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In this study, the application of adaptive neuro-fuzzy inference system (ANFIS) architecture to build prediction models that
represent the pH neutralization process is proposed. The dataset used to identify the process was obtained experimentally in a
bench scale plant. The prediction model attained was validated offline and online and demonstrated as able to precisely predict
the one step-ahead value of effluent pH leaving the neutralization reactor. The input variables were the current and one past value
of the acid and base flow rates and the current value of the output variable. Variance accounted for (VAF) indices greater than 99%
were achieved by the model in experiments in which the disturbances in the acid and basic solutions flow rates were applied
separately. For tests with simultaneous disturbances, conditions never seen in the training and suffering from reactor level oscilla-
tions, the prediction model VAF index was still approximately 96%. The validations demonstrated the capability of ANFIS to
build precise fuzzy models from input–output datasets. R2 values achieved were always larger than 0.96.
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Introduction

pH is an important variable in many branches of industry.
For example, it affects the growth of microbes in biopro-
cesses and influences the efficiency of catalysts used in
chemical reactions and the characteristics of the materials
that make up the industrial equipment. Also, it affects
human and animal health. Thus, products like food, medi-
cines, and cosmetics should be developed considering harm-
less pH ranges. Therefore, rigorous control of pH is needed
to improve reaction yield and product quality and to comply
with environmental and safety requirements. However, the
dynamics of pH processes exhibit nonlinear time-varying
characteristics (Henson and Seborg, 1994; Kumbasar et al.,
2011). As a consequence, conventional linear controllers
are unable to adequately regulate these processes and
advanced control strategies are required. In this context,
process identification is a fundamental task. Besides, process

models could be also used for other purposes like equipment
design, operator training, and fault detection.

Artificial intelligence techniques have been valuable tools
for system identification for a long time (Bath and McAvoy,
1990; Gustafsson et al., 1995; Draeger et al., 1995; Palancar
et al., 1998). Bath and McAvoy (1990) proposed the appli-
cation of artificial neural networks (ANNs) for chemical
process modeling. ANNs were also used by Gustafsson
et al. (1995) in a pH control strategy and by Palancar et al.
(1998) to predict future pH values and as an inverse model in
a pH control system. In a similar way, inverse fuzzy models
were embedded in a control system by Kumbasar et al.
(2011). Mwembeshi et al. (2004) investigated the algorithms
employed in the learning of neural networks used to
represent the process gain characteristics of pH reactors.
Valarmathi et al. (2009) applied ANNs and genetic
algorithms for the identification and control of a pH process.

Identification strategies that take advantage of the
reasoning capacity of fuzzy inference systems (FIS) coupled
with the learning and function approximation capabilities of
neural networks have been suggested. A fuzzy-neural
approach was proposed by Nie et al. (1996) to model a pH
neutralization process. In this approach, self-organizing
schemes were used to construct the rule base required by
fuzzy reasoning models. In the recurrent neuro-fuzzy
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network proposed by Zhang and Morris (1999), expert
knowledge is used to divide the operating region into several
fuzzy models; these local models are adjusted to fit the
input–output data. The resulting network is able to provide
long-term predictions required by a predictive controller.

Adaptive neuro-fuzzy inference system (ANFIS) has been
successfully applied for the identification of complex systems.
The ANFIS architecture was described by Jang (1993); it com-
bines the semantic transparency of fuzzy rule-based systems
with the learning capability of neural networks. The result is
an approach which can learn an input–output behavior from
a dataset and tune the fuzzy rule base, reducing the influence
of the human expert required by FIS. Chang and Chang
(2006) applied ANFIS to build a prediction model for water
reservoir management. The reservoir level behavior presents
nonlinearities, uncertainty, and time-varying characteristics.
The authors concluded that ANFIS models are useful for pre-
dicting the reservoir level, becoming a valuable tool for flood
control operations. Franco et al. (2011) applied an identifi-
cation technique based on ANFIS architecture for the predic-
tion of the temperatures of a chiller system. Chiller systems are
used to cool liquids and present nonlinear and interacting
behavior. The results attained by the models showed good
agreement with experimental data, in both offline and online
validation. Recently, Jahedsaravani et al. (2014) applied both
ANFIS and a nonlinear regression technique to model a froth
flotation process. By comparing the results, the former
approach demonstrated to be more efficient than the statisti-
cal approach for this complex process. Another application of
the ANFIS model was accomplished by Fernandez de Cañete
et al. (2013). In this case, the authors described an ANFIS
scheme for the control of a distillation column. A study

presented by Abonyi et al. (1999) described the use of a
learning algorithm based on a gradient descent adaptive fuzzy
controller. The proposed approach was applied to a fuzzy
control structure based on an inverse model for a nonlinear
plant. Postlethwaite and Edgard (2000) developed an
algorithm for a MIMO (Multiple-Input-Multiple-Output)
controller that calculates, from a MIMO fuzzy model, the
control actions at each sampling interval. The control was
tested in simulations of pH control.

The aim of this study is to develop the methodology to
achieve accurate models of a pH neutralization process using
the ANFIS architecture. In the following section, a descrip-
tion of the ANFIS architecture is presented. In the section
‘‘Material and Methods,’’ the pH neutralization plant and
the experimental methodology are described. Then, the results
of the experiments are discussed and conclusions drawn.

Identification Using ANFIS Architecture

The major aim of works combining FIS and ANNs is to use
ANNs to systematize the adjustment of the FIS membership
function parameters. Therefore, the FIS ability to deal with
nonlinear, incomplete, and imprecise data can be exploited
for identification and control purposes.

ANFIS combines the back-propagation gradient descent
method and the least-squares method to update the FIS
membership function parameters in an adaptive network.
A schematic representation of the ANFIS architecture
proposed is shown in Figure 1.

The structure of the FIS could be determined using the
subtractive clustering method (Paiva and Dourado, 2004).
Subtractive clustering is an efficient method that is used

Fig. 1. Schematic representation of the ANFIS architecture.
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without a priori information of the number of clusters. It
avoids any use of optimization algorithms and could provide
the number of clusters and their centers (Chiu, 1994).

The network training is carried out using a dataset and is
based on the back-propagation method. Therefore, the
network parameters are initialized, the input signal is
propagated by the subsequent layers, and the output is
calculated. This calculated output is compared with the
original output. Then, the error signal is propagated
backward and the parameters are updated. The output of
each layer is calculated as:

Layer 1 : lAk;jðxkÞ ¼ e
�ðxk�cj Þ2

2r2
j ð1Þ

where lAk,j are the membership functions for the linguistic
labels Ak,j; xk is the k-th input; j represents the linguistic
variables; cj is the cluster center; and rj is the dispersion of
the cluster.

Layer 2 : wj ¼
Yn

k¼1

lAk;jðxkÞ ð2Þ

where n is the number of inputs.

Layer 3 : �wwj ¼
wjPn

r¼1 wr
ð3Þ

And,

�wwjyj ¼ �wwjðqj0 þ qjixi þ . . .þ qjnxnÞ ð4Þ

where qji are the consequent parameters.

Output : y ¼
XN

j¼1

�wwjyj ð5Þ

where N is the number of linguistic variables.
The premise parameters (c and r) are updated using the

gradient descent method, while the consequent parameters
(q) are calculated by means of least-squares method. More
details are presented in Jang (1993).

Material and Methods

Experimental Facilities

The pH neutralization bench scale plant used in the experi-
ments is shown in Figure 2. In Figure 3, the instrumentation
diagram is illustrated. The apparatus consisted of a continuous
stirred-tank reactor (CSTR), two peristaltic pumps used to feed
acid and basic solutions into the reactor, two feed tanks to
retain the solutions before entering the reactor, two reservoirs
of the acid and basic solutions, the level sensor (magnetic),
the pH sensor, four data converters, and the frequency inverter.
There were also two peristaltic pumps used to transfer acid and
basic solutions from the reservoirs to the feed tanks and
another used to dispose of the effluent. The data communi-
cation system was based on the Fieldbus protocol.

In all of the experiments, the level of liquid inside the
reactor was controlled to remain at 30%.

Process Identification and Validation

Experiments were carried out to obtain experimental data
required to identify and validate the pH neutralization
process. Each of these experiments consisted of three steps:
determination of process settling time; ANFIS training
and offline validation; and online validation. In all of the
experiments, solutions of NaOH and HCl with equal con-
centrations of 4� 10�3 mol �L�1 were used.

Determination of Settling Time

The settling times of the process (ts) were obtained by
initially keeping both acid and basic solution flow rates con-
stant; after the outlet effluent pH reached steady-state con-
ditions, step changes were applied to one of the flow rates.
In the first run (R1a), the acid solution flow rate (QHCl)
was kept constant at 15.0 L � h�1 and step changes were
introduced in the flow rate of the basic solution (QNaOH),
as presented in the first column of Table I. Another run
(R1b) was performed keeping the basic solution flow rate
constant at 9.0 L � h�1 and changing the acid solution flow
rate as indicated in the second column of Table I. Analyzing
the pH of the effluent leaving the reactor, it was possible to
determine the settling times. These settling times enabled the
calculation of the switching times. Switching time is used to

Fig. 2. Experimental facilities picture: 1: fieldbus communi-
cation module; 2: frequency inverter; 3: fieldbus converter; 4:
pH converter; 5: computer; 6: level sensor; 7: pH sensor; 8:
reactor; 9: pump (acid); 10: pump (basic); 11: pump (effluent);
12: feed tanks; 13: reservoirs.
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design input signals that preserve the details of process
dynamics; it is the minimum time between changes in each
input variable. It could be calculated using Equation (6)
(Seborg et al., 2004):

tsw ¼
ts

3
ð6Þ

ANFIS Training and Offline Validation

An experiment was carried out introducing random changes
in both QHCl and QNaOH; these changes are introduced in
accordance with the switch times. The data obtained were
used to train ANFIS and to validate the Takagi–Sugeno
models used in the prediction of the outlet effluent pH.
The Fuzzy Logic Toolbox of Mathworks was used to train
and build the models.

Online Validation

The prediction models were tested online. In this experiment,
random changes were applied to the process and outlet efflu-
ent pH responses were compared with predicted values in
real time.

Results and Discussion

Switching Times

The experiments R1a and R1b were performed, and the
results are shown in Figures 4 and 5, respectively. The outlet
effluent pH response to each change in QHCl or QNaOH was
analyzed using these figures. The settling times achieved are
presented in Table II.

The greatest value of settling time was used to calculate
the respective switch time. So, the switch times relative
to changes in QNaOH and QHCl are 133.0 s and 167.0 s,
respectively.

Training and Offline Validation

The reactor outlet effluent pH response to the disturbances
in acid and basic solutions flow rates are shown in
Figure 6. These disturbances were applied according to the
switch times of each variable.

Data presented in Figure 6 were used to build the Takagi–
Sugeno prediction models employing an ANFIS architecture
and to validate such models. Before the ANFIS training, data
presented in Figure 6 were discretized using a sampling time
of 10 s and transformed into deviation variables. A deviation
variable, �yyðkÞ, is the difference between the current value of
the variable, y(k), and its value in the steady state. Here,
the first 70% of the data were used in the identification and

Fig. 3. Instrumentation flowchart of the pH neutralization pilot plant.

Table I. Changes applied in QNaOH and in QHCl in runs R1a and
R1b, respectively

Changes in QNaOH (L � h�1) Changes in QHCl (L � h�1)

13.0–20.0 9.0–12.0
13.0–25.0 9.0–12.0
13.0–30.0 9.0–12.0
13.0–10.0 9.0–6.0
13.0–5.0 9.0–3.0
13.0–0

Fig. 4. Experiment R1a: (a) outlet effluent pH response and (b)
QHCl and QNaOH flow rates.
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the remaining 30% were used in the offline validation of the

models. Each input vector was composed by �QQNaOHðk � 2Þ,
�QQNaOHðk � 1Þ, �QQHClðk � 2Þ, �QQHClðk � 1Þ, and pHðk � 1Þ.
The output was the one step-ahead value of the reactor outlet

effluent pH, pHðkÞ. Values used in the training are illustrated
in Figure 7.

Gaussian membership functions were chosen for the
inputs. Before the training, the subtractive clustering tech-
nique was applied to establish the better number of rules.
This better configuration of membership functions is shown
in Figure 8. Linguistic variables representing the antecedents
were: ‘‘VL’’ for very low, ‘‘L’’ for low, ‘‘M’’ for medium,
‘‘H’’ for high, and ‘‘VH’’ for very high. The training and suc-
cessive subtractive clustering resulting rules are presented in
Table III.

The linear functions that represent the output variable,
pHi for i¼ 1, . . . , 5, in each fuzzy rule were obtained as
follows:

pHi ¼ q0 þ q1
�QQNaOHðk � 1Þ þ q2

�QQNaOHðk � 2Þ
þ q3

�QQHClðk � 1Þ þ q4
�QQHClðk � 2Þ

þ q5pHðk � 1Þ; i ¼ 1; . . . ; 5 ð7Þ

The consequent parameters are presented in Table IV.
The validation was performed using a model character-

ized by rules presented in Tables IV and V and the
membership functions illustrated in Figure 8. A comparison
of the predicted values with the real values is shown in
Figure 9.

From Figure 9, is possible to verify that the model was
able to adequately predict the one step-ahead value of the
reactor outlet effluent pH. The analysis of data dispersion
supports this conclusion (Figure 10).

Fig. 5. Experiment R1b: (a) outlet effluent pH response and (b)
QHCl and QNaOH flow rates.

Table II. Settling times from experiments R1a and R1b

Settling times for
experiment R1a (s)

Settling times for
experiment R1b (s)

260.0 350.0
280.0 280.0
230.0 296.0
400.0 370.0
400.0 500.0
400.0

Fig. 6. Reactor outlet effluent pH response to disturbances in QNaOH and QHCl.
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Online Validation

The online validation of the prediction model was carried
out in two different conditions. In the first run (V1), simul-
taneous random disturbances in QNaOH and QHCl were

applied. In the second run (V2), the values of QNaOH and
QHCl were shifted individually. The range of input and out-
put data used in training and in validation steps are pre-
sented in Table V.

Fig. 7. Data used to train the ANFIS.

Fig. 8. Fuzzy sets and membership functions of the Takagi–Sugeno prediction model.
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Results of V1

The behavior of reactor outlet effluent pH in front of simul-
taneous changes in QNaOH and QHCl and the predicted
values are illustrated in Figure 11(a); the disturbances
applied in QNaOH and QHCl are presented in Figures 11(b)
and 11(c), respectively.

The predicted values present excellent agreement with
experimental values for almost all of the experiments. The
results of the dispersion analysis are presented in Figure 12.

However, in two situations, when the values of QNaOH

and QHCl were approximately 13 L � h�1 and 6.5 L � h�1,
respectively (with intervals of 300–500 s and 1300–1500s,
respectively), the predicted and real trends were detached.
This can be justified as a consequence of the lack of similar
conditions in the training set of data. Indeed, generalization
errors in these cases are expected to be greater.

Results of V2

In run V2, values of QNaOH and QHCl were changed at differ-
ent moments. Experimental and predicted values of pH are
illustrated in Figure 13(a). The values of QNaOH and QHCl

are shown in Figure 13(b) and (c), respectively. The excellent
agreement is confirmed by the dispersion analysis results illu-
strated in Figure 14.

It could be observed that the pH trend predicted by the
model is similar to the experimental one. However, after

reduction of the value of QNaOH, the errors increased. Again,
the cause is a lack of data describing similar conditions to
the training dataset.

Variance Accounted for (VAF) of the Predicted Values

The performance of prediction model could also be demon-
strated by means of the VAF performance index. The VAF
index is calculated using:

VAF ¼ 1� varðy� ymÞ
varðyÞ

� �
� 100% ð8Þ

Babuska et al. (1998) commented that the VAF index of
models that adequately represent a real system must be
greater than 97%. The VAF indices calculated for the predic-
tion model in the experiments are presented in Table VI.

VAF indices calculated for offline validation and for
online validation of run V2 were greater than 97%, but in
the case of simultaneous disturbances in the acid and
basic solution flow rates, the performance was under 97%.
However, it must be considered that simultaneous changes
in both flow rates are not present in the training dataset
because of the different switch times. Besides, this simul-
taneous disturbance imposes a severe task to the reactor
level controller. In Figures 15 and 16, the level of liquid
inside the reactor in runs V1 and V2, respectively, is
illustrated.

In Figure 15, the oscillations caused by flow rate distur-
bances are considerably greater than those observed in

Table III. Fuzzy rules of the Takagi–Sugeno prediction model

Fuzzy rule

1 If �QQNaOHðk � 1Þ is M and �QQNaOHðk � 2Þ is M and
�QQHClðk � 1Þ is H and �QQHClðk � 2Þ is H then pHðkÞ is
pH1.

2 If �QQNaOHðk � 1Þ is VH and �QQNaOHðk � 2Þ is VH and
�QQHClðk � 1Þ is L and �QQHClðk � 2Þ is L and pHðk � 1Þ is
M then pHðkÞ is pH2.

3 If �QQNaOHðk � 1Þ is L and �QQNaOHðk � 2Þ is L and
�QQHClðk � 1Þ is VL and �QQHClðk � 2Þ is VL and pHðk � 1Þ
is VH then pHðkÞ is pH3.

4 If �QQNaOHðk � 1Þ is H and �QQNaOHðk � 2Þ is H and
�QQHClðk � 1Þ is VH and �QQHClðk � 2Þ is VH and pHðk � 1Þ
is VL then pHðkÞ is pH4.

5 If �QQNaOHðk � 1Þ is VL and �QQNaOHðk � 2Þ is VL and
�QQHClðk � 1Þ is M and �QQHClðk � 2Þ is M then pHðkÞ is
pH5.

Table IV. Consequent parameters of the Takagi–Sugeno prediction model for the reactor outlet effluent pH

pH q0 q1 q2 q3 q4 q5

1 �2.934� 10�02 1.042� 10�03 1.432� 10�03 �3.555� 10�03 �6.181� 10�03 9.126� 10�01

2 1.626� 10�02 4.440� 10�04 2.813� 10�03 2.313� 10�04 �2.107� 10�03 8.968� 10�01

3 �6.953� 10�02 2.654� 10�03 1.431� 10�04 �3.490� 10�04 �4.547� 10�03 9.218� 10�01

4 4.184� 10�02 �1.719� 10�03 4.342� 10�03 �1.561� 10�03 �1.388� 10�03 9.079� 10�01

5 �5.750� 10�02 �1.318� 10�02 1.663� 10�02 5.447� 10�05 �1.683� 10�03 1.078� 10�00

Table V. Ranges of input and output variables values

Training
Offline

validation

Online
validation,

V1

Online
validation,

V2

pH
Minimum 7.0 9.2 11.4 8.4
Maximum 12.3 12.2 12.1 12.0

QNaOH (L � h�1)
Minimum 4.7 4.5 5.3 9.0
Maximum 26.8 27.0 21.7 18.0

QHCl (L � h�1)
Minimum 1.9 3.3 2.2 7.2
Maximum 14.3 14.4 11.4 10.8
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Fig. 9. Validation of prediction model.

Fig. 10. Dispersion analysis of offline predicted values in comparison with experimental values.

Fig. 11. Online validation of prediction model (run V1): comparison of predicted and real values of pH (a) and disturbances applied
to QNaOH (b) and QHCl (c).
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Figure 16. This oscillation contributes to deterioration of the
prediction model results, but supports its robustness.

Conclusions

The prediction model attained by using ANFIS architecture
was demonstrated to be able to predict the one step-ahead
reactor outlet effluent pH precisely. Its efficiency was

Fig. 13. Online validation of prediction model (run V2): comparison of predicted and real values of pH (a) and disturbances applied
to QNaOH (b) and QHCl (c).

Fig. 12. Dispersion analysis of experimental and online predicted values (run V1).

Fig. 14. Dispersion analysis of experimental and online predicted values (run V2).

Table VI. Performance indices for the prediction model in off-
line and online validations

Run VAF (%) R2 RMSE

Offline validation 98.55 0.9856 0.0602
Online validation (V1) 96.01 0.9601 0.0189
Online validation (V2) 99.47 0.9997 0.0258
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analyzed in offline and online tests. In tests in which the dis-
turbances were applied in different instants, the VAF values
were greater than 97% and the R2 values were greater than
0.999. Slightly poor performance was attained when the dis-
turbances were applied simultaneously, R2 equals to 0.960,
but as this condition is not present in the training dataset,
it could demonstrate the robustness of the approach.
Besides, it was demonstrated that ANFIS can provide good
performance models directly from process data, without the
interference of a human expert.
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