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Nomenclature

A = base point of the beam
B = end point of the beam
C = generic point along the beam
c = adimensional constant (c � −�PL2∕EI�)
E = elasticity coefficient (Young’s module), N∕m2

F = cable pull force, N
hx, hy = coordinates of position of cable support, m

Ke, �ke = finite element stiffness matrix in global or
local coordinates, N∕m

L = local-to-global degrees of freedom rotation
matrix (dimensionless)

L, Lc = total length of beam, length of cable in
non-deformed beam condition, m

l = length of cable in the deformed beam
condition, m

Me, �me = finite element mass matrix in global or
local coordinates, kg

M = torque, N · m

N = order of polynomial (dimensionless)
oi = linear degree of freedom, m
P = pulling cable force, N
p = dimensionless parameter; sin�αB � β∕2�
q = degrees of freedom of long beam finite

element model, m
qi = linear degree of freedom, m

Re, re = global and local vectors of degrees of
freedom of finite element, m

ri = linear degree of freedom, m
s = arc length, m
T = local-to-global, coordinates transform

matrix (dimensionless)
u = arc length ratio; s∕L
x, xB = horizontal coordinate, horizontal coordinate

of the beam’s end position, m
y, yB = vertical coordinate, vertical coordinate of

the beam’s end position, m
α, αB = slope angle of the beam, slope angle of

beam’s extremity, rad
β = angle of cable or applied force, rad
γ = cumulative angle; α� β, rad

θxi, θyi, θzi = angular degrees of freedom, rad
μi = coefficient of polynomial expansion

(dimensionless)
ϕ, ϕA, ϕB, ϕC = auxiliary angles; arc sin�γ∕2�

I. Introduction

L ONG, flexible deployable structures are used in space
exploration vehicles in low-gravity environment applications

(Puig et al. [1], Tibert [2], and Pellegrino [3]). The use of the same
types of probes in the exploration of planets with a large gravitational
field would be of interest to reach regions of scientific interest of
difficult access, such as cliff sides and terrain slopes. Vibration
control in this case is a sensitive issue that can be addressed by the use
of a reliable model of dynamics of the long exploration probe. The
present work addresses the problem of building a simple dynamic
model of a long beam deformed by a tip pulling cable. The simple
model is sought for future use in a vibrations control strategy.
The exact static deformation shape of a long beam is obtained

through the solution of the nonlinear beam governing differential
equations. The exact deformed configuration for beams with a
uniform cross section and transversal end load is found through the
recursive solution of elliptic integrals (Frish–Fay [4] andTimoshenko
and Gere [5]). The deformed configuration of beamswith an inclined
pulling force can be found via numerical approximations, using
adequate methods such as the Runge–Kutta (Ohtsuki [6] and
Shvartsman [7]), the shooting method (Holland et al. [8]), the finite
element method (Howell [9]), and the quasi-linearization finite
difference method (Al-Sadder and Al-Rawi [10]). A strategy to
calculate the static deformation of a long beam pulled by a tip cable is
summarized in the work of Yau [11].
The dynamic behavior of the long beam can be obtained through

the analysis of small vibration about the static equilibrium of a finite
elements model of the structure (Ferris and Afonta [12], Sallstrom
et al. [13], and Santillan et al. [14–16]). Vibration analysis and
experimental validation of a finely meshed finite element model of a
tip pulled beam was carried out by Holland et al. [8]. The present
work proposes the combination of a nonlinear static deformation
model of the same structure and a courser finite element model of the
deformed beam in order to assess its dynamic characteristics. Results
of the different modeling strategies are compared and discussed.
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II. Analytical and Numerical Models

A. Static Deformation Model

Asimplifiedmodel of a long beamwith a pulling cable is presented
in Fig. 1. The arc length s is measured from the base (point A) to point
C. The beam’s slope is represented by angle α, and the inclination of
the cable’s pulling forceP is represented by angle β. The beam’s total
length isL, whereas the coordinates of the cable support are �hx; hy�.
The beam’s tip position is represented by coordinates �xB; yB�.
According to the classical Bernoulli–Euler theory for the

deflection of beams, the bending moment at section C of the beam is
proportional to the change of curvature caused by the applied force.
The equilibrium of moments of an infinitesimal portion of the
homogeneous beam with constant cross section is described as

M � EI dα
ds
� P sin β�yB − y� − P cos β�xB − x� (1)

Differentiation of Eq. (1), with respect to the arch length s, yields the
governing differential equation of the model given by

d2γ

du2
� c sin γ � 0 (2)

where u, γ, and c are defined as

u � s
L

γ � α − β
c � −PL2

EI

9=
; (3)

The boundary conditions for the configuration shown in Fig. 1 are

γu�0 � −β�
dγ
du

�
u�1
� 0

)
(4)

Parametersp andϕ are introduced formanipulation of the differential
equations in order to use the elliptical integrals

p � sin αB−β
2

p� sin ϕ � sin γ
2

�
(5)

Definition of the relationships between ds and γ; dγ and dϕ; and ds
and dϕ is necessary in order to find expressions for the coordinates of
the deflected beam in terms of elliptical integrals. The first of such

relations is found bymultiplying Eq. (2) by 2dγ and integrating it with
respect to γ. The relationship between du and dγ can be expressed by

du � dγ������������������������������������������������
2c�cos γ − cos�αB − β��

p (6)

The relation between dγ and dϕ is obtained by differentiating Eq. (5)
with respect to ϕ; that is,

dγ � 2p cos ϕ���������������������������
1 − p2 sin2 ϕ

p dϕ (7)

It can be seen from Eqs. (6) and (7) that

ds � 1

k
���������������������������
1 − p2 sin2 ϕ

p dϕ (8)

where

k �
���
c
p

L
(9)

Some algebraic work is done to express coordinates x and y of the
beam, in terms of the variables of the elliptical integrals

y � cos β

k
�−F�p;ϕc� � F�p;ϕA� � 2E�p;ϕc� − 2E�p;ϕA��

� 2p sin β

k
�cos �ϕc� − cos �ϕa�� (10)

and

x � 2p cos β

k
�cos�ϕa� − cos�ϕc��

� sin β

k
�−F�p;ϕc� � F�p;ϕA� � 2E�p;ϕc� − 2E�p;ϕA��

(11)

where

ϕA � arcsin
�
sin�−β

2
�

p

�
ϕB � π

2

ϕC � arcsin
�
sin�α−β2 �
p

�
9>>=
>>; (12)

F�p;ϕ� �
Zϕ
0

1���������������������������
1 − p2 sin2 ϕ

p dϕ (13)

E�p;ϕ� �
Zϕ
0

���������������������������
1 − p2 sin2 ϕ

q
dϕ (14)

Displacements y and x of Eqs. (10) and (11) allow us to write an
analytic expression that involves the forcing action angle β:

hx
L
cos β −

hy
L
sin β −

2p cos�ϕA�
F�p;ϕc� − F�p;ϕA�

� 0 (15)

Equation (15) expresses the angle of the pulling cable βwith respect
to an arbitrary angular tip inclination. The static deformation curve of
the beam can be analytically calculated by Eqs. (10) and (11),
provided the value of angle β is known. A solution for Eq. (15) can
only be found in an iterative numerical manner. This problem can be
simplified by using a polynomial interpolation curve, relating the
pulling force angle β as a function of the length of the beam’s traction
cable. The iteratively calculated points of the curve of the pulling

Fig. 1 Long beam pulled by an inclined cable.
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force angleβ as a function of the length of traction cable are shown in
Fig. 2. Equation (16) shows the exponential interpolation function
used to fit such a curve through the interpolating coefficients μi

β �
XN
i�0

μi ×
�
l
Lc

�
i

(16)

where l and Lc are the lengths of the cable in the deformed and non-
deformed beam conditions, respectively. Numerical tests show that a
polynomial order of N ≈ 15 is sufficient to fit the graphically
described angle-length behavior curve of Fig. 2.
In a practical application, parameters μi, i � 0; 1; : : : ;M of the

force-angle × cable-length function, can be initially calculated based
on physical properties of the long beam. The coordinates of the static
deformation curve of the beam as a function of the current pulling
cable length can be calculated in a deterministic way with the use of
the polynomial parameterization and analytical expressions of
Eqs. (10) and (11). Such a deterministic procedure yields a fast
calculation of the static deformation curve, which can be
advantageously employed into a future real-time control strategy.
The static deformation curve of the beam is used as an adaptive
centerline of geometry of the finite element models described next.

B. Finite Element Models for Beam and Cable

A numerical model containing stiffness and mass matrices of the
long deformed beam is obtained via the finite element method (Petyt
[17]). A small number of finite elements are allocated along the
central line of deformation of the beam, calculated according to the
approximated polynomial fit strategy described earlier. The three-
dimensional finite beam element used, with its local and global
coordinate systems, is shown in Fig. 3. Such a beam element is
designed to respond to uncoupled axial, bending, and torsion
deformations (Petyt [17], Craig and Kurdila [18], Kwon and Bang
[19], and Cook et al. [20]).
The local degrees of freedom of each element are described in

vector re as

rTe � � r1 q1 o1 θx1 θy1 θz1 r2 q2 o2 θx2 θy2 θz2 �
(17)

The stiffnessKe andmassMe contribution of each individual element
is described in the global coordinate system as

Ke � TT �keT (18)

Me � TT �meT (19)

where �ke and �me are a single-element stiffness andmassmatrix, given
in the local coordinates system. The global position Re of the local
vector of degrees of freedom re is expressed by

Re � TTre (20)

where

T �

2
664
�L� 0 0 0

0 �L� 0 0

0 0 �L� 0

0 0 0 �L�

3
775 (21)

L �
"
cos�x; X� cos�x; Y� cos�x; Z�
cos�y; X� cos�y; Y� cos�y; Z�
cos�z; X� cos�z; Y� cos�z; Z�

#
(22)

and cos�i; j� represents the cosine of the angles formed between the
local coordinates axis i and the global coordinates axis j.
The probe’s pulling cable ismodeled as an axial displacement truss

element, and the same procedure previously described is done in
order to calculate its stiffness and mass matrices.

III. Model Comparisons

A. Static Deformation Curve of the Long Beam

This section compares the use of the proposed technique for
determining the static deformation of a pulled flexible beam using
the polynomial expression given by Eq. (16). Solutions with the
proposed modeling process are compared with the exact results
derived from the iterative solution of Eqs. (10), (11), and (15), as well
as experimental results obtained by Holland et al. [8]. The structure
chosen for comparison is a polycarbonate beam with a length of
762 mm and a rectangular section of 25.4 × 4.8 mm. The beam is
mounted with one end clamped and the other end pulled by a cable.
The material’s Young modulus and density are 1.656 GPa and
1120 kg∕m3, respectively. The cable is modeled as a massless spring
of stiffness 11.67 kN∕m. The cable origin coordinates (see Fig. 1)
are hx � 12.7 mm and hy � 28.6 mm. The pulling loads and
deflections in the y direction are normalized by the critical buckling
force and the beam’s length, respectively. Comparative results for the
beam’s end tip deflection using the closed-form (exact) experimental
and polynomial approximated solutions are shown in Fig. 4. Static
baseline deformation of the beam, using the exact results and
approximate polynomial, are shown in Fig. 5.

Fig. 2 Force angle β as a function of cable length.

Fig. 3 Global coordinate systems and element local coordinate system.
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B. Dynamic Characteristics of the Statically Deformed Structure

Comparisons of the dynamic characteristics of the deformed beam
models and experimental measurements are carried out in the present
section. The proposed modeling strategy consists in fitting 50 planar,
6-degree-of-freedom (DOF) beam elements to the baseline geometry
of the deflected beam. Holland et al.’s simulation of the same

structure [8] uses a mesh of 1000 6-DOF finite beam elements. A
graphic containing the values of the first four natural frequencies of
the deformed structure, as a function of the normalized pulling force,
is shown in Fig. 6. Experimental results of natural frequencies
identified in [8] are also shown in the figure.
Results of the dynamic analysis of the proposed model are also

made using 50 12-DOF spatial beam elements. Eight natural
frequencies are calculated, as a function of the normalized pulling
force using the exact deformed baseline solution of Eq. (15), and the
deformation baseline is calculated from the polynomial approx-
imations of the same analytical expression [Eq. (16)]. Figure 7 shows
the results of such a comparison.

IV. Conclusions

The static baseline curve of the deflected beam is calculated from
the proposed polynomial approximation of the nonlinear relation
between the force application angle and cable length. Comparison
between the approximated results and the exact deformation solution
shows a good agreement between the two strategies. A low-order
finite element mesh is superimposed to the deflected baseline of the
beam to yield a useful dynamic model of the system.
When the beam is subject to small pulling forces and deformations,

the polynomial approximation strategy does not yield an accurate
representation of the beam’s static deflection, as seen in Figs. 4 and 5.
However, the eigenfrequency results displayed in Figs. 6 and 7 show
that, in spite of the differences in the prediction of the beam’s static
deformed configuration, the dynamic behavior results are always in
good agreement between the exact and approximated solutions.
The comparison of results indicate that the strategy of obtaining

an approximated analytical expression for the baseline static
deformation of the beam, followed by adaptation of a model of low-
order finite elements, is an efficient way to obtain a fast and
convenient dynamic description of the structure.

Acknowledgment

The authors wish to thank Coordenação de Aperfeiçoamento de
Pessoal de Nivel Superior, Brazil’s research support foundation, for
sponsoring this work.

References

[1] Puig, L., Barton, A., and Rando, N., “A Review on Large Deployable
Structures for Astrophysics Missions,” Acta Astronautica, Vol. 67,
Nos. 1–2, July–Aug. 2010, pp. 12–26.
doi:10.1016/j.actaastro.2010.02.021

[2] Tibert, G., Deployable Tensegrity Structures for Space Applications,
Royal Inst. of Technology, Stockholm, 2002, pp. 9–30.

[3] Pellegrino, S.,Deployable Structures, Springer, Milan, 2001, pp. 1–35.
[4] Frisch-Fay, R., Flexible Bars, Butterworths, London, 1962, pp. 33–64.
[5] Timoshenko, S., and Gere, J., Theory of Elastic Stability, 2nd ed.,

McGraw–Hill, New York, 1961, pp. 66–70.
[6] Ohtsuki, A., “Analysis of the Characteristics of Fishing Rods Based on

the Large-Deformation Theory,”Materials and Science in Sports, edited

Fig. 4 Comparison of the beam’s end tip deflection.

Fig. 5 Comparison of baseline deformations.

Fig. 6 Eigenfrequencies for planar vibration.

Fig. 7 Eigenfrequencies for three-dimensional vibration.

1562 AIAA JOURNAL, VOL. 52, NO. 7: TECHNICAL NOTES

D
ow

nl
oa

de
d 

by
 U

N
IC

A
M

P 
on

 S
ep

te
m

be
r 

18
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

24
39

 

http://dx.doi.org/10.1016/j.actaastro.2010.02.021
http://dx.doi.org/10.1016/j.actaastro.2010.02.021
http://dx.doi.org/10.1016/j.actaastro.2010.02.021
http://dx.doi.org/10.1016/j.actaastro.2010.02.021
http://dx.doi.org/10.1016/j.actaastro.2010.02.021
http://dx.doi.org/10.1016/j.actaastro.2010.02.021


by Sam, F.H., Minerals, Metals and Materials Society, Warrendale, PA,
2001, pp. 161–170.

[7] Shvartsman, B., “Large Deflections of a Cantilever BeamSubjected to a
Follower Force,” Journal of Sound and Vibration, Vol. 304, Nos. 3–5,
2007, pp. 969–973.
doi:10.1016/j.jsv.2007.03.010

[8] Holland, D., Stanciulescu, I., Virgin, L., and Plaut, R., “Vibration and
Large Deflection of Cantilevered Elastica Compressed by Angled
Cable,” AIAA Journal, Vol. 44, No. 7, 2006, pp.1468–1476.
doi:10.2514/1.18000

[9] Howell, L. L.,Compliant Mechanisms,Wiley, NewYork, 2001, pp. 42–
55.

[10] Al-Sadder, S., and Al-Rawi, R., “Finite Difference Scheme for Large-
Deflection Analysis of Non-Prismatic Cantilever Beams Subjected to
Different Types of Continuous and Discontinuous Loadings,” Applied
Mechanics, Vol. 75, Nos. 8–9, 2006, pp. 459–473.
doi:10.1007/s00419-005-0422-5

[11] Yau, J., “Close-Form Solutions of Large Deflections for a Guyed
Cantilever Column Pulled by an Inclinations Cable,” Journal of Marine
Science and Technology, Vol. 18, No. 1, 2010, pp. 130–136.

[12] Ferris, D., and Afonta, A., “Small Vibrations of Flexible Bars by Using
the Finite ElementMethodwith Equivalent Uniform Stiffness andMass
Methodology,” Journal of Sound and Vibration, Vol. 163, No. 2, 1993,
pp. 343–358.
doi:10.1006/jsvi.1993.1170

[13] Sallstrom, J., Poelaert, D., and Janssens, F., “Small Displacements
About Equilibrium of a Beam Subjected to Large Static Loads,” AIAA

Journal, Vol. 34, No.11, Nov. 1996, pp. 2384–2391.
doi:10.2514/3.13405

[14] Santillan, S., Virgin, L., and Plaut, R., “Post-Buckling and Vibration of
Heavy Beam on Horizontal or Inclined Rigid Foundation,” Journal of
Applied Mechanics, Vol. 73, No. 4, July 2006, pp. 664–671.
doi:10.1115/1.2165237

[15] Santillan, S., Virgin, L., and Plaut, R., “Equilibria and Vibration of a
Heavy Pinched Loop,” Journal of Sound and Vibration, Vol. 288,
Nos. 1–2, Nov. 2005, pp.81–90.
doi:10.1016/j.jsv.2004.12.016

[16] Santillan, S., Virgin, L., and Plaut, R., “Static and Dynamic Behavior of
HighlyDeformedRisers and Pipelines,” Journal of OffshoreMechanics
and Arctic Engineering, Vol. 132, No. 2, 2010, Paper 021401.
doi:10.1115/1.4000555

[17] Petyt, M., Introduction to Finite Element Vibration Analysis, 2nd ed.,
Cambridge Univ. Press, New York, 2010, pp. 45–115.

[18] Craig, R., and Kurdila, A., Fundamentals of Structural Dynamics,
2nd ed., Wiley, New York, 2006, pp. 417–453.

[19] Kwon, Y., and Bang, H., The Finite Element Method Using Matlab,
CRC Press, Boca Raton, FL, 1997, pp. 197–304.

[20] Cook, R., Malkus, D., and Plesha, M., Concepts and Applications of
Finite Element Method, 3rd ed., Wiley, New York, 1989, pp. 31–57.

A. Sinha
Associate Editor

AIAA JOURNAL, VOL. 52, NO. 7: TECHNICAL NOTES 1563

D
ow

nl
oa

de
d 

by
 U

N
IC

A
M

P 
on

 S
ep

te
m

be
r 

18
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

24
39

 

http://dx.doi.org/10.1016/j.jsv.2007.03.010
http://dx.doi.org/10.1016/j.jsv.2007.03.010
http://dx.doi.org/10.1016/j.jsv.2007.03.010
http://dx.doi.org/10.1016/j.jsv.2007.03.010
http://dx.doi.org/10.1016/j.jsv.2007.03.010
http://dx.doi.org/10.1016/j.jsv.2007.03.010
http://dx.doi.org/10.2514/1.18000
http://dx.doi.org/10.2514/1.18000
http://dx.doi.org/10.2514/1.18000
http://dx.doi.org/10.1007/s00419-005-0422-5
http://dx.doi.org/10.1007/s00419-005-0422-5
http://dx.doi.org/10.1006/jsvi.1993.1170
http://dx.doi.org/10.1006/jsvi.1993.1170
http://dx.doi.org/10.1006/jsvi.1993.1170
http://dx.doi.org/10.1006/jsvi.1993.1170
http://dx.doi.org/10.2514/3.13405
http://dx.doi.org/10.2514/3.13405
http://dx.doi.org/10.2514/3.13405
http://dx.doi.org/10.1115/1.2165237
http://dx.doi.org/10.1115/1.2165237
http://dx.doi.org/10.1115/1.2165237
http://dx.doi.org/10.1016/j.jsv.2004.12.016
http://dx.doi.org/10.1016/j.jsv.2004.12.016
http://dx.doi.org/10.1016/j.jsv.2004.12.016
http://dx.doi.org/10.1016/j.jsv.2004.12.016
http://dx.doi.org/10.1016/j.jsv.2004.12.016
http://dx.doi.org/10.1016/j.jsv.2004.12.016
http://dx.doi.org/10.1115/1.4000555
http://dx.doi.org/10.1115/1.4000555
http://dx.doi.org/10.1115/1.4000555

