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Abstract 

Objective: To evaluate the impact of radiotherapy on enamel around restorations of glass 
ionomer cement (GIC) and fluoride tooth paste (FTP). Material and Methods: Eighty enamel 
blocks were made and randomly distributed into two groups, according to the fluoride therapy, 
non-fluoride tooth paste (NFTP) and FTP (n=40) and in subgroups in conformity with radiation 
dose (0, 10, 30 and 60 Gy). Roughness and microhardness enamel analyses were conducted 
before radiotherapy. Enamel cavities were made and restored with two GIC (Ketac Molar Easy 
Mix or Vitremer). Enamel blocks were submitted to 10, 30 and 60 Gy. Then, artificial enamel 
caries lesions were created by a pH-cycling procedure and FTP or NFTP were used as 
treatment. The restored enamel blocks were submitted to final roughness and microhardness 
analyses. Roughness increase (∆R) and hardness loss (∆H) values of enamel were submitted to 
ANOVA and Tukey test (p=0.05). Results: The irradiated enamel group showed statistically 
higher ∆R (0.44 ±0.2) and ∆H (99.26±7.0) values compared to non-irradiated group (∆R = 
0.051±0.02; ∆H=66.16±12.7) when a resin-modified GIC and NFTP were used. Conclusion: 
Higher radiation dose increased dissolution of bovine enamel. The use of GIC associated with 
FTP decreased roughness and increased enamel hardness after radiotherapy. 
 
Keywords: Dental Enamel; Glass Ionomer Cements; Hardness Tests; Radiotherapy.
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Introduction 

In the recent years, the number of oral and oropharyngeal cancer cases has increased [1]. 

Patients that have been diagnosed with oral cancer can be treated by several treatment methods such 

as radiotherapy [2,3], surgery [4], chemotherapy [2,3] or by the combination thereof. Head and 

neck radiotherapy (HNRT) uses fractioned radiation doses applied daily to the patient to control the 

tumor mass [5]. In the oral cavity, the most frequent and undesirable side-effects of the above-

mentioned cancer therapy are xerostomia, mucositis, candidiasis, dysgeusia, muscular trismus, 

vascular alterations, osteoradionecrosis and radiation related caries (RRC) [6]. 

RRC is characterized by a fast onset, progressing quickly and occurring in unusual dental 

areas such as the cervical and incisal edges of the tooth enamel [7,8]. Active carious lesions are 

generally seen at the end of the radiation treatment, or few months later, depending on the oral 

hygiene habits of the patient. When no preventive treatment is performed, an excessive damage of 

the dentition is commonly seen within the first year after the patient undergoes the radiation therapy 

[9]. This form of dental caries is a complex and multifactorial disease [10,11] and is related to many 

factors such as the radiogenic damage of the salivary glands, leading to post-radiation 

hyposalivation, the increase of cariogenic bacteria, poor oral hygiene and the intake of a more 

cariogenic diet after HNRT [10,12]. In addition, the direct radiogenic destruction of the mineralized 

dental structure should be considered a RRC pathogenesis [13]. Scientific evidences have reported 

alterations in the enamel microstructure, showing an increased dissolution of the dental hard tissue 

after radiotherapy [14-17]. However, there is limited and contradictory information regarding the 

direct effects of HNRT on the dental structure, causing RRC in the tooth enamel and dentin [10,15-

21]. 

Unfortunately, the clinical management of RRC is based on the clinical experience of the 

clinicians [10,22,23]. There is no specific restorative dental treatment and preventive protocol for 

patients who undergo HNRT based on scientific evidence. It is widely known that fluoride use plays 

an important role in the prevention of dental caries, as well as on the improvement of the 

micromechanical properties of the dental hard tissues [24,25]. Therefore, fluoride-releasing 

materials and topical fluoride are indicated to reduce the caries risk in dental restorations of 

irradiated patients [26-28]. Nevertheless, it is not totally clear if both strategies cause significant 

therapeutic effect in the enamel after the exposure to several radiotherapy doses. Therefore, this 

research study aimed evaluating the impact of radiotherapy (RDT) in the enamel around glass 

ionomer cement restoration (GIC) and in fluoride toothpaste (FTP) by evaluating the microhardness 

and the surface roughness of bovine tooth enamel. 

The null hypotheses established for this study were the following: 1) There is no impact of 

radiotherapy in the microhardness and the surface roughness of bovine tooth enamel 2) The use of 

glass ionomer cement restorations and fluoride toothpaste does not have protective effect to caries in 

irradiated tooth enamel. 
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Material and Methods 

Sample Preparation 

Eighty freshly extracted bovine incisor teeth stored in 0.5% thymol solution at 4°C were 

used in this research study. The teeth were horizontally cut in the cervical and incisal areas, using a 

water-cooling diamond blade (South Bay Technology Inc., San Clemente, CA, USA). Then, one 

central fragment was longitudinally cut to obtain an enamel block with the following measurements: 

4 mm width, 4 mm height and 4 mm thickness. After sectioning the tooth, the dental block dentin 

was wet-grounded with a silicon carbide paper (#320) to a 2 mm thickness. The enamel surface was 

wet-grounded with a series of silicon carbide papers (#600 and #1.200) to achieve a flat surface. 

Subsequently, the enamel blocks were embedded in autopolymerizing acrylic resin (Vipi Produtos 

Odontológicos, São Paulo, SP, Brazil) and stored at 4°C. 

In order to simulate the in vitro remineralization of the demineralized-irradiated enamel 

around glass ionomer cement restorations, circular cavities were made on the enamel surface and 

restored with two glass ionomer cements - Ketac Molar Easy Mix  or Vitremer (3M ESPE Dental 

Products, St Paul, MN, USA). Then, the enamel blocks were submitted to simulated radiotherapy, 

applying several ionizing radiation doses as 10, 30 and 60 Grays (Gy). Demineralizing and 

remineralizing solutions (pH cycling) and fluoride therapy [fluoride toothpaste (FTP) or non-

fluoride toothpaste (NFTP)] were applied on the enamel surface. Surface roughness and 

microhardness analyses of bovine tooth enamel were performed to calculate the roughness increase 

(∆R) and hardness loss (∆H) values. The composition and the batch number of each product are 

shown in Table 1. 

 

Table 1. Composition and batch numbers of materials used. 
Product 

(Batch number) 
Manufacturer Composition  

Ketac™ Molar Easymix 
Lot. 374638 

3M ESPE Dental 
Products 

Water, copolymer of acrylic acid-maleic acid, tartaric acid 

Vitremer™ 
Lot. 0821000456 

3M ESPE Dental 
Products 

Silane treated glass, potassium persulfate, water, copolymer of 
acrylic and itaconic acids, 2-hydroxyethyl methacrylate 
(HEMA), ethyl acetate 

Colgate Máxima 
Proteção Anticáries® 

Colgate 1500ppm of fluoride, Calcium Carbonate, Sodium Lauryl 
Sulfate, sodium saccharin, tetrasodium pyrophosphate, sodium 
silicate, polyethylene glycol, sorbitol, carboxymethyl cellulose, 
methyl paraben, propyl paraben, flavor composition, water and 
sodium Monoflourfosfato - MPF® 

Creme Dental Phillips® Glaxo Smithkline Calcium carbonate, Sorbitol, Magnesium Hydroxide, Sodium 
lauryl sulfate, carboxymethylcellulose, mint flavor, 
magnesium sulfate, saccharin, and purified water. 

Demineralizing Solution Roval 
(Manipulation Pharmacy) 

2 mM calcium chloride, 2 mM potassium phosphate, 75 mM 
sodium acetate - pH 4.3 

Remineralizing Solution Roval 
(Manipulation Pharmacy) 

1.5 mM calcium chloride; 0.95mM potassium phosphate; 
150mM potassium chloride - pH 7.0 

 

Eighty enamel blocks were prepared for restoration, applying restorative materials (Ketac 

Molar Easymix or Vitemer), being randomly distributed into two groups, according to the fluoride 
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therapy (FTP and NFTP) (n=40) and, into four subgroups, according to the ionizing radiation dose 

(0 Gy, 10 Gy, 30 Gy and 60 Gy) (n=10). 

 

Initial Surface Roughness and Microhardness Analyses 

After 24 hours following the storage period, the initial surface roughness analysis of the 

enamel blocks was performed in a rugosimeter (Surftest SJ-301; Mitutoyo Corp., Kanagawa, Japan). 

Three measurements were randomly taken on the enamel surface, following the test conditions: Lc – 

0.25 mm and 0.5 mm/s speed. The measurements were the arithmetic mean between peaks and 

valleys (Ra), obtained by the path described by the mechanical probe. Three measurements were 

taken in each enamel block and the arithmetic mean was calculated, obtaining the initial roughness 

values (∆Rinitial). 

The initial Vickers hardness (∆Hinitial) was measured using a Vickers impression tester (15s 

indentation time, 100g load, HMV-2, Shimadzu Corporation, Nakagyo-ku, Kyoto, Japan). Five 

indentations were randomly made on the enamel surface and the length of the diagonals (d1 and d2) 

left by the indenter was digitally measured using microscope light (HMV-2 microhardness tester at 

50x magnification). Subsequently, the initial microhardness values (∆initial) were calculated. 

 

Cavity Preparation and Restoration Placement 

Circular cavities (1.5 mm in diameter and 1.5 mm in depth) were made in the center of the 

enamel surface using diamond burs (n°. 2294, KG Sorensen, Cotia, SP, Brazil) placed in high-speed 

handpieces (Dabi Atlante, Ribeirão Preto, SP, Brazil) under water-cooling.  

The cavities were filled with restorative materials, according to two groups: conventional 

glass ionomer cement (Ketac Molar Easy Mix) and resin-modified glass ionomer cement (Vitremer). 

Both glass ionomer cements were handled following the manufacturer’s instructions. The material 

that underwent physical polymerization (resin-modified glass ionomer cement) was exposed to 

visible light, for 40 seconds, with 600 mW/cm2 intensity (Optilux Plus, Gnatus Equipamentos 

Médico-Odontológicos, Ribeirão Preto, SP, Brazil). Glass ionomer cement restorations received 

surface protection and were kept in a humidifier for 30 minutes. After this period, the restorations 

were polished using flexible disks (SofLex Pop-On, 3M ESPE, St. Paul, MN, USA), following a 

descending order of granulometry and the enamel blocks were stored in deionized water for 24 hours 

at 37°C. 

 

Simulated Radiotherapy 

The specimens were submitted to simulated radiotherapy applied in a single session 

according to the ionizing radiation dose (10 Gy, 30 Gy and 60 Gy). Primus K Linear Accelerator 

(Siemens Medical Solutions USA, Inc., Malvern, PA, USA) with 6 MeV power, 100 cm source 

surface distance and field size 18 cm × 23 cm was used in the study. 
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Artificial Caries Induction by pH-Cycling 

Artificial enamel caries was created by a pH-cycling procedure, modified from the previously 

described protocol [29]. Each specimen was cycled in 15 ml demineralizing solution for 6 hours. 

Subsequently, the enamel blocks were washed with distilled water and submitted to treatment (FTP 

or NFTP) for 5 minutes. Then, the samples were washed with distilled water and immersed in 15 ml 

remineralizing solution for 18 hours. This procedure was carried out for 14 days at room 

temperature under no stirring process. Ten cycles were performed for each experimental group. 

During the cycles, the solutions were daily removed, except in the 6th, 7th, 13th and 14th days, 

when the samples were kept in remineralizing solution. After undergoing the pH-cycling, the enamel 

blocks were kept in distilled water at 37°C for final roughness and microhardness analyses. 

 

Final Roughness and Microhardness Analyses 

The final roughness (∆Rfinal) and microhardness values (∆Hfinal) were obtained after the 

24-hour storage period, following the same test conditions as the initial roughness and 

microhardness analyses. 

 

Statistical Analysis  

The difference between the final and the initial roughness (∆Rfinal - ∆Rinitial) was calculated 

to obtain the roughness increase (∆R). Likewise, the difference between the final and the initial 

microhardness (∆Hfinal - ∆Hinitial) was calculated to obtain the values for hardness loss (∆H). 

Normality and homoscedasticity data was assessed applying the Shapiro Wilks test at a preset alpha 

of 0.05. The roughness increase and the hardness loss values were subjected to the three-way 

ANOVA, Tukey post-hoc test at a significance level of 5% - IBM SPSS Statistics for Windows 

Software, version 20 (IBM Corp., Armonk, NY, USA). 

 

Results 

Statistical reports have shown that the factors ‘material’, ‘radiation dose’, ‘fluoride therapy’ 

and all the possible interactions between them have presented statistically significant values for 

roughness increase and hardness loss (p<0.0001). The ∆R and ∆H values are presented in Table 2 

and Table 3. 

The ∆R values of bovine enamel around glass ionomer cement restorations were statistically 

higher for the irradiated groups (10, 30 and 60 Gy) compared to the control group (0 Gy), when 

NFTP was used. In contrast, there were no statistical differences between the ∆R values, for the 

control and the irradiated groups, after the application of FTP. Bovine enamel presented statistically 

lower ∆R values after the use of FTP compared to NFTP for every ionizing radiation doses in both 

dental cements. When conventional glass ionomer cement (Ketac Molar Easy Mix) was used as a 

restorative material, bovine enamel showed statistically lower ∆R values compared to the enamel on 

resin-modified glass ionomer cement (Vitremer) for 10 and 30 Gy, when NFTP was used (Table 2). 
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Table 2. Means values of the enamel roughness increase (∆R), comparing glass ionomer cements, with 
different ionizing radiation doses and fluoride therapy. 

Material Dose of Ionizing 
Radiation (Gy) 

Fluoride Therapy 
 Non-Fluoride Toothpaste (NFTP) Fluoride Toothpaste (FTP) 
Ketac Molar Control (0 Gy) 0.068±0.02Aa 0.042±0.01Aa 

 10 Gy *0.242±0.07Bb 0.04±0.007Aa 
 30 Gy *0.35±0.09Bbc 0.05±0.02Aa 
 60 Gy 0.42±0.1Bc 0.058±0.01Aa 

    

Vitremer Control (0 Gy) 0.051±0.02Aa 0.038 ±0.01Aa 
 10 Gy 0.39±0.1Bb 0.042 ±0.01Aa 
 30 Gy 0.52± 0.09Bb 0.045 ±0.01Aa 
 60 Gy 0.44 ±0.2Bb 0.11 ±0.09Ab 

Means followed by different letters (uppercase on the same row and lowercase on the same column) indicate statistical difference for each 
glass ionomer cement; *Ketac Molar differs from Vitremer in the same radiation dose and fluoride therapy conditions; α=0.05. 
 

The enamel ∆H values presented no statistical difference comparing the irradiated groups 

(10, 30 and 60 Gy) to the control group (10 Gy), when the conventional glass ionomer cement (Ketac 

Molar Easy Mix) was used in both fluoride therapies.  For resin-modified glass ionomer cement 

(Vitremer), the enamel ∆H values showed no statistical difference comparing the control group to all 

the radiation doses, only for FTP. 

The bovine enamel around Ketac Molar Easy Mix showed statistically higher ∆H values for 

NFTP compared to FTP after the application of 60 Gy. The enamel around Vitremer presented 

higher ∆H values for NFTP compared to FTP in all doses of ionizing radiation (Table 3). The 

enamel around conventional glass cement ionomer (Ketac Molar Easy Mix) showed statistically 

lower ∆H values than resin-modified glass ionomer cement (Vitremer) for all the ionizing radiation 

doses (0 Gy, 10 Gy, 30 Gy and 60 Gy), when NFTP was used (Table 3). 

 

Table 3. Means values of the enamel hardness loss (∆H), comparing glass ionomer cements, with 
different ionizing radiation doses and fluoride therapy. 

Material Dose of Ionizing 
Radiation (Gy) 

Fluoride Therapy 
 Non-Fluoride Toothpaste (NFTP) Fluoride Toothpaste (FTP) 

Ketac Molar Control (0 Gy) *43.51±10Aa 32.73±10.4Aa 
 10 Gy *45.37±7.9Aa 32.23±9.4Aa 
 30 Gy *46.23±1.5Aa 33.99±7.0Aa 
 60 Gy *53.50±10.8Aa 33.20±6.1Ab 

    

Vitremer Control (0 Gy) 66.16±127.Ab 410.7±9.9Aa 
 10 Gy 70.30±13.6Ab 44.44±9.9Aa 
 30 Gy 70.80±9.5Ab 452.9±78.Aa 
 60 Gy  99.26±72.Bb *572.9±15Aa 

Means followed by different letters (lowercase on the same row and uppercase on the same column) indicate statistical difference for each 
glass ionomer cement; *Ketac Molar differs from Vitremer in the same radiation dose and fluoride therapy conditions; α=0.05. 
 

Discussion 

This study aimed at verifying the impact of radiotherapy in the in vitro remineralization of 

demineralized bovine tooth enamel by evaluating the increase of the roughness and the 

microhardness loss of enamel around glass ionomer restorations after the application of several doses 

of ionizing radiation (10, 30 and 60 Gy) and fluoride therapy. Therefore, based on our results, 
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simulated radiotherapy may change the enamel properties, resulting in higher risk of dental 

demineralization and degradation. This fact is mainly seen when a higher radiation dose (60 Gy) is 

applied. Furthermore, our results have shown that conventional glass ionomer cement associated to 

the daily use of FTP may decrease the roughness and increase the microhardness values. Thus, both 

null hypotheses of the current study were rejected. 

Head and neck radiotherapy consists of a total high-energy x-ray radiation dose varying 

from 50 to 80 Gy, applied in daily fractions of 1.8 to 2 Gy [13,22]. There is a direct correlation 

between the tooth destruction severity and the radiation dose that reaches the dental structure [13]. 

Previous studies have reported that the direct radiotherapy effects produce degradation of the 

enamel organic matrix via proteolysis of the non-collagenous proteins that are highly radiosensitive 

[14,30,31]. Ionizing radiation also acts on water, leading to the formation and accumulation of free 

radicals and reactive oxygen species, which may oxidize and denature the organic components of the 

dental structure [15,32]. Indirect radiogenic effects on inorganic components have also been 

identified, such as microcracks in the hydroxyapatite crystals [33,34]. Our results have shown that 

irradiated-demineralized enamel presents higher ∆R values compared to non-irradiated bovine 

enamel (control) when NFTP was used (Tables 2 and 3). These results may suggest that ionizing 

radiation doses cause alterations in the inorganic and/or organic components, increasing the 

dissolution of the enamel surface, agreeing with the results reported by additional studies [15-17]. 

This finding may suggest the implementation of clinical preventive strategies since radiotherapy-

induced enamel defects may establish easier colonization of cariogenic bacteria, increasing the RRC 

and the secondary caries risk in cancer patients who undergo radiotherapy. 

It is important to mention that single radiation doses were used in the present study and the 

destructive effect on the enamel microstructure may be overestimated. Nevertheless, the enamel 

samples were also submitted to lower radiation doses (10 and 30 Gy) in order to simulate the 

radiotherapy effect on teeth located contra-laterally to the irradiated tumor that received lower 

radiation dose [35]. However, alterations to the enamel microhardness were observed only after the 

application of a higher ionizing radiation dose (60 Gy). This fact may occur because direct radiogenic 

effects happen when higher doses are applied and, also, due to the roughness higher sensibility when 

compared to the microhardness analysis to measure the initial enamel alterations, after the radiation 

and the demineralization process. 

During the HNRT, a continuous follow-up of the patient and the use of fluoride-releasing 

materials are necessary to reduce the side-effects caused by treatment to the dental hard tissues, 

aiming at improving the patients’ quality of life [36]. This study used two-glass ionomer cements 

(Ketac Molar Easy Mix and Vitremer) as restorative materials in combination with FTP and NFTP. 

In this research study, the in vitro results have shown no statistical difference for the ∆R and ∆H 

values comparing the non-irradiated and irradiated enamel samples after the application of FTP for 

both glass ionomer cements. This finding may be explained as the fluoride ions released from the 

restorative materials may substitute the hydroxyl ions from the enamel hydroxyapatite, leading to 
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the formation of fluorapatite crystals, which are less susceptible to dissolution [37,38]. Thus, the 

combination of FTP and glass ionomer cements presented a protective effect, decreasing the direct 

alterations on the enamel properties after radiotherapy. 

In this study, the ∆R and ∆H values of irradiated enamel were similar to the values of non-

irradiated enamel when conventional glass ionomer cement was used as restorative material, 

regardless of the toothpaste. On the other hand, the resin-modified glass ionomer cement (Vitremer) 

presented beneficial effect on demineralized-irradiated enamel only when FTP was used. 

Furthermore, our results showed that the bovine enamel adjacent to the conventional glass-ionomer 

cement restorations (Ketac Molar Easy Mix) presented statistically lower ∆R and ∆H values 

compared to bovine enamel around resin-modified glass ionomer cement (Vitremer) when associated 

to NFTP, as observed in most groups. This fact may be explained because conventional glass 

ionomer cement presents higher solubility, releasing a greater amount of fluoride ions from its 

structure and, consequently, decreasing the enamel demineralization [39] as reported in additional 

studies [39,40]. 

The implementation of preventive oral health care programs in head and neck cancer 

patients, who underwent radiotherapy, is extremely important to achieve better results in dental 

restorative procedures, as well as to improve their quality of life [22]. Our findings have reinforced 

the importance of using topical fluoride therapy during and after HNRT, suggesting that its 

synergistic use with conventional GIC promotes more significant effects on the remineralization of 

irradiated enamel. However, it is important to emphasize that the positive effect of topical fluoride 

therapy on the dental structure was verified under in vitro conditions in this study. Therefore, our 

results should be confirmed by randomized controlled trial studies to shown that this therapy 

produces the remineralization of irradiated enamel. Furthermore, GIC are water-based dental 

cements and their physical properties are negatively affected when used as restorative materials in a 

dry oral environment, typically found in head and neck cancer patients after undergoing 

radiotherapy sessions [41]. 

A limitation of this study is that the oral conditions of irradiated patients, including salivary 

pH and dietary changes, were not simulated. Hence, more research efforts are necessary to develop 

bio-active restorative materials featuring desirable characteristics such as higher solubility resistance 

in post-radiation oral conditions, chemical bond strength to the dental structure and optimal 

mechanical properties. 

 

Conclusion 

A higher dose of ionizing radiation (60 Gy) has impaired the remineralization process of 

demineralized bovine enamel, increasing the surface roughness and decreasing the microhardness 

when a non-fluoride toothpaste was used. The use of GIC associated to FTP has decreased the 

roughness and increased the enamel hardness after being submitted to simulated radiotherapy 

sessions. 
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