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We analyse the renormalization of the of two-nucleon interaction with multiple subtractions in peripheral waves considering two
chiral forces at N3LO. Phase shifts at low energies are then computed with several subtraction points below 𝜇 = 10 fm−1. We show
that for most peripheral waves the phase shifts have nearly no dependence on the renormalization scale. In two cases the phase
shifts converge slowly as the renormalization scale approaches 𝜇 = 1 fm−1 and in one case the phase shifts presented oscillations
with respect to the subtraction point 𝜇.

1. Introduction

It is widely established in nuclear physics that Quantum
Chromodynamics (QCD) is in fact the underlying theory
which describes the properties of strongnuclear forces. In this
theory, the fundamental degrees of freedom are quarks which
interact with each other via exchange of colored gluons. On
the other hand, the strong nuclear force is also responsible
for the binding of protons and neutrons in atomic nuclei.
But according to QCD, nucleons are bound states of quarks
and the nuclear force is considered as the residual part of the
quark-quark interaction inside of the nucleon with exchange
of gluons. Due to the property of asymptotic freedom, the
running coupling constant is small enough at high energies
to allow QCD to be handled within a perturbative approach.
However, at low energies, wheremesons and nucleons are the
relevant degrees of freedom, the running coupling constant
becomes large and QCD is no longer perturbative. The
nonperturbative nature of QCD at low energies is implied
in several mathematical and computational problems which
makes the description of nucleon properties a hard task.

Since QCD cannot be treated perturbatively at low ener-
gies, a new approach was developed to handle nuclear forces

with degrees of freedom appropriate for low-energy systems.
The idea was to use quantum field theory but replacing
quarks and gluons degrees of freedom by pions and nucleons,
keeping the fundamental properties of the underlying theory
like chiral symmetry.This effective field theory (EFT) scheme
was already used in other systems to describe different types
of interactions and Weinberg proposed an EFT approach
to nuclear systems based on QCD. This idea generated
a new branch in nuclear physics and allowed a deeper
understanding of the nuclear force and few-nucleon systems.
In particular, the two-nucleon system requires a nonpertur-
bative extension ofChiral PerturbationTheory (ChPT)which
works well in the case of pion-nucleon scattering.

Basically, an EFT is constructed by isolating themost rele-
vant degrees of freedom and symmetries for the systemunder
consideration and applying standard quantumfield theory. In
nuclear physics, replacing quarks and gluons by pions and
nucleons means moving to a different (lower) energy scale
and a connection between the symmetry properties of the
underlying fundamental theory and the symmetries of their
effective versions must be well-established.Thus, in a nuclear
effective theories it is necessary to establish scale parameters
which enable us to separate the high energy components of
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the interaction from the low-energy part. In a series of papers
[1–3],Weinberg proposed an effective field theory scheme for
nuclear forces based on the chiral symmetry of QCD.

This approachwas first applied byOrdóñez et al. [4, 5] and
allowed the perturbative treatment of the 𝑁𝑁 interaction.
An expansion in powers of (𝑄/Λ 𝜒)] is performed and 𝑄 is
a generic low momentum scale and Λ is the chiral symmetry
breaking scale which is approximately 1GeV.This expansion
is controlled by a power counting scheme, called Weinberg
power counting (WPC), which provides an hierarchical orga-
nization for the processes in few-nucleon systems. Following
the WPC, the𝑁𝑁 interaction at leading order (LO) consists
of one-pion-exchange (OPE) plus a contact term. At next-to-
leading order (NLO), two-pion exchange (TPE) and O(𝑝2)
contact interactions are added; at next-to-next-to-leading
order (N2LO) there is an additional set of TPE diagrams
and, finally, at next-to-next-to-next-to-leading order (N3LO)
corrections to both OPE and TPE are included along with
O(𝑝4) contact interactions.

Regardless of how the chiral expansion is organized, the
issue of how to renormalize the two-body interaction is of
fundamental importance and has been subject of investiga-
tion for decades. Early works by Adhikari et al. started by dis-
cussing the renormalization of two-body quantum hamilto-
nians [6–8]. Later, the problem was focused in the𝑁𝑁 inter-
action using renormalization group analysis and a new power
countingwas proposed byKaplan et al. [9–11]. Discussions on
the renormalization of singular and one-pion-exchange two-
body interactions, power counting, and renormalization of
the three-body system are detailed by van Kolck et al. [12–14].
Another renormalization group approach to two-body and
nucleon-nucleon scattering was presented by Birse et al. [15–
18] and a complete analysis of cutoff renormalization in con-
figuration space was performed by the Granada group [19–
22]. Also, a comparison between renormalization in configu-
ration and momentum spaces has been carried out in [23].

Another renormalization approach for the 𝑁𝑁 system
consists of a hybrid scheme, where the LO contribution is
treated nonperturbatively and the higher orders are handled
perturbatively [24]. Results for 𝑃-waves and 𝐷-waves show
that perturbative two-pion exchange reproduces the experi-
mental data up to 𝑘cm ∼ 300MeV. Here we treat all terms
nonperturbatively since in our renormalization scheme the
pieces of the interaction are inserted as the subtractions are
performed.

Apart from the divergences due to pion loops in the
irreducible diagrams, the reducible diagrams also generate
divergences in the scattering equation. To overcome this
problem the most common employed method is introducing
a cutoff regularization scale Λ which limits the momentum
integration, in the scattering equation, above this scale
parameter resulting in a finite phase shifts.The cutoff scheme
handles the divergences bymodifying the potential and keep-
ing the scattering equation intact.The regularized interaction
contains only low momentum components and the cutoff
scale is fixed at some scale, typically ∼2-3 fm−1. A slight dis-
comfort with this method comes from the fact that all physics
above a certain momentum scale is excluded. Recently,

a N3LO interaction has been optimized by an improved
renormalization approach in configuration space which
maintains the analytic structure of the scattering amplitude
[25].

An alternative renormalization procedure referred to as
subtractive method or multiple subtractions treats the diver-
gences with a different perspective: instead of modifying the
potential, as in cutoff method, and keeping the scattering
equation untouched, here the interaction is kept intact and
the scattering equation is modified by the introduction of
subtractions in its kernel. The dependence of the phase shifts
on the cutoff is replaced by a dependence on the subtraction
point that can be later eliminated by using the renormaliza-
tion group flow. With this procedure no components are
neglected from the interaction andboth low andhighmomen-
tum components are included. Detailed descriptions of this
approach can be found in [26–32].

In this work we employ the subtract kernel method
to renormalize the Lippmann-Schwinger equation in N3LO
and perform a detailed renormalization scale dependence
analysis of the phase shifts in peripheral channels. The high
angularmomentumwaves are interesting because the force in
their channels contains no contact interactions and consists
only of pion exchanges. The N3LO potential has contact
contributions up to𝐷-waves so that 𝐹 and higher waves have
contributions purely from pion exchanges and no core given
by contact interactions.

This paper is organized as follows: Section 2 describes the
renormalization of N3LO interactions with five subtractions;
Section 3 presents the numerical results for both uncoupled
and coupled channels up to 𝐽 = 6 and our main conclusions
are given in Section 4.

2. Renormalization of N3LO Interactions

At any given order, the modern two-nucleon interactions can
always be separated in two components: the pion exchange
interactions and the contact terms, which parametrize the
short range core of the interaction and are determined by
fitting scattering data. The𝑁𝑁 potential is then written as

𝑉𝑁𝑁 = 𝑉pions + 𝑉cont, (1)

where the first term contains one-pion-exchange and two-
pion exchanges

𝑉pions = 𝑉𝜋 + 𝑉2𝜋. (2)

The power counting scheme organizes which set of
Feynman diagrams must be included in each order in the
chiral expansion:

𝑉pions = 𝑉(0)pions + 𝑉(2)pions + 𝑉(3)pions + 𝑉(4)pions + ⋅ ⋅ ⋅ ,
𝑉cont = 𝑉(0)cont + 𝑉(2)cont + 𝑉(4)cont + ⋅ ⋅ ⋅ ,

(3)

where the superscript numbers in parentheses indicates the
order in the chiral expansion. Note that in (3) for the contact
contribution, all the odd powers are cancelled due to sym-
metry requirements. Hence, in theWeinberg power counting
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scheme, there is no contact interaction 𝑉(3)cont at the third
order in the chiral expansion (N2LO).This actually breaks the
order-by-order improvement of the chiral expansion when
going from NLO to N2LO as shown very clearly in [32].
Nogga et al. [14] looked at the interaction at leading order
(LO) and found that additional counterterms that are not
predicted by the Weinberg power counting are required in
order to improve the description. Later, Valderrama showed
that there are also problems in higher orders and they could
be treated perturbatively [24].

For finite cutoff, however, Epelbaum et al. [33, 34] showed
that a better description of the phase shifts is obtained
when N2LO instead of NLO interactions are used (with the
same contact terms). The same conclusion can be found by
studying 𝜒2/datum in Marji et al. [35].

Now let us turn to the renormalization of N3LO inter-
actions with five subtractions. This approach introduces a
renormalization scale 𝜇 (subtraction point), which denotes
the momentum at which the subtractions are performed. For
a given energy 𝐸 the Lippmann-Schwinger (LS) equation for
the 𝑇-matrix in operator form is written as

𝑇 (𝐸) = 𝑉 + 𝑉𝐺+0 (𝐸) 𝑇 (𝐸) , (4)

where 𝑉 is the 𝑁𝑁 potential at a given order in the chiral
expansion and𝐺+0 is the free Green’s function which, in terms
of the free Hamiltonian𝐻0, is given by

𝐺+0 (𝐸) = 1𝐸 − 𝐻0 + 𝑖𝜖 . (5)

When bare potentials are introduced in the equation
above, an ultraviolet divergence arises due to the implicit
integral in the second term of the right-hand side of (4),
which diverges when the momentum goes to infinity. In the
standard cutoff procedure, the 𝑁𝑁 potential 𝑉 is multiplied
by a regularizing function,

𝑉(𝑝, 𝑝󸀠) 󳨀→
𝑉Λ (𝑝, 𝑝󸀠)
≡ exp [−(𝑝Λ)

2𝑟]𝑉 (𝑝, 𝑝󸀠) exp[−(𝑝󸀠Λ )
2𝑟] ,

(6)

whereΛ is the cutoff scale and 𝑟 ≥ 1.This function suppresses
contributions from larger momenta, eliminating the ultravi-
olet divergences in the momentum integral. Nonrelativistic
nucleon-nucleon potentials based on chiral effective field
theory with cutoff regularization provide a very accurate
description of 𝑁𝑁 scattering data below pion production
threshold 𝐸lab ∼ 350MeV.

The renormalization with multiple subtractions handles
this problem in a different way since the𝑁𝑁 potential is not
modified in favour of changing Green’s function instead. The
N3LO interactions require five subtractions to be renormal-
ized with no cutoff and in this case the subtracted scattering
equation is given by

𝑇(5)𝜇 (𝐸) = 𝑉(5)𝜇 (𝐸) + 𝑉(5)𝜇 (𝐸) 𝐺+5 (𝐸; −𝜇2) 𝑇(5)𝜇 (𝐸) , (7)

where 𝜇 is the subtraction scale, 𝑉(𝑛)𝜇 (𝐸) is the driving term
𝑉(𝑛)𝜇 (𝐸) = 𝑉(𝑛−1)𝜇 (𝐸)

+ 𝑉(𝑛−1)𝜇 (𝐸) (−𝜇2 − 𝐸)
𝑛−1

(𝐸 − 𝑞2)𝑛 𝑉(𝑛)𝜇 (𝐸) , (8)

which has to be calculated recursively, 𝐺+5 (𝐸; −𝜇2) is the5-times subtracted Green’s function, and 𝑞 is the relative
intermediate two-nucleon momentum.

𝐺+5 (𝐸) = F5 (𝐸; −𝜇2)𝐺+0 (𝐸) , (9)

where

F5 (𝐸; −𝜇2) = ( 𝜇2 + 𝐸𝜇2 + 𝐻0)
5

(10)

is a term that arises from the recursive nature of the renormal-
ization process and works as a form factor, being responsible
for providing a regular𝑇-matrix. Detailed expressions for the
integral equations in the recursive calculation with partial
wave basis are given in [32] for the case of N2LO interactions
with four subtractions.

The LS equation with five subtractions (7) has the same
operator structure as the original equation (4), with the effec-
tive𝑁𝑁 potential𝑉 replaced by the driving term𝑉(5)𝜇 (𝐸) and
the free Green’s function 𝐺+0 (𝐸) replaced by Green’s function
with five subtractions𝐺+5 (𝐸; −𝜇2). The recursive driving term
encodes the physical information apparently lost due to
the removal of the propagation through intermediate states
at the subtraction point 𝜇. Then, once the driving term is
determined for a particular subtraction point, the subtracted
Lippmann-Schwinger equation provides a renormalized
solution for the 𝑇-matrix at any given energy 𝐸.

The driving terms 𝑉(𝑛)𝜇 are built recursively with the
components of the nucleon-nucleon interaction. Here we use
nonregulated N3LO interactions from Entem and Machleidt
(EM) [36, 37] and from Epelbaum et al. (EGM) [38–40]. The
main difference between the two chiral forces is the two-pion
exchange part. The EGM potential uses Spectral Function
Regularization (SFR) for the pion loop integrals resulting in
a softer TPE component. Differences in the pionic part will
then be compensated by changes in the low-energy constants
so that in the end the two forces give similar descriptions for
the 𝑁𝑁 system. Note that in the case of the EGM potential
the SFR is still present for the loop integrals, but there is no
smooth regulator function to suppress largemomentum con-
tributions. The smooth cutoff is also removed from the EM
potential so that the interactions we are using are the original
EM and EGM interactions with their cutoffs removed. Once
the contact interactions are determined for both potentials,
even with different off-shell behavior, the resulting on-shell
scattering amplitudes are similar.Thus, we expect comparable
results for cutoff regularization and subtractive renormaliza-
tion at low energies. At high energies, 𝐸lab > 200MeV the
cutoff scheme is more efficient than the renormalization with
multiple subtractions as far as describing the phase shifts is
concerned.



4 Advances in High Energy Physics

Nijmegen
𝜇 = 0.1 fm−1

𝜇 = 0.2 fm−1

𝜇 = 0.3 fm−1

𝜇 = 0.4 fm−1

𝜇 = 0.5 fm−1

−5
−4
−3
−2
−1

0

𝛿
(d

eg
)

50 100 150 2000
Elab (MeV)

Nijmegen
𝜇 = 0.6 fm−1

𝜇 = 0.7 fm−1

𝜇 = 0.8 fm−1

𝜇 = 0.9 fm−1

50 100 150 2000
Elab (MeV)

−5
−4
−3
−2
−1

0

𝛿
(d

eg
)

Nijmegen
𝜇 = 1.0 fm−1

𝜇 = 2.0 fm−1

𝜇 = 3.0 fm−1

𝜇 = 4.0 fm−1

𝜇 = 5.0 fm−1

−5
−4
−3
−2
−1

0

𝛿
(d

eg
)

50 100 150 2000
Elab (MeV)

Nijmegen
𝜇 = 6.0 fm−1

𝜇 = 7.0 fm−1

𝜇 = 8.0 fm−1

𝜇 = 9.0 fm−1

50 100 150 2000
Elab (MeV)

−5
−4
−3
−2
−1

0

𝛿
(d

eg
)

Nijmegen
𝜇 = 0.1 fm−1

𝜇 = 0.2 fm−1

𝜇 = 0.3 fm−1

𝜇 = 0.4 fm−1

𝜇 = 0.5 fm−1

50 100 150 2000
Elab (MeV)

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0

𝛿
(d

eg
)

Nijmegen
𝜇 = 0.6 fm−1

𝜇 = 0.7 fm−1

𝜇 = 0.8 fm−1

𝜇 = 0.9 fm−1

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0

𝛿
(d

eg
)

50 100 150 2000
Elab (MeV)

Nijmegen
𝜇 = 1.0 fm−1

𝜇 = 2.0 fm−1

𝜇 = 3.0 fm−1

𝜇 = 4.0 fm−1

𝜇 = 5.0 fm−1

50 100 150 2000
Elab (MeV)

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0

𝛿
(d

eg
)

Nijmegen
𝜇 = 6.0 fm−1

𝜇 = 7.0 fm−1

𝜇 = 8.0 fm−1

𝜇 = 9.0 fm−1

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0

𝛿
(d

eg
)

50 100 150 2000
Elab (MeV)

1F3
3F3

1F3
3F3

1F3
3F3

1F3

3F3

Figure 1: (Color on-line) phase shifts in 1𝐹3 and 3𝐹3 uncoupled channels calculated from the solution of the subtracted LS equation for the𝐾-matrix with five subtractions for the N3LO-EM potential for several values of the renormalization scale compared to the Nijmegen partial
wave analysis.
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Figure 2: (Color on-line) phase shifts in 1𝐺4 and 3𝐺4 uncoupled channels calculated from the solution of the subtracted LS equation for the𝐾-matrix with five subtractions for the N3LO-EM potential for several values of the renormalization scale compared to the Nijmegen partial
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Figure 4: (Color on-line) phase shifts in 1𝐼6 and 3𝐼6 uncoupled channels calculated from the solution of the subtracted LS equation for the𝐾-matrix with five subtractions for the N3LO-EM potential for several values of the renormalization scale compared to the Nijmegen partial
wave analysis.
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Figure 5: (Color on-line) phase shifts in 3𝐹4 − 3𝐻4 coupled channels calculated from the solution of the subtracted LS equation for the𝐾-matrix with five subtractions for the N3LO-EM potential for several values of the renormalization scale compared to the Nijmegen partial
wave analysis.
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Figure 6: (Color on-line) phase shifts in 3𝐺5 − 3𝐼5 coupled channels calculated from the solution of the subtracted LS equation for the 𝐾-
matrix with five subtractions for the N3LO-EM potential for several values of the renormalization scale compared to the Nijmegen partial
wave analysis.
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Figure 7: (Color on-line) phase shifts in 1𝐹3 and 3𝐹3 channels
calculated from the solution of the subtracted LS equation for
the 𝐾-matrix with five subtractions for the N3LO-EGM potential
for several values of the renormalization scale compared to the
Nijmegen partial wave analysis.

3. Numerical Results

Here we work in a partial wave relative momentum space
basis and compute the phase shifts in each peripheral channel.
However, a three-dimensional approach without any partial
wave decomposition has also been employed [41–43].

For numerical reasons, when implementing the renor-
malization procedure, we solve the subtracted LS equation for
the𝐾-matrix using the principal value prescription. We then
compute the neutron-proton phase shifts for channels with
angular momentum in the range 3 ≤ 𝐽 ≤ 6 with the N3LO
potentials EM and EGM. Expressions for the phases shits as
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Figure 8: (Color on-line) phase shifts in 1𝐺4 and 3𝐺4 channels
calculated from the solution of the subtracted LS equation for
the 𝐾-matrix with five subtractions for the N3LO-EGM potential
for several values of the renormalization scale compared to the
Nijmegen partial wave analysis.

functions of the on-shell𝐾-matrix in coupled and uncoupled
channels are given in [44–46].

For eachwave, we consider several renormalization scales
up to 𝜇 = 10 fm−1, limiting the momentum integrations atΛ = 30 fm−1. In practice this means we have an infinite cutoff
and the renormalization is completely imposed by the five
subtractions, unlike in [47–49] where the cutoff still plays a
role since only one subtraction was performed for the N2LO
potential which requires four subtractions to allow an infinite
cutoff.

In the case of the EGM potential, we have used an SFR
cutoff of Λ̃ = 4𝑚𝜋 (550MeV), the most common choice. The
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Figure 9: (Color on-line) phase shifts in 1𝐻5 and 3𝐻5 channels
calculated from the solution of the subtracted LS equation for
the 𝐾-matrix with five subtractions for the N3LO-EGM potential
for several values of the renormalization scale compared to the
Nijmegen partial wave analysis.

only parameter of the EGMpotential we changedwas the cut-
off Λ → ∞. The EGM interaction depends on the SFR cutoff
and the results are different if the SFR cutoff is modified, but
this dependence is not related to the subtractions. We also
believe that it is the SFR that drives the difference between the
EM and EGM potentials as far as the renormalization scale
dependence is concerned. Nevertheless, here we treated the
SFR cutoff as an internal parameter of the EGMpotential and
looked only at the dependence of the phases on 𝜇.

The results for the N3LO-EM potential are displayed in
Figures 1–4 for the uncoupled channels and in Figures 5 and
6 for the coupled channels. For the N3LO-EGM potential,
the results are displayed in Figures 7–10 for the uncoupled
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Figure 10: (Color on-line) phase shifts in 1𝐼6 and 3𝐼6 channels
calculated from the solution of the subtracted LS equation for
the 𝐾-matrix with five subtractions for the N3LO-EGM potential
for several values of the renormalization scale compared to the
Nijmegen partial wave analysis.

channels and in Figures 11 and 12 for the coupled channels.
The phase shifts are compared to the Nijmegen partial wave
analysis [50]. For an updated high quality partial wave and
error analysis, see the works from the Granada group [51–55].

Note that in the end we used different ranges of renor-
malization scales for EM and EGM and the reason is that the
results for EGM converges faster as far as 𝜇 is concerned and
there is no need to go above 2 fm−1. In the case of EM, since
there are still some variations in few waves for 𝜇 > 2 fm−1
we extended the range of the subtraction point to 10 fm−1.
We believe this is related to the differences between EM and
EGM that makes EGM softer than EM.
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Figure 11: (Color on-line) phase shifts in 3𝐹4 − 3𝐻4 coupled channels calculated from the solution of the subtracted LS equation for the 𝐾-
matrix with five subtractions for the N3LO-EGM potential for several values of the renormalization scale compared to the Nijmegen partial
wave analysis.

With few exceptions, in most of the channels we observe
very small variation of the phases as we change the sub-
traction point, indicating that peripheral waves are nearly
renormalization group invariant or fixed-points of the sub-
tractive renormalization group. The exceptions are 3𝐻4 and
3𝐼5 waves, which show slower convergence and 3𝐺5 channel
where the agreement with the partial wave analysis is only
up to ∼50MeV. Also, in the case of the EM potential, the

phases for the 3𝐹3 wave present some oscillations when the
renormalization scale approaches 𝜇 ∼ 10 fm−1.

In this case of the coupled channels, the renormalization
scheme is not failing but just requiring a slightly larger 𝜇
in the coupled channels, where we have the very singular
tensor force. And this is what is different in the these channels
compared to other 𝐹 waves.The case of the uncoupled triplet3𝐹3 is somewhat different; the oscillation observed when
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Figure 12: (Color on-line) phase shifts in 3𝐺5 − 3𝐼5 coupled channels calculated from the solution of the subtracted LS equation for the 𝐾-
matrix with five subtractions for the N3LO-EGM potential for several values of the renormalization scale compared to the Nijmegen partial
wave analysis.

going from 𝜇 = 6 to 9 fm−1 is related to the TPE without
SFR of the EM potential. This oscillation is not seen in the3𝐹3 wave when the EGM potential is used. An additional
subtraction does notmodify the results and the𝜇dependence
in the these channels, so only the minimum number of
subtractions needs to be performed (five at N3LO).

It is important to mention that the 𝜇-dependence of the
phase shifts is encoded in the recursive driving terms 𝑉(𝑛)𝜇
since they all depend on the renormalization scale. In the
case of cutoff regularization in configuration space [56], the
cutoff radius 𝑅𝑆 dependence has been traced to the most
singular part of the interaction which can be attraction or
repulsion, depending on the channel. Here we observe more
dependence on the coupled channels due to the very singular

tensor force and the 𝐹-wave issue is due to the differences
between the TPE components of the EMandEGMpotentials.

4. Conclusions and Outlook

So far we have renormalized theN3LO interactionswithmul-
tiple subtractions in peripheral channels considering an infi-
nite cutoff Λ = 30 fm−1. Only pions contribute to the nuclear
force in these waves and the results are parameter-free.

The five subtractions performed in the kernel of the
LS equation provide finite 𝐾-matrix in peripheral waves
and the resulting phase shifts are rather independent of the
subtraction point with the exception of 3𝐻4 and 3𝐼5 waves
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where the fixed point is reached at approximately 𝜇 ∼ 1 fm−1
after the slow convergence shown in Figures 5, 6, 11, and 12.

The oscillation in the 3𝐹3 channel suggests a closer look at
this wave with the renormalization group flow equation that
governs the driving terms (interactions) as the subtraction
point is changed with the constraint of an invariant scattering
amplitude.

The advances given by our approach when compared to
cutoff regularization are as follows: the 𝑁𝑁 force does not
have to be modified prior to its insertion in the scatter-
ing equation; only the scattering equation is modified; the
method is renormalization group invariant by construction
and provides a nonrelativistic flow equation for the driving
terms that tell us how they change when the renormalization
scale is modified in order to keep the amplitude invariant.
Finally, we would like to point out that the cutoff loses any
physical significance since our results were obtained with an
extremely large value Λ = 30 fm−1.
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