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Paracoccidioides brasiliensis infection
promotes thymic disarrangement and
premature egress of mature lymphocytes
expressing prohibitive TCRs
Rosaria Di Gangi1†, Thiago Alves da Costa1†, Rodolfo Thomé1, Gabriela Peron1, Eva Burger2 and Liana Verinaud1*

Abstract

Background: Paracoccidioidomycosis, a chronic granulomatous fungal disease caused by Paracoccidioides
brasiliensis yeast cells affects mainly rural workers, albeit recently cases in immunosuppressed individuals has been
reported. Protective immune response against P. brasiliensis is dependent on the activity of helper T cells especially
IFN-γ-producing Th1 cells. It has been proposed that Paracoccidioides brasiliensis is able to modulate the immune
response towards a permissive state and that the thymus plays a major role in it.

Methods: In this paper, we show that acute infection of BALB/c mice with P. brasiliensis virulent isolate (Pb18)
might cause alterations in the thymic environment as well as the prohibitive TCR-expressing T cells in the spleens.

Results: After seven days of infection, we found yeast cells on the thymic stroma, the thymic epithelial cells (TEC)
were altered regarding their spatial-orientation and inflammatory mediators gene expression was increased.
Likewise, thymocytes (differentiating T cells) presented higher migratory ability in ex vivo experiments.
Notwithstanding, P. brasiliensis-infected mice showed an increased frequency of prohibitive TCR-expressing T cells in
the spleens, suggesting that the selection processes that occur in the thymus may be compromised during the
acute infection.

Conclusion: In this paper, for the first time, we show that acute infection with Paracoccidioides brasiliensis yeast
cells promotes thymic alterations leading to a defective repertoire of peripheral T cells. The data presented here
may represent new mechanisms by which P. brasiliensis subverts the immune response towards the chronic
infection observed in humans.
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Background
The thymus is a primary lymphoid organ, where the dif-
ferentiation and maturation of T-cell takes place. A num-
ber of cells and soluble proteins compose the thymic
microenvironment and are responsible for forming a three
dimensional network that provides mechanical support
and fundamental stimulus for T-cell development [1]. In

this process, intra-thymic migration of T-cell precursors
plays an essential role [2].
The T-cell development in the thymus initiates after

the entrance of double-negative (DN) T lymphocyte pre-
cursors at the cortico-medullary junction. Signals from
cortical Thymic Epithelial Cells (cTEC) and IL-7 induce
the DN thymocytes to migrate to the sub-capsular re-
gion of the cortex and express the specific chemokine
receptors CXCR4, CCR7 and CCR9 [3, 4]. Then the V
(D) J rearrangement of T Cell Receptor (TCR) β chains
occurs [5–7] and there is formation of pre-TCR
complex, followed by the expression of CD4 and CD8
co-receptors [1, 8, 9].
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The repertoire of the αβ polypeptide chains in TCR
associated with CD3 provides the recognition of foreign
antigens and the specificity of the αβTCR depends on
the Vβ, the variable domain of the β chain [5]. Thus,
double-positives (DP) thymocytes carrying functional
TCRαβ interact with cTECs, receiving survival signals
and maturating into single-positive (SP) thymocytes (9)
which migrate though the cortex to the medullar region
under the attraction of CCL19 and CCL21 chemokine li-
gands expressed by medullary (m) TECs, where they will
undergo another repertoire screening called negative se-
lection [10–13]. In this process the Autoimmune Regu-
lator (Aire) gene plays a crucial role promoting the
expression of tissue specific self-antigens within the thy-
mus, if thymocytes express TCR segments that have high
avidity for these self-antigens-MHC complex, they are
eliminated by apoptosis [14].
Studies in BALB/c mices have shown that TCR seg-

ments Vβ5 and Vβ12 are normally eliminated in the
process of negative selection, receiving the denomination
of prohibited segments, numerous researches links them
to damage to self events [15–18]. Finally, after the cen-
tral tolerance processes the thymocytes become naïve T
cells and migrate to secondary lymphoid organs. In fact,
the thymus has a crucial rule in cell-mediated immunity
that is the main host defense against intracellular patho-
gens, such as fungi.
The fungus Paracoccidioides brasiliensis (Pb) is the

mainly etiological agent of Paracoccidioidomycosis (PCM)
that is a severe chronic and systemic mycosis. This myco-
sis account with cases widely distributed throughout
Central and South America countries [19]. Infection dis-
seminate to other tissues, resulting in damages of the skin,
mucous membranes, lungs, Central Nervous System
(CNS), spleen and lymph nodes compromising their func-
tions [20]. During infection, the host fails to protect itself
against Pb [20–22]. Several mechanisms have been pro-
posed for the impaired immune response, such as failure
in antigen presentation, reduced T lymphocyte function
and production of Th2-related cytokines like IL-4 and IL-
10 [23, 24]. Interestingly, we found that experimental in-
fection with the high virulent clinical isolate Pb18 is
followed by thymic involution [20].
Thymic atrophy has been described in many infections

and metabolic disturbances, such as malaria, HIV, diabetes
and malnutrition [20, 25–29]. The integrity of the thymic
microenvironment is important for the maturation of thy-
mocytes, where changes in the thymic microenvironment
may compromise the T cell repertoire in the periphery,
leading to immunosuppression or autoimmune diseases.
In this sense, we have recently shown that thymic

atrophy in experimental malaria predisposes mice to ex-
acerbated Experimental Autoimmune Encephalomyelitis
(EAE), the mouse model of Multiple Sclerosis [30].

It is not clear which events are involved in the thymic
atrophy seen in Pb18 infection nor whether organ atro-
phy would result in altered T cell repertoire in the per-
iphery. In this study, we aimed to investigate the
alterations caused by P. brasiliensis infection in the func-
tion and structure of the thymus as well as the effects of
these alterations in T cell repertoire from peripheral
lymphoid organs. It was found that in the course of in-
fection, the thymus is rendered atrophic by means of
epithelial cell spatial disarrangement and increased gene
expression of inflammatory mediators. Notwithstanding,
infected mice showed an increase in the frequency of
prohibitive TCR-expressing T cells in the periphery.
These results shed light on possible additional mecha-
nisms of immunosuppression caused by Pb infection.

Methods
Mice
Eight-week old male BALB/c mice were used in this
study. Mice were allocated in specific-pathogen free con-
dition in transparent acrylic plastic isolators (dimen-
sions: 37, 9 cm × 19,7 cm × 12,7 cm, 5 animals per cage)
with absorbent material (wood shavings) in ventilated
racks (Alesco, SP, Brazil) on a 12 h light/dark cycle and
controlled temperature environment (20°-24 °C). Sterile
water and food (Nuvilab CR-1; Nuvilab, PR, Brazil) were
provided ad libitum. Once a week the bedding of the isola-
tors was changed with autoclaved wood shavings. This
study was conducted according to the ethical principles of
animal research adopted by the Brazilian National Council
for the Control of Animal Experimentation (CONCEA)
and was approved and carried out in accordance with the
guidelines of the Institutional Committee for Use of
Laboratory Animals (CEUA, protocol number # 2969–1).
All procedures aforementioned are in accordance to the
ARRIVE Guidelines for reporting animal research and the
completed ARRIVE guidelines checklist is described in
(Additional file 1: Supplemental data).

Strain and infection
The virulent strain Pb18 of P. brasiliensis used in this
study was maintained at 37 °C in its yeast form in Fava’s
Netto medium and used at the seventh day of cells cul-
ture growth. The fungal virulence was maintained by
followed recommendation [31–33]. The fungal mass was
collected and suspended in sterile phosphate-buffered
saline (PBS 0.01 M pH 7.4), mixed three times for 30 sec-
onds with 60 seconds in between on a Vortex-mixer,
centrifuged and then washed in PBS. Fungal viability
was verified using trypan blue dye exclusion in a
hemocytometer. Mice (n = 5 mice/group) were injected
intraperitoneally with 5x106 viable yeast cells contained
in 0.2 mL of PBS or with PBS alone. Infection was car-
ried out for seven days when mice were euthanized by
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deep anesthesia with ketamine/xylazine (100 mg/kg
ketamine hydrochloride and 5 mg/kg xylazine hydro-
chloride), and the thymuses and spleens were excised.
Groups of 5 mice were used for each experiment. BALB/
c mice were used as they are the most common experi-
mental model of infection with Pb, evaluated as inter-
mediate in susceptibility patterns to PCM [34].

Thymus weight and histological analysis
Whole thymuses were weighted individually from control
and infected mice. For histological analysis, the thymuses
were fixed in buffered 4 % paraformaldehyde followed by
dehydration in ethanol, diaphanization in xylene and in-
clusion in Paraplast Plus (Sigma). Thin slices were made
(5 μm) in microtome and stained with Hematoxylin and
Eosin while some slices were submitted to Grocott stain-
ing by sliver impregnation of viable yeast cells. The slices
were analyzed under bright light field microscope
equipped with camera (Olympus, Japan).

Analysis of thymic epithelial cells distribution
The thymuses were processed to cryotomy and slices of
5 μm were made in cryostat. Briefly, free reactive sites in
the slices were blocked with PBS plus Bovine Serum
Albumin (BSA 1 %), followed by immunostaining for
cytokeratin 8 (TROMA-I, DHSB Hybridoma, USA) and
cytokeratin 14 (ab53115, Rabbit polyclonal to Cytokera-
tin 14, Abcam, UK). After, Cy2- and Cy3-conjugated sec-
ondary antibodies were added. At the end of incubation
period, the slices were mounted in Vectashield (Vector
Laboratories, Inc. Burlingame, USA) and were analyzed
under epifluorescence microscope (Olympus, Japan). Im-
ages were analyzed in Image J for integrated density.
Eight slides from each group were analysed (n = 4).

Thymocytes subpopulation
The thymuses were homogenized individually in staining
buffer (PBS 0.02 M pH 7.2 enriched with 2 % Fetal Calf
Serum) and cell number was estimated by hemocytometer.
Flow cytometry staining was performed following a previ-
ously described protocol [35]. Briefly, one million cells were
incubated with fluorochrome-conjugated monoclonal anti-
bodies in a final volume of 100 μL for 20 min at 4 °C.
Preparations were acquired with a Gallios flow cytometer
(Beckman Coulter, USA) and data was analyzed using
FlowJo VX (Tree Star Inc., Ashland, OR, USA). Cells were
stained with anti-CD4 (clone H129.12 – BD Biosciences,
CA, USA) and ant-CD8 (53–6.7–BD Biosciences, CA,
USA).

Real time PCR
Thymic mRNA was extracted individually using the Qia-
gen RNAeasy Mini Kit (MD, USA) according to the man-
ufacturer’s instructions. Quantification was performed in

Nanodrop2000 (Thermo) and the mRNA was reverse
transcripted into cDNA using High Capacity Kit (Applied
Biosystems) by following manufacturer’s instructions.
Then the Taqman Gene Expression Master Mix (Applied
Biosystems) was employed for real time PCR amplification
using the Applied Biosystems 7500 Real-Time PCR Sys-
tems (CA, USA). Levels of mRNA expression were nor-
malized to housekeeping gene GAPDH mRNA levels. The
primers used in this study are: IL-2 (Mm00434256_m1),
IL-7 (Mm01295803_m1), IL-10 (Mm00439614_m1), IL-17
(Mm00439618_m1), TNFα (Mm00443260_g1), AIRE
(Mm00477461_m1), GAPDH (Mm99999915_g1). Expres-
sion levels of genes were represented as a relative copy
numbers by using the method of delta threshold (2-ΔΔCt).

Chemokine in the thymus of mice infected with P.
brasiliensis
Total protein was extracted from infected and control
mice using RIPA lysis buffer following manufacturer’s in-
structions (Millipore, CA, USA). Total protein concen-
tration was measured by the method of BRADFORD
following manufacturer’s instructions (Bio-Rad, CA,
USA). The levels of CCL19 were measured by ELISA Kit
(R&D Biosystems, MN, USA) followed by manufacturer’s
instructions. To determine the expression of the CCR7
chemokine receptor in thymocytes, a flow cytometry
analysis was performed in single cell suspensions origi-
nated from healthy and infected mice using CCR7 anti-
body (clone 4B12 – BD Biosciences, CA, USA) gated in
CD45RA+ (clone 14.8–BD Biosciences, CA, USA) cells.
The CCR7 expression was determined by Mean Fluores-
cence Intensity (MFI) parameter in FlowJo VX (Tree
Star Inc., OR, USA).

Cell migration assay
Migration assays were performed in 24 well plates con-
taining inserts with 5 μm diameter pores according to
the manufacturer’s instructions (Corning Life Sciences,
MA, USA). The membranes were incubated with 10 μg/
mL of BSA for 1 h at 37 °C and then blocked with PBS/
BSA 0.5 % for 45 min at 37 °C. After blocking RPMI/
BSA 1 % or RPMI/CCL19 (100 μg/mL; R&D Systems,
MN, USA) were added to the lower chamber of each
trans–well assay. Thymuses cellular suspension was ob-
tained by forcing the organ through a 70 μm cell strainer
and suspending in RPMI/BSA 1 %. Then 100 μL of cell
suspension (containing 2.5×106 cells) from control and
infected mice, counted on a hemocytometer, were added
to the upper chamber of each trans-well assay. Cells
were allowed to migrate for 3 h at 37 °C and upon com-
pletion; cells were recovered from the lower chamber
and counted on a hemocytometer. Percent migration
was calculated from the ratio of cells in the lower cham-
ber to the initial input, and multiplying by 100.
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Expression of prohibited TCRVβ5 and Vβ12 segments in
spleens of mice infected with P. brasiliensis
The analysis of prohibited TCR-expressing T cells
followed a previous recommendation [36]. Briefly, the
spleens from control and infected mice were collected
and homogenized individually in PBS plus fetal bovine
serum 5 %. After red blood cells (RBC) lysis, the cellular
concentration was adjusted and 1×106 cells of each
mouse were transferred to appropriate cytometer tubes.
Cells were incubated with fluorochrome-conjugated mono-
clonal antibodies for 20 min at 4 °C. Events were acquired
on a flow cytometer (Gallios, Beckman Coulter, CA, USA)
and data was analyzed using FlowJo VX (Tree Star Inc.,
OR, USA). Antibodies used in this study were anti-CD4
(clone H129.12–BD Biosciences, CA, USA), CD8 (clone
53–6.7 – BD Biosciences, CA, USA), TCRVβ12 (clone
MR9-4 eBioscience, CA, USA), TCRVβ5 (clone MR11-1
eBioscience, CA, USA).

Statistical analysis
Statistical analyses were performed using GraphPad 6
software and Student’s t-test was used for 2-group com-
parisons. A P value of less than 0.05 was considered sta-
tistically significant. Values are expressed as means ±
standard error mean (SEM).

Results
Acute Paracoccidioides brasiliensis infection leads to
atrophy, architecture changes and fungal invasion of the
thymus
To evaluate the effect of Pb infection on the thymus,
male BALB/c mice were infected with 5x106 yeast cells
intraperitoneally. The animals were sacrificed seven days
after infection and the thymuses were collected and
weighted. The data obtained showed that the infection
by Pb leads to significant reduction of the thymic weight
in infected animals compared to control animals (Fig. 1a).
We aimed to evaluate the possible structural changes in
the thymus of mice infected with Pb. When the slides
were stained for HE no structural changes between cor-
tical and medullar region were observed (Fig. 1b) even
though, viable fungal cells were detected by Grocott
staining (Fig. 1c). Then we decided to investigate
whether there was alteration in the expression and dis-
tribution of cortical and medullary epithelial cells by im-
munostaining of their cytokeratin 8 and 14, respectively.
Thymuses of infected mice showed alterations in the ar-
rangement of the medullar and cortical regions when
compared with uninfected animals. These changes are
evident when the immunostaining for cortical epithelial
cells showed no significant alteration in the expression
of cytokeratin but its spatial distribution appears to be

Fig. 1 P. brasiliensis acute infection leads to thymic atrophy, alterations on thymus architecture and fungal invasion. Male Balb/c mice (n = 5 mice/
group) were injected i.p. with Pb yeast cells. Seven days later, thymuses were analyzed for alterations on architecture and presence of yeast cells. (a) Loss of
thymic weight following injection with yeast cells or PBS. (b) Cortico-medullary junction preserved by Hematoxylin-Eosin staining following injection with
yeast cells or PBS. (c) Presence of yeast cells by Grocott staining method following injection with yeast cells or PBS, indicated by the arrows. (d)
Unaltered expression of cytokeratin 14 by immunofluorescence following injection with yeast cells or PBS and (e) Diminished expression of
cytokeratin 8 by immunofluorescence following injection with yeast cells or PBS. Photomicrography total magnification 100×. C-cortical and
M-medullary areas. Data was analyzed by Student t test. Values of p ≤ 0, 01 (**) and p ≤ 0, 0001 (****) were considered statistically significant.
Results are expressed by Mean ± SEM. Representative data from three independent experiments with similar results
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misplaced with the medullar region (Fig. 1d). Meanwhile
the analysis of the immunostaining for cytokeratin of
medullar epithelial cells by integrated density shows that
the expression of cytokeratin of medullar epithelial cells
was significantly diminished (Fig. 1e).

Genetic expression of the autoimmune regulator-AIRE and
the cytokines IL-7, IL-2, IL-17 and TNFα are augmented in
the thymuses of mice infected with P. brasiliensis
In order to verify whether the gene expression of im-
portant cytokines and the transcription factor auto-
immune regulator (AIRE) are altered in the thymus of
infected mice, total mRNA was extracted from the thy-
muses of infected and non-infected mice and RT-PCR
was performed to analyze the genetic expression of IL-7,
IL-2, IL-10, IL-17, TNFα and AIRE. Results showed that
the gene expression of IL-2, IL-7 and AIRE were signifi-
cantly augmented in thymuses of Pb infected mice
(Fig. 2a). Likewise gene expression of the inflammatory
cytokines IL-17 and TNFα also showed higher levels in
thymuses of Pb infected mice. The anti-inflammatory
cytokine IL-10 had no altered levels in the thymuses of
Pb infected mice (Fig. 2b).

Chemokine signaling is altered in thymuses from infected
mice and is correlated with increased migration of
thymocytes
The thymic involution and the histological changes ob-
served in the presence of yeast in the thymuses from

animals infected with Pb suggest that the thymus is a tar-
get organ also in PCM infection. The presence of the fun-
gus in the thymus, an essential organ for maturation of
lymphocytes and repertoire selection, may interfere with
the differentiation process of thymocytes. Analysis of thy-
mocytes subpopulations for CD4 and CD8 revealed that
there were no changes in the relative frequencies of thy-
mocytes subpopulations between healthy and infected
mice (Fig. 3a), though there was a decrease in the absolute
number of all thymocytes subpopulations at seven days of
infection when compared to the control group (Fig. 3b).
As the numbers of thymocytes subpopulations were al-
tered, we evaluated whether there was an unbalanced che-
mokine expression caused by the Pb infection. To answer
this question the expression of the chemokine ligand
CCL19 and its receptor CCR7 was assessed. Both CCL19
and CCR7 expression were significantly increased in the
thymuses from infected mice (Fig. 3c and Fig. d). Later, we
evaluated the migration ability of thymocytes in Trans-
well chambers. We incubated thymocytes from control
and infected mice in the presence of CCL19. Results show
that cells from Pb-infected mice presented a four-fold in-
creased migration than to control cells (Fig. 3e).

Expression of “prohibited” TCRVβ segments in T cells from
spleens during acute P. brasiliensis infection
During negative selection, thymocytes with high affinity
for self-peptides/MHC undergo apoptosis, this process is
crucial to eliminate T lymphocytes that could drive

Fig. 2 Gene expression of inflammatory mediators are augmented in the thymuses of mice infected with P. brasiliensis. Male Balb/c mice (n = 5
mice/group) were injected i.p. with Pb cells. Seven days later, thymuses were processed to mRNA extraction and analyzed for alterations on gene
expression of AIRE, IL-7, IL-2, IL-17, IL-10 and TNFα, with GAPDH as housekeeping gene by real-time PCR. (a) Relative mRNA level of IL-2, IL-7 and
AIRE in thymus of infected mice. (b) Relative mRNA level of IL-17, TNFα and IL-10. Expression levels of genes were represented as a relative copy
numbers by using the method of delta threshold (2-ΔΔCt). Data was analyzed by Student t test. Values of p≤ 0,05 (*) were considered statistically
significant. Results are expressed by Mean ± SEM. Representative data from three independent experiments with similar results
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immune responses towards self-peptides in the periph-
ery. In this context, we analyzed the percentage of T
lymphocytes expressing prohibitive TCRVβ5 and Vβ12
segments. In normal conditions, there are low numbers
of these cells in the thymus and also in the periphery of
the immune system of BALB/c mice [36, 37]. Our results
showed that spleens from infected mice presented an in-
creased frequency of CD4+ and CD8+ T lymphocytes

expressing TCRVβ5 and Vβ12 compared to controls
(Fig. 4a and b). This observation suggests that the thy-
mus is exporting T cells that should have been elimi-
nated during the maturation process.

Discussion
Paracoccidioidomycosis (PCM) is one of the most preva-
lent systemic mycosis in Latin America countries [38].

Fig. 3 Increase of thymocytes migration due to increased protein expression of CCL19 and CCR7 in the thymuses of P. brasiliensis infected mice is
correlated to altered thymocytes subpopulation. Male Balb/c mice (n = 5 mice/group) were injected i.p. with Pb cells. Seven days later, thymuses
were both analyzed for trans-well migration assay, thymocytes subpopulation by flow cytometry and processed to total protein extraction, to
analyze the expression of chemokine CCL19 and CCR7 in infected and control mice. (a) Frequency and (b) absolute number of thymocytes double
positive and single positive subpopulation in infected mice. (c) Augmented expression of CCR7 and (d) CCL19 in thymus of infected mice. (e) Increased ex
vivo thymocytes migration by Trans-well assay in infected mice. Data was analyzed by Student t test. Values of p≤ 0,05 (*), p≤ 0,001 (***), p≤ 0,0001 (****)
were considered statistically significant. Results are expressed by Mean ± SEM. Representative data from three independent experiments with similar results
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This disease affects mainly rural workers but immuno-
suppressed individuals can also develop it as an oppor-
tunistic disease [39–41]. P. brasiliensis is the causative
agent of PCM. Pb has demonstrated tropism to organs
of the immune system, as lymph nodes, spleen and the
thymus. Although the thymus was considered as an im-
mune privileged site, it is now consistent to say that
antimicrobial responses take place in the thymus [42]. In
this paper, we show that experimental infection with Pb
yeast cells alters the thymic stroma with a decreased thy-
mocytes cell subpopulation, increased thymocytes migra-
tion and higher expression of prohibited TCRVβ5 and
Vβ12 segments in T lymphocytes from spleen.
The thymic microenvironment comprises a three-

dimensional network of thymic epithelial cells (TECs),
macrophages, dendritic cells, extracellular matrix com-
ponents, enzymes and molecules, such as cytokines and
chemokines in direct contact with thymocytes [43].
Local infection of the thymus and inflammatory media-
tors that follow systemic infection alter these thymic fea-
tures and may impair the differentiation of pathogen-
specific T cells, which may diminish host resistance to
infection [42, 44, 45]. In this study, we demonstrated the
ability of the strain Pb18 of P. brasiliensis to cause
thymic atrophy while maintaining its viability in the
thymic stroma at seven days after infection, in later time
points of the infection more pathogens were found, in-
cluding ones with budding yeasts, suggesting ability to
thrive and multiply in the thymic microenvironment
(manuscript in preparation). Even though the thymic
weight in infected mice was 30 % lower than healthy
mice, we observed no disruption in the cortico-
medullary delimitation. We did observe that mTECs
numbers were reduced in the medullar region of the thy-
mus. Despite its role in the negative selection of SP thy-
mocytes, mTECs are also involved in the maturation of
SP thymocytes, which will be exported to the periphery
as functional self-tolerant T cells [46]. We hypothesize
that diminished presence of mTECs in Pb infected

thymus might impair central tolerance and exportation
of auto reactive T cells could be altered favoring the
elimination of Pb-reactive T cells.
In order to evaluate these changes, we found that the

presence of Pb in the thymus led to a higher gene ex-
pression of inflammatory cytokines genes such as TNFα
and IL-17 causing a pro-inflammatory profile to control
fungal dissemination. Interestingly, AIRE expression was
found augmented in thymus from infected mice. We can
only hypothesize that AIRE expression comprehends (a)
an effort of the thymus to maintain negative selection in
face of the reduction in mTEC numbers or (b) could be
induced by the fungus to change the repertoire of T cells
produced in the thymus and favor its survival. Unfortu-
nately, literature lack concise data regarding both
hypotheses.
Many studies have demonstrated that infection led to

thymic atrophy by depletion of thymocytes subpopula-
tion [9, 26–28, 44]. In our case, the loss of thymic weight
was followed by: (a) diminished number of all four thy-
mocytes subpopulations and (b) augmented thymocytes
migration. The chemokine ligand CCL19 and its recep-
tor CCR7 participate in thymocytes migration during the
development of immature DP thymocytes to mature SP
thymocytes throughout the thymus. Ueno et al. have
shown that CCL19 is produced by mTECs and is located
in the thymic medulla whereas CCR7 expression aug-
ments in cell surface of immature cortical DP thymo-
cytes [47, 48]. Here we demonstrated that the expression
of CCR7 and CCL19 were higher in the infected group
than in control group. Our findings suggest that, during
Pb infection, the thymocytes undergo maturation in an
accelerated way. Actually, in Plasmodium berghei-in-
fected mice we found that the thymus exports much
more T cells than thymus from control mice (manuscript
in preparation). Notwithstanding, T cell repertoire in P.
berghei-infected mice was altered with the presence of
prohibited-TCR-expressing T cells (manuscript in prep-
aration). This altered T cell repertoire could lead to

Fig. 4 Expression of “prohibited” TCRVβ segments in T cells from spleens during acute P. brasiliensis infection. Male Balb/c mice (n = 5 mice/group)
were injected i.p. with Pb cells. Seven days later, spleens were analyzed for expression of TCRVβ5 and Vβ12 segments in T cells from infected and
control mice. Increased expression of TCRVβ5 and Vβ12 segments in (a) CD4 and TCRVβ12 segment in (b) CD8 T lymphocyte in spleens of infected
mice. Data was analyzed by Student t test. Values of p≤ 0,05 (*),p≤ 0,01 (**) were considered statistically significant. Results are expressed by Mean ±
SEM. Representative data from three independent experiments with similar results
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aggravation of autoimmune diseases. Indeed, we showed
that following P. berghei infection, C57BL/6 mice de-
velop a severe form of Experimental Autoimmune En-
cephalomyelitis, the mouse model of Multiple Sclerosis,
by means of prematurely-egressed thymic Double-
positive T cells [30]. Also, cells expressing prohibited
TCRVβ segments were found in the lymph nodes of
mice infected with Trypanosoma cruzi, probably as a re-
sult of the disbalance on thymic molecules, such as cyto-
kines, chemokines and extracellular matrix elements
that could promote the double-positive T cells escape
[36, 49]. That could be the case of Pb infection. We
found that spleen cells from Pb-infected mice contained
a higher proportion of prohibited-TCR-expressing T cells
than spleens cells from health mice.

Conclusion
Taken together, our data show for the first time that, in
acute Pb infection, the thymus is rendered atrophic as a
consequence of elevated fungal burden, deregulated cyto-
kine and chemokine expression, diminished absolute thy-
mocytes subpopulations and enhanced migratory ability of
thymocytes. In addition, as a possible consequence of
thymic disarrangement, we observed an altered T cell rep-
ertoire in the periphery of the immune system. Further
studies are required to ascertain the possible conse-
quences of the thymic atrophy in experimental PCM.

Ethics approval and consent to participate
This study was approved and carried out in accordance
with the guidelines of the Institutional Committee for
Use of Laboratory Animals (CEUA, # 2969–1).

Consent for publication
Not applicable.

Availability of data and materials
All the data supporting our findings is contained within
the manuscript.

Additional file

Additional file 1: The ARRIVE Guidelines Checklist. (PDF 1054 kb)

Abbreviations
AIRE: autoimmune regulator; BSA: bovine serum albumin; CNS: central
nervous system; Cy: cyanine; DN: double-negative; DP: double-positive;
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HE: hematoxylin-eosin;
HIV: human immunodeficiency virus; IL: interleukin; MHC: major
histocompatibility complex; mRNA: messenger ribonucleic acid;
Pb: paracoccidioides brasiliensis; PBS: phosphate-buffered saline;
PCM: Paracoccidioidomycosis; SP: single-positive; TCR: T-cell receptor;
TEC: thymic epithelial cell; Th cell: T helper cell; TNF: tumor necrosis factor.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RDG carried out the cell migration assay, the analysis of thymic epithelial
cells distribution, the chemokines production/quantification assay and
performed the statistical analysis. TAC carried out the flow cytometry
analysis, participated in the coordination and helped to draft the manuscript.
GP carried out the gene expression assays and helped draft the manuscript.
RT participated in the design and coordination of the study and helped to
draft the manuscript. EB participated in the design of the study and helped
analyzing the data. LV conceived the study and participated in its design
and coordination and helped to draft the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
The TROMA-I monoclonal antibody developed by Philippe Brulet and Rolf Kemler
at Institut Pasteur was obtained from the Developmental Studies Hybridoma Bank,
created by the NICHD of the NIH and maintained at The University of Iowa,
Department of Biology, Iowa City, IA 52242.
The authors would like to thank Mr. Marcos César Meneghetti for his help
with animal care, and Ms. Isadora Tassinari Ferreira for helping with the
Trans-well migration experiments.

Funding
This work was supported by São Paulo Research Foundation (FAPESP, #2012/
22131-7, #2013/01401-9, #2013/08194-9 and #2014/02631-0). The funders
had no role in the study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Author details
1Department of Structural and Functional Biology, Institute of Biology, State
University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP,
Brazil. 2Instituto de Ciências Biomédicas, Universidade Federal de Alfenas,
Alfenas, MG, Brazil.

Received: 19 December 2015 Accepted: 10 May 2016

References
1. Anderson G, Moore NC, Owen JJ, Jenkinson EJ. Cellular interactions in

thymocyte development. Annu Rev Immunol. 1996;14:73–99.
2. Cowan JE, Jenkinson WE, Anderson G. Thymus medulla fosters generation of

natural Treg cells, invariant gammadelta T cells, and invariant NKT cells: what
we learn from intrathymic migration. Eur J Immunol. 2015;45(3):652–60.

3. Svensson M, Marsal J, Uronen-Hansson H, et al. Involvement of CCR9 at
multiple stages of adult T lymphopoiesis. J Leukoc Biol. 2008;83(1):156–64.

4. Hong C, Luckey MA, Park JH. Intrathymic IL-7: the where, when, and why of
IL-7 signaling during T cell development. Semin Immunol. 2012;24(3):151–8.

5. Dudley EC, Petrie HT, Shah LM, Owen MJ, Hayday AC. T cell receptor beta
chain gene rearrangement and selection during thymocyte development in
adult mice. Immunity. 1994;1(2):83–93.

6. Livak F, Petrie HT, Crispe IN, Schatz DG. In-frame TCR delta gene
rearrangements play a critical role in the alpha beta/gamma delta T cell
lineage decision. Immunity. 1995;2(6):617–627.5.

7. Capone M, Hockett Jr RD, Zlotnik A. Kinetics of T cell receptor beta, gamma,
and delta rearrangements during adult thymic development: T cell receptor
rearrangements are present in CD44 (+) CD25 (+) Pro-T thymocytes. Proc
Natl Acad Sci U S A. 1998;95(21):12522–7.

8. Gameiro J, Nagib P, Verinaud L. The thymus microenvironment in
regulating thymocyte differentiation. Cell Adhes Migr. 2010;4(3):382–90.

9. De Meis J, Aurelio Farias-de-Oliveira D, Nunes Panzenhagen PH, Maran N, Villa-
Verde DM, Morrot A, Savino W. Thymus atrophy and double-positive escape
are common features in infectious diseases. J Parasitol Res. 2012;2012:574020.

10. Stein JV, Nombela-Arrieta C. Chemokine control of lymphocyte trafficking: a
general overview. Immunology. 2005;116(1):1–12.

11. Carlsen HS, Haraldsen G, Brandtzaeg P, Baekkevold ES. Disparate lymphoid
chemokine expression in mice and men: no evidence of CCL21 synthesis by
human high endothelial venules. Blood. 2005;106(2):444–6.

12. Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG,
Luther SA. Fibroblastic reticular cells in lymph nodes regulate the
homeostasis of naive T cells. Nat Immunol. 2007;8(11):1255–65.

13. Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing
immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–71.

Di Gangi et al. BMC Infectious Diseases  (2016) 16:209 Page 8 of 9

dx.doi.org/10.1186/s12879-016-1561-8


14. Anderson M, Su M. Aire and T cell development. Curr Opin Immunol. 2011;
23:198–206.

15. Chou YK, Morrison WJ, Weinberg AD, Dedrick R, Whitham R, Bourdette DN,
Hashim G, Offner H, Vandenbark AA. Immunity to TCR peptides in multiple
sclerosis. II. T cell recognition of V beta 5.2 and V beta 6.1 CDR2 peptides. J
Immunol. 1994;152:2520–9.

16. Hodes RJ, Abe R, Hodes RJ, Abe R. Mouse Endogenous Superantigens: Ms and
Mls like Determinants Encoded by Mouse Retroviruses. Curr Protoc Immunol.
1996;1F:1–A.

17. Keesen A, Faria G, Bacellar C, Dutra G. CD4+ T cells defined by their Vβ T
cell receptor expression are associated with immunoregulatory profiles and
lesion size in human leishmaniasis. Clin Exp Immunol. 2011;165:338–51.

18. Menezes CA, Sullivan AK, Falta MT, Mack DG, Freed BM, Rocha MO, Gollob KJ,
Fontenot AP, Dutra WO. Highly conserved CDR3 region in circulating CD4 (+)
Vβ5 (+) T cells may be associated with cytotoxic activity in Chagas disease.
Clin Exp Immunol. 2012;169:109–18.

19. Shikanai-Yasuda MA, Telles Filho Fde Q, Mendes RP, Colombo AL, Moretti
ML. Guidelines in paracoccidioidomycosis. Rev Soc Bras Med Trop. 2006;
39(3):297–310.

20. Brito VN, Souto PC, Cruz-Hofling MA, Ricci LC, Verinaud L. Thymus invasion
and atrophy induced by Paracoccidioides brasiliensis in BALB/c mice. Med
Mycol. 2003;41(2):83–7.

21. Brummer E, Castaneda E, Restrepo A. Paracoccidioidomycosis: an update.
Clin Microbiol Rev. 1993;6(2):89–117.

22. Bocca AL, Amaral AC, Teixeira MM, Sato PK, Shikanai-Yasuda MA, Soares
Felipe MS. Paracoccidioidomycosis: eco-epidemiology, taxonomy and
clinical and therapeutic issues. Future Microbiol. 2013;8(9):1177–91.

23. Alves da Costa T, Di Gangi R, Martins P, et al. Protection against
Paracoccidioides brasiliensis infection in mice treated with modulated
dendritic cells relies on inhibition of interleukin-10 production by CD8 (+) T
cells. Immunology. 2015;146(3):486–95.

24. Campanelli AP, Martins GA, Souto JT, Pereira MS, Livonesi MC, Martinez R,
Silva JS. Fas-Fas ligand (CD95-CD95L) and cytotoxic T lymphocyte antigen-4
engagement mediate T cell unresponsiveness in patients with
paracoccidioidomycosis. J Infect Dis. 2003;187(9):1496–505.

25. Nagib PR, Gameiro J, Stivanin-Silva LG, De Arruda MS, Villa-Verde DM, Savino W,
Verinaud L. Thymic microenvironmental alterations in experimentally induced
diabetes. Immunobiology. 2010;215(12):971–9.

26. Francelin C, Paulino LC, Gameiro J, Verinaud L. Effects of Plasmodium
berghei on thymus: high levels of apoptosis and premature egress of CD4
(+) CD8 (+) thymocytes in experimentally infected mice. Immunobiology.
2011;216(10):1148–54.

27. Brilot F, Jaidane H, Geenen V, Hober D. Coxsackievirus B4 infection of
murine foetal thymus organ cultures. J Med Virol. 2008;80(4):659–66.

28. Ho Tsong Fang R, Colantonio AD, Uittenbogaart CH. The role of the thymus
in HIV infection: a 10 year perspective. Aids. 2008;22(2):171–84.

29. Lima AC, Francelin C, Ferrucci DL, Stach-Machado DR, Verinaud L. Thymic
alterations induced by Plasmodium berghei: expression of matrix
metalloproteinases and their tissue inhibitors. Cell Immunol. 2012;279(1):53–9.

30. Thome R, Bombeiro AL, Issayama LK, et al. Exacerbation of autoimmune
neuro-inflammation in mice cured from blood-stage Plasmodium berghei
infection. PLoS One. 2014;9(10), e110739.

31. Brummer E, Restrepo A, Hanson LH, Stevens DA. Virulence of
Paracoccidiodes brasiliensis: the influence of in vitro passage and storage.
Mycopathologia. 1990;109(1):13–7.

32. Castaneda E, Brummer E, Pappagianis D, Stevens DA. Impairment of cellular
but not humoral immune responses in chronic pulmonary and disseminated
paracoccidioidomycosis in mice. Infect Immun. 1988;56(7):1771–7.

33. Ferreira MC, Brito VN, Gameiro J, Costa MR, Vasconcellos EC, Cruz-Hofling MA,
Verinaud L. Effects of HeNe laser irradiation on experimental
paracoccidioidomycotic lesions. J Photochem Photobiol B. 2006;84(2):141–9.

34. Singer‐vermes L et al. Experimental murine paracoccidioidomycosis:
relationship among the dissemination of the infection, humoral and cellular
immune responses. Clin Exp Immunol. 1993;94(1):75–9.

35. Thome R, Issayama LK, Alves Da Costa T, et al. Dendritic cells treated with
crude Plasmodium berghei extracts acquire immune-modulatory properties
and suppress the development of autoimmune neuroinflammation.
Immunology. 2014;143(2):164–73.

36. Mendes-da-Cruz DA, De Meis J, Cotta-de-Almeida V, Savino W. Experimental
Trypanosoma cruzi infection alters the shaping of the central and peripheral
T-cell repertoire. Microbes Infect. 2003;5(10):825–32.

37. Matsutani T, Ohmori T, Ogata M, Soga H, Yoshioka T, Suzuki R, Itoh T.
Alteration of T-cell receptor repertoires during thymic T-cell development.
Scand J Immunol. 2006;64(1):53–60.

38. Colombo AL, Tobón A, Restrepo A, Queiroz-Telles F, Nucci M. Epidemiology
of endemic systemicfungal infections in Latin America. Med Mycol. 2011;49:
785–98.

39. Calich VL, Vaz CA, Burger E. Immunity to Paracoccidioides brasiliensis
infection. Res Immunol. 1998;149(4–5):407–17. discussion 99–500.

40. Martinez R. Epidemiology of Paracoccidioidomycosis. Rev Inst Med Trop Sao
Paulo. 2015;57 Suppl 19:11–20.

41. Zavascki AP, Bienardt JC, Severo LC. Paracoccidioidomycosis in organ transplant
recipient: case report. Rev Inst Med Trop Sao Paulo. 2004;46(5):279–81.

42. Nunes-Alves C, Nobrega C, Behar SM, Correia-Neves M. Tolerance has its
limits: how the thymus copes with infection. Trends Immunol. 2013;34(10):
502–10.

43. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T
cells. Annu Rev Immunol. 2003;21:139–76.

44. Savino W. The thymus is a common target organ in infectious diseases.
PLoS Pathog. 2006;2(6), e62.

45. Savino W, Dardenne M, Velloso LA, Dayse S-BS. The thymus is a common
target in malnutrition and infection. Br J Nutr. 2007;98 Suppl 1:S11–6.

46. Zuklys S, Balciunaite G, Agarwal A, Fasler-Kan E, Palmer E, Hollander GA. Normal
thymic architecture and negative selection are associated with Aire expression,
the gene defective in the autoimmune-polyendocrinopathy-candidiasis-
ectodermal dystrophy (APECED). J Immunol. 2000;165(4):1976–83.

47. Ueno T, Hara K, Willis MS, et al. Role for CCR7 ligands in the emigration of
newly generated T lymphocytes from the neonatal thymus. Immunity. 2002;
16(2):205–18.

48. Ueno T, Saito F, Gray DH, et al. CCR7 signals are essential for cortex-medulla
migration of developing thymocytes. J Exp Med. 2004;200(4):493–505.

49. Cruz D, Silva J, Almeida V, Savino W. Altered thymocyte migration during
experimental acute Trypanosoma cruzi infection: combined role of fibronectin
and the chemokines CXCL12 and CCL4. Eur J Immunol. 2006;36:1486–93.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Di Gangi et al. BMC Infectious Diseases  (2016) 16:209 Page 9 of 9


