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Abstract
The influence of Quaternary climate oscillations on the diversification of the South American

fauna is being increasingly explored. However, most of these studies have focused on taxa

that are endemic to tropical environments, and relatively few have treated organisms re-

stricted to subtropical biomes. Here we used an integrative phylogeographical framework to

investigate the effects of these climate events on the ecological niche and genetic patterns

of the subtropical orb-weaver spider Araneus omnicolor (Araneidae). We analyzed the mito-

chondrial (Cytochrome Oxidase I, COI) and nuclear (Internal Transcribed Subunit II, ITS2)

DNA of 130 individuals throughout the species’ range, and generated distribution models in

three different climate scenarios [present, Last Glacial Maximum (LGM), and Last Intergla-

cial Maximum (LIG)]. Additionally, we used an Approximate Bayesian Computation (ABC)

approach to compare possible demographic scenarios and select the hypothesis that better

explains the genetic patterns of A. omnicolor. We obtained high haplotype diversity but low

nucleotide variation among sequences. The population structure and demographic analy-

ses showed discrepancies between markers, suggesting male-biased dispersal in the spe-

cies. The time-calibrated COI phylogenetic inference showed a recent diversification of

lineages (Middle/Late Pleistocene), while the paleoclimate modeling indicated niche stabili-

ty since ~120 Kya. The ABC results agreed with the niche models, supporting a panmictic

population as the most likely historical scenario for the species. These results indicate that

A. omnicolor experienced no niche or population reductions during the Late Pleistocene,

despite the intense landscape modifications that occurred in the subtropical region, and that

other factors beside LGM and LIG climate oscillations might have contributed to the demo-

graphic history of this species. This pattern may be related to the high dispersal ability and

wide environmental tolerance of A. omnicolor, highlighting the need for more phylogeogra-

phical studies with invertebrates and other generalist taxa, in order to understand the effects

of Quaternary climate changes on Neotropical biodiversity.
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Introduction
Quaternary climate oscillations are recognized as important drivers of speciation and lineage
diversification in many taxa, and have been intensely investigated through phylogeographical
approaches in recent decades. The genetic and demographic consequences of these events are
well documented for the Northern Hemisphere [1,2]; nevertheless, many megadiverse areas in
the Southern Hemisphere are still little studied [1,3,4].

In the Neotropical region, the Quaternary Period is characterized by cycles of drier and wet-
ter conditions that caused drastic spatial rearrangements of forest and savanna biomes [5–9].
According to some authors, these landscape modifications potentially induced population’ re-
tractions and expansions in many species, which would explain the intense lineage diversifica-
tion attributed to this period (the refuge theory) [10,11]. However, this issue is still
controversial and highly debated, since paleoecological studies contradict the refuge hypothesis
[12,13], and divergence times in several Neotropical groups indicate that biodiversity in the
Neotropics might also be shaped by Tertiary orogenic events [3,9,14].

Despite the recent increase of phylogeographic studies in South America, there is still a
large discrepancy among the biomes and regions analyzed. Almost half of the surveys (47%)
have focused only on specific biomes [3], limiting the investigation to endemic groups. Fur-
thermore, environments other than tropical forests are still little studied: the subtropical por-
tion of the continent, for example, was treated in only ca. 6% of these surveys [3].

In Brazil, this subtropical region has mean annual temperatures between 10 and 15°C and
short or no dry periods during the year. The landscape is a mosaic of phytophysiognomies, in-
cluding the Atlantic Rainforest, semideciduous forests, Araucaria woodlands (with predomi-
nance of the Brazilian pine Araucaria angustifolia), savannas and grasslands [5,15].
Palaeoecological studies and pollen records suggest that the floristic composition of South
American subtropical region underwent drastic changes during the Late Pleistocene: the cli-
mate in the LGM was drier and 5 to 7°C cooler and the grasslands, found today only in high-
land patches in southern Brazil, expanded more than 750 km northward and became the
predominant biome of the region in this period [5,6]. However, the impact of these changes on
the subtropical fauna is controversial, and the responses of individual species to these events
varied substantially [16–20].

In recent years, the use of phylogeography to study the effects of past climate changes on
biodiversity has been aided by new tools that provide a priori hypotheses to be tested, overcom-
ing the major limitations in this field [21–24]. Species distribution modeling, for example, al-
lows population geneticists to generate demographic hypotheses based on the distribution of
organisms in current and past climate conditions. In addition to these geospatial methods,
model-based approaches, such as the Approximate Bayesian Computation (ABC) [25–27],
have been increasingly employed, allowing statistical comparison among alternative complex
demographic scenarios with fewer computational limitations than likelihood-based
methodologies.

Given the lack of surveys that focus on the influence of Quaternary climate oscillations on
the diversification of the subtropical South American fauna (especially for invertebrates), here
we integrated phylogeographic analyses of mitochondrial and nuclear DNA with geospatial
and model-based methods to investigate the demographic history of the subtropical orb-weav-
er spider Araneus omnicolor (Araneidae). These spiders are commonly found in southern At-
lantic Forest fragments, but also in drier environments and secondary/mixed forests in
agroecosystems (i.e., not endemic to a specific biome, personal observations). The narrow sub-
tropical occurrence of A. omnicolor suggests that climate might have influenced the
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establishment and evolutionary history of the species. However, so far, no studies have ad-
dressed arachnid demographic histories in this environment.

To evaluate the influence of Pleistocene climate events on the species’ ecological niche and
genetic patterns, we generated distribution models in three different climate scenarios [present,
Last Glacial Maximum (LGM, ~21 Kya) and Last Interglacial Maximum (LIG, ~120 Kya)]. Ad-
ditionally, we used model-based ABC analyses to compare alternative demographic scenarios
and select the model that better explains the empirical genetic data. We hypothesized that if
these climate oscillations had affected A. omnicolor and reduced the populations to isolated
patches, we would observe a strong population structure and demographic bottlenecks associ-
ated with niche reduction and/or fragmentation. This is the first survey to apply an integrative
framework to explore the effects of past climate events on the phylogeographic patterns of a
subtropical taxon in South America.

Materials and Methods

Sample collection and DNA extraction
We sampled 130 individuals of A. omnicolor from eight locations (separated into four geo-
graphical regions, because of the proximity of some populations), covering most of the species
distribution (Fig. 1A, S1 Fig.). Genomic DNA was extracted from legs with the Wizard Geno-
mic DNA Purification kit (Promega), according to the manufacturer’s protocol. The abdomens
were used for species confirmation, and the vouchers were catalogued in the Coleção Científica
de Aracnídeos e Miriápodes of the Instituto Butantan. All specimens were collected under per-
mits granted by the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio, per-
mit nos. 14147, 22645, 32664).

DNA amplification and sequencing
The Cytochrome Oxidase I (COI) region was amplified in the samples with primers LCO1490
and HCO2198 [28] under the following conditions: an initial denaturation step at 94°C for
3 min; 35 cycles at 94°C for 45 s, 55°C for 45 s and 72°C for 2 min; and a final extension step at
72°C for 3 min. The Internal Transcribed Subunit II (ITS2) nuclear region was amplified using
primers 5.8S and 28S [29] under similar conditions: 95°C for 4 min; 35 cycles at 95°C for 45 s,
62°C for 45 s and 72°C for 2 min; and extension at 72°C for 10 min. The amplicons were ana-
lyzed in a Perkin-Elmer Prism 377 capillary sequencer. Sequences were aligned using the MUS-
CLE algorithm [30] and manually inspected and edited in MEGA 6.0 [31]. We first coded
heterozygous sites in ITS2 sequences according to IUPAC ambiguity codes. Individuals with al-
leles containing indels had their heterozygous positions resolved with the method described by
Flot et al. [32] in the software Champuru 1.0 [33].

Haplotype reconstruction, genetic diversity and population structure
Median-joining haplotype networks were obtained using the software NETWORK 4.611 [34].
Phased ITS2 haplotypes were previously estimated using a Bayesian method implemented in
PHASE [35] based on the input files prepared with SeqPHASE [36]. The gametic phases were
inferred with a minimum posterior probability of 0.6, a level that has been suggested as optimal
for reducing the number of unresolved haplotypes with fewer false positives [37]. Signs of past
recombination were tested using a PHI Test [38] in the software SplitsTree4 [39].

We calculated haplotype (h) and nucleotide (π) diversity and the number of polymorphic
sites (S) in each population, each geographical region, and in the total dataset in DnaSP v5.10
[40]. Genetic distances between populations (corrected mean number of nucleotide
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substitutions between populations, DA [41]) were estimated in ARLEQUIN 3.5 [42]. To assess
population structure, we calculated pairwise FST values and conducted an analysis of molecular
variance (AMOVA [43]) in ARLEQUIN 3.5 [42] to determine the hierarchy of the genetic
structure among the geographical regions. The statistical correlations between geographic dis-
tances and population differentiation (genetic distances and pairwise FST) were investigated
through Mantel tests [44].

Phylogenetic inferences and divergence times
Bayesian inference trees were constructed in BEAST 1.7.4 [45] for COI and ITS2 datasets sepa-
rately (the combined multilocus analysis was impossible due to the large number of ITS2 het-
erozygotes with different lengths). The models of nucleotide substitution that best fit our data
(HKY+G and HKY for COI and ITS2, respectively) were previously selected using the AIC

Fig 1. Study region andmedian-joining haplotype networks. (a) Sampling locations of Araneus omnicolor (separated by geographical regions). The
current species distribution area calculated by climate models is shown in gray. (b) Mitochondrial and (c) nuclear networks. Circle sizes represent haplotype
frequencies; colors correspond to sample locations on the map.

doi:10.1371/journal.pone.0121543.g001
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criterion in jMODELTEST 0.1.1 [46], and an outgroup (Araneus venatrix) was included to
root the trees.

We applied a lognormal relaxed clock for the COI dataset (selected through a Bayes Factor
analysis as the most appropriate evolution model: loge lognormal clock—loge strict clock = 7.72
[47,48]) and a strict clock for ITS2. Given the scarcity of fossil records for the group, we used
the COI substitution rate of 0.0115 per million years to calibrate the nodes in the COI tree and
estimate the divergence times. This rate was proposed for insects by Brower [49] and is widely
used in phylogenetic and phylogeographic studies with araneomorph spiders [50–53]. We car-
ried out two independent runs of 200 million generations each, and sampled trees every 4000
generations. We checked for the convergence to a stationary distribution and for high effective
sample sizes (ESS>200) in Tracer 1.5 [54]. The first 5000 trees were discarded as burn-in in
TreeAnnotator, and the resulting trees were drawn in Figtree 1.4 [55].

Demographic analyses
We used neutrality tests (Tajima’s D [56] and Fu’s Fs [57]) to infer historical demographic pro-
cesses (i.e., recent expansions, bottlenecks, selection, etc.) in each population, each geographical
region, and in the whole dataset in ARLEQUIN 3.5 [42]. We also conducted mismatch distri-
bution analyses [58,59] for each region and for the total of sequences in ARLEQUIN 3.5, to de-
termine the distribution of frequencies of pairwise differences. In these analyses, unimodal
curves and non-significant values of the raggedness index (r) indicate that populations do not
deviate from the expected model of rapid expansion.

Finally, we performed a multilocus Extended Bayesian Skyline Plot (EBSP) analysis in
BEAST 1.7.4 [45] to infer changes in the effective population size through time [60]. We un-
linked substitution, clock and tree models of the two loci, and specified a linear model of popu-
lation size, instead of the less-realistic stepwise model. As in the phylogenetic inferences, we
applied the most suitable nucleotide substitution models (HKY+G and HKY for COI and ITS2,
respectively) selected in jMODELTEST 0.1.1 [46] and the COI mutation rate of 0.0115/My for
node calibration. The weights for EBSP operators and the initial value for the mean population
size were adjusted to improve MCMCmixing, according to the recommendations of the tutori-
al in the BEAST website. For each simulation two independent runs were performed, with 200
million generations each and samples taken every 10 000 generations. We used Tracer v1.5
[54] to check the quality of the parameters, and generated an annotated tree for each region
with TreeAnnotator, discarding the first 2000 trees. The final plot was based on the output pro-
duced by the combined results.

Species distribution and paleoclimate modeling
We compiled occurrence records for A. omnicolor from different sources to generate the spe-
cies distribution models: a taxonomic revision for the genus [61], zoological collections [Cole-
ção Científica de Aracnídeos e Miriápodes of the Instituto Butantã, Coleção de Aracnídeos of
the Museu de Ciências e Tecnologia da PUCRS (MCTP), Museu de Zoologia of the Universi-
dade Estadual de Campinas and Sistema de Informação Ambiental do Programa Biota/Fapesp-
SinBiota] and new records from our own sample collections. A total of 52 unique occurrence
points were obtained, considering the grid cell resolution used (S1 Fig.).

To test the effects of past climate oscillations on the species’ niche, we fitted the models in
current, 21 Kya (LGM), and 120 Kya (LIG) scenarios using three different algorithms (applying
the default settings of each package) to minimize possible biases: GARP with best subsets [62]
and Support Vector Machines [63,64] (SVM hereafter), as implemented in OpenModeller [65];
and the Maximum Entropy algorithm, as implemented in Maxent 3.3.3 [66,67]. These
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algorithms are based on artificial intelligence methods and correctly predict the known distri-
bution of species more often than other, simpler procedures [68].

The bioclimate variables used in the modeling approaches were chosen from the 19 layers
available in the WordClim dataset (http://www.worldclim.com) through a jackknife procedure
using Maxent, a method that minimizes over-parametrization issues and allows the algorithms
to produce biologically more reliable distributions [67,69]. The five variables with the highest
contributions to the analysis were selected (precipitation of driest month, maximum tempera-
ture of warmest month, precipitation of warmest quarter, mean temperature of coldest quarter,
and temperature seasonality), except for the ‘Mean Diurnal Range’, which was not included be-
cause of its low permutation importance value (S1 Table). The bioclimate layers were delimited
for the full extent of South America, with a 2.5’ arc-min to allow the projection of putative dis-
tribution areas beyond the known distribution limits, given the relative lack of ecological infor-
mation available for the species.

The total occurrence dataset was divided into 30 randomized subsets (bootstrap), with 70%
and 30% of the occurrence points for training and model testing, respectively. We applied the
LPT (Lowest Presence Training [70]) threshold to transform the suitability matrices into pres-
ence/absence matrixes, which were then projected for the full extent of South America. We
used the True Skilled Statistics (TSS hereon) to evaluate the distributions produced for A. omi-
nicolor. This evaluation metric ranges from -1 to 1, where values that are negative or close to
zero represent models that are not better than a random spatial distribution, while +1 indicates
perfect agreement between the species’ known and predicted distribution. Models with TSS
values near 0.5 or higher are generally accepted [71].

To assess the potential distribution of A. omnicolor, we used the mean consensus map of all
distributions produced for each climate scenario to determine the climatically stable areas in all
scenarios. This approach is considered one of the best methods to acquire the consensus of po-
tential distributions obtained from different algorithms [72].

ABC
We used an ABC framework [25–27] to compare four possible demographic scenarios for A.
omnicolor (Fig. 2). Scenario 1 represents a single panmictic population over time, while the
others reflect different hypotheses for diversification in the region: scenario 2 reflects a single
fragmentation event partitioning the ancestral population into geographically separated
patches; scenario 3 illustrates a southward colonization, as several studies have suggested that
the southernmost part of Brazil was more unstable climatically during the Quaternary [5,6];
and scenario 4 represents an ancient discontinuity in the southern limit of the Atlantic Rainfor-
est (between 29° and 30° S), a region considered an important phytogeographical disjunction
[73] and recognized as a phylogeographic break for some taxa [18,74]. For each scenario, we
designed a set of models with different combinations of exponential population growth and
migration parameters (total of 14 models, S2 Fig.) and applied a hierarchical procedure similar
to that used by Fagundes et al. [75], selecting the most likely model within each set and com-
paring these 4 models to obtain the scenario with the highest probability.

We performed 100 000 data simulations under each model with custom Python scripts in
ms [76], using the same number and length of loci and sample sizes of empirical data. All pa-
rameters were initially drawn from flat prior uniform distributions, and preliminary rejection
steps were conducted to restrict the range values (Table 1). The summary statistics based on
simulated datasets, including the total nucleotide diversity (π), number of segregating sites
(SS), Tajima’s D (D), nucleotide diversity within populations (πw) and nucleotide diversity be-
tween populations (πb), were calculated with a PERL script written by N. Takebayashi
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(available at: http://raven.iab.alaska.edu/~ntakebay/teaching/programming/coalsim/scripts/
msSS.pl).

To assess the most informative summary statistics (i.e., those that most accurately identified
the model that best fit the data), we grouped them in vectors and conducted a rejection step
using 10 simulations for each model from the prior distribution as pseudo-observed datasets
(PODs). The best vector was chosen by its ability to maximize the probability of choosing the
true model over the average probability of choosing an incorrect model [Pr(true model)/mean
Pr(false models)], following the approach described by Tsai & Carstens [77].

We calculated the posterior probabilities of all competing models and the posterior distribu-
tions for the parameters of the most likely model with the R package “abc” [78]. We compared
the models, applying two degrees of tolerance (using 0.1% and 1% of the simulations closest to
the empirical data) with three methods: simple rejection, multinomial logistic regression [26]
and neural network [79]. Finally, we used the simulations under the most probable model to

Fig 2. Alternative demographic scenarios for Araneus omnicolor. Scenario 1: panmictic population; scenario 2: single fragmentation event partitioning
the ancestral population into geographically separated patches; scenario 3: southward colonization; scenario 4: southern phylogeographic break. Only the
highest-probability models in each scenario are shown (see results). Numbers above branches indicate geographical regions; arrows and expanding
branches represent migration and exponential population growth, respectively. τ = divergence/expansion times (see Table 1).

doi:10.1371/journal.pone.0121543.g002

Table 1. Prior distributions of parameters and posterior estimates based on the most probable
model.

Parameter Prior uniform
distribution

Posterior estimate (95%
HPD)

θCOI (Neμ) 0.25–7.0 0.963 (0.696–1.272)

θITS2 (4Neμ) 4 x θCOI 3.858 (2.694–5.246)

τ1 (generations/4Ne)
a 0.01–4.0 -

τ2 (generations/4Ne) 0.001 – τ1 -

τ3 (generations/4Ne) 0.001 – τ2 -

m (n° migrant copies per generation/n°
populations-1)b

0.001–15.0 -

α [-(1/τ)*log(Neτ/Ne)]
c 0.25–0.9 -

θ = theta, τ = divergence/exponential growth times; m = migration rate; α = growth ratio.
aτ1 = 0.003–10 Ma (absolute time). Ne was estimated using the COI substitution rate of 0.0115/My and a

value of θCOI previously estimated in DnaSP.
bm = 0–5 migrants per generation.
cThe levels of α tested resulted in 10–75% of population growth.

doi:10.1371/journal.pone.0121543.t001
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estimate the parameters with the neural network method and a tolerance threshold of 1% of
the simulations.

Results

Haplotype networks, genetic diversity and population structure
We obtained 668 bp of COI sequences and 274 bp of ITS2 sequences with 37 and 11 polymor-
phic sites, respectively (Table 2). No stop codons or ambiguous peaks were observed in the
electropherograms of the COI sequences, which suggests the absence of nuclear pseudogenes
or numts in our mtDNA data. The ITS2 haplotype reconstruction conducted in PHASE re-
sulted in 250 solved sequences (only 10 inferred sequences had a posterior probability lower
than 0.6), and no sign of recombination was detected.

The haplotype and nucleotide diversities observed with both markers showed low variation
among populations and geographical regions, although the number of COI haplotypes was
higher than for ITS2 (42 and 17, respectively) (Fig. 1B, Fig. 1C, Table 2). Most COI haplotypes
were exclusive: 7 were found in more than one population and only 2 were observed in at least
3 geographical regions (no haplotype was found in all regions, Fig. 1B). These two more widely
distributed haplotypes were also the most common, linking several less-frequent haplotypes in
a star-shaped network (Fig. 1B). In the ITS2 network, the two predominant haplotypes were
found in all geographical regions, and most heterozygous individuals contained these two se-
quences (Fig. 1C).

The genetic distances between populations were also low (S2 Table). The mean number of
COI nucleotide differences ranged from 0.3 to 3.16, and the differences were not significantly
correlated with geographical distance (r = 0.238, p = 0.081); for ITS2 sequences, all distance
values were non-significant.

The COI pairwise FST values ranged from 0.065 to 0.719 (Table 3) and showed a significant
correlation with geographical distance (r = 0.505, p = 0.005); the AMOVA indicated that only
10.6% of this variation was observed among geographical regions (S3 Table). For the ITS2 data-
set, all FST values were non-significant and the AMOVA showed that 99.9% of the variance
was intrapopulational, indicating no population structure (Table 3, S3 Table).

Phylogenetic inferences and divergence times
The COI and ITS2 phylogenetic inferences recovered different topologies and many low poste-
rior-probability nodes (Fig. 3, S3 Fig.). In the time-calibrated COI tree, the divergence from the
outgroup (A. venatrix) was estimated at ca. 6.39 Ma (95% HPD = 1.81–13.73 Ma), but most of
the species diversification occurred in the last 0.5 Ma (Fig. 3). The COI sequences were split
into two clades with a weak geographical association. However, this subdivision was not con-
sidered, because of the overlapping confidence intervals of the node ages and low statistical
support in one of the clades (Fig. 3).

Demographic analyses
Neutrality tests detected demographic expansion in the COI sequences for several populations
(Table 2). When geographical regions were considered, 3 of the 4 groups showed significant
negative values for at least one test (except for region 2), and both Tajima’s D and Fu’s Fs indi-
cated expansion in the total COI dataset (Table 2). Mismatch distribution analyses generated
similar results, as shown by the unimodal curves of COI pairwise difference frequencies and
the non-significant raggedness indices (Fig. 4A, Table 2). For the nuclear sequences, neutrality
tests and mismatch distribution analyses detected no evidence of demographic events (Fig. 4A,
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Table 2. Diversity indices, neutrality tests and results of mismatch distribution analyses for populations and geographical regions.

COI ITS2

Population N S H Hd (s.d.) π (s.d.) D FS r N S H Hd (s.d.) π (s.d.) D FS r

Centenário do
Sul

13 12 12 0.99
(0.03)

0.005
(0.003)

-0.64 -9.10 0.03 28 7 8 0.71
(0.06)

0.006
(0.004)

-0.54 -1.93 0.14

Florestópolis 9 7 5 0.83
(0.10)

0.004
(0.003)

0.25 -0.17 0.05 20 4 4 0.62
(0.07)

0.005
(0.003)

-0.09 0.66 0.59

Teodoro
Sampaio

15 8 6 0.83
(0.06)

0.004
(0.002)

-0.03 -0.29 0.08 30 7 5 0.66
(0.05)

0.005
(0.003)

-1.25 0.13 0.15

Campinas 11 2 3 0.64
(0.09)

0.001
(0.001)

0.20 -0.02 0.25 20 5 5 0.66
(0.07)

0.005
(0.003)

-0.83 -0.38 0.19

Jundiaí 19 10 5 0.71
(0.08)

0.006
(0.004)

1.66 3.04 0.18 36 2 3 0.54
(0.03)

0.004
(0.003)

1.63 1.85 0.58

Ibirama 21 13 12 0.86
(0.07)

0.003
(0.002)

-1.31 -6.53 0.04 42 5 4 0.54
(0.04)

0.004
(0.003)

-0.77 1.03 0.75

Gramado 9 3 5 0.81
(0.12)

0.002
(0.001)

0.02 -2.23 0.24 18 7 5 0.68
(0.04)

0.007
(0.005)

-0.69 0.35 0.29

Sapiranga 33 11 10 0.72
(0.08)

0.002
(0.001)

-1.56 -4.77 0.05 56 9 9 0.69
(0.04)

0.006
(0.004)

-0.80 -1.61 0.35

Region 1 37 17 16 0.91
(0.02)

0.004
(0.002)

-1.02 -7.22 0.03 78 7 9 0.61
(0.03)

0.005
(0.004)

-0.47 -1.68 0.40

Region 2 30 11 6 0.77
(0.04)

0.007
(0.004)

1.93 3.45 0.08 56 5 5 0.54
(0.03)

0.004
(0.003)

-0.67 1.27 0.57

Region 3 21 13 12 0.86
(0.07)

0.003
(0.002)

-1.31 -6.53 0.04 42 5 4 0.54
(0.04)

0.004
(0.003)

-0.77 1.03 0.75

Region 4 42 13 14 0.74
(0.07)

0.002
(0.001)

-1.73 -10.00 0.06 74 11 10 0.66
(0.04)

0.006
(0.004)

-1.05 -1.85 0.43

Total 130 37 42 0.92
(0.01)

0.005
(0.003)

-1.56 -26.22 0.02 250 12 17 0.63
(0.02)

0.005
(0.003)

-1.14 -7.09 0.35

N = n° of sequences; S = n° of polymorphic sites; H = n° of haplotypes; Hd = haplotype diversity; π = nucleotide diversity; s.d. = standard deviation;

D = Tajima’s D; FS = Fu’s FS; r = Harpending’s raggedness index. In bold, the statistical significant values (p<0.05).

doi:10.1371/journal.pone.0121543.t002

Table 3. Population pairwiseΦST for COI (below diagonal) and ITS2 (above diagonal) datasets.
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Centenário do Sul - -0.022 -0.024 0.001 -0.020 0.047 -0.039 -0.010

Florestópolis -0.020 - -0.004 -0.028 -0.011 0.015 -0.036 -0.023

Teodoro Sampaio -0.014 0.069 - -0.016 -0.001 0.030 -0.030 -0.015

Campinas 0.183 0.312 0.262 - 0.031 -0.026 -0.014 -0.010

Jundiaí 0.377 0.427 0.362 0.511 - -0.016 0.009 0.011

Ibirama 0.065 0.113 0.070 0.138 0.433 - 0.031 0.029

Gramado 0.232 0.339 0.255 0.719 0.435 0.366 - -0.027

Sapiranga 0.251 0.382 0.233 0.602 0.505 0.340 0.030 -

In bold, the significant values (p<0.05).

doi:10.1371/journal.pone.0121543.t003

í

ó

á

Phylogeography of Araneus omnicolor

PLOSONE | DOI:10.1371/journal.pone.0121543 April 9, 2015 9 / 20



Table 2). The multilocus EBSP revealed a large demographic expansion in A. omnicolor ca. 0.1
Ma (considering that the species has one generation per year, Fig. 4B).

Species distribution and paleoclimate modeling
Our species distribution models showed reliable predictions with all algorithms, as evidenced
by the high TSS values (GARP = 0.909 ± 0.017; SVM = 0.813 ± 0.066; Maxent = 0.842 ± 0.074).
The models exhibited similar distribution patterns in all three climate scenarios, indicating
niche stability in A. omnicolor during the last 120 Kya (hatched area in Fig. 5).

ABC
We used the summary statistics vector comprising only the nucleotide diversity indices (π, πw
and πb), which was the most informative for our dataset. In the first approach to the model se-
lection (within scenarios), we observed models with consistent highest probabilities in scenari-
os 1 and 3 with all methods applied, but found different results for scenarios 2 and 4 among the
different methods (S4 Table). Because simple rejection was the only method that provided

Fig 3. Bayesian phylogenetic inference for COI sequences. The divergence times of the main nodes are shown, with 95% HPD in parentheses. Black
squares represent nodes with posterior probability> 0.7. Branch colors correspond to the geographical regions studied (map in detail).

doi:10.1371/journal.pone.0121543.g003
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Fig 4. Results of demographic analyses. (a) Results of mismatch distribution analyses for COI (left) and ITS2 (right) total datasets and for each
geographical region separately. (b) Demographic expansion detected by multilocus EBSP, with the 95% HPD interval shown in gray.

doi:10.1371/journal.pone.0121543.g004
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congruent results with both tolerance thresholds in all scenarios, we used only this method
with a threshold of 0.1% for the model selection.

In scenario 1 (panmixia), the probability of a stable population model (no population
growth) was slightly higher, although the probabilities between models were not significantly

Fig 5. Modeled distributions of Araneus omnicolor. The distributions in the current and paleoclimate [21 Kya (LGM) and 120 Kya (LIG)] scenarios are
represented. The hatched area represents the stable occurrence region during all periods.

doi:10.1371/journal.pone.0121543.g005
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different (Table 4). In all population differentiation scenarios (2, 3 and 4), the models including
migration had the highest probabilities (Table 4). In the final model comparison (among sce-
narios), the model of panmixia with constant population size showed the highest probability
(0.63, Table 4).

Estimation of parameters using the neural network method was highly informative com-
pared to both the prior distribution and the regular rejection approach (S4 Fig.). The values
of θCOI and θITS2 were close to the lower limits of our prior distribution: 0.96 (95% HPD 0.7–
1.27) and 3.86 (95% HPD 2.7–5.25), respectively (Table 1).

Discussion

Genetic diversity, population structure and incongruence between
mtDNA and nrDNA patterns
A. omnicolor exhibited high haplotype diversity, but low nucleotide variation in the haplotypes
(Fig. 1, Table 2, S2 Table). The COI and ITS2 total nucleotide diversities were estimated as
0.5%, whereas the mean intraspecific values for spiders are 2.15% and 1%, respectively [80,81].

The genetic diversity indices showed slight variation among geographical regions (Table 2),
which lowers the possibility of inferring a likely ancestral origin or possible refugia in the past
(i.e., areas with higher variability). Although paleoecological studies have suggested that the
southernmost region of Brazil underwent more drastic climate and floristic changes during the
Quaternary [5,6], our results do not support a recent southward colonization by this species, as
its variability did not decrease in higher latitudes.

A significant population structure was detected by the mitochondrial marker, but not by the
nrDNA (Table 3). Differences between COI and ITS2 were also observed in the haplotype net-
works (high number of exclusive COI haplotypes, while the more frequent ITS2 haplotypes
were widespread, Fig. 1) and demographic analyses (expansion detected only by COI, Table 2,
Fig. 4A). This incongruence is commonly observed in several taxa, which tend to exhibit a
more evident phylogeographic structure with uniparental inherited markers [3,82]. There are

Table 4. Model selection within and among scenarios based on rejection method.

Posterior model probability (rejection method)

Scenario Model Within scenarios Among scenarios

1 (Panmixia) 1 0.5311 0.6267

2 (Ne expansion) 0.4689

2 (Fragmentation) 3 0.1259

4 (migration) 0.3925

5 (Ne expansion) 0.0729

6 (migration, Ne expansion) 0.4087 0.0648

3 (N!S colonization) 7 0.1195

8 (migration) 0.3707

9 (Ne expansion) 0.1075

10 (migration, Ne expansion) 0.4023 0.1794

4 (Southern phylogeographic break) 11 0.1054

12 (migration) 0.3605

13 (Ne expansion) 0.1479

14 (migration, Ne expansion) 0.3863 0.1291

The highest-probability model in each scenario is shown in bold.

doi:10.1371/journal.pone.0121543.t004
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several possible reasons for this pattern, such as incomplete sorting of nuclear lineages (given
the higher evolutionary rate and lower Ne in mtDNA), nuclear introgression, mitochondrial se-
lection or demographic asymmetries, e.g., different migration behaviors of males and females
[83,84]. Male-biased dispersal is frequent in spider species in which the adult females are larger
and more sedentary than the males, which actively seek for females [85,86]. Therefore, our
findings suggest that females of A. omnicolormight have limited dispersal (corroborated by the
evidence of isolation by distance in the mtDNA results) and the genetic connectivity in the spe-
cies is mainly caused by long-distance migration of the males.

Phylogenetic inferences and divergence time
The COI Bayesian inference indicated that A. omnicolor originated in the Late Miocene (6.39 Ma,
95% HPD = 1.81–13.73 Ma), but most of the species’ diversification occurred muchmore recently
(Late Pleistocene, Fig. 3). The low nucleotide variance detected among sequences supports this re-
cency of diversity in the species (Table 2), although the application of a COI substitution rate pro-
posed for insects requires a cautious interpretation of the divergence times. Several previous
studies with Neotropical taxa have reported intense lineage radiation in the same period, a pattern
generally attributed to the effects of Pleistocene climate oscillations [3]. Despite the stability of the
distribution of A. omnicolor during Late Pleistocene (Fig. 5), we cannot rule out the possibility
that earlier climate fluctuations in this period are linked to the pattern observed (see discussion
below).

Demographic analyses
Our analyses indicated a demographic expansion beginning around 100 Kya (Fig. 4B). The re-
sult suggests that Pleistocene climate oscillations have not affected A. omnicolor population
growth since the LIG (~120 Kya), even though several other South American subtropical taxa
exhibit signs of population bottlenecks during this period [17,19,87,88]. This different pattern
might be explained by the broader ecological resilience of A. omnicolor, which is found in a va-
riety of biomes, compared with most of the species so far studied in this region, which are re-
stricted to the Atlantic Rainforest. As a species’ response to climate changes depends strongly
on its ecological and environmental tolerances [89], the effects of Pleistocene oscillations are,
indeed, expected to be more pronounced in organisms that are narrowly associated with a spe-
cific phytophysiognomy. Similar results were reported by Batalha-Filho et al. for the passerine
bird Basileuterus leucoblepharus, which occurs in the southern Atlantic Rainforest and also in
other subtropical formations [16]. However, further conclusions should be formed only with
care, since the estimate of a demographic expansion of A. omnicolor was based on node calibra-
tion under a standard COI mutation rate.

Species distribution and paleoclimate modeling
The species distribution models and paleoclimate reconstructions indicated that the area po-
tentially occupied by A. omnicolor remained stable during the last 120 Kyr (Fig. 5), contradict-
ing the intense landscape modification attributed to this region during the Late Pleistocene [5].
This niche stability agrees with the genetic diversity and nrDNA structure observed, since the
lack of fragmentation of the distribution area might have allowed efficient gene flow during
this entire period.

The influence of Quaternary climate fluctuations on the distribution of South American
subtropical fauna is still poorly understood, and, as for phylogeographic studies, paleoclimate
modeling has mostly focused on taxa that are endemic to the Atlantic Rainforest. Despite the
drastic fragmentation of the southern portion of this biome detected by paleoclimate models
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[19,90], Carnaval et al. showed that several groups have exhibited niche stability since the LIG,
suggesting that the ‘forest stability’ (i.e., the persistence of a particular forest-type environment)
in this region is higher than previously predicted [91].

As suggested for the demographic patterns, the occurrence of A. omnicolor through several
biomes (not restricted to the Atlantic Rainforest) could be another important factor for the
constancy of the species’ niche. In a study with Neotropical orchid bees, for example, the au-
thors demonstrated that the species with wider physiological tolerances to climate conditions
underwent less-drastic niche reductions during LGM [82]. Therefore, our niche modeling—as
well as the demographic analyses—highlights the influence of specific ecological tolerances on
organisms’ responses to climate changes.

ABC
A panmictic population with constant size is the demographic scenario that best explained the
current phylogeographic patterns of A. omnicolor (Fig. 2, Table 4). The role of connectivity for
the species was also evidenced by comparisons within the remaining scenarios, as all the high-
est probability models included migration (Table 4). These results agree with the niche stability
detected by our paleoclimate modeling, indicating that the species was not significantly impact-
ed by LGM climate peaks.

Although the selected model predicts Ne stability (no population growth), we cannot dis-
miss the importance of demographic expansion in A. omnicolor, as the probability of the expo-
nential growth model was slightly lower for the panmictic scenario, and all chosen models in
subdivision scenarios also included expansion (Table 4). However, the time of this event is un-
clear, as the parameter estimation was based on the model without exponential growth. Thus,
our ABC results are consistent with a possible demographic expansion occurring before the
Late Pleistocene or driven by factors other than climate, as suggested by the genetic analyses.

Conclusions
Our study indicated that the subtropical spider A. omnicolor experienced no niche reduction or
demographic declines during the Late Pleistocene. The high dispersal ability of this species, to-
gether with its wide environmental and ecological tolerances, might have provided the niche
stability observed. Further, the recent diversification and demographic expansion detected in
our results suggest that other factors than LIG and LGM climate oscillations may have affected
the evolutionary history of this species. These patterns differ substantially from those seen for
many other groups, and emphasize the importance of extending phylogeographic investiga-
tions to taxa that are less-often studied, such as invertebrates. Finally, more studies with species
that are widely distributed in different biomes are essential for a complete understanding of the
effects of Quaternary climate changes on Neotropical biodiversity.

Supporting Information
S1 Fig. Occurrence records of Araneus omnicolor. Compilation of all occurrence records for
the species, including points from the literature and zoological databases (red circles) and new
records obtained in this study (blue circles).
(TIF)

S2 Fig. Alternative demographic models compared in ABC analysis. Scenario 1: panmictic
population; scenario 2: a single fragmentation event partitioning the ancestral population into
geographically separated patches; scenario 3: southward colonization; scenario 4: southern
phylogeographic break (for more details, see text). Variations within scenarios include
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migration (represented by arrows), exponential population growth (represented by expansion
in branches) or both. τ = divergence/expansion times (see Table 1).
(TIF)

S3 Fig. Bayesian phylogenetic inference for ITS2 sequences. Branch lengths are shown in
number of substitutions, and colors correspond to the geographical regions studied (map in de-
tail). Black squares represent nodes with posterior probability> 0.7.
(TIF)

S4 Fig. Results of parameter estimation. (a) θCOI and (b) θITS2 estimation plots resulting from
the R package ‘abc’.
(TIF)

S1 Table. Bioclimate variables used in the distribution modeling. Relative contributions of
environmental variables to the models, using the Jackknife procedure. In bold, the five variables
selected for the analyses.
(DOCX)

S2 Table. Genetic distances between populations. Corrected number of COI (below diagonal)
and ITS2 (above diagonal) nucleotide substitutions between populations (DA [41]). In bold, the
significant values (p<0.05).
(DOCX)

S3 Table. Analyses of molecular variance. AMOVA results based on COI and ITS2 sequences
(d.f. = degrees of freedom; �p<0.001; ��p<0.01).
(DOCX)

S4 Table. Model selection within scenarios with different methods (simple rejection, logis-
tic regression and neural network). The highest-probability model in each scenario is shown
in bold; the models selected with the rejection model (used in the comparison among scenari-
os) are highlighted in gray. T = simulation threshold.
(DOCX)

Acknowledgments
We are grateful to Dr. Antonio Domingos Brescovit for the identification of specimens and to
all our friends who helped in the field or with technical support, especially Luiz F. M. Bartoleti,
Jair F. Mendes Jr., Fernanda V. H. F. Pedroso and Célia Bresil. We also thank Luiz Alberto da
Silva, Estevam L. C. da Silva, Gabriel M. R. Gonino and Jober F. Sobczak for their assistance
with the sample collections.

Author Contributions
Conceived and designed the experiments: EAP VNS. Performed the experiments: EAP MJS.
Analyzed the data: EAP TSS MFP IASB DPS. Contributed reagents/materials/analysis tools:
MJS VNS. Wrote the paper: EAP TSS MFP IASB DPS VNS.

References
1. Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond

B Biol Sci. 2004;183–195; discussion 195. doi: 10.1098/rstb.2003.1388

2. Hewitt GM. The genetic legacy of the Quaternary ice ages. Nature. 2000;907–13. doi: 10.1038/
35016000

Phylogeography of Araneus omnicolor

PLOSONE | DOI:10.1371/journal.pone.0121543 April 9, 2015 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121543.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121543.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121543.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121543.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121543.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121543.s008
http://dx.doi.org/10.1098/rstb.2003.1388
http://dx.doi.org/10.1038/35016000
http://dx.doi.org/10.1038/35016000


3. Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C. Phylogeographical patterns shed light on
evolutionary process in South America. Mol Ecol. 2013;1193–213. doi: 10.1111/mec.12164

4. Beheregaray LB. Twenty years of phylogeography: the state of the field and the challenges for the
Southern Hemisphere. Mol Ecol. 2008;3754–3774.

5. Behling H. South and southeast Brazilian grasslands during Late Quaternary times: a synthesis.
Palaeogeogr Palaeoclimatol Palaeoecol. 2002;19–27. doi: 10.1016/S0031-0182(01)00349-2

6. Behling H. Late Quaternary vegetational and climatic changes in Brazil. Rev Palaeobot Palynol.
1998;143–156. doi: 10.1016/S0034-6667(97)00044-4

7. Ledru MP. Late Quaternary Environmental and Climatic Changes in Central Brazil. Quat Res.
1993;90–98. doi: 10.1006/qres.1993.1011

8. Ledru MP, Rousseau DD, Cruz FW, Riccomini C, Karmann I, Martin L. Paleoclimate changes during
the last 100,000 yr from a record in the Brazilian Atlantic rainforest region and interhemispheric compar-
ison. Quat Res. 2005;444–450. doi: 10.1016/j.yqres.2005.08.006

9. Rull V. Speciation timing and neotropical biodiversity: the Tertiary-Quaternary debate in the light of mo-
lecular phylogenetic evidence. Mol Ecol. 2008;2722–9. doi: 10.1111/j.1365-294X.2008.03789.x

10. Haffer J. Speciation in Amazonian forest birds. Science. 1969;131–137. doi: 10.1126/science.165.
3889.131

11. Vanzolini PE, Williams EF. The vanishing refuge: a mechanism for ecogeographic speciation. Pap
Avulsos Zool. 1981;251–255. doi:citeulike-article-id:7352881

12. Colinvaux PA, De Oliveira PE, Bush MB. Amazonian and neotropical plant communities on glacial
time-scales: The failure of the aridity and refuge hypotheses. Quaternary Science Reviews.
2000. pp. 141–169. doi: 10.1016/S0277-3791(99)00059-1

13. Bush MB, Oliveira PE. The rise and fall of the Refugial Hypothesis of Amazonian speciation: a paleo-
ecological perspective. Biota Neotrop. 2006;0–0. doi: 10.1590/S1676-06032006000100002

14. Rull V. Neotropical biodiversity: timing and potential drivers. Trends Ecol Evol. 2011;508–513. doi:
http://dx.doi.org/10.1016/j.tree.2011.05.011

15. Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DRM. Delving into the variations in
tree species composition and richness across South American subtropical Atlantic and Pampean for-
ests. J Plant Ecol. 2013;1–23. doi: 10.1093/jpe/rtt058

16. Batalha-Filho H, Cabanne GS, Miyaki CY. Phylogeography of an Atlantic forest passerine reveals de-
mographic stability through the last glacial maximum. Mol Phylogenet Evol. 2012;892–902. doi: 10.
1016/j.ympev.2012.08.010

17. De Ré FC, Gustani EC, Oliveira APF, Machado LPB, Mateus RP, Loreto ELS, et al. Brazilian popula-
tions of Drosophila maculifrons (Diptera: Drosophilidae): low diversity levels and signals of a population
expansion after the Last Glacial Maximum. Biol J Linn Soc. 2014;55–66. doi: 10.1111/bij.12244

18. Pinheiro F, de Barros F, Palma-Silva C, Fay MF, Lexer C, Cozzolino S. Phylogeography and genetic
differentiation along the distributional range of the orchid Epidendrum fulgens: a Neotropical coastal
species not restricted to glacial refugia. J Biogeogr. 2011;1923–1935. doi: 10.1111/j.1365-2699.2011.
02539.x

19. Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C. Stability predicts genetic diversity
in the Brazilian Atlantic forest hotspot. Science 2009;785–9. doi: 10.1126/science.1166955

20. Porto TJ, Carnaval AC, da Rocha PLB. Evaluating forest refugial models using species distribution
models, model filling and inclusion: a case study with 14 Brazilian species. Divers Distrib. 2013;330–
340. doi: 10.1111/j.1472-4642.2012.00944.x

21. Richards CL, Carstens BC, Lacey Knowles L. Distribution modelling and statistical phylogeography: an
integrative framework for generating and testing alternative biogeographical hypotheses. J Biogeogr.
2007;1833–1845. doi: 10.1111/j.1365-2699.2007.01814.x

22. Knowles LL, Maddison WP. Statistical phylogeography. Mol Ecol. 2002;2623–2635. doi: 10.1146/
annurev.ecolsys.38.091206.095702

23. Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, et al. Phylo-
geography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol. 2010; 291–
301. doi: 10.1016/j.ympev.2009.09.016

24. Carstens BC, Richards CL. Integrating coalescent and ecological niche modeling in comparative phylo-
geography. Evolution. 2007; 1439–1454. doi: 10.1111/j.1558-5646.2007.00117.x

25. Csilléry K, BlumMGB, Gaggiotti OE, François O. Approximate Bayesian Computation (ABC) in prac-
tice. Trends Ecol Evol. 2010;410–8. doi: 10.1016/j.tree.2010.04.001

26. Beaumont MA. Approximate Bayesian Computation in Evolution and Ecology. Annu Rev Ecol Evol
Syst. 2010;379–406. doi: 10.1146/annurev-ecolsys-102209-144621

Phylogeography of Araneus omnicolor

PLOSONE | DOI:10.1371/journal.pone.0121543 April 9, 2015 17 / 20

http://dx.doi.org/10.1111/mec.12164
http://dx.doi.org/10.1016/S0031-0182(01)00349-2
http://dx.doi.org/10.1016/S0034-6667(97)00044-4
http://dx.doi.org/10.1006/qres.1993.1011
http://dx.doi.org/10.1016/j.yqres.2005.08.006
http://dx.doi.org/10.1111/j.1365-294X.2008.03789.x
http://dx.doi.org/10.1126/science.165.3889.131
http://dx.doi.org/10.1126/science.165.3889.131
http://dx.doi.org/10.1016/S0277-3791(99)00059-1
http://dx.doi.org/10.1590/S1676-06032006000100002
http://dx.doi.org/10.1016/j.tree.2011.05.011
http://dx.doi.org/10.1093/jpe/rtt058
http://dx.doi.org/10.1016/j.ympev.2012.08.010
http://dx.doi.org/10.1016/j.ympev.2012.08.010
http://dx.doi.org/10.1111/bij.12244
http://dx.doi.org/10.1111/j.1365-2699.2011.02539.x
http://dx.doi.org/10.1111/j.1365-2699.2011.02539.x
http://dx.doi.org/10.1126/science.1166955
http://dx.doi.org/10.1111/j.1472-4642.2012.00944.x
http://dx.doi.org/10.1111/j.1365-2699.2007.01814.x
http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095702
http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095702
http://dx.doi.org/10.1016/j.ympev.2009.09.016
http://dx.doi.org/10.1111/j.1558-5646.2007.00117.x
http://dx.doi.org/10.1016/j.tree.2010.04.001
http://dx.doi.org/10.1146/annurev-ecolsys-102209-144621


27. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C. Approximate Bayesian Com-
putation. PLoS Comput Biol. 2013. doi: 10.1371/journal.pcbi.1002803

28. Folmer O, Black M, HoehW, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cyto-
chrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994; 294–
299.

29. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes
for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: A guide to
methods and applications. San Diego: Academic Press; 1990. pp. 315–322.

30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic
Acids Res. 2004;1792–1797. doi: 10.1093/nar/gkh340

31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Anal-
ysis version 6.0. Mol Biol Evol. 2013;2725–2729. doi: 10.1093/molbev/mst197

32. Flot J-F, Tillier A, Samadi S, Tillier S. Phase determination from direct sequencing of length-variable
DNA regions. Mol Ecol Notes. 2006;627–630. doi: 10.1111/j.1471-8286.2006.01355.x

33. Flot J-F. champuru 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal
lengths. Mol Ecol Notes. 2007;974–977. doi: 10.1111/j.1471-8286.2007.01857.x

34. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol
Evol. 1999;37–48. Available: http://www.ncbi.nlm.nih.gov/pubmed/10331250.

35. Stephens M, Donnelly P. A Comparison of Bayesian Methods for Haplotype Reconstruction from Popu-
lation Genotype Data. Am J HumGenet. 2003;1162–1169.

36. Flot J-F. seqphase: a web tool for interconverting phase input/output files and fasta sequence align-
ments. Mol Ecol Resour. 2010;162–166. doi: 10.1111/j.1755-0998.2009.02732.x

37. Garrick RC, Sunnucks P, Dyer RJ. Nuclear gene phylogeography using PHASE: dealing with unre-
solved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evol Biol. 2010;118.
doi: 10.1186/1471-2148-10-118

38. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recom-
bination. Genetics. 2006;2665–81. doi: 10.1534/genetics.105.048975

39. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol.
2006;254–67. doi: 10.1093/molbev/msj030

40. Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bio-
informatics. 2009;1451–1452. doi: 10.1093/bioinformatics/btp187

41. Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases.
Proc Natl Acad Sci. 1979;5269–5273. Available: http://www.pnas.org/cgi/content/abstract/76/10/5269.

42. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genet-
ics analyses under Linux andWindows. Mol Ecol Resour. 2010;564–567. doi: 10.1111/j.1755-0998.
2010.02847.x

43. Excoffier L, Smouse PE, Quattro JM. Analysis of Molecular Variance Inferred fromMetric Distances
among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics.
1992;479–491.

44. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res.
1967;209–220.

45. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST
1.7. Mol Biol Evol. 2012; doi: 10.1093/molbev/mss075

46. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;1253–6. doi: 10.1093/
molbev/msn083

47. Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;773–795. Available: http://www.jstor.org/
stable/10.2307/2291091\npapers2://publication/uuid/43A547B1-8EEE-4973-9B20-D53C3D2F426E.

48. Newton MA, Raftery AE. Approximate Bayesian inference with the weighted likelihood bootstrap. J R
Stat Soc Ser B. 1994;3–48. doi: 10.2307/2346025

49. Brower AV. Rapid morphological radiation and convergence among races of the butterfly Heliconius
erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci U S A. 1994;6491–
6495.

50. Chang J, Song D, Zhou K. Incongruous nuclear and mitochondrial phylogeographic patterns in two
sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China. Mol Phylo-
genet Evol. 2007;104–121.

51. Framenau VW, Dupérré N, Blackledge TA, Vink CJ. Systematics of the New Australasian Orb-weaving
Spider Genus Backobourkia (Araneae: Araneidae: Araneinae). Arthropod Syst Phylogeny. 2010;79–
111.

Phylogeography of Araneus omnicolor

PLOSONE | DOI:10.1371/journal.pone.0121543 April 9, 2015 18 / 20

http://dx.doi.org/10.1371/journal.pcbi.1002803
http://dx.doi.org/10.1093/nar/gkh340
http://dx.doi.org/10.1093/molbev/mst197
http://dx.doi.org/10.1111/j.1471-8286.2006.01355.x
http://dx.doi.org/10.1111/j.1471-8286.2007.01857.x
http://www.ncbi.nlm.nih.gov/pubmed/10331250
http://dx.doi.org/10.1111/j.1755-0998.2009.02732.x
http://dx.doi.org/10.1186/1471-2148-10-118
http://dx.doi.org/10.1534/genetics.105.048975
http://dx.doi.org/10.1093/molbev/msj030
http://dx.doi.org/10.1093/bioinformatics/btp187
http://www.pnas.org/cgi/content/abstract/76/10/5269
http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
http://dx.doi.org/10.1093/molbev/mss075
http://dx.doi.org/10.1093/molbev/msn083
http://dx.doi.org/10.1093/molbev/msn083
http://www.jstor.org/stable/10.2307/2291091\npapers2://publication/uuid/43A547B1-8EEE-4973-9B20-D53C3D2F426E
http://www.jstor.org/stable/10.2307/2291091\npapers2://publication/uuid/43A547B1-8EEE-4973-9B20-D53C3D2F426E
http://dx.doi.org/10.2307/2346025


52. Hedin MC. Molecular insights into species phylogeny, biogeography, and morphological stasis in the
ancient spider genus Hypochilus (Araneae: Hypochilidae). Mol Phylogenet Evol. 2001;238–251.

53. Rix MG, Harvey MS. Phylogeny and historical biogeography of ancient assassin spiders (Araneae:
Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia. Mol
Phylogenet Evol. 2012;375–96. doi: 10.1016/j.ympev.2011.10.009

54. Rambaut A, Drummond AJ. Tracer v1.5 [Internet]. 2009. Available: http://tree.bio.ed.ac.uk/software/
tracer/.

55. Rambaut A. FigTree, a graphical viewer of phylogenetic trees. [Internet]. Institute of Evolutionary Biolo-
gy University of Edinburgh. 2009. Available: http://tree.bio.ed.ac.uk/software/figtree/.

56. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genet-
ics. 1989;585–595.

57. Fu YX. Statistical Tests of Neutrality of Mutations against Population Growth, Hitchhiking and Back-
ground Selection. Genetics. 1997;915–925.

58. Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differ-
ences. Mol Biol Evol. 1992;552–569.

59. Harpending HC. Signature of ancient population growth in a low-resolution mitochondrial DNAmis-
match distribution. Hum Biol an Int Rec Res. 1994;591–600.

60. Heled J, Drummond AJ. Bayesian inference of population size history frommultiple loci. BMC Evol Biol.
2008;289. doi: 10.1186/1471-2148-8-289

61. Levi HW. The Neotropical and Mexican Species of the Orb-Weaver Genera Araneus, Dubiepeira, and
Aculepeira (Araneae: Araneidae). Bulletin Museum of Comparative Zoology. 1991. pp. 167–315.

62. Stockwell D. The GARPmodelling system: problems and solutions to automated spatial prediction. Int
J Geogr Inf Sci. 1999;143–158. doi: 10.1080/136588199241391

63. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating the support of a high-di-
mensional distribution. Neural Comput. 2001;1443–1471. doi: 10.1162/089976601750264965

64. Tax DMJ, Duin RPW. Support Vector Data Description. Mach Learn. 2004;45–66. doi: 10.1023/B:
MACH.0000008084.60811.49

65. Muñoz MES, Giovanni R, Siqueira MF, Sutton T, Brewer P, Pereira RS, et al. openModeller: a generic
approach to species’ potential distribution modelling. Geoinformatica. 2009;111–135. doi: 10.1007/
s10707-009-0090-7

66. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distribu-
tions. Ecol Modell. 2006;231–259. doi: 10.1016/j.ecolmodel.2005.03.026

67. Phillips SJ, Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehen-
sive evaluation. Ecography. 2008;161–175. doi: 10.1111/j.0906-7590.2008.5203.x

68. Rangel TF, Loyola RD. Labeling Ecological Niche Models. Nat Conserv. 2012;119–126. doi: 10.4322/
natcon.2012.030

69. Almeida MC, Cortes LG, De Marco P Jr. New records and a niche model for the distribution of two Neo-
tropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae).
Insect Conserv Divers. 2010;252–256. doi: 10.1111/j.1752-4598.2010.00096.x

70. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. Predicting species distributions from
small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J Biogeogr.
2007;102–117. doi: 10.1111/j.1365-2699.2006.01594.x

71. Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: Prevalence,
kappa and the true skill statistic (TSS). J Appl Ecol. 2006;1223–1232. doi: 10.1111/j.1365-2664.2006.
01214.x

72. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W. Evaluation of consensus methods in pre-
dictive species distribution modelling. Divers Distrib. 2009;59–69. doi: 10.1111/j.1472-4642.2008.
00491.x

73. Rambo B. A Porta de Torres. An Botânicos do Herbário Barbosa Rodrigues. 1950;125–136.

74. ThoméMTC, Zamudio KR, Giovanelli JGR, Haddad CFB, Baldissera FA, Alexandrino J. Phylogeogra-
phy of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest. Mol Phylogenet
Evol. Elsevier Inc.; 2010;1018–1031.

75. Fagundes NJR, Ray N, Beaumont M, Neuenschwander S, Salzano FM, Bonatto SL, et al. Statistical
evaluation of alternative models of human evolution. Proc Natl Acad Sci U S A. 2007;17614–17619.
doi: 10.1073/pnas.0708280104

76. Hudson RR. Generating samples under aWright-Fisher neutral model of genetic variation. Bioinformat-
ics. 2002;337–338. doi: 10.1093/bioinformatics/18.2.337

Phylogeography of Araneus omnicolor

PLOSONE | DOI:10.1371/journal.pone.0121543 April 9, 2015 19 / 20

http://dx.doi.org/10.1016/j.ympev.2011.10.009
http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/figtree/
http://dx.doi.org/10.1186/1471-2148-8-289
http://dx.doi.org/10.1080/136588199241391
http://dx.doi.org/10.1162/089976601750264965
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
http://dx.doi.org/10.1007/s10707-009-0090-7
http://dx.doi.org/10.1007/s10707-009-0090-7
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1111/j.0906-7590.2008.5203.x
http://dx.doi.org/10.4322/natcon.2012.030
http://dx.doi.org/10.4322/natcon.2012.030
http://dx.doi.org/10.1111/j.1752-4598.2010.00096.x
http://dx.doi.org/10.1111/j.1365-2699.2006.01594.x
http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00491.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00491.x
http://dx.doi.org/10.1073/pnas.0708280104
http://dx.doi.org/10.1093/bioinformatics/18.2.337


77. Tsai YHE, Carstens BC. Assessing model fit in phylogeographical investigations: An example from the
North American sandbar willow Salix melanopsis. J Biogeogr. 2013;131–141. doi: 10.1111/j.1365-
2699.2012.02775.x

78. Csilléry K, François O, BlumMGB. abc: An R package for approximate Bayesian computation (ABC).
Methods Ecol Evol. 2012;475–479. doi: 10.1111/j.2041-210X.2011.00179.x

79. BlumMGB, François O. Non-linear regression models for Approximate Bayesian Computation. Stat
Comput. 2010;63–73. doi: 10.1007/s11222-009-9116-0

80. Robinson EA, Blagoev G, Hebert PDN, Adamowicz SJ. Prospects for using DNA barcoding to identify
spiders in species-rich genera. Zookeys. 2009;27–46. doi: 10.3897/zookeys.16.239

81. Agnarsson I. The utility of ITS2 in spider phylogenetics: notes on prior work and an example from Anelo-
simus. J Arachnol. 2010;377–382. doi: 10.1636/B10-01.1

82. López-Uribe MM, Zamudio KR, Cardoso CF, Danforth BN. Climate, physiological tolerance and sex-bi-
ased dispersal shape genetic structure of Neotropical orchid bees. Mol Ecol. 2014;1874–1890. doi: 10.
1111/mec.12689

83. Prugnolle F, de Meeus T. Inferring sex-biased dispersal from population genetic tools: a review. Heredi-
ty. 2002;161–165. doi: 10.1038/sj.hdy.6800060

84. Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol
Ecol. 2012;3907–3930. doi: 10.1111/j.1365-294X.2012.05664.x

85. Vollrath F. Dwarf males. Trends Ecol Evol. 1998;159–163. doi: 10.1016/S0169-5347(97)01283-4

86. Legrand RS, Morse DH. Factors driving extreme sexual size dimorphism of a sit-and-wait predator
under low density. Biol J Linn Soc. 2000;643–664. doi: 10.1111/j.1095-8312.2000.tb01283.x

87. Cabanne GS, Santos FR, Miyaki CY. Phylogeography of Xiphorhynchus fuscus (Passeriformes, Den-
drocolaptidae): vicariance and recent demographic expansion in southern Atlantic forest. Biol J Linn
Soc. 2007;73–84. doi: 10.1111/j.1095-8312.2007.00775.x

88. Martins F de M. Historical biogeography of the Brazilian Atlantic forest and the Carnaval-Moritz model
of Pleistocene refugia: what do phylogeographical studies tell us? Biol J Linn Soc. 2011;499–509. doi:
10.1111/J.1095-8312.2011.01745.X

89. Moritz C, Patton JL, Schneider CJ, Smith TB. Diversification of rainforest faunas: An integrated molecu-
lar approach. Annu Rev Ecol Syst. 2000;533–563. doi: 10.1146/annurev.ecolsys.31.1.533

90. Carnaval AC, Moritz C. Historical climate modelling predicts patterns of current biodiversity in the Bra-
zilian Atlantic forest. J Biogeogr. 2008;1187–1201. doi: 10.1111/j.1365-2699.2007.01870.x

91. Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, et al. Prediction of
phylogeographic endemism in an environmentally complex biome. Proc R Soc B Biol Sci. 2014; doi:
10.1098/rspb.2014.1461

Phylogeography of Araneus omnicolor

PLOSONE | DOI:10.1371/journal.pone.0121543 April 9, 2015 20 / 20

http://dx.doi.org/10.1111/j.1365-2699.2012.02775.x
http://dx.doi.org/10.1111/j.1365-2699.2012.02775.x
http://dx.doi.org/10.1111/j.2041-210X.2011.00179.x
http://dx.doi.org/10.1007/s11222-009-9116-0
http://dx.doi.org/10.3897/zookeys.16.239
http://dx.doi.org/10.1636/B10-01.1
http://dx.doi.org/10.1111/mec.12689
http://dx.doi.org/10.1111/mec.12689
http://dx.doi.org/10.1038/sj.hdy.6800060
http://dx.doi.org/10.1111/j.1365-294X.2012.05664.x
http://dx.doi.org/10.1016/S0169-5347(97)01283-4
http://dx.doi.org/10.1111/j.1095-8312.2000.tb01283.x
http://dx.doi.org/10.1111/j.1095-8312.2007.00775.x
http://dx.doi.org/10.1111/J.1095-8312.2011.01745.X
http://dx.doi.org/10.1146/annurev.ecolsys.31.1.533
http://dx.doi.org/10.1111/j.1365-2699.2007.01870.x
http://dx.doi.org/10.1098/rspb.2014.1461

