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Interstitial Telomeric Sequences (ITS) and major
rDNA mapping reveal insights into the karyotypical
evolution of Neotropical leaf frogs species
(Phyllomedusa, Hylidae, Anura)
Daniel Pacheco Bruschi1, Miryan Rivera2, Albertina Pimentel Lima3, Ailín Blasco Zúñiga2

and Shirlei Maria Recco-Pimentel1*
Abstract

Background: The combination of classical cytogenetics with molecular techniques represents a powerful approach
for the comparative analysis of the genome, providing data for the systematic identification of chromosomal
homologies among species and insights into patterns of chromosomal evolution within phylogenetically related
groups. Here, we present cytogenetic data on four species of Neotropical treefrogs of the genus Phyllomedusa
(P. vaillantii, P. tarsius, P. distincta, and P. bahiana), collected in Brazil and Ecuador, with the aim of contributing to
the understanding of the chromosomal diversification of this genus.

Results: With the exception of P. tarsius, which presented three telocentric pairs, all the species analyzed had
conservative karyotypic features. Heterochromatic patterns in the genomes of these species revealed by C-banding
and fluorochrome staining indicated the presence of a large number of non-centromeric blocks. Using the Ag-NOR
method and FISH with an rDNA 28S probe, we detected NOR in the pericentromeric region of the short arm of pair
7 in P. vaillantii, pair 1 in P. tarsius, chromosomes 1 and 9 in P. distincta, and in chromosome 9 in P. bahiana, in addition
to the presence of NOR in one homologue of chromosome pair 10 in some individuals of this species. As expected, the
telomeric probe detected the terminal regions of the chromosomes of these four species, although it also detected
Interstitial Telomeric Sequences (ITS) in some chromosomes of the P. vaillantii, P. distincta and P. bahiana karyotypes.

Conclusion: A number of conservative chromosomal structures permitted the recognition of karyotypic homologies.
The data indicate that the presence of a NOR-bearing chromosome in pair 9 is the plesiomorphic condition in the
P. burmeisteri group. The interspecific and intraspecific variation in the number and location of rDNA sites reflects
the rapid rate of evolution of this character in Phyllomedusa. The ITS detected in this study does not appear to
be a remnant of structural chromosome rearrangements. Telomeric repeats were frequently found in association
with heterochromatin regions, primarily in the centromeres, which suggests that (TTAGGG)n repeats might be an
important component of this heterochromatin. We propose that the ITSs originated independently during the
chromosomal evolution of these species and may provide important insights into the role of these repeats in
vertebrate karyotype diversification.
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Background
Comparative cytogenetic studies provide scenarios of the
chromosomal evolution of related taxa and represent an
important approach to the identification of chromosomal
homologies among species [1]. In many organisms, karyo-
logical features have been widely accessed by classical
methods, and advances in molecular cytogenetics based
on Fluorescence in situ hybridization (FISH) experiments
have resulted in improved chromosomal mapping of large
numbers of sequences and permitted the study of chromo-
somal variation.
The ribosomal RNA gene, which is a repetitive DNA

sequence that is organized in tandem, is widely used in
chromosomal investigations and provides a good chromo-
somal marker for comparative cytogenetic studies [2]. This
sequence shows several features of ‘hotspots’ of chromo-
somal recombination because it consists of a clustered
organization of repeats and is frequently located in
pericentromeric and subtelomeric regions [3]. A high
rate of mutation/homogenization of intergenic spacer
regions is observed (e.g. see references [4-7]), and these
modifications have an important role in chromosomal
reorganization during karyotype evolution. The associ-
ation of the NOR repositioning events due to the presence
of transposable elements has already been noted [8,9].
Chromosomal mapping of telomeric sequences has been

widely used to identify chromosomal rearrangements
among karyotypes of vertebrates and to detect fusion
and/or fission, inversion or translocation events [10-16].
Many recent studies have emphasized the important
role of this sequence in chromosomal evolution [17-19],
and many studies have reported that sequences related to
telomeric sequences form a component of satellite DNA
[20-22].
Cytogenetic studies have demonstrated the presence of

interstitial telomeric sequences (ITS) in many phylogen-
etic groups (for references, see reference [23]). In most
cases, these sequences are associated with heterochro-
matin regions that do not appear to represent remnants
of ancient chromosomal rearrangements [24-29]. Non-
telomeric repeats of the sequence (TTAGGG)n in hetero-
chromatin regions or in the margins of these blocks,
which have been termed ‘het-ITS’ are easily detected in
FISH experiments [23]. However, fine-scale studies in
mammals have also documented the extensive occurrence
of short telomeric repeats within the internal regions of
chromosomes (s-ITSs) [18,30-32], and, according to
Ruiz-Herrera [19], this feature is presumably present in
all vertebrate species. The presence of s-ITS in other
vertebrates could be underestimated due to the presence
of fewer repeats; such repeats may not be detectable at the
resolution of conventional FISH experiments.
The Phyllomedusa genus is an interesting group within

which to conduct comparative cytogenetic analyses. In
addition to the fact that the intrageneric relationships of
some of the species remain unclear, this Neotropical
treefrog genus raises many taxonomic questions at the
species level [33]. The genus currently includes 30 spe-
cies [34]. Molecular phylogenetic inferences support the
presence of four species groups [33]: the P. hypochondria-
lis group [35], the P. tarsius group [36], the P. burmeisteri
group [37] and the P. perinesos group [38]. The species
P. atelopoides, P. bicolor, P. boliviana, P. vaillantii, P.
sauvaggi, and P. tomopterna [33,34] are not included in
any of these groups. Cytogenetic data show extensive
multiple NOR [39-44] and interspecific NOR variation
[40,41,43,45] in the species that have been karyotyped.
Our goal in this work was to investigate the karyotypes

of four species of the Phyllomedusa genus: P. vaillantii,
species that remain unassigned to any species group, P.
tarsius, include in the P. tarsius group and P. distincta
and P. bahiana which are included in the P. burmeisteri
group. We used multiple chromosomal markers to better
understand the chromosomal evolution of this genus. In
addition to providing insights concerning the evolution
of rDNA clusters, we report an interesting distribution
pattern of non-terminal telomeric repeats in karyotypes
of this genus.

Results
The chromosome diploid number in all species karyo-
typed showed 26 chromosomes. With the exception of
P. tarsius, which showed three telocentric pairs (pairs 7,
10 and 12), the remaining karyotypes consisted of four
metacentric pairs (1, 4, 8 and 11), six submetacentric
pairs (2, 3, 5, 6, 12 and 13) and three subtelocentric pairs
(7, 9 and 10) (Figure 1A-G). Secondary constrictions was
observed in the pericentromeric region of the short arm
of pair 7 in P. vaillantii karyotype, in the pair 1 in P. tarsius,
pairs 1 and 9 in P. distincta, and in chromosomes 9 in
P. bahiana karyotype, besides secondary constriction in
one homologue of the pair 10 (see Figure 2).
C-banding detected centromeric heterochromatin in all

chromosome pairs, with difference in amount of hetero-
chromatin among pairs: some chromosomes pairs exhibits
weak and almost absence heterochromatin block while
others pairs exhibits salient marker in this region. Non-
centromeric heterochromatin blocks were widely found
in P. vaillantii chromosomes of the three populations
sampled (Figure 3A-C). Remarkable interstitial hetero-
chromatin blocks were detected in both arms of the
chromosomes of pair 8 in addition to interstitial C-bands
in homologs of pairs 1, 6, 7, 9 and 11 (Figure 3A-C). The
karyotype of P. tarsius showed C-bands in the pericentro-
meric region of the short arm of chromosome pairs 3 and
6 and in the long arms of pairs 1, 4 and 11 (Figure 3D-E).
The same C-banding pattern was observed in Brazilian
and in Ecuadorian populations. Heterochromatin was also



Figure 1 Giemsa-stained karyotypes of P. vaillantii from (A) Jacareacanga/PA, Brazil, (B) Porto Velho/RO, Brazil and (C) Yasuní/ Provincia del
Orlleana, Ecuador; P. tarsius from (D) Reserva Ducke/AM, Brazil and from (E) Yasuní/Provincia del Orlleana, Ecuador; (F) P. distincta from
Iporanga/SP, Brazil and (G) P. bahiana from Alagoinhas/BA, Brazil. The arrowhead indicates secondary constrictions. Bar = 3 μm.
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Figure 2 Topographic map of South America showing sampling localities throughout Brazil and Ecuador for populations included in
this study. L1: Jacareacanga/PA, Brazil; L2: Yasuní/Provincia del Orlleana, Ecuador; L3: Porto Velho/RO, Brazil; L4: Alagoinhas/BA, Brazil; L5:
Iporanga/SP, Brazil; L6: Reserva Ducke/AM, Brazil.
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detected in both arms of the chromosomes of pair 8 and
in the pericentromeric region (Figure 3D-E). P. distincta
exhibited the presence of C-bands in the pericentromeric
region of the short arms of chromosome pairs 3 and 6
and in the long arms of pairs 1 and 11 (Figure 3F). In
this species, a C-positive pericentromeric block was also
detected in both arms of the chromosomes of pair 8
(Figure 3F). The heterochromatin pattern of P. bahiana
revealed C-bands in the pericentromeric region of the
short arms in homologs of pairs 3 and 6 and in the long
arms of pairs 1 and 11 (Figure 3G). The homologs of
pair 8 exhibited pericentromeric blocks in both arms.
The use of base-specific fluorochrome staining after

C-banding of chromosomes improved the detection of
heterochromatin patterns and revealed additional interest-
ing features of the karyotypes studied. In the case of P.
vaillantii, pericentromeric C-bands showed DAPI-positive
patterns (pairs 1, 6, 7, 8 and 11) (Figure 4A, top). In
addition to the blocks detected by the C-banding method,
bright interstitial signals were observed. Mithramycin
staining resulted in brilliant signals in regions coinci-
dent with secondary constrictions in the short arms of
the homologs of pair 7 visualized by Giemsa staining
(Figure 4A, bottom). In metaphase chromosomes of P.
tarsius, DAPI staining exhibited a pattern coincident
with C-banding, with outstanding bright signals in the
heterochromatin of both arms of chromosome pairs 8
and 11 (Figure 4B), whereas MM staining produced only a
modest signal coincident with the region containing
secondary constrictions in the homologs of chromosome
pair 1 (Figure 4B, bottom). The DAPI pattern showed
centromeric fluorescence in almost all chromosomes of



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Karyotypes defined by C-banding of P. vaillantii from (A) Jacareacanga/PA, Brazil, (B) Porto Velho/RO, Brazil and (C) Yasuní/
Provincia del Orlleana, Ecuador; P. tarsius from (D) Reserva Ducke/AM, Brazil and from (E) Yasuní/Provincia del Orlleana, Ecuador; (F)
P. distincta from Iporanga/SP, Brazil and (G) P. bahiana from Alagoinhas/BA, Brazil. The arrowhead indicates interstitial heterochromatin
blocks. Bar = 3 μm.
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P. distincta in addition to some fluorescence in the
region of the secondary constriction in chromosome
pair 9 (Figure 4C). In chromosome pair 8, a brilliant
signal was evident in the pericentromeric block of the
long arm (Figure 4C). The MM pattern was evident in
the centromeres of almost all chromosomes as well as
in the region coincident with the secondary constriction
in the short arms of the homologs of pair 9 (Figure 4C,
bottom). The heterochromatin of the centromeres of
chromosome pairs 5 and 13 did not show a strong signal
with any fluorochrome staining (Figure 4C). Specimens of
P. bahiana exhibited relatively weak fluorescence in the
centromeric regions of the majority of the chromosome
pairs (Figure 4D); in these specimens, the pericentromeric
heterochromatin was more easily detected by C-banding.
The secondary constrictions in the short arm of chromo-
some pair 9 showed fluorescence signals by MM-staining,
and some centromeres were stained (Figure 4D).
In all karyotypes, the secondary constrictions observed

in conventional Giemsa staining were coincident with
NOR sites detected by the Ag-NOR method and this
was confirmed by FISH experiments (Figure 5). In the
three sampled populations of P. vaillantii, NORs were
detected in the pericentromeric region of the short arm of
chromosome pair 7 (Figure 5A-C). The Ag-NOR method
Figure 4 DAPI staining (top) and Mitramycin (bottom) after C-bandin
P. distincta and (D) P. bahiana. The arrows highlighters specific chromoso
also revealed NOR in the pericentromeric region of the
short arm of chromosome pair 1 in P. tarsius from Reserva
Ducke (Manaus, Brazil) and from Yasuní (Província del
Orellana, Ecuador) (Figure 5D-E). Two NOR-bearing
chromosome pairs were detected in all specimens of
P. distincta analyzed; the NORs were located in the
pericentromeric region of the short arm of chromosome
pair 1 and in the pericentromeric region of the long
arm of chromosome pair 9 (Figure 5F). Specimens of P.
bahiana displayed a NOR that was fixed in the pericen-
tromeric region of the long arms of the chromosomes
of pair 9 (Figure 5G). In this population, two specimens
presented one additional NOR in one of the homologs
of chromosome pair 10 (Figure 5G). This conditional
was also detected in FISH experiments using an rDNA
28S probe.
The telomeric probe hybridized to all telomeres in the

chromosomes of all karyotypes analyzed but showed a
differential pattern of interstitial signals in the four species
examined. The P. vaillantii karyotype exhibited con-
spicuous signs of ITS in the centromeric regions of
chromosome pairs 4 and 6 (Figure 6A), whereas a brighter
hybridization signal was detected in the short arms of
the homologs of chromosome pair 13 (Figure 6A), the
complete short arm being marked by the telomeric
g in chomosomes of the (A) P. vaillantii, (B) P. tarsius, (C)
me pairs of each species according to results section.



Figure 5 NOR-bearing chromosome pairs submitted to silver impregnation using Ag-NOR method (top) and hybridized with 28S rDNA
probe (bottom): P. vaillantii from (A) Jacareacanga/PA, Brazil, (B) Porto Velho/RO, Brazil and (C) Yasuní/ Província de Orllana, Ecuador;
P. tarsius from (D) Reserva Ducke/AM, Brazil and from (E) Yasuní/Província de Orllana; (F) P. distincta and (G) P. bahiana. Bar = 3 μm.
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probe. Although P. tarsius did not exhibit interstitial sig-
nals in any chromosomes, the telocentric morphology of
chromosome pairs 7, 9 and 10 was most evident through
this approach (Figure 6B). ITS was also detected in the
centromeric regions of chromosome pairs 8 and 11 of
P. distincta (Figure 6C). Finally, in the karyotype of P.
bahiana, the telomeric probe hybridized to the centro-
meric region of chromosomes pairs 4 and 6, and stronger
hybridization that extended to the pericentromeric region
of the arms was detected in the centromeric region of
chromosome pair 11 (Figure 6D).

Discussion
Chromosomal analysis of four representatives of the genus
Phyllomedusa revealed conservative karyotypic features,
including primarily diploid chromosome number (2n = 26),
a finding that is consistent with previous reports [39-46].
One special case that showed a deviation in chromosome
number was P. tetraploidea (2n = 52) [47], a polyploid
species with a karyotype clearly derived from 2n = 26.
The four species of the Phyllomedusa genus karyotyped

in this study showed conserved chromosomal morph-
ology. Despite the different numeric classification of some
chromosome pairs among karyotype descriptions in the
literature, it is possible to recognize homologies among al-
most all chromosomes. In this context, the pair 7 subtelo-
centric and 8 metacentric describes here correspond to,
respectively, the pairs 8 subtelocentric and 7 metacentric
of the karyotype described by Gruber et al. [44] and Barth
et al. [42]. The chromosomal classification used in this
study is based on the karyotype ordination described by
Bruschi et al. [43] and Bruschi et al. [45]. However, this
difference in chromosomal ordination did not represent
a real cytogenetic variation among karyotypes of the P.
distincta and P. bahiana.
The telocentric chromosome pairs observed in the P.

tarsius karyotype are apparently restricted to species of
the P. tarsius group. These karyotypic traits were detected
in P. camba, another species within this phenetic group,
and this condition was noted as indicative of a possible
karyological synapomorphy for the P. tarsius group [41].
Currently, the P. tarsius group includes P. camba, P.
neildi, P. trinitatis and P. tarsius [34], although cytogenetic
data from P. neildi and P. trinitatis are necessary to con-
firm this hypothesis. However, the chromosome comple-
ment of one population of P. tarsius from Peru described
by Bogart [47] showed exclusively bi-armed pairs. If the
population of P. tarsius from Peru analyzed in that
study corresponds to the same taxonomic unit as the
Brazilian and Ecuadorian populations analyzed here,
the synapomorphy proposed by Paiva et al. [41] should
be reevaluated. We have not discarded the possibility
that this inconsistency may be due to misidentification
of the Peruvian population.
The study of the distribution of heterochromatin in

the genomes of these four species using the C-banding
method and fluorochrome-specific base staining revealed
the presence of a considerable number of non-centromeric
blocks, primarily in the P. vaillantii karyotype. The C-
banding pattern of P. distincta observed here is coincident
with the arrangement of heterochromatic regions described
by Gruber et al. [44]. The metacentric chromosome pair 8
showed pericentromeric heterochromatin in both arms in
karyotypes of the P. tarsius, P. distincta and P. bahiana
analyzed here and could be a chromosome marker in
karyotype of this species. In the P. vaillantii, the pair 8
showed C-positive band in interstitial region, noticeable
feature of this karyotype.
Fluorochrome staining after C-banding permitted the

identification of an AT-rich class of heterochromatin in
the C-positive blocks of the karyotype of P. vaillantii as
well as in the centromeric regions of the majority of P.
tarsius and P. bahiana chromosomes. Consistent with
previous suggestions, the MM markers were coincident



Figure 6 In situ hybridization with the telomeric probe in karyotypes of (A) P. vaillantii, (B) P. tarsius, (C) P. distincta and (D) P. bahiana.
The arrowhead indicates interstitial telomeric sequence (ITS) adjacent to constitutive heterochromatin (het-ITSs). Bar = 3 μm.
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with secondary regions. Similar brilliant signals with
DAPI and MM staining in the centromeric regions of
the majority of chromosome pairs in the P. distincta
karyotype and in some chromosome pairs of P. bahiana
could be explained by the presence of similar amounts of
AT and GC bases within the repetitive sequences present
in this region of heterochromatin. Similar labeling was
reported in Eleutherodactylus atkinsi [14], E. pantone
and Pristimantis terraebolivaris and in Sphaenorhynchus
lacteus [16].
P. tarsius showed rDNA cluster detected in chromosome
1, as well as, P. camba, another species in the P. tarsius
group, also showed NOR in same chromosome pair and in
addition the clusters detected in chromosome pair 5 [41].
Future cytogenetic analysis in P. neildi and P. trinitatis
could be provides better compression about evolutionary
dynamics of this chromosomal marker in this group.
The P. distincta karyotype showed NOR in chromosome

pairs 1 and 9, corroborating a previous report [44],
whereas P. bahiana showed NOR in pair 9, consistent
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with the findings of Barth et al. [42], as well as an add-
itional marker in one homolog of pair 10 found in in
two of eight specimens sampled in this study. Based in
this scenario, Gruber et al. [44] proposed that the NOR
in chromosome pairs 1 and 9 are conserved in the P.
burmesteri group. The P. bahiana karyotype features
reported in the present study provide novel insights
into NOR evolution within this group. Based on the
phylogenetic inferences [33], the P. burmeisteri group
represents a monophyletic clade in which P. bahiana is
a sister species of the remaining species within the
group (P. distincta, P. burmeisteri, P. iheringii and P.
tetraploidea). Phyllomedusa sauvagii, which remains
unassigned to any phenetic group, is a sister species of
the P. burmeisteri group. Here, we suggest that the
NOR in chromosome pair 9 is the plesiomorphic karyo-
type condition. This idea is supported by the presence
of this condition in P. bahiana and in the karyotype of
P. sauvagii [39], both of which carry NOR on chromo-
some pair 9.
The NOR patterns of the species karyotyped in this

work are consistent with the known notable characteris-
tics of rDNA clusters in the Phyllomedusa genus; many
cases of multiple NOR sites among the karyotyped
species have been reported by other authors [39-44].
NOR position in the genome has been successfully used as
a chromosomal marker in comparative cytogenetic studies
in many vertebrates groups, and the possible role of NORs
as hotspots of recombination during evolution has been
widely discussed [3,9,48,49].
The origins of the ITSs detected in our analysis cannot

be explained by assuming that ITSs represent remnants
of structural chromosome rearrangements that occurred
during the evolution of these karyotypes. Our arguments
denote of expressive evolutionary chromosome conser-
vation observed among the species of this genus with
known karyotypes. If we consider the karyotype data in
the light of the phylogeny proposed for the genus [33],
the presence of ITSs in these karyotypes cannot be im-
puted to any traits of the chromosome rearrangements
that are perceptible by classical cytogenetic. Indeed, the
presence of ITSs in vertebrate genomes has been ex-
plained as a relic of the reorganization of chromosome
architecture that occurred during the evolution of indi-
vidual karyotypes. Through study of the comparative
cytogenetic of many groups, it is possible to discern the
remnants of chromosomal rearrangements from fission
and/or fusion events [10,50,13-16] or chromosomal inver-
sions [10,11] inferred from ITS signals. In amphibians,
the presence of ITSs provides evidence of rearrangements
that occurred during karyotype evolution in species of
the Terrarana group [14] and has been invoked recently
to explain the reduction in chromosome number in
Dendropsophini [16].
Despite the fact that these suggestions are strongly
supported by evidence from a number of organisms,
the intrachromosomal telomeric repeats observed in the
karyotypes of P. vaillantii, P. distincta and P. bahiana
could be the result of amplifications of (TTAGGG)n
repeats that occurred independently during the chromo-
somal evolution of these species. In opposition to the idea
that the distribution of ITS in the karyotype represents
remnants of ancient rearrangements, their distribution has
usually been considered to be a result of the occurrence
of double-strand breaks in the germ line [31]. Despite
the fact that the precise molecular model accounting for
these features is unclear, many studies have attributed the
presence of widely distributed intrachromosomal ITSs
to the insertion of telomeric DNA during the repair of
double-strand breaks by the non-homologous end-joining
pathway (NHEJ) [18,22,31,51]. Telomeric repeats are sub-
ject to evolutionary forces that can amplify the number of
repeats or homogenize the repeat sequences according
to the dynamics of evolution of the repetitive DNA se-
quences [19].
Non-terminal telomeric repeats were primarily detected

in centromeric regions and coincided with regions of het-
erochromatin blocks (het-ITS). This interesting pattern has
previously been reported in amphibians of the Aplastodis-
cus genus [26,28] and has been widely reported in rodents
[24,52] and in plants of the Solanum genus [29,53].
ITS are frequently associated with heterochromatin

regions, and previous investigations have shown that
these repeats represent a primordial component of the
repetitive DNA in cetacean [20,54], fishes [21] and rodents
[22,27]. The conspicuous hybridized signals detected in
some chromosome pairs such as the homologs of pair 13
of P. vaillantii indicate that (TTAGGG)n repeats repre-
sent a major motif in repetitive DNA.

Conclusion
The presence of telocentric pairs in species of the P. tar-
sius group is an interesting feature observed within this
genus: this species showed the same chromosomal num-
ber as another species, and the telocentric pairs found in
species of this group are homologs of the subtelocentric
pairs found in other karyotypes. In this case, it is pos-
sible that the short arms were lacking in the P. tarsius
clade. Unlike the other species analyzed in this paper,
the P. tarsius karyotype was the only karyotype that did
not exhibit a hybridization signal for ITS. We suggest
that additional experiments, including flow cytometric
analysis and chromosomal painting should be conducted
to better clarify the origins of this apparent autoapomor-
phy within the P. tarsius group.
In the karyotypes of P. vaillantii, P. distincta and P.

bahiana, the most parsimonious explanation to the pres-
ence of ITS could be results of the amplifications of



Table 1 Species of Phyllomedusa analyzed, sample number (N) their respective sampling localities and voucher number

Species N Locality Voucher

P. vaillantti 01 Jacareacanga, Pará, Brazil. ZUEC 15998

P. vaillantti 05 Yasuní, Provincia del Orellana, Ecuador QCAZ 43241-43247

P. vaillantti 04 Porto Velho, Rondônia, Brazil ZEUC 17035; 17036

P. tarsius 05 Reserva Ducke, Manaus, Brazil ZUEC 16201-16204

P. tarsius 05 Yasuní/Provincia del Orellana, Ecuador QCAZ 47276; 47278-47280

P. distincta 03 Iporanga, São Paulo, Brazil ZUEC 17033-17035

P. bahiana 08 Alagoinhas, Bahia, Brazil ZUEC 20656-20662

ZUEC: Museu de Zoologia “Prof. Dr. Adão Cardoso”, do Instituto de Biologia da Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil; QCAZ: Museo de
Zoología de la Pontificia Universidad Católica del Ecuador (QCAZ), Quito, Ecuador.
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(TTAGGG)n repeats that occurred independently during
the chromosomal evolution of these species. The results
presented in this study will contribute to the under-
standing of the mechanisms of chromosomal evolution
that have operated in Phyllomedusa genus, and provides
evidences about the role of repetitive sequences in karyo-
types diversification in vertebrates.

Methods
We analyzed populations of P. vaillantii, P. tarsius, P.
distincta and P. bahiana sampled from Brazil and
Ecuador localities (Table 1). The collection of specimens
from Brazil was authorized by SISBIO/ Instituto Chico
Mendes de Conservação da Biodiversidade under number
20266–1. Specimens sampled in Brazil were deposited
in the Museu de Zoologia “Prof. Adão José Cardoso”
(ZUEC), at Universidade Estadual de Campinas, São
Paulo, Brazil and the vouchers of populations sampled
in Ecuador were deposited in the Museo de Zoología
de la Pontificia Universidad Católica del Ecuador (QCAZ),
Quito, Ecuador. The complete list of the species, localities
sampled, number of individuals examined, and voucher
numbers are provide in Table 1.
The chromosomal preparations were obtained from

intestinal and testicular cells of individuals previously
treated with colchicine (2%) for 4 h following procedures
modified from King and Rofe [55] and Schmid [56]. The
mitotic metaphases were stained with 10% Giemsa to
karyotyping determination. The identification of hetero-
chromatic regions was performed using C-banding tech-
nical followed Sumner [57] with modifications. To better
characterize the heterochromatic regions, C-banded chro-
mosomes were stained with fluorochrome AT-specific
DAPI and GC-specific Mytramycin (MM). We detected
the NORs positions using the Ag-NOR method [58].
The physical map of the rDNA genes and telomeric

sequences were detected by Fluorescent “in situ hybrid-
ization” (FISH) experiments using specific probes and
protocols. To detected rDNA genes, we used 28S frag-
ment isolated by Bruschi et al. [45]. The probe was
PCR-labeled with digoxigenin, hybridized according to
Viegas-Péquignot [59] and the hybridized signal was
detected with an anti-digoxigenin antibody conjugated
with rhodamine (Roche). Telomeric sequences was de-
tected using the telomeric PNA probe (CCCTAA)3
(peptide nucleic acid - PNA -Applied Biosystems), kit
performed following the manufactures’ manual. Meta-
phases were photographed under n Olympus BX-60 micro-
scope and analyzed using the Image Pro-Plus software,
version 4 (Media Cybernetics, Bethesda, MD, USA). The
chromosomes were measured and the centromere index
(CI), relative length (RL), and centromere ratio (CR) were
estimated. The chromosomes were ranked and classified
according to the scheme of Green and Sessions [60].
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