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Towards a reliable prediction of the aquatic 
toxicity of dyes
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Reza Aalizadeh4, Peter C. von der Ohe5, Nikolaos S. Thomaidis4, Nelson R. Vinueza2 and Harold S. Freeman2

Abstract 

Background: The Max Weaver Dye Library (MWDL) from North Carolina State University is a repository of around 
98,000 synthetic dyes. Historically, the uses for these dyes included the coloration of textiles, paper, packaging, cos-
metic and household products. However, little is reported about their ecotoxicological properties. It is anticipated that 
prediction models could be used to help provide this type information. Thus, the purpose of this work was to deter-
mine whether a recently developed QSAR (quantitative structure–activity relationships) model, based on ACO-SVM 
techniques, would be suitable for this purpose.

Results: We selected a representative subset of the MWDL, composed of 15 dyes, for testing under controlled condi-
tions. First, the molecular structure and purity of each dye was confirmed, followed by predictions of their solubility 
and pKa to set up the appropriate test conditions. Only ten of the 15 dyes showed acute toxicity in Daphnia, with  EC50 
values ranging from 0.35 to 2.95 mg  L−1. These values were then used to determine the ability of the ACO-SVM model 
to predict the aquatic toxicity. In this regard, we observed a good prediction capacity for the 10 dyes, with 90% of 
deviations within one order of magnitude. The reasons for this outcome were probably the high quality of the experi-
mental data, the consideration of solubility limitations, as well as the high purity and confirmed chemical structures 
of the tested dyes. We were not able to verify the ability of the model to predict the toxicity of the remaining 5 dyes, 
because it was not possible to determine their  EC50.

Conclusions: We observed a good prediction capacity for the 10 of the 15 tested dyes of the MWDL, but more dyes 
should be tested to extend the existing training set with similar dyes, to obtain a reliable prediction model that is 
applicable to the full MWDL.
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Background
Following the development of synthetic dyes during the 
period covering the mid-nineteenth and early twentieth 
centuries, when dyes were mainly used for textile colora-
tion [1], the end of the twentieth century was marked by 
an emphasis on dye design for non-textile applications 
[2]. Consequently, dyes are nowadays used in almost all 
types of products on the market, including textiles, food, 
paper, plastics, packaging, biomaterials, lasers, diag-
nostic products, solar capture, household products and 

cosmetics. And there is still a search for new applica-
tions, especially in the medical arena.

The rapid development of new dye-based commercial 
products would benefit from the ability to screen large 
databases containing a wide variety of molecular struc-
tures. We believe that the Max Weaver Library (http://
www.youtu be.com/watch ?time_conti nue=7&v=vIdB1 
aTx5c Y) is such a database, as a repository of 98,000 
physical dyes samples donated to the North Carolina 
State University in 2014 (Fig.  1). It was anticipated that 
this donation would lead to technological advances for 
the good of society. To help enable these advances, steps 
were taken to digitize the dye structures, together with 
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their spectroscopic properties, and to make this informa-
tion publicly available [3, 4].

Because unspent dyes from coloration processes can 
end up in freshwater and marine environments, their 
aquatic toxicity needs to be determined before intro-
ducing them to the marketplace (e.g., REACH, 2000). In 
cases where a lot of candidates are screened, prediction 
models such as QSARs (quantitative structure–activity 
relationships) can help in the identification of the less 
toxic ones.

Ecotoxicity predictions from chemical structures via 
QSAR models are often restricted by small or biased 
training sets (i.e., experimental bioassay results of well-
known chemicals) as well as limited knowledge about all 
modes of action involved. Baseline toxicity is assumed to 
be the minimum toxicity of any neutral organic chemical, 
which is often associated with the phenomenon of nar-
cosis, and is used as default model in these cases. On the 
contrary, reactive or specific modes of actions may result 
in excess toxicity, i.e., being more toxic than expected 
from narcosis alone. Narcosis toxicity can be predicted 
quantitatively with good accuracy from chemical struc-
ture for various aquatic species, but there is no general 
model available for predicting the toxicological potency 
across different modes of action with comparable quality 
[5].

Building non-generic QSAR models is a way to trade 
off between prediction accuracy and the application 
domain. For instance, the existing baseline QSARs some-
times underestimate the acute toxicity for compounds 
deviating from the octanol–water partition coefficient 
(log Kow) regression line. In these cases, the predic-
tion accuracy can be enhanced by inclusion of the ioni-
zation potency of the chemical or the use of consensus 
log Kow values from various models. Recently, a QSAR 
study, based on a non-linear regression method (i.e., a 
support vector machine) [6], was developed to predict 
the acute toxicity to Daphnia magna. The model has 

good prediction accuracy for emerging compounds with 
a wide polarity range. It includes a defined applicability 
domain and has a rather low prediction error (89.7% of 
the test data set was predicted with less than a onefold 
logarithmic error).

In general, the current literature on experimental eco-
toxicity values of dyes is rather scarce and many tests 
were performed in the late 70–80  s, e.g., [7, 8]. At that 
time, the confirmation of the chemical structures of 
dyes and information on their purity were often missing. 
Sometimes, the commercial dye, which usually contains 
several auxiliaries (e.g., surfactants), was tested and the 
results were reported as for the dye itself [9–13], con-
founding the test results.

The purpose of this work was, therefore, to verify 
whether the recently developed ACO-SVM QSAR model 
would be a good tool to correctly predict the acute eco-
toxicity available from existing experimental data as well 
as for a newly tested subset of dyes from the MWDL.

Materials and methods
Literature toxicity data for model validation
As a first step, we collected acute toxicity data to the 
water flea Daphnia magna for 22 commercial color-
ants (dyes and pigments) that were available in the peer-
reviewed literature to help validate the ACO-SVM model. 
However, the data found pertained to 3 water-insoluble 
organic pigments, 13 sparingly water-soluble disperse 
dyes, and 6  water soluble (2  FD&C and 4 acid dyes). 
Because the majority of the dyes in the MWDL belong to 
the class of disperse dyes, we focused our data collection 
on dyes of this class. Moreover, we included dyes that are 
commonly used in detergents and for which experimen-
tal toxicity data are available from REACH registration 
dossiers [14]. Experimental and predicted toxicity data 
were compiled together with their predicted and, if avail-
able, experimental water solubility (Table 1).

Selection of 15 dyes from the MWDL for toxicity testing
Initially, 15 dyes were selected for testing from a group 
of 200 dyes, previously defined as representative of the 
MWDL [3]. The selection was made based on or con-
sidering a visual inspection of the dye material and the 
quantity available. Due to limitations in sample quanti-
ties, it was important to define a strategy for the most 
comprehensive evaluation of the dyes, using a minimum 
amount of sample. For this study, 20 mg of each dye was 
taken from the library and used for chemical characteri-
zation and ecotoxicity testing.

Fig. 1 An example of the physical dyes samples in the MDWL
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Chemical characterization of the dyes’ samples
Each dye of the library is stored in a vial with a label con-
taining its number and chemical formula (Fig.  1). As a 
quality control procedure, the molecular mass of each 
dye was confirmed, and the purity determined before 
acute toxicity testing. Purity analysis was performed on 
HPLC–MS systems from Thermo Fisher Scientific and 

Agilent Technology except for dyes 117 and 118, which 
were only performed in the Agilent instrument.

The exact mass of each dye was determined by an Agi-
lent Technologies 1260 high-performance liquid chroma-
tography (HPLC) system coupled with an Agilent 6520B 
Q-TOF high-resolution mass spectrometer. To achieve 
optimum HPLC separation, a gradient mobile phase 

Table 1 Summary of  the  acute toxicity data reported in  the  literature, toxicity predictions using the  ACO-SVM model, 
predicted intrinsic solubility and experimental water solubility for 22 commercial dyes and pigments

ID Dye/pigment CAS Experimental 
 EC50 (mg  L−1)

Reference 
experimental 
toxicity

Predicted 
 EC50 (mg 
 L−1)

Similarity Predicted 
intrinsic 
solubility (mg 
 L−1)

Experimental 
water 
solubility (mg 
 L−1)

Reference 
experimental 
solubility

DD001 C.I. Pigment 
Yellow 1

2512-29-0 > 100 [14] 3.6 0.421 1 0.013 [14]

DD002 C.I. Pigment 
Red 5

6410-41-9 > 100 [14] 0.1 0.409 1 0.0078 [14]

DD003 FD&C Yellow 5 1934-21-0 > 125 [14] 16.1 0.378 310 167,050 [14]

DD004 C.I. Acid Blue 3 3536-49-0 42,900 [14] 0.3 0.390 31 20,980 [14]

DD005 FD&C Blue 
No. 1

3844-45-9 > 100 [14] 0.4 0.417 1 611,000 [14]

DD006 C.I. Acid Red 52 3520-42-1 > 120 [14] 0.1 0.400 1 95,300 [14]

DD007 C.I. Acid Yellow 
3 disodium 
salt

8004-92-0 > 100 [14] 1.6 0.394 42 200,000–
500,000

[14]

DD008 C.I. Acid Blue 
80

4474-24-2 > 67 [14] 1.3 0.430 1 10,950 [14]

DD009 C.I. Pigment 
Blue 16

574-93-6 > 500 [14] 0.1 0.447 1 Not available

DD010 C.I. Disperse 
Blue 291

56548-64-2 > 0.02 [15] 0.3 0.392 1

DD011 C.I. Disperse 
Blue 373

51868-46-3 > 0.005 [15] 0.3 0.392 1 < 0.052 [14]

DD012 C.I. Disperse 
Blue 79

12239-34-8 4.5 [29] 0.4 0.419 1 Not available

DD013 C.I. Disperse 
Blue 79:1

3618-72-2 4.5 [29] 0.6 0.412 1 < 2 [14]

DD014 C.I. Disperse 
Orange 1

2581-69-3 10 [30] 0.2 0.508 1 0.00955 [31]

DD015 C.I. Disperse 
Orange 29

19800-42-1 70 [29] 2.6 0.447 1 < 0.04 [14]

DD016 C.I. Disperse 
Orange 30

5261-31-4 0.03 [32] 0.6 0.433 1 < 0.04 [14]

DD017 C.I. Disperse 
Red 1

2872-52-8 0.18 [33] 11.6 0.424 0.16 Not available

DD018 C.I. Disperse 
Red 13

3180-81-2 0.0187 [34] 7.8 0.422 0.1

DD019 C.I. Disperse 
Red 17

3179-89-3 98 [29] 29.8 0.439 91

DD020 C.I. Disperse 
Red 73

16889-10-4 110 [29] 1.1 0.479 1

DD021 C.I. Disperse 
Violet 31

6408-72-6 177.9 [32] 0.1 0.455 0.001 0.0026 [14]

DD022 C.I. Disperse 
Violet 93

52697-38-8 > 0.02 [15] 0.3 0.407 0.001 0.020 [14]
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composed by water and acetonitrile was used. The pro-
portion of acetonitrile started at 60% and increased to 
95%. An Agilent ZORBAX SB-Aq (3.0 × 150 mm, 3.5 μm) 
reversed phase column was used as the stationary phase. 
The flow rate was set to 0.5  mL  min−1 and the total 
runtime for each sample was 5 min. Ionization was per-
formed via dual electrospray ionization (ESI) system and 
was carried out in both positive and negative modes with 
the following parameters: gas temperature 350 °C, drying 
gas 5 L  min−1, nebulizer 50 psi, Vcap voltage 3500 V and 
fragmentor voltage at 175 V. To improve mass accuracy, a 
solution of the mass reference mix obtained from Agilent 
was introduced via the secondary ESI needle.

The purity of each dye was checked by an Ultimate 
3000 UHPLC system coupled with a Diode Array Detec-
tor and a Velos Pro ion trap mass spectrometer from 
Thermo Fisher Scientific using the same mobile phase 
and gradient applied to the mass determination. Ioniza-
tion was performed via heated electrospray ionization 
(HESI) and was carried out in both positive and negative 
modes with the following parameters: heater temperature 
60  °C, sheath gas flow rate 60 arbitrary unit (arb), aux-
iliary gas flow rate 20 arb, spray voltage + 3 kV/− 2.5 kV 
(positive/negative), capillary temperature 260 °C.

Acute toxicity testing
Stock solutions were prepared in dimethyl sulfoxide 
(DMSO, Sigma Aldrich, > 99.5%) at the limit of solubil-
ity of each dye, if the predicted water solubility was low. 
The test solutions were then prepared in Daphnia media. 
DMSO was employed at a maximum of 0.1% (v/v) in 
Daphnia media and this same concentration of DMSO 
was used as the negative control of the tests [15]. Based 
on the outcomes of the first experiments, two dyes were 
re-tested by directly diluting them in Daphnia media for 
comparison purposes. In those cases, the negative con-
trols consisted of the media itself.

Daphnia similis was chosen as test species, because 
of a long history of using in aquatic toxicity testing of 
various chemicals—including dyes and their effluents. 
Moreover, it is commonly used to conduct environmental 
in situ studies in water bodies composed of soft waters. 
Its sensitivity has been compared with Daphnia magna, 
in a study including metals, organics (herbicides, deter-
gents, phenol) and industrial effluents, and the research-
ers found a 99% agreement in the responses of D. similis 
and D. magna [16]. Daphnia similis organisms were cul-
tivated in our Laboratory of Ecotoxicology and Geno-
toxicity (LAEG). Cultures were maintained at 20 ± 2  °C, 
under a 16:8 h (light/dark) and fed daily with the green 
algae Raphidocelis subcapitata. Total media exchanges 
were performed three times a week. The sensitivity of the 
D. similis culture was monitored with sodium chloride 

(NaCl) as a reference substance. The laboratory partici-
pates routinely in interlaboratory trials.

Acute toxicity tests were performed according to the 
guidelines in Test No 202: Daphnia sp. Acute Immobili-
sation Test of Organization for Economic Co-operation 
and Development [17] and ABNT/NBR 12713 [18]. 
Twenty neonates (< 24  h old) of D. similis were placed 
in 4 replicates for each concentration (5 organisms/
replicate). Negative and solvent controls were included 
and tested in parallel. Tests were performed at 21 ± 1 °C 
under a photoperiod of 16-h light and 8-h darkness with-
out feeding. The percentage of immobilized organisms 
was recorded after 48 h.

First, the dyes were tested at the limit of water solubil-
ity in a single concentration experiment. This was done 
to preserve the limited quantity of dyes available in the 
library. In cases where no effect was observed, no fur-
ther test was done. The dyes that showed more than 
10% of immobile organisms were tested again in con-
centration–response experiments. The 50% effective 
concentration  (EC50) was calculated for each dye using a 
non-linear regression based on a logistic distribution of 
the responses, and the Hill 2 parameters function pro-
grammed in Origin (OriginLab, Northampton, MA). 
When necessary, experiments were repeated for confir-
mation (data not shown).

Solubility predictions
Solubility calculations were performed using the 
ALOGpS model [19]. The model was developed using 
1291 compounds and provided a low prediction error 
(RMSE = 0.38). Thirty-eight different atom-type E-state 
molecular descriptors were used in the model develop-
ment, which was based on an artificial neural network 
non-linear regression technique. The atom-type E-state 
molecular descriptors described information pertaining 
to the topological environment and the electronic inter-
actions of an atom. The predicted aqueous solubility was 
expressed as logS, where S is the solubility in mol  L−1 and 
converted into logS in mg  L−1 when compared with the 
predicted and experimental  EC50 values. The prediction 
of aqueous solubility was conducted online at (http://
www.vccla b.org/lab/alogp s/) [20, 21].

For the highly ionizable dyes, the intrinsic and pH-
dependent aqueous solubility was calculated by Marvin 
Sketch [22]. The prediction was based on a fragment-
based method that detects different structural fragments 
in the compound and assigns an intrinsic solubility con-
tribution to them [23] or corrected solubility at given 
pH by Henderson–Hasselbalch equation. The contribu-
tions are then summed to derive the final intrinsic/pH-
dependent solubility value.

http://www.vcclab.org/lab/alogps/
http://www.vcclab.org/lab/alogps/
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QSAR model used for ecotoxicity prediction
The selected QSAR model was recently developed using 
ACO-SVM techniques [6], to predict the acute toxicity 
towards the standard test organism Daphnia magna. 
This model was built based on 1006 unique compounds 
and tested externally with an additional set of 327 com-
pounds. Six molecular descriptors were used to model 
the toxicity of organic chemicals in the test set. Among 
the molecular features selected, there were three dif-
ferent measures of logP (i.e., AlogP, CrippenlogP and 
XlogP) that were found to increase the accuracy of the 
model in a consensus-like manner, highlighting the 
importance of this descriptor in predicting the toxic-
ity of organic chemicals [6]. The other descriptors were 
Average centered Broto–Moreau autocorrelation (lag0) 
weighted by polarizabilities; Minimum atom-type 
E-State (centered on –OH); and Overall or summation 
solute hydrogen bond basicity. To apply this model, the 
chemical structures of all dyes were standardized by the 
Balloon program [24]. When generating 3D structures 
for dyes having multiple tautomeric forms, the tau-
tomer with the lowest energy was used to calculate the 
six previously mentioned molecular descriptors using 
PADEL [25], as well as 1024 chemical fingerprints for 
derivation of the applicability domain [26]. All calcu-
lations related to QSAR modelling were performed in 
MATLAB v 8.5.

Application domain to verify the suitability of the toxicity 
model
Here, in addition to the effect of the model predictors 
described above, we have developed a new application 
domain framework based on the chemical similarity of 
the suspect dyes to the training set compounds. Chemi-
cal similarity is derived based on the presence or absence 
of 1024 chemical fingerprints in the molecules. The dif-
ference between two compounds is then calculated based 
on the Jaccard Index. The cross matrix of chemical simi-
larity values of the Daphnia training set and the 15 dyes 
to be tested (1006 × 15) was derived with a k nn (nearest 
neighbor) value set to 3. The k value is the number of the 
most similar compounds to be used to calculate the aver-
age chemical structure similarity between the predicted 
dyes and the compounds of the training set.

The results of the chemical structure similarity 
approach (y-axis) were coupled to the Euclidean dis-
tance of a PCA [i.e., the first two principal components 
(PC1 and PC2)] of the model predictors and hat values 
to create a density plot (Fig.  2). This allows for com-
parisons of the molecule-to-molecule activity as well 
as their chemical structures. Depending on the diver-
sity of the dataset, the acceptable thresholds for chemi-
cal structure similarity and Euclidean distance of PCA 
results can be adjusted. A value close to 1 would indi-
cate that a compound is very similar to, or even part of 

Fig. 2 Density plot of the 1006 training set compounds (green) together with literature data for 22 compounds (yellow dots) as well as for the 15 
dyes of the MWDL (red dots)
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the training set; while a hypothetical value of 0 would 
indicate that the new compound does not share a sin-
gle identical fragment with the training set compounds. 
We found empirically that values below 50% similar-
ity have significantly higher uncertainty in the model 
predictions (data not shown), and thus suggest this as 
a threshold for the suitability of a model to derive pre-
dictions with acceptable uncertainty. All calculations 
related to derive the applicability domain were per-
formed in MATLAB v 8.5.

OTrAMS to verify experimental data
In addition to the density plot, the method “OTrAMS” 
[27] was used to accept/reject the prediction results 
when compared to the experimental  EC50 values. To bet-
ter compare the toxicity of the various dyes, all measured 
 EC50 (mg  L−1) values were converted into molar units 
and the inverse logarithm of the  EC50  [pEC50 (mol  L−1)] 
was used [28]. Derivation of  pEC50 values would enable 
the direct comparison of experimental and predicted val-
ues in the residual plot (in logarithmic scale). The vari-
ability among experimental data can often exceed half 
a log unit, and hence, the QSAR value with its reported 
prediction error should preferably not be outside of the 
error of the experimental measurement [28]. A wide 
acceptance threshold is used here (± 1 log unit) because 
of the assumption that the dyes have diverse chemical 
structures and hence, the predication error would be 
higher.

OTrAMs basically couples three applicability domain 
approaches in a single 3D bubble plot. In this plot, the 
z-axis shows the Standardized Residuals (SR) (calcu-
lated from the predicted and experimental  EC50 values), 
the y-axis shows the normalized mean distance (i.e., 
whether the training set compounds are representa-
tive of the suspect compound in terms of model predic-
tors) and the x-axis relates to the experimental value 
(i.e., minimum and maximum acute toxicity value in 
the training set). The bubble size is proportional to the 
William hat value (i.e., leverage), which shows the indi-
vidual compounds that are affected dominantly by their 
diverse molecular descriptor values. Each compound 
is also coded with a color representing the SR values 
(green (less than − 1.0 ≤ SR ≤ 1.0), yellow (1.0 < SR ≤ 2.0 
or − 2.0 ≤ SR < − 1.0), purple (2.0 < SR ≤ 3.0 or 
− 3.0 ≤ SR < − 2.0) and red (SR > 3.0 or SR < − 3.0)). Since 
the SRs include the effect of similarity of compounds 
(based on the molecular descriptors used to model the 
 EC50 values) in the error calculation, it can be used to 
study the origin of the errors between experimental and 
predicted  EC50 values. More details about OTrAMS can 
be found in [27].

Results and discussion
Comparing literature data with predictions
Table  1 shows the experimental toxicity values and the 
respective predictions from the ACO-SVM model for the 
dyes that we retrieved data from the literature. Except for 
two cases, the predicted values were off by more than one 
order of magnitude of the empirical data.

Table 1 also presents the similarity of the dyes with the 
training set of the ACO-SVM model, predicted intrinsic 
solubility and experimental water solubility, when avail-
able. Please note that only for 7 dyes, experimental tox-
icity data were consistent with their experimental water 
solubility (i.e., DD010, DD011, DD16, DD017, DD018, 
DD019 and DD022).

For the other dyes, data were inconclusive, mainly for 
two reasons: some were reported as “non-toxic” (i.e., 
> values) at concentrations much lower than their actual 
solubility (e.g., DD03, DD005, DD006 and DD07). Or 
the opposite, some dyes have  EC50 values > 100  mg  L−1, 
while their reported solubility is only in the low µg  L−1 
range (e.g., DD001, DD002, DD020 and DD021). These 
values represent limit tests that are required for the clas-
sification and labelling of chemicals [35]. If no effect is 
observed up to these rather high concentrations, the 
chemical is classified as “non-toxic”. In our case, how-
ever, such high concentrations are unlikely to be reached, 
given the poor water solubility of these dyes (Table  1). 
Hence, we assume that in these cases, the dyes just pre-
cipitated and indeed no toxic effect was observed. How-
ever, this rather relates to experimental shortcomings 
than to real “non-toxicity”, as these chemicals would 
often be expected to bioaccumulate rather quickly. In 
those cases, the use of passive dosing devices could be 
useful to evaluate the acute toxicity of poorly water-sol-
uble dyes [36]. Impurities possibly present in the testing 
material could also have affected the experimental results 
and be one of the causes of the observed deviations from 
the experimental and predicted  EC50s.

Another reason for the observed discrepancy could 
be that the selected model is not suitable for these com-
pounds. Figure  2 shows the density plot of the com-
pounds of the training set from the daphnia model as 
compared to the 22 dyes from the literature. According 
to the new application domain, predictions would be 
accepted when the dyes are similar enough to the com-
pounds in the training set, i.e., having a mean chemical 
similarity (i.e., to the three most similar compounds) 
above 0.5 and a Euclidean distance in the PCA below 
80%. However, all mean chemical similarities were clearly 
below the threshold of 50%, which was set as a minimum 
for highly accurate predictions. Figure  3 illustrates how 
far the predicted data actually are from the experimen-
tal ones. Moreover, dyes DD005 and DD009 have bigger 
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bubbles which indicate that these dyes also have molecu-
lar descriptor values outside the training set domain.

As a consequence, we could not conclude why the 
model predictions were inaccurate, i.e., whether this 
was because of the low similarity level of the tested com-
pounds or because of data inconsistencies. Therefore, we 
concluded that testing additional dyes from the MWDL 
would provide us with a set of empirical data that could 
be used to better verify the suitability of the existing 
model and to decide whether an extension of the model 
domain will be needed.

Characterization of the molecular structures and purity 
of the 15 selected dyes
The molecular structures of the tested dyes and their 
purities are presented in Fig. 4. The molecular structures 
generally agree with information on the MWDL original 
vials, except for dye numbers 70 and 117, which had dif-
ferent molecular structures. The respective information 
was updated in the library accordingly. This finding high-
lighted the importance of the HR-MS confirmation step 
before doing any predictions or even testing. The purity 
of 12 of the 15 selected dyes was greater than (90%) 
(Fig. 4). Dye 5 had the lowest value (79%), followed by dye 
145 (86%) and dye 72 (87%) (Fig.  4). Detailed analytical 
information can be found in Additional file 1: Table S1.

Experimental toxicity of the 15 dyes
Only ten of the 15 dyes showed acute toxicities with 
more than 10% of immobilized organisms under the test-
ing conditions (Additional file  1: Table  S2). Concentra-
tion–response experiments were performed with acute 
 EC50 values (Table  2, Additional file  1: Tables S2–S12; 
Figs. S1–S10) ranging from 0.35 to 2.95  mg  L−1. Three 
dyes (i.e., dyes 9, 70 and 83) with  EC50 between 1 and 
10 mg L−1 were, therefore, classified as category II in the 
GHS system [37]. The other seven dyes were classified as 
category I  (EC50 < 1 mg L−1) (Table 2). For those 10 dyes, 
the observed  EC50 were below or in the range of the pre-
dicted solubility, which was not the case for the remain-
ing 5 dyes.

In fact, dye 21 was tested up to the maximum solubil-
ity in DMSO at a concentration of 1.3 mg  L−1. However, 
because its water solubility was predicted to be 20  mg 
 L−1, we also prepared a solution directly in Daphnia 
media. We observed 20% of immobility at 10 mg  L−1, but 
at 20 mg  L−1, precipitation occurred without toxic effect 
(Table 3). Although toxicity was observed for this dye, it 
was not possible to determine a reliable  EC50.

For dye 25, the predicted toxicity was 0.17  mg  L−1 
(Table  2), but no toxicity was observed when we tested 
the dye even at higher concentrations than the predicted 
water solubility (Additional file 1: Table S2).

Dye 41 presented the highest predicted water solubility 
(440  mg  L−1) and it is also highly ionizable (Additional 
file 1: Fig. S12). However no toxicity was observed when 
the dye was tested in DMSO at 12.6 mg  L−1 (Additional 
file  1: Table  S1). Therefore, we performed a test with 
higher concentrations, diluting the dye directly in Daph-
nia media as we did for dye 21. Negative results were 
obtained until 20  mg  L−1 (Table  4), but at 40  mg  L−1, 
100% of the organisms were immobile. However, the pH 
dropped (5.10), which was also observed in the higher 
concentrations (Table 4). This dye is a weak acid (Addi-
tional file 1: Fig. S12), which would be consistent with the 
reduced pH observed at the higher concentrations. How-
ever, the dye still precipitated at the two highest concen-
trations (Table 4). Therefore, it was again not possible to 
determine a reliable  EC50 for this dye. The tests could be 
repeated, adjusting the pH, in buffered Daphnia media.

Dye 42 was also tested at higher concentrations (6.4 mg 
 L−1) than the predicted water solubility when DMSO was 
used to prepare the dye solution (Table 1). However, no 
toxic effects were obtained. We tried to prepare higher 
concentrations to verify if any toxic effect would occur, 
but this time, the pH increased at unacceptable levels; so, 
no further ecotoxicity tests were performed.

Both dyes 41 and 42 are examples of how important 
it is to test the dyes in Daphnia media after adjusting 
the pH. However, a protocol for testing with buffered 

Fig. 3 OTrAMS plot of the experimental and predicted toxicity from 
the literature data
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Daphnia media still needs to be developed in our labora-
tory. A priori pKa predictions (Additional file 1: Fig. S12) 
can, therefore, be very helpful to define appropriate test-
ing conditions for these dye in future studies.

Comparing experimental toxicity results with predictions
We used the residual plot analysis instead of a correlation 
approach to compare the predictions with the experi-
mental values, because the experimental gradient was 
rather narrow (i.e., about two orders of magnitude). Nine 

Dye 5
NCSU-MWDL-[AQ]-[R]-X-27237-115
Purity: 79%

Dye 9
NCSU-MWDL-[Ir]-[R]-X-27237-061
Purity: 100%

Dye 21
NCSU-MWDL-[ME]-[W]-X-25380-49
Purity: 100%

Dye 25
NCSU-MWDL-[Ir]-[Y]-X-25380-174
Purity: 100%

Dye 41
NCSU-MWDL-[AZ]-[O]-X-25377-031
Purity: 100%

Dye 42
NCSU-MWDL-[AQ]-[R]-X-25377-013(2)
Purity: 100%

Dye 70
NCSU-MWDL-[AZ]-[Y]-X-5158-83-C
Purity: 100%

Dye 72
NCSU-MWDL-[Xa]-[R]-X-5417-15
Purity: 87%

Dye 83
NCSU-MWDL-[AZ]-[O]-X-6012-90-F
Purity: 100%

Dye 117
NCSU-MWDL-[AZ]-[Y]-X-5432-22-D
Purity: 94%

Dye 118
NCSU-MWDL-[AZ]-[Y]-X-5432-33-C
Purity: 96%

Dye 136
NCSU-MWDL-[AZ]-[R]-X-5380-112-A
Purity: 100%

Dye 145
NCSU-MWDL-[AQ]-[R]-X-5210-71
Purity: 86%

Dye 160
NCSU-MWDL-[X]-[B]-X-11769-62-A
Purity: 96%

Dye 183
NCSU-MWDL-[AQ]-[B]-X-17994-277-1
Purity: 100%

Fig. 4 Structure, designation, and purity level for MWDL dye evaluated in this study
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of the 10 dyes with  EC50 data (i.e., 9, 41, 70, 72, 83, 117, 
118, 136, 145 and 160) were predicted with acceptable 
accuracy, i.e., with a prediction error within ± 1 log unit 
(Fig. 5). Only dye number 5 had a higher error. According 
to Additional file 1: Fig. S1, the concentration–response 

curve for dye 5 shows a much higher toxicity value 
 (EC50 = 0.94  mg  L−1) than predicted (14.07  mg  L−1) 
(Table  2). However, the predicted toxicity was in fact 
even higher than the predicted solubility, and precipita-
tion started to occur at 5 mg  L−1.

We further investigated this dye to find the origin of the 
larger prediction error. As the dye has a moderate ioniza-
tion potency and the major chemical macrospecies from 
pH 2 up to pH 8 is the neutral form (Additional file 1: Fig. 
S11), pH was not an issue. However, this was the dye with 
the lowest purity level (79%), and therefore, we could not 
rule out that some of the impurities that might be bet-
ter soluble in DMSO could have been responsible for 
the observed toxicity. This highlights the importance of 

Table 2 Acute toxicity data for Daphnia similis, together with the predicted values, chemical similarity with the training 
set and their predicted solubility

Dye NCSU code Result EC50 (mg  L−1) Confidence interval ACO-SVM 
 EC50 (mg  L−1)

Similarity Intrinsic 
solubility (mg 
 L−1)

5 NCSU-MWDL-[AQ]-[R]-X-27237-115 Positive 0.94 0.63–0.99 14.07 0.427 10

9 NCSU-MWDL-[Ir]-[R]-X-27237-061 Positive 1.85 1.28–1.98 3.09 0.420 1

21 NCSU-MWDL-[ME]-[W]-X-25380-49 Negative – – 26.44 0.428 20

25 NCSU-MWDL-[Ir]-[Y]-X-25380-174 Negative – – 0.17 0.373 1

41 NCSU-MWDL-[AZ]-[O]-X-25377-031 Negative – – 30.60 0.399 440

42 NCSU-MWDL-[AQ]-[R]-X-25377-013(2) Negative – – 5.82 0.447 1

70 NCSU-MWDL-[AZ]-[Y]-X-5158-83-C Positive 2.95 1.79–3.99 2.92 0.333 10

72 NCSU-MWDL-[Xa]-[R]-X-5417-15 Positive 0.40 0.40–0.41 2.82 0.471 30

83 NCSU-MWDL-[AZ]-[O]-X-6012-90-F Positive 1.04 0.74–1.41 2.48 0.364 1

117 NCSU-MWDL-[AZ]-[Y]-X-5432-22-D Positive 0.86 0.59–1.26 1.04 0.466 140

118 NCSU-MWDL-[AZ]-[Y]-X-5432-33-C Positive 0.73 0.40–1.33 0.40 0.447 1

136 NCSU-MWDL-[AZ]-[R]-X-5380-112-A Positive 0.35 0.33–0.36 2.02 0.404 1

145 NCSU-MWDL-[AQ]-[R]-X-5210-71 Positive 0.57 0.33–0.94 0.77 0.547 1

160 NCSU-MWDL-[X]-[B]-X-11769-62-A Positive 0.79 0.55–0.81 1.34 0.456 1

183 NCSU-MWDL-[AQ]-[B]-X-17994-277-1 Negative – – 2.68 0.435 1

Table 3 Toxicity data for dye 21 diluted in Daphnia media

a Dye precipitated, b more than 10% indicate toxicity

Concentration (mg 
 L−1)

Total immobilized 
organisms

% pH

Control 0/20 0 6.75

1.25 0/20 0

2.5 1/20 5

5 2/10 10

10 4/20 20b

20a 1/20 5 6.33

Table 4 Toxicity data for dye 41 diluted in Daphnia media

a Dye precipitated, b values greater than 10% indicate toxicity

Concentration (mg  L−1) Total % pH

Control 0/20 0 6.75

5 2/20 10 6.57

10 2/20 10 6.44

20 6/20 5 6.23

40 20/20 100b 5.10

60a 20/20 100 4.72

80a 20/20 100 4.60

Fig. 5 Residual plot (error) for the 10 acutely toxic dyes (logarithmic 
scale)
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choosing dyes with high purity. Our suggestion is to use 
purities higher than 90% in further studies to minimize 
their possible inference.

Although there was a rather low chemical similarity 
between each of the 10 dyes and the training set com-
pounds of the model, the predicted  EC50 values were 
still reasonably accurate. This could be an indication that 
the predictor space of the model (i.e., the PCA axis) was 
well covered. Therefore, we believe that the model is gen-
erally capable of predicting the toxicity of dyes, at least 
with medium accuracy, if they are located below 80% dis-
tance of the PCA axis (Fig. 2). However, with regard to a 
more general applicability of the model, there is a need 
to extend the existing model domain to dyes with higher 
structural similarity to enable a proper read-across 
approach and to have an overall higher accuracy of the 
estimated  EC50 values.

Selection of additional dyes for future testing and model 
extension
A similarity analysis of the currently available digital-
ized dataset of the MWDL (around 3000 dyes) will be 
conducted with the 10 dyes that provided toxic effects to 
Daphnia similis in this study. Also, if needed, a manual 
search will be performed in the actual MWDL, because 
the dyes that will be tested should have a similarity 
of > 80% to the ten already tested dyes, as well as among 
themselves, to create a stable model extension. For that 
purpose, their purity will first be determined, and a con-
firmation of their molecular structures will be performed 
before testing or modelling. Only dyes with appropri-
ate quality, i.e., with confirmed structure and showing at 
least 90% purity will be selected. Prediction of solubility 
and pKa will help to define the best strategy for testing in 
relation to the selection of solvents, the maximum con-
centrations to be tested and the need of buffer solutions 
to optimize testing conditions. Only then, the experimen-
tal toxicity data of those new dyes can be used to extend 
the training set of the ACO-SVM model.

Conclusion
We concluded that the confirmation of the molecular 
structure and purity of a dye is required to obtain reliable 
toxicity results. Solubility issues and the pKa should be 
taken into account before designing the toxicity experi-
ments, e.g., by selecting the appropriate solvent, defin-
ing the maximum concentrations and the use of buffer 
solutions for testing. The ACO-SVM model used here 
was able to predict the toxicity of 10 dyes of the MWDL 
with good accuracy, but there is still a need for more dye 
compounds of higher similarity with the already tested 
dyes to extend the existent training set of the ACO-SVM 
model. Therefore, the next steps will be to select a new 

set of dyes to obtain additional toxicity data values, hope-
fully resulting in a prediction model that is applicable to 
the whole MWDL.
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