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Abstract
Although previous studies suggested an anti-inflammatory property of Brazilian red propolis

(BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on

macrophages were still not elucidated. This study aimed to evaluate whether BRP attenu-

ates the inflammatory effect of LPS on macrophages and to investigate its underlying mech-

anisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO

production, cell viability, cytokines profile were evaluated. Activation of inflammatory signal-

ing pathways and macrophage polarization were determined by RT-qPCR andWestern

blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80
and Cd86 were upregulated whereasmrc1 was down regulated by BRP indicating macro-

phage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-

12, GM-CSF, IFN-γ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were

slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced

by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of

genes in inflammatory signaling (Pdk1, Pak1, Nfkb1,Mtcp1,Gsk3b, Fos and Elk1) and of

Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB

and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like

(Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in

BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling path-

ways in macrophages involved in the inflammatory process activated by LPS, our data indi-

cated that BRP is a noteworthy food-source for the discovery of new bioactive compounds

and a potential candidate to attenuate exhacerbated inflammatory diseases.

Introduction
Inflammation provides protection against pathogens, but also modulates repair and healing
after cellular damage. In most human diseases, including auto inflammatory and autoimmune
diseases, the fine balance between the insult and the host response is disrupted due to genetic
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and environmental factors, leading to inflammatory damage[1]. Inflammation may be con-
trolled by non-steroidal anti-inflammatory drugs, but other treatment strategies include the
administration of inhibitors of pro-inflammatory cytokines, such as anti- tumor necrosis factor
alpha (TNF-α) [2], anti-interleukin (IL)-6 [3], and anti-IL-1 [1].

Macrophages exhibit multiple functions during the immune response [4]. In the context of
inflammation, circulating monocytes are recruited and differentiate into macrophages [5].
Macrophages can be activated by a wide range of substances, including cytokines derived from
T and natural killer (NK) cells and direct recognition by binding to microbial components
such as the lipopolysaccharide (LPS) from the Gram negative bacteria cell wall. These highly
plastic cells differentiate with substantial shifts in gene expression depending on specific sti-
muli, giving rise to at least two phenotypes with specialized functions[6].

The M1 phenotype is involved in phagocytosis, secretion of inflammatory cytokines and
reactive compounds such as nitric oxide (NO)[7], and exhibits the surface markers CD 80 and
CD86. M2 phenotype participates in tissue repair and regeneration [5], can produce regulatory
cytokines such as IL-10, exhibits the CD206 surface receptor and produces arginase-1 [8].

Despite the protective role of inflammation in eliminating pathogens and promoting tissue
regeneration, the exacerbated inflammatory process is involved in several diseases in humans,
including cardiovascular diseases, diabetes, arthritis, inflammatory bowel disease and peri-
odontitis, to mention only a few. Therefore, the search for new drugs or even functional foods
that reduce the recruitment of neutrophils and macrophages in different models of inflamma-
tion, or alter the differentiation process of monocyte-derived macrophages, leading to different
phenotypes, is intense in the literature[9, 10].

Natural products have been investigated as an alternative source of drugs which modulate
the inflammatory process [11]. Propolis, a non-toxic resinous substance collected from various
parts of plants as sprouts, floral buttons and resinous exudates by Africanized bees Apis melli-
fera [12] has been used extensively as additives in food and beverages due to its beneficial prop-
erties to human health and activity on diseases prevention.

Brazilian propolis has attracted scientific interest due to its several biological, pharmaceutical
and nutraceutical properties such as antimicrobial, antibiofilm, anticaries [13, 14], antioxidant
[15], anticancer[16]and anti-inflammatory [17, 18]. Propolis is formed by multiple components,
in a wide chemical diversity and different types are characterized by distinct components [12, 19,
20]. Data on the anti-inflammatory effects of Brazilian propolis are abundant [21–25], however,
there are few studies on the anti-inflammatory properties of the Brazilian red type [14, 17].

Our research group has previously determined the chemical composition of BRP [12, 14].
Lately, red propolis was shown to inhibit NO production and neutrophil migration into the perito-
neal cavity of mice [17]. Despite the anti-inflammatory potential of BRP, little is known on the
mechanisms involved in the regulation of inflammation induced by propolis. Therefore, we tested
the hypothesis that BRP attenuates the macrophage response to bacterial lipopolysaccharide
(LPS). LPS activated macrophages were submitted to BRP and their polarization determined by
the secretion of NO and cytokines (IL-12p40, GM-CSF, IFN-γ, IL-1β, IL-10, TGF-β, TNF-α and
IL-6) and transcription of 360 genes involved in the inflammatory process and surface markers.
Furthermore, the activation of pathways involved in macrophages response to LPS and the expres-
sion of TIRAP, an upstream adaptor molecule involved in TLR4 signaling, were also determined.

Materials and Methods

BRP solution preparation
Red propolis was collected by scraping the insides of the boxes of Apis mellifera bees in the sea-
side region of Maceio, Alagoas, Brazil. The propolis was collected in a private land, whose
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owner gave permission to conduct the study. The crude extract was obtained by mixing 25g of
propolis with 200ml of 80% ethanol (v/v). Then, crude extract was filtered using qualitative fil-
ter paper 80g, the solvent was evaporated and BRP was diluted in DMSO (1:500) at concentra-
tions ranging from 40 to 100 μg/mL.

Gas chromatography coupled to mass spectrometry (GC-MS)
The GC-MS analyzes were conducted on a Shimadzu gas chromatograph model GC 2010 cou-
pled with mass spectrometry Shimadzu Model QP 2010 Plus equipped with a capillary column
(RTX5MS 30m x 0.25mm x 0.25 μm). The initial column temperature was 80°C for 1 minute;
reached 250°C by the rate of 20°C/min and kept at this temperature for 1 minute, from 250 to
300°C with rate of 6°C/min for 5 minutes; 300 to 310°C with rate of 15°C/min for 5 minutes;
310 to 320°C with rate of 20°C/min for 10 minutes, completing 40 minutes of analysis. Helium
was used as carrier gas. The injector temperature was 280°C and the injection volume was
0.2 μL in splitless mode. The interface temperature was maintained at 280°C. The mass detec-
tor operated in mode scanning m/z from 40 to 800. The integration was done in software solu-
tion LabSolutions-GCMS and the identification of compounds was performed by comparison
with the data of the Wiley mass spectrum library 8TM and authentic patterns injected under
the same conditions of the samples[12].

Growing of eukaryotic cell
RAW 264.7 cells have been established from murine tumors (leukemia) induced by the Abel-
son leukemia virus (Raschke et al., 1978). RAW 264.7 cells were cultured and maintained in
DMEMmedium (Cultilab, Campinas, Brazil) containing 10% fetal bovine serum and 1% anti-
biotic solution: 1,000U/mL penicillin G (ICN Biomedicals, Irvine, CA, USA) and 100U/ml
streptomycin sulfate (Calbiochem, Darmstadt, Germany).

LPS activation of macrophages in the presence of BRP
Cells (1x105 cells/well) were activated with 10μL of lipopolysaccharide (LPS) from E. coli sero-
type O111:B4 (Sigma, St. Louis, MI, USA) at 500 ng/ml. At the same time, aliquots of BRP (40–
100 μg/ml) were added to each well and the plates were incubated for 48 hours at 37°C in 5%
CO2 with LPS and BRP or controls. Cells added with the vehicle (DMSO) with and without
LPS and/or BRP were used as controls [26].

Determination of the effect of BRP on NO production and cell viability
The production of NO was determined by measuring nitrite in cell culture supernatants. Cells
supernatants were incubated with an equal volume of Griess reagent (Sigma, St. Louis, MI,
USA), and the absorbance was determined at 540 nm. Results were expressed as mM of NO2.

Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) (Sigma-Aldrich, St. Louis, MI, USA) assay.

Cytokines quantification
Cytokines profile was determined in the supernatant of LPS activated macrophages submitted
to 50μg BRP/ml since this condition led to the greatest reduction in NO levels without loss in
cell viability. Data were compared with control LPS treated cells. Controls cells not treated with
LPS, with and without BRP, were also used. Levels of IL-12, GM-CSF, IFN-γ, IL-1β, IL-10,
TGF-β, TNF-α and IL-6 were determined by enzyme-linked immunosorbent assay (ELISA)
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using commercial kits (Becton-Dickinson, San Diego, CA, USA). Absorbance was determined
at 450 nm and data expressed in ρg/ml.

Gene expression
Gene expression was determined by reverse transcription followed by real time PCR. Total
RNA was extracted from LPS activated RAW 264.7 macrophages submitted to 50μg BRP/ml
and control LPS treated cells, in three independent experiments, using RNA extraction kit
(Qiagen, Hilden, Germany). First strand synthesis was obtained with 1 μg of RNA using RT2

First Strand Kit (Qiagen). PCR was performed using arrays for mouse common cytokines
(PAMM-021CZ), mouse Signal Transduction Pathway (PAMM 014CZ), mouse phosphoinosi-
tide 3-kinase- Protein kinase B (PI3K-AKT) Signaling Pathway (PAMM-058CZ) and nitric
oxide signaling pathway (PAMM-062CZ) (Qiagen), totalizing 360 genes. Changes in gene
expression of the target genes were measured relative to the mean cycle threshold (CT) values
of five different calibrator genes (gusb, hprt, hsp90ab1, gapdh and actb) using the ΔΔCT
method. Macrophages polarization at M1 or M2 was determined by measuring mRNA levels
of arg1,mrc1, cd80 and cd86, relative to levels of gapdH transcripts [26].

Proteins detection by Western Blot
The amounts of phosphorylated proteins indicative of different pathways activation and of
Tirap, an adapter of TLR 4, were determined in LPS activated RAW 264.7 macrophages sub-
mitted to 50μg BRP/ml and control LPS activated cells by Western Blot.

Cell lysates were prepared by re-suspending RAW 264.7 macrophages in SDS-PAGE load-
ing dye (BioRad, Hercules, CA, USA) and boiling for 10 minutes. Protein concentrations were
determined by the Bradford method and 30 μg of protein were loaded on 12% Bis-acrylamide
-Tris gel. After electrophoresis, the proteins were transferred to a nitrocellulose membrane
(Life Technologies). The membranes were blocked with 5% skim milk, and incubated with pri-
mary antibodies to the pNF-κB p65 (Ser536) (93H1), pC-Fos (Ser 32) (5348), p-p42/44 (phos-
pho MAPK–p42/44 (Thr180 / Tyr182)-4631S) (Cell Signaling, Danvers, MA, USA), and Tirap
(Invivogen 48–2300, San Diego, CA, USA) at 1: 1,000 dilution. Anti-GAPDH (2118) (Sigma-
Aldrich, St. Louis, MI, USA) was used as the control antibody. After incubation with the sec-
ondary antibody at 1: 2,000 dilution (anti-rabbit IgG, Sigma-Aldrich), the detection was per-
formed using "Prime Amersham ECLWestern Blotting Detection" reagent (GE Healthcare,
Uppsala, Sweden). The autoradiograms were photographed and bands intensity compared
visually.

Statistical Analysis
Differences in cell viability, NO and cytokines levels among the groups were determined using
one-way ANOVA followed by Tukey, with the aid of Biostat Software. Student’s t-test was used
to assess differences in gene transcription profiles between control and experimental groups
using mean CT values. Differences of� 5-fold change in gene expression were considered sig-
nificant when p< 0.05, using SABiosciences Technical Core website (SABiosciences/Qiagen
Corp., Frederick, MD, USA).

Results

Chemical analysis
The chemical analysis by CG-MS revealed 22 distinct compounds in chemical composition of
BRP. Most of these compounds are isoflavonoids and flavonoids, a group of isoflavones with
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recognized therapeutic properties. The most abundant chemical compounds are vestitol and
neovestitol, both isoflavonoids (Fig 1).

NO quantification and cells viability
Cell viability was not affect by BRP, except for the higher tested concentrations, as shown in
Fig 2. However, NO production was reduced in LPS (500 ng/ml) treated cells even at the lower
tested BRP concentration (Fig 2).

Cytokines in cell supernatant
The lowest BRP concentration (50 μg/mL) which led to the highest NO reduction (78%) with-
out loss in cell viability was used to evaluate the cytokines profile in LPS treated macrophages
(Fig 2). LPS activation resulted in the production of all the studied cytokines. The BRP treat-
ment on LPS activated macrophages inhibited the production of IL-12, GM-CSF, IFN-γ, IL-1β,
IL-10 and TGF-β. On the other hand, BRP treatment led to a slight but significant increase in
TNF-α and IL-6 levels in LPS-activated cells, when compared to controls LPS-activated cells
(Fig 3).

Fig 1. Chemical profile of BRP obtained by GC-MS. 1 4,4'bis[(trimethylsilyl)ethynyl]-2,2'-bithiophene-5,5' dicarbaldehyde; 2 silane, trimethyl[5-methyl-2-
(1-methylethyl)phenoxy]; 3 medicarpin; 4 benzenepropanoic acid, 3,4-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester; 5 neovestitol; 6 vestitol; 7 4,4'-bis
[(trimethylsilyl)ethynyl]-2,2'-bithiophene-5,5'-dicarbaldehyde; 8 hydrocinnamic acid, p-(trimethylsiloxy)-, trimethylsilyl ester; 9 3,4-dihydroxy-
9-methoxypterocarpan; 10 3,8-dihydroxy-9-methoxypterocarpan (3-hydroxy-8,9-dimethoxypterocarpan); 11 1,3,5-cycloheptatrien, 7-methyl-7-phenyl-2,4-bis
(trimethylsilyl); 12 formononetin; 13 silane, 9h-fluoren-9-ylidenebis[trimethyl; 14 benzeneacetic acid, 2,4,5-tris[(trimethylsilyl)oxy]-, trimethylsilyl ester; 15
isoliquiritigenin; 16 2-propenoic acid, 3-(3,4,5-trimethoxyphenyl)-, methyl ester; 17 benzeneacetic acid, 4-[(trimethylsilyl)oxy]-, trimethylsilyl ester; 18
propanedioic acid, bis[(trimethylsilyl)oxy]-, bis(trimethylsilyl) ester; 19 Silane, trimethyl[[(3.beta.)-olean-12-en-3-yl]oxy]- $ $ 3-[(trimethylsilyl)oxy]olean-
12-ene; 20 not identified; 21 not identified; 22 Lup-20(29)-en-3-yl acetate.

doi:10.1371/journal.pone.0144954.g001

Fig 2. Effect of BRP treatment for 48 h on NO production (in A and C) and cell viability (in B and D) of
RAW 264.7 non-activated cells (A and B) and activated with 500 ng/ml LPS (C and D). Results are
expressed as means followed by standard deviation of three independent experiments performed in triplicate.
(*) Indicates statistically significant difference compared to control (DMSO) group by Analysis of variance
(One-way ANOVA, p <0.05).

doi:10.1371/journal.pone.0144954.g002
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Gene expression
The data on the relative transcription of genes regulated by BRP in LPS-activated macrophages
compared with control LPS activated cells (treated with vehicle -DMSO) are shown in Table 1.
The transcription of Cd80, Cd86, Naip1 was up-regulated by BRP in LPS activated macro-
phages, whereas transcription of Ccnd1, Cd14, Eif2ak2, Elk1, Flt3l, Fos, Gdf1, Il10, Il1b, Il1f9,
Il1rn,Map2k1,Mapk14,Mcr,Mtcp1, Naip1, Nfkb1, Pak1, Pdk1, Pik3ca, Pik3cg, Pik3r2, Prkca,
Rps6ka1, Srf, Tirap, Tlr4 and Tnfsf12 were down-regulated, among 360 studied genes involved
in the inflammatory process.

Signaling pathways analysis and TIRAP expression
Western blot assays revealed that BRP (50 μg / ml) treatment decreased the relative levels of
the following phosphorylated proteins NF-κB, C-FOS and MAPK p42/44 when normalized to
GAPDH levels (Fig 4) indicating that BRP inhibits several signaling pathways. Furthermore,
TIRAP levels were also reduced by BRP.

Discussion
Inflammation must be tightly controlled in order to respond to harmful threats without caus-
ing tissue damage [29]. Monocytes derived macrophages can be recruited to target tissues

Fig 3. IL-12, GM-CSF, IFN-γ, IL-1β, IL-10, TGF-β, TNF- α and IL-6 levels (pg/ml) in the supernatant of LPS (500 ng/mL) activated RAW 264.7 cells
treated with BRP (50 μg/mL in DMSO) for 48 hours. Control + LPS: cells treated only with LPS and DMSO. Control: cells treated with DMSO. BRP:
cells treated only with BRP. (*) Indicates cytokine levels below the detection limit. Same letters mean no statistical difference while different letters mean
statistically significant difference between the two bars by analysis of variance (One-Way ANOVA, p <0.05).

doi:10.1371/journal.pone.0144954.g003
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during inflammation and pathogen challenge. These cells can display remarkable phenotypic
heterogeneity playing different roles depending on the environment [57].

In response to an infectious challenge, bacterial components such as LPS induce monocytes
differentiation into classically activated macrophages or M1, in order to kill pathogens via
phagocytosis, production of reactive oxygen species, nitric oxide enzymes and inflammatory
cytokines[29]. Our data indicated that BRP does not interfere in non-activated monocytes,
with no effect on cell viability neither on NO production (Fig 2A). BRP treated LPS activated
macrophages were polarized to M1 phenotype, and this polarization was even more significant,
since transcription of cd80 and cd86 was up-regulated, and ofmrc1 down-regulated, and the
production of TNF-α and IL-6 was slightly increased in LPS-macrophages treated with BRP
than in those only activated by LPS

However, when compared to LPS-treated control macrophages, BRP led to reduced produc-
tion of pro-inflammatory factors such as NO, IL-12, IL-1β, GM-CSF, and several genes associ-
ated with inflammation were down-regulated, evidencing the role of BRP in modulating the
macrophages response to LPS. Granulocyte-macrophage colony-stimulating factor (GM-CSF)

Table 1. List of genes of RAW 264.7 cells activated with LPS (500 ng/mL) which were regulated by the treatment with 50 μg BRP/mL. Fold changes
were calculated in relation to LPS activated cells with and treated with DMSO (control). Experiments performed in triplicate.

Gene Fold-change P value Function

Ccnd1 -3.1 0.019304 PI3K/AKT pathway [27]

Cd14 -2.1 0.00953 TLR response [28]

Cd80 4.7 0.03 Macrophage polarization marker [8, 29]

Cd86 4.3 0.02 Macrophage polarization marker[8, 29]

Eif2ak2 -2.3 0.006488 NF-κB pathway [30]

Elk1 -7.3 0.000049 TLR response [31] and cancer development [32]

Flt3l -4.1 0.00104 PI3K/AKT pathway [33]

Fos -5.9 0.00083 Cancer development [34]

Gdf1 -2.7 7E-06 TGF-beta super-family [35]

Il10 -6.0 0.03872 Anti-inflammatory cytokine [36].

Il1b -6.2 0.050638 Inflammatory cytokine [37, 38]

Il1f9 -27.5 0.03639 Inflammatory cytokine [39]

Il1rn -4.2 0.00048 IL-1 pathway [40]

Map2k1 -3.3 0.032279 MAPK pathway [41]

Mapk14 -4.1 0.014773 MAPK pathway [42]

Mcr -2.5 0.04 Macrophage polarization marker[8, 29]

Mtcp1 -7.9 0.000981 Increase activation of AKT1 and AKT2 [43]

Naip1 6.3 0.032882 Anti-apoptotic [44]

Nfkb1 -5.8 0.05567 NF-κB pathway [45]

Pak1 -17.3 0.032134 MAPK pathway [46]

Pdk1 -5.6 0.031172 NO pathway [47]

Pik3ca -2.1 0.024495 PI3K/AKT pathway[48] and involved in cancer [49]

Pik3cg -2.7 0.008274 PI3K/AKT pathway and TLR response [50]

Pik3r2 -2.6 0.020004 PI3K/AKT pathway [48]

Prkca -4.7 0.000282 MAPK pathway [51]

Rps6ka1 -2.2 0.017273 MAPK pathway [52]

Srf -4.8 0.038967 MAPK pathway [53]

Tirap -47.9 0.022142 TLR response [54]

Tlr4 -3.6 0.018578 TLR response [55]

Tnfsf12 -2.6 0.00383 TNF-α cascade [56]

doi:10.1371/journal.pone.0144954.t001
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is involved in the development, differentiation, and proliferation of macrophages during the
inflammatory state, leading to the M1-like inflammatory phenotype[29] and its reduction by
BRP may be associated with the altered phenotype of macrophages.

The transcription analyses of BRP treated LPS-activated macrophages showed the inhibi-
tion of at least four pro-inflammatory pathways in relation to control LPS-activated macro-
phages. BRP inhibited IL-1β pathway due to down-regulation of Il1b (encoding for IL-1β) and
Il1f9 (encoding IL-36γ)[39], which was evidenced by reduced IL-1β levels in the cell
supernatant.

IL-1 inhibition is noteworthy for its anti-inflammatory properties [1] leading to inhibition
of a cascade that activates nuclear factor kappa B (NF-κB) pathway [37], nitric oxide synthase
(iNOS)[38], and production of pro-inflammatory cytokines. IL-36γ is a member of the IL-1
family involved in IL-1 independent inflammatory response, but its role in homeostasis or
pathogenesis is still under discussion [58]. IL-36γ is expressed by THP-1 macrophages after
LPS stimulus, and activates NFκB and Mitogen-Activated Protein Kinase (MAPK) pathways
[58]. On the other hand, possibly in response to IL-1β pathway inhibition by BRP, il1rn, encod-
ing the antagonist receptor of IL-1 was also down- regulated (-4.2 fold changes) [40], contra-
dicting BRP anti-inflammatory properties. Thus, the effect of BRP in IL-1 and IL-36γ pathways
may have mediated the inhibition of downstream pathways including NFκB and MAPK inhi-
bition in LPS-activated macrophages and consequently the production of NO, and pro-inflam-
matory cytokines.

The decrease in NF-κB signaling pathway (Fig 4) promoted by BRP resulted in reduced
expression of Eif2ak, Nfkb1, Il1b, Il1f9 and Tnfsf12 [30, 37, 39, 45, 56]. Furthermore, reduced
activation of MAPK pathway was indicated not only by reduced phosphorylation of MAPK42/

Fig 4. Western blot image showing decreased levels of phosphorylated NF-κB, p65 sub-unit, c-FOS
andMAPK p42/44, after treatment of LPS-activated RAW 264.7 macrophages with BRP.Decreased
levels of the adaptor TIRAP is also shown. GAPDH was used as control.

doi:10.1371/journal.pone.0144954.g004
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44 but also by the down-regulation ofMap2k1,Mapk14, Pak1, Prkca, Rps6ka1, Srf [41, 42, 46,
51–53]. The negative regulation ofMapk14 is in accordance with the reduction of IL-12 levels,
since MAPK 14 induces the production of IL-12[59]. Moreover, decreased activation of PI3K/
AKT pathway by BRP was achieved, since Ccnd1,Mtcp1, Pik3ca, Pik3cg, Pik3r2, Flt3L were
also down-regulated in BRP treated LPS-activated macrophages [27, 33, 43, 48].

BRP treated LPS-activated macrophages demonstrated low production of NO (Fig 2C),
which is consistent with the inhibition of the NO pathway, inhibition of NF-κB, and decrease
in IL-1 production in the BRP treated LPS-activated macrophages [38]. Furthermore the
down-regulation of Pdk1may also contribute with this reduction, since PDK1 inhibition leads
to inhibition of eNOS (constitutive nitric oxide synthase)[47].

The anti-inflammatory mechanism of BRP was also shown by the down-regulation of tran-
scription of other genes correlated with inflammation, which are usually up-regulated in
inflammatory diseases. The mRNA levels of Tnfsf12, which encodes Tweak (TNF-like weak
inducer of apoptosis), were also reduced in BRP treated LPS-activated macrophages. After
binding to its receptor Fn14, Tweak signals through a variety of downstream signaling cas-
cades, including the NF-κB, MAPK, and AKT pathways [60]. Furthermore, a remarkable
Tweak expression can be observed in monocytes upon stimulation with interferon (IFN)-γ but
not with lipopolysaccharide [61]. Thus, the diminished expression of Tnfsf12 promoted by
BRP may be the result of inhibition of IFNγ production.

BRP strongly down-regulated the expression of genes related to Toll-like receptor (TLR)
response (Cd14, Elk1, Pik3cg, Tirap and Tlr4). The attenuation of TLR-mediated signaling path-
ways in LPS activated macrophages treated with BRP was confirmed by the reduction in the lev-
els of toll-interleukin 1 receptor (TIR) domain containing adaptor protein (TIRAP) [54]. TIRAP/
Mal is critically involved in the MyD88-dependent pathway, via TLR4 and TLR2 [62]. In addi-
tion, TIRAP also acts via TLR1 and TLR 6 activation [63]. Previous studies revealed that TIRAP/
Mal knockout macrophages showed impaired inflammatory cytokine production and delayed
activation of JNK and NF-κB in response to the TLR4 ligand. It is relevant to note that resvera-
trol, known for its cardioprotective, anti-cancer, anti-oxidant, anti-inflammatory, anti-diabetes,
anti-obesity, anti-Alzheimer and anti-Parkinson effects, also suppresses the expression of TIRAP
[64], and a similar effect may be expected from BRP. Therefore, our data demonstrated that
propolis may decrease the macrophages response to LPS and in consequence, may control the
inflammation and modulate its harmful effects to the organism, as summarized in Fig 5.

Surprisingly, IL-10 was strongly repressed by BRP at the mRNA and protein levels in LPS-
activated macrophages. IL-10 couteracts the proinflammatory cytokines induced earlier by LPS
activated macrophages, by triggering secondary signaling pathways, which modulate the
expression of direct LPS target genes, although the anti-inflammatory properties of IL-10 are
still controversial [65]. Thus, IL-10 down-regulation promoted by BRP may have led to the
slightly increase in TNF-α levels seem in the cell supernatants [36].

The anti-inflammatory mechanisms induced by BRP, that we have shown, could be due to
the complex chemical profile of this product [12, 15] which includes isoflavones, known for
their anti-inflammatory, antimicrobial and antioxidant effects [14, 17, 66–68]. At least 20 dif-
ferent compounds could be identified in BRP (Fig 1), of which vestitol and neovestitol were the
major components. In this way, future studies should isolate BRP compounds, as performed by
Inui et al. (2014) [69] and Bueno-Silva et al. (2013a,b) [14, 17], in order to determinate which
fraction or compound(s) is responsible for the BRP modulatory effect. This chemical diversity
confirmed the value of BRP in drug discovery, turning BRP into an important food-source of
new compounds with therapeutic properties as a nutraceutical that could be used by the food
and pharmaceutical industries.
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In addition, our data on gene expression revealed new possible biological uses of red propo-
lis. BRP negatively regulated the expression of numerous genes involved in the development of
several types of cancer such as: fos [34], elk1 [32], Pik3ca [49], Prkca [51]. On the other hand,
the cells were protected from apoptosis by up regulation of naip1, encoding the anti-apoptotic
protein Naip1, which inhibits caspases 3, 7 and 9 [44].

The classification of macrophages polarization as M1/M2 is limited, and as shown here
macrophages can adopt multiple phenotypes according to the stimulus in the environment.
The present data indicated that BRP alters the signaling promoted by LPS in monocyte-derived
macrophages, inducing a lower production of proinflammatory mediators, such as IL-1 and
IL-12 but not of TNF-α, by interfering with the TLR response and leading to inhibition of NF-
κB, MAPK and PI3K signaling pathways. The effect of BRP on macrophages activation sug-
gests its potential as food-source of new compounds with pharmacological properties and its
use in the control of pathological inflammation.
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