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ABSTRACT

Aim To test the Eltonian noise hypothesis (ENH), that biotic interactions do

not affect species distributions at large geographical scales.

Location The Brazilian cerrado, a central South American savanna and biodi-

versity hotspot.

Methods We modelled the distributions of 11 species of cerrado parrots using

the software Maxent at four different spatial resolutions. We built models

using abiotic variables, biotic variables (distribution of diet resources) and

models combining abiotic and biotic variables. We compared model perfor-

mance using the area under the curve of the receiver operating characteristic

(AUC), retrieved from test data. We partitioned the variance between sets of

predictors using a generalized linear model (GLM). Finally, we evaluated

whether improvement in model performance (higher AUC values) in models

with both abiotic and biotic variables, was related to the species’ dietary niche

breadth and/or spatial resolution of the models.

Results We found that model performance was improved in most cases by the

addition of biotic variables. Our variance-partitioning approach revealed that

abiotic and biotic variables contribute independently to the final model. We

found no relationship between model improvement and spatial resolution. We

also found no relationship between dietary niche breadth and model improve-

ment, indicating that dietary generalist and specialist species were not differ-

ently affected by the inclusion of biotic variables in the models.

Main conclusions Our results did not support the ENH. In this study, we

explicitly incorporated a biotic variable (diet resource distribution) into species

distribution models (SDMs), and we showed that these variables generally

improve models and have independent contributions. These results agree with

previous studies that incorporated biotic variables into SDMs. Ultimately, our

results indicate that SDMs performed with abiotic variables only may depict

only a partial representation of the geographical distribution of a species.

Keywords

AUC, Brazilian cerrado, diet, Eltonian noise hypothesis, Maxent, niche model-

ling, niche theory, Psittacidae, spatial resolution, variance partitioning.

INTRODUCTION

A primary goal in biogeography is to understand what fac-

tors shape the distributions of species (Gaston, 2009). Species

distributions are complex biological phenomena and many

factors interact to determine a species’ geographical range

(Sexton et al., 2009). Understanding the ecological and

evolutionary dynamics of species ranges can provide valuable

insights into a wide range of biological phenomena, such as

biological invasions (Peterson, 2003), organismal responses

to large-scale environmental fluctuations in the past (Gra-

ham et al., 1996) and predicted future responses to climate

change (Parmesan, 2006). The overarching factors that deter-

mine the geographical distributions of species are: how
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organisms relate to their environment (i.e. niche require-

ments); interspecific interactions, such as competition, preda-

tion and parasitism (Chave et al., 2002); and historical

factors, such as a lack of dispersal opportunities (Brown

et al., 1996). The interplay between these factors will deter-

mine species distributions [see the BAM (biotic, abiotic and

migration) diagram in Sober�on (2007)], and teasing apart

the relative contribution of these factors for different groups

of organisms remains a major challenge (Endler, 1982; Costa

et al., 2008).

Environmental conditions (e.g. species’ abiotic niche

requirements) are considered to be the main factor limiting

species distributions at large geographical scales (Grinnellian

niche sensu Sober�on, 2007) (Pearson & Dawson, 2003;

Sober�on, 2007; Sober�on & Nakamura, 2009). Quantifying the

abiotic niche does not, however, explain the entire distribu-

tion for every species. Species can occur in habitats outside

their abiotic niche, because recurrent dispersal sustains ‘sink’

populations (Pulliam, 2000), or a species may be absent from

habitat within its abiotic niche because of dispersal barriers

or biotic interactions (e.g. presence of a competitor or lack

of crucial resources; Eltonian niche sensu Sober�on, 2007).

Despite empirical and theoretical evidence for multifactor

control of species distributions, the assumption that abiotic

factors govern species distributions at large geographical

scales is the foundation of recent methodologies for species

distribution modelling (SDM; Elith & Leathwick, 2009).

Research on SDM has grown impressively in the last decade,

with studies applying various methods to many different

questions in biogeography, macroecology, evolutionary biol-

ogy and conservation (e.g. Peterson, 2003; Wiens et al., 2006;

Costa et al., 2007, 2008; Costa & Schlupp, 2010). Despite

usually not incorporating biotic interactions (but see Ara�ujo

& Luoto, 2007; Heikkinen et al., 2007; Meier et al., 2010),

SDM has demonstrated considerable predictive value (e.g.

Feria et al., 2002; Raxworthy et al., 2003; Elith et al., 2006;

Costa et al., 2010).

How then can models relying only on abiotic variables

depict such an accurate projection of species distributions?

To explain this apparent paradox, two hypotheses have been

formulated (Sober�on & Nakamura, 2009). First, biotic factors

may correlate closely with abiotic variables that capture an

important part of the biotic signature (Brewer & Gaston,

2003; Sober�on & Nakamura, 2009). On the other hand, bio-

tic interactions may not affect distributions at the large

extents and low resolutions that characterize most geographi-

cal distribution maps (Prinzing et al., 2002). The latter argu-

ment constitutes what has been termed the Eltonian noise

hypothesis (ENH; Sober�on & Nakamura, 2009). Under this

scenario, biotic interactions may be a major driver of abun-

dance at smaller spatial resolutions but, because species dis-

tribution models (SDMs) are typically produced at coarse

resolutions, the effects of biotic interactions may be averaged

out (Sober�on, 2007; Sober�on & Nakamura, 2009). In fact,

the role of biotic interactions in determining species distribu-

tions and its effects on SDM accuracy have been underscored

as a major challenge for SDM research (Ara�ujo & Guisan,

2006; Elith & Leathwick, 2009; Zimmermann et al., 2010),

with recent studies proposing different methods to account

for biotic interactions in SDM (Boulangeat et al., 2012; Kis-

sling et al., 2012). There is a growing interest in studies that

explicitly tackle these questions (e.g. Ara�ujo & Luoto, 2007;

Heikkinen et al., 2007; Real et al., 2009; Costa & Schlupp,

2010; Meier et al., 2010). Moreover, taken together, these

studies have only modelled a few species and, in some cases,

the selection of species was not random; species were selected

because of prior expectations that specific biotic interactions

would be important to explain their distribution at local and

landscape levels. The general importance of biotic interac-

tions in explaining species distributions therefore remains to

be determined.

Here, we examine the ENH using the geographical distri-

butions of dietary resources for different species of cerrado

parrots as a metric for biotic interaction. Specifically, we test

three predictions deriving from the ENH. First, that models

using biotic only and/or abiotic + biotic variables do not

perform better than models using abiotic variables only. Sec-

ond, the importance of biotic interactions should be higher

at finer resolutions and decrease at coarser resolutions

(Sober�on & Nakamura, 2009). Third, we expect that if there

is improvement in models containing biotic variables, it

should be more evident in species exhibiting stronger biotic

interactions (i.e. food specialists). Foraging strategy can vary

substantially among parrot species and some species show

great dependence on specific plants whereas others may use

many different plant species (Roth, 1984; de Ara�ujo &

Marcondes-Machado, 2011). This makes Neotropical parrots

a good system to test the ENH, because we have different

strengths of biotic interaction in a group of closely related

organisms.

MATERIALS AND METHODS

Study system

The cerrado is a South American savanna and the second

largest Neotropical biome. It contains an impressive biodi-

versity and is one of the world’s most threatened regions

(Myers et al., 2000). Da Silva (1995) registered 837 bird spe-

cies in the cerrado, with over 90% of those breeding in the

region. However, the cerrado shows little bird endemism, as

only 3.8% of breeding species are actually endemic (da Silva,

1995). There are 33 parrot species present in the cerrado,

representing almost 40% of all Brazilian parrot species

(CBRO, 2010), but again with little endemism as only two of

those species are endemic (da Silva, 1995).

Cerrado parrots exhibit substantial variation in foraging

strategy. Most species in the group are food generalists, such

as Brotogeris chiriri, which feeds on 45 different plant species

in four localities in the state of S~ao Paulo (Paranhos et al.,

2007), consuming at least 116 different plant species over its

entire range (de Ara�ujo, 2011). Other species are highly
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specialized, including the red-bellied macaw (Orthopsittaca

manilata), which moves great distances to find fruits of

Mauritia palm (Mauritia flexuosa) (Roth, 1984; da Silva,

2009), or Anodorhynchus hyacinthinus, which feeds mainly on

two plant species in the Brazilian pantanal (Antas et al.,

2010). This diversity of biotic requirements makes parrots a

useful model to test the ENH and to explore the influence of

biotic interactions on species distributions.

Although 33 parrot species have been recorded in the cer-

rado (da Silva, 1995), some of them were found only in sin-

gle locations and might not be typical cerrado species. We

used only species that occur in several localities over a wide

geographical range within the cerrado, including species with

different habitat restrictions and different geographical range

sizes and positions. We thus avoided using species that are

typical of different ecosystems and have only been registered

in a few cerrado localities. Hence, we have chosen species

that are present in a wide range of cerrado habitats and have

available diet data (see Appendix S1 in the Supporting Infor-

mation). Based on these two criteria, we selected the follow-

ing 11 cerrado parrot species: Amazona aestiva, Alipiopsitta

xanthops, Pionus maximiliani, Forpus xanthopterygius, Arat-

inga aurea, Ara ararauna, Ara chloropterus, Anodorhynchus

hyacinthinus, Orthopsittaca manilata, Diopsittaca nobilis and

Brotogeris chiriri. These 11 species are typical of cerrado, have

diet information, and exhibit considerable variation in die-

tary breadth. We followed the Brazilian Committee for Orni-

thological Records (CBRO, 2010) for parrot species

taxonomy.

Species distribution modelling

Species distribution modelling (SDM) requires two distinct

data sets: occurrence information for the species of interest

(georeferenced localities), and GIS layers of abiotic and/or

biotic variables. We used Maxent 3.3.3k, a method that has

been demonstrated to perform well in a diverse set of model-

ling scenarios and is widely used in a great number of stud-

ies in ecology, biogeography and conservation (Elith &

Leathwick, 2009). The algorithm in Maxent works by fitting

a probability distribution for species occurrence to the set of

pixels across the region of interest. For a detailed explanation

on how the maximum entropy principle applies to SDM, see

Elith et al. (2011). We performed 100 replications, using a

cross-validation procedure where we divided our dataset

using 75% of data for model calibration and retaining 25%

of the data to evaluate models. We report the mean and

standard deviation of area under the curve of the receiver

operating characteristic (AUC) test values for the 100 runs.

We used Maxent default parameters (Phillips & Dud�ık,

2008).

We used different methods to obtain locality data for par-

rots and their diet plants. In order to acquire parrot locali-

ties, we searched through the Ornis (http://www.ornisnet.

org/) and Species Link (http://www.splink.cria.org.br/) data-

bases, and requested data directly from museum curators

and researchers. To obtain data for the plant species, we used

the Species Link (http://splink.cria.org.br/), Tropicos (http://

www.tropicos.org/) and the New York Botanical Garden

(http://www.nybg.org/) databases. Together, these databases

gave us access to a great number of plant collections. A com-

plete data list is available from the authors upon request.

Abiotic variables

We used the bioclimatic environmental variables from the

WorldClim project version 1.4 (Hijmans et al., 2005; avail-

able online at: http://www.worldclim.org/). These variables

were downloaded from the WorldClim project at four differ-

ent spatial resolutions: 10, 5 and 2.5 arc-minutes, and 30

arc-seconds (approximately 20, 10, 5 and 1-km cell sizes,

respectively). The bioclimatic layers were cropped to span

latitudes from 12° 47′ N to 34° 46′ S and longitudes from

78° 31′ W to 35° W; this represents a larger spatial range

than the cerrado region and also includes tropical and sub-

tropical zones with bioclimatic conditions compatible with

the occurrence of cerrado species. To avoid overfitting the

models and using redundant climatic variables, we identified

highly correlated variables (r > 0.9) and excluded one of

them from the model based on their biological relevance. We

then built another correlation matrix and repeated the proce-

dure until all variables kept in the model presented correla-

tions lower than 0.9; a similar procedure was described in

Rissler & Apodaca (2007). We used a total of nine abiotic

environmental variables: BIO3, isothermality; BIO4, tempera-

ture seasonality; BIO7, annual temperature range; BIO10,

mean temperature of the warmest quarter; BIO11, mean

temperature of the coldest quarter; BIO14, precipitation of

the driest month; BIO15, precipitation seasonality; BIO16,

precipitation of the wettest quarter; and BIO17, precipitation

of the driest quarter.

Biotic variables

Coarse-grained layers of abundances for specific plants would

be the ideal dataset by which to estimate diet resource avail-

ability, but such data are not easily available, especially for

larger geographical extents. In order to capture geographical

variation in the availability of parrot food resources, we built

SDMs for key plant species that were included in the diet of

each parrot species (Appendix S1). The results of these mod-

els are raster grids in which values can range from 0 to 1

(Maxent, logistic output), where higher values indicate

higher probability of occurrence. Previous studies have

shown that the values of these grids also correlate with spe-

cies abundance, where localities with higher values have

higher abundance values for the species being studied (Van-

DerWal et al., 2009; Kulhanek et al., 2011; Oliver et al.,

2012; Tôrres et al., 2012). Here, we use these grids directly

in SDMs as representations of biotic variables. In this case,

the grids are a proxy for plant species abundance or a mea-

sure of dietary resource availability. The procedure we
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adopted to select which plants represent the relevant biotic

variables for each parrot species is described in Appendix S1.

In addition, because the biotic variables were suitability

scores already obtained from the abiotic variables, we trans-

formed the biotic continuous scores into binary (presence/

absence) maps, and then used those maps as the biotic

variable. This approach has been used before in the literature

to incorporate biotic variables in SDMs (Barbet-Massin &

Jiguet, 2011). The use of binary versus continuous plant

models did not qualitatively change the results; we therefore

present only the results of the analysis with the continuous

models. Details and results of the analysis using binary maps

can be seen in Appendix S2.

We modelled parrot distributions using (1) abiotic vari-

ables alone, (2) biotic variables alone, and (3) both abiotic

and biotic variables. All models for plant species were con-

structed using the methods and abiotic variables described in

the previous section. The ENH can be rejected if the models

using biotic only and/or abiotic + biotic variables perform

better than models using abiotic variables only. We also

expect that the importance of biotic interactions should be

higher at finer resolutions and decrease at coarser resolutions

(Sober�on & Nakamura, 2009). Moreover, we expect that if

there is improvement, it should be more evident in species

exhibiting stronger biotic interactions (i.e. food specialists).

Variance partitioning

In order to determine the amount of independent and shared

information contained in the abiotic and biotic variables, we

used a variance-partitioning approach. We fitted generalized

linear models (GLM) with presence and pseudo-absence as the

response variables and using three different combinations of

predictors for each parrot species: just the abiotic variables

(abiotic), just the biotic variables (biotic), and the abiotic and

biotic variables combined (full). Model fit was evaluated using

the adjusted coefficient of determination (adj. R2). There are

many different ways to calculate coefficient of determination

for logistic regression models; we use McFadden’s (McFadden,

1974). This metric is preferable to other R2 analogues because

it has the most intuitive interpretation and is the most gener-

ally applicable and consistently useful (Menard, 2000). To par-

tition the variance explained by the abiotic and biotic

variables, we calculated the three partial models as discussed

above, estimating the adjusted R2 for each model type per spe-

cies. Next, the pure effect of abiotic variables was calculated as

R2
pure.abiotic = 1 � R2

biotic. The pure effect of biotic variables

was calculated as R2
pure.biotic = 1 � R2

abiotic, and the effect

shared by abiotic and biotic variables was calculated as

R2
shared.abiotic+biotic = 1 � R2

pure.abiotic � R2
pure.biotic. Similar

variance-partitioning procedures have been used in other

SDM contexts have been performed in recent work (Mu~noz &

Real, 2006; Real et al., 2013). In this procedure, the output val-

ues are the proportional contribution to the total variation

explained by the model. The amount of unexplained variation

is not known (Real et al., 2013). We used R 2.15 (R Develop-

ment Core Team, 2012) in all analyses and the varPart func-

tion of the package modEvA (Barbosa et al., 2013) for

variance partitioning. For the GLM, we selected 10,000 ran-

dom pseudo-absences points from throughout the sampling

region, as suggested by Barbet-Massin et al. (2012).

Testing the Eltonian niche hypothesis

We tested the ENH (Sober�on & Nakamura, 2009) by com-

paring the performance of models produced with only abi-

otic variables to models produced using only biotic variables

and both abiotic and biotic variables. SDMs are traditionally

evaluated by using the AUC statistic. The curve is obtained

by plotting all sensitivity values (true positive fraction) on

the y-axis against their equivalent (1 � specificity) values

(false positive fraction) for all available thresholds on the

x-axis. The AUC provides a threshold-independent measure

of model performance as compared with that of null expec-

tations (Fielding & Bell, 1997). Many studies have pointed

out problems with the AUC approach in SDM, but these

problems mostly concern the comparison of different meth-

ods and/or species, which is not the case here (Raes & ter

Steege, 2007; Lobo et al., 2008; Peterson et al., 2008). To

assess whether models generated with different sets of predic-

tors (abiotic; biotic; abiotic + biotic) yielded different mean

AUC values, we performed analyses of variance (ANOVAs)

with Tukey’s post-hoc test to explore which pairwise com-

parisons were significant. We used 100 replicates for each

species and set of predictors in cross-validation runs, holding

25% of occurrence points to validate and calculate AUC sta-

tistics. In addition, to test whether the number of compari-

sons that resulted in increases of AUC with the addition of

biotic variables would be higher than expected by chance, we

used Wilcoxon’s signed-rank test, using all comparisons

between abiotic and abiotic + biotic models. Finally, we used

GLMs to test for differences in omission and commission

error rates in models built with the different set of predic-

tors. Should there be differences in AUC values (e.g. higher

AUC with the addition of biotic variables), model improve-

ment can be achieved by decreasing omission and/or com-

mission error rates. In the case of omission errors, the

addition of biotic variables would improve the ability of the

models to correctly classify a presence even when abiotic

conditions are marginally suitable. In the case of commission

errors, the addition of biotic variables could remove from

models areas that have suitable abiotic conditions but not

suitable biotic conditions. We compared average omission

and commission test rates for our 100 runs. We performed

the analysis using three different criteria to select a threshold

to transform continuous output into binary predictions

(minimum training presence, 10% training presence, and

equal sensitivity and specificity).

There is also the possibility that the ENH is only refuted

when stronger levels of biotic interactions are present. In this

case, we expect that species with narrow dietary niche breadth

(specialists) would present a greater model improvement
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(higher differences between AUCs from abiotic versus abiotic

+ biotic models), as the dependence on the food resource

would be the highest. We therefore expect a negative

relationship between model improvement (for models with

biotic variables) and dietary niche breadth. To test for a

relationship between dietary niche breadth and model

improvement, we used a general linear model. As a measure

of model improvement we calculated the proportional

measure of AUC improvement AUCimp = (AUCabiotic+biotic

� AUCabiotic)/AUCabiotic. As a measure of parrot dietary

niche breadth, we used their diet richness (see Appendix S1).

The ENH also predicts that biotic interactions will be

more important at higher resolutions. To test for this effect,

we calculated AUCimp within resolutions between models

with the abiotic-only set of predictors and models with both

abiotic and biotic predictors, for each species. Next, we per-

formed a nonparametric analysis of variance (Kruskal–

Wallis) to assess differences between median proportional

increase in AUC among resolutions. ENH would predict that

proportional improvement of AUC would be higher at 30–

arc-seconds resolution (our highest resolution). All statistical

analyses were carried out in R 2.15 (R Development Core

Team, 2012).

RESULTS

On average, we collected 92 unique localities per grid cell for

the 11 chosen cerrado parrot species (n = 1014; minimum of

68 for Orthopsittaca manilata and a maximum of 132 for

Brotogeris chiriri; Appendix S2). Using our plant importance

index (I), we determined the most important food resource

for each parrot species (Appendix S1). We obtained on aver-

age 98 unique localities for each key plant species (n = 4715;

minimum of 13 for Sterculia apetala and maximum of 528

for Qualea parviflora).

The parrot SDMs using only biotic variables performed

worst. Abiotic-only models generally provided a good dis-

crimination capacity, with most AUC values ranging between

0.792 and 0.931 (Fig. 1). Despite the initial good perfor-

mance of the models, the inclusion of biotic variables

increased AUC for all SDMs generated with one of the reso-

lutions modelled (Fig. 1, Appendix S2). For six species

(Amazona aestiva, Ara ararauna, Ara chloropterus, Alipiopsitta

xanthops, Brotogeris chiriri and Forpus xanthopterygius), mod-

els at all four resolutions had higher mean AUC values when

biotic variables were included in the model. For Anodorhyn-

chus hyacinthinus and Pionus maximiliani, the addition of

biotic variables resulted in higher mean AUC values at three

different resolutions. Aratinga aurea, Diopsittaca nobilis and

Orthopsittaca manilata produced mixed results, with different

sets of models achieving better performance at different reso-

lutions. The ANOVA comparison of mean AUC values from

models using different sets of predictors showed that biotic-

only models had significantly lower values than abiotic-only

and abiotic + biotic models (Fig. 1). No models using

abiotic-only variables had significantly higher AUC values.

Higher AUC values were found in 36% of comparisons when

abiotic + biotic models were used. The remaining compari-

sons were not statistically significant (Fig. 1, Appendix S2).

Also, the Wilcoxon signed-rank test showed that the number

of comparisons that resulted in increased AUC with the

addition of biotic variables is higher than expected by chance

(z = 4.33; P < 0.001).

The results of our comparison of omission and commis-

sion errors between models fitted only with abiotic vari-

ables versus models fitted with abiotic and biotic variables,

depended on species, resolution and choice of threshold.

In general, however, most significant comparisons showed

that models with abiotic and biotic variables have lower

commission errors and higher omission errors (Appendix

S2). Overall, there was no difference in proportional

improvement of AUC for models using only abiotic vari-

ables versus models with abiotic and biotic variables at dif-

ferent resolutions (Kruskal–Wallis v2 = 1.75, d.f. = 3,

P = 0.62). The variance-partitioning approach showed that,

for the majority of species at all different modelled resolu-

tions, the pure abiotic contribution was higher than the

pure biotic contribution. The magnitude of the shared

effect represents the proportion of the model variation that

is attributable to either kind of variable. In our case, the

shared component had high negative values, indicating

strong independent contributions of the two sets of predic-

tors (Table 1).

Rarefaction of diet data shows that the three macaws

(Anodorhynchus hyacinthinus, Ara chloropterus and Orthop-

sittaca manilata) have the most specialized diets; Amazona

aestiva, Pionus maximiliani, Brotogeris chiriri and Aratinga

aurea have generalist diets (Appendix S2). Orthopsittaca

manilata specializes on Mauritia palm (Maurita flexuosa), so

only a single diet component was considered for this species.

There was no relationship between diet specialization and

proportional increase in AUC (GLM, z = �0.13, P = 0.89).

DISCUSSION

The Eltonian noise hypothesis states that biotic interactions

will not be relevant to predict species distributions at

coarse-grained resolutions and large extents. Based on this

hypothesis, we predicted that the addition of biotic variables

in relatively coarse models would not lead to significant

improvements in model predictions. Despite some excep-

tions, our overall results did not support this hypothesis, as

most species yielded higher AUC when biotic variables were

added to the set of predictors. We also found that the

increase in AUC is likely to be caused by a reduction of

commission errors, suggesting that the addition of biotic

variables narrows model predictions to areas that have suit-

able abiotic and biotic conditions. A visual inspection of the

models also confirms that pattern (Appendix S3). Our results

support the findings of previous studies that investigated the

influence of biotic interactions in distribution models, which

found a substantial influence of biotic variables in explaining

Journal of Biogeography 41, 513–523
ª 2013 John Wiley & Sons Ltd

517

Biotic interactions in species distribution models



coarse-scale distributions (Ara�ujo & Luoto, 2007; Heikkinen

et al., 2007; Meier et al., 2010). Ara�ujo & Luoto (2007)

tested the role of three host plants on the distribution of the

European clouded apollo butterfly (Parnassius mnemosyne)

and found that biotic interactions significantly affected both

the explanatory and predictive power of SDMs at macro-

scales. Heikkinen et al. (2007) showed that owl distribution

models using climate, land cover and biotic interactions

(presence of a facilitator species – woodpeckers) generated

higher AUC values than models using only climate and land
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Figure 1 Statistical results of SDM for 11 species of parrots in the Brazilian cerrado. Average AUC values for test data for models at

different resolutions (error bars = standard deviation): (a) 30 arc-seconds; (b) 2.5 arc-minutes; (c) 5 arc-minutes; and (d) 10 arc-
minutes. We used 100 replicates for each species and set of predictors in cross-validation runs holding 25% of occurrence points to

validate and calculate AUC statistics. Aae, Amazona aestiva; Aar, Ara ararauna; Aau, Aratinga aurea; Ach, Ara chloropterus; Ahy,

Anodorhynchus hyacinthinus; Axa, Alipiopsitta xanthops; Bch, Brotogeris chiriri; Dno, Diopsittaca nobilis; Fxa, Forpus xanthopterygius;
Oma, Orthopsittaca manilata; Pma, Pionus maximiliani. Asterisks (*) on top of bars indicate significant differences between abiotic-only

and abiotic + biotic models. *P < 0.05, **P < 0.01, ***P < 0.001.
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cover. Meier et al. (2010), studying the distribution of 11

tree species in Switzerland, found not only that the inclusion

of biotic variables increased model quality, but also that the

component of variation explained by these two sets of vari-

ables showed little redundancy.

Our variance-partitioning approach demonstrated a nega-

tive shared variance component. A negative value in the

shared component of the variance indicates that the two

groups of variables, together, explain the response variable

better than the sum of the individual effects of these vari-

ables. This occurs when the set of predictors have opposing

effects on the response (Legendre & Legendre, 1998). Nega-

tive values could also appear when there are strong correla-

tions between groups of variables. We examined the

correlation between abiotic and biotic variables for each spe-

cies and we generally find no strong correlations. Our results

suggest that biotic variables provide valuable new informa-

tion within the models, which is independent of the abiotic

predictors.

We also evaluated the prediction that model improvement

would be related to the species’ dietary niche breadth, which

is a surrogate for the strength of the biotic interaction.

Again, we found no support for this prediction, as there was

no relationship between AUC improvement and diet rich-

ness. In fact, Amazona aestiva had the most generalist diet

and showed model improvement with the addition of biotic

variables at all resolutions. We also tested a prediction

derived from the ENH, that models accounting for biotic

interactions would have higher proportional AUC increase at

higher resolution. We found no support for this prediction,

as we found no relationship between model improvement

and resolution. The ENH was, however, explicitly proposed

in a context where biotic interactions would take place at a

much higher resolution than the ones used in this study

(Sober�on & Nakamura, 2009). Our finest resolution (1-km

cell size) may still be too coarse for a proper assessment of

the relationship between the importance of biotic variables

and species distributions, although parrots use a large

portion of their habitat on a daily basis (de Ara�ujo &

Marcondes-Machado, 2011; de Ara�ujo et al., 2011). A more

appropriate test of this prediction would consider much finer

resolutions. Nevertheless, a previous study using coarse-

grained resolutions was able to show that biotic interactions

were more important at relatively higher resolution (Heikki-

nen et al., 2007).

One of the main reasons for the growth of studies applying

SDM methods is the increase in availability of world-wide

abiotic environmental variables that are easily downloaded

and incorporated into SDMs (Graham et al., 2004; Peterson,

2006; Kozak et al., 2008). On the other hand, biotic interac-

tions are not easily mapped onto geographical space and very

few studies have therefore been able to incorporate them into

modelling. Many studies using only abiotic variables have

nonetheless been able to provide good estimates of species

distributions, and have helped address many questions in bio-

geography, evolution and conservation (Elith & Leathwick,

2009). Our study has important implications for SDM

research. Our results, together with previous evidence, suggest

that the use of biotic variables improves the resulting models.

Our methods can be adapted to be used for models of differ-

ent types of organisms, especially organisms that feed on par-

ticular plant species. The understanding of species

geographical distributions and its implications for theoretical

and applied research has gained considerable attention since

the advent and development of SDM methods (Elith et al.,

2006; Kozak et al., 2008; Elith & Leathwick, 2009). There are

still many challenges facing the field, and factors such as sam-

ple size (Stockwell & Peterson, 2002; Hernandez et al., 2006),

spatial scale (Lassueur et al., 2006; Guisan et al., 2007; Trivedi

et al., 2008) and the nature of the environmental data set

Table 1 Summary of variance-partitioning approach for models of 11 parrot species from the Brazilian cerrado. Coefficients of

determination (adj. R2) are listed for models containing only the abiotic set of predictors, only the biotic set of predictors, and both
abiotic and biotic variables. In some cases, the shared component may become negative as a result of opposing effects of the two sets of

predictors in the full model (Legendre & Legendre, 1998).

Species

Abiotic only Biotic only Shared

30″ 2.5′ 5′ 10′ 30″ 2.5′ 5′ 10′ 30″ 2.5′ 5′ 10′

Amazona aestiva 0.85 0.84 0.82 0.83 0.86 0.87 0.86 0.86 �0.72 �0.71 �0.68 �0.69

Ara ararauna 0.99 0.99 0.99 0.99 0.91 0.89 0.90 0.90 �0.90 �0.88 �0.89 �0.89

Aratinga aurea 0.90 0.90 0.90 0.90 0.86 0.86 0.86 0.86 �0.75 �0.76 �0.76 �0.75

Ara chloropterus 0.99 0.98 0.98 0.98 0.92 0.92 0.92 0.91 �0.90 �0.90 �0.90 �0.88

Anodorhynchus hyacinthinus 0.94 0.93 0.92 0.91 0.81 0.80 0.80 0.80 �0.76 �0.74 �0.72 �0.71

Alipiopsitta xanthops 0.91 0.91 0.91 0.91 0.83 0.83 0.84 0.83 �0.74 �0.74 �0.75 �0.74

Brotogeris chiriri 0.94 0.94 0.88 0.88 0.86 0.85 0.85 0.85 �0.79 �0.79 �0.73 �0.73

Diopsittaca nobilis 1.00 1.00 0.99 0.99 0.87 0.88 0.88 0.87 �0.87 �0.87 �0.87 �0.86

Forpus xanthopterygius 0.88 0.88 0.88 0.88 0.89 0.90 0.90 0.90 �0.78 �0.78 �0.78 �0.78

Orthopsittaca manilata 0.98 0.98 0.98 0.98 0.90 0.90 0.90 0.90 �0.89 �0.88 �0.88 �0.88

Pionus maximiliani 0.91 0.89 0.89 0.89 0.90 0.90 0.91 0.91 �0.81 �0.79 �0.80 �0.80

Average 0.94 0.93 0.92 0.92 0.87 0.87 0.87 0.87 �0.81 �0.80 �0.80 �0.79

SD 0.05 0.05 0.06 0.06 0.03 0.03 0.04 0.04 0.07 0.07 0.08 0.08
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(Parra et al., 2004; Peterson & Nakazawa, 2008) have been

identified as influences on the outcome of models produced.

Among the myriad potential factors, the role of biotic interac-

tions has been considered one of the major challenges, and

despite many recent developments, has not been adequately

explored (Pearson & Dawson, 2003; Elith & Leathwick, 2009;

Zimmermann et al., 2010). Recent studies have explored the

conceptual and methodological issues regarding the role of

biotic interactions in SDM (Boulangeat et al., 2012; Godsoe

& Harmon, 2012; Wisz et al., 2013). This is not only a theo-

retical but also a practical problem for SDM, because the use

of biotic variables in SDM requires complex biological phe-

nomena to be mapped. This comes from the fact that biotic

interactions may come in many forms. Our study explicitly

incorporated a biotic variable (diet resource distribution) into

SDMs, and we showed that we generally obtain improved

models by doing so. This demonstrates that SDMs performed

only with abiotic variables may depict only a partial represen-

tation of a species’ geographical distribution. However, as

seen in our results, there are species where the addition of

biotic variables did not improve model performance, so we

acknowledge that much work is still needed to provide a gen-

eral theoretical and practical framework for the role of biotic

interactions in predicting large-scale geographical distribu-

tions.
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Additional Supporting Information may be found in the

online version of this article:

Appendix S1 Methods for selection of plant species, and

methods to estimate parrot diet richness.

Appendix S2 Numerical results of the analysis shown in

Fig. 1 and results of the analysis using as biotic variables the

transformation of continuous scores into binary (presence/

absence) maps.

Appendix S3 Supplementary figures: species distribution

models for the 11 parrot species and 24 plant species studied.
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