

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

DANIEL SAVERIO SPOZITO

ESPECTROFOTÔMETRO DEDICADO PARA DOSAGEM DE CLORETOS NO SUOR

CAMPINAS 2021 DANIEL SAVERIO SPOZITO

ESPECTROFOTÔMETRO DEDICADO PARA DOSAGEM DE CLORETOS NO SUOR

Tese apresentada à Faculdade de Engenharia Elétrica e de Computação da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título Doutor em Engenharia Elétrica, na área de Eletrônica, Microeletrônica e Optoeletrônica.

Orientador: Dr. Eduardo Tavares Costa Coorientador: Dr. Francisco Ubaldo Vieira Junior Coorientador: Dr. Jacobus Willibrordus Swart

Este trabalho corresponde à versão final da tese defendida pelo aluno Daniel Saverio Spozito orientada pelo Professor Dr. Eduardo Tavares Costa e coorientada pelo Professor Dr. Francisco Ubaldo Vieira Junior e Dr. Jacobus Willibrordus Swart.

Assinatura do Orientador

Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Rose Meire da Silva - CRB 8/5974

Sp69e	Spozito, Daniel Saverio, 1975- Espectrofotômetro dedicado para dosagem de cloretos no suor / Daniel Saverio Spozito. – Campinas, SP : [s.n.], 2021.
	Orientador: Eduardo Tavares Costa. Coorientadores: Francisco Ubaldo Vieria Junior e Jacobus Willibrordus Swart. Tese (doutorado) – Universidade Estadual de Campinas, Faculdade de
	 Engennaria Eletrica e de Computação. 1. Fibrose cística. 2. Teste do suor. 3. Diagnóstico. 4. Colorimetria. 5. Espectrofotometria. I. Costa, Eduardo Tavares, 1956 II. Vieira Junior, Francisco Ubaldo. III. Swart, Jacobus Willibrordus,1950 IV. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação. V. Título.

Informações para Biblioteca Digital

Título em outro idioma: Dedicated spectrophotometer for dosing chlorides in sweat Palavras-chave em inglês: Cystic fibrosis Sweat test Diagnosis Colorimetry Spectrophotometry Área de concentração: Eletrônica, Microeletrônica e Optoeletrônica Titulação: Doutor em Engenharia Elétrica Banca examinadora: Eduardo Tavares Costa [Orientador] Aparecido Augusto de Carvalho Iris Alexandra Lopes da Silva Jefferson Luiz Brum Margues Maria de Fátima Corrêa Pimenta Servidoni Data de defesa: 06-08-2021 Programa de Pós-Graduação: Engenharia Elétrica

Identificação e Informações acadêmicas do(a) aluno(a) - ORCID do autor: https://orcid.org/0000-0003-1120-8555 - Currículo Lattes do autor: http://lattes.cnpq.br/7085717004087585

COMISSÃO JULGADORA - TESE DE DOUTORADO

Candidato: Daniel Saverio Spozito RA:142356
Data da defesa: 6 de agosto de 2021
Título da Tese: "ESPECTROFOTÔMETRO DEDICADO PARA DOSAGEM DE CLORETOS NO SUOR"

Prof. Dr. Eduardo Tavares Costa (Presidente)
Prof. Dr. Aparecido Augusto de Carvalho
Profa. Dra. Iris Alexandra Lopes da Silva
Prof. Dr. Jefferson Luiz Brum Marques
Profa. Dra. Maria de Fátima Corrêa Pimenta Servidoni

A ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora, encontra-se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na Secretaria de Pós-Graduação da Faculdade de Engenharia Elétrica e de Computação.

Dedico este trabalho à minha esposa Sônia Regina Corrêa Fernandes pela oportunidade da caminhada conjunta. Aos meus pais, José Saverio Spozito Junior e Soeli Aparecida Ferreira Spozito, que me conduziram no caminho do bem desde meus primeiros passos.

AGRADECIMENTOS

A Deus pela existência.

À minha esposa, amiga, confidente e parceira Sônia Regina Corrêa Fernandes.

Aos meus pais, José Saverio Spozito Junior e Soeli Aparecida Ferreira Spozito, pela vida.

Aos meus enteados Tiago Fernandes Guerra e Taís Fernandes Guerra, meus irmãos Raphael Saverio Spozito, Fabio Saverio Spozito e minha sobrinha Maria Eduarda Renzi Spozito por acreditarem e torcerem pelo êxito deste trabalho.

Ao professor Dr. Francisco Ubaldo Vieira Junior pela ajuda na condução de todas as etapas deste trabalho e à sua esposa Katia Maria Rosa Vieira pelo acolhimento em todos os momentos em que fui recebido por ambos, em sua casa, para as preciosas orientações. Tornaram-se queridos amigos.

Ao professor Dr. Eduardo Tavares Costa, responsável e apoiador deste projeto, sempre solícito, viabilizando todos os meios necessários à realização dos experimentos, meus sinceros agradecimentos.

Ao professor Dr. Jacobus Willibrordus Swart por me abrir as portas dessa prestigiada universidade, me direcionando nas etapas iniciais e habilitando para o treinamento e uso das dependências do Centro de Componentes Semicondutores -CCSnano.

À amiga Ana Maria Moreira pelos preciosos conselhos durante essa etapa.

Aos queridos amigos que me acompanharam nesta caminhada.

À Faculdade de Engenharia Elétrica e de Computação da UNICAMP e a todos os seus servidores e funcionários.

À nação brasileira que, por meio do Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, me permitiu a oportunidade da dedicação integral a este trabalho, espero, com os resultados obtidos, devolver à sociedade uma pequena contribuição para a melhoria da qualidade de vida que a Ciência pode proporcionar.

"Genialidade consiste em 1% inspiração e 99% de transpiração!" Thomas Alva Edison

RESUMO

Introdução: a Fibrose Cística é uma doença atualmente crônica, de causa genética, que altera o funcionamento das células de vários órgãos, provocando comorbidades que podem levar a óbito. Propor meios que garantam o diagnóstico precoce é fundamental. O teste do suor, exame laboratorial classificado como padrão-ouro, é essencial no diagnóstico da Fibrose Cística cujo protocolo prevê a dosagem de cloretos no suor. A colorimetria, um método quantitativo utilizado na dosagem de cloretos, não está prevista na regulamentação nacional para a aplicação no teste do suor, diferentemente da titulometria, coulometria e condutometria. Na técnica colorimétrica, um espectrofotômetro de luz visível mede a absorbância das amostras de suor adicionadas a um reagente específico. A quantidade de luz absorvida possui relação direta à concentração de cloretos no suor. Este trabalho teve como objetivo o desenvolvimento de um espectrofotômetro portátil, de baixo custo e dedicado ao diagnóstico de Fibrose Cística, a ser utilizado em novo procedimento para coleta e diluição direta em reagente colorimétrico. Métodos: foi desenvolvido um sensor utilizando a técnica de prototipagem rápida em resina fotopolimerizante por tecnologia de processamento digital de luz na confecção de um sensor. A partir de componentes de baixo custo disponíveis no mercado nacional e internacional foi montado um equipamento dedicado para a medição de absorbância pelo método colorimétrico. Os testes do dispositivo foram realizados utilizando dois protótipos a partir de sete concentrações diferentes de solução similar ao suor (18-20; 30-34; 45-50; 55-60; 75-80; 85-90 e 105-110) mEq/L em cinco medidas em diferentes ordens (crescente, decrescente e aleatórias), totalizando 105 medições. Os resultados foram comparados com um espectrofotômetro comercial. Para a construção da proposta de procedimento, utilizou-se a técnica de delineamento de experimento. Foram utilizadas as variáveis: temperatura; concentração; área do papel e volume de solução similar ao suor. O papel filtro qualitativo Whatman® n°1 tinha as dimensões de 20 x 10 mm, 20 x 25 mm, 20 x 15 mm e 20 x 30 mm para absorver volumes de solução similar ao suor com concentrações de 32,0 e 77,50 mEq/L e volumes de 20, 40 e 100 µL. Resultados: os equipamentos apresentaram linearidade (R²>0,99) na dosagem e tiveram os resultados estatisticamente significantes quando comparados à referência (P<0,05). A proposta de procedimento para o teste do suor mostrou independência entre as variáveis temperatura,

concentração, área do papel e volume de solução similar ao suor. **Conclusão**: o equipamento apresentou resultados consistentes em laboratório para dosagem de cloretos no suor por colorimetria. A comprovação deve ser realizada com testes *in vivos*. A proposta de procedimento para o teste do suor teve o custo aproximado de R\$ 8,00 por teste. Mostrou-se reprodutiva em laboratório com custos dentro dos valores de repasse estabelecidos pelo SUS para ressarcimento aos centros de referência em Fibrose Cística.

Palavras-chave: Fibrose Cística. Teste do Suor. Diagnóstico. Colorimetria. Espectrofotometria. Dispositivo.

ABSTRACT

Introduction: Cystic Fibrosis is currently a chronic disease, with a genetic cause, that alters the functioning of the cells of several organs, causing comorbidities that can lead to death. Proposing means to ensure early diagnosis is fundamental. The sweat test, a laboratory test classified as the gold standard, is essential for the diagnosis of Cystic Fibrosis whose protocol foresees the dosage of chlorides in sweat. Colorimetry, which is a quantitative method used in the dosage of chlorides, is not foreseen in national regulations for the application in sweat testing, unlike titrimetry, coulometry, and conductometry. In the colorimetric technique, a visible light spectrophotometer measures the absorbance of sweat samples added to a specific reagent. The amount of light absorbed is directly related to the concentration of chlorides in sweat. The objective of this work was to develop a portable, low-cost spectrophotometer dedicated to the diagnosis of Cystic Fibrosis, to be used in a new procedure for collection and direct dilution in colorimetric reagent. **Methods:** a sensor was developed using the rapid prototyping technique in light-curing resin by digital light processing technology in the making of a sensor. From low cost components available in the national and international market, dedicated equipment was assembled for the absorbance measurement by the colorimetric method. The device tests were performed using two prototypes from seven different concentrations of solution similar to sweat (18-20; 30-34; 45-50; 55-60; 75-80; 85-90 and 105-110) mEq/L in five measurements in different orders (increasing, decreasing and random), totaling 105 measurements. The results were compared with a commercial spectrophotometer. For the construction of the proposed procedure, the experiment design technique was used. The variables used were: temperature, concentration, paper area and volume of solution similar to sweat. The Whatman® n°1 qualitative filter paper had the dimensions of 20 x 10 mm, 20 x 25 mm, 20 x 15 mm and 20 x 30 mm to absorb volumes of solution similar to sweat with concentrations of 32.0 and 77.50 mEq/L and volumes of 20, 40 and 100 µL. Results: the equipment showed linearity (R2>0.99) in the dosage and had statistically significant results when compared to the reference (P<0.05). The proposed procedure for the sweat test showed independence among the variables temperature, concentration, paper area and volume of solution similar to sweat. Conclusion: the equipment has shown consistent results in the laboratory for dosing chlorides in sweat by colorimetry.

Verification must be done with in vivo tests. The proposed sweat test procedure cost approximately R\$ 8.00 per test. It proved to be reproducible in the laboratory with costs within the transfer values established by UHS for reimbursement to Cystic Fibrosis reference centers.

Keywords: Cystic Fibrosis; Sweat Test; Diagnosis; Colorimetry; Spectrophotometry; Device.

LISTA DE FIGURAS

Figura 1	Fluxograma do Teste do Suor	26
Figura 2	Registro fotográfico do procedimento de eletroestimulação	28
Figura 3	Fotografia do dispositivo coletor Macroduct	29
Figura 4	Fotografia do uso do dispositivo de coleta Macroduct para a coleta de suor em criança	29
Figura 5	Registro fotográfico do procedimento de coleta de suor utilizando o elemento absorvente	30
Figura 6	Diagrama dos métodos de análise química	31
Figura 7	Ilustração do aparato utilizado no método de titulação	32
Figura 8	Ilustração do equipamento Sweat Check Macroduct®	33
Figura 9	Ilustração gráfica do comportamento da corrente elétrica pelo tempo no método coulométrico.	35
Figura 10	Cloridrômetro Macroduct®	35
Figura 11	Ilustração do arranjo utilizado no método fotométrico exemplificando uma fonte de luz cuja potência luminosa P _s	36
Figura 12	llustração do espectro visível e comprimentos de onda eletromagnética	38
Figura 13	Representação da arquitetura básica de um espectrofotômetro	39
Figura 14	Representação da relação $I_0 - I_t$ e largura de uma cubeta	40
Figura 15	Representação da relação I ₀ – Ite tonalidade da amostra	40
Figura 16	Representação gráfica de uma curva-padrão	42
Figura 17	Ilustração da arquitetura simplificada de uma impressora utilizando a técnica FDM	45
Figura 18	Ilustração de uma extrusora de tecnologia FDM	46
Figura 19	Ilustração da arquitetura simplificada de uma impressora 3D DLP	47
Figura 20	Registro fotográfico do reservatório de resina em impressora DLP	47
Figura 21	Registro fotográfico do microcontrolador ATmel328P-PU	50
Figura 22	Diagrama de pinagem do microcontrolador ATMega 328P-PU	50
Figura 23	Registro fotográfico das soluções SS preparadas	52
Figura 24	Registro fotográfico das cubetas contendo reagentes e solução padrão	53
Figura 25	Registro fotográfico do espectrofotômetro DU 800	53
Figura 26	llustração do desenho preliminar do sensor	54
Figura 27	Impressão do sensor em ABS	55
Figura 28	Registro fotográfico do sensor impresso pela técnica de manufatura aditiva	56
Figura 29	Registro fotográfico dos modelos de sensor destacando os pontos de acúmulo de bolhas de ar	56

Figura 30	Registro fotográfico do sensor montado em epóxi com <i>slides</i> evidenciando as bolhas de ar	57
Figura 31	Registro fotográfico do fluido vermelho circulando no sensor	58
Figura 32	Registro fotográfico da impressora 3D Sparkmaker (FHD)	59
Figura 33	Registro fotográfico da resina fotopolimerizante UV	60
Figura 34	Registro fotográfico do LED RGB de 5 mm	61
Figura 35	Diagrama de radiação luminosa do LED RGB	61
Figura 36	Diagrama de responsividade do TSL2591	62
Figura 37	Ilustração do diagrama de blocos do TSL2591	62
Figura 38	Imagem do dispositivo TSL2591	63
Figura 39	Ilustração do diagrama de blocos do protótipo	63
Figura 40	Diagrama do fluxo do processo de dosagem	64
Figura 41	Diagrama do procedimento de caracterização dos equipamentos	65
Figura 42	Diagrama do fluxo e aparato experimental utilizados no experimento	67
Figura 43	Curva de resposta espectral do reagente Bioclin®	69
Figura 44	Ilustração da curva de decaimento e estabilidade do reagente	70
Figura 45	Visão, em perspectiva, em corte do projeto final do sensor (dimensões em mm)	70
Figura 46	Ilustração da montagem do LED e do acrílico no sensor dimensões em mm)	71
Figura 47	Ilustração da vista expandida dos principais componentes do sensor.	71
Figura 48	Registro fotográfico do sensor montado	72
Figura 49	Registro fotográfico da vista lateral (a) e inferior (b) do sensor montado	72
Figura 50	Diagrama de blocos dos principais elementos do protótipo	73
Figura 51	Diagrama completo do circuito eletrônico	74
Figura 52	Ilustração do circuito utilizado na simulação do PWM	75
Figura 53	Ilustração da resposta do PWM/DAC a 1% de duty cycle	76
Figura 54	Ilustração da resposta do PWM/DAC a 50% de duty cycle	76
Figura 55	Ilustração da resposta do PWM/DAC a 90% de duty cycle	77
Figura 56	Registro fotográfico da medição do PWM/DAC a 90% de <i>duty cycle</i> .	77
Figura 57	Ilustração da vista superior da PCB do protótipo	78
Figura 58	Ilustração da vista superior da PCB (componentes e trilhas)	78
Figura 59	Ilustração do desenho final do projeto da PCB para a fotolitografia	79
Figura 60	Ilustração tridimensional dos principais componentes montados na PCB	79
Figura 61	Ilustração tridimensional dos principais componentes montados na PCB (vista inferior)	80

Figura 62	Ilustração do diagrama de casos de uso do software	80
Figura 63	llustração do fluxograma do software implementado	81
Figura 64	Registro fotográfico do LCD exibindo as opções de operação	82
Figura 65	Registro fotográfico da preparação da caixa steck	83
Figura 66	Registro fotográfico dos protótipos finalizados	83
Figura 67	Gráfico comparativo da resposta medida pelos protótipos e pelo equipamento de referência (BIO-200)	85
Figura 68	Gráfico de Pareto do primeiro ensaio	87
Figura 69	Gráfico de Pareto do segundo ensaio	89
Figura 70	Gráfico de Pareto do terceiro ensaio	90
Figura 71	Diagrama da proposta de protocolo alternativo de coleta e dosagem no TS	91
Figura 72	Registro fotográfico do aparato experimental previsto para a proposta de protocolo	91
Figura 73	Diagrama do fluxo de operação do novo procedimento com uso do protótipo	92
Figura 74	Diagrama da variabilidade das concentrações de cloretos dosadas a partir de diferentes técnicas e diferentes equipamentos	99

LISTA DE QUADROS

Quadro 1	Cores fundamentais e complementares	38
Quadro 2	Relação utilizada no preparo da SS	51
Quadro 3	Composição da resina utilizada na impressão DLP	59
Quadro 4	Transparência e aplicabilidade das cubetas	60
Quadro 5	Amostras de papel utilizadas	65
Quadro 6	Caracterização da SS utilizada como referência	68
Quadro 7	Caracterização da curva de estabilidade do reagente	69
Quadro 8	Resultados médios das concentrações (em mEq/L) medidas no equipamento de referência e nos protótipos	84
Quadro 9	Variáveis utilizadas na primeira análise fatorial do DOE	86
Quadro 10	Coeficientes codificados	86
Quadro 11	Resultados da segunda análise DOE	87
Quadro 12	Coeficientes codificados	89
Quadro 13	Resultados da terceira análise DOE	89
Quadro 14	Coeficientes codificados	90
Quadro 15	Tabela de comparação dos métodos de coleta e dosagem	95
Quadro 16	Especificações técnicas de equipamentos de dosagem e coeficientes de variabilidade em laboratórios	98

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

μL	Microlitros
μm	Micrometro
3D	3 Dimensões
CI-	Íons de cloro ou cloretos
Fe(NO ₃) ₃	Nitrato férrico
Hg(SCN) ₂	Tiocianato de mercúrio
HgCl ₂	Cloreto de mercúrio
HNO ₃	Ácido nítrico
lo	Intensidade da luz incidente.
l ₁	Intensidade da corrente elétrica sem cloretos
I₂C	Inter-Integrated Circuit.
lt	Intensidade da luz transmitida
L1	Dimensões da cubeta pequena
L2	Dimensões da cubeta grande
m ² .mol-1	Metro quadrado / mol
mEq/L	Miliequivalente por litro
ml	Mililitro
mol.m ³	Mol vezes metro cúbico
nm	Nano metros
°C	Graus Celsius
Р	Potência do fluxo luminoso após a amostra pesquisada
Po	Potência após a solução de referência cuja concentração é conhecida.
Ps	Potência do fluxo luminoso
T<1	Transmitância menor que 1
T>1	Transmitância maior que 1
λ	Lâmbda
ABS	Acrilonitrila Butadieno Estireno
ABSam	Absorbância da amostra
ABSpd	Absorbância do padrão
AC/DC	Alternating Current / Direct Current
ADC	Analog-to-Digital Converter
ANVISA	Agência Nacional de Vigilância Sanitária
CAD	Computer Aided Design
CEB	Centro de Engenharia Biomédica
CFTR	Cystic Fibrosis Transmembrane Conductance Regulator
CNC	Comando Numérico Computadorizado

CNI	Confederação Nacional da Indústria
COVID-19	Corona Vírus Disease
CR	Centro de Referência
DAC	Digital-to-Analog Converter
DI	Água Deionizada
DIE	Formal term for the square of silicon containing
DIP	Dual Inline Package
DLP	Digital Light Processing
DOE	Delineamento de Experimento
DP	Desvio-Padrão
EEPROM	Electrically Erasable Programmable Read-Only Memory
FC	Fibrose Cística
FDM	Fused Deposition Modeling
FFF	Fabricação por Filamento Fundido
FHD	Full High Definition
FIOCRUZ	Fundação Oswaldo Cruz
IA	Inteligência Artificial
IPCA	Índice Nacional de Preços ao Consumidor Amplo
K-050	Tipo de reagente
KB	Kilo Bytes
KB EEPROM	Kilo Bytes de EEPROM
KB SPI	Kilo Bytes de Serial Peripheral Interface
KB SRAM	Kilo Bytes de SRAM
L1	Dimensões da cubeta pequena
L2	Dimensões da cubeta grande
LCD	Liquid Crystal Display
LED	Light Emitting Diode
MHz	Mega-Hertz
MIPS	Millions of Instructions Per Second
ml	Mililitro
MLF	Micro Leadframe
nm	Nano metros
OSHA	Open Source Hardware Association
Р	Potência do fluxo luminoso após a amostra pesquisada
PCB	Printed Circuit Board
PH	Potencial hidrogeniônico
PLA	Ácido Poliláctico
PWM	Pulse Width Modulation
QFN	Quad Flat No leads

RGB	Red, Green and Blue
RISC	Reduced Instruction Set Computer
Sars-CoV-2	Novo coronavírus
SCN	Íons tiocianato
SENAI	Serviço Nacional de Aprendizagem Industrial
SESI	Serviço Social da Indústria
SPI	Serial Peripheral Interface
SR1	Seringa 1
SR2	Seringa 2
SR3	Seringa 3
SR4	Seringa 4
SR5	Seringa 5
SR6	Seringa 6
SR7	Seringa 7
SR8	Seringa 8
SR9	Seringa 9
SRAM	Static Random-Access Memory
SS	Solução Similar ao Suor
SUS	Sistema Único de Saúde
TQFP	Thin Quad Flat Package
TS	Teste do Suor
TNN	Triagem Neonatal
UA	Unidade de Absorbância
UNICAMP	Universidade Estadual de Campinas
USART	Universal Synchronous Asynchronous Receiver Transmitter
USB	Universal Serial Bus
UV	Ultravioleta

SUMÁRIO

1	INTRODUÇÃO
1.1	FIBROSE CÍSTICA
1.2	MOTIVAÇÃO E BREVE REVISÃO SOBRE O TEMA DO TRABALHO
1.3	OBJETIVOS DO TRABALHO
1.4	CONTRIBUIÇÕES DA TESE
1.5	ORGANIZAÇÃO DO TRABALHO
2	REVISÃO DA LITERATURA
2.1	FIBROSE CÍSTICA
2.1.1	Teste do Suor
2.1.2	Estimulação do suor
2.1.3	Coleta do suor
2.2	MÉTODOS PARA DOSAGEM DO SUOR
2.2.1	Análise volumétrica (Titulometria)
2.2.2	Condutometria
2.2.3	Titulação coulométrica
2.2.4	Fotometria
2.2.4.1	Colorimetria
2.2.4.1.1	Lei Lambert-Beer
2.2.4.2	Curva espectrofotométrica
2.2.4.3	Determinação de cloretos por colorimetria (ZALL)
2.3	PROTOTIPAGEM RÁPIDA POR MANUFATURA ADITIVA
2.3.1	Impressão 3D – FDM
2.3.2	Impressão 3D – DLP
2.4	HARDWARE
2.4.1	Hardware aberto
2.4.2	Plataforma Arduino
2.4.3	Família Atmega
3	METODOLOGIA
3.1	PREPARO DA SS
3.2	CARACTERIZAÇÃO DO REAGENTE CLORETOS COLORIMÉTRICOS
3.3	DESENVOLVIMENTO DO PROTÓTIPO PARA DOSAGEM DE CLORETOS, CARACTERIZAÇÃO E TESTES
3.3.1	Desenvolvimento do sensor espectrofotométrico
3.3.1.1	Desenho preliminar
3.3.1.2	Construção do dispositivo

3.3.1.3	Testes dinâmicos
3.3.1.4	Desenvolvimento da versão final do sensor
3.3.1.5	Especificação da interface translúcida fluido-fotodetector (acrílico)
3.3.1.6	Especificação do luxímetro e fonte de luz
3.3.2	Desenvolvimento, construção e testes do protótipo
3.4	PROPOSTA DE PROCEDIMENTO PARA COLETA E DOSAGEM PARA TESTE DE FC
3.5	ANÁLISE ESTATÍSTICA
4	RESULTADOS E ANÁLISE DOS DADOS
4.1	A SS
4.2	CARACTERIZAÇÃO DO REAGENTE CLORETOS COLORIMÉTRICOS (K050 – BIOCLIN®)
4.2.1	Desenvolvimento do sensor
4.3	MONTAGEM E TESTES DO PROTÓTIPO DESENVOLVIDO
4.3.1	Desenvolvimento do hardware
4.3.1.1	Sistema microprocessado
4.3.1.2	Sistema PWM para controle de luminosidade
4.3.1.3	Desenvolvimento da PCB
4.3.2	Desenvolvimento do software
4.3.3	Acondicionamento do sistema em caixa steck
4.3.4	Ensaios realizados nos protótipos
4.4	PROPOSTA DE UM PROCEDIMENTO PARA COLETA E DOSAGEM DE TESTE DE FC
5	DISCUSSÃO
6	CONCLUSÃO
	REFERÊNCIAS
	APÊNDICES
	APÊNDICE A - Dados coletados – caracterização do sensor
	APÊNDICE B - Protocolo alternativo – testes in vitro
	APÊNDICE C - Caracterização da SS
	APÊNDICE D – Software
	ANEXOS
	ANEXO A - Metodologia de cálculo

1 INTRODUÇÃO

1.1 FIBROSE CÍSTICA

A Fibrose Cística (FC) é uma doença genética autossômica recessiva. Na população em geral, manifesta-se entre 1:3.000 a 1:10.000 nascimentos, com maior frequência entre povos de origem caucasiana (KOSOROK; WEI; FARREL, 1996; RASKIN *et al., 1993;* SANTOS *et al.,* 2005).

No Brasil, a incidência da FC tem sido estimada em 1:7.000 nascimentos com variações regionais de acordo com a miscigenação local, sendo que, entre 2011 e 2016, foram registrados 2.259 (48,5%) casos de FC na região Sudeste, 992 (21,3%) no Sul, 800 (17,2%) no Nordeste, 279 (6,0 %) no Centro-Oeste, 200 (4,3 %) no Norte e não definidos totalizam 124 (2,7%) registros (GRUPO BRASILEIRO DE ESTUDOS DE FIBROSE CISTICA, 2016). Um relatório publicado em 2020 indicou mais de 5400 registros de pacientes que convivem com a doença no Brasil, ratificando que 47% estão na região Sudeste (GRUPO BRASILEIRO DE ESTUDOS DE FIBROSE CÍSTICA, 2021).

Observou-se que indivíduos com FC apresentam alterações no mecanismo utilizado pelo organismo para controlar o movimento dos íons de cloro e sódio nas membranas celulares. Essas falhas ocorrem em função de variantes patogênicas localizadas no cromossomo sete cujo mapeamento genético foi relatado em 1985 (KEREM *et al.*, 1989). Esse gene foi denominado *Cystic Fibrosis Transmembrane Conductance Regulator* (CFTR) (HODSON; GEDDES, 1995; ACKERMAN; CLAPHAM, 1997; BARASCH; AI-AWQATI, 1993).

Em pacientes fibrocísticos, os sintomas mais comuns são relacionados ao trato respiratório que podem evoluir com insuficiência para insuficiência respiratória, sendo a primeira causa de óbito na FC. Outros órgãos, como os intestinos, pâncreas, canais deferentes, sistema hepático e as glândulas sudoríparas, também são afetados (RIBEIRO; RIBEIRO; RIBEIRO, 2002), acarretando problemas gastrointestinais, nutricionais, dentre outros.

No Brasil, o Programa Nacional de Triagem Neonatal, criado e implementado pela Portaria nº 822, de 06 de junho de 2001, do Ministério da Saúde (BRASIL, 2021), dispõe sobre a triagem e a detecção de casos suspeitos de doenças congênitas (teste do pezinho), entre elas, a FC.

A técnica utilizada no teste do pezinho relativa à FC dosa o tripsinogênio no sangue do neonato. Valores altos podem estar relacionados à obstrução de dutos pancreáticos, o que seria um indicador de disfunções no CFTR. Por tratar-se de um indicador indireto, as proporções de falso-positivos são altas e a confirmação da FC deve ser realizada por um segundo teste denominado Teste do Suor (TS) (RIBEIRO; RIBEIRO; RIBEIRO, 2002). O TS é classificado, até os dias atuais, como padrão-ouro no diagnóstico de FC (BEAUCHAMP; LANDS, 2005) sendo confirmado após dois exames de concentração de cloretos no suor dos pacientes.

Determinar, de forma precisa, a concentração de cloretos no suor do paciente é um ponto-chave no TS (FARREL *et al.* 2008; SHAH; MOATTER, 2006). Quando a concentração é superior a 60 miliequivalentes por litro (Cl⁻ \geq 60 mEq/L) em dois testes seguidos, o paciente pode ser considerado fibrocístico (BARBEN *et al.*, 2005). Sendo encaminhado a um Centro de Referência (CR) em FC para uma avaliação mais rigorosa e acompanhamento. Em pacientes com idade superior a seis meses e concentração de cloretos inferior a 30 miliequivalentes por litro (Cl⁻<30 mEq/L), é improvável que tenha a doença (BRASIL, 2021), a não ser que sejam identificadas duas mutações genéticas relativas à FC. Indivíduos que apresentam concentração de cloretos entre 30 mEq/L e 60 mEq/L devem ser investigados, fazendo-se necessários testes complementares (FARREL *et al.*, 2008) prevendo, inclusive, um novo exame de TS após o intervalo de dois a seis meses.

Os novos tratamentos e a detecção precoce possibilitaram um aumento considerável na média de sobrevida de pacientes com FC, passando de 6,4 anos (1979-1989) para 12,6 anos (1970-1994), chegando a 18,4 anos (1990-2000) (ALVAREZ *et al.*, 2004) e atualmente chega a 40 anos ou mais (GRUPO BRASILEIRO DE ESTUDOS DE FIBROSE CÍSTICA, 2021).

Apesar dos recentes avanços no tratamento da FC, diagnosticar, de forma precoce, os pacientes possibilita que eles sejam encaminhados mais brevemente para tratamento adequado (ALVAREZ *et al.*, 2004).

Indivíduos com FC devem ampliar os cuidados para evitar a contaminação pelo Novo coronavírus (Sars-CoV-2), causador da Corona Vírus Disease (COVID-19). Como são naturalmente mais vulneráveis às síndromes respiratórias agudas graves, as complicações provocadas pela COVID-19 colocam fibrocísticos na categoria de grupo de risco, como publicado em uma nota técnica da Fundação Oswaldo Cruz (FIOCRUZ) (CAMARGO; ELIAS, 2020).

1.2 MOTIVAÇÃO E BREVE REVISÃO SOBRE O TEMA DO TRABALHO.

O protocolo do TS é composto de etapas, como será descrito no desenvolvimento deste trabalho. Uma delas é a dosagem de cloretos e, até o ano de 2018, a principal técnica utilizada no Brasil era a titulometria, desenvolvida por Schales e Schales (1941).

No Brasil, a Bioclin®, única empresa nacional que produzia o reagente utilizado na dosagem titulométrica, encerrou sua produção em 2018, forçando os CRs em FC a buscarem, no mercado, opções importadas de reagentes ou técnicas alternativas para a dosagem de cloretos no suor com custos similares ao da técnica titulométrica.

Este trabalho tem como ponto de partida a pesquisa por técnicas alternativas para a dosagem de cloretos no suor.

Além da problemática do reagente, algumas regiões do Brasil apresentam dificuldades na realização do diagnóstico em FC devido à falta de equipamentos adequados para a realização do TS. Os pacientes acabam sendo encaminhados aos serviços universitários, levando à sobrecarga esses laboratórios e ao desgaste do paciente, que precisa se deslocar por longas distâncias para realizar o teste diagnóstico (RASKIN *et al., 1993)*.

1.3 OBJETIVOS DO TRABALHO

Desenvolver um equipamento dedicado para a dosagem de cloretos no suor a partir da técnica de espectrofotometria em fluxo para auxiliar o diagnóstico de FC.

Propor novo procedimento para a coleta do suor e dosagem de cloretos por Colorimetria.

1.4 CONTRIBUIÇÕES DA TESE

Especificamente neste trabalho, foi proposto um novo procedimento para a dosagem do suor pela técnica de colorimetria a partir do desenvolvimento de um equipamento portátil dedicado com uso de reagente colorimétrico comercial para dosagem de cloretos no suor com vistas ao uso no Sistema Único de Saúde (SUS).

Além de adotadas a técnica de prototipagem rápida e a estratégia de baixo custo no desenvolvimento de *hardware* e *software*, todos os componentes utilizados são facilmente encontrados no mercado nacional e internacional.

Algumas vantagens adicionais do trabalho desenvolvido estão relacionadas aos seguintes itens:

- a) Utilização de reagente colorimétrico de baixo custo e disponível no mercado nacional;
- b) Substituição do dispositivo de coleta patenteado Macroduct® por uma tira de papel filtro qualitativo de baixo custo com dimensões prédefinidas;
- c) Minimização de erros na interpretação dos resultados a partir da redução no número de etapas necessárias para realizar o procedimento de testagem;
- Reaproveitamento da solução (amostra+reagente) de modo a permitir várias medições durante a estabilidade do reagente;
- e) Apresentação do resultado da dosagem em mEq/L, dispensando a necessidade de interpretação subjetiva do técnico de laboratório.

1.5 ORGANIZAÇÃO DO TRABALHO

O capítulo 1 mostra os principais aspectos relacionados a este trabalho. No capítulo 2, são apresentados estudos e fundamentos científicos e tecnológicos sobre o tema abordado. O capítulo 3 descreve a metodologia de trabalho, bem como os materiais e métodos que foram desenvolvidos. O capítulo 4 traz os principais resultados obtidos no desenvolvimento e os testes do equipamento. No capítulo 5, são discutidos e analisados os principais resultados e, no capítulo 6, têm-se as conclusões do trabalho e são apresentadas propostas para trabalhos futuros.

2 REVISÃO DA LITERATURA

Neste capítulo, são apresentados os conceitos fundamentais, bem como são abordadas as publicações que trazem as técnicas mais recentes utilizadas no auxílio ao diagnóstico de FC.

2.1 FIBROSE CÍSTICA

O principal exame utilizado no auxílio ao diagnóstico de FC é o TS. Em pacientes fibrocísticos não há reabsorção de cloretos na glândula sudorípara de forma adequada, ocasionando uma perda desses íons para o meio extracelular, aumentando a concentração de cloretos no suor (RAKIN *et al.*, 2019).

O TS é uma técnica Indolor e não invasiva. Pode ser feita desde a infância até a fase adulta. Em neonatos, deve ser realizado quando a criança apresenta valores alterados na dosagem da tripsina imunorreativa (ATHANAZIO *et al.*, 2017).

Outro teste utilizado no diagnóstico da FC utiliza mapeamento genético (RASKIN *et al.*, 1993), entretanto, apresenta custo elevado e não está disponível na maioria dos CRs em FC. É preciso também considerar o fato de não existir previsão para fins de ressarcimento pelo SUS (BRASIL, 2015).

2.1.1 Teste do Suor (TS)

O TS é considerado exame padrão-ouro para o diagnóstico da FC (FARREL et al., 2008; ATHANAZIO et al., 2017)

A figura 1 ilustra o fluxograma previsto no TS e consiste nas seguintes etapas (FARREL *et al.*, 2008).

- a) estimulação das glândulas sudoríparas;
- b) coleta do suor com o auxílio de um elemento absorvente;
- c) dosagem de cloretos;
- d) encaminhamento do paciente a um CR em FC ou liberação.

O TS prevê duas dosagens de cloretos.

Figura 1 - Fluxograma do TS

Fonte: Adaptado de Farrel et al. (2008).

Em maio de 2010, o Ministério da Saúde emitiu a Portaria nº 224 estabelecendo os parâmetros e as diretrizes nacionais para o diagnóstico, tratamento e acompanhamento de indivíduos com FC (BRASIL, 2010). O documento estabeleceu a análise iônica quantitativa (ou dosagem de cloretos) como sendo o teste mais fidedigno utilizado no processo diagnóstico e o método titulométrico desenvolvido por Schales e Schales (1941) foi massivamente utilizado nos CRs em

FC para dosagem de cloretos no suor (ATHANAZIO *et al.*, 2017; BEAUCHAMP; LANDS, 2005).

Em uma atualização da Portaria nº 224, o Governo Federal publicou a Portaria nº 2.099, de 18 de dezembro de 2015, prevendo, além da titulometria, os testes de condutividade e coulometria na dosagem de cloretos (BRASIL, 2015). Apesar de convalidar duas novas técnicas de dosagem, não houve alterações nos recursos (valores pagos por exame) repassados pelo SUS aos CRs em FC cujos valores dos insumos utilizados nessas novas técnicas são superiores quando comparados aos do método titulométrico.

2.1.2 Estimulação do suor

A etapa de estimulação no TS consiste em colocar as glândulas sudoríparas de uma área escolhida da pele do paciente em um estado de hiperatividade (hiperidrose). A metodologia prevista no TS foi validada por Lewis e Cooke (1959) e consiste na técnica não invasiva de iontoforese por pilocarpina.

Nessa técnica aplica uma diferença de potencial inferior a cinco Volts e densidade de corrente elétrica variando de 0,1 a 1,0 mA/cm2 em uma área específica do corpo do paciente, estimulando, de maneira controlada, a transferência transdermal da pilocarpina (LEWIS; COOKE, 1959).

O procedimento de estimulação é iniciado após a limpeza da pele, geralmente, do antebraço (Figura 2), com água destilada e secagem com gaze. São afixados dois eletrodos no local limpo por meio de presilhas sobre um elemento absorvente embebido em solução de nitrato de pilocarpina 0,5% (eletrodo positivo) e ácido sulfúrico 0,004N (eletrodo negativo). Na sequência, é feita a estimulação aplicando uma corrente elétrica de 2 a 5 mA durante cinco minutos, migrando a pilocarpina da epiderme (eletrodo positivo) às glândulas sudoríparas pelo princípio da iontoforese. Após a estimulação, os eletrodos são retirados e a área estimulada do antebraço é novamente limpa e seca (MATTAR *et al.*, 2010).

Figura 2 - Registro fotográfico do procedimento de eletroestimulação

Fonte: Acervo do autor (2021).

Com as glândulas sudoríparas em hiperatividade, o suor é coletado num intervalo que varia entre 15 e 30 minutos.

2.1.3 Coleta do suor

Atualmente, as principais técnicas para a coleta são realizadas pelo dispositivo coletor Macroduct® ou com o auxílio de um elemento absorvente (GRUPO BRASILEIRO DE ESTUDOS DE FIBROSE CÍSTICA, 2021; KEREM *et al.*, 1989).

O coletor Macroduct® (Figura 3) é um dispositivo descartável circular, com dimensões aproximadas de 2,5 cm de diâmetro e 5,0 mm de espessura, composto por um tubo capilar em espiral (HODSON; GEDDES, 1995).

Figura 3 - Fotografia do dispositivo coletor Macroduct

Fonte: EliTechGroup (2021).

A figura 4 ilustra a aplicação do dispositivo Macroduct® para a coleta de suor em criança.

Figura 4 - Fotografia do uso do dispositivo de coleta Macroduct para a coleta de suor em criança

Fonte: EliTechGroup (2021).

Outro método de coleta do suor utiliza um elemento absorvente (gaze ou papel filtro quantitativo) conforme ilustrado na figura 5. O elemento absorvente seco é pesado e colocado na área estimulada e envolto com filme plástico. Aguarda-se de em média 30 minutos ou até que a gaze ou o papel esteja visivelmente saturado (MATTAR *et al.*, 2010).

Em seguida, o elemento é retirado e novamente pesado para a extração da massa líquida do suor coletado (ACKERMAN; CLAPHAM, 1997) O elemento absorvente pode ser diluído em volume conhecido de água destilada.

Realizada a coleta do suor, o elemento é encaminhado ao laboratório para a realização do procedimento de dosagem de cloretos.

Figura 5 - Registro fotográfico do procedimento de coleta de suor utilizando o elemento absorvente

Fonte: Acervo do autor (2021).

2.2 MÉTODOS PARA DOSAGEM DO SUOR

A etapa laboratorial de dosagem de cloretos consiste em utilizar uma metodologia de análise química quantitativa capaz de dosar, com exatidão, os íons de cloro presentes no suor do paciente.

Como a quantidade de suor coletado é pequena e pode variar entre 18 e 135 mg (LEWIS; COOKE, 1959), a técnica de dosagem deve possuir alta sensibilidade.

Na figura 6, estão destacados, em vermelho, os métodos de análise química quantitativa utilizados na dosagem de cloretos.

Figura 6 - Diagrama dos métodos de análise química

Fonte: Elaborada pelo autor (2021).

Os principais métodos utilizados na dosagem de cloretos são métodos quantitativos de via úmida e físico-químicos.

2.2.1 Análise volumétrica (Titulometria)

Uma das áreas da química analítica que atuam na identificação e quantificação de um ou mais componentes químicos é chamada de análise volumétrica. Em linhas gerais, pela análise volumétrica, uma solução cuja concentração é conhecida com exatidão é misturada a outra solução cuja concentração se deseja conhecer. A solução de concentração conhecida é chamada de Titulante e a solução desconhecida, deTitulado. Ao processo de mistura, dá-se o nome de Titulação (OHLWEILER, 1981).

É de se esperar que, ao misturar as soluções, o Titulante reaja com o Titulado. Como o volume de Titulante é conhecido e controlado, é possível estabelecer, de forma precisa, o volume do Titulado presente na solução examinada, desde que haja uma relação estequiométrica conhecida entre ambos. Um pontochave nessa técnica consiste em identificar o momento exato em que todo o Titulado foi "consumido" pelo Titulante por meio da mudança de uma propriedade física da solução (exemplo: mudança de cor; formação de precipitados; pH; diferença de potencial, entre outras). Indicadores (substâncias químicas que mudam de cor) ou equipamentos específicos são utilizados para esse fim (FERREIRA; RIBEIRO, 2011; OHLWEILER, 1981).

A figura 7 ilustra o aparato experimental utilizado na dosagem de cloretos pelo método titulométrico.

Figura 7 - Ilustração do aparato utilizado no método de titulação

Legenda: (a) Bureta contendo a solução Titulante com concentração conhecida é adicionada à solução denominada Titulado (mistura de indicador e solução com volume conhecido, mas concentração desconhecida) dentro do Erlenmeyer. (b) Representação do ponto de viragem em um processo de titulação com a mudança de cor da solução dentro do Erlenmeyer. Fonte: Adaptado de Dias (2021).

Uma amostra contendo suor é colocada em um Erlenmeyer e o indicador Difenil Carbazona misturado à mesma. Na sequência e com auxílio de uma bureta graduada, a solução de nitrato de mercúrio é titulada na mistura dentro do Erlenmeyer. O ponto de neutralização é indicado quando ocorre a mudança de cor da solução para um complexo violeta (ponto de viragem ou *endpoint*) (FERREIRA; RIBEIRO, 2011; OHLWEILER, 1981). O método titulométrico para a dosagem de cloretos, especificamente em fluidos biológicos, foi desenvolvido por Schales e Schales (1941), (LEÃO; AGUIAR, 2008), sendo válido até os dias atuais (BRASIL, 2010; 2015).

2.2.2 Condutometria

A condutometria é um método eletroanalítico amplamente utilizado para determinar a concentração de eletrólitos em soluções simples. O potencial de condução global da solução dá-se pela soma da condução de todas as espécies iônicas presentes no composto. Existe uma relação de proporcionalidade direta entre a corrente que percorre a solução iônica e a quantidade de sal (ou íons) dissolvida (OHLWEILER, 1981). Para aplicar a técnica condutométrica na dosagem de cloretos no suor humano, utiliza-se um microamperímetro para medir a corrente elétrica que percorre a amostra. A corrente elétrica circulante apresenta relação direta com a concentração de todos os eletrólitos presentes no suor (DOMINGOS *et al.*, 2015). A figura 8 ilustra o analisador de condutividade do suor fabricado pela *Macroduct*®.

Figura 8 - Ilustração do equipamento Sweat Check Macroduct®

Fonte: ELITechGroup (2021).

2.2.3 Titulação coulométrica

Trata-se de um método quantitativo eletroanalítico. Com essa técnica, é possível dosar um íon específico presente na amostra. O aparato experimental é parecido ao utilizado no método condutométrico, sendo adicionado um terceiro eletrodo denominado eletrodo de íon seletivo. Uma fonte de corrente é conectada a esse eletrodo, que reage eletroquimicamente com o íon dosado. Com o auxílio de um microamperímetro, a reação é monitorada e uma alteração significativa nos valores da corrente elétrica indica o término das reações entre o íon livre e o eletrodo auxiliar (FERREIRA; RIBEIRO, 2011; OHLWEILER, 1981).

Especificamente para a determinação de cloretos, é preparada uma solução composta por ácido nítrico, ácido acético e gelatina. Na sequência, são mergulhados dois eletrodos: o primeiro é composto de prata (anodo) e o segundo, de prata ou platina (catodo). Um volume conhecido de suor é adicionado à mistura e uma corrente elétrica constante é aplicada no sistema através dos eletrodos (anodo e catodo) (COTLOVE, 1964; JOHANSSON; CEDERGREN, 1971).

A corrente elétrica força a oxidação da prata no eletrodo (anodo), liberando íons de prata na solução. Estes combinam-se com os íons de cloro presentes no suor, formando moléculas não solúveis de cloreto de prata, ocorrendo a sua precipitação no meio aquoso. A reação é facilitada pela presença da solução ácida, gerando hidrogênio no catodo, que será liberado na forma de gás. Até que sejam consumidos todos os íons de cloro da amostra, a reação à corrente elétrica permanece em um patamar I₀. A falta de cloretos interrompe a formação de cloreto de prata e, por consequência, a corrente elétrica é levada a outro patamar I₁ (COTLOVE, 1964; JOHANSSON; CEDERGREN, 1971).

Com o auxílio de um cronômetro, mede-se o tempo entre o início da reação (I₀) e o momento em que todo o cloreto é consumido (I₁). A concentração de cloretos é diretamente proporcional ao tempo cronometrado (COTLOVE, 1964).

Um sistema eletrônico, composto por uma fonte de corrente associada a um cronômetro, traça a relação tempo x concentração. Ao disparar a dosimetria, a fonte de corrente é ligada e o cronômetro, disparado. Quando o sistema detecta a mudança de patamar da corrente circulante, automaticamente o cronômetro é parado. A figura 9 lustra o gráfico esperado das grandezas da corrente elétrica pelo tempo em um sistema coulométrico.

Figura 9 – Ilustração gráfica do comportamento da corrente elétrica em função do tempo no método coulométrico

Legenda: As linhas tracejadas representam a mudança do patamar (a) Patamar I_0 durante a reação do eletrodo de íon seletivo. (b) Patamar I_1 quando o íon pesquisado foi totalmente consumido. Fonte: Elaborada pelo autor (2021)

Além de produzir e comercializar o *Sweat Check*, que utiliza o método condutométrico, a Macroduct® produz o cloridrômetro *ChloroChek®*, ilustrado na figura 10, que se utiliza do método coulométrico.

Figura 10 - Cloridrômetro Macroduct®

Fonte: ELITechGroup (2021).

2.2.4 Fotometria

A fotometria é um método amplamente utilizado em química analítica para determinar a concentração de espécies químicas mediante a absorção de luz (OHLWEILER, 1981; FERREIRA; RIBEIRO, 2011).

Há diversos arranjos ópticos e elétricos desenvolvidos para medir a energia luminosa absorvida por uma substância e raramente é necessário determinar seu valor absoluto. Geralmente, a técnica mais utilizada está baseada no cálculo da razão entre o escalar do fluxo luminoso absorvido por uma amostra conhecida pelo escalar do fluxo luminoso da amostra que se deseja conhecer. Na figura 11 ilustra-se o principal arranjo utilizado no método fotométrico (EWING, 1992) em que P_s representa a potência do fluxo luminoso que incide nas soluções, P, a potência do fluxo luminoso após a amostra pesquisada e P₀, a potência após a solução de referência cuja concentração é conhecida.

Figura 11 - Ilustração do arranjo utilizado no método fotométrico exemplificando uma fonte de luz cuja potência luminosa é P_{s.}

Incide em duas amostras que, após atravessá-las, resultam em dois fluxos P e P₀ que serão captados pelo fotodetector Fonte: Elaborada pelo autor (2021).

Ao considerar que a "tonalidade" da amostra na figura 11 varia conforme a sua concentração, pelo princípio da espectrofotometria, quanto mais "escura", mais
concentrada é. Em termos práticos, um observador pode visualizar, sem o auxílio de qualquer equipamento, duas cubetas posicionadas "contra" a luz e cheias de um composto preparado para testes espectrofotométricos. Caso ambas apresentem a mesma tonalidade, é possível afirmar que possuem a mesma concentração (EWING, 1992).

Em termos matemáticos, considere que amostra e referência, indicadas na figura 11, estão dispostas nas mesmas condições ambientais e que a energia luminosa P_s é a mesma. A transmitância T é definida como a razão entre P e P_0 .

$$T = \frac{P}{P_0} \tag{1}$$

em que: T é a transmitância; P, a energia luminosa proveniente da amostra e P₀, a energia luminosa proveniente do padrão.

Nessa técnica, sendo a concentração da amostra igual à concentração da referência, a transmitância calculada será um. Concentrações maiores da amostra implicam T<1 e concentrações menores, T>1. O método fotométrico está sujeito a fatores como a refração e/ou a oscilação da energia luminosa por utilizar fonte de luz policromática (branca) que atravessa a amostra (EWING, 1992).

2.2.4.1 Colorimetria

A colorimetria pode ser definida como um segmento da espectrofotometria. Todo processo de medição está baseado na utilização de um comprimento de onda específico previamente ajustado no equipamento (WEST *et al.*, 2014).

Em termos práticos, a concentração do elemento ou a espécie química pesquisada em uma amostra está relacionada à intensidade da cor da solução, isto é, quanto maior a intensidade da cor, maior a concentração. Para uma análise quantitativa, utiliza-se uma solução padrão como referência. A solução padrão possui concentração conhecida da espécie química em análise.

O método está fundamentado no entendimento da luz como forma de energia de natureza ondulatória cujos diferentes comprimentos de onda (λ, expressos em μm ou nm) interagem com a matéria de formas distintas.

Na figura 12 está ilustrado o espectro eletromagnético com destaque ao espectro visível pelo olho humano.

	Ultravioleta		Espect	ro visível p	elo olho hui	mano (Luz)		Infravermelho
		400 nm	450 nm	500 nm 55	0 nm 600 nr	n 650 nm	700 nm 75	0 nm
	Raios cósmicos	Raios gama	Raios X	UV- C/B/A Ultravioleta	Infravermelho Rada	ar UHF VHF	Onda média Onda curta Onda longa — Rádio ————————————————————————————————————	Frequência extremadamente baixa
Comprimento de onda (m) Frequência (Hz)	1 fm 10 ⁻¹⁵ 10 ⁻¹⁴ 10 ²³ 10 ²² (1	1 pm 10 ⁻¹³ 10 ⁻¹² 1 10 ²¹ 10 ²⁰ 1 Zetta-Hz)	1Å 1 nm 0 ⁻¹¹ 10 ⁻¹⁰ 10 ⁻⁹ 10 ¹⁹ 10 ¹⁸ 10 ¹⁷ (1 Exa-Hz)	$10^{-8} 10^{-7} 10^{-6} 10^{15} 10^{14} 10^{15} 10^{14} 10^{14} 10^{15} 10^{14} 10^{14} 10^{15} 10^{14} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{14} 10^{15} 10^{$	10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ¹³ 10 ¹² 10 ¹¹ (1 Tera-Hz)	1 cm 1 m 1 cm 1 m 10 ⁻² 10 ⁻¹ 10 ⁰ 10 ¹⁰ 10 ⁹ 10 ⁸ (1 Giga-Hz)	10 ¹ 10 ² 10 ³ 1 10 ⁷ 10 ⁶ 10 ⁵ (1 Mega-Hz)	1 Mm $10^4 10^5 10^6 10^7$ $10^4 10^3 10^2$ (1 Quilo-Hz)

Figura 12 - Ilustração do espectro visível e comprimentos de onda eletromagnética

Fonte: WikiMedia Commons (2021).

As soluções coloridas absorvem, com maior intensidade, em determinadas faixas de comprimento de onda denominadas cores complementares. Especificamente, na técnica colorimétrica, são utilizadas substâncias que absorvem em um determinado comprimento de onda de luz (cromóforos) obtido pela reação entre o composto analisado e uma substância que origina cor (cromógeno) (SALDANHA; ARAÚJO; BARROS NETO, 1999).

O quadro 1 mostra a relação entre a cor fundamental geralmente atribuída à solução que se deseja medir e a cor complementar associada à fonte de energia luminosa utilizada no sistema (OHLWEILER, 1981).

Comprimento de onda (nm)	Cores Fundamentais	Cores Complementares
400 - 435	Violeta	Verde-amarelo
435 - 480	Azul	Amarelo
480 - 490	Azul-esverdeado	Laranja
490 - 500	Verde-azulado	Vermelho
500 – 560	Verde	Púrpura
560 - 580	Verde-amarelo	Violeta
580 – 595	Amarelo	Azul
595 – 610	Laranja	Azul-esverdeado
610 - 750	Vermelho	Verde-azulado

Quadro 1 - Cores fundamentais e complementares

Fonte: Elaborado pelo autor (2021).

O equipamento utilizado na técnica colorimétrica é o espectrofotômetro. Na figura 13 ilustra-se os elementos principais de um espectrofotômetro e sua sequência de operação.

Figura 13 - Representação da arquitetura básica de um espectrofotômetro

(a) Fonte de luz de amplo espectro. (b) Sistema de filtros seletivos para a escolha do comprimento de onda. (C) Cubeta compatível com o comprimento de onda definido onde será depositada a amostra.
(d) Fotodetector que irá captar a luz que passou pela amostra. (e) Sistema eletrônico que fará a conversão e o tratamento do sinal captado pelo fotodetector exibindo os valores ao operador. Fonte: Elaborada pelo autor (2021).

Para determinar a concentração de um elemento em determinada substância, é preciso medir a atenuação luminosa (absorbância) em, pelo menos, duas amostras. Primeiro, é obtida a absorbância de uma amostra de referência e, na sequência, a absorbância da amostra desconhecida.

2.2.4.1.1 Lei Lambert-Beer

A teoria físico-matemática que embasa o funcionamento dos espectrofotômetros é chamada Lei de Lambert-Beer (também designada Lambert-Beer-Bouguer) e mostra a relação entre a energia luminosa radiante que atravessa um meio absorvente (SWINEHART, 1962).

A figura 14 ilustra um fluxo luminoso de intensidade l₀ incidindo sobre a face de duas cubetas de diferentes dimensões, sendo a menor cubeta representada pelo item (a) e a maior pelo item (b).

Figura 14 - Representação da relação I₀ – Ite largura de uma cubeta

(a) Cubeta largura L1 com fluxo luminoso I₀ incidindo sobre a face e I_t saindo na outra face passando pela amostra. (b) Cubeta largura L2>L1 com fluxo luminoso I₀ incidindo sobre a face e I_t saindo na outra face passando pela amostra. Fonte: Elaborada pelo autor (2021).

Após percorrer os fluidos representados pela cor azul, tem-se, na figura (a), um fluxo luminoso I_t com potência luminosa menor que I_0 . Na figura (b), tem-se um fluxo luminoso I_t muito menor que o fluxo incidente I_0 . Como o "caminho" percorrido pela luz em (b) é maior que em (a), houve maior atenuação da energia luminosa em (b), portanto, $I_t \ll I_t$.

A figura 15 ilustra um fluxo luminoso de intensidade lo incidindo sobre a face de duas cubetas com dimensões idênticas, entretanto, o fluido disposto em (a) apresenta tonalidade mais clara que o fluido disposto em (b).

Figura 15 - Representação da relação I₀ – Ite tonalidade da amostra

Legenda: (a) Cubeta com amostra "clara" com fluxo luminoso I_0 incidindo sobre a face e I_t saindo na outra face passando pela amostra. (b) Cubeta com amostra "escura" com fluxo luminoso I_0 incidindo sobre a face e I_t saindo na outra face passando pela amostra. Fonte: Elaborada pelo autor (2021).

Na figura (b), tem-se um fluxo luminoso $I_{t'}$ muito menor que o fluxo incidente I_0 . Apesar de a luz percorrer a mesma distância, a atenuação da energia luminosa em (b) é maior que em (a) devido à sua tonalidade mais escura, portanto, $I_t \ll I_t$.

Em termos de equações, tem-se:

$$A = \log \left(\frac{I_0}{I_t}\right) \tag{2}$$

em que: A é a absorbância em UA; I_t = Intensidade da luz transmitida; I_0 = Intensidade da luz incidente.

A lei de Lambert-Beer é traduzida pela seguinte expressão matemática:

$$A = \varepsilon. l. c \quad (3)$$

em que: A é a absorbância em UA; *l*, a espessura do meio absorvente; *c*, a concentração molar da espécie (mol.m³) e ϵ , a constante denominada coeficiente de absorção molar da espécie em estudo (m².mol⁻¹).

Ao resolver as equações, tem-se:

$$\varepsilon. l. c = \log \left(\frac{I_0}{I_t}\right)$$
 (4)

Tem-se, considerando que, para medir a concentração de uma substância conhecida, c é constante e assumindo o caminho ótico *l*=1:

$$1. c = \frac{1}{\varepsilon} \log \left(\frac{I_0}{I_t} \right)$$
 (5)

Tem-se, adotando $k=(1/\epsilon)$:

$$c = k \log \left(\frac{I_0}{I_t}\right)$$
 (6)

em que: *c* é a concentração molar da espécie na solução (mol.m³) e I_t = Intensidade da luz transmitida; I_0 = Intensidade da luz incidente.

2.2.4.2 Curva espectrofotométrica

Uma ferramenta adotada na química analítica para facilitar a interpretação dos valores medidos é chamada de curva espectrofotométrica ou curva-padrão. Trata-se de estabelecer a relação entre a atenuação óptica (absorbância) pela concentração do soluto em estudo (OHLWEILER, 1981). Essa relação apresenta

comportamento logarítmico e converter os valores captados pelos fotodetectores obtidos para eixos ordenados (x,y) possibilita traçar curvas que facilitam o trabalho do técnico de laboratório (OHLWEILER, 1981; WEST *et al.*, 2014).

Ao traçar a curva-padrão, é possível observar um intervalo bem definido de linearidade e fatores como: tipo de reagente; concentração; temperatura; entre outros que interferem na atenuação do fluxo luminoso que percorre o fluido (WEST *et al.*, 2014).

A determinação da curva-padrão é obtida a partir da relação entre o par ordenado (c, A), sendo c a concentração da espécie em estudo e A sua absorbância para uma equação ax + by = w, sendo x=c e y=A. Esta equação relaciona a concentração da espécie padrão pela sua intensidade de sinal proveniente do sistema de detecção, possibilitando calcular a concentração de uma amostra desconhecida.

A figura 16 ilustra uma curva-padrão de uma solução cuja concentração apresenta comportamento linear.

Figura 16 - Representação gráfica de uma curva-padrão

Fonte: Elaborada pelo autor (2021).

Na figura 16, *Cp* corresponde à concentração de uma amostra conhecida que, ao ser colocada em um espectrofotômetro, retorna uma absorbância *Ap*.

Ao partir do pressuposto de que a medida da absorbância da substância medida responde linearmente e que, no limite inferior, corresponde à menor concentração, tem-se $I_t = I_0$ (não há absorção do fluxo luminoso) e a curva-padrão será dada por:

$$c = \frac{c_p}{A_p} \log \left(\frac{I_0}{I_t}\right) \quad (7)$$

em que: *c* é a concentração da espécie na solução; C_p é a concentração da amostra padrão; A_p é a absorbância da amostra padrão; I_t = Intensidade da luz transmitida; I_0 = Intensidade da luz incidente.

2.2.4.3 Determinação de cloretos por colorimetria (ZALL)

Torna-se fundamental, sendo o íon cloreto o elemento químico chave no diagnóstico de FC, uma técnica que permita dosar, de forma acurada, a concentração de cloretos.

Em 1941, Zall, Fischer e Garner (1956). melhoraram o método clássico proposto por Volhard (1874), dosando, de forma precisa, pequenas concentrações de cloretos em água. Os pesquisadores Zall, Fischer e Garner (1956). propuseram o seguinte protocolo: a um reagente composto por tiocianato de mercúrio por (Hg(SCN)₂), nitrato férrico (Fe(NO₃)₃) e ácido nítrico (HNO₃), é adicionada uma amostra contendo cloreto (Cl⁻). O cloreto força a dissociação do tiocianato de mercúrio, liberando íons tiocianato (SCN⁻), liberando o mercúrio para a formação do cloreto de mercúrio (HgCl₂). Como há a presença de íons de ferro na solução proveniente da dissociação do Fe(NO₃)₃ no meio, ocorre a formação de um complexo de cor alaranjada: o tiocianato férrico (Fe(SCN)₃). O princípio da reação química pode ser analisado nas equações (ACKERMAN; CLAPHAM, 1997; BARASCH; AI-AWQATI, 1993).

$$Hg(SCN)_{2} + 2CI^{-} \rightarrow HgCl_{2} + 2SCN^{-} (8)$$
$$3(SCN)^{-} + Fe^{3+} \rightarrow Fe(SCN)_{3} (9)$$

A intensidade do complexo alaranjado formado na reação apresenta uma relação direta com a concentração de cloreto presente na amostra.

2.3 PROTOTIPAGEM RÁPIDA POR MANUFATURA ADITIVA

As técnicas de prototipagem rápida utilizam basicamente dois conceitos fundamentais no seu processo: adição ou subtração de materiais, ou seja, manufatura aditiva ou manufatura subtrativa.

Os equipamentos atuais denominados como impressoras 3D utilizam a técnica de manufatura aditiva, pois o objeto desejado é construído camada a camada (UPCAFT; FLETCHER, 2003) Os equipamentos de usinagem, por sua vez, subtraem a parcela indesejada de uma peça, esculpindo o objeto projetado (FRANK; JOSHI; WYSK, 2002).

Seja por impressão 3D ou utilizando ferramentas como os tornos mecânicos e/ou usinagem por equipamentos de Comando Numérico Computadorizado (CNC), é possível identificar a contribuição dessas técnicas na construção física de modelos, moldes e protótipos funcionais, sendo técnicas comumente utilizadas nos laboratórios de pesquisa voltados ao desenvolvimento científico e tecnológico (WILTGEN, 2019).

Trabalhos científicos na área da saúde (ANTAS; LINO; RUI NETO, 2008; CAMPBELL; BOURELL; GIBSON, 2012) ou com aplicações diretas em sistemas biológicos (HO *et al.*, 2015) utilizando impressão 3D são recorrentemente publicados em periódicos.

A utilização da impressão 3D é recente quando comparada às técnicas subtrativas; entretanto, com esta técnica, é possível desenvolver protótipos em diversos materiais, com custo e tempo reduzidos, se comparados aos tradicionais métodos de prototipagem por manufatura de subtração e/ou produção industrial (GIORDANO; ZANCUL; RODRIGUES, 2016).

Existem diversos equipamentos para impressão 3D disponíveis no mercado. Seu projeto e construção estão atrelados ao material que se deseja utilizar para imprimir (construir) o objeto. Para o desenvolvimento deste trabalho, foram adotados a técnica *Fused Deposition Modeling* (FDM) e o método *Digital Light Processing* (DLP).

2.3.1 Impressão 3D - FDM

A técnica FDM ou, na Língua Portuguesa, Fabricação por Filamento Fundido (FFF) é amplamente utilizada na indústria, comércio e serviços. Seu baixo custo de impressão e alta eficácia devem-se ao contínuo desenvolvimento desta tecnologia desde os anos 1980 até a atualidade (WONG; HERNANDES, 2012) A extrusora (cabeça de impressão) é composta por um sistema de tração que puxa um filamento de Acrilonitrila Butadieno Estireno (ABS) com 1,75 mm de diâmetro, o liquefaz e, imediatamente, deposita sobre uma base. O percurso da extrusora é traçado a partir de um *software* de fatiamento e roteirização que "fatia" o desenho feito em ferramenta *Computer Aided Design* (CAD) do objeto a ser impresso. A figura 17 ilustra o mecanismo de impressão baseado na técnica FDM.

Figura 17 - Ilustração da arquitetura simplificada de uma impressora utilizando a técnica FDM

Fonte: https://3dcmed.com.br/tecnologias-de-impressao-3d/

A dimensão (altura) da camada é calculada a partir do bico da extrusora. Em filamentos de 1,75 mm, os bicos geralmente variam entre 0,1 e 1,2 mm. A figura 18 ilustra a operação de uma extrusora FDM. Após finalizada, não há necessidade de

etapas complementares para a finalização. Além do ABS, o Ácido Poliláctico (PLA) tem sido uma opção barata e ecologicamente correta (biodegradável) de filamento (GUO; LEU, 2013).

Figura 18 - Ilustração de uma extrusora de tecnologia FDM

A literatura traz aplicações desenvolvidas para a área de saúde que se utilizam da técnica FDM. São relatados a impressão de fármacos (comprimidos) (SKOWYRA; PIETRZAK; ALHNAN, 2015) e o desenvolvimento de estruturas auxiliares à regeneração óssea (ROHNER *et al.*, 2003).

2.3.2 Impressão 3D - DLP

Utilizar o processamento digital de luz na impressão de objetos traz, como vantagem, a construção de toda a camada do objeto simultaneamente. A resina fotopolimerizante é colocada em um recipiente cuja base é feita de um material translúcido. Abaixo do recipiente, há um sistema ótico que emite radiação ultravioleta (UV) com o padrão que se desejar polimerizar. Nesse processo, a resina líquida "endurece", formando, na sua totalidade, uma das muitas camadas sobrepostas, reduzindo o tempo de impressão. Apenas um dos três eixos coordenados (X,Y,Z) precisa de um sistema mecânico para o deslocamento da peça durante o processo de impressão. A figura 19 ilustra a arquitetura simplificada de uma impressora 3D que utiliza o método DLP.

Fonte: Boa Impressão (2021).

Figura 19 - Ilustração da arquitetura simplificada de uma impressora 3D DLP

Fonte: Modificado de 3DLAB (2021).

A camada em processamento fica posicionada na parte inferior do recipiente (Figura 20). Pelo fato de permanecer submersa na resina durante o processo de impressão, há menos interferências externas, o que resulta em peças com melhor qualidade.

Figura 20 - Registro fotográfico do reservatório de resina em impressora DLP

Aplicações na área médica são relatadas na literatura. Implantes foram fabricados utilizando a técnica DLP de impressão 3D. O resultado obtido mostrou-se bastante satisfatório quando comparado o modelo impresso ao dente extraído de um

Fonte: Produteca (2021).

cadáver, mimetizando as características anatômicas de todo o corpo dental (MOIN; HASSAN; WISMEIJER, 2017).

2.4 HARDWARE

A complexidade dos equipamentos espectrofotométricos exige *hardware* e *software* específicos. Com base na arquitetura dos espectrofotômetros (Figura 13), seus componentes e sistemas são desenvolvidos com objetivos de controlar a fonte luminosa, detectar, com um fotodetector, o sinal transmitido através da amostra, processar e exibir os dados de modo a simplificar e minimizar as ações do operador.

Os sistemas de controle devem garantir a estabilidade do fluxo luminoso. O fotodetector deve possuir alta sensibilidade e estabilidade, detectando variações imperceptíveis ao olho humano e o microcontrolador deve responder às demandas de processamento em tempo de operação.

2.4.1 Hardware aberto

A necessidade de um *hardware* dedicado pode aumentar significativamente o tempo para o desenvolvimento de um novo equipamento. Perens (1997), baseado no movimento *software* livre (*Open Source Software*), lançou um desafio a fabricantes e projetistas. Perens (1997) propôs o desenvolvimento colaborativo de dispositivos com arquitetura e versionamento registrados e controlados pela *Open Source Hardware Association* (OSHA) (2021a; 2021b); Open Source Initiative (2007).

Atualmente, o *hardware* aberto é mais uma ferramenta utilizada para o desenvolvimento científico e tecnológico mundial. Em artigo publicado na revista *Science*, Pearce (2012) apontou evidências de que pesquisadores em todo o mundo estão construindo seus próprios equipamentos laboratoriais utilizando microcontroladores, impressoras 3D e *softwares* baseados no conceito *Open Source* (PEARCE, 2012).

O conceito de *hardware* aberto ganhou força e já extrapola os centros de pesquisa e universidades a ponto de o setor produtivo beneficiar-se diretamente na que atualmente é classificada como a Quarta Revolução Industrial ou Indústria 4.0. Tecnologias como Inteligência Artificial (IA), robótica, nuvem (*Cloud*) e internet das

coisas (*IoT*) utilizam plataformas sólidas desenvolvidas sobre licenças de código aberto (*Open Source*) (PORTAL DA INDÚSTRA, 2021).

O Sistema Indústria, que integra 1.280 Sindicatos Patronais Industriais, Confederação Nacional da Indústria (CNI), Serviço Social da Indústria (SESI), Serviço Nacional de Aprendizagem Industrial (SENAI) e as Federações Estaduais dos 26 Estados e do Distrito Federal, traz explicitamente a necessidade de formação e qualificação profissional em plataformas gratuitas e/ou *Open Source* (SCADABr, Arduino, IDE, Aplicativos Android) e *Open Hardware* (Arduino) a partir da elaboração de sistemas autônomos desenvolvidos em minioficinas de produção (PORTAL DA INDÚSTRA, 2021).

2.4.2 Plataforma Arduino

A plataforma Arduino (*hardware e software*) foi utilizada em várias etapas deste trabalho. Trata-se de uma plataforma desenvolvida a partir de diversos microcontroladores com o objetivo de acelerar a prototipagem eletrônica. Suas principais vantagens estão na ampla e padronizada documentação disponibilizada, além do custo e tamanho reduzidos (ARDUINO, 2021).

No meio acadêmico e científico, o desenvolvimento de protótipos com a utilização de componentes de *hardware* aberto tem sido amplamente aplicado em função da flexibilidade, confiabilidade e custo reduzido dos componentes (CHAGAS, 2018; DOLGIN, 2018; PEARCE, 2012).

2.4.3 Família Atmega

O sistema Arduino UNO é baseado no microcontrolador Atmega328P-PU (Figura 21 (a)). Migrar o *hardware* de uma plataforma aberta para um sistema integrado proprietário possibilita a redução de custos e a não necessidade do pagamento de licenças ou registros *Open Source*.

O microcontrolador Atmega 328P-PU de oito bits AVR, baseado em *Reduced Instruction Set Computer* (RISC), frequência máxima de 20 Mega-Hertz (MHz), taxa aproximada de 1 MIPS (*Millions of Instructions Per Second*) por MHz, combina 32 KB ISP de memória *Flash*, 1 KB de *Electrically Erasable Programmable Read-Only Memory* (EEPROM), dois KB de *Static Random-Access Memory* (SRAM), 23 linhas de I/O de propósito geral, 32 registradores para diversos propósitos, três timer/counters flexíveis com comparador de modos, interrupções internas e externas, Universal Synchronous Asynchronous Receiver Transmitter serial programável (USART), uma interface I²C Serial Peripheral Interface (SPI) serial, conversor A/D de 6-canais e 10-bits nos encapsulamentos Dual Inline Package (DIP) ou 8-canais nos encapsulamentos Thin Quad Flat Package (TQFP), Quad Flat No leads (QFN) ou Micro Leadframe (MLF), temporizador do watchdog interno programável com oscilador e cinco modos de economia de energia selecionáveis por software. O 1.8 е 5.5 volts (MICROCHIP TECHNOLOGY dispositivo opera entre INCORPORATED, 2021). Temperatura operacional entre -40 °C a +85 °C.

Figura 21 - Registro fotográfico do microcontrolador ATmel328P-PU

Fonte: Microchip (2021).

O acesso elétrico ao DIE dá-se pelas vias dispostas em um encapsulamento do tipo "pacote duplo em linha" ou DIP como ilustrado na figura 22.

Figura 22 - Diagrama de pinagem do microcontrolador ATMega 328P-PU

Fonte: Microchip (2021).

3 METODOLOGIA

A metodologia foi estruturada seguindo a ordem didática composta pelas etapas:

- a) Preparo da Solução Similar ao Suor (SS) e caracterização do reagente cloretos colorimétricos, que foram utilizados como referência em testes;
- b) Descrição das etapas metodológicas do desenvolvimento do sensor e desenvolvimento do equipamento;
- c) Descrição da metodologia utilizada para avaliar a proposta de procedimento para a coleta se suor e dosagem de cloretos.

3.1 PREPARO DA SS

Para a realização dos testes, foi preparada uma solução cuja concentração de cloretos se assemelhava à encontrada no suor humano. Para uso no preparo, foi utilizada uma solução com concentração conhecida de cloreto de sódio 0,9%, cujo conteúdo eletrolítico de cloretos é 154 mEq/L (BRASIL, 2020), padronizado pela Agência Nacional de Vigilância Sanitária (ANVISA).

Foram preparadas sete soluções (1 a 7) com concentrações de cloretos previstas na literatura, variando de 20 a 110 mEq/L.

Com o auxílio de uma balança semianalítica (marca Marte®, modelo AD500), foi adicionada água deionizada (DI) para diluir o conteúdo eletrolítico dentro das faixas previstas no TS (FARREL *et al.*, 2008). O quadro 2 indica a proporção de solução de cloreto de sódio 0,9% e água DI utilizada no preparo e a concentração esperada e obtida. Foram realizadas 20 medições em cada uma das sete concentrações no espectrofotômetro de referência BIO-200, totalizando 140 medições.

Solução	Concentração calculada (mEq/L)	Soro 0,9 % (ml)	Água DI (ml)
1	20,00	100,00	670,00
2	32,00	100,00	381,25
3	47,50	100,00	224,21
4	57,50	100,00	167,83
5	77,50	100,00	98,71
6	87,50	100,00	76,00
7	107,50	100,00	43,26

Quadro 2 - Relação utilizada no preparo da SS

Fonte: Elaborado pelo autor (2021).

A figura 23 mostra o registro fotográfico das soluções SS preparadas.

Figura 23 - Registro fotográfico das soluções SS preparadas

Fonte: Acervo do autor (2021).

A partir das instruções do fabricante, a curva de calibração foi ajustada a partir da equação 10:

$$Cloretos = \left(\frac{ABS_{am}}{ABS_{pd}}\right). 100$$
 10

em que: *Cloretos* é a concentração em mEq/L de cloretos da amostra; ABS_{am} = Intensidade da luz "absorvida" em UA pela amostra e ABS_{pd} = Intensidade da luz "absorvida" em UA pelo padrão fornecido pelo fabricante do reagente cloretos colorimétricos K050 Bioclin® (BIOCLIN, 2018).

3.2 CARACTERIZAÇÃO DO REAGENTE CLORETOS COLORIMÉTRICOS

O reagente K050 da Bioclin[®] foi caracterizado utilizando um espectrofotômetro UV/Visível marca Beckman Coulter, modelo DU 800. Foi utilizada a solução padrão de 100 mEq/L fornecida pela empresa junto com o reagente.

Com o auxílio de uma balança semianalítica e micropipetas monocanal (marca Kasvi®, modelos K1-10F, K1-100F e K1-1000F), foram preparadas três cubetas de acrílico com capacidade de 4 mL (Figura 24). Cada cubeta continha 3,5 mL de reagente e 10 µL de solução padrão conforme especificado pela Bioclin[®] (BIOCLIN, 2018).

Figura 24 - Registro fotográfico das cubetas contendo reagentes e solução padrão

Em destaque (a), (b) e (c), são mostradas as três cubetas com a mistura do reagente ao padrão Bioclin®. Em (d), pode ser observado o frasco contendo o padrão com concentração de 100 mEq/L que acompanha o *kit* do reagente Bioclin®. Fonte: Acervo do autor (2021).

As cubetas de acrílico com canal padrão de 10mm foram introduzidas no espectrofotômetro DU 800 (Figura 25). O equipamento foi ajustado para coletar os valores de absorbância medidos em comprimento de onda variando de 350 nm a 650 nm. Foi realizada uma medida de varredura em cada cubeta.

Para o teste de estabilidade, foram preparadas mais cinco cubetas de acrílico com capacidade de 4 ml (Figura 24). Cada cubeta continha 3,5 ml de reagente e dez µL de solução padrão conforme especificado pela Bioclin® (BIOCLIN, 2018). Foi medida a absorbância das amostras a cada 30 minutos, parando após 200 minutos.

Figura 25 - Registro fotográfico do espectrofotômetro DU 800

Fonte: Acervo do autor (2021).

3.3 DESENVOLVIMENTO DO PROTÓTIPO PARA DOSAGEM DE CLORETOS, CARACTERIZAÇÃO E TESTES

A metodologia para o desenvolvimento do protótipo foi dividida em duas etapas: desenvolvimento do sensor espectrofotométrico e desenvolvimento e testes do protótipo.

3.3.1 Desenvolvimento do sensor espectrofotométrico

Para a modelagem do sensor, foi utilizada a técnica de prototipagem rápida (desenho preliminar e impressão 3D); ensaios físicos (testes dinâmicos); simulação em ambiente virtual; escolha de resina fotopolimerizante não reagente a cloretos; impressão do dispositivo; escolha do material de interface e escolha dos componentes eletrônicos.

3.3.1.1 Desenho preliminar

Com o auxílio da ferramenta CAD (Tinkercad®/AUTODESK[®]), foi elaborado o desenho preliminar de um dispositivo prevendo canais de acesso para a injeção e remoção de fluidos (reagentes), além dos acoplamentos da fonte de luz, *Light Emitting Diode* (LED) e do fotodetector (LUXÍMETRO), respeitando a distância de 10 mm da câmara interna.

A figura 26 ilustra o desenho preliminar do dispositivo projetado.

Fonte: Acervo do autor (2021).

3.3.1.2 Construção do dispositivo

Foi utilizada uma impressora 3D (Figura 27) para a impressão do sensor projetado. A técnica escolhida foi a FDM, utilizando ABS. A impressora 3D foi configurada para operar em sua máxima resolução, visando a impedir o vazamento de fluidos do sensor. O passo máximo do eixo-z (vertical) era de 0,01 mm, o bico utilizado na extrusora dispunha de 0,02 mm e a densidade de preenchimento (*infill*) foi ajustada para 100%. Adicionalmente, optou-se por melhorar a adesão entre as camadas da peça impressa, utilizando um solvente de ABS. O sensor foi imerso em acetona pura (C₃H₆O a 99%) por 30 segundos e deixado em repouso por 24 horas.

Fonte: Acervo do autor (2021).

A figura 28 (a) traz o registro fotográfico, em corte transversal, do sensor construído em ABS. Na figura 28 (b), é possível visualizar o posicionamento previsto para o acoplamento do fotodetector.

Figura 28 - Registro fotográfico do sensor impresso pela técnica de manufatura aditiva

(a) Registro fotográfico do corte transversal do sensor impresso em ABS, possibilitando visualizar os tubos de acesso à câmara interna e a posição prevista para o *Light Emitting Diode Red, Green and Blue* (LED RGB). (b) Registro fotográfico do posicionamento previsto para o fotodetector. Fonte: Acervo do autor (2021).

Houve instabilidade dos valores medidos durante os ensaios preliminares. A instabilidade era causada por bolhas de ar que se alojavam dentro do sensor, problema sanado como descrito na seção seguinte.

3.3.1.3 Testes dinâmicos

Para evitar o acúmulo de bolhas na parte superior (Figura 29a), foi construído um novo protótipo em ABS, contendo uma estrutura inclinada em 45° na parte superior do dispositivo (Figura 29b), evitando o acúmulo de bolhas.

Figura 29 - Registro fotográfico dos modelos de sensor destacando os pontos de acúmulo de bolhas de ar

Legenda: (a) Registro fotográfico do corte transversal do sensor impresso em ABS, destacando, em vermelho, o ponto de acúmulo de bolhas. (b) Registro fotográfico do sensor com a estrutura projetada no local próximo ao LED para facilitar a saída das bolhas de ar. Fonte: Acervo do autor (2021).

Utilizou-se o dispositivo em ABS para confeccionar um molde em borracha de silicone azul (marca Redelease PS). O molde foi preenchido com resina epóxi cristal de baixa viscosidade (marca Redelease Epoxi 2004) para a construção do modelo translúcido (Figura 30a).

Foram preparados 500 ml de uma mistura contendo água DI com pigmento vermelho de impressoras jato de tinta. Com o auxílio de uma bomba de membrana, o fluido foi bombeado no sensor e as imagens foram registradas com um aparelho celular Samsung, modelo A91, configurado no modo gravação de vídeo em alta velocidade.

Pode-se observar, na figura 30 (*frames* (b) até (f)), que a estrutura inclinada em 45º na parte superior do dispositivo ajudou na dispersão de bolhas do caminho ótico LED-fotodetector.

Figura 30 - Registro fotográfico do sensor montado em epóxi com *slides* evidenciando as bolhas de ar

Fonte: Acervo do autor (2021).

Na figura 31, é possível observar o sensor preenchido com o fluido da cor vermelha sem evidências de bolhas no caminho ótico.

Figura 31 - Registro fotográfico do fluido vermelho circulando no sensor

Fonte: Acervo do autor (2021).

3.3.1.4 Desenvolvimento da versão final do sensor

Utilizou-se o *software* Inventor® da AUTODESK® para o projeto final do sensor, considerando agora a necessidade de evitar bolhas no caminho ótico entre o LED e o fotodetector.

O dispositivo final foi impresso utilizando uma impressora de resina marca Sparkmaker[®], modelo FHD.

Figura 32 - Registro fotográfico da impressora 3D Sparkmaker (FHD)

Fonte: Acervo do autor (2021).

O suprimento (resina) utilizado na impressora atendia às seguintes características:

- a) Material deveria ser escuro, minimizando os efeitos de dispersão luminosa dentro do sensor;
- b) Não havia a necessidade de biocompatibilidade do material, entretanto, era importante garantir que não haveria contaminação das amostras por íons de cloro (ausência ou reduzida concentração de cloro na sua composição).

Foi escolhida a resina marca Anycubic (Figura 33), composta de monômeros, acrilatos e iniciadores de polimerização, cuja composição pode ser observada no quadro 3 (SHENZHEN ANYCUBIC TECHNOLOGY, 2019).

Quadro 3 -	Composição	da resina	utilizada na	impressão DLP
	1 3			

Descrição				
Ácidos graxos de soja epoxidados, ésteres BU				
acrilato de isooctilo			30 %	
Di (Trimethylolpropane) Tetraacrilato			15 %	
1,1'-(Methylene-DI-4,1-Phenylene)B	IS	[2-Hydroxy-2-Methyl-1-Propanone]	- 5%	
Fotoinicializador				
Policloro cobre ftalocianina				

Fonte: Elaborado pelo autor (2021).

Figura 33 - Registro fotográfico da resina fotopolimerizante UV

Fonte: Acervo do autor (2021).

Foram impressas oito amostras. Após a limpeza com álcool de cereais (99%) e cura na luz UV, foi realizado o teste de reação utilizando o reagente K-050 da Bioclin®.

3.3.1.5 Especificação da interface translúcida fluido-fotodetector (acrílico)

Foi recortada uma peça de acrílico a ser utilizada na face do sensor (oposta ao LED). O acrílico atende às especificações necessárias de comprimento de onda de 450 nm conforme indicado no quadro 4. Adicionalmente, o acrílico apresenta baixo custo de aquisição e boa usinabilidade (WEST *et al.*, 2014).

Material	Transparência	Aplicabilidade
Quartzo	150 – 3000 nm	UV, visível
Vidro	375 – 2000 nm	visível
Plástico	380 – 800 nm	visível

Quadro 4 - Transparência e aplicabilidade das cubetas

Fonte: Silva (2013).

3.3.1.6 Especificação do luxímetro e fonte de luz

Foi especificada uma fonte de luz visível, de cor compatível ao reagente K-050 da Bioclin®, cujo comprimento de onda principal está em 460 nm (BIOCLIN, 2018). A figura 34 mostra o registro fotográfico do LED RGB com diâmetro de cinco mm utilizado no sensor.

Figura 34 - Registro fotográfico do LED RGB de 5 mm

Fonte: Datasheet (KINGBRIGHT, 2019).

A figura 35 ilustra o diagrama de irradiação luminosa do LED RGB utilizado no sensor (KINGBRIGHT, 2019).

Figura 35 - Diagrama de radiação luminosa do LED RGB

Fonte: Datasheet (KINGBRIGHT, 2019).

Especificou-se um fotodetector (TSL2591) de alta sensibilidade (*Dynamic Range 600M:1*) como fotodetector. A figura 36 mostra o diagrama da faixa de sensibilidade do componente TSL2591 (ADAFRUIT INDUSTRIES, 2020).

Figura 36 - Diagrama de responsividade do TSL2591

Fonte: Datasheet (KINGBRIGHT, 2019).

O TSL2591 é um detector de alta sensibilidade composto por dois fotodiodos. Dois conversores analógico/digital (Conversor A/D) convertem a corrente dos fotodiodos em uma saída digital proporcional à intensidade luminosa captada por cada canal. A figura 37 mostra o diagrama de blocos do dispositivo.

Figura 37 - Ilustração do diagrama de blocos do TSL2591

Fonte: Adaptado do Datasheet (ADAFRUIT INDUSTRIES, 2020).

Internamente, o TSL2591 possui dois *buffers* (CH0 Dados/CH1 Dados) que garantem a integridade do sinal durante a conversão e a transferência dos dados. Parâmetros como taxa de integração (100 a 600 ms) e ganho (1 a 9876) do conversor A/D podem ser configurados. Um conjunto de registradores é responsável por manter os parâmetros de inicialização e operação salvos durante a utilização do dispositivo. Podem ser configurados dois parâmetros relativos a tempo, intensidade

ou transição de modo a disparar uma sinalização de interrupção para um sistema externo. A saída do TSL2591 é feita de modo digital, utilizando o padrão serial I2C a dois fios, evitando problemas relacionados a ruídos comuns em sistemas analógicos.

A figura 38 mostra o registro fotográfico do fotodetector TSL2591 montado na *Printed Circuit Board* (PCB).

Figura 38 - Imagem do dispositivo TSL2591

Fonte: Acervo do autor (2021).

3.3.2 Desenvolvimento, construção e testes do protótipo

O protótipo foi projetado com base no diagrama de blocos ilustrado na figura

39.

Figura 39 - Ilustração do diagrama de blocos do protótipo

Fonte: Acervo do autor (2021).

Projetou-se o protótipo com base no fluxo necessário ao processo de dosagem de cloretos (Figura 40).

Figura 40 - Diagrama do fluxo do processo de dosagem

Fonte: Elaborada pelo autor (2021).

Os testes foram realizados em dois protótipos. Foram utilizadas sete concentrações diferentes de SS (18-20; 30-34; 45-50; 55-60; 75-80; 85-90 e 105-110) mEq/L e cinco medidas em diferentes ordens (crescente, decrescente e aleatórias), totalizando 105 medições. A figura 41 ilustra a metodologia de testes utilizada.

Figura 41 - Diagrama do procedimento de caracterização dos equipamentos

Fonte: Acervo do autor (2021).

3.4 PROPOSTA DE PROCEDIMENTO PARA COLETA E DOSAGEM PARA TESTE DE FC

Foram utilizadas diferentes dimensões de papel filtro qualitativo Whatman® n°1 para absorver variados volumes de SS com diferentes concentrações.

Foi delineado um experimento considerando os seguintes fatores:

- a) Variáveis independentes: área do papel; volume pipetado; concentração esperada e temperatura ambiente;
- b) Variáveis dependentes: concentração de cloretos medida.

Foram confeccionadas 48 amostras de papel divididas em quatro grupos. Cada amostra tinha uma dimensão pré-definida de papel recortado. O quadro 5 mostra as quantidades de papel filtro utilizadas com suas respectivas áreas e absorção máxima (saturação) para cada formato de papel já caracterizado (SPOZITO; SPOZITO; VIEIRA JUNIOR, 2020).

Quantidade	A (cm ²)	Absorção Máxima (µl)
16 (G1)	2,0 (2,0 x 1,0 cm)	35,10 μL
16 (G2)	5,0 (2,0 x 2,5 cm)	79,51 μL
8 (G3)	3,0 (2,0 x 1,5 cm)	49,91 μL
8 (G4)	6,0 (2,0 x 3,0 cm)	94,32 µL

Quadro 5 - Amostras de papel utilizadas

Fonte: Elaborado pelo autor (2021).

Na primeira etapa, foram realizados trinta e dois testes, sendo:

- a) Oito ensaios com papel de dimensões 2,0 x 1,0 cm e concentração 32,00 mEq/L;
- b) Oito ensaios com papel de dimensões 2,0 x 1,0 cm e concentração 77,50 mEq/L;
- c) Oito ensaios com papel de dimensões 2,0 x 2,5 cm e concentração 32,00 mEq/L;
- d) Oito ensaios com papel de dimensões 2,0 x 2,5 cm e concentração 77,50 mEq/L;

Aleatoriamente, uma dimensão de papel, um volume de SS e uma concentração foram sorteados.

Com o auxílio de uma balança sem analítica, o papel sorteado (2 cm² ou 5 cm²) foi pesado seco e o valor, registrado em uma planilha.

Na sequência, com o auxílio de micropipetas monocanal, foi pipetado o volume sorteado (20 μ L ou 100 μ L) da SS em uma placa de petri (vidro 90x18mm).

O papel foi retirado da balança e depositado sobre a solução pipetada. Esperou-se 30 segundos para o papel absorver a SS.

Na sequência, o papel foi removido e imediatamente pesado.

Utilizando uma planilha eletrônica foi calculada a massa líquida da SS absorvida a partir da diferença do peso do papel antes e depois de absorver a SS. Determinou-se, utilizando o peso da massa líquida de SS, a quantidade de reagente necessária à etapa de dosagem. Foi utilizada a relação matemática, respeitando a estequiometria indicada no manual do fabricante K050 Bioclin[®] (10µL de suor para cada 3,5mL de reagente).

O volume de reagente calculado foi pipetado em um tubo tipo Falcon graduado (plástico graduado 15 ml com tampa). O papel foi retirado da balança e mergulhado no reagente dentro do tubo.

O procedimento de retirada do papel da SS e mergulho de mesmo no reagente durou poucos segundos, evitando efeitos relativos à evaporação da SS.

Após cinco minutos de reação entre o reagente e a SS, foi utilizado o equipamento BIO-200 para determinar a concentração da SS coletada pelo papel. A figura 42 ilustra o aparato experimental utilizado no delineamento do experimento.

Figura 42 - Diagrama do fluxo e aparato experimental utilizados no experimento

Fonte: Acervo do autor (2021).

3.5 ANÁLISE ESTATÍSTICA

A análise dos dados coletados foi realizada utilizando os *softwares* BioEstat 5.3. e Minitab 2020. Foram utilizados os testes de Kruskal-Wallis e T de student para comparação entre as médias e os testes de regressão linear simples e múltipla para comparação entre curvas. Utilizou-se a técnica de Delineamento de Experimento (DOE) para a análise de dependências entre variáveis. Para todos os valores, foi considerado p<0,05 como estatisticamente significante.

4 RESULTADOS E ANÁLISE DOS DADOS

Os resultados são apresentados seguindo a ordem didática composta pelas etapas metodológicas:

- a) Preparo das referências: SS e caracterização do reagente cloretos colorimétricos (K050 Bioblin®), que foram utilizados como referência em testes;
- b) Desenvolvimento do sensor e do protótipo;
- c) Proposta de procedimento para coleta e dosagem de cloretos.

4.1 A SS

A caracterização das soluções de referência SS foi realizada utilizando o espectrofotômetro BIO-200. O quadro 6 mostra a média dos resultados obtidos das medidas de SS.

O quadro 6 contendo as 20 medições de cada uma das sete concentrações pode ser visualizada na tabela 16 do Apêndice C.

Concentração calculada (mEq/L)	Concentração Min-Max (mEq/L)	Média da concentração obtida (BIO -200) (mEq/L)	Desvio Padrão (DP)	
20,00	18-22	22,56	2,32	
32,00	30-34	32,11	3,14	
47,50	45-50	46,48	2,73	
57,50	55-60	56,00	3,65	
77,50	75-80	70,68	4,09	
87,50	85-90	84,42	3,98	
107,50	105-110	106,81	4,10	

Quadro 6 - Caracterização da SS utilizada como referência

Fonte: Elaborado pelo autor (2021).

4.2 CARACTERIZAÇÃO DO REAGENTE CLORETOS COLORIMÉTRICOS (K050 – BIOCLIN®)

A partir dos dados obtidos no procedimento de varredura (três amostras) realizado no espectrofotômetro Beckman Coulter (DU 800), foi traçada a curva resposta do reagente Bioclin®. A figura 43 mostra o gráfico da resposta espectral normalizado.

Figura 43 - Curva de resposta espectral do reagente Bioclin®

Fonte: Elaborado pelo autor (2021).

Os dados obtidos no procedimento de verificação de estabilidade do reagente podem ser visualizados no quadro 7.

Tempo	Amostra 1	Amostra 2	Amostra 3	Amostra 4	Amostra 5	Média	DP
(Min)	(UA)	(UA)	(UA)	(UA)	(UA)	(UA)	
0	0,558	0,597	0,582	0,574	0,622	0,587	0,024
30	0,550	0,572	0,586	0,566	0,627	0,580	0,029
60	0,546	0,569	0,571	0,563	0,611	0,572	0,024
90	0,542	0,569	0,567	0,559	0,606	0,569	0,023
120	0,539	0,561	0,563	0,555	0,602	0,564	0,023
150	0,539	0,584	0,563	0,563	0,602	0,570	0,024
170	0,552	0,685	0,563	0,566	0,601	0,593	0,054
200	0,539	n/d	0,569	0,568	0,607	0,571	0,028

Quadro 7 - Caracterização da curva de estabilidade do reagente

Fonte: Elaborado pelo autor (2021).

A partir dos dados do quadro 7, foi traçada a curva de estabilidade do reagente e pode ser observado o "decaimento" da absorbância, refletindo um processo contínuo de reação durante as duas horas de "estabilidade" indicadas pelo fabricante, bem como o início da instabilidade após duas horas (Figura 44).

Figura 44 - Ilustração da curva de decaimento e estabilidade do reagente

Fonte: Acervo do autor (2021).

4.2.1 Desenvolvimento do sensor

Após a realização dos ensaios a partir de diferentes arquiteturas do sensor e materiais, foram determinadas as dimensões finais da câmara interna, das estruturas para a fixação da fonte de luz (LED), do encaixe do acrílico, dos pinos guia para a montagem do luxímetro e o encaixe das mangueiras de silicone. A figura 45 ilustra as principais dimensões do sensor utilizado no protótipo.

O volume da câmara interna do sensor (ponto de testagem) era de 250 mm³, podendo acondicionar até 0,25 mililitros.

Figura 45 - Visão, em perspectiva, em corte do projeto final do sensor (dimensões em mm)

Fonte: Acervo do autor (2021).

Na figura 46, destacada em laranja, pode ser observada a geometria utilizada no acesso superior esquerdo à câmara do sensor. Essa geometria foi utilizada para facilitar a saída das bolhas de ar. Na figura, pode ser observado o encaixe do LED e do acrílico.

Figura 46 - Ilustração da montagem do LED e do acrílico no sensor (dimensões em mm).

Fonte: Acervo do autor (2021).

Foram desenvolvidas estruturas auxiliares para facilitar a montagem dos componentes no sensor (LED e TSL2591). A figura 47 ilustra as partes principais que compuseram o sensor.

Figura 47 - Ilustração da vista expandida dos principais componentes do sensor.

(A) corresponde à estrutura de suporte do TSL2591 e (B) corresponde ao "corpo" do sensor. Fonte: Acervo do autor (2021).

O luxímetro (TSL2591) foi montado na estrutura auxiliar mostrada na figura 47(A). A vedação foi feita na parte superior pelo LED RGB de cinco mm e na parte inferior pelo acrílico translúcido com aproximadamente 1,5 mm de espessura. Para afixar e reforçar a resistência mecânica do LED e das mangueiras de silicone, utilizaram-se algumas gotas da mesma resina usada na construção (impressão 3D) do sensor.

Com aproximadamente 20 x 20 mm, o sensor finalizado é apresentado na figura 48. A entrada de fluido dá-se no acesso inferior esquerdo (*inlet*) com a saída no acesso superior direito (*outlet*) através de duas mangueiras de silicone com diâmetro interno de 3 mm e externo de 5 mm.

Figura 48 - Registro fotográfico do sensor montado

Fonte: Acervo do autor (2021).

Na figura 49 (a), pode ser observada a vista lateral do sensor. A figura 49(b) mostra a vista inferior do mesmo dispositivo.

Figura 49 – Registro fotográfico da vista lateral (a) e inferior (b) do sensor montado

Fonte: Acervo do autor (2021).
4.3 MONTAGEM E TESTES DO PROTÓTIPO DESENVOLVIDO

A figura 50 mostra o diagrama de blocos do *hardware* desenvolvido para a medição da absorbância. Foram projetados quatro blocos principais: sistema microprocessado; mostrador *Liquid Crystal Display* (LCD); circuito *Pulse Width Modulation/Digital-to-Analog Converter* (PWM/DAC) e sistema de alimentação AC/DC dotado de um regulador interno.

Figura 50 - Diagrama de blocos dos principais elementos do protótipo

Fonte: Acervo do autor (2021).

4.3.1 Desenvolvimento do hardware

Os protótipos foram montados em placa padrão tipo ilha com dimensão 100 mm x 200 mm. As interconexões na placa foram feitas utilizando fio rígido 22 AWG. Para conectar o sensor à placa padrão, utilizou-se cabo flexível multicor 0,30 mm. Todas as interconexões foram soldadas. Para eventuais isolamentos, foi utilizado "espaguete" termo retrátil.

4.3.1.1 Sistema microprocessado

Para o processamento de sinais, foi utilizado o circuito integrado ATmega328 (MICROCHIP TECHNOLOGY INCORPORATED, 2018). A figura 51 mostra o diagrama eletrônico completo do sistema desenhado no *software* EasyEda[®].

Fonte: Elaborado pelo autor (2021).

4.3.1.2 Sistema PWM para controle de luminosidade

Foram utilizados a saída digital PWM do pino 12 (PD6) do microcontrolador Atmega328. Manter a alimentação do LED durante a operação é fundamental para evitar erros nas medidas. Um regulador de tensão analógico é mais sensível a oscilações na tensão de alimentação e temperatura. Optou-se por utilizar um sistema digital de estabilização composto por um oscilador PWM e um filtro passabaixa RC para a conversão digital-analógica. Foi programada uma rotina para monitoramento de variações até 1%, executada em segundo plano.

Para o monitoramento da tensão entregue ao LED, o pino analógico 23 (PC0) do microcontrolador Atmega328 foi conectado ao anodo da entrada Blue (azul) do LED RGB catodo comum.

Para a escolha dos componentes do filtro passa-baixa, utilizou-se de simulação no software EasyEda[®]. Empregaram-se 960 Hz como frequência fundamental e variação do duty cycle entre 0% e 100%.

A figura 52 mostra o ambiente de simulação do PWM. Um gerador de sinais foi utilizado como fonte PWM e um osciloscópio de dois canais serviu para a visualização da onda quadrada gerada e da tensão de saída após o filtro passabaixa.

Figura 52 - Ilustração do circuito utilizado na simulação do PWM

Elaborado pelo autor (2021).

A figura 53 mostra as respostas simuladas do PWM/DAC a 1% de duty cycle. A tensão de alimentação do LED estava em aproximadamente 0,276 V.

Fonte:

Figura 53 - Ilustração da resposta do PWM/DAC a 1% de duty cycle

Fonte: Acervo do autor (2021).

A figura 54 mostra as respostas simuladas do PWM/DAC a 50% de *duty cycle* (em amarelo). A tensão de alimentação do LED está em aproximadamente 2,800 V (em azul).

Figura 54 - Ilustração da resposta do PWM/DAC a 50% de duty cycle

Fonte: Acervo do autor (2021).

A figura 55 mostra as respostas simuladas do PWM/DAC a 90% de *duty cycle* (em amarelo). A tensão de alimentação do LED está em aproximadamente 2,942 V (em azul).

Figura 55 - Ilustração da resposta do PWM/DAC a 90% de duty cycle

Fonte: Acervo do autor (2021).

A figura 56(a) mostra o funcionamento do PWM/DAC alimentando o LED com um osciloscópio digital de um canal conectado à saída PWM. A figura 56(b) mostra o osciloscópio conectado ao anodo do LED RGB.

Figura 56 - Registro fotográfico da medição do PWM/DAC a 90% de duty cycle.

a) Ilustra a saída digital do microcontrolador. (b) Ilustra a saída após o filtro. Escala horizontal .5 ms/div e vertical 1V/div. Fonte: Acervo do autor (2021).

4.3.1.3 Desenvolvimento da PCB

A PCB, com dimensões 100 mm x 200 mm para a montagem final do protótipo, foi realizada com o auxílio do *software* EasyEda[®]. No algoritmo de roteamento, foram configurados os seguintes parâmetros: placa face simples; largura de trilha 0,5 mm; distância entre trilhas 0,4 mm; diâmetro da via 0,61 mm e

diâmetro do furo da via 0,31 mm. Na figura 57, é mostrada a disposição dos componentes na PCB projetada.

J'

Na figura 58, são mostradas a vista superior da PCB, destacando a posição dos componentes eletrônicos, e uma visão das trilhas na parte oposta da placa.

Figura 58 - Ilustração da vista superior da PCB (componentes e trilhas)

Fonte: Acervo do autor (2021).

Na figura 59, é mostrado o diagrama final da PCB para fotolitografia e confecção da PCB.

Figura 59 - Ilustração do desenho final do projeto da PCB para a fotolitografia

Fonte: Acervo do autor (2021).

A figura 60 mostra uma visão tridimensional da montagem dos principais componentes na PCB.

Figura 60 - Ilustração tridimensional dos principais componentes montados na PCB

Fonte: Acervo do autor (2021).

A figura 61 ilustra a vista tridimensional inferior da montagem dos principais componentes na PCB.

Figura 61 - Ilustração tridimensional dos principais componentes montados na PCB (vista inferior)

Fonte: Acervo do autor (2021).

4.3.2 Desenvolvimento do software

Utilizou-se o fluxo do processo de testagem (Figura 40) para desenhar o diagrama de casos de uso do *software*. A figura 62 ilustra o diagrama de casos de uso.

Figura 62 - Ilustração do diagrama de casos de uso do software

Fonte: Acervo do autor (2021).

Foram mapeadas as seguintes rotinas no processo de dosagem:

- a) Menu de navegação com seis opções (0-5);
- b) Calibração do equipamento (ajuste PWM);
- c) Medida de água DI;
- d) Medida do "branco" (reagente);

- e) Medida da amostra;
- f) Medida do "Padrão" (solução fornecida pelo fabricante do reagente);
- g) Exibição dos valores medidos.

Os processos de inicialização/carga do software contêm:

- a) Carga da biblioteca do TSL2591;
- b) Carga da biblioteca do mostrador LCD1602;
- c) Inicialização das variáveis auxiliares.

Em segundo plano (backgroud), foram implementadas as seguintes rotinas:

- a) Monitoramento e correção da tensão do LED RGB (PWM/DAC);
- b) Registro de variáveis globais temporárias das medições;
- c) Cálculo aritmético da concentração de cloretos;
- d) Monitoramento paralelo via interface serial Universal Serial Bus (USB).

A figura 63 ilustra o fluxograma do *software* desenvolvido e embarcado no ATmega328. O código do *software* pode ser visto no Apêndice D.

Figura 63 - Ilustração do fluxograma do software implementado

Fonte: Elaborado pelo autor (2021).

A figura 64 mostra as opções de operação programadas no microcontrolador do protótipo.

Figura 64 - Registro fotográfico do LCD exibindo as opções de operação

(a) Mostra o *menu* calibração do PWM. (b) Mostra o *menu* para a medição do reagente puro. (c) Mostra o *menu* para a medição da amostra de suor do paciente. (d) Mostra o *menu* para a medição do padrão fornecido pela Bioclin®. (e) Mostra o *menu* de exibição dos resultados e (f) mostra a tela final de exibição dos resultados com a concentração calculada. Fonte: Elaborado pelo autor (2021).

4.3.3 Acondicionamento do sistema em caixa steck

Utilizou-se um impresso de referência para os cortes e furações da caixa Steck[®] onde foram acondicionados os componentes, conforme mostrado na figura 65.

Figura 65 - Registro fotográfico da preparação da caixa steck.

Em (A), pode ser observado o plano de corte da caixa. No item (B), é mostrada a caixa com os componentes sendo afixados. Em (C), são mostradas a caixa com o sensor afixado e a moldura do LCD. Fonte: Acervo do autor (2021).

A figura 66 mostra os protótipos montados na versão final.

Figura 66 - Registro fotográfico dos protótipos finalizados

Fonte: Acervo do autor (2021).

4.3.4 Ensaios realizados nos protótipos

Foram realizados cinco ensaios com SS, respeitando a estabilidade de duas horas do reagente. Todos os valores foram calculados e corrigidos conforme instruções do fabricante, utilizando a amostra padrão de 100 mEq/L para ajuste da curva de calibração (BIOCLIN, 2018; LEÃO; AGUIAR, 2008):

$$Cloretos = \left(\frac{ABS_{am}}{ABS_{pd}}\right).$$
 100 11

em que: *Cloretos* é a concentração em mEq/L de cloretos da amostra; ABS_{am} = Intensidade da luz "absorvida" em UA pela amostra e ABS_{pd} = Intensidade da luz "absorvida" em UA pelo padrão fornecido pelo fabricante do reagente cloretos colorimétricos K050 Bioclin® (BIOCLIN, 2018).

O quadro 8 mostra a média dos resultados das concentrações em mEq/L medidas com dois protótipos e o equipamento de referência BIO-200: medida 1 com BIO-200; medida 2 com protótipo 1 e medida 3 com protótipo 2. A tabela contendo os ensaios com todo os dados utilizados para compilar o quadro 8 pode ser visualizada no Apêndice A.

Quadro 8 - Resultados médios das concentrações (em mEq/L) medidas no equipamento de referência e nos protótipos

Concentração Esperada (Amostra)	Concentração Medida 1 (BIO-200)	DP	Concentração Medida 2 (Prot. 01)	DP	Concentração Medida 3 (Prot.02)	DP
18-22	21,57	2,52	23,77	1,69	23,33	1,87
30-34	32,29	3,51	32,31	3,86	32,97	1,97
45-50	45,93	2,72	47,67	2,07	46,38	3,46
55-60	56,71	3,52	55,61	5,45	54,97	1,67
75-80	71,68	3,84	72,21	2,76	70,05	5,95
85-90	83,64	2,46	85,85	5,72	84,55	4,99
105-110	105,99	4,40	108,28	2,03	106,98	5,28
R ²	0,996		0,994		0,991	

Fonte: Elaborado pelo autor (2021).

A comparação entre as regressões das três curvas mostrou igualdade estatística tanto nos interceptos quanto no coeficiente angular (p>0,05).

A figura 67 mostra as curvas referentes aos dois protótipos e do equipamento de referência (BIO-200).

Figura 67 - Gráfico comparativo da resposta medida pelos protótipos (em mEq/L) e pelo equipamento de referência (BIO-200)

Fonte: Elaborado pelo autor (2021).

4.4 PROPOSTA DE UM PROCEDIMENTO PARA COLETA E DOSAGEM DE TESTE DE FC

A técnica atualmente utilizada no TS consiste em diluir o suor em água DI ou suor puro pela técnica coulométrica.

O procedimento com o equipamento desenvolvido utiliza-se da diluição do suor diretamente no reagente para posterior dosagem de cloretos.

Realizou-se, considerando a necessidade de diluir o papel diretamente no reagente, um desenho de experimento (DOE) para avaliar a influência das variáveis: área do papel; volume e concentração da SS e temperatura ambiente na medida de cloretos.

Foram realizados três ensaios. No primeiro ensaio, foram analisadas todas as variáveis.

No quadro 9, são mostrados os parâmetros utilizados no experimento e a última coluna destaca os valores medidos no equipamento de referência BIO-200. Os valores foram compilados a partir do Apêndice B.

Teste	Concentração Esperada mEq/L	Área (cm²)	Volume de SS Pipetado	Temperatura Ambiente (ºC)	Resultado Mensurado mEq/L
1	32,00	2	20	26,20	36,16
2	32,00	2	100	28,10	25,25
3	32,00	2	20	23,80	30,03
4	32,00	2	100	28,70	30,10
5	32,00	2	20	29,00	32,29
6	32,00	2	100	28,50	34,27
7	32,00	2	20	29,60	32,24
8	32,00	2	100	28,50	32,08
9	77,50	2	20	25,60	75,58
10	77,50	2	100	27,50	66,29
11	77,50	2	20	26,80	63,45
12	77,50	2	100	28,60	67,44
13	77,50	2	20	29,50	74,20
14	77,50	2	100	28,00	75,22
15	77,50	2	20	29,50	71,32
16	77,50	2	100	27,90	72,08
17	32,00	5	20	26,30	35,48
18	32,00	5	100	23,00	44,23
19	32,00	5	20	27,20	36,51
20	32,00	5	100	30,00	37,24
21	32,00	5	20	24,50	35,84
22	32,00	5	100	26,90	35,52
23	32,00	5	20	27,30	36,48
24	32,00	5	100	27,30	35,19
25	77,50	5	20	26,50	77,13
26	77,50	5	100	27,00	72,84
27	77,50	5	20	24,40	80,80
28	77,50	5	100	27,20	69,37
29	77,50	5	20	24,60	77,30
30	77,50	5	100	24,80	69,57
31	77,50	5	20	23,90	72,58
32	77,50	5	100	26,90	69,46

Quadro 9 - Variáveis utilizadas na primeira análise fatorial do DOE

No quadro 10 são mostrados os resultados da análise fatorial no DOE obtidos a partir do *software* Minitab®.

Termo	Efeito	Coef	EP de Coef	Valor-T	Valor-P	VIF
Constante		60.2	11.7	5.16	0.000	
Temp (°C)		-0.258	0.432	-0.60	0.555	1.42
Área (Cm2)	3.769	1.885	0.768	2.46	0.021	1.32
Concentração (mEq/L)	37.757	18.879	0.673	28.03	0.000	1.02
Volume (µl)	-1.725	-0.863	0.695	-1.24	0.225	1.08

Quadro 10 - Coeficientes codificados

Fonte: Elaborado pelo autor (2021).

Como mostrado na figura 68, houve influência dos fatores: área do papel (A) e concentração da SS (B).

Figura 68 - Gráfico de Pareto do primeiro ensaio

Ao considerar que os fatores temperatura e volume (C) não influenciaram os resultados (P>0,05), mas a área do papel (A) apresentou valores próximos ao limite (P=0,021), foi realizado um segundo ensaio, que manteve constante o volume da SS utilizada em 20 µL, considerando os seguintes fatores:

- a) Área do papel;
- b) Concentração da SS;

No quadro 11, são mostrados os parâmetros utilizados no experimento e a última coluna destaca os valores medidos no equipamento de referência BIO-200.

Teste	Concentração Esperada mEq/L	Área (cm²)	Resultado Mensurado mEq/L
1	32,00	2	36,16
2	32,00	2	25,25
3	32,00	2	30,03
4	32,00	2	30,10
5	32,00	2	32,29
6	32,00	2	34,27
7	32,00	2	32,24
8	32,00	2	32,08
9	77,50	2	75,58
10	77,50	2	66,29
11	77,50	2	63,45
12	77,50	2	67,44

Quadro 11 - Resultados da segunda análise DOE

13	77,50	2	74,20
14	77,50	2	75,22
15	77,50	2	71,32
16	77,50	2	72,08
17	32,00	5	35,48
18	32,00	5	44,23
19	32,00	5	36,51
20	32,00	5	37,24
21	32,00	5	35,84
22	32,00	5	35,52
23	32,00	5	36,48
24	32,00	5	35,19
25	77,50	5	77,13
26	77,50	5	72,84
27	77,50	5	80,80
28	77,50	5	69,37
29	77,50	5	77,30
30	77,50	5	69,57
31	77,50	5	72,58
32	77,50	5	69,46

No quadro 12, são mostrados os resultados do segundo ensaio da análise fatorial no DOE obtidos a partir do *software* Minitab®.

Quadro 12 - Coeficientes codificados

Termo	Efeito	Coef	EP de Coef	Valor-T	Valor-P	VIF
Constante		53.211	0.595	89.46	0.000	
Área (Cm2)	2.223	1.111	0.752	1.48	0.150	1.00
Concentração (mmol/L)	39.259	19.629	0.595	33.00	0.000	1.00
	00.200	101020	0.000	00.00	0.000	

Fonte: Elaborado pelo autor (2021).

Como mostrado na figura 69, não houve influência do fator área do papel (A).

Figura 69 - Gráfico de Pareto do segundo ensaio

Foi realizado um terceiro ensaio, que mantinha constante o volume da SS em 100 µL, levando em consideração os seguintes fatores:

- a) Área do papel;
- b) Concentração da SS.

No quadro 13, são mostrados os parâmetros utilizados no experimento e a última coluna destaca os valores medidos no equipamento de referência BIO-200.

Teste	Concentração Esperada mEq/L	Área (cm ²)	Resultado Mensurado mEq/L
1	32,00	2	25,25
2	32,00	2	30,10
3	32,00	2	34,27
4	32,00	2	32,08
5	77,50	2	66,29
6	77,50	2	67,44
7	77,50	2	75,22
8	77,50	2	72,08
9	32,00	5	44,23
10	32,00	5	37,24
11	32,00	5	35,52
12	32,00	5	35,19
13	77,50	5	72,84
14	77,50	5	69,37
15	77,50	5	69,57
16	77,50	5	69,46
17	32,00	3	33,58
18	32,00	3	30,58
19	32,00	3	31,33

Quadro 13 - Resultados da terceira análise DOE

20	32,00	3	29,46
21	77,50	3	71,48
22	77,50	3	74,69
23	77,50	3	76,23
24	77,50	3	68,59
25	32,00	6	36,57
26	32,00	6	34,89
27	32,00	6	32,65
28	32,00	6	33,21
29	77,50	6	70,59
30	77,50	6	69,07
31	77,50	6	70,59
32	77,50	6	71,84

No quadro 14, são mostrados os resultados do terceiro ensaio da análise fatorial no DOE obtidos a partir do *software* Minitab®.

Quadro 14 - Coeficientes codificados

_					
5	52.234	0.608	85.85	0.000	
543 1	1.271	0.770	1.65	0.109	1.00
450 1	8.725	0.608	30.78	0.000	1.00
	543 450 1	52.234 543 1.271 450 18.725	52.234 0.008 543 1.271 0.770 450 18.725 0.608	32.234 0.000 83.83 543 1.271 0.770 1.65 450 18.725 0.608 30.78	52.234 0.008 83.83 0.000 543 1.271 0.770 1.65 0.109 450 18.725 0.608 30.78 0.000

Fonte: Elaborado pelo autor (2021).

Como mostrado na figura 70, não houve influência do fator área do papel (A).

Figura 70 - Gráfico de Pareto do terceiro ensaio

Fonte: Elaborado pelo autor (2021).

A figura 71 ilustra o fluxo das principais etapas de coleta e diluição do suor no reagente para a proposta de protocolo com uso do protótipo.

Figura 71 - Diagrama da proposta de protocolo alternativo de coleta e dosagem no TS

Fonte: Elaborado pelo autor (2021).

O aparato necessário à realização do protocolo alternativo é mostrado na figura 72.

Figura 72 - Registro fotográfico do aparato experimental previsto para a proposta de protocolo

Fonte: Acervo do autor (2021).

A figura 73 ilustra o fluxograma para dosagem de cloretos para a proposta de protocolo com uso do protótipo.

Figura 73 - Diagrama do fluxo de operação do novo procedimento com uso do protótipo

Fonte: Elaborado pelo autor (2021).

Segue abaixo o passo a passo para a realização do novo procedimento com uso do protótipo.

a) Preparo das seringas

- a) Reserve três seringas vazias de 10 ml SR1, SR2, SR3;
- b) Prepare três seringas com 10 ml de água Dl cada SR4, SR5, SR6;
- c) Prepare uma seringa com 10 ml de reagente SR7;
- d) Reserve duas seringas vazias de 10 mL com ponteiras SR8, SR9.

b) Procedimento de medição

- a) Ligue o equipamento de medida Centro de Engenharia Biomédica/Universidade Estadual de Campinas (CEB/UNICAMP);
- b) Rotinas de calibração:
 - 1. Acoplar SR1 na saída do equipamento e SR4 na entrada;
 - 2. Pressione o êmbolo das seringas alternadamente por cinco vezes;
 - 3. Execute a rotina calibrar e água DI no equipamento (Figura 64 (a)).
- c) Medida do "branco" (reagente):
 - 1. Acoplar SR1 na saída do equipamento e SR7 na entrada;
 - 2. Pressione o êmbolo das seringas alternadamente por cinco vezes;
 - 3. Execute a rotina "branco" no equipamento (Figura 64 (b)).
- d) Prepare simultaneamente as seringas contendo a amostra de suor (reagente+suor) e a amostra do padrão (reagente + padrão Bioclin©):
 - 1. Utilize a seringa SR8 para o suor;
 - 2. Utilize a seringa SR9 para o padrão.
- e) Medida do "suor" (amostra):
 - 1. Acoplar SR1 na saída do equipamento e SR8 na entrada;
 - 2. Pressione o êmbolo das seringas alternadamente por cinco vezes;
 - 3. Execute a rotina "amostra" no equipamento (Figura 64 (c)).
- f) Limpeza:
 - 1. Acoplar SR2 na saída do equipamento e SR5 na entrada;
 - 2. Pressione o embolo das seringas alternadamente por cinco vezes.
- g) Medida do "padrão":
 - 1. Acoplar SR2 na saída do equipamento e SR8 na entrada;
 - 2. Pressione o êmbolo das seringas alternadamente por cinco vezes;

- 3. Execute a rotina "padrão" no equipamento (Figura 64 (d)).
- h) A partir do *menu* do equipamento, execute a rotina "resultados" (Figura 64 (d) e figura 64 (e)).
- i) Limpeza:
 - 1. Acoplar SR3 na saída do equipamento e SR6 na entrada;
 - 2. Pressione o êmbolo das seringas alternadamente por cinco vezes.

5 DISCUSSÃO

A FC é, atualmente, uma doença crônica, de causa genética, que altera o funcionamento de diversos órgãos, provocando comorbidades que podem culminar em morte. Propor meios que garantam o diagnóstico precoce é fundamental e o TS é o exame laboratorial classificado como padrão-ouro no diagnóstico de FC, sendo realizado quando ocorrem alterações nos resultados da TNN (ATHANAZIO *et al.*, 2017).

Trabalhos recentes evidenciam a dificuldade na execução da TNN nos estados do norte e nordeste em função das desigualdades socioeconômicas (MALLMANN; TOMASI; BOING, 2020), reflexo da falta de infraestrutura básica e de investimentos adequados para a melhoria de atendimento no SUS (SOARES; MACHADO; ALVES, 2016).

Além das dificuldades em cobrir todos os recém-nascidos no programa de TNN, quando há recomendação para realização do TS, os custos relativos a este procedimento apresentam valores elevados, se comparados aos repasses previstos pelo SUS (BRASIL, 2015) aos CRs. No estado de SP os sete CRs apresentam dificuldades na realização do TS devido a fatores relacionados ao custeio dos procedimentos (SERVIDONI, 2014).

Existem diversas técnicas para auxiliar o diagnóstico de FC que quantificam os cloretos presentes no suor. Essas técnicas diferem quanto aos seus princípios fundamentais.

O quadro 15 mostra uma visão geral a partir da análise das características relativas a cada método de dosagem. Para facilitar a análise, em cada coluna, foram marcados os fatores positivos em verde e, em vermelho, os fatores caracterizados como desvantajosos.

Método	Precisão	Volume de	Custo do	Custo	Custo do	Medição		
	do	suor	coletor	dos	equipamento	Direta		
	método	necessário		insumos				
Titulometria	Alta 🌘	Alto 🔴	Baixo 🔵	Baixo 🔵	Muito Baix	Sim 🛑		
Coulometria	Alta 🔵	Baixo 🔵	Alto 🔴	Muito alto	Muito Alto	Sim 🛑		
Condutometria	Baixa 🛑	Baixo 🛑	Alto 🔴	Baixo 🛑	Alto 🔴	Não 🔴		
Colorimetria	Alta 🌘	Baixo 🔵	Baixo 🔵	Baixo 🛑	Alto 🔴	Sim 🛑		
Protótipo com								
proposta de	Alta 🔵	Baixo 🔵	Baixo 🔵	Baixo 🛑	Baixo 🔵	Sim 🛑		
procedimento								

Quadro 15 - Tabela de comparação dos métodos de coleta e dosagem

Fonte: Elaborado pelo autor (2021).

A **titulometria**, amplamente utilizada desde a década de 1940, foi desenvolvida por Schales e Schales (1941) e tinha como vantagens a sensibilidade para dosagem de suor diluído, o baixo custo dos reagentes e o pequeno aparato necessário à realização do procedimento. Entretanto, no Brasil, a empresa Bioclin®, única a produzir o reagente titulométrico, encerrou sua produção no ano de 2018, forçando os CRs em FC a buscarem, no mercado, opções e técnicas alternativas.

A **coulometria** traz, como vantagem, alta seletividade na dosagem dos íons de cloro, entretanto, seus custos (equipamentos e reagentes) são altos.

A **condutometria** apresenta elevados resultados de "falsos negativos", chegando a 25% de resultados inválidos em pacientes conhecidamente fibrocísticos BLOXSOM, 1959; LOSTY; WHEATLEY; DOULL, 2006; LUNDGREN *et al.*, 1955).

A **colorimetria** pode ser uma alternativa aos métodos de dosagem supracitados, utilizando a técnica descrita por Zall, Fischer e Garner (1956). O quadro 15 mostra que a única desvantagem da técnica de colorimetria é o custo de aquisição do equipamento. O primeiro objetivo deste trabalho foi desenvolver um espectrofotômetro dedicado no auxílio ao diagnóstico de FC, portátil e de baixo custo. Estratégias similares vêm sendo utilizadas para equipamentos de eletrocardiograma (RAKIN *et al.*, 2019) e imagem por ressonância magnética (WALD *et al.*, 2019).

Na primeira etapa do trabalho, foi desenvolvido um sensor a partir dos princípios espectrofotométricos. O encapsulamento do sensor foi impresso em ABS com auxílio de uma impressora 3D. Essa técnica foi utilizada com sucesso em aplicações de sensoriamento biomédico (HAN *et al.*, 2019) e para aplicações diretas em sistemas biológicos (HO *et al.*, 2015).

Os primeiros ensaios realizados com o sensor impresso em ABS apresentaram resultados incoerentes, pois se observou a presença de bolhas de ar, que causaram perturbações. O projeto foi ajustado a partir da construção de uma estrutura inclinada em 45º na parte superior. Para a visualização do acúmulo de bolhas, essa versão foi produzida em resina epóxi transparente e observou-se que o problema havia sido solucionado. Problemas com bolhas de ar também foram relatados em trabalho que se utilizou do princípio espectrofotométrico para medida de fluidos em água do mar cuja dimensão da câmara interna era similar à utilizada neste trabalho (AßMANN; FRANK; KÖRTZINGER, 2011).

O projeto final foi construído com o posicionamento do LED RGB de cinco mm na parte superior do sensor cuja estrutura curvilínea do componente naturalmente "conduziu" as bolhas de ar para fora do caminho ótico (distância de dez mm entre o LED e o acrílico do luxímetro). Adicionalmente, foi construída, na via de saída do fluido, uma geometria no formato de funil para facilitar a saída das bolhas. O protótipo final do sensor foi impresso em resina fotopolimerizante com o auxílio de uma impressora 3D DLP.

Como um dos balizadores desta proposta foi o uso de componentes comerciais produzidos em larga escala. O LED RGB foi a opção mais viável para ser usada como fonte de luz e o luxímetro TSL2591 foi escolhido para detectar o fluxo luminoso. Ambos os componentes foram utilizados em trabalhos nas áreas médica e biomédica (BLEVINS *et al.*, 2019; TEIKARI *et al.*, 2012).

Diferentemente do indicado no manual do reagente K050 Bioclin®, que traz 500 nm como comprimento de luz ideal (BIOCLIN, 2018), a caracterização realizada neste trabalho evidenciou a faixa dos 460 nm como ponto de resposta máximo, alinhado com o espectro do diodo azul (*blue*) do LED RGB cujo comprimento de onda dominante está em 465 nm e meia largura de banda a +/- 22 nm (KINGBRIGHT, 2019).

A partir dos dados coletados nos testes de caracterização dos protótipos, e de informações obtidas na literatura, foram plotados os coeficientes de variação no formato de gráficos de barras na figura 74. A cor laranja corresponde ao CV das medições obtidas no equipamento de referência e em azul os CV obtidos a partir das medições dos protótipos desenvolvidos. Na cor verde estão representadas os CV obtidas a partir de trabalhos publicados.

Os resultados do protótipo utilizaram a técnica colorimétrica. Foi observado mesmo padrão de variabilidade das medições (CV), sendo que em baixas concentrações (20-40 mEq/L) há maior variabilidade e em altas concentrações (80-110 mEq/L) há menor variabilidade (NGUYEN-KHOA *et al.*, 2012).

O protótipo apresentou CV de 6,42 % dentro dos valores esperados para dosagem de cloretos no diagnóstico de FC. Os CVs foram de: 6,88 % para o equipamento de referência e, na literatura internacional, foram de: 5,59% para técnica de titulometria, 5,19 % para técnica de íon seletivo e 2,13 % quando utilizada a condutometria.

Figura 74 - Diagrama da variabilidade das concentrações de cloretos dosadas a partir de diferentes técnicas e diferentes equipamentos

Fonte: Elaborado pelo autor (2021).

Foram calculados os parâmetros relativos e exatidão e precisão dos protótipos e comparados às fichas técnicas de equipamentos comerciais. O quadro 16 apresenta de forma compilada os dados fornecidos pelos fabricantes nas segunda e terceira coluna. As colunas destacadas com fundo da cor verde apresentam os CVs relatados na literatura a partir de medições realizadas em laboratórios. É possível observar que o CV do protótipo desenvolvido apresenta resultados compatíveis, independentemente da técnica de dosagem.

Quadro 16 – Especificações técnicas de equipamentos de dosagem e coeficientes de variabilidade em laboratórios

Equipamento	Método	Exatidão (Manual)	Precisão (Manual)	Domingos (br)	Nguyen- Khoa (fr)	Ensaios
		Manuais (d	latasheet)	CV (Coeficiente de Variabilidade)		
Sweat check	Condutometria	2,0 %	2,0 %	18,76 %	5,19 %	
Analyzer 3120						
Labconco®	Coulometria	0,1 %	0,5 %	20,00 %		
Sherwood 926	Coulometria	1,5 %	2,0 %		18,40 %	
Chloride						
Meter						
BIO-200	Colorimetria		1,0 %			5,49 %
Protótipo 1	Colorimetria					5,23 %
Protótipo 2	Colorimetria					4,31 %

Fonte: Elaborado pelo autor (2021).

Os espectrofotômetros comerciais pesam aproximadamente cinco quilogramas-força e suas dimensões são aproximadamente 560 x 480 x 280 mm e precisam de uma tomada comum de corrente alternada 110V/220V/60Hz para funcionar. Com essas características e dada a sua complexa arquitetura interna, são instalados em bancadas fixas e qualquer movimentação exige cuidados.

O equipamento objeto desta tese foi desenvolvido com foco na portabilidade, podendo funcionar dentro de laboratório ou em campo. Para isso, os componentes foram acondicionados em uma caixa do tipo *Steck*®, com dimensões 157x110x70 mm, com alimentação por meio de bateria comum de 9V ou fonte AC/DC bivolt 110V/220V. Pode ser transportado sem qualquer cuidado adicional e pesa aproximadamente um quilograma-força.

Ao prever o uso do equipamento em ambientes externos, os componentes foram especificados para operar em temperaturas que variam de zero a 50 °C. É comum encontrar, em manuais de equipamentos comerciais, temperaturas de operação variando entre 10 °C e 30 °C (BIOPLUS, 2019). Espectrofotômetros comerciais são projetados para operar em largas faixas de comprimentos de onda. Possuem complexos sistemas de lentes, espelhos e filtros monocromadores, o que acaba por elevar seu custo.

O espectrofotômetro desenvolvido neste trabalho utilizou elementos de baixo custo na sua construção. O sensor teve o custo estimado de R\$ 150,00 (US\$ 30,00) e os componentes adicionais custaram mais R\$ 150,00 (US\$ 30,00), totalizando R\$ 300,00 (US\$ 60,00) sem considerar custos com mão de obra. Esses valores correspondem a seis por cento (6%) de um equipamento comercial novo, mesmo em modelos mais simples. Esta comparação não leva em consideração os custos das empresas e seu lucro com a tecnologia por elas desenvolvida e comercializada. Inserir um novo equipamento de diagnóstico implica custos relacionados à cadeia produtiva do equipamento, atendimento às normas e regulamentações dos órgãos de controle, custos com assistência técnica e outros não explicitados aqui. Entretanto, o baixo valor de componentes e peças próximo a US\$ 60,00 ainda torna a ideia promissora mesmo superestimando, em cinco vezes, o valor final do equipamento na prateleira (US\$ 300,00) cujo valor do produto comercializado ficaria, no máximo, em R\$ 1.500,00 por unidade, muito abaixo dos custos dos equipamentos disponíveis hoje no mercado de saúde brasileiro e internacional. Uma

vantagem adicional seria a facilidade para encontrar peças de reposição, pois quase a totalidade das peças é encontrada nos mercados nacionais e internacionais de componentes eletrônicos.

A metodologia proposta por Lewis e Cooke (1959) é a técnica mais utilizada nos CRs para o processo de estimulação (SERVIDONI *et al.*, 2017) Quando as glândulas sudoríparas se encontram no estado de hiperidrose, inicia-se o procedimento de coleta do suor.

A literatura mostra que diversos elementos podem ser utilizados no processo de coleta do suor (SERVIDONI *et al.*, 2017) dentre eles, gaze, papel filtro qualitativo ou o dispositivo patenteado pela Macroduct®. O elemento absorvente utilizado neste trabalho foi o papel filtro qualitativo. Essa escolha foi pelo fato de ser um elemento padronizado nas suas dimensões, livre de contaminantes e de fácil manipulação. A utilização de papel filtro é uma prática comum no procedimento de coleta para o TS (GOKDEMIR; KARADAG, 2021), trabalhos demonstraram a sua utilização na dosagem de cloretos por fotometria de chama (LAITANO *et al.*, 2013) ou realizando análises que utilizaram o suor de pacientes para dosagem de glucose, lactase ou potencial hidrogeniônico (PH) (ZHANG *et al.*, 2019).

Na etapa de caracterização do equipamento foi identificada a possibilidade de utilizar o papel filtro com suor coletado e diluí-lo diretamente no reagente colorimétrico. Diluir o papel filtro com suor diretamente elimina a necessidade de diluição em água DI, como ocorria na técnica titulométrica. Entretanto, é comum os CRs realizarem a coleta do suor, sua armazenagem e posterior envio das amostras para dosagem. Estudos recomendam que a coleta e dosagem devem ser realizadas no mesmo dia, evitando armazenagem e transporte ou, quando necessário, deve ser feita a centrifugação do coletor e armazenamento do suor em tubos de no máximo 200uL por até 72h. Para transporte recomenda-se congelamento a -70 graus (GOKDEMIR; KARADAG, 2021). Se utilizado o dispositivo Macroduct®, dadas as suas características construtivas, esse procedimento é relativamente facilitado

A diluição direta em reagente não possibilita o acondicionamento para a dosagem posterior, pois o reagente requer que a dosagem seja feita em até duas horas após a coleta do suor. Não foram estudados os possíveis efeitos da evaporação da amostra de suor.

A etapa de coleta, utilizando o papel filtro e o equipamento desenvolvido, suscitou algumas dúvidas quanto à relação entre as variáveis: volume de suor;

concentração do suor; área do papel e temperatura ambiente. Não foram encontrados estudos na literatura relacionados a possíveis dependências entre essas variáveis.

Foi utilizada a técnica de DOE para avaliar a influência das variáveis: área do papel; volume e concentração da SS e temperatura ambiente na medida de cloretos. Os resultados do DOE mostraram a independência das variáveis e a possibilidade de utilizar papel filtro quantitativo, em tamanhos padronizados, em um novo procedimento para o TS.

Um trabalho recente evidenciou que, apesar de normalizados os procedimentos previstos no TS (FARREL *et al.*, 2008), ainda existem diferenças significativas na sua execução, influenciando os resultados dos diagnósticos. Seja por questões técnicas, operacionais ou financeiras, existem problemas na realização efetiva do TS, comprometendo o diagnóstico da FC. Uma pesquisa realizada em diversos países evidenciou problemas na execução do TS em alguma etapa (KIRK, 2000; LeGRYS, 2000; MACKAY; GEORGE; KIRK, 2005). Em CRs brasileiros que atendem pelo SUS, um estudo chegou à mesma conclusão (SERVIDONI *et al.*, 2017).

A Portaria nº 2.099, de 18 de dezembro de 2015 (BRASIL, 2015), do Ministério da Saúde, apresenta valores tabelados de repasses por meio do SUS de R\$ 75,00 por teste realizado (BRASIL, 2010; 2015). Os CRs precisam realizar, pelo menos, dois testes (FARREL *et al.*, 2008; ATHANAZIO *et al.*, 2017) para a confirmação do diagnóstico de FC.

Mattar *et al.* (2010) calculou o valor do teste clássico de suor em R\$ 39,00 (valores de 2010). Para o processo de dosagem de cloretos, os insumos representavam 13% dos custos e a mão de obra para a realização dos testes por titulometria, aproximadamente 30%. A metodologia completa pode ser visualizada no ANEXO A. Ao atualizar os valores pelo Índice Nacional de Preços ao Consumidor Amplo (IPCA) em 2021, os custos do TS seriam de R\$ 72,00, sendo R\$ 9,36 de insumos e R\$ 21,60 da mão de obra para o procedimento titulométrico, totalizando R\$ 30,96. Esse valor levou em consideração que ainda estariam disponíveis, no mercado, todos os insumos de 2010.

Diferentemente da época em que Mattar *et al.* (2010) realizaram o estudo, os reagentes titulométricos foram descontinuados no Brasil. Neste cenário, o custo de pessoal, de infraestrutura e de insumos necessários para realizar o TS supera

consideravelmente os valores apresentados. Para realizar um procedimento de testagem (TS) utilizando elemento de absorção Macroduct® com dosagem pelo método coulométrico (ion seletivo) o custo aproximado era de R\$ 259,00 reais (dólar a R\$ 5,00).

O novo procedimento aqui proposto apresentou um custo total de aproximadamente R\$ 8,00 (US\$ 1,60) de insumos por teste e a dosagem seria feita já no ato da coleta, evitando as despesas laboratoriais posteriores. O valor final do teste seria de aproximadamente R\$ 50,40.

A proposta de procedimento do TS apresentada neste trabalho inclui um dispositivo colorimétrico de baixo custo e o uso de reagente colorimétrico disponível no mercado nacional e internacional. Traz, como principais vantagens, o baixo custo do equipamento e insumos, entretanto, deve ser observado o previsto na Portaria nº 2.099, de 18 de dezembro de 2015 (BRASIL, 2015), cuja lista das técnicas de dosagem prevista não contempla a colorimetria. Para que o procedimento proposto seja passível de receber recursos do SUS seria preciso regulamentar a técnica colorimétrica. Espera-se que o uso do protótipo e da técnica em estudos clínicos em diversos centros de referência no Brasil, em projeto aprovado pelo Comitê de Ética em Pesquisa sob a coordenação de pesquisadores da UNICAMP, permita a submissão de alteração da portaria já citada e a inclusão da técnica colorimétrica como uma das alternativas para a dosagem de cloretos no suor, já adotada e prevista nas diretrizes brasileiras (RIBEIRO; RIBEIRO; RIBEIRO, 2002), no Australian Guidelines for the Performance of the Sweat Test for the Diagnosis of Cystic Fibrosi (AACB SWEAT TESTING WORKING PARTY et al., 2006), entre outros (CIRILLI, N.; PADOAN, R.; RAIA, 2008; COLLIE et al., 2014).

6 CONCLUSÃO

Os testes comparativos foram estatisticamente significantes (R²>0,99 e P<0,05), sendo reprodutivos em laboratório quando comparados à referência;

Os protótipos desenvolvidos permitem a detecção de íons cloreto para o TS no auxílio ao diagnóstico de FC.

Os elementos utilizados para a construção do dispositivo foram de baixo custo, com valores aproximados de R\$ 300,00.

A proposta de procedimento atente diretrizes nacionais e internacionais para o TS, teve o custo aproximado de R\$ 8,00 e mostrou-se reprodutiva em laboratório com valores dentro do estabelecidos pelo SUS para ressarcimento aos CRs.

Está em andamento a aprovação de um parecer do Comitê de Ética em Pesquisa (Parecer nº 45207521.0.0000.5404) para a realização de testes *in vivo.*

Sugere-se atualizar os critérios estabelecidos na portaria nº 2.099 de 18 de dezembro de 2015 para inclusão de elemento absorvente e método colorimétrico.

Recomenda-se a parceria com empresas para a inovação do espectrofotômetro.

REFERÊNCIAS

3D PRINTING SPECIALIST. **What is 3D printing?** Tacarigua: 3DPSpecialist, 2020. Disponível em: https://www.the3dprintingspecialist.com/qa.html. Acesso em: 02 mar. 2021.

3DLAB. **Impressora 3D DLP**: aprenda como funciona essa tecnologia. Betim: 3DLAB, 2021. Disponível em: https://3dlab.com.br/impressora-3d-dlp/ Acesso em: 15 mar. 2021.

AACB SWEAT TESTING WORKING PARTY *et al.* Australian guidelines for the performance of the sweat test for the diagnosis of cystic fibrosis: report from the AACB Sweat Testing Working Party. **The Clinical Biochemist Reviews**, Chippendale, v. 27, n. 2, p. s1-s7, 2006. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1579413/pdf/cbr27_2ps01.pdf Acesso em: 04 ago. 2021.

ACKERMAN, M. J.; CLAPHAM, D. E. Ion channels--basic science and clinical disease. **The New England Journal of Medicine**, Boston, v. 336, n. 22, p. 1575-1586, 1997. DOI: 10.1056/NEJM199705293362207

ADAFRUIT INDUSTRIES. **Adafruit Industries.** New York: 2020. Disponível em: https://www.adafruit.com/. Acesso em: 19 mar. 2021.

ALVAREZ, E. A. *et al.* Cystic fibrosis at a Brazilian center of excellence: clinical and laboratory characteristics of 104 patients and their association with genotype and disease severity. **Jornal de Pediatria**, Rio de Janeiro, v. 80, n. 5, p. 371-379, 2004. DOI: 10.2223/1221

ANTAS, A. F.; LINO, F. J.; RUI NETO. Utilização das Tecnologias de Prototipagem Rápida na Área Médica. In: CONGRESSO LUSO-MOÇAMBICANO DE ENGENHARIA, 5., CONGRESSO DE ENGENHARIA DE MOÇAMBIQUE, 2., 2008. **Anais...** Maputo: FEUP, 2008. p. 1-8. Disponível em: https://paginas.fe.up.pt/~falves/prototipagem%20medica.pdf. Acesso em: 17 mar. 2021.

ARDUINO. What is Arduino? 2021. Disponível em: https://www.arduino.cc/en/Guide/Introduction View: Arduino; 2021. Acesso em: 09 mar. 2021.

AßMANN, S.; FRANK, C.; KÖRTZINGER, A. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems. **Ocean Science**, Gottingen, v. 7, p. 597-607, oct. 2011. DOI: 10.5194/os-7-597-2011

ATHANAZIO, R. A. *et al.* Diretrizes brasileiras de diagnóstico e tratamento da fibrose cística. **Jornal Brasileiro de Pneumologia**, Brasília, v. 43, n. 3, p. 219-245, maio/jun. 2017. DOI: 10.1590/S1806-37562017000000065

BARASCH, J.; Al-AWQATI, Q. Defective acidification of the biosynthetic pathway in cystic fibrosis. **Journal of Cell Science: Supplement**, Cambridge, v. 17, p. 229-233, 1993. DOI: 10.1242/jcs.1993.supplement_17.32

BARBEN, J. U. *et al.* Conductivity determined by a new sweat analyzer compared with chloride concentrations for the diagnosis of cystic fibrosis. **The Journal of Pediatrics**, St. Louis, v. 146, n. 2, p. 183-188, feb. 2005. DOI: 10.1016/j.peds.2004.08.085

BEAUCHAMP, M. K.; LANDS, L. Sweat-Testing: a review of current technical requirements. **Pediatric Pulmonology**, Philadelphia, v. 39, n. 6, p. 507-511, jun. 2005. DOI: 10.1002/ppul.20226

BIOCLIN. **Cloretos Colorimétricos**. Brussels: Bioclin, 2018. Disponível em: https://quibasa.bioclin.com.br/anexos/INSTRUCOES_CLORETOS_COLORIMETRIC O.pdf. Acesso em: 03 mar. 2021.

BIOPLUS. **Analisador bioquímico semiautomático modelo BIO-200**. Barueri: Bioplus, 2019. Disponível em: http://www.bioplus.com.br/produto/analisador-bioquimico-semiautomatico-modelo-bio-200/. Acesso em: 06 mar. 2021.

BLEVINS, D. W. *et al.* Novel methods for the quantification of toxic, residual phase transfer catalyst in fluorine-18 labeled radiotracers. **Nuclear Medicine and Biology**, Oxford, v. 74-75, p. 41-48, jul./aug. 2019. DOI: 10.1016/j.nucmedbio.2019.07.008

BLOXSOM, A. The electrical conductivity of electrolytes found in the sweat of patients with fibrocystic disease of the pancreas. **Archives of Disease in Childhood**, London, v. 34, n. 177, p. 420-421, oct. 1959. DOI: 10.1136/adc.34.177.420

BOA IMPRESSÃO. **Como Funciona a Impressora 3D FDM.** Curitiba: Boa Impressão 3D, 2021. Disponível em:

https://boaimpressao3d.com.br/aplicacoes/como-funciona-impressora-3d-fdm/. Acesso em: 17 jan. 2021.

BRASIL. Ministério da Saúde. Agência Nacional de Vigilâcia Sanitária. **Solução de Cloreto de Sódio 0.9%**. Brasília: Ministério da Saúde, 2020. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/medicamentos/bulas-e-rotulos/especificos/arquivos/6428json-file-

1#:~:text=A%20solu%C3%A7%C3%A3o%20injet%C3%A1vel%20de%20cloreto,e% 20como%20diluente%20para%20medicamentos. Acesso em: 09 fev. 2021.

BRASIL. Ministério da Saúde. Gabinete do Ministro. **Portaria n° 2.099, de 18 de Dezembro de 2015**. Mantém, na Tabela de Habilitações do Sistema do Cadastro Nacional de Estabelecimentos de Saúde (SCNES), a habilitação 14.09 (Serviço Diagnóstico de Fibrose Cística) e dá outras providências. Brasília: Ministério da Saúde, 2015. Disponível em:

https://bvsms.saude.gov.br/bvs/saudelegis/gm/2015/prt2099_18_12_2015.html. Acesso em: 19 mar. 2021. BRASIL. Ministério da Saúde. Gabinete do Ministro. **Portaria nº 822, de 06 de junho de 2021**. Brasília: Ministério da Saúde, 2021. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2001/prt0822_06_06_2001.html. Acesso em: 02 jan. 2021.

BRASIL. Ministério da Saúde. Secretaria de Atenção à Saúde. **Portaria nº 224, de 10 de maio de 2010**. Brasília: Ministério da Saúde, 2010. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/sas/2010/prt0224_10_05_2010.html. Acesso em: 16 fev. 2021.

CAMARGO, E. B.; ELIAS, F. T. S. **Nota rápida de evidência:** observações sobre condições de risco para o agravamento ou morte por COVID 19. Brasília: Fiocruz, 2020. Disponível em: https://www.arca.fiocruz.br/handle/icict/42575. Acesso em: 03 mar. 2021.

CAMPBELL, R. I.; BOURELL, D.; GIBSON, I. Additive manufacturing: rapid prototyping comes of age. **Rapid Prototyping Journal**, Bradford, v. 18, n. 4, p. 255-258, jun. 2012. DOI: 10.1108/13552541211231563

CHAGAS, A. M. Haves and have nots must find a better way: the case for open scientific hardware. **PLoS Biology**, San Francisco, v. 16, n. 9, e3000014, sep. 2018. DOI: 10.1371/journal.pbio.3000014

CIRILLI, N.; PADOAN, R.; RAIA, V. Audit of sweat testing: A first report from Italian Cystic Fibrosis Centres. **Journal of Cystic Fibrosis,** Queensland, v. 7, n. 5, p. 415-422. DOI: 10.1016/j.jcf.2008.03.005

COLLIE, J. T. B. *et al.* Sixty-five years since the New York heat wave: advances in sweat testing for cystic fibrosis. **Pediatric Pulmonology**, Philadelphia, v. 49, n2, p.106-117. DOI: 10.1002/ppul.22945

COTLOVE, E. Determination of Chloride in Biological Materials. In: GLINK, D. Methods of Biochemical Analysis. jan. 1964.

DIAS, D. L. "O que é titulação?"; **Brasil Escola.** São Paulo: Brasil Escola, 2021. Disponível em: https://brasilescola.uol.com.br/o-que-e/quimica/o-que-titulacao.htm. Acesso em: 19 abr. 2021.

DOLGIN, E. Labs on the cheap. **Nature**, London, v. 559, p. 291-293, jul. 2018. Disponível em: https://media.nature.com/original/magazine-assets/d41586-018-05656-2/d41586-018-05656-2.pdf. Acesso em: 03 abr. 2021.

DOMINGOS, M. T. *et al.* Condutividade e teste quantitativo coulométrico na triagem neonatal para fibrose cística. **Jornal de Pediatria**, Rio de Janeiro, v. 91, n. 6, p. 590-595, nov./dez. 2015. DOI: 10.1016/j.jped.2015.03.003

ELITECHGROUP. **ChloroChek® Chloridometer**®. Puteaux: ELITechGroup, 2021. Disponível em: https://www.elitechgroup.com/product/chloro-chek-chloridometer-3. Acesso em: 19 abr. 2021.

ELITECHGROUP. **Macroduct[®] Advanced Sweat Collection System**. Logan Utah: ELITechGroup, 2021. Disponível em: https://macroduct.com/. Acesso em: 19 abr. 2021.

ELITECHGROUP. **Sweat-Chek™ Analyzer**. Puteaux: ELITechGroup, 2021. Disponível em: https://www.elitechgroup.com/product/sweat-chek-analyzer-2. Acesso em: 12 mar. 2021.

EWING, G. W. **Métodos instrumentais de análise química**. São Paulo: Blucher, 1992.

FARREL, P. M. *et al.* Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. **The Journal of Pediatrics**, St. Louis, v. 153, n. 2, p. S4-S14, aug. 2008. DOI: 10.1016/j.jpeds.2008.05.005

FERREIRA, R.; RIBEIRO, J. **Química Analítica II**. Vitória: Núcleo de Educação Aberta e a Distância, 2011.

FRANK, M.; JOSHI, S. B.; WYSK, R. A. **CNC-RP:** A technique for using CNC machining as a rapid prototyping tool in product/process development. **In:** IIE ANNUAL CONFERENCE, may. 2002, Norcross, p. 1-5.

GIORDANO, C. M.; ZANCUL, E. D. S.; RODRIGUES, V. P. Análise dos custos da produção por manufatura aditiva em comparação a métodos convencionais. **Produção Online**, Piracicaba, v. 16, n. 2, p. 499-523, jun. 2016. DOI: 10.14488/1676-1901.v16i2.1963

GOKDEMIR, Y.; KARADAG, B. T. Sweat Testing and Recent Advances. **Frontiers in Pediatrics**, Lausanne, v. 9, p.649904. DOI: 10.3389/fped.2021.649904

GRUPO BRASILEIRO DE ESTUDOS DE FIBROSE CISTICA. **Registro Brasileiro de Fibrose Cística**. São Paulo: GBEFC, 2016. Disponível em: http://portalgbefc.org.br/ckfinder/userfiles/files/REBRAFC_2016.pdf Acesso em: 15 mar. 2021.

GRUPO BRASILEIRO DE ESTUDOS DE FIBROSE CÍSTICA. **Registro Brasileiro de Fibrose Cística**. São Paulo: GBEFC, 2021. Disponível em: http://portalgbefc.org.br/site/index.php. Acesso em: 14 fev. 2021.

GUO, N.; LEU, M. C. Additive manufacturing: technology, applications and research needs. **Frontiers of Mechanical Engineering**, Lousanne, v. 8, n. 3, p. 215-243, sep. 2013. DOI: 10.1007/s11465-013-0248-8

HAN, T. *et al.* 3D printed sensors for biomedical applications: a review. **Sensors** (Basel), Basel, v. 19, n. 7, 1706, apr. 2019. DOI: 10.3390/s19071706

HO, C. M. B. *et al.* 3D printed microfluidics for biological applications. **The Royal Society of Chemistry**, Cambridge, v. 15, n. 18, p. 3627-3637, jul. 2015. DOI: 10.1039/c5lc00685f

HODSON, M. E.; GEDDES, D. M. **Basic Molecular Genetics**. London: Chapman & Hall, 1995.

JOHANSSON, G.; CEDERGREN, A. Coulometric trace determination of chloride. **Talanta**, Amsterdam, v. 18, n. 9, p. 917-925, sep. 1971. DOI: 10.1016/0039-9140(71)80148-0

KEREM, B. *et al.* Identification of the cystic fibrosis gene: genetic analysis. **Science**, New York, v. 245, n. 4922, p. 1073-1080, sep. 1989. DOI: 10.1126/science.2570460

KINGBRIGHT. **Datasheet Full Color LED Lamp**. Brea Canyon Road: Kingbrigt, 2019. Disponível em: https://www.kingbrightusa.com/images/catalog/SPEC/WP154A4SEJ3VBDZGC-CA.pdf. Acesso em: 03 abr. 2021.

KIRK, J. M. Inconsistencies in sweat testing in UK laboratories. **Archives of Disease in Childhood**, London, v. 82, n. 5, p. 425-427, may 2000. DOI: 10.1136/adc.82.5.425

KOSOROK, M. R.; WEI, W. H.; FARREL, P. M. The Incidence os Cystic Fibrosis. **Statistics In Medicine**, Amsterdan, v. 15, n. 5, p. 449-462, mar. 1996. DOI: 10.1002/(SICI)1097-0258(19960315)15:5<449::AID-SIM173>3.0.CO;2-X

LAITANO, O. *et al.* Comparação entre duas técnicas de coleta regional de suor durante o exercício no calor. **Revista Brasileira de Prescrição e Fisiologia do Exercício**, São Luís, v. 7, n. 38, p. 155-160, jun. 2013. Disponível em: http://www.rbpfex.com.br/index.php/rbpfex/article/view/498. Acesso em: 02 agosto, 2021.

LEÃO, L. L.; AGUIAR, M. J. B. Newborn screening: what pediatricians should know. **Jornal de Pediatria**, Rio de Janeiro, v. 84, n. 4, supl., p. 80-90, aug. 2008. DOI: 10.1590/S0021-75572008000500012

LEGRYS, V. A. Sweat analysis proficiency testing for cystic fibrosis. **Pediatric Pulmonology**, Philadelphia, v. 30, n. 6, p. 476-480, dec. 2000. DOI: 10.1002/1099-0496(200012)30:6<476::aid-ppul7>3.0.co;2-0

LEWIS, G. E.; COOKE, R. E. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. **American Academy of Pediatrics**, Springfield, v. 23, n. 3, p. 545-549, mar. 1959. Disponível em: https://pubmed.ncbi.nlm.nih.gov/13633369/. Acesso em: 23 mar. 2021.

LOSTY, H. C.; WHEATLEY, H.; DOULL, I. The evaluation of a novel conductometric device for the diagnosis of cystic fibrosis. **Annals of Clinocal Biochemistry**, London, v. 34, n. Pt 5, p. 43, p. 375-381, sep. 2006. DOI: 10.1258/000456306778520025
LUNDGREN, N. P. *et al.* Electrical conductivity and specific gravity of small volumes of human sweat and their relations to the salt concentration. **The Indian Journal of Medical Research**, New Delhi, v. 43, n. 1, p. 157-164, jan. 1955. Disponível em: http://imsear.searo.who.int/handle/123456789/21340. Acesso em: 09 fev. 2021

MACKAY, R.; GEORGE, P.; KIRK J. Sweat testing for cystic fibrosis: a review of New Zealand laboratories. **Journal of Paediatrics and Child Health**, Melbourne, v. 42, n. 4, p. 160-164, oct. 2005. DOI: 10.1111/j.1440-1754.2006.00822.x

MALLMANN, Y. T.; TOMASI, T.; BOING, A. F. Neonatal screening tests in Brazil: prevalence rates and regional and socioeconomic inequalities. **Jornal de Pediatria**, Rio de Janeiro, v. 96, n. 4, p. 487-494, jul./aug. 2020. DOI: 10.1016/j.jped.2019.02.008

MATTAR, A. C. V. *et al.* Comparison between classic Gibson and Cooke technique and sweat conductivity test in patients with and without cystic fibrosis. **Jornal de Pediatria**, Rio de Janeiro, v. 86, n. 2, p. 109-114, mar. 2010. DOI: 10.1590/S0021-75572010000200005

MICROCHIP TECHNOLOGY INCORPORATED. **ATmega328P**. Chandler: Microchip, 2021. Disponivel em: https://www.microchip.com/wwwproducts/en/atmega328p. Acesso em: 02 ago. 2021.

MICROCHIP TECHNOLOGY INCORPORATED. **AVR Microcontroller with Core Independent Peripherals and PicoPower Technology**. Chandler: Microchip, 2018. Disponível em: http://ww1.microchip.com/downloads/en/DeviceDoc/40001906C.pdf. Acesso em: 09 jan. 2021.

MICROCHIP. **Products.** Chandler: Microchip, 2021. Disponível em: https://www.microchip.com/. Acesso em: 23 abr. 2021.

MOIN, D. A.; HASSAN, B.; WISMEIJER, D. A novel approach for custom threedimensional printing of a zirconia root analogue implant by digital light processing. **Clinical Oral Implants Research**, Copenhagen, v. 28, n. 6, p. 668-670, jun. 2017. DOI: 10.1111/clr.12859

NGUYEN-KHOA, T. *et al.* Analytical quality of assays and comparison of procedures for the sweat test. **Annales de Biologie Clinique,** Montrouge, v. 70, n. 1, p. 5-12, 2012. DOI: 10.1684/abc.2011.0650

OHLWEILER, A. O. **Fundamentos de Anáise Instrumental**. Rio de Janeiro: Livros Técnicos Científicos, 1981.

OPEN SOURCE HARDWARE ASSOCIATION. **Brief History of Open Source Hardware Association and Definitions**. Boulder: OSHWA, 2021a. Disponível em: https://www.oshwa.org/research/brief-history-of-open-source-hardwareorganizations-and-definitions/#OHOSHW. Acesso em: 20 jan. 2021 OPEN SOURCE HARDWARE ASSOCIATION. **Definition (English)**. Boulder: OSHWA, 2021b. Disponível em: https://www.oshwa.org/definition/. Acesso em: 02 fev. 2021

OPEN SOURCE INITIATIVE. **The Open Source Definition**. West Hollywood: OpenSource, 2007. Disponível em: https://opensource.org/docs/osd. Acesso em: 03 mar. 2021.

PEARCE, J. M. Building research equipment with free, open-source hardware. **Science**, Washington, v. 337, v. 6100, p. 1303-1304, sep. 2012. DOI: 10.1126/science.1228183

PERENS, B. **Announcing:** The Open Hardware Certification Program. Software in the Public Interest, 1997. Disponível em: https://lists.debian.org/debian-announce/1997/msg00026.html. Acesso em: 02 abr. 2021.

PORTAL DA INDÚSTRA. Indústria de A-Z. **Indústria 4.0:** Entenda seus conceitos e fundamentos. São Paulo: Portal da Indústria, 2021. Disponível em: http://www.portaldaindustria.com.br/industria-de-a-z/industria-4-0/. Acesso em: 05 maio 2021.

PRODUTECA. **Impressão 3D em Resina**: saiba como funciona. Curitiba: Produteca, 2018. Disponível em: https://www.produtecalab.com.br/impressao-3d-em-resina/. Acesso em: 25 mar. 2021.

RAKIN, H. *et al.* A low-cost and portable electrocardiogram (ECG) machine for preventing diagnosis. In: INTERNATIONAL CONFERENCE ON ROBOTICS, ELECTRICAL AND SIGNAL PROCESSING TECHNIQUES (ICREST), 2019. **Anais...** Bangladesh: IEEE, 2019., p. 48-53. DOI: 10.1109/ICREST.2019.8644425.

RASKIN, S. *et al.* DNA Analysis of Cystic Fibrosis in Brazil by Direct PCR Amplification From Guthrie Cards. **American Journal of Medical Genetics**, New York, v. 46, n. 6, p. 665-669, jul. 1993. DOI: 10.1002/ajmg.1320460612

RIBEIRO, J. D.; RIBEIRO, M. A. G. O.; RIBEIRO, A. F. Controvérsias na fibrose cística - do pediatra ao especialista. **Jornal de Pediatria**, Rio de Janeiro, v. 78, supl. 2, p. 171-186, dez. 2002. DOI: 10.1590/S0021-75572002000800008

ROHNER, D. *et al.* In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. **Journal of Biomedical Materials Research**, Hoboken, v. 66, p. 574-580, aug. 2003. DOI: 10.1002/jbm.b.10037

SALDANHA, T. C. B.; ARAÚJO, M. C. U.; BARROS NETO, B. Análise multicomponente simultânea por espectrofotometria de absorção molecular UV-VIS. **Química Nova**, São Paulo, v. 22, n. 6, p. 847-853, fev. 1999. DOI: 10.1590/S0100-40421999000600012

SANTOS, G. P. C. *et al.* Programa de triagem neonatal para fibrose cística no estado do Paraná: avaliação após 30 meses de sua implantação. **Jornal de Pediatria**, Rio de Janeiro, v. 81, n. 3, p. 240-244, jun. 2005. DOI: 10.2223/JPED.1345

SCHALES, O.; SCHALES, S. S. A simple and accurate method for the determination of chloride in biological fluids. **Journal of Biological Chemistry**, Rockville, v. 140, n. 3, p. 879-884, sep. 1941. DOI: 10.1016/S0021-9258(18)72872-X

SERVIDONI, M. F. *et al.* Sweat test and cystic fibrosis: overview of test performance at public and private centers in the state of São Paulo, Brazil. **Jornal Brasileiro de Pneumologia**, Brasília, v. 43, n. 2, p. 121-128, mar./apr. 2017. DOI: 10.1590/S1806-3756201600000076

SHAH, U.; MOATTER, T. Screening for cystic fibrosis: the importance of using the correct tools. **Journal of Ayub Medical College**, Abbottabad, v. 18, n. 1, p. 7-10, jan./mar. 2006. Disponível em: https://pubmed.ncbi.nlm.nih.gov/16773960/. Acesso em: 02 mar. 2021.

SHENZHEN ANYCUBIC TECHNOLOGY. **SDS Report**. Guangdong: SGS, 2019. Disponível em: https://cdn.websiteeditor.net/77957cc2bab9412e863746d91116db70/files/uploaded/MDS.PDF. Acesso em: 06 mar. 2021.

SHERWOOD SCIENTIFIC. Chloride analysers: an instrumental analogue of argentimetry. Cambridge: Sherwood, 2019. Disponível em: https://www.sherwood-scientific.com/wp-content/uploads/2019/08/Chloride-Analyser.pdf. Acesso em: 02 ago. 2021.

SILVA, J. C. J. **Aula 3: Introdução a UV-VIS**. Juiz de Fora: UFJF, 2013. Disponível em: https://www.ufjf.br/baccan/files/2010/10/Aula-3-Introdu%c3%a7%c3%a3o-a-UV-VIS.pdf. Acesso em: 11 fev. 2021.

SKOWYRA, J.; PIETRZAK, K.; ALHNAN, M. A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. **European Journal of Pharmaceutical Sciences**, Amsterdam, v. 68, p. 11-17, feb. 2015. DOI: 10.1016/j.ejps.2014.11.009

SOARES, J. J.; MACHADO, M. H.; ALVES, C. B. O programa mais médicos, a infraestrutura das unidades básicas de saúde e o índice de desenvolvimento humano municipal. **Ciência & Saúde Coletiva**, Rio de Janeiro, v. 21, n. 9, p. 2709-2718, set. 2016. DOI: 10.1590/1413-81232015219.16432016

SPOZITO, M. E.; SPOZITO, D. S.; VIEIRA JUNIOR, F. U. Caracterização de papel filtro para auxílio na coleta de suor para teste de fibrose cistica. In: BRAZILIAN CONGRESS IN BIOMEDICAL ENGINEERING, 27., 2020. **Anais...** Vitória: Springer, 2020. p. 2515-2518.

SWINEHART, D. F. The Beer-Lambert Law. Journal of Chemical Education, Easton, v. 39, n. 7, p. 333-335, jul. 1962. DOI: 10.1021/ed039p333

TEIKARI, P. *et al.* An inexpensive Arduino-based LED stimulator system for vision research. **Journal of Neuroscience Methods**, Amsterdam, v. 11, n. 2, p. 227-236, nov. 2012. DOI: 10.1016/j.jneumeth.2012.09.012

UPCAFT, S.; FLETCHER, R. The rapid prototyping technologies. **Assembly Automation**, Bingley, v. 23, n. 4, p. 318-330, 2003. DOI: 10.1108/01445150310698634

VOLHARD, J. Über eine neue Methode der massanalytischen Bestimmung des Silbers. **Journal für Praktische Chemie**, Berlin, v. 117, p. 217, 1874.

WALD, L. L. *et al.* Low-cost and portable MRI. **International Society for Magnetic Resonance in Medicine**, Chicago, v. 52, n. 3, p. 686-696, oct. 2019. DOI: 10.1002/jmri.26942

WEST, D. M. *et al.* **Fundamentos de Química Analítica.** 8. ed. São Paulo: Thomson Pioneira, 2014.

WIKIMEDIA COMMONS. **File: eletromagnetic spectrum**. 2021. Disponível em: https://commons.wikimedia.org/w/index.php?curid=18122584. Acesso em: 19 abr. 2021.

WILTGEN, F. Protótipos e prototipagem rápida aditiva, sua importância no auxilio do desenvolvimento científico e tecnológico. In: CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO, 10. 2019. **Anais...** São Carlos: COBEF, 2019. Disponível em:

https://www.researchgate.net/publication/335507334_PROTOTIPOS_E_PROTOTIP AGEM_RAPIDA_ADITIVA_-

_SUA_IMPORTANCIA_NO_AUXILIO_DO_DESENVOLVIMENTO_CIENTIFICO_E_ TECNOLOGICO. Acesso em: 15 abr. 2021.

WONG, K. V.; HERNANDES, A. A review of additive manufacturing. **ISRN Mechanical Engineering**, London, v. 2012, p. 1-10, aug. 2012. DOI: 10.5402/2012/208760

ZALL, D. M.; FISCHER, D.; GARNER, M. Q. Photometric determination of chlorides in water. **Analytical Chemistry**, Washington, v. 28, n. 11, p. 1665-1668, nov. 1956. DOI: 10.1021/ac60119a009

ZHANG, Z. *et al.* A versatile, cost-effective, and flexible wearable biosensor for in situ and ex situ sweat analysis, and personalized nutrition assessment. **Lab on a Chip**, Toronto, v. 19, n. 20 p. 3448-3460, aug. 2019. DOI: 10.1039/C9LC00734B

APÊNDICES

APÊNDICE A - Dados coletados - caracterização do sensor

Nesta seção, são mostrados os dados coletados no equipamento de referência (BIO-200) e nos dois protótipos desenvolvidos.

Primeiro ensaio

Tabela 1 – Primeiro ensaio realizado no protótipo 1.

DADOS BRUTOS PROTÓTIPO 1												
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste			
18-22	51059	42805	37071	12002	0,1763	0,3201	1,4479	22,1110	3/9/20			
30-34	49723	45801	31127	10732	0,0822	0,4684	1,5332	30,5492	3/9/20			
45-50	54478	35219	25517	11423	0,4362	0,7585	1,5622	48,5512	6/9/20			
55-60	50433	45466	23057	11171	0,1037	0,7827	1,5073	51,9249	4/9/20			
75-80	51084	46646	18952	12768	0,0909	0,9916	1,3865	71,5140	5/9/20			
85-90	50058	46620	16151	12092	0,0712	1,1312	1,4206	79,6262	5/9/20			
105-110	50058	46620	10629	12093	0,0712	1,5496	1,4206	109,0838	5/9/20			
Média	50985	44168		11754	0,14737		1,46834					
R2			0,981			0,975		0,983				

Na tabela 1 são exibidos os valores coletados no protótipo 1. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

DADOS BRUTOS PROTÓTIPO 2													
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste				
18-22	49012	44091	34387	12565	0,1058	0,3544	1,3611	26,0358	3/9/20				
30-34	<u>30-34 47831 44332 31162 11788 0,0760 0,4285 1,</u>							30,5924	3/9/20				
45-50	48851	44397	25572	12300	0,0956	0,6473	1,3792	46,9322	6/9/20				
55-60	47717	42406	23005	12452	0,1180	0,7296	1,3434	54,3079	4/9/20				
75-80	44648	42892	17784	12935	0,0401	0,9205	1,2389	74,3023	5/9/20				
85-90	46671	43065	14849	13276	0,0804	1,1452	1,2572	91,0931	5/9/20				
105-110	46671	43065	10900	13276	0,0804	1,4544	1,2572	115,6857	5/9/20				
Média	47343	43464		12656	0,08519		1,31965						
R2			0,994			0,981		0,982					

Tabela 2 - Primeiro ensaio realizado no protótipo 2.

Na tabela 2, são exibidos os valores coletados no protótipo 2. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

Concentração	ABS	ABS	ABS	ABS	BIO	-200	Prot	ótipo						
Solução Simular ao Suor Validada	Amostra BIO-200 (Medida 01)	Padrão BIO-200 (Medida 01)	Amostra BIO-200 (Medida 02)	Padrão BIO-200 (Medida 02)	Concentração Calculada BIO-200 (Medida 01)	Concentração Calculada BIO-200 (Medida 02)	Concentração Calculada Protótipo 01	Concentração Calculada Protótipo 02	Data do teste	Mediana Concentração Esperada	Média BIO- 200	Média Protótipos	Média (BIO/Prot)	Desvio Média (BIO/Prot)
18-22	0,045	0,250	0,044	0,240	18,000	18,333	22,111	26,036	1/9/20	20	18,167	24,073	21,120	3,770
30-34	0,086	0,269	0,093	0,267	31,970	34,831	30,549	30,592	1/9/20	32	33,401	30,571	31,986	2,009
45-50	0,114	0,249	0,110	0,250	45,783	44,000	48,551	46,932	3/9/20	48	44,892	47,742	46,317	1,917
55-60	0,164	0,292	0,175	0,301	56,164	58,140	51,925	54,308	4/9/20	57	57,152	53,116	55,134	2,651
75-80	0,193	0,263	0,189	0,261	73,384	72,414	71,514	74,302	5/9/20	77	72,899	72,908	72,904	1,205
85-90	0,210	0,251	0,203	0,245	83,665	82,857	79,626	91,093	5/9/20	88	83,261	85,360	84,310	4,847
105-110	0,275	0,252	0,269	0,244	109,127	110,246	109,084	115,686	5/9/20	107	109,686	112,385	111,036	3,146
Média		0,261		0,258						Referência				
R2	0,982		0,955		0,995	0,987	0,983	0,982		R2	0,992	0,986	0,992	

Tabela 3 - Compilação dos dados coletados no equipamento de referência e nos protótipos 1 e 2 (Primeiro ensaio).

Na tabela 3 - são exibidos os valores coletados no equipamento de referência (BIO-200) e o valor final das concentrações medidas e calculadas a partir dos protótipos. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. A coluna dois traz o valor da absorbância da amostra (SS+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (padrão+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (SS+reagente) obtida na segunda medição realizada no BIO-200. A coluna quatro traz o valor da absorbância da amostra (padrão+reagente) medida pela segunda vez no BIO-200. Nas colunas cinco a oito, estão compilados os valores da concentração em mEq/L de cloretos da mesma amostra cujas medidas foram realizadas em dois protótipos e duas vezes no BIO-200. Nas colunas nove a 14, são apresentados alguns parâmetros de controle dos testes, bem como alguns cálculos estatísticos realizados a partir dos dados coletados.

Segundo ensaio

DADOS BRUTOS PROTÓTIPO 1												
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste			
18-22	50598	35979	35897	11445	0,3410	0,3433	1,4864	23,0939	5/9/20			
30-34	51084	41274	31737	11542	0,2132	0,4760	1,4875	31,9997	6/9/20			
45-50	49980	46416	24125	11900	0,0740	0,7284	1,4351	50,7548	5/9/20			
55-60	49482	45879	25220	12238	0,0756	0,6740	1,3971	48,2420	7/9/20			
75-80	49065	47652	17000	12345	0,0292	1,0599	1,3799	76,8126	6/9/20			
85-90	48272	46823	14385	11170	0,0305	1,2107	1,4636	82,7172	7/9/20			
105-110	53285	45695	10029	11281	0,1537	1,6702	1,5525	107,5772	6/9/20			
Média	50252	44245		11703	0,13102		1,45743					
R2			0,979			0,962		0,981				

Tabela 4 - Segundo ensaio realizado no protótipo 1

Na tabela 4 - são exibidos os valores coletados no protótipo 1. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

DADOS BRUTOS PROTÓTIPO 2												
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste			
18-22	45696	43454	34687	12101	0,0503	0,2756	1,3287	20,7452	5/9/20			
30-34	48421	44772	29976	12150	0,0784	0,4795	1,3826	34,6836	6/9/20			
45-50	47074	43311	25465	13069	0,0833	0,6144	1,2815	47,9459	5/9/20			
55-60	45968	42521	22648	11785	0,0779	0,7079	1,3611	52,0068	7/9/20			
75-80	48444	44658	17625	13266	0,0814	1,0111	1,2952	78,0642	6/9/20			
85-90	46461	42615	14764	12419	0,0864	1,1464	1,3194	86,8905	7/9/20			
105-110	40892	45695	10456	11643	-0,1111	1,3638	1,2562	108,5597	6/9/20			
Média	46137	43861		12348	0,04952		1,31782					
R2			0,994			0,995		0,994				

Tabela 5 - Segundo ensaio realizado no protótipo 2.

Na tabela 5, são exibidos os valores coletados no protótipo 2. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

Concentração Solução Simular ao Suor Validada	ABS Amostra BIO-200 (Medida 01)	ABS Padrão BIO-200 (Medida 01)	ABS Amostra BIO-200 (Medida 02)	ABS Padrão BIO-200 (Medida 02)	BIO Concentração Calculada BIO-200 (Medida 01)	-200 Concentração Calculada BIO-200 (Medida 02)	Proto Concentração Calculada Protótipo 01	ótipo Concentração Calculada Protótipo 02	Data do teste	Mediana Concentração Esperada	Média BIO- 200	Média Protótipos	Média (BIO/Prot)	Desvio Média (BIO/Prot)
18-22	0,058	0,273	0,063	0,276	21,245	22,826	23,094	20,745	5/9/20	20	22,036	21,920	21,978	1,158
30-34	0,082	0,267	0,089	0,265	30,712	33,585	32,000	34,684	6/9/20	32	32,148	33,342	32,745	1,747
45-50	0,135	0,289	0,154	0,302	46,713	50,993	50,755	47,946	7/9/20	48	48,853	49,350	49,102	2,110
55-60	0,135	0,268	0,146	0,261	50,373	55,939	48,242	52,007	7/9/20	57	53,156	50,124	51,640	3,254
75-80	0,205	0,273	0,224	0,286	75,092	78,322	76,813	78,064	6/9/20	77	76,707	77,438	77,072	1,476
85-90	0,222	0,270	0,243	0,278	82,222	87,410	82,717	86,891	7/9/20	88	84,816	84,804	84,810	2,718
105-110	0,273	0,256	0,269	0,251	106,641	107,171	107,577	108,560	6/9/20	107	106,906	108,068	107,487	0,811
Média		0,271		0,274						Referência				
R2	0,991		0,972		0,992	0,998	0,981	0,994		R2	0,996	0,989	0,993	

Tabela 6 - Compilação dos dados coletados no equipamento de referência e nos protótipos 1 e 2 (Segundo ensaio).

Na tabela 6, são exibidos os valores coletados no equipamento de referência (BIO-200) e o valor final das concentrações medidas e calculadas a partir dos protótipos. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. A coluna dois traz o valor da absorbância da amostra (SS+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (padrão+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (SS+reagente) obtida na segunda medição realizada no BIO-200. A coluna quatro traz o valor da absorbância da amostra (padrão+reagente) medida pela segunda vez no BIO-200. Nas colunas cinco a oito, estão compilados os valores da concentração em mEq/L de cloretos da mesma amostra cujas medidas foram realizadas em dois protótipos e duas vezes no BIO-200. Nas colunas nove a 14, são apresentados alguns parâmetros de controle dos testes, bem como alguns cálculos estatísticos realizados a partir dos dados coletados.

Terceiro ensaio

DADOS BRUTOS PROTÓTIPO 1												
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste			
18-22	50578	44182	35675	11670	0,1352	0,3491	1,4665	23,8028	5/9/20			
30-34	53912	46324	38324	15334	0,1517	0,3413	1,2573	27,1440	2/9/20			
45-50	50135	44794	24475	11047	0,1126	0,7171	1,5126	47,4075	7/9/20			
55-60	50761	44274	21211	11745	0,1367	0,8726	1,4637	59,6166	7/9/20			
75-80	49751	44745	18101	11749	0,1061	1,0111	1,4433	70,0540	7/9/20			
85-90	50617	44763	14534	12725	0,1229	1,2478	1,3807	90,3730	7/9/20			
105-110	53912	46324	13400	14331	0,1517	1,3921	1,3249	105,0697	2/9/20			
Média	51381	45058		12657	0,13099		1,40699					
R2			0,876			0,968		0,983				

Tabela 7 - Terceiro ensaio realizado no protótipo 1.

Na tabela 7, são exibidos os valores coletados no protótipo 1. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

DADOS BRUTOS PROTÓTIPO 2													
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste				
18-22	46947	39767	33704	9707	0,1660	0,3314	1,5762	21,0258	2/9/20				
30-34	53121	48359	36180	15773	0,0939	0,3841	1,2143	31,6293	2/9/20				
45-50	45527	42490	23165	11159	0,0690	0,6757	1,4061	48,0537	7/9/20				
55-60	46407	41047	20476	10839	0,1227	0,8182	1,4543	56,2605	7/9/20				
75-80	46167	41693	18454	11166	0,1019	0,9170	1,4194	64,6040	7/9/20				
85-90	45809	41971	14521	11789	0,0875	1,1489	1,3573	84,6440	7/9/20				
105-110	53121	48359	13336	13820	0,0939	1,3821	1,3465	102,6477	2/9/20				
Média	48157	43384		12036	0,10500		1,39628						
R2			0,871			0,980		0,983					

Tabela 8 - Terceiro ensaio realizado no protótipo 2.

Na tabela 8, são exibidos os valores coletados no protótipo 2. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

Concentração	ABS	ABS	ABS	ABS	BIO	-200	Prot	ótipo	Doto	Madiana	Mádia			Doguio
Solução Simular ao Suor Validada	BIO-200 (Medida 01)	BIO-200 (Medida 01)	BIO-200 (Medida 02)	BIO-200 (Medida 02)	Concentração Calculada BIO-200 (Medida 01)	Concentração Calculada BIO-200 (Medida 02)	Concentração Calculada Protótipo 01	Concentração Calculada Protótipo 02	do teste	Concentração Esperada	BIO- 200	Média Protótipos	Média (BIO/Prot)	Média (BIO/Prot)
18-22	0,055	0,259	0,058	0,254	21,236	22,835	23,803	21,026	5/9/20	20	22,035	22,414	22,225	1,326
30-34	0,064	0,236	0,066	0,236	27,119	27,966	27,144	31,629	2/9/20	32	27,542	29,387	28,465	2,146
45-50	0,115	0,256	0,122	0,248	44,922	49,194	47,408	48,054	7/9/20	48	47,058	47,731	47,394	1,806
55-60	0,142	0,257	0,143	0,245	55,253	58,367	59,617	56,261	7/9/20	57	56,810	57,939	57,374	1,979
75-80	0,181	0,253	0,185	0,247	71,542	74,899	70,054	64,604	7/9/20	77	73,220	67,329	70,275	4,289
85-90	0,209	0,250	0,211	0,242	83,600	87,190	90,373	84,644	7/9/20	88	85,395	87,508	86,452	3,018
105-110	0,247	0,247	0,240	0,247	100,000	97,166	105,070	102,648	2/9/20	107	98,583	103,859	101,221	3,405
Média		0,251		0,246						Referência				
R2	0,991		0,986		0,996	0,987	0,983	0,983		R2	0,993	0,986	0,993	

Tabela 9 - Compilação dos dados coletados no equipamento de referência e nos protótipos 1 e 2 (Terceiro ensaio).

Na tabela 9, são exibidos os valores coletados no equipamento de referência (BIO-200) e o valor final das concentrações medidas e calculadas a partir dos protótipos. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. A coluna dois traz o valor da absorbância da amostra (SS+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (padrão+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (SS+reagente) obtida na segunda medição realizada no BIO-200. A coluna quatro traz o valor da absorbância da amostra (padrão+reagente) medida pela segunda vez no BIO-200. Nas colunas cinco a oito, estão compilados os valores da concentração em mEq/L de cloretos da mesma amostra cujas medidas foram realizadas em dois protótipos e duas vezes no BIO-200. Nas colunas nove a 14, são apresentados alguns parâmetros de controle dos testes, bem como alguns cálculos estatísticos realizados a partir dos dados coletados.

Quarto ensaio

DADOS BRUTOS PROTÓTIPO 1												
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste			
18-22	49886	43312	35688	11811	0,1413	0,3349	1,4407	23,2473	8/9/20			
30-34	56021	52188	35075	14485	0,0709	0,4682	1,3526	34,6173	2/9/20			
45-50	48142	45782	25461	11950	0,0503	0,6370	1,3934	45,7152	9/9/20			
55-60	48709	45042	21711	11781	0,0783	0,8080	1,4194	56,9296	8/9/20			
75-80	50173	43523	18792	12381	0,1422	0,9820	1,3993	70,1805	9/9/20			
85-90	49719	44957	15289	12065	0,1007	1,1793	1,4161	83,2760	8/9/20			
105-110	50088	44905	10638	12176	0,1092	1,5493	1,4143	109,5477	8/9/20			
Média	50391	45673		12378	0,09897		1,40512					
R2			0,960			0,984		0,985				

Tabela 10 - Quarto ensaio realizado no protótipo 1.

Na tabela 10, são exibidos os valores coletados no protótipo 1. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

DADOS BRUTOS PROTÓTIPO 2												
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste			
18-22	47540	43066	34617	11728	0,0988	0,3172	1,3996	22,6656	8/9/20			
30-34	54192	49894	32802	13291	0,0826	0,5020	1,4054	35,7213	2/9/20			
45-50	45624	42343	24738	10908	0,0746	0,6121	1,4309	42,7757	9/9/20			
55-60	47428	44288	22455	11361	0,0685	0,7477	1,4290	52,3223	8/9/20			
75-80	44588	43681	18369	11627	0,0206	0,8868	1,3441	65,9755	9/9/20			
85-90	46583	42407	15286	11788	0,0939	1,1143	1,3742	81,0898	8/9/20			
105-110	47036	43447	11178	11640	0,0794	1,4370	1,3965	102,9002	8/9/20			
Média	47570	44161		11763	0,07406		1,39711					
R2			0,978			0,975		0,982				

Tabela 11 - Quarto ensaio realizado no protótipo 2.

Na tabela 11, ão exibidos os valores coletados no protótipo 2. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

Concentração Solução Simular ao Suor Validada	ABS Amostra BIO-200 (Medida 01)	ABS Padrão BIO-200 (Medida 01)	ABS Amostra BIO-200 (Medida 02)	ABS Padrão BIO-200 (Medida 02)	BIO Concentração Calculada BIO-200 (Medida 01)	-200 Concentração Calculada BIO-200 (Medida 02)	Prot Concentração Calculada Protótipo 01	ótipo Concentração Calculada Protótipo 02	Data do teste	Mediana Concentração Esperada	Média BIO- 200	Média Protótipos	Média (BIO/Prot)	Desvio Média (BIO/Prot)
18-22	0,053	0,263	0,058	0,256	20,152	22,656	23,247	22,666	8/9/20	20	21,404	22,956	22,180	1,380
30-34	0,090	0,255	0,099	0,255	35,294	38,824	34,617	35,721	2/9/20	32	37,059	35,169	36,114	1,863
45-50	0,121	0,277	0,130	0,274	43,682	47,445	45,715	42,776	9/9/20	48	45,564	44,245	44,905	2,093
55-60	0,153	0,288	0,166	0,293	53,125	56,655	56,930	52,322	8/9/20	57	54,890	54,626	54,758	2,375
75-80	0,168	0,252	0,163	0,240	66,667	67,917	70,181	65,976	9/9/20	77	67,292	68,078	67,685	1,848
85-90	0,222	0,278	0,229	0,267	79,856	85,768	83,276	81,090	8/9/20	88	82,812	82,183	82,497	2,599
105-110	0,289	0,276	0,294	0,276	104,710	106,522	109,548	102,900	8/9/20	107	105,616	106,224	105,920	2,835
Média		0,270		0,266						Referência				
R2	0,969		0,944		0,983	0,981	0,985	0,982		R2	0,983	0,984	0,984	

Tabela 12 – Compilação dos dados coletados no equipamento de referência e nos protótipos 1 e 2 (Quarto ensaio).

Na tabela 12, são exibidos os valores coletados no equipamento de referência (BIO-200) e o valor final das concentrações medidas e calculadas a partir dos protótipos. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. A coluna dois traz o valor da absorbância da amostra (SS+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (padrão+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (SS+reagente) obtida na segunda medição realizada no BIO-200. A coluna quatro traz o valor da absorbância da amostra (padrão+reagente) medida no BIO-200. A coluna quatro traz o valor da absorbância da amostra (padrão+reagente) medida pela segunda vez no BIO-200. Nas colunas cinco a oito, estão compilados os valores da concentração em mEq/L de cloretos da mesma amostra cujas medidas foram realizadas em dois protótipos e duas vezes no BIO-200. Nas colunas nove a 14, são apresentados alguns parâmetros de controle dos testes, bem como alguns cálculos estatísticos realizados a partir dos dados coletados.

Quinto ensaio

DADOS BRUTOS PROTÓTIPO 1														
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste					
18-22	47287	44860	33096	12354	0,0527	0,3568	1,3423	26,5838	10/9/20					
30-34	49285	44462	28879	11733	0,1030	0,5345	1,4352	37,2422	10/9/20					
45-50	49285	44462	27004	13305	0,1030	0,6016	1,3095	45,9446	10/9/20					
55-60	49719	44957	21817	12985	0,1007	0,8237	1,3426	61,3513	10/9/20					
75-80	48116	44556	17767	12168	0,0769	0,9963	1,3748	72,4664	10/9/20					
85-90	48445	44474	13715	12521	0,0855	1,2619	1,3530	93,2682	10/9/20					
105-110	48445	44474	9654	11200	0,0855	1,6131	1,4645	110,1427	10/9/20					
Média	48655	44606		12324	0,08675		1,37455							
R2			0,988			0,970		0,982						

Tabela 13 - Quinto ensaio realizado no protótipo 1.

Na tabela 13, são exibidos os valores coletados no protótipo 1. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

DADOS BRUTOS PROTÓTIPO 2														
Concentração Esperada	Coleta com água DI	Coleta com reagente (BRANCO)	Coleta (Amostra + Reagente)	Coleta (Padrão + Reagente)	Absorbância Calculada BRANCO	Absorbância Calculada (Amostra + Reagente)	Absorbância Calculada (Padrão + Reagente)	Concentração Calculada	Data do teste					
18-22	45524	42776	32384	11077	0,0623	0,3406	1,4134	24,0967	10/9/20					
30-34	45309	42303	28395	11137	0,0686	0,4673	1,4032	33,3011	10/9/20					
45-50	45309	42303	26146	12665	0,0686	0,5498	1,2747	43,1337	10/9/20					
55-60	46583	44179	22621	12831	0,0530	0,7224	1,2894	56,0240	10/9/20					
75-80	45281	42452	18046	11481	0,0645	0,9200	1,3722	67,0432	10/9/20					
85-90	45391	41564	14486	10596	0,0881	1,1421	1,4548	78,5058	10/9/20					
105-110	45391	41564	9572	10526	0,0881	1,5565	1,4615	106,5008	10/9/20					
Média	45541 42449			11473	0,07046		1,38130							
R2			0,994			0,958		0,976						

Tabela 14 - Quinto ensaio realizado no protótipo 2.

Na tabela 14, são exibidos os valores coletados no protótipo 2. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. As colunas dois, três, quatro e cinco correspondem às leituras, em números inteiros (0-65000), do conversor ADC relativas à luminosidade incidente no TSL2591. Nas colunas seis a oito, estão os valores da absorbância (em UA) calculados. A coluna nove traz a concentração em mEq/L de cloretos na amostra e a décima coluna corresponde à data de realização do teste.

Concentração ABS ABS AB		ABS	ABS	BIO	-200	Prot	ótipo						Decuie	
Solução Simular ao Suor Validada	Amostra BIO-200 (Medida 01)	Padrão BIO-200 (Medida 01)	Amostra BIO-200 (Medida 02)	Padrão BIO-200 (Medida 02)	Concentração Calculada BIO-200 (Medida 01)	Concentração Calculada BIO-200 (Medida 02)	Concentração Calculada Protótipo 01	Concentração Calculada Protótipo 02	Data do teste	Mediana Concentração Esperada	Média BIO- 200	Média Protótipos	Média (BIO/Prot)	Desvio Média (BIO/Prot)
18-22	0,059	0,273	0,071	0,265	21,612	26,792	26,584	24,097	10/9/20	20	24,202	25,340	24,771	2,436
30-34	0,086	0,268	0,075	0,246	32,090	30,488	37,242	33,301	10/9/20	32	31,289	35,272	33,280	2,882
45-50	0,102	0,243	0,103	0,231	41,975	44,589	45,945	43,134	10/9/20	48	43,282	44,539	43,911	1,727
55-60	0,153	0,243	0,157	0,261	62,963	60,153	61,351	56,024	10/9/20	57	61,558	58,688	60,123	2,965
75-80	0,178	0,262	0,179	0,261	67,939	68,582	72,466	67,043	10/9/20	77	68,261	69,755	69,008	2,391
85-90	0,221	0,269	0,209	0,256	82,156	81,641	93,268	78,506	10/9/20	88	81,898	85,887	83,893	6,455
105-110	0,287	0,258	0,274	0,256	111,240	107,031	110,143	106,501	10/9/20	107	109,136	108,322	108,729	2,320
Média		0,259		0,254						Referência				
R2	0,972		0,964		0,966	0,975	0,982	0,976		R2	0,972	0,983	0,979	

Tabela 15 - Compilação dos dados coletados no equipamento de referência e nos protótipos 1 e 2 (Quinto ensaio).

Na tabela 15, são exibidos os valores coletados no equipamento de referência (BIO-200) e o valor final das concentrações medidas e calculadas a partir dos protótipos. A coluna um traz o intervalo de valor da concentração esperada da amostra de SS utilizada no experimento. A coluna dois traz o valor da absorbância da amostra (SS+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (padrão+reagente) medida no BIO-200. A coluna três traz o valor da absorbância da amostra (SS+reagente) obtida na segunda medição realizada no BIO-200. A coluna quatro traz o valor da absorbância da amostra (padrão+reagente) medida no BIO-200. A coluna quatro traz o valor da absorbância da amostra (padrão+reagente) medida pela segunda vez no BIO-200. Nas colunas cinco a oito, estão compilados os valores da concentração em mEq/L de cloretos da mesma amostra cujas medidas foram realizadas em dois protótipos e duas vezes no BIO-200. Nas colunas nove a 14, são apresentados alguns parâmetros de controle dos testes, bem como alguns cálculos estatísticos realizados a partir dos dados coletados.

APÊNDICE B - Protocolo alternativo – testes in vitro

Nesta seção, são mostrados os dados coletados no equipamento de referência (BIO-200) e nos dois protótipos desenvolvidos.

Testag	Amos	Amos Área Temp Pes Peso a Densid Estequiom Con				Concentra	Volu	B	io-200 (UA)			Conce	ntração	Bio-200 (UA)				Conce	Concentração					PROTOTIPO									
em	tra	(Cm2)	(°C)	Pap el (g)	Satura do (g)	Líqui da (g)	ade = 1.0 (µl)	Reagente (mL)	ção (mmol/L)	me (µI)	Referên cia	Com papel	Padr ão	Fator	Referên cia	Com papel	Referên cia	Com papel	Padr ão	Fator	Referên cia	Com papel	DI	BRAN CO	REF	PAP EL	PADR ÃO	ABS BR	ABS REF	ABS PAPEL	ABS PD	CONC REF	CONC PA
1	1	2	26,2	0,01 9	0,037	0,018	18,000	6,300	31-33	20	0,117	0,108	0,292	342,46 575	40,0684 93	36,9863 01	0,108	0,100	0,283	353,35 689	38,1625 44	35,3356 89	608 79	54062	356 08	3745 7	13866	0,1187 57	0,5363 18	0,485695	1,4794 48	36,2512 1	32,829 44
2	2	2	28,1	0,01 8	0,061	0,043	43,000	15,050	31-33	100	0,073	0,062	0,246	406,50 407	29,6747 97	25,2032 52	0,066	0,063	0,249	401,60 643	26,5060 24	25,3012 05	618 15	53552	368 87	3699 8	14574	0,1434 93	0,5162 87	0,513282	1,4449 07	35,7315	35,523 55
3	3	2	23,8	0,01 8	0,039	0,021	21,000	7,350	31-33	20	0,080	0,076	0,261	383,14 176	30,6513 41	29,1187 74	0,084	0,082	0,265	377,35 849	31,6981 13	30,9433 96	608 91	53835	362 33	3818 5	14425	0,1231 62	0,5191 15	0,466643	1,4401 23	36,0465 9	32,402 98
8	4	2	28,7	0,01 9	0,078	0,059	59,000	20,650	31-33	100	0,078	0,077	0,258	387,59 69	30,2325 58	29,8449 61	0,076	0,075	0,247	404,85 83	30,7692 31	30,3643 72	610 73	55858	388 82	3825 0	14617	0,0892 57	0,4515 38	0,467926	1,4298 85	31,5786 6	32,724 76
15	5	2	29,0	0,01 7	0,034	0,017	17,000	5,950	31-33	20	0,082	0,084	0,281	355,87 189	29,1814 95	29,8932 38	0,078	0,085	0,245	408,16 327	31,8367 35	34,6938 78	611 22	65535	344 06	3576 9	13315	- 0,0697 1	0,5746 41	0,53579	1,5239 81	37,7065 7	35,157 29
18	6	2	28,5	0,01 8	0,052	0,034	34,000	11,900	31-33	100	0,050	0,084	0,248	403,22 581	20,1612 9	33,8709 68	0,075	0,087	0,251	398,40 637	29,8804 78	34,6613 55	612 05	53905	350 74	3431 3	12780	0,1270 06	0,5567 69	0,578705	1,5663 47	35,5456 8	36,946 12
19	7	2	29,6	0,01 9	0,039	0,020	20,000	7,000	31-33	20	0,072	0,079	0,236	423,72 881	30,5084 75	33,4745 76	0,084	0,080	0,258	387,59 69	32,5581 4	31,0077 52	614 00	54327	358 89	3687 9	13363	0,1223 88	0,5369 79	0,509768	1,5249 2	35,2135 8	33,429 13
21	8	2	28,5	0,01 5	0,054	0,039	39,000	13,650	31-33	100	0,060	0,069	0,192	520,83 333	31,25	35,9375	0,071	0,070	0,248	403,22 581	28,6290 32	28,2258 06	609 47	57422	358 26	4018 9	12797	0,0595 77	0,5313 31	0,416411	1,5607 94	34,0423 4	26,679 46
11	9	2	25,6	0,01 9	0,040	0,021	21,000	7,350	75-80	20	0,181	0,204	0,264	378,78 788	68,5606 06	77,2727 27	0,198	0,201	0,272	367,64 706	72,7941 18	73,8970 59	610 67	51667	229 17	2572 9	13887	0,1671 52	0,9800 93	0,864353	1,4810 18	66,1769 3	58,362 06
16	10	2	27,5	0,01 7	0,054	0,037	37,000	12,950	75-80	100	0,182	0,177	0,265	377,35 849	68,6792 45	66,7924 53	0,178	0,173	0,263	380,22 814	67,6806 08	65,7794 68	609 30	53823	209 85	2269 8	13351	0,1240 25	1,0659 18	0,987449	1,5181 34	70,2123 5	65,043 57
5	11	2	26,8	0,01 8	0,041	0,023	23,000	8,050	75-80	20	0,203	0,185	0,291	343,64 261	69,7594 5	63,5738 83	0,202	0,183	0,289	346,02 076	69,8961 94	63,3217 99	610 34	52682	202 71	2431 9	12959	0,1471 57	1,1022 4	0,920173	1,5496 41	71,1287 4	59,379 78
13	12	2	28,6	0,01 8	0,063	0,045	45,000	15,750	75-80	100	0,164	0,181	0,275	363,63 636	59,6363 64	65,8181 82	0,174	0,183	0,265	377,35 849	65,6603 77	69,0566 04	608 25	52196	214 96	1770 5	11311	0,1529 95	1,0401 34	1,234154	1,6822 25	61,8308 4	73,364 36
20	13	2	29,5	0,01 9	0,038	0,019	19,000	6,650	75-80	20	0,166	0,181	0,248	403,22 581	66,9354 84	72,9838 71	0,166	0,181	0,240	416,66 667	69,1666 67	75,4166 67	615 55	55995	202 85	2135 9	14044	0,0946 69	1,1100 49	1,058458	1,4777 36	75,1182 6	71,627
22	14	2	28,0	0,01 8	0,060	0,	42,000	14,700	75-80	100	0,162	0,171	0,211	473,93 365	76,7772 51	81,0426 54	0,161	0,170	0,245	408,16 327	65,7142 86	69,3877 55	611 39	54434	215 67	2151 7	13069	0,1161 61	1,0419 86	1,044307	1,5429 07	67,5339 2	67,684 36
14	15	2	29,5	0,01 8	0,036	0,018	18,000	6,300	75-80	20	0,163	0,192	0,269	371,74 721	60,5947 96	71,3754 65	0,166	0,181	0,254	393,70 079	65,3543 31	71,2598 43	609 77	58081	224 92	2244 9	12988	0,0486 58	0,9973 37	0,999251	1,5464 71	64,4911 6	64,614 9
17	16	2	27,9	0,02 0	0,061	0,041	41,000	14,350	75-80	100	0,173	0,192	0,264	378,78 788	65,5303 03	72,7272 73	0,167	0,185	0,259	386,10 039	64,4787 64	71,4285 71	614 01	55142	229 62	2063 2	13504	0,1075 14	0,9835 85	1,090583	1,5144 4	64,9471 3	72,012 28
6	17	5	26,3	0,04 3	0,062	0,019	19,000	6,650	31-33	20	0,075	0,088	0,248	403,22 581	30,2419 35	35,4838 71	0,074	0,088	0,248	403,22 581	29,8387 1	35,4838 71	610 81	60264	398 59	3752 8	15352	0,0134 66	0,4268 53	0,487114	1,3809 55	30,9099 6	35,273 67
27	18	5	23,0	0.04 4	0,136	0,092	92,000	32,200	31-33	100	0,120	0,122	0,278	359,71 223	43,1654 68	43,8848 92	0,161	0,164	0,368	271,73 913	43,75	44,5652 17	608 04	54668	362 93	3658 6	13250	0,1063 77	0,5160 31	0,50799	1,5236 58	33,8678 8	33,340 15
26	19	5	27,2	0,04 4	0,063	0,019	19,000	6,650	31-33	20	0,072	0,087	0,232	431,03 448	31,0344 83	37,5	0,071	0,087	0,245	408,16 327	28,9795 92	35,5102 04	606 35	55186	352 50	3503 5	13927	0,0941 63	0,5424 07	0,548525	1,4710 43	36,8722 6	37,288 15
7	20	5	30,0	0,04 6	0,130	0,084	84,000	29,400	31-33	100	0,086	0,090	0,216	462,96 296	39,8148 15	41,6666 67	0,082	0,084	0,256	390,62 5	32,0312 5	32,8125	614 45	53112	334 94	3547 1	13296	0,1457 4	0,6067 76	0,549427	1,5306 79	39,6409 7	35,894 33
10	21	5	24,5	0,04 6	0,066	0,020	20,000	7,000	31-33	20	0,084	0,103	0,279	358,42 294	30,1075 27	36,9175 63	0,090	0,097	0,279	358,42 294	32,2580 65	34,7670 25	613 77	52875	363 74	3579 8	13443	0,1491 05	0,5231 81	0,539143	1,5185 77	34,4520 6	35,503 19

23	22	5	26,9	0,04 4	0,118	0,074	74,000	25,900	31-33	100	0,071	0,087	0,248	403,22 581	28,6290 32	35,0806 45	0,070	0,087	0,242	413,22 314	28,9256 2	35,9504 13	609 43	54146	369 98	3388 9	14163	0,1182 55	0,4990 75	0,586849	1,4593 06	34,1994 8	40,214 22
25	23	5	27,3	0,04 4	0,064	0,020	20,000	7,000	31-33	20	0,073	0,087	0,246	406,50 407	29,6747 97	35,3658 54	0,085	0,097	0,258	387,59 69	32,9457 36	37,5968 99	609 70	55023	355 43	3528 5	13130	0,1026 31	0,5396 39	0,546924	1,5354 82	35,1445 7	35,619 04
24	24	5	27,3	0,04 5	0,115	0,070	70,000	24,500	31-33	100	0,066	0,080	0,205	487,80 488	32,1951 22	39,0243 9	0,077	0,079	0,252	396,82 54	30,5555 56	31,3492 06	608 51	56084	363 43	3669 5	13259	0,0815 78	0,5154 27	0,505788	1,5237 52	33,8261 6	33,193 58
9	25	5	26,5	0,04 2	0,064	0,022	22,000	7,700	75-80	20	0,174	0,164	0,196	510,20 408	88,7755 1	83,6734 69	0,175	0,180	0,255	392,15 686	68,6274 51	70,5882 35	597 77	53696	217 53	2165 6	11903	0,1072 82	1,0108 69	1,015338	1,6138 31	62,6378 8	62,914 81
30	26	5	27,0	0,04 6	0,128	0,082	82,000	28,700	75-80	100	0,271	0,268	0,368	271,73 913	73,6413 04	72,8260 87	0,278	0,279	0,383	261,09 661	72,5848 56	72,8459 53	603 44	55592	217 84	2241 5	13969	0,0820 22	1,0188 86	0,990331	1,4632 21	69,6330 8	67,681 59
29	27	5	24,4	0,04 4	0,062	0,018	18,000	6,300	75-80	20	0,152	0,204	0,246	406,50 407	61,7886 18	82,9268 29	0,187	0,214	0,272	367,64 706	68,75	78,6764 71	610 49	54432	208 12	1910 3	12746	0,1147 25	1,0761 47	1,161831	1,5664 59	68,6993 3	74,169 27
12	28	5	27,2	0,04 4	0,123	0,079	79,000	27,650	75-80	100	0,190	0,177	0,246	406,50 407	77,2357 72	71,9512 2	0,176	0,173	0,259	386,10 039	67,9536 68	66,7953 67	609 40	53315	213 81	2108 2	13187	0,1336 72	1,0473 87	1,06147	1,5306 58	68,4272 3	69,347 3
31	29	5	24,6	0,04 3	0,058	0,015	15,000	5,250	75-80	20	0,209	0,230	0,288	347,22 222	72,5694 44	79,8611 11	0,220	0,222	0,297	336,70 034	74,0740 74	74,7474 75	608 26	54415	213 20	2030 4	13455	0,1113 77	1,0483 72	1,097199	1,5086 67	69,4899 6	72,726 44
32	30	5	24,8	0,04 7	0,129	0,082	82,000	28,700	75-80	100	0,209	0,200	0,288	347,22 222	72,5694 44	69,4444 44	0,220	0,207	0,297	336,70 034	74,0740 74	69,6969 7	608 26	54415	213 20	2157 1	13455	0,1113 77	1,0483 72	1,036668	1,5086 67	69,4899 6	68,714 16
28	31	5	23,9	0,04 3	0,063	0,020	20,000	7,000	75-80	20	0,180	0,195	0,270	370,37 037	66,6666 67	72,2222 22	0,183	0,194	0,266	375,93 985	68,7969 92	72,9323 31	613 07	53445	218 97	2128 7	14110	0,1372 41	1,0295 44	1,057797	1,4690 1	70,0842 2	72,007 49
4	32	5	26,9	0,04 2	0,117	0,075	75,000	26,250	75-80	100	0,169	0,175	0,253	395,25 692	66,7984 19	69,1699 6	0,167	0,173	0,248	403,22 581	67,3387 1	69,7580 65	613 32	54439	216 12	2194 2	14126	0,1192 21	1,0430 53	1,027899	1,4682 85	71,0388 8	70,006 8

APÊNDICE C - Caracterização da SS

Nesta seção, são mostrados os dados coletados no equipamento de referência (BIO-200) e nos dois protótipos desenvolvidos.

Ensaio	o Concentração													
	20	32	47,5	57,5	77,5	87,5	107,5							
1	18,00	31,97	45,78	56,16	73,38	83,67	109,13							
2	18,33	34,83	44,00	58,14	72,41	82,86	110,25							
3	21,25	30,71	46,71	50,37	75,09	82,22	106,64							
4	22,83	33,58	50,99	55,94	78,32	87,41	107,17							
5	21,24	27,12	44,92	55,25	71,54	83,60	100,00							
6	22,83	27,97	49,19	58,37	74,90	87,19	97,17							
7	20,15	35,29	43,68	53,13	66,67	79,86	104,71							
8	22,66	38,82	47,45	56,66	67,92	85,77	106,52							
9	21,61	32,09	41,98	62,96	67,94	82,16	111,24							
10	26,79	30,49	44,59	60,15	68,58	81,64	107,03							
11	22,11	30,55	48,55	51,92	71,51	79,63	109,08							
12	23,09	32,00	50,75	48,24	76,81	82,72	107,58							
13	23,80	27,14	47,41	59,62	70,05	90,37	105,07							
14	23,25	34,62	45,72	56,93	70,18	83,28	109,55							
15	26,58	37,24	45,94	61,35	72,47	93,27	110,14							
16	26,04	30,59	46,93	54,31	74,30	91,09	115,69							
17	22,83	33,58	50,99	55,94	78,32	87,41	107,17							
18	21,03	31,63	48,05	56,26	64,60	84,64	102,65							
19	22,67	35,72	42,78	52,32	65,98	81,09	102,90							
20	24,10	33,30	43,13	56,02	67,04	78,51	106,50							
Média	22,56	32,46	46,48	56,00	71,40	84,42	106,81							
DP	2,32	3,14	2,73	3,65	4,09	3,98	4,10							

Tabela 16 - Caracterização da SS

APÊNDICE D - Software

Software

```
#include <Wire.h>
#include <LiquidCrystal.h>
#include <Adafruit Sensor.h>
#include "Adafruit TSL2591.h"
#include <math.h>
uint32_t timer;
```

/*

```
Cria objeto tsl sensor luximentro
connect SCL to I2C Clock | connect SDA to I2C Data | connect Vin to 3.3-5V DC | connect GROUND to common ground
*/
Adafruit_TSL2591 tsl = Adafruit_TSL2591(2591); // pass in a number for the sensor identifier (for your use later)
```

/*

```
Cria objeto Icd da classe LiquidCrystal
RS 2 | Enable 3 | DB4 4 | DB5 5 | DB6 6 | DB7 7
*/
LiquidCrystal lcd(12,11,5,4,3,2);
```

/*

```
Variáveis Auxiliares Globais
*/
                // 0,1,2,3 --> Parâmetro Interno Sensor TSL 2591
int gain=2;
int integration=2; // 0,1,2,3,4,5 --> Parâmetro Interno Sensor TSL 2591
int maxPWM=130;
                      // Limite PWM LED (teto para calibração)
int maxLUM=60000;
                       // Limite LUX Sensor (teto para calibração)
int botao1=8; // define pino digital utilizado pelo botao
int botao2=9; // define pino digital utilizado pelo botao
```

```
int botao3=10; // define pino digital utilizado pelo botao
```

int botaoA1=A1; // define pino digital utilizado pelo botao (porta Analógica) int botaoA2=A2; // define pino digital utilizado pelo botao (porta Analógica) int botaoA3=A3; // define pino digital utilizado pelo botao (porta Analógica)

int estadoBotao1=1; // inicializa variavel utilizada pelo botao int estadoBotao2=1; // inicializa variavel utilizada pelo botao int estadoBotao3=1; // inicializa variavel utilizada pelo botao int estadoBotaoA1=1; // inicializa variavel utilizada pelo botao (porta Analógica) int estadoBotaoA2=1; // inicializa variavel utilizada pelo botao (porta Analógica) int estadoBotaoA3=1; // inicializa variavel utilizada pelo botao (porta Analógica) int ledPWM=6; // Pino saída pwm led int analogPin=A0; // Pino Analógico Tensão LED (A0) /* Variáveis Auxiliares em tempo de execução */ // armazena valor ultima coleta float coleta: int PWM=1: // Valor Inicial PWM LED float tensaoLED=0; // Inicializa Variavel Tensão LED int tensaoLEDfx=0; // Tensao led convertida PWM int count=1; //contador auxiliar media tensao led int soma=0; //auxiliar soma media led int media=0; // auxiliar calcular media char byteRead; //serial String readString; // String auxiliar leitura comunicação PC

int etapaMedida=0; // Contador fluxograma de medida (1=DI;2=branco;3=amostra;4=padrao)

```
/*
Variáveis Auxiliares para Mensageria
*/
int message=0;
int maxMessage=2;
```

```
int codErro=0; // Controle Erros
/*
```

```
* codErro=1 --> Falha PWM
* codErro=2 --> xxxx
 */
Variáveis Persistencia
*/
float agua=0;
float branco=0;
float amostra=0;
float padrao=0;
double absbr=0;
                         // registra valor absorbancia branco
                            // registra valor absorbancia amostra
double absamostra=0;
double abspdr=0;
                         // registra valor absorbancia padrao
double concMmol=0;
                           // registra valor concentracao mmol reagente BIOCLIN
void setup(void)
/* Configura os pinos digitais */
pinMode(botao1, INPUT);
pinMode(botao2, INPUT);
pinMode(botao3, INPUT);
/* Configura os pinos analógicos */
pinMode(botaoA1, INPUT);
pinMode(botaoA2, INPUT);
pinMode(botaoA3, INPUT);
/* Configura os pinos PWM */
pinMode(ledPWM, OUTPUT);
/* Incializa Pino PWM LED Sensor*/
analogWrite(ledPWM,PWM); // Carrega PWM LED
tensaoLEDfx=450:
```

lcd.begin(16,2); //Inicializa display de 2 linhas x 16 colunas lcd.clear(); //Limpa o display

```
Serial.begin(9600); //Inicializa Serial
/* Inicializa o sensor TSL*/
if (!tsl.begin())
 Serial.print("TSL2591 nao detectado,verifique a conexao e o endereco I2C");
 while (1);
 }
/* Configura o sensor TSL */
configureSensor();
/* Exibe as informacoes de carga e configuração do sensor TSL */
displaySensorDetails();
/* Envia informações para comunicação via porta Serial e orientações MENU Serial */
boot();
}
void loop(void)
{
int n=0;
String capture="";
// Leitura e execução via serial
if (Serial.available()) //verifica se tem dados diponível para leitura
 {
 while (Serial.available())
  {
  char c = Serial.read(); //gets one byte from serial buffer
  capture += c; //makes the String readString
  delay(2); //slow looping to allow buffer to fill with next character
  ļ
 n = capture.toInt(); //convert readString into a number
 Serial.print ("capture is:");
```

```
Serial.print(capture);
 Serial.print (" n is:");
 Serial.print(n);
 Serial.println();
 if (n==200)
  Calcula_Lux(); n=999;
 readString="";
 capture="";
 }
/* Verifica estabilidade da tensão do LED do sensor e ajusta PWM */
LedPwm(900);
/* Envia informações LCD */
lcd.clear();
                 //Limpa o display
Icd.setCursor(0,0); //Joga cursos Posição (0,0)
// Mensagem Estática
lcd.setCursor(0,1);
lcd.print ("< ****** >");
// Mensagem Dinâmica
if (message==0) lcd.setCursor(0,0); lcd.print ("UNICAMP|FEEC|DEB");
if (message==1)
  {
  lcd.setCursor(0,0); lcd.print (etapaMedida);
                                                 lcd.print ("/5 ");
  if (etapaMedida==0) {Icd.print ("Calibrar");
                                                lcd.setCursor(5,1); lcd.print (" ");}
  if (etapaMedida==1) {Icd.print ("Agua DI");
                                                 lcd.setCursor(6,1); lcd.print (" ");}
  if (etapaMedida==2) {lcd.print ("Branco");
                                                 lcd.setCursor(7,1); lcd.print (" ");}
  if (etapaMedida==3) {Icd.print ("Amostra");
                                                 lcd.setCursor(8,1); lcd.print (" ");}
  if (etapaMedida==4) {lcd.print ("Padrao");
                                                 lcd.setCursor(9,1); lcd.print (" ");}
  if (etapaMedida==5) {lcd.print ("Resultados"); lcd.setCursor(10,1); lcd.print (" ");}
```

}

```
message++;
if (message==maxMessage) message=0;
// Mensagem Erro
if (codErro!=0)
 Icd.setCursor(11,0);
 lcd.print ("Er ");
 lcd.print (codErro);
 }
for (int32_t looping=1; looping \leq 50000; looping++)
 estadoBotao1=digitalRead(botao1);
 estadoBotao2=digitalRead(botao2);
 estadoBotao3=digitalRead(botao3);
 /* DECREMENTA MENU */
 if (estadoBotao1==0)
 {
  etapaMedida--;
  if (etapaMedida<0) etapaMedida=5;
  estadoBotao1=1;
  delay(500);
 }
 /* iNCREMENTA MENU */
 if (estadoBotao3==0)
 {
  etapaMedida++;
  if (etapaMedida==6) etapaMedida=0;
  estadoBotao3=1;
  delay(500);
 }
```

```
/* Mostra visor médica ultima coleta */
if (estadoBotao2==0)
 // Envia informações LCD
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print ("Exec(A1)Sair(A3)");
 lcd.setCursor(0,1);
 lcd.print ("Atual: ");
 if (etapaMedida==0) lcd.print ("Calibrar");
 if (etapaMedida==1) lcd.print ("Agua DI");
 if (etapaMedida==2) lcd.print ("Branco");
 if (etapaMedida==3) lcd.print ("Amostra");
 if (etapaMedida==4) lcd.print ("Padrao");
 if (etapaMedida==5) lcd.print ("Resultados");
 estadoBotaoA3=1;
 estadoBotaoA1=1;
 while ((estadoBotaoA1==1)&&(estadoBotaoA3==1))
     estadoBotaoA1=digitalRead(botaoA1);
     estadoBotaoA3=digitalRead(botaoA3);
     if (estadoBotaoA1==0)
        if (etapaMedida==5)
        resultados();
        estadoBotaoA3=0;
        etapaMedida=5;
        if (etapaMedida==4)
        Calcula_Lux();
        padrao=coleta;
```

```
estadoBotaoA3=0;
etapaMedida=5;
ļ
if (etapaMedida==3)
Calcula_Lux();
amostra=coleta;
estadoBotaoA3=0;
etapaMedida=4;
}
if (etapaMedida==2)
Calcula_Lux();
branco=coleta;
estadoBotaoA3=0;
etapaMedida=3;
l
if (etapaMedida==1)
Calcula_Lux();
agua=coleta;
estadoBotaoA3=0;
etapaMedida=2;
3
if (etapaMedida==0)
Calibration();
estadoBotaoA3=0;
etapaMedida=1;
ļ
```

}

}

```
}
}
void resultados(void)
{
   estadoBotaoA1=1;
   estadoBotaoA2=1;
   estadoBotaoA3=1;
   // Envia informações LCD
           lcd.clear();
           lcd.setCursor(0,0);
           lcd.print ("Agua: "); lcd.print (agua);
           lcd.setCursor(0,1);
           lcd.print ("Branco: "); lcd.print (branco);
   // Aguarda A2
    while (estadoBotaoA2==1)
           estadoBotaoA2=digitalRead(botaoA2);
          ι
    estadoBotaoA2=1;
    delay (1000);
   // Envia informações LCD
           lcd.clear();
           lcd.setCursor(0,0);
           lcd.print ("Amostra: "); lcd.print (amostra);
           lcd.setCursor(0,1);
           lcd.print ("Padrao: "); lcd.print (padrao);
   // Aguarda A2
    while (estadoBotaoA2==1)
      {
      estadoBotaoA2=digitalRead(botaoA2);
```

```
}
      estadoBotaoA2=1;
     delay (1000);
/* Simulando Valores
agua=61332.00;
branco= 54439.00;
amostra=21612.00;
padrao=14126.00;
*/
/* cálculos Absorbancias */
absbr = log((float(agua)/float(branco)));
absamostra = log ((float(agua)/float(amostra)));
abspdr = log ((float(agua)/float(padrao)));
concMmol = (100/float(abspdr))*float(absamostra);
/* EXIBE ABS E MMOL */
// Envia informações LCD
           lcd.clear();
           lcd.setCursor(0,0);
           lcd.print ("br: "); lcd.print (absbr,4); lcd.print (" UA");
           lcd.setCursor(0,1);
           lcd.print ("am: "); lcd.print (absamostra,4); lcd.print (" UA");
   // Aguarda A2
    while (estadoBotaoA2==1)
      {
      estadoBotaoA2=digitalRead(botaoA2);
      }
    estadoBotaoA2=1;
     delay (1000);
     // Envia informações LCD
           lcd.clear();
           lcd.setCursor(0,0);
```

```
lcd.print ("PD: "); lcd.print (abspdr,4); lcd.print (" UA");
           lcd.setCursor(0,1);
           lcd.print ("CONC "); lcd.print (concMmol); lcd.print ("mEq/L");
   // Aguarda A2
    while (estadoBotaoA2==1)
      {
      estadoBotaoA2=digitalRead(botaoA2);
    estadoBotaoA2=1;
    delay (1000);
    estadoBotaoA1=1;
    estadoBotaoA2=1;
    estadoBotaoA3=1;
void Calibration()
uint16_t x=0;
float i=0;
float pos=0;
 /* Apaga o LED (Seta PWM em 0) */
 PWM=0;
 analogWrite(ledPWM,PWM);
 /* Enquanto Luminância <60.000 incrementa PWM -- Teto PWM em 30 */
 while ((x<maxLUM)&&(PWM<maxPWM))
  {
  x = tsl.getLuminosity(TSL2591_FULLSPECTRUM);
  PWM++:
  analogWrite(ledPWM,PWM);
 /* Exibe Informações LCD */
 lcd.clear();
```

}

{

```
lcd.setCursor(0,0);
lcd.print ("Calibrando ");
lcd.setCursor(0,1);
lcd.print ("PWM: ");
lcd.print (PWM);
/* Exibe Barra Progressiva */
i++;
pos=i/maxPWM;
for (int count=0;count<=int(pos*10);count++)</pre>
Icd.setCursor(8+count,2);
lcd.print("*");
/* Exibe Informações Porta Serial */
Serial.print ("LUX:");
Serial.print(x);
Serial.print (" PWM:");
Serial.print(PWM);
Serial.println();
/* Atraso para carga capacitor */
//delay (25);
}
if (PWM<maxPWM)
lcd.clear();
lcd.setCursor(0,0);
lcd.print ("Estabilizando");
etapaMedida=1;
Serial.print ("Aguardando Carga/Descarga Capacitor");
Serial.println();
```

delay (2000);

```
tensaoLEDfx=analogRead(analogPin);
Serial.print ("Lendo e Salvando Tensão LED: ");
Serial.print(tensaoLEDfx);
Serial.println();
```

```
else
```

```
{
codErro=1;
lcd.clear();
lcd.setCursor(0,0);
Icd.print ("Erro, Limite PWM LED");
```

```
Serial.print ("Erro, máxima tensão do PWM do LED");
Serial.println();
delay (5000);
```

```
}
```

```
}
```

```
int LedPwm(int op)
int message=0;
int maxMessage=2;
int n=0;
String capture="";
```

```
if (op==201) {PWM++; analogWrite(ledPWM,PWM); Serial.print ("PWM:"); Serial.print(PWM); Serial.println(); op=999;} //incrementa
+1 PWM
```

```
if (op==202) {PWM--; analogWrite(ledPWM,PWM); Serial.print ("PWM:"); Serial.print(PWM); Serial.println(); op=999;} //decrementa
+1 PWM
```

```
if (op<200)
PWM=op;
analogWrite(ledPWM,PWM);
```

```
Serial.print ("PWM:");
  Serial.print(PWM);
 Serial.println();
 Serial.print ("Aguardando Carga/Descarga Capacitor");
 Serial.println();
 delay (1000);
 // tensaoLEDfx=520;
 tensaoLEDfx=analogRead(analogPin);
 Serial.print ("Lendo e Salvando Tensão LED: ");
  Serial.print(tensaoLEDfx);
 Serial.println();
 }
 if (op==900)
// Auto Ajuste Tensão LED
 Serial.println();
 Serial.print ("Autoajuste Tensão LED"); Serial.print ("
                                                            Tensão fixada:"); Serial.print(tensaoLEDfx); Serial.print ("
                                                                                                                           Tensão
Atual:"); Serial.print(analogRead(analogPin));
  Serial.println();
// Se tensão for maior que 10 % --> Reduz 1 (PWM)
 if ((analogRead(analogPin))<(tensaoLEDfx*0.95)) {PWM++; analogWrite(ledPWM,PWM); Serial.print ("PWM:"); Serial.print(PWM);
Serial.println(); op=999;} //incrementa +1 PWM
 // Se tensão for menor que 10% --> Aumenta 1 (PWM)
 if ((analogRead(analogPin))>(tensaoLEDfx*1.05)) {PWM--; analogWrite(ledPWM,PWM); Serial.print ("PWM:"); Serial.print(PWM);
Serial.println(); op=999;} //decrementa +1 PWM
 for (message; message <= maxMessage; message++)
  // Coleta e exibe tensão LED
```

```
tensaoLED=analogRead(analogPin);
soma=soma+tensaoLED;
```

```
media=soma/count; count++;
```

```
Serial.print("LED: "); Serial.print(tensaoLED);
```
```
Serial.print("
                     media: "); Serial.print(media);
   float volts=(tensaoLED/193);
   Serial.print("
                    V: "); Serial.print(volts);
                   Tensão LED Estável: ");
   Serial.print ("
   Serial.print(tensaoLEDfx);
   Serial.print ("
                    PWM: ");
   Serial.print(PWM);
   Serial.println();
   if (count==20) {media=0;count=1;soma=0; Serial.println("reset");}
void Calcula_Lux()
 sensors_event_t event;
 float media=0;
 int count=10; // Define numeros amostras coletadas
 lcd.clear(); // limpa LCD
 tsl.getEvent(&event); // Checa Sensor
 /* Coleta valores Sensor */
 for (int i=1; i \leq count; i++)
  {
   if (event.light)
     uint16_t x = tsl.getLuminosity(TSL2591_FULLSPECTRUM);
     media=media+x;
     // Envia informações porta serial
     Serial.print ("lux("); Serial.print(i); Serial.print("): "); Serial.print (x);
     Serial.print (" event: "); Serial.print(event.light);
     Serial.println(" ");
```

```
// Envia informações LCD
```

}

```
lcd.setCursor(0,0);
    lcd.print ("lux("); lcd.print(i); lcd.print("/"); lcd.print(count); lcd.print("): ");
    lcd.setCursor(10,0);
    lcd.print(x); lcd.print(" ");
    lcd.setCursor(i,2);
    lcd.print("*");
  }
  media=media/count; // Calcula Média
  coleta=media;
                  // salva média variável global coleta
 // Envia informações porta serial
  Serial.println();
  Serial.print ("Media:");
  Serial.println (media); lcd.print(" ");
  Serial.println();
    Serial.println();
      Serial.println();
delay (250);
/*
  Displays some basic information on this sensor from the unified
  sensor API sensor_t type (see Adafruit_Sensor for more information)
*/
void displaySensorDetails(void)
sensor_t sensor;
tsl.getSensor(&sensor);
 Serial.println(F("-----"));
Serial.print (F("Sensor: ")); Serial.println(sensor.name);
 Serial.print (F("Driver Ver: ")); Serial.println(sensor.version);
```

```
Serial.print (F("Unique ID: ")); Serial.println(sensor.sensor id);
 Serial.print (F("Max Value: ")); Serial.print(sensor.max value); Serial.println(F(" lux"));
 Serial.print (F("Min Value: ")); Serial.print(sensor.min value); Serial.println(F(" lux"));
 Serial.print (F("Resolution: ")); Serial.print(sensor.resolution, 4); Serial.println(F(" lux"));
 Serial.println(F("------")):
 Serial.println(F(""));
delay(500);
/*
  Configures the gain and integration time for the TSL2591
*/
void configureSensor(void)
// You can change the gain on the fly, to adapt to brighter/dimmer light situations
 if (gain==0) tsl.setGain(TSL2591 GAIN LOW); // 1x gain (bright light)
if (gain==1) tsl.setGain(TSL2591 GAIN MED); // 25x gain
if (gain==2) tsl.setGain(TSL2591 GAIN HIGH); // 428x gain
if (gain==3) tsl.setGain(TSL2591 GAIN MAX); // 9876x gain
// Changing the integration time gives you a longer time over which to sense light
// longer timelines are slower, but are good in very low light situtations!
if (integration==0) tsl.setTiming(TSL2591 INTEGRATIONTIME 100MS); // shortest integration time (bright light)
if (integration==1) tsl.setTiming(TSL2591_INTEGRATIONTIME_200MS);
if (integration==2) tsl.setTiming(TSL2591_INTEGRATIONTIME_300MS);
if (integration==3) tsl.setTiming(TSL2591_INTEGRATIONTIME_400MS);
if (integration==4) tsl.setTiming(TSL2591_INTEGRATIONTIME_500MS);
if (integration==5) tsl.setTiming(TSL2591_INTEGRATIONTIME_600MS); // longest integration time (dim light)
/* Display the gain and integration time for reference sake */
 Serial.println(F("-----"));
 Serial.print (F("Gain:
                        "));
tsl2591Gain_t gain = tsl.getGain();
 switch(gain)
```

```
{
  case TSL2591 GAIN LOW:
   Serial.println(F("1x (Low)"));
   break:
  case TSL2591_GAIN_MED:
   Serial.println(F("25x (Medium)"));
   break:
  case TSL2591_GAIN_HIGH:
   Serial.println(F("428x (High)"));
   break;
  case TSL2591 GAIN MAX:
   Serial.println(F("9876x (Max)"));
   break;
 Serial.print (F("Timing:
                          "));
Serial.print((tsl.getTiming() + 1) * 100, DEC);
 Serial.println(F(" ms"));
Serial.println(F("-----"));
 Serial.println(F(""));
}
void boot(void)
 Serial.println(F("-----")):
Serial.print (F("xxxxx
                        "));
Serial.print (F("xxxxxx "));
Serial.print (F("xxxxxx "));
 Serial.print (F("xxxxx "));
Serial.print (F("xxxx "));
 Serial.print (F("xxxxx "));
 Serial.println(F("-----"));
 Serial.println(F(""));
```

delay(500);

ANEXOS

ANEXO A - Metodologia de cálculo

Extraída do anexo 10 do trabalho de Mattar et al. (2010).

I. SETOR DA COLETA

NÃO PERMANENTES	QUANT/ PAC.	CUSTO/PAC.
 □ Gazes estéreis Cada pacote c/ 5 unids preço = R\$ 0,17 □ Papel de filtro quantitativo-whatman 542 Cada fólha preco = R\$ 0,21 	8,5% do pacote	0.46
Pilocarpina Cada frasco de 5 gramas = R\$ 635,00	0,0098 g	1.2451
Acido Sulfúrico Cada 01 Litro (1000 uL) = R\$27,00	0.5uL	0.000015
Atadura de crepon. Cada rolo= R\$ 0,21	1	0.21
Tiras de plástico	1	
Luvas Cada luva R\$ 7,50	2 pares de luvas	4.125
PERMANENTES		
Pinça	- 1	
Tesoura		
Beckers Cada R\$ 5,00		
Balança analitica		
Cronômetro		
Fonte estimuladora de corrente em miliampers		2
Placas de chumbo		
Fios e pinos (jacarés)	1 1	
Mili-Q (Água últra pura)	200 mL	
		6.040115

9.016

II.SETOR DA LAVAGEM

NÃO PERMANENTES	QUANTIDADE	\$/PACIENTE
Acido nítrico Cada Litro R\$ 28.00 Noion Cada galão de 5 litros = R\$76.72 Luvas estéreis Cada par R\$7.50 Papel de filtro 500x500 Cada folha/ R\$ 0,24 PERMANENTES	80 pacientes 80 pacientes 05 pares 05 folhas	0.35 0.1918 0.46875 0.015
 Estufa à 45°C (ver gasto energia e depreciação do Lençóis Mili-Q (Água últra pura) 	apareiho) 4	
Funcionários/ 1hora e 40 min. de trabalho =		1.02555

Categoria, função e carga horária do profissional

III. CENTRO DE ESTERILIZAÇÃO

NÃO PERMANENTES	QUANTIDADE/	QUANTIDADE/PAS/PACIENTE	
Pacotes de esterilização			
Luvas estéreis		0 46875	
PERMANENTES			
Autoclave (esterilização à vapor) ver energia gasto e	depreciação do		
		0.46875	
Funcionários/ 1hora e 30 min. de trabalho =			

categoria, função e carga horária do profissional

IV. RECEPÇÃO E SEPARAÇÃO NO LABORAT.

NÃO PERMANENTES	QUANTIDADE/P4\$/PACIENTE	
Etiquetas R\$ 0,06 a unidade. Ribbon R\$ 42,90 o rolo Folha de sulfite R\$ 0,04 cada folha PERMANENTES	4 1/mês 2	0.06 0.53 0.032
Energia/computador		
		0.622
Funcionários/ 1h. de trabalho =	Г	0.6152

v.EXECUÇÃO DOS EXAMES ESPECIAIS

NÃO PERMANENTES	QUANTIDADE/P/	\$/PACIENTE
Ac. Acético – R\$ 30,00/ Litro	1.224mL	0.03672
Nitrato de lítio – R\$140,00 / FRASCO de 250g	0.1014g	0.0568
Cloreto de sódio – R\$ 21,00 / kg	0.0872g	0.0006
Gelatina		0.021
Azul de timol – R\$ 101,00 / frasco 5 g	0.25mg	0.0051
Timol – R\$ 96,00 / frasco 100 g	0.25mg	0.00024
Padrão 100meq/L de Na+ e 100 meq/L K+		
- Parafilm	1 10/000	0.1054
Ponteiras - 0.07/up	1 1010/ano	0.1054
	Glearn	2 6474
	1 pete/15 dias	2.04/1
PERMANENTES	i poterio dias	0.1575
Pipetas de vidro ou plástico pasteur - 0.60/um plastico	-	0.6
Tubos de ensaio em vidro – 0.60/un		0.06
Balões volumétricos em vidro – aprox. 5.00/un		0.5
Beckers de vidro		0.5
Pipetas automáticas		
 Centrifuga (ver a energia e depreciação) 		
Bastão de vidro		
Estantes		
Mili-Q (Água últra pura) (ver energia e depreciação0		
Cloridrômetro idem		
Fotômetro de chama idem		
Energia/ geladeira idem		~
Energia/computador ver a depreciação		
Cubetas de vidro Valor unitário R\$ 0,625		
		4.90056
Funcionarios/ shoras/semana de trabalho para preparação da	amostra	
(macerar, centrifugar, separar e armazenar) =		5.66
Funcionários/ Shoras/semana de trabalho para realização do t	teste	
(analisar, digitar e liberar os resultados) =		5.66

Total = 39.428175