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Block copolymers based on tert-butyl methacrylate (tBMA) have many uses, such as thermo‐
responsive polymers, amphiphilic copolymers, and many applications in the medical field. Atom-transfer 
radical polymerization (ATRP) is the main technique to produce these controlled macromolecular 
architectures. This paper provides a simplified kinetic modeling and computational study of tBMA 
ATRP. The main objective is to understand the behavior of chemical species in the reaction and its 
influence on polymer properties (molecular weight and dispersity). The proposed model presented good 
reproducibility of the experimental data, with average errors less than 10%. The simulations indicated 
a strong initiator and catalyst concentration dependence on the monomer conversion. Although the 
highest initiator proportion induced a dispersity increase in conversions less than 20%, in general, 
for tBMA ATRP, the range of operational condition cannot affect dispersity directly. In addition, our 
finds about the effect of Keq on polymer properties indicated that to conduct the reaction using catalyst 
systems with Keq around 10-5 - 10-6 would provide very low dispersity polymers in a fast reaction time.
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1. Introduction

Recent achievements in polymer engineering have 
provided conditions for the synthesis of materials with 
specific properties for application in microelectronic 
devices 1,2, cosmetics 3, paints 4, UV-absorbents coatings 
and adhesives 5,6, and mainly in the medical field 7-10. 
Until the early 1990s, materials with controlled architecture 
were mainly synthesized by ionic polymerization 11. Despite 
the advantage in reducing chain transfer and termination 
reactions, these techniques are very sensitive to impurities 
12. Alternatively, free-radical polymerization (RP) is more 
robust for industrial operations, which use impure materials 
and, in many cases, require a wide operating temperature 
range. Even having this potential for industrial processing, 
the lifetime of radicals in propagation is very short, hindering 
macromolecular structure control 12.

With the recent emergence of reversible-deactivation 
radical polymerization (RDRP) techniques, it was possible to 
extend the radicals livingness by including chemical species 
that provide a period of "dormancy" between short periods 
of activity through a reversible mechanism 12. Thus, it was 
possible to add the advantages of radical polymerization 
with the characteristic of macromolecular control of ionic 
polymerizations. There are three mechanisms based on 
RDRP: nitroxide-mediated radical polymerization (NMP) 13, 
reversible addition-fragmentation chain transfer radical 
polymerization (RAFT) 14, and atom-transfer radical 
polymerization (ATRP) 15.

The ATRP technique presents a great advantage over 
other RDRP, expressed by the range of polymerizable 
monomers, initiators and solvents, most of which are 
commercially available 12. It is a very attractive technique 
due to the ease of experimental conduction, with low reaction 
temperature 16. In addition, the ATRP technique provides the 
synthesis of specific forms for the preparation of differentiated 
architectures, such as block copolymers, stars, brushes etc. 17. 
The desired architecture and narrow molecular weight 
distribution (MWD) provided the ability to design molecules 
for multiple applications, such as adhesives 18, cellulose-
based elastomers 19, drug delivery systems 20,21, antifouling 
surfaces 22, lubricants 23, dispersants 24, etc. 

Block copolymers based on tert-butyl methacrylate 
(tBMA) have many uses, such as in its incorporation in 
thermo‐responsive polymers with a lower critical solution 
temperature 25, peptide-polymer conjugates with self-
organizing property and biological activities 26, well-defined 
amphiphilic graft copolymers 27, polymers with very good 
electrochemical 28 and magnetic performances 29, and also 
many applications in the medical field 30-33. This recent 
application growth of tBMA-based materials suggests a 
need for in-depth knowledge of synthesis by ATRP. Many 
of the published papers present experimental results without 
a brief description of optimized conditions or an analysis of 
the reaction conditions influence on the material properties, 
and few research papers deals with tBMA simulations. Some 
traditional examples of works dealing with ATRP modeling 
for several monomers can be found in the literature 34-46.
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The aim of this study is to simulate the performance of 
the ATRP of tert-butyl methacrylate, covering a wide range of 
experimental conditions, evaluating such influence on molecular 
weight, dispersity, and kinetic behavior. Our simulations were 
carried out with the intention to further test and validate the 
simplified kinetic model proposed for the ATRP of tBMA. 
Our approach included reproducing experimental data from 
literature and also predicting the behavior at conditions 
different from those addressed experimentally.

2. Mathematical Modeling and Simulations

A simplified mathematical modeling was developed using 
the kinetic mechanism described in Table 1. In this mechanism, 
the primary radical (R*) is originated from initiator oxidization 
(RX), catalyzed by the activator (C) and with possible reaction to 
monomers (M) to achieve further propagation. The propagating 
radicals (Pn*) can be reversibly deactivated by XC to form 
the dormant species (PnX). For model simplicity, only the 
termination by disproportionation was considered. Other side 
reactions were neglected in this study. From the elementary 
reactions in Table 1, mass balance equations for all reacting 
species in a batch reactor are described by Equations 1-6.
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From Equations 1-5, the method of moments was used 
to predict number-average molecular weight, weight-average 
molecular weight, and dispersity. Moments equations were 
calculated by Equations 7-9, in which were developed 
equations of order “zero”, “one”, and “two” for each species 
(“living”, “dormant”, and “dead” polymers) (Appendix).
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μi is the moment of order “i” for the “living” polymer with 
chain length equals “n”; δi is the moment of order “i” for 
the “dormant” polymer with chain length equals “n”; and 
λi is the moment of order “i” for the “dead” polymer with 
chain length equals “n”.

The zeroth order moment physically represents the 
concentration of polymer chains in the system. The first 
order moment represents the concentration of monomeric 
units that have been incorporated into the polymer chains. 
The zeroth and first moments can be related to the polymer 
chain length distribution 47. Thus, average properties were 
obtained by equations 10-12.

	         M MMn
0 0 0

1 1 1
#

n d m

n d m
=

+ +
+ +

Q
Q V

V 	        (10)

	         M MMw
1 1 1

2 2 2
#

n d m

n d m
=

+ +
+ +Q

Q V
V 	        (11)

		            		         (12)

Mn is the number-average molecular weight; Mw is the 
weight-average molecular weight; and Đ is the dispersity.

Table 1. kinetic modeling and parameter values.

Reaction type Reaction Constant Value Reference

Initiation RX C R XC
k0+ +: Keq0 1.8×10-7 This study

Propagation P M Pn
kp

n 1+: :
+ kp

2.4 ×106exp(-
2658/T) [34]

Polymer activation/deactivation P X C P XCn
kal kda

n+ +: Keq 1.8×10-7 [33]

Termination by disproportionation P P P Pn m
ktd

m n+ +: : ktd
2.57×1010exp(-

2943/T) [35]
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To validate de mathematical modeling, the polymerization 
of tert-butyl methacrylate (tBMA) by Zhao el al. 48 was 
considered. The authors conducted the homopolymerization 
of methyl methacrylate (MMA) and tBMA, and also 
the copolymerization of these two monomers using 
p-Toluenesulfonyl chloride (pTsCl) as initiator, CuCl 
and 4,40-Dinonyl-2,20-bipyridyl (dnNbpy) as catalyst 
system at 100 ºC. In all polymerization, the molar ratio 
of [p-TsCl]0/[CuCl]0/[dnNbpy]0 was set to be 1/1/2. 
The initial monomer content was 70 wt% and 30% of 
p-Xylene. Based on these experimental conditions, to 
conduct the modeling validation of this study, the reactants 
concentrations expressed in Table 248-50 were used.

To analyze a wide range of reaction conditions that are 
not described in the literature, after the model validation, 
simulations were performed considering a multivariate analysis 
of monomer, catalyst, and initiator concentrations, as proposed 
by Vieira et al. 51. Its effects were evaluated on the kinetics 
of monomer consumption as well as on polymer average 
properties (molecular weight and dispersity). In addition, the 
effect of the equilibrium constants on the chemical species 
concentration profile, as well as materials properties were 
evaluated. The ka was kept fixed, while the kda was being 
increased. This analysis is of great importance in the choice 
of catalyst, since each catalytic system will present a different 
value. Based on this information, it was possible to identify 
interesting values for the process conduction and the best 
choice of catalytic system.

3. Results and Discussion

3.1 Model validation

This section presents the comparison of experimental 
data from literature and simulations using the mathematical 
modeling developed. The simulated monomer conversion, 
number-average molecular weight, and dispersity were 
compared with the experimental data reported by Zhao et 
al. 48 at different experimental conditions. Attention was paid 
to the relation between the broadness and the skewness of 
the polymer dispersity and its average molecular weight.

Figure 1 compares the experimental data and simulation 
results of the monomer conversion as a function of 
time at 100 ºC, considering two different proportions of 
catalyst (0.36 % and 0.5 % CuCl). Monomer conversion 
evolution as a function of polymerization time can be 
related to the change of the total radical concentration 
and deactivator concentration of persistent species. 

Analyzing Figure 1, it is possible to see that experimental data 
are almost fully represented by the simulations. For both 
situations, the percentage reproduction error values of the 
experimental data using the modeling proposed in this 
work were calculated. An error of 4.56% and 6.58% was 
obtained for the reproductions using 0.5 and 0.36% CuCl, 
respectively. It can be seen from this analysis that the model 
is not only able to reproduce the monomer conversion 
quite satisfactorily, but it can also evaluate the effect of the 
catalyst concentration on monomer conversion.

Table 2. Set of reaction conditions used in model validation at 100 ºC.

Validation [TBMA]0(mol L-1) [p-TsCl]0(mol L-1) [CuCl]0(mol L-1) [dnNbpy]0(mol L-1)

Monomer conversion as a function of time 4.79 0.034 0.034 0.068

Number-average molecular weight and dispersity 4.79 0.017 0.017 0.034

Figure 1. Comparison of experimental and simulated monomer 
conversion as a function of time of tBMA ATRP at 100 ºC with 
molar ratio [tBMA]0:[I]0:[C]0 equals 140:1:1 (0.36 % CuCl / weight) 
and 140:1:1.4 (0.5 % CuCl / weight). Experimental data from the 
literature (Zhao et al., 2008)

Figure 2 illustrates the experimental data and simulations 
for the evolution of number-average molecular weight as 
a function of monomer conversion. From this figure, it is 
possible to notice that the simulated molecular weights 
are in agreement with the experimental data. However, at 
high monomer conversions, there was a deviation from 
experimental data that can be explained by the simplicity 
of the modeling used. The model did not consider gel 
effect and also considered that only termination by 
disproportionation was occurring. In addition, other 
chain transfer reactions (to dimer, primary radicals, etc.) 
were not considered, which could contribute for the poor 
reproducibility at high monomer conversions. In despite 
of the simplifications described, a linear increase of Mn 
as a function of monomer conversion was observed, 
confirming the controlled polymerization, with general 
good reproducibility by simulations.
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Figure 3 illustrates that the dispersity assumes low 
values for both the experimental and the simulation results. 
There was a very good reproducibility of experimental data 
by simulations. Fischer described that when considering 
only activation, deactivation, propagation, and termination 
by disproportionation in ATRP mechanisms (neglecting 
diffusional limitations), dispersity tends to assume low values 
in a wide range of monomer conversion 52, according to the 
results found in the simulations and experiments described 
in Figure 3. In addition, it is important to highlight here 
that number- and weight-molecular weight distributions are 
mainly determined by the dormant polymer and only slightly 
influenced by the dead polymer 53,54. In addition, although 
polymer dispersity is very useful to characterize the broadness 
of number-molecular weight distributions, it cannot be used 
to describe broadness of weight-average molecular weight 55.

3.2 Analysis of reactants concentration on the 
average properties

Figure 4 (a) and (b) shows that monomer concentration 
does not influence on its conversion, confirming de pseudo-
first order behavior. An increase of initiator concentration 
increases the polymerization rate. This situation is quite 
common, since high concentration of initiator produces more 
“living” polymers that present a direct influence on the rate 
(as can be seen in monomer consumption kinetic expression). 
In addition, it is important to note that tBMA conversion 
is also dependent on catalyst concentration, since the 
concentration of this reagent is present in the expression 
of the activation rate of the polymer chains which will lead 
to an increase in the concentration of propagating radicals. 
Note that the same variations in the ratios of initiator and 
catalyst provide equal effects on monomer conversion. 
These results are very important considering reactor design 
issues, for example analysis of residence time.

Figure 4 (c) and (d) illustrates that a higher initiator 
concentration tends to reduce the polymer number-average 
molecular weight. This characteristic was expected based 
on the classic concept of one initiator-one polymer chain. 
However, the multivariate analysis did not influence 
considerably on dispersity at high monomer conversions 
(see Figure 4 (e) and (f)). In both figures, for the highest 
proportion of initiator there was a dispersity increase in 
conversions less than 20% (circled regions). This behavior 
can be attributed to the amount of radicals formed in 
initial stages. Many of the “living” polymers formed are 
available for termination, and the deactivation step could 
still not have been achieved, which could be contributed 
for the higher dispersities. In addition, the simulations 
also demonstrate the increase in dispersity with decreasing 
catalyst level, indicating the existence of a threshold value 
for the catalyst level in cases where the level of control 
over chain length is important. Despite this behavior at 
low monomer conversions, in general, for tBMA ATRP, 
the range of operational condition cannot affect directly on 
dispersity, which is a very good result in terms of material 
processability and applications.

3.3 Analysis of the equilibrium constant effect 
on chemical species behavior and average 
properties

In addition to the termination, propagation and chain 
transfer reactions, ATRP also has the equilibrium reaction 
between dormant chains and polymer radicals. The rate 
constant of the equilibrium reactions depends on monomer and 
chain end type, polymerization temperature, catalyst type and 
polymerization medium. The equilibrium constant (Keq) is the 
ratio of the activation (ka) to the deactivation (kda) rate constants. 

Figure 2. Comparison of experimental and simulated number-
average molecular weight development as a function of monomer 
conversion of tBMA ATRP at 100 ºC with [tBMA]0:[I]0:[C]0 equals 
280:1:1. Experimental data from the literature (Zhao et al., 2008)

Figure 3. Comparison of experimental and simulated dispersity 
as a function of monomer conversion of tBMA ATRP at 100 ºC 
with [tBMA]0:[I]0:[C]0 equals 280:1:1. Experimental data from the 
literature (Zhao et al., 2008)
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Figure 5 shows the effect of Keq ranging from 10-4 to 10-6 
(typical values for commercial ATRP systems) on (a) dispersity, (b) 
monomer conversion and (c) number-average molecular 
weight. In these figure, kda was changed while ka was kept 
constant, and the same proportion of reactants were maintained 
for each simulation.

For equilibrium constant equals 1.8×10-5, dispersity values 
(Figure 5 (a)) increase and move away from the unit, reaching 
a value of 1.3. However, it can still be considered controlled 
polymerization (dispersity less than 1.5) even though a better 
control of the polymerization would be achieved by equilibrium 
constants lower than this value (see dispersity for Keq = 1.8×10-6). 

Figure 4. Analysis of reaction conditions on monomer conversion and polymer properties
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Figure 5 (a) also indicates that for Keq = 1.8×10-4, there are 
a strong deviation from polymerization control, suggesting 
that there is a threshold for the Keq around 10-5, above which 
there is no ATRP typical behavior. In general, by increasing 
kda, the equilibrium is shifted towards higher dormant chain 
concentrations. Having more dormant chains in the system 
decreases monomer conversion and degree of polymerization 
(for the same time). On the other hand, a higher kda improves 
the control over the chain length distribution and, hence, 
produces polymers with smaller dispersities 16,56.

Figure 5 (b) shows the monomer conversion as a function 
of time for the same three values of equilibrium constants, 
in which it is possible to observe that, as the equilibrium 
constant increases, monomer conversion also increases. Thus, 
when Keq = 1.8×10-6, in the first minutes the conversion is 
significantly increased and at the time of 4 h unit is reached. 
For other values, the increase occurs more rapidly. Thus, 
when referring to the polymerization kinetics, it is possible 
to see that, for high equilibrium constants, it increases 
significantly and tends to be smaller for a controlled radical 
polymerization.

The lower equilibrium constants (10-8 - 10-10) are the 
most ideal for a controlled synthesis using ATRP; however, 
considering design issues, it could be very small depending 
on Keq value, decreasing considerably the polymerization rate. 

Based on these results, it is possible to infer that for the 
polymerization of tBMA, it would be interesting to choose 
catalytic systems that provide equilibrium constant values 
around 10-5, in order to ensure dispersities less than 1.5, 
with a high rate of polymerization. In addition, for the 
molecular weight (Figure 5 (d)), as the equilibrium constant 
increases, the number-average molecular weight also 
increases, following the monomer conversion behavior. 
However, the magnitude of the molecular weight will 
be controlled by manipulating the amount of initiator as 
described in the previous section.

4. Conclusion

This paper investigated operational conditions and 
equilibrium constant effect on chemical species kinetics 
and poly(tert-butyl methacrylate) properties. The simplified 
model developed fitted the experimental data in a satisfactory 
manner. Simulation results showed that tBMA conversion 
is initiator and dependent on catalyst concentration. 
Although for the highest initiator proportion there was 
a dispersity increase in conversions less than 20%, in 
general, for tBMA ATRP, the range of operational condition 
cannot affect dispersity directly, which is a very good 
result in terms of material processability and applications. 

Figure 5. Analysis of equilibrium constant effect on polymer properties
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In addition, it was verified that higher values of equilibrium 
constant could not cause loss to the polymerization control if 
the threshold for the Keq (around 10-5), is respected. Therefore, 
to conduct tBMA ATRP, it would be very interesting to use 
catalyst systems with Keq ranging from 10-6 - 10-5.
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