in estimating Bg, they may
be neglected.

Figures 4(a) and 4(b), respectively, show the growth rate σ and the phase
velocity c as functions of the wavenumber k. For obtaining these curves, the
grain diameter d was varied between 0.1mm and 1mm, while the remaining
terms except for Lsat were kept constant. The direction of growth in d is also
shown in these figures.

The main objective of these figures is to understand the effects of relax-
ation on initial instabilities. In order to isolate these effects, D2 and the
settling velocity Us were kept constant but d was varied. Physically, this
corresponds to small variations in grain diameter and flows far from the
threshold, which is not really expected for liquids, but is a rough approxima-
tion for high shear velocities. In obtaining Figs. 4(a) and 4(b), D2 was fixed
at unity and Us was fixed to the value corresponding to d = 0.1mm.

Figure 4(a) shows a strong decrease in both the growth rate and the
wavenumber with increasing grain diameter. This agrees with Eqs. 15 and
17, which predict (for variations in only d) kmax ∼ d−1 and σmax ∼ d−2.
Figure 4(a) also shows that the cutoff wavenumber varies with d−1. This
strong behavior should not be expected in the case of liquids: to the best
of the author’s knowledge, such strong variation of σmax with d has not yet
been reported.

Concerning the celerities, it is difficult to analyze Fig. 4(b) because the
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Figure 5: (a) Growth rate σ as a function of normalized wavenumber kd. (b) Phase
velocity c as a function of normalized wavenumber kd. The graphs are parameterized by
varying only the grain diameter d.

most unstable wavenumber is different for each d. In order to compare the
celerities corresponding to kmax for each diameter, the abscissas of the graphs
in Fig. 4 were normalized by d in Fig. 5. Figure 5(a) shows that kmaxd ≈
0.03, and Fig. 5(b) shows a decrease in the celerity with increasing grain
diameter. This agrees with Eq. 18, which predicts cmax ∼ d−1 in this case.
However, this dependency is contrary to experimental observations, in which
the celerity increases by a small amount with increasing grain diameter [35].

The large differences between the linear analysis and the experimental
results indicate that stability analyses based solely on variations of grain
diameter, without taking into account the threshold and settling velocity
variations, are unsuitable for bed load in liquids.

Figures 6(a) and 6(b), respectively, show the growth rate σ and the phase
velocity c as functions of the wavenumber k. For obtaining these curves, the
grain diameter d was varied between 0.1mm and 1mm, while the remaining
terms that do not depend on d were kept constant. The directions of growth
in d are also shown in these figures. The continuous, dashed, dashed-dotted,
and dotted curves correspond to d = 0.1mm, d = 0.4mm, d = 0.7mm,
and d = 1mm, respectively. In Fig. 6, the terms depending on d, i.e., Lsat,
D2, and Us, were varied accordingly. This means that the graphs in this
figure are suitable for large variations of d and for flow conditions close to
the threshold; therefore, these graphs can highlight the threshold effects.

Figure 6(a) shows that the most unstable mode varies non monotonically
with d: the wavenumber first increases and then decreases. This variation
is weaker than that in the case of Figs. 4 and 5, and, in principle, does not
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Figure 6: (a) Growth rate σ as a function of wavenumber k. (b) Phase velocity c as
a function of wavenumber k. The graphs are parameterized by the grain diameter d.
The continuous, dashed, dashed-dotted, and dotted curves correspond to d = 0.1mm,
d = 0.4mm, d = 0.7mm, and d = 1mm, respectively

agree with experimental observations that the wavelength of aquatic ripples
increases with d [33, 36]. However, measured aquatic ripples correspond to
different fluid flow conditions, where u∗ is usually larger for larger diameters.
In this sense, u∗ shall be varied when comparing the stability analysis with
experimental data. This is done as shown in Fig. 9, which is presented in
the next subsection. With regard to the celerity, Fig. 6(b) shows that cmax

also varies non monotonically with d, and for the same reason as that given
for σ, comparison with experimental data must take u∗ into account.

Variations in d accompanied by the respective variations of Lsat, D2,
and Us, which correspond to combined threshold and relaxation effects, are
weaker than variations in only d, which correspond to isolated relaxation ef-
fects, and are closest to experimental measurements (presented next). When
considering different values of u∗, this combined threshold-relaxation analysis
is suitable for predicting the formation of ripples.

Finally, Fig. 7 compares the maxima of σ(k), given by Eq. 13 and
plotted in Figs. 1(a) and 6(a), with the long-wave approximation given by
Eq. 17. The two curves are almost superposed, revealing that the long-wave
approximation is a good one and justifying a posteriori its use.

3.2. Marginal stability

Figure 8(a) shows curves of marginal stability in terms of u∗ (fluid flow
effects) for different values of Bg (gravity effects), and Fig. 8(b) shows the
curves of marginal stability in terms of d for different values of Bg, where
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Figure 7: (a) Curves of the most unstable modes in terms of u∗. (b) Curves of the
most unstable modes in terms of d, where all the parameters affected by d were varied
accordingly. The continuous curves correspond to the long-wave approximation (Eq. 17)
and the dashed curves correspond to the maxima of the complete solution (Eq. 13).

all the parameters affected by d were varied accordingly (relaxation effects
and threshold effects were combined). Figure 8 shows that gravity effects on
the cutoff wavenumber are smaller than the effects of the threshold, relax-
ation, and fluid flow. Given the large uncertainties in estimating Bg and its
relatively small effects, gravity effects may be neglected in the case of liquids.

Figure 9(a) shows curves of marginal stability in terms of d for different
values of u∗, and Fig. 9(b) shows the curves of the most unstable modes
in terms of d for different values of u∗. In these curves, all the parameters
affected by d were varied accordingly, and so, the curves correspond to the
marginal stability of the combined threshold and relaxation effects, param-
eterized by fluid flow effects. The continuous, dashed, and dotted curves
correspond to u∗ = 0.02m/s, u∗ = 0.04m/s, and u∗ = 0.06m/s, respec-
tively. Figure 9 shows that the cutoff and the most unstable wavenumbers
vary strongly with the shear velocity. This means that fluid flow effects on
both the marginal stability and the most unstable mode are strong and must
be taken into account.

In summary, the linear stability analysis predicts that fluid flow, thresh-
old, and relaxation effects are strong and must be taken into account when
predicting the formation of aquatic ripples. In order to verify this prediction,
the linear stability analysis is compared with some experimental results in
the next subsection.
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Figure 8: (a) Curves of marginal stability in terms of u∗ for different values of Bg. (b)
Curves of marginal stability in terms of d for different values of Bg, where all the parame-
ters affected by d were also varied. The continuous, dashed, and dotted curves correspond
to Bg = 0, Bg = 0.01, and Bg = 0.02, respectively.

3.3. Comparison with experimental results

Next, the results of the above-presented analysis are compared with pub-
lished experimental results. In particular, the reported results of two exper-
imental studies, which addressed the formation of aquatic ripples in closed
conduits, are considered here. One of the studies was of Coleman et al. [36],
who experimentally studied bed instabilities in a 6m long horizontal closed
conduit with a rectangular cross section (300mm wide by 100mm high) and
employed water as the fluid medium and glass beads as the granular medium.
The experiments were performed in a fully turbulent regime, with Reynolds
numbers Re = UH/ν in the range 26000 < Re < 70000 (where H is the
channel height, ν is the kinematic viscosity, and U is the mean velocity of
the fluid). The other study considered here is of Franklin [35], who experi-
mentally studied initial instabilities in a 6m long horizontal closed conduit
with a rectangular cross section (120mm wide by 60mm high). The exper-
iments were performed in a fully turbulent regime, with Reynolds numbers
within the range 13000 < Re < 24000.

Figure 10 shows a comparison of the curves of marginal stability obtained
in this study with the corresponding experimental data of Coleman et al. [36]
and Franklin [35]. In this figure, the open diamonds and inverted triangles,
taken from Coleman et al. [36], correspond to d = 0.11mm and d = 0.87mm
glass spheres, respectively, under different shear velocities. The filled dia-
monds, circles, and squares, taken from Franklin [35], correspond to glass
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Figure 9: (a) Curves of marginal stability in terms of d for different values of u∗. (b)
Curves of the most unstable modes in terms of d for different values of u∗. In these curves,
all the parameters affected by d were also varied. The continuous, dashed, and dotted
curves correspond to u∗ = 0.02m/s, u∗ = 0.04m/s, and u∗ = 0.06m/s, respectively.
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Figure 10: (a) Curves of marginal stability in terms of u∗ for different values of Bg. The
continuous, dashed and dotted curves correspond to Bg = 0, Bg = 0.01, and Bg = 0.02,
respectively. (b) Curves of marginal stability in terms of d for different values of u∗,
where all the parameters affected by d were also varied. The dashed-dotted, continuous,
dashed, and dotted curves correspond to u∗ = 0.01m/s, u∗ = 0.02m/s, u∗ = 0.04m/s,
and u∗ = 0.06m/s, respectively. The symbols correspond to experimental data and are
described in the text.

spheres with d = 0.14mm, d = 0.25mm, and d = 0.53mm, respectively,
under different shear velocities.

Figure 10(a) shows the curves of marginal stability in terms of u∗ for
different values of Bg, where the continuous, dashed, and dotted curves cor-
respond to Bg = 0, Bg = 0.01, and Bg = 0.02, respectively. The model
results are in agreement with experimental data, since all the measured rip-
ples, with the exception of a few ripples with d = 0.14mm, lie in the predicted
unstable regions. The measured ripples that are not in the unstable region
are close to the marginal curves. This discrepancy may be related to exper-
imental uncertainties, but a more probable reason pertains to some model
parameters whose values are not well known. One of them is Csat, whose
value has not yet been measured in the aquatic case, and the other param-
eter is the threshold shear. In the present analysis, the Shields parameter
at the bed-load threshold, i.e., θth = u∗,th/ ((S − 1)gd), where u∗,th is the
corresponding shear velocity [1], was fixed at 0.04. However, there is no real
consensus about this value, which may vary between 0.02 and 0.06 in the
present case [37, 38, 39, 40].

Figure 10(b) shows the curves of marginal stability in terms of d for
different values of u∗, where all the parameters affected by d were varied
accordingly. The dashed-dotted, continuous, dashed, and dotted curves cor-
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respond to u∗ = 0.01m/s, u∗ = 0.02m/s, u∗ = 0.04m/s, and u∗ = 0.06m/s,
respectively. Considering that the open diamonds and inverted triangles cor-
respond to 0.015m/s < u∗ < 0.019m/s and 0.034m/s < u∗ < 0.050m/s,
respectively, and that the filled diamonds, circles, and squares correspond to
0.011m/s < u∗ < 0.020m/s, 0.012m/s < u∗ < 0.021m/s, and 0.011m/s <
u∗ < 0.022m/s, respectively, it can be confirmed that all the measured rip-
ples lie in the predicted unstable regions and that the curves of marginal
stability obtained in this study agree well with the published experimental
data.

As a final remark, I note that previous works proposed different behaviors
for the wavelength of aquatic ripples with respect to fluid flow conditions.
For instance, Coleman et al. (2003) [36] proposed that the wavelength does
not vary with the applied fluid flow, whereas Charru et al. (2013) [33] pro-
posed that the wavelength may decrease with the fluid flow. The present
paper presented a linear stability analysis of a sheared granular bed, taking
into consideration all the main mechanisms and parameters involved in the
turbulent liquid case. Although the most unstable wavelength increases with
both the shear stress and the grains diameter, the combination of different
mechanisms changes the wavelength selection. In some cases, a granular bed
under a given shear stress may develop smaller ripples than a bed submit-
ted to a lower shear stress due to the combination of all the mechanisms
and parameters. In other cases, the wavelength may be insensitive to fluid
flow conditions. This is not in disagreement with previous works [8, 33, 36],
especially if we take into consideration the uncertainties involved in the de-
termination of the threshold Shields number (bed armouring included).

4. Conclusions

This paper addressed the formation of sand ripples under turbulent flows
of liquids. It presented a linear stability analysis of a granular bed below a
turbulent boundary layer, taking into consideration all the main mechanisms
and parameters involved in the turbulent liquid case. In particular, the
bed compactness and bed-load threshold shear stress–two parameters that
have not been exhaustively considered in previous analyses–were taken into
account. The stability analysis showed that the bed compactness does not
influence the wavelength, and as its variation is small in practical situations,
its influence on the growth rate and celerity may be neglected. In the case of
liquids, gravity effects are small and they may also be neglected (as is usually
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the case in many of the previous analyses). On the other hand, fluid flow and
threshold effects have strong influences on the wavelengths, growth rates, and
celerities, and therefore, they must be taken into account. Unlike previous
stability analyses, in this analysis, expressions were proposed considering all
these effects and curves of marginal stability were plotted. The curves of
marginal stability were compared with published experimental results and
they were found to agree well.
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