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Abstract. We investigate the effect of a magnetic field on the thermodynamics of magnetized
quark matter at finite temperature. By using the Nambu Jona–Lasino (NJL) model, we show
that the lattice results for the quark consensate can be reproduced when the coupling constant
G of the model decreases with the magnetic field and the temperature. Our results show that
thermodynamic quantities and quark condensates are very sensitive to the dependence of G
with the temperature, even in the absence of a magnetic field.

1. Introduction
Motivated by the fact that strong magnetic fields may be produced in noncentral heavy-ion
collisions [1, 2], investigations of the effects of a magnetic field on the phase diagram of strongly
interacting matter became a subject of great interest in recent years.

At zero temperature, the great majority of effective models for Quantum Chromodynamics
(QCD) are in agreement with respect to the occurrence of Magnetic Catalysis (MC) effect,
in that the quark condensate increases with the magnetic field B. On the other hand, finite
temperature lattice QCD simulations show that the pseudo-critical temperature Tpc for chiral
symmetry restoration decreases as the strength of the magnetic field increases, a phenomenon
known as Inverse Magnetic Catalysis (IMC) [3]. The great majority of effective models fail to
explain this phenomenon — see Ref. [4] for a recent review.

A large body of work has been devoted to the search for possible mechanisms responsible
for the IMC. In a recent work by some of us [5], we proposed that the IMC found by lattice
simulations can be explained within the NJL model if the coupling constant G decreases with
both the magnetic field and the temperature. A similar mechanism was proposed within SU(3)
PNJL models, but with G depending only on the magnetic field [6]. Another possible explanation
was provided within the framework of holography [7]. In the present work we refine the running
of the coupling G(eB, T ) quantitatively and reinvestigate the effects of the magnetic field on
thermodynamic quantities of the magnetized quark matter within the SU(2) NJL model.
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2. The magnetized NJL model
We use the SU(2) version of the NJL model [8], defined by the Lagrangian density

LNJL = ψ̄ (i∂/−m)ψ +G
[
(ψ̄ψ)2 − (ψ̄γ5~τψ)2

]
. (1)

The field ψ represents a flavor iso-doublet of u and d quark flavors and Nc-plet of quark fields,
~τ are isospin Pauli matrices. Since the model is non-renormalizable, we need to specify some
regularization scheme; here we use a sharp momentum cutoff Λ as an ultraviolet regulator.
Therefore, Λ, G and the quark masses mf , f = u, d are free parameters which are fixed [9, 10]
by fitting the values of the pion mass mπ, pion decay constant fπ and quark condensate 〈ψ̄fψf 〉.

Thermodynamic quantities are computed from the grand thermodynamical potential in the
mean field approximation — see e.g. Ref. [10] for details:

ΩNJL =
(M −m)2

4G
+
i

2

∫
d4p

(2π)4
ln[−p2 +M2] . (2)

In order of include the effects of T and B simultaneously in the thermodynamic potential, it is
usual to make use of the following transformations [11]:

p0 → i(ωn − iµ) , (3)

p2 → p2z + (2k + 1− s)|qf |B , (4)∫ +∞

−∞

d4p

(2π)4
→ i

T |qf |B
2π

∞∑
n=−∞

∞∑
k=0

∫ +∞

−∞

dpz
2π

, (5)

with s = ±1, k = 0, 1, 2, · · ·. The Matsubara frequencies for fermions are given by ωn =
(2n+1)πT , with n = 0,±1,±2, · · · and k represents the Landau levels. After these replacements,
the grand potential including the effects of the magnetic field can be written as

ΩNJL =
(M −m)2

4G
+ ΩNJL

vac + ΩNJL
mag + ΩNJL

med , (6)

where

ΩNJL
vac = −2NcNf

∫
d3p

(2π)3

√
p2 +M2 , (7)

and

ΩNJL
mag = −

d∑
f=u

Nc(|qf |B)2

2π2

{
ζ ′[−1, xf ]− 1

2
[x2f − xf ] ln(xf ) +

x2f
4

}
, (8)

with xf = M2/(2|qf |B), ζ ′[−1, xf ] = dζ(z, xf )/dz|Z=−1 and ζ(z, xf ) representing the Hurwitz
zeta function. The last term in Eq. (6), which contains the effects of temperature and magnetic
field, is given by

ΩNJL
med = −Nc

2π

d∑
f=u

∞∑
k=0

αk(|qf |B)

∫ +∞

−∞

dpz
2π

×
{
T ln[1 + e−[Ep,k(B)+µ]/T ] + T ln[1 + e−[Ep,k(B)−µ]/T ]

}
, (9)

where Ep,k(B) =
√
p2z + 2k|qf |B +M2 and αk = 2 − δ0k. More details in the derivation of

these expressions can be found in Refs. [11, 12]. The effective quark mass Mf is obtained in a
self-consistent way by solving the gap equation

Mf = mf − 2G
∑
f

〈ψ̄fψf 〉 , (10)
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where 〈ψ̄fψf 〉 represents the quark condensate of flavour f . The explicit expression for the quark
condensate at finite T and B is given by

〈ψ̄fψf 〉 = −NcM

2π2

{
Λ
√

Λ2 +M2 − M2

2
ln

[
(Λ +

√
Λ2 +M2)2

M2

]}

−NcM

2π2
|qf |B

{
ln[Γ(xf )]− 1

2
ln(2π) + xf −

1

2
(2xf − 1) ln(xf )

}
+
NcM

2π2

∞∑
k=0

αk|qf |B
∫ ∞
−∞

dpz
Ep,k(B)

{
1

e[Ep,k(B)]/T + 1

}
. (11)

It is important to note that we are working with Gaussian natural units where 1 GeV2 '
1.44 × 1019 G and |qf | is the absolute value of the quark electric charge. At finite magnetic
fields, the quark condensate for the flavors u and d are different due to their different electric
charges (|qu| = 2e/3, |qd| = e/3, e = 1/

√
137).

An interesting feature that occurs in the two flavour case is that, in principle, one should have
two coupled gap equations for the two distinct flavors, but in this case the different condensates
contribute to Mu and Md in a symmetric way and, since we are using mu = md = m, one can
write Mu = Md = M (more details see Ref. [11]).

3. Fitting NJL coupling constant with the lattice results
In this section we describe the fitting procedure used to obtain the thermomagnetic dependence
of the NJL coupling constant. We fit the NJL coupling G(eB, T ) so that the NJL model
reproduces the average of the quark condensates, (Σu+Σd)/2, obtained by the lattice simulation
of Ref. [3]. The lattice results of Ref. [3] are for zero temperature and high temperatures, with
no data points between T = 0 and T = 113 MeV. Given the fact that the discrepancies between
lattice results and effective models appear in the region where chiral symmetry is partially
restored (crossover), we fit the NJL coupling constant with the lattice data in this regime and
then extrapolate our results to zero temperature.

We can get a good fit to the lattice data for the average of the quark condensates, (Σu+Σd)/2,
using the following equation for NJL coupling constant:

G(eB, T ) = c

[
1− 1

1 + exp [d (Ta − T )]

]
+ s, (12)

where the parameters c, s, β and Ta depend on eB. For zero magnetic field, the values of
the fitting parameters are: c = 0.9 GeV−2, s = 3.7311 GeV−2, d = 0.4 MeV−1, and
Ta = 168 MeV. The extrapolation of our fit to T = 0 gives G(0, 0) = 4.6311 GeV−2. Using
Λ = 0.650 GeV and m0 = 5.5 MeV, we obtain fπ = 84.4498 MeV, mπ = 142.177 MeV and
〈ψ̄fψf 〉1/3 = −236.374 MeV in the vacuum.

In panel (a) of Fig. 1 we compare the temperature dependence of average of the condensates
(Σu+Σd)/2 at zero magnetic field obtained with the NJL model with a coupling G temperature
independent (solid black line) and with G(0, T ) (red dashed line) given by Eq. (12). In the
transition region, around T ' 170 MeV, one sees that the difference between the curves is quite
substantial. In panel (b) of the same figure, we show the running of the G as given by Eq. (12)
for zero magnetic field.

In the next section, we investigate the impact on thermodynamic quantities calculated with
the NJL model when using a running G(eB, T ) as given in Eq. (12).
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Figure 1. Panel (a): Condensate average as a function of the temperature at zero magnetic
field, where data points are from the lattice simulations of Ref. [3]. Panel (b): NJL coupling
constant G(eB, T ) at zero magnetic field.

4. Numerical Results
We start examining the effects of the running G with the temperature in the quark mass M
and in quark condensate 〈ψ̄fψf 〉 — for zero magnetic field, the u and d condensates are equal
(recall we are using mu = md). We can observe in Fig. 2 that in the critical region these
quantities are very sensitive to the running with T and at high temperatures the model displays
a crossover (where chiral symmetry is partially restored) similar to the case with no running G.
The difference is that the drop in the mass and in the condensate is much sharper when we let
the coupling run with the temperature.
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Figure 2. Temperature dependence of the constituent quark mass M (panel (a)) and the quark
condensate (panel (b)).

The model displays a crossover and the pseudo-critical temperature depends on the observable
used to locate the transition. Here we use the peak of the thermal susceptibility, which is given
by

χT = −mπ
∂σ

∂T
, where σ =

〈ψ̄uψu〉(B, T ) + 〈ψ̄dψd〉(B, T )

〈ψ̄uψu〉(B, 0) + 〈ψ̄dψd〉(B, 0)
. (13)
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Other quantities of interest are pressure, the negative of the free energy, p = −Ω(M, eB, T ),
the entropy density, obtained from s = dp/dT , and the energy density ε = −p + T s + µ ρ.
We normalize the pressure by subtracting the pressure at zero temperature, p(eB, 0) so that the
normalized pressure, pN , is given by

pN (eB, T ) = p(eB, T )− p(eB, 0) . (14)

In addition, we also consider the interaction measure, speed of sound, and specific heat, given
respectively by

∆ =
ε− 3pN
T 4

, c2s =

(
∂pN
∂ε

)
v
, cv =

(
∂ε

∂T

)
v
. (15)

In panel (a) of Fig. 3, we show the thermal susceptibility defined by Eq. (13) as a function of
the temperature at zero magnetic field. The result indicates that the running of coupling with
the temperature change the position of the χT peak and Tpc is slightly larger if we compare with
the case with no running. The interaction measure ∆ is shown in panel (b) of the figure.

We next examine the effect of the running of G(eB = 0, T ) with the temperature in all
relevant thermodynamic quantities.

In Fig. 4 we show our results for the scaled pressure pN /T
4, scaled energy density ε/T 4, the

equation of state (eos) pN/ε and scaled entropy density s/T 3. In panel (a) we see that the
running G(0, T ) does not affect the behaviour of the scaled pressure and in panel (b) we observe
the influence of the G(0, T ) in the scaled energy density that also will appear in the critical
region of the eos shown in panel (c). In panel (d) we show that the scaled entropy is not affected
by the running.

Fig. 5 displays the temperature dependence of the speed of sound squared c2s, scaled specific
heat cv/T

3. Note that c2s and cv display different behaviours compared to the case with no
running. With the running, c2s shows a downward cusp in Tpc while cv/T

3 shows a upward cusp
in Tpc as expected.

In figure 6 we present our results for the condensate average as a function of temperature for
different values of the magnetic field. More details on the fit of G(eB, T ), the parametrization
and their effect on the thermodynamic quantities of magnetized quark matter will be discussed
in a forthcoming work [13].

0 50 100 150 200 250 300

T [MeV]

0.00

1.00

2.00

3.00

4.00

χ
T

 

G(0,0)

G(0,T)

(a)

0 50 100 150 200 250 300

T [MeV]

0.00

0.50

1.00

1.50

2.00

∆

G(0,0)

G(0,T)

(b)

Figure 3. Temperature dependence of the normalized thermal susceptibility χT (panel (a)) and
interaction measure (panel(b)) for zero magnetic field.
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Figure 4. Panel (a): Scaled pressure pN/T
4. Panel (b): Scaled energy density ε/T 4. Panel

(c): Equation of state pN/ε. Panel (d): Scaled entropy density s/T 3(s = dP/dT ).
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Figure 5. Temperature dependence of speed of sound squared (panel (a)) and scaled specific
heat (panel (b)) for zero magnetic field.

5. Final Remarks
In this work we have considered the two flavor NJL model for hot and magnetized quark matter
within the mean field approximation. At vanishing magnetic fields, we have shown that lattice
QCD results can be reproduced in the NJL model if the coupling constant has a temperature
dependence. We have analysed the effects of the runningG = G(0, T ) on the quark masses, quark
condensates as well as on thermodynamic quantities. We have improved a previous attempt in
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Figure 6. The condensate average as a function of the temperature. Data points are from the
lattice simulations of Ref. [3]. The curves were obtained using our fit of G(eB, T )[13].

Ref. [5] and fitted the NJL coupling constant so that the model reproduces the average of quark
condensates computed on the lattice [3].

Our numerical results show that this running with T introduces modifications in the behaviour
of the quark condensate, quark mass and in the thermodynamic properties of the system. The
equation of state and thermodynamic quantities like the sound velocity squared and the specific
heat are very sensitive to this running in the region around Tpc. At finite magnetic fields and
temperatures we have presented results for the average of quark condensates that are in good
agreement with lattice QCD simulations of Ref. [3]. A detailed investigation of the effect of
the running with both T and B on the thermodynamics of magnetized quark matter is in
progress [13].
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