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SUMMARY

We present three new sets ofC 1 hierarchical high-order tensor-product bases for conforming finite elements.
The first basis is a high-order extension of the Bogner–Fox–Schmit basis. The edge and face functions are
constructed using a combination of cubic Hermite and Jacobi polynomials with C 1 global continuity on the
common edges of elements. The second basis uses the tensor product of fifth-order Hermite polynomials
and high-order functions and achieves global C 1 continuity for meshes of quadrilaterals and C 2 continuity
on the element vertices. The third basis for triangles is also constructed using the tensor product of one-
dimensional functions defined in barycentric coordinates. It also has global C 1 continuity on edges and C 2

continuity on vertices. A patch test is applied to the three considered elements. Projection and plate problems
with smooth fabricated solutions are solved, and the performance of the h- and p-refinements are evaluated
by comparing the approximation errors in theL2- and energy norms. A plate with singularity is then studied,
and h- and p-refinements are analysed. Finally, a transient problem with implicit time integration is consid-
ered. The results show exponential convergence rates with increasing polynomial order for the triangular and
quadrilateral meshes of non-distorted and distorted elements. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The h-version of the finite element method is the most used numerical technique for the analy-
sis of structural problems [1]. In the h-version, solution convergence is achieved by decreasing
the element size, while the order of the interpolation functions is fixed. In the p-version, the ele-
ment size is fixed, and the polynomial order is increased [1–4]. We can combine both versions to
obtain the hp-version that refines the mesh and increases the polynomial order. The definition of
tensor product polynomial bases is an important aspect of the hp high-order methods in order to
achieve good numerical conditioning of the element and global matrices [2, 3]. Most of the proposed
bases have C 0 continuity on the element boundary [2, 5]. However, some problems including the
Euler–Bernoilli beam, Kirchhoff plate, shells, Stoke’s flow and Cahn–Hilliard equation may require
C 1 continuity on the element boundaries to obtain conforming approximate solutions. The construc-
tion and implementation of C 1 continuous bases are more difficult. Most of the available C 1 bases
for the finite element method uses Hermite polynomials for their construction. Others possibilities
are based on Bernstein–Bezier splines [6].

Several C 1 conforming elements for h-version can be found in the literature [7–9]. The most well
known are the Argyris triangle, also termed TUBA element [10], and the Bogner–Fox–Schmit (BFS)
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HIERARCHICAL HIGH-ORDER C1 AND C2 BASES 937

square element [11, 12], both applied to the Kirchhoff plate model. The Argyris triangle uses a fifth-
order polynomial approximation and has displacement and first and second partial derivatives as
the degrees of freedom on vertices and normal derivatives on edges. This element has a satisfactory
accuracy for the h-version, due to the use of fifth-order polynomial approximation. However, the
degrees of freedom on edges makes the implementation difficult when compared with the standard
finite elements. A modification of the Argyris triangular element that eliminates nodes for the normal
derivatives on edges was proposed by Bell [13]. However, this elimination reduced the order of the
convergence rate. Okabe [10] derived explicit interpolation formulae for the Argyris triangle, which
simplified the implementation of the TUBA element. Recently, Dominguez et al. [14] proposed a
new algorithm to evaluate the basis functions of the Argyris finite element and their derivatives.
The main advantage is an efficient way to calculate the transformation matrix between the Argyris
element and the reference system, which makes the implementation simpler. Peano [15] obtained
expressions in area coordinates for C 0 and C 1 hierarchical interpolation functions of order P for
triangular elements and discussed the requirements to satisfying C 0 and C 1 continuity on element
boundaries. However, the implementation of the basis for any order P is difficult because of the
interdependency of the functions.

The BFS element is a C 1 conforming square element defined by complete bi-cubic polynomials.
It is simple to implement as the interpolation functions can be obtained from the tensor product
of cubic Hermite polynomials, and it has expected convergence rates with mesh refinement [8].
However, this element does not have similar convergence rates for distorted meshes [11]. Bernadou
[16] proposed a procedure to curve the edges of C 1 triangles, which is compatible with Argyris and
Bell elements. Pretera et al. [17] described a similar procedure to curve edges of the BFS element.
They observed improvement in the solution accuracy when using isoparametric mapping.

High-order polynomial approximation is an alternative to improve the performance and overcome
some difficulties of the h-version when applied to structural problems. Wang et al. [1] proposed
a p-version hierarchical triangular element for plate bending using corrective rational functions.
The high-order functions are given by recursive equations in terms of the edge and face functions
for each polynomial order. The convergence rate of the p-refinement was twice as high as the h-
refinement rate for the same number of degrees of freedom. Šolín et al. [18] proposed high-order
triangular elements using Lobatto polynomials. Similarly, Scapolla et al. [4] developed a new family
of C 1 triangular finite elements for plate bending with orders 4, 5 and 6. The starting point was
the Bell triangle, and the high-order elements are hierarchical extensions. Each new edge function
is zero on the element boundary, and their normal derivatives are non-zero on the edge associated
with the function. The face functions are bubbles, and their normal derivatives vanish on all edges
of the triangle. The results showed a fast convergence rate for displacement. Papanicolopulos et al.
[19] derived a generic formulae for TUBA elements with order greater than 5. They also presented
an element with order 7 and third-order derivatives on vertices. The results of benchmark problems
in elasticity showed exponential convergence. Walkington [20] presented a tetrahedral C 1 element
as an extension of triangular C 1 elements.

Improvements were also proposed for the BFS element. Gopalacharyulu [21] considered second-
order derivatives of the primary variable as degrees of freedom on vertices with fourth-order
polynomial approximation. Bardell [22] proposed a hierarchical p-refinement, where the approxi-
mation order is increased by adding orthogonal shape functions. Recently, Zhang [23], based on the
work of Gopalacharyulu [21], presented the construction of rectangles and cuboid elements using
Pk-spaces. They showed complete conforming C 1 continuity for this space, and the results exhib-
ited good convergence rate. Ahmadi et al. [24] observed that the discontinuities in the first-order
derivatives of dependent variables in space and time introduced perturbations on the solution and
eventually led to failure of time discrete schemes. They used the BFS element to solve the problem
marching in space and time. In another work, Surana et al. [25] proposed C k Hermite finite ele-
ments, and the results showed that increasing the continuity improves the convergence rate, but little
improvement was observed for k > 2.

We propose the construction of C 1 high-order shape functions for triangular and square con-
forming elements using the tensor product of one-dimensional polynomial bases. The high-order
hierarchical functions are built using third- and fifth-order Hermite polynomials. Because of their
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938 L. J. F. FERREIRA AND M. BITTENCOURT

tensorial feature, the proposed bases are simpler to construct when compared with the other bases
available in the literature and may have an arbitrary polynomial order. In addition, meshes of quadri-
lateral elements may be used. The performance of the high-order elements is evaluated using a
patch test, projection and two-plate problems solved by h- and p-refinements. Results for a plate
with singularity and an implicit transient analysis are also presented. The equivalence between the
projection and plate problems is considered, and the convergence rates are compared with the esti-
mated theoretical rates. The developed bases can be applied to any problem, which requires C 1

continuity, and we consider here the approximation of the Kirchhoff plate. This paper is organized
in the following six sections. First, a brief review about the Kirchhoff plate model is presented. In
Sections 3–5, we develop the high-order interpolation functions for squares and triangles. Section 6
considers the numerical results, and finally, the conclusions are addressed.

2. APPROXIMATION OF THE KIRCHHOFF PLATE

The differential equation of equilibrium for the Kirchhoff plate model is given by [3]
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Assuming constant material and geometric properties, we obtain
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where D D E t3

12 .1��2/
, w D w .x; y/ is the transversal displacement of the middle surface, q D

q .x; y/ is the transversal distributed loading, E and � are the Young’s modulus and Poisson’s ratio
of the material, respectively, and t is the thickness.

The weak form associated with (2.2) is given by [3]
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where Vn,Mnn andMnt are the shear force, bending moment and twist moment on the boundary of
the normal plane, respectively, as shown in Figure 1 and Pj denotes the concentrated loads. Loads
in the normal and xy planes are related by

Figure 1. Loads on the plate boundary in planes xy and nt [3].
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The bending and twisting moments are calculated as
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The displacement w can be interpolated in each finite element of a mesh as the following linear
combination

w D NTe de (2.8)

where Ne is the matrix of shape functions and de represents the vector of unknown coefficients.
Using the Galerkin method, the weak form (2.3) of the Kirchhoff plate is interpolated in a mesh of
nel elements as
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and
S

indicates the standard assembly procedure. The aforementioned expression can be
rewritten as

nel[
eD1

Ke de � fe D 0 (2.10)

The element stiffness matrix Ke and load vector fe are given, respectively, by
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The element stiffness matrix can be rewritten in the standard form:
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BTe D Be dAe (2.13)

and the strain–displacement Be and elasticity D matrices are
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The stiffness matrix for the quadrangular element in the standard domain is
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The Jacobian and strain–displacement matrices are given, respectively, as
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with C, C1 and T are the matrices that transform second-order derivatives in the standard domain to
the physical domain and Se and NBe are the local matrices of first-order and second-order derivatives,
respectively [11].

3. HIERARCHICAL H3 HIGH-ORDER SQUARE ELEMENT

The Kirchhoff plate theory leads to the element stiffness matrix in terms of the global second-order
derivatives of the shape functions. Therefore, the conforming finite elements for the Kirchhoff plate
should provide continuity of the transversal displacement and its first-order partial derivatives. The
most known C 1 conforming square element is the four-node BFS element [8]. It is the starting point
of the H3 high-order finite element here presented. The BFS element has 16 degrees of freedom
associated with w, w;x , w;y and w;xy for each vertex node. The shape functions can be obtained
by the tensor product of the one-dimensional cubic Hermite polynomials [8, 11] given in the local
coordinate system � 2 Œ�1; 1� by
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Figure 2 shows the cubic Hermite polynomials and their first partial derivatives. Because of the
collocation property, the polynomials h1 and h3 are associated with the interpolated function and
h2 and h4 with its first-order derivative.

The approximation of the transversal displacement in the standard square is written as

w .�; �/ D

dX
iDa

�i1.�; �/w
i C �i2.�; �/w

i
;� C �

i
3.�; �/w

i
;� C �

i
4.�; �/w

i
;�� D NTe Nde (3.2)

where the shape functions are given by the tensor product of the one-dimensional cubic Hermite
polynomials

�ij .�; �/ D hp.�/ hq .�/ i D a; b; : : : ; d and j D 1; 2; : : : ; 4 (3.3)

with index i related to the degrees of freedom of node j and p and q are the indices of the one-
dimensional cubic Hermite polynomials given in (3.1). The vector of unknown local coefficients Nde
is written as

Nde D
°
Nda
��
Ndb
��
Ndc
��
Ndd
��

±T
and Ndi�� D

°
wi wi

;�
wi;� w

i
;��

±T
(3.4)

The tensor product procedure is illustrated in Figure 3, and the tensor indices p and q are given
in Table I. The indices 1 and 3 are associated with the one-dimensional cubic Hermite polynomials
h1 and h3, which represent displacement. Indices 2 and 4 are associated with the one-dimensional
functions h2 and h4, which represent slopes. The shape functions �a1 , �a2 , �a3 and �a4 are associated
respectively with degrees of freedom wa, wa

;�
, wa;� and wa

;��
of node a.

Figure 2. Cubic Hermite polynomials and their first-order derivatives.

Figure 3. Tensor product of one-dimensional cubic Hermite polynomials for the Bogner–Fox–Schmit
element and its degrees of freedom.
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942 L. J. F. FERREIRA AND M. BITTENCOURT

The approximation for w.�; �/ in (3.2) is in terms of the standard domain and the local degrees of
freedom wi ; wi

;�
; wi;� and wi

;��
. However, the finite element stiffness matrices are calculated in the

physical domain. Therefore, we use the transformation matrix A that relates the degrees of freedom
in the standard and physical domains as de D A Nde [11] and

w.x; y/ D NTe .x; y/ de D NTe .�; �/A Nde (3.5)

where
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The hierarchical H3 high-order element starts from the BFS element, and new edge and face
functions are added for P > 4. These high-order functions do not change the properties of the
vertex functions and improve the solution accuracy on the element. The one-dimensional high-order
functions used in the tensor product given in (3.3) are [3]

hPC1.�/ D
@h1.�/

@�
.1 � �2/ J

1;1
P�4.�/; P > 4 (3.8)

where J 1;1P�4.�/ denotes the Jacobi polynomials of order P � 4 with weights .1; 1/. These functions
of order P together with the cubic Hermite polynomials compose a hierarchical basis. Figure 4
shows the high-order one-dimensional functions and their first derivatives for P D 7. They are zero
on the element boundaries.

TheH3 square high-order functions can be obtained from the standard tensor product. Two shape
functions exist for each edge of the element and polynomial order corresponding to the transversal
displacement and rotation in the normal direction. Thus, the element has 8 .P � 3/ edge functions.
The number of face functions for any order P is .P � 3/2, and they related to the transversal

Table I. Indices p and q for the shape functions of the Bogner–Fox–Schmit element.

� �a1 �a2 �a3 �a4 �b1 �b2 �b3 �b4 �c1 �c2 �c3 �c4 �d1 �d2 �d3 �d4

p 1 1 2 2 3 3 4 4 3 3 4 4 1 1 2 2
q 1 2 1 2 1 2 1 2 3 4 3 4 3 4 3 4

Figure 4. High-order one-dimensional shape functions used in the H3 element for P D 7.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 109:936–964
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displacement. There are 16 vertex shape functions for P D 3. For P D 4, there are 16 vertex
functions, 8 edge functions and 1 face function with a total of 25 shape functions.

The interpolation of w in the standard domain can be written as

w .�; �/ D

16X
iD1

ai �i .�; �/„ ƒ‚ …
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C

8.P�3/X
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C
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faces

(3.9)

with

�i .�; �/ D hp.�/ hq.�/ (3.10)

Figure 5 shows the functions �ab1 , �ab2 and �f1 for P D 4. The first edge function �ab1 is related
to the displacement degree of freedom, whereas the second edge function �ab2 related to the rotation
degree of freedom is zero on the element boundary.

The tensor indices p and q are calculated for P > 4 as

� edge ab: p D P C 1, q D 1; 2;
� edge bc: p D 3; 4, q D P C 1;
� edge cd : p D P C 1, q D 4; 3;
� edge da: p D 2; 1, q D P C 1; and
� face f : p; q > P and p C q 6 2P C 2.

The tensor indices p and q for the edge and face functions are given in Table II for P D 5.
The H3 high-order element has exponential convergence rates for meshes of non-distorted ele-

ments as presented in Section 6. However, the convergence rates deteriorate for distorted elements
because of the loss of C 1 continuity on the common edges of the elements. The H5 high-order
element presented in the next section does not have this limitation.

4. HIERARCHICAL H5 HIGH-ORDER SQUARE ELEMENT

The one-dimensional C 2 fifth-order Hermite polynomials are given by [11]
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1
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(4.1)

Figure 5. Shape functions for edge ab and face for the hierarchicalH3 high-order finite element and P D 4.

Table II. Tensor indices for the H3 high-order element for P D 5.

� �ab3 �ab4 �bc3 �bc4 �cd4 �cd3 �da4 �da3 �
f
2 �

f
3 �

f
4

p 6 6 3 4 6 6 2 1 5 6 6
q 1 2 6 6 4 3 6 6 6 5 6
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Figure 6 shows these polynomials and their first- and second-order derivatives. They are used to
construct the vertex shape functions of theH5 quadrilateral element using tensor product. They also
have collocation properties similar to the cubic Hermite polynomials.

The fifth-order square element has 24 vertex functions with 6 degrees of freedom per node related
to w, w;x , w;y , w;xx , w;yy and w;xy ; 4 edge functions for the normal derivative w;n; and 1 face
function associated with w. The tensor product indices p and q of Equation (3.3) for the vertex
shape functions are given in Table III. Indices 1 and 4 are associated with functions that represent
displacements of the one-dimensional fifth-order Hermite polynomials, indices 2 and 5 are associ-
ated with functions for the first derivative of displacement and indices 3 and 6 are associated with
functions that represent second derivatives of displacement.

We construct the edge and face functions using the tensor product of the fifth-order Hermite
polynomials and the following high-order one-dimensional functions:

HPC2.�/ D
�
1 � �2

� dH1.�/
d�

J
1;1
P�5 .�/P > 5 (4.2)

Figure 7 shows these functions and their first- and second-order derivatives for polynomial orders
from P D 5 to P D 8. They are zero on the element boundaries. The tensor indices for edge and

Figure 6. One-dimensional fifth-order Hermite polynomials and their derivatives.

Table III. Tensor indices p and q for the vertex shape functions of the H5
square element.

� �a1 �a2 �a3 �a4 �a5 �a6 �b1 �b2 �b3 �b4 �b5 �b6

p 1 2 1 3 1 2 4 5 4 6 4 5
q 1 1 2 1 3 2 1 1 2 1 3 2

� �c1 �c2 �c3 �c4 �c5 �c6 �d1 �d2 �d3 �d4 �d5 �d6

p 4 5 4 6 4 5 1 2 1 3 1 2
q 4 4 5 4 6 5 4 4 5 4 6 5

Figure 7. High-order C 2 one-dimensional polynomials and their first- and second-order derivatives from
P D 5 to P D 8.
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face shape functions for P D 5 and P D 6 are given in Table IV. The number of edge and face
functions for each order P > 5 is 4 .2P � 9/ and .P � 4/2, respectively.

Tensor indices p and q are calculated for P > 5 using

� edge ab: for P D 5, p D P C 2 and q D 2; for P > 5, p D P C 2 and q D 2; 1;
� edge bc: for P D 5, p D 5 and q D P C 2; for P > 5, p D 5; 4 and q D P C 2;
� edge cd : for P D 5, p D P C 1 and q D 5; for P > 5, p D P C 2 and q D 4; 5;
� edge da: for P D 5, p D 2 and q D P C 2; for P > 5, p D 1; 2 and q D P C 2; and
� face f : p; q > P and p C q 6 2P C 2.

Figure 8 shows the edge function �ab1 and face function �f1 for P D 5 and edge functions �ab2
and �ab3 for P D 6. For P D 5, there is only one shape function for each edge to be compatible
with the high-order triangular element to be presented in the next section. High-order edge functions

Table IV. Tensor indices p and q for the edge and face functions of theH5 square
element for P D 5 and P D 6.

[P D 5]

� �ab1 �bc1 �cd1 �da1 �
f
1

p 7 5 7 2 7
q 2 7 5 7 7

[P D 6]

� �ab2 �ab3 �bc2 �bc3 �cd2 �cd3 �da2 �da3 �
f
2 �

f
3 �

f
4

p 8 8 5 4 8 8 1 2 8 7 8
q 2 1 8 8 4 5 8 8 7 8 8

Figure 8. Edge and face shape functions for the H5 high-order square element.
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associated with w appear from P > 6. The first- and second-order derivatives of the second edge
shape function associated with w are zero on the element boundary.

Figure 9 shows the continuity of the first edge shape function for P D 6, and its first- and second-
order partial derivatives in x, y and in the normal direction n on the common edge of the elements
are illustrated in Figure 9. The normal derivatives are given by

�ab1 ;n D nx�
ab
1 ;x C ny�

ab
1 ;y ; (4.3)

Figure 9. Continuity of the first edge shape function and its first- and second-order partial derivatives on the
common edge of two elements for P D 6.
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�ab1 ;nn D n
2
x�

ab
1 ;xx C 2nxny�

ab
1 ;xy C n

2
y�

ab
1 ;yy (4.4)

where .nx ; ny/ are the components of the normal vector to the edge. The normal vector n is
computed from

n D tij � e3 (4.5)

where e3 is the unit normal vector to the plane defined by the element and tij is the tangential
vector on edge ij . The edges of the square and triangular elements are shown in Figures 3 and 11,
respectively. The components of the tangential vector are

t D
®
xj � xi ; yj � yi ; 0

¯T
(4.6)

where .xi ;yi / and
�
xj;yj

�
are the coordinates of nodes i and j of edge ij .

According to the Pascal triangle, a C 1 conforming four-node square element requires 4 degrees
of freedom per node as in the H3 element. The C 2 square element requires 9 degrees of freedom
per node [3, 11]. The H5 element has 6 degrees of freedom per node, one for each edge and face
and C 2 continuity is also achieved in the vertex nodes.

The approximation for the transversal displacement w.�; �/ in the standard element has the
degrees of freedom wi , wi

;�
, wi;� , wi

;��
, wi;�� and wi

;��
for each node. However, the stiffness matrix

requires the global derivatives of the shape functions. We can use matrix A to map the standard to
the global degrees of freedom as [11]

w.x; y/ D NTe .�; �/ de D NTe .�; �/ A Nde (4.7)

where

de D

8̂̂<
ˆ̂:

da
db
dc
dd

9>>=
>>; ; di D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

wi

w;ix
w;iy
w;ixx
w;iyy
w;ixy

9>>>>>>>=
>>>>>>>;
; Nde D

8̂̂<
ˆ̂:
Nda
Ndb
Ndc
Ndd

9>>=
>>; ; Ndi D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

wi

w;i
�

w;i�
w;i
��

w;i��
w;i
��

9>>>>>>>=
>>>>>>>;

(4.8)

A D

2
664
NA 0 0 0
0 NA 0 0
0 0 NA 0
0 0 0 NA

3
775 ; NA D

2
666664

1 0 0 0 0 0

0 j11 j12 0 0 0

0 j21 j22 0 0 0

0 j22;� j12;� j 211 j 212 2 j11j12
0 j21;� j11;� j 221 j 222 2 j21j22
0 j22;� j12;� j11j12 j21j22 .j11j22 C j12j21/

3
777775 (4.9)

Figure 10. Degrees of freedom of the Argyris triangular finite element.
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5. HIERARCHICAL HIGH-ORDER TRIANGULAR ELEMENT

The Argyris triangle illustrated in Figure 10 is a C 1 fifth-order conforming element with 21 degrees
of freedom according to the Pascal triangle [10]. Each vertex has 6 degrees of freedom related to w,
w;x ,w;y ,w;xx ,w;yy andw;xy , and each edge has one degree of freedom associated with the normal
derivative w;n.

We obtain the shape functions of a new fifth-order triangular element and high-order shape
functions by the tensor product of one-dimensional functions �j .Li / given in terms of the natu-
ral coordinates Li in Figure 11 using a similar procedure presented in [5]. The one-dimensional
functions �j .Li / are defined as

�1 .Li / D 1 �4 .Li / D L
3
i

�
10 � 15Li C 6L

2
i

�
�2 .Li / D Li �5 .Li / D L

3
i . 4 � 3Li /

�3 .Li / D
1
2
L2i �6 .Li / D L

3
i

(5.1)

The local approximation of the transversal displacement w .L1; L2; L3/ for the fifth-order
element is written as

w .L1; L2; L3/ D

18X
kD1

ak  k .L1; L2; L3/„ ƒ‚ …
vertices

C

21X
kD19

ak  k .L1; L2; L3/„ ƒ‚ …
edges

(5.2)

The shape functions  k.L1; L2; L3/ can be written according to [5] as

 k.L1; L2; L3/ D �p.L1/ �q.L2/ �r.L3/; k D 1; : : : ; 21 (5.3)

The shape functions derived by the tensor product of �j .Li / are not the same functions of the
Argyris triangle. Figure 12 shows the six vertex shape functions  a1 to  a6 . They have similar
collocation properties as for the H5 square element.

For the hierarchical high-order triangular element, the tensor product (5.3) is also used to build
the edge and face shape functions for polynomial order P > 6. The edge and face functions and
their first- and second-order derivatives are zero at Li D 0 and Li D 1. The one-dimensional
hierarchical high-order functions are given by

Figure 11. Natural coordinates for the triangle.
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Figure 12. Vertex functions for the fifth-order triangular element.

�PC1 .Li / D L
2
i J

1;1
P�5.Li /; P > 6; i D 1; 2; 3 (5.4)

The high-order triangular element has the same 6 degrees of freedom for each vertex and 18
vertex shape functions. The number of shape functions for each edge is .2P � 9/ with P > 5,
and the total number of edge shape functions is 3 .2P � 9/. The number of face shape functions is
1
2
.P � 4/ .P � 5/ for P > 6. There are 18 vertex functions, 9 edge functions and 1 face function

for P D 6. The first edge function is associated with the normal derivative of displacement, and the
second is associated with the transversal displacement. The element is global C 1 continuous and
C 2 continuous on the vertices.

Table V presents the high-order tensor indices for P D 6. Figure 13 shows the edge and face
functions for P D 6. The edge functions are scaled by 100 and the face functions by 1000 to achieve
the same order of magnitude as the vertex functions.

The tensor indices p, q and r are calculated for P > 6 as:

� edge ab: p D P C 1, q D 3, r D 2 for w; p D P C 1, q D P C 1, r D 1 for w;n;
� edge bc: p D 2, q D P C 1, r D 3 for w; p D 1, q D P C 1, r D P C 1 for w;n;
� edge cd : p D 3, q D 2, r D P C 1 for w; p D P C 1, q D 1, r D P C 1 for w;n; and
� face f : p D 3, q; r > P C 1 and q C r 6 P C 8.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 109:936–964
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Table V. Tensor indices p, q and r for the edge and face
shape functions of the high-order triangular element for

P D 6.

  ab2  bc2  ca2  ab3  bc3  ca3  
f
1

p 7 2 3 7 1 7 3
q 3 7 2 7 7 1 7
r 2 3 7 1 7 7 7

Figure 13. Edge and face shape functions of the high-order triangular element for P D 6.

Figure 14 shows the first edge shape function for P D 6, and its first- and second-order partial
derivatives of two vertex shape functions associated with w;xx and w;xy for a two-triangle mesh
sharing a common edge. We observe that the proposed basis is C 1 continuous.

The dependent natural coordinate of the triangle is L1 D 1 � L2 � L3, and the approximation
for the transversal displacement may be expressed in the standard domain as w.L2; L3/. The local
vertex degrees of freedom of the element are wi , wi;L2 , wi;L3 , wi;L2L2 , wi;L3L3 and wi;L2L3 . Again,
the finite element stiffness matrices require the global derivatives wi , wi;x , wi;y ; w

i
;xx , wi;yy and

wi;xy . Therefore, we can use the mapping between the standard and physical domains, similar to
Equations (3.5) and (4.7), and obtain

w.x; y/ D NTe de D NTe .L2; L3/A Nde (5.5)

where

de D

8<
:

da
db
dc

9=
; ; di D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

wi

wi;x
wi;y
wi;xx
wi;yy
wi;xy

9>>>>>>>=
>>>>>>>;
Nde D

8<
:
Nda
Ndb
Ndc

9=
; Ndi D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

wi

wi;L2
wi;L3
wi;L2L2
wi;L3L3
wi;L2L3

9>>>>>>>=
>>>>>>>;

(5.6)
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Figure 14. C 1 continuity of the shape functions on the common edge of two triangles and C 2 continuity of
the vertex shape functions.

A D

2
4 NA 0 0

0 NA 0
0 0 NA

3
5 ; NA D

2
666664

1 0 0 0 0 0

0 j11 j12 0 0 0

0 j21 j22 0 0 0

0 0 0 j 211 j 212 2 j11j12
0 0 0 j 221 j 222 2 j21j22
0 0 0 j11j12 j21j22 .j11j22 C j12j21/

3
777775 (5.7)
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The normal derivatives on the edges are calculated as

w;nD nx w;xCny w;y (5.8)

where .nx ; ny/ are the components of the normal vector n on each edge and are constant for straight-
sided triangles.

6. NUMERICAL RESULTS

In this section, we present numerical results for a patch test and problems with smooth fabricated
solutions to validate the developed plate elements. We also present results for a plate with singularity
and a transient analysis. We compare the approximation errors and the convergence rates using h-
and p-refinements with non-distorted and distorted meshes of the hierarchical high-order elements:
H3 .QuadH3/, H5 .QuadH5/ and triangle .T ri/. For that purpose, we consider the rectangular
plate with dimensions Œ0; a� � Œ0; b� illustrated in Figure 15.

Initially, a patch test is analysed to show that the elements recover rigid body solutions. A pro-
jection problem with polynomial solution is then considered. Plate subjected to distributed load
q.x; y/ and two distinct sets of boundary conditions, with all edges simply supported and clamped,
are analysed. The L2-norm of the approximation error for w and its partial derivatives and the
energy norm of the error are considered in the comparative analysis of the convergence rates. They
are given respectively by

jjejjL2 D

sZ
A

.u � uapp/2 tdA (6.1)

jjejjE D jjujjE � jjuappjjE (6.2)

where u and uapp are, respectively, the fabricated and approximated solutions. The energy norm of
u is

jjujjE D

s
D

Z
A

�
u2;xx C u

2
;yy C 2�u

2
;xxu

2
;yy C 2 .1 � �/ u

2
;xy

�
tdA (6.3)

6.1. Patch test

To validate the developed high-order elements, we compare the solutions of a usual patch test
for plates modelled with quadrilateral and triangular elements [26]. The patch test checks if the
elements are able to reproduce constant values for all degrees of freedom with non-distorted
and distorted meshes. It is important that the considered mesh elements have enough neighbours
to recover correctly the rigid body motion. The boundary deflections are given by w.x; y/ D
1
2
.1CxC2yCx2CxyCy2/ as in [26], with E D 109:2GPa, � D 0:3 and thickness t D 0:01m.

Figure 15. Rectangular plate subjected to distributed load.
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The distorted meshes for triangles and quadrilaterals have, respectively, 5 and 10 elements and
are illustrated in Figure 16. The degrees of freedom values for node 5 are presented in Table VI.
The results were obtained with polynomial orders 3, 5 and 5, respectively, for the H3 and H5
quadrangular and triangular elements. We can observe that the proposed elements passed the patch
test, and they are able to reproduce rigid body motion.

6.2. Projection problem

The function considered for the projection problem is f .x; y/ D x3 .x � 1/3 y3 .y � 1/3 in the
domain Œ0; 1� � Œ0; 1�. A polynomial function was chosen in order to achieve an approximation
error close to zero when the order of the interpolation functions is equal to the respective order of
the given function. In this way, we can compare more clearly the effects of mesh distortion for the
proposed elements. The distorted and non-distorted meshes used in the h-refinement have 4, 9, 16
and 25 quadrilaterals and 8, 18, 32 and 50 triangles. The quadrilateral and triangular meshes are
shown in Figures 17 and 18, respectively. The non-distorted meshes are similar. The element orders
were fixed in P D 3 for the H3 square and P D 5 for the H5 quadrilateral and triangle.

For the p-refinement, we used the mesh with four H3 square elements and increased the polyno-
mial order from P D 3, which corresponds to the BFS element, to P D 13. For the hierarchical
high-order H5 quadrilateral element, we also used the mesh with four elements and increased the
polynomial order from P D 5 to P D 7. For the hierarchical high-order triangle, we used the mesh
with eight elements and increased the polynomial order from P D 5 to P D 12.

TheL2-error norm for the transversal displacementw and its first- (w;x) and second-order (w;xy)
partial derivatives obtained using the non-distorted and distorted meshes in terms of the number of
degrees of freedom and logarithm scales are shown in Figures 19–21. Similar plots were obtained
for w;y , w;xx and w;yy .

Figure 16. Distorted meshes for the patch test [26].

Table VI. Results for node 5 of the patch test with distorted meshes.

Element w w;x w;y w;xx w;yy w;xy

QuadH3 0.5414 1.0400 �0.5500 �0.0111 �0.0111 �0.0033
QuadH5 0.5414 1.0400 �0.5500 �0.0111 �0.0111 �0.0033
T ri 0.5414 1.0400 �0.5500 �0.0111 �0.0111 �0.0033
Reference [26] 0.5414 1.0400 �0.5500 �0.0111 �0.0111 �0.0033

Figure 17. Quadrilateral meshes used in the projection problem.
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Figure 18. Triangular meshes used in the projection problem.

Figure 19. L2-error norm of w for the projection problem.

Figure 20. L2-error norm of w;x for the projection problem.

Figure 21. L2-error norm of w;xy for the projection problem.
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Table VII. Absolute values of the angular coefficients of the fitted straight lines
for the L2-error norms for the projection problem.

(a) Non-distorted meshes

Element w w;x w;y w;xx w;yy w;xy
QuadH3 � h 1.08 1.04 1.04 — — 1.05
QuadH5 � h 2.18 2.14 2.14 2.31 2.31 2.31
T ri � h 2.00 1.26 1.33 1.43 1.51 1.51
QuadH3 � p 22.56 22.93 22.85 — — 20.87
QuadH5 � p 16.57 16.16 16.73 14.80 16.56 15.35
T ri � p 11.59 10.76 10.75 9.76 10.54 9.75

(b) Distorted meshes
Element w w;x w;y w;xx w;yy w;xy
QuadH3 � h 0.76 0.68 0.62 — — 0.14
QuadH5 � h 2.77 1.97 2.09 2.59 2.87 3.07
T ri � h 2.99 3.58 3.42 2.58 3.62 3.52
QuadH3 � p 2.66 1.53 1.53 — — 1.29
QuadH5 � p 16.60 16.34 17.09 18.58 18.19 17.66
T ri � p 7.83 5.72 5.72 4.95 5.01 5.01

The angular coefficients of the fitted straight lines in logarithmic scale for the L2-error norms of
w, w;x , w;y , w;xx , w;yy and w;xy were calculated for the non-distorted and distorted meshes using
the polyfit MATLAB function. The absolute values of the angular coefficients give the convergence
rates for the h- and p-refinements and are presented in Table VII.

The p-refinement has better convergence rates than h-refinement for all elements in distorted and
non-distorted meshes. The H3 and H5 squares have better convergence rates than the triangle for
non-distorted meshes. These elements require a smaller number of degrees of freedom to achieve the
same error magnitude. This is expected because the approximation in the triangle is poorer compared
with the square elements. For example, the term x6 y6 in the triangle only appears from expansion
order P D 12, and for square elements, this term appears from P D 6. For distorted meshes,
the H5 square has almost the same convergence rates as the non-distorted meshes, but the rates
dropped approximately 50% for triangles. The H3 square has worse convergence rates compared
with the results of non-distorted meshes. The convergence rates for w and its first- and second-
order derivatives were exponential using the H3 square with non-distorted meshes and the H5 and
triangular elements with non-distorted and distorted meshes. TheH5 quadrilateral also recovered the
second-order derivatives very well, even for distorted meshes. Despite being C 1 global continuous,
the triangle recovered the second-order derivatives well, with good convergence rates.

Recently, problems described by sixth-order equations have received more attention such as
growth of crystalline surfaces, oil-water-surfactant mixtures and mixtures of polymer molecules
[27]. The conforming finite element approximation of sixth-order equations requires C 2 continu-
ity. Although the bases presented here for the H5 and triangular elements are C 1 continuous on the
element edges and C 2 continuous only on the element vertices, we observed good approximation
errors for the second derivatives. Therefore, these elements may obtain reasonable results even for
sixth-order equations.

The behaviour of the condition numbers of the Schur complemented mass matrices for the hier-
archical high-order H3 and H5 squares and the triangular element are shown in Figure 22(a). The
H3 square element has condition numbers greater than the H5 square and triangular elements for
P > 5. The H5 square element has a smaller condition number than the triangular element from
P D 5 to P D 8. For P D 9 and P D 10, both elements obtains almost the same condition num-
bers. For P > 10, the inverse behaviour is observed, and the triangle has smaller condition numbers
than the H5 square element. The H3 square element exhibits an almost constant increasing rate of
condition number when the other elements have some variations in the increasing rate. The largest
condition number is for the H3 square element and P D 12 with magnitude of 1011. Figure 22(b)
shows the condition numbers of the element stiffness matrices for the considered bases. They are
lower than the condition numbers of the mass matrices, and the increasing rates are moderate for
all elements.
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6.3. Rectangular simply supported plate

The rectangular plate shown in Figure 15 with simply supported edges has dimensions a D 4m,
b D 4m, thickness t D 0:01m, Young’s modulus E D 109:2GPa and Poisson’s ratio � D 0:3.
The plate is loaded with q.x; y/ D q0 sin.�x

4
/ sin.�y

4
/ and q0 D 100 N

m2
. The analytical solution

is given by

w.x; y/ D
q0

�4D . 1
a2
C 1

b2
/

sin

�x
a

�
sin

�y
b

�
(6.4)

The boundary conditions for the simply supported edges are

� edge x D 0: w .0; y/ D 0, w;x.0; y/ D 0, Mnn DMxx and Mnt DMxy ;
� edge x D a: w .a; y/ D 0, w;x .a; y/ D 0, Mnn DMxx and Mnt DMxy ;
� edge y D 0: w .x; 0/ D 0, w;y .x; 0/ D 0, Mnn DMyy and Mnt D �Mxy ;
� edge y D b: w .x; b/ D 0, w;y .x; b/ D 0, Mnn DMyy and Mnt D �Mxy:

The analytical expressions for w;x , w;y , w;xy , w;xx and w;yy can be obtained from the derivatives
of Equation (6.4). The boundary momentsMxx ,Myy andMxy are calculated using Equations (2.5)
to (2.7).

The h-refinement for the BFS square element considered non-distorted meshes with 4, 16,
36, 64, 100 and 144 elements. Figure 23(a) and (b) shows the coarsest and the finest meshes.
For p-refinement using theH3 square element, we fixed the mesh with four elements and increased
the polynomial orders from P D 3, which corresponds to the BFS element, to P D 13. The finest
mesh used in the h-refinement has the same number of degrees of freedom as the p-refinement for
order P D 13.

The h-refinement for the H5 high-order square element used non-distorted meshes with 2, 4,
9 and 16 elements. For the p-refinement, we used the non-distorted mesh with two elements and
increased the polynomial orders from P D 5 to P D 12. For triangular elements, the h-refinement
considered non-distorted meshes of 2, 4, 8, 16 and 32 elements. For the p-refinement, we used the
mesh with four elements and increased the polynomial orders from P D 5 to P D 12. For distorted

Figure 22. Condition numbers of the Schur complemented mass and stiffness matrices for the hierarchical
high-order elements.

Figure 23. Meshes used for the analysis of the rectangular plates.
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meshes, only p-refinement is considered with polynomial orders from P D 5 to P D 12, and the
meshes for the H3 and H5 quadrilaterals and the triangle are shown respectively in Figure 23(c)
and (d).

The L2-norm of the approximation errors for the transversal displacement and its first- and
second-order partial derivatives for non-distorted and distorted meshes were calculated. The con-
vergence rates, given by the absolute values of the angular coefficients of the fitted straight lines in
logarithmic scale, for the L2- and energy error norms, are given in Table VIII. Figure 24 shows the
results in terms of the energy norm.

The results show that the p-refinement converges faster than h-refinement for distorted and non-
distorted meshes, similarly to the projection problem of the previous section. The convergence rates
for the H3 square element are better than the convergence rates of the H5 square and triangle for h-
and p-refinements with non-distorted meshes. For distorted meshes, the convergence rates for the
H3 square deteriorated because of the loss ofC 1 continuity. The convergence rates for theH5 square
and triangle are close for non-distorted meshes. For distorted meshes, the H5 square behaviour is
better than the triangle, and smaller error norms are achieved with a smaller number of degrees of
freedom. For p-refinement, the convergence rates with non-distorted meshes for all elements are
exponential. For distorted meshes, the convergence rates are almost exponential only for theH5 and
triangle, and there is a good recovery of the second-order derivatives of w.

6.4. Rectangular clamped plate

The rectangular plate of Figure 15 with clamped edges has dimensions a D 1m, b D 1m, thick-
ness t D 0:01m, Young’s modulus E D 109:2GPa and Poisson’s ratio � D 0:3. The boundary
conditions for the clamped edges are

Table VIII. Absolute values of the angular coefficients of error norms for the simply
supported plate.

(a) Non-distorted meshes

Element Energy w w;x w;y w;xx w;yy w;xy
QuadH3 � h 2.35 2.41 1.80 1.80 — — 1.78
QuadH5 � h 2.03 3.88 2.11 1.87 2.06 2.06 1.14
T ri � h 2.28 2.31 2.27 2.24 2.26 2.26 2.31
QuadH3 � p 11.67 10.75 10.32 10.32 — — 10.10
QuadH5 � p 9.02 9.44 9.41 7.90 9.21 9.28 8.56
T ri � p 5.97 9.58 6.97 6.99 7.83 9.05 7.69

(b) Distorted meshes
Element Energy w w;x w;y w;xx w;yy w;xy
QuadH3 � p 0.53 0.14 0.03 0.05 — — 0.17
QuadH5 � p 5.95 7.21 6.26 6.26 6.73 5.17 5.74
T ri � p 5.46 6.15 5.23 5.02 4.57 4.64 4.29

Figure 24. Error in the energy norm for the simply supported plate.
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� edge x D 0: w .0; y/ D 0, w;x.0; y/ D 0, w;xx.0; y/ D 0, w;xy.0; y/ D 0;
� edge x D a: w .a; y/ D 0, w;x .a; y/ D 0, w;xx.a; y/ D 0, w;xy.a; y/ D 0;
� edge y D 0: w .x; 0/ D 0, w;y .x; 0/ D 0, w;yy .x; 0/ D 0, w;xy.x; 0/ D 0;
� edge y D b: w .x; b/ D 0, w;y .x; b/ D 0, w;yy .x; b/ D 0, w;xy.x; b/ D 0:

We consider the following fabricated solution for this analysis:

w.x; y/ D
1

D
x3 y3 .x � 1/3 .y � 1/3 (6.5)

Expressions for w;x , w;y , w;xy , w;xx and w;yy can be obtained from the derivatives of equation
(6.5). Distributed load q is obtained by replacing the fourth-order derivative of w in the bi-harmonic
Equation (2.2) and solving for q .x; y/.

The same meshes used in the h- and p-refinements for the simply supported plate are used to solve
this problem. Results for the L2-norm of the approximation errors for w and its first- and second-
order partial derivatives were calculated, and the errors in the energy norm for the non-distorted
and distorted meshes are shown in Figure 25. The absolute values of the angular coefficients for the
fitted straight lines in logarithmic scale for the L2- and energy error norms for non-distorted and
distorted meshes are shown in Table IX.

As in the previous problems, the p-refinement achieved exponential convergence rates for non-
distorted meshes for the three elements. The rates are still exponential for theH5 square and triangle
for the distorted meshes, including the second-order partial derivatives. For distorted meshes, the
H5 quadrilateral element was more accurate than the other elements with better convergence rates.

The fabricated solution (6.5) is the same function used in the projection problem of Section 6.2
for D D 1. In this sense, the plate and projection problems are equivalent and the respective coef-
ficients of the approximated solutions should be the same. The projection problem does not require

Figure 25. Error in the energy norm for the clamped plate.

Table IX. Absolute values of the angular coefficients of error norms for the clamped
plate.

(a) Non-distorted meshes

Element Energy w w;x w;y w;xx w;yy w;xy
QuadH3 � h 2.11 2.19 1.61 1.61 — — 1.59
QuadH5 � h 1.51 3.06 1.67 1.66 1.94 1.94 2.49
T ri � h 1.49 1.56 1.52 1.53 1.43 1.43 1.58
QuadH3 � p 12.93 8.98 8.30 8.30 — — 8.22
QuadH5 � p 10.67 5.97 6.33 5.12 5.45 5.45 7.00
T ri � p 8.57 9.10 8.41 8.25 7.27 7.55 7.34

(b) Distorted meshes
Element Energy w w;x w;y w;xx w;yy w;xy
QuadH3 � p 0.69 0.40 0.12 0.22 — — 0.03
QuadH5 � p 10.13 7.69 7.99 8.70 7.32 7.67 7.93
T ri � p 5.32 6.15 5.23 5.02 4.57 4.64 4.29
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the application of boundary conditions because the mass matrix is positive definite and the projected
function contains information regarding its behaviour on the domain boundary. The boundary con-
ditions need to be applied for the clamped plate problem, and the transversal displacement and its
derivatives are zero on the boundary as indicated previously. However, whereas the coefficients of
the approximated solutions associated with the edge and face functions are equal for the projec-
tion and plate problems, a small difference exists in the coefficients of the vertex shape functions.
Despite the fact that the values associated with the degrees of freedom of the boundary conditions
are imposed as zero for the plate, the projection problem recovered non-zero coefficients, and they
represent optimal values for the considered approximation spaces. This explains the difference in
the convergence rates indicated in Tables VII and IX. A similar conclusion is valid for the simply
supported plate.

The a priori error estimate in the H2 norm for a smooth analytical solution is given by [28]

kekH2 D C.u/h
P�1e�bP (6.6)

where b > 0 is a constant dependent on the considered problem,
For two successive orders Pi and PiC1, the convergence rate is determined as

� D
keikH2
keiC1kH2

D
h
Pi�1
i

h
PiC1�1

iC1

e�b Pi

e�b PiC1
(6.7)

We can simplify (6.7) for h-refinement assuming that Pi D PiC1 as

� D

�
hi

hiC1

�P�1
(6.8)

For p-refinement, we have hiC1 D hi D h, and Equation (6.7) simplifies to

� D
eb

h
(6.9)

Table X gives the convergence rates calculated using Equations (6.8) and (6.9) for the h- and
p-refinements with non-distorted meshes. Because of the equivalence of the projection and plate
problems and the improved accuracy of the former, the L2-error norms for w were used. For the
H3 square and h-refinement, the largest ratio of the characteristic element sizes for two successive
meshes (hi D 2hiC1) was used. For the other elements, the average of ratios of the characteristic
element sizes calculated for two successive refinements was considered. The values of the calculated
column are the averages of the ratio of errors between two successive refinements. The values b used
in Equation (6.9) for the p-refinement correspond to the absolute value of the angular coefficients
of the fitted straight lines in logarithmic scale using the results where a greater slope exists (see the
arrows in Figure 19 that indicate the cases considered for the H3 and H5 elements and are similar
to the triangle). The convergence rates for the p-refinement in the calculated column are given
by the ratio between the first and last approximation errors for w in the projection problem. The
procedures considered allowed for comparison of the estimated convergence rates obtained from

Table X. Comparison between estimated and numerical convergence rates.

Element Equation (6.8) Calculated

QuadH3 � h 4.00 3.96
QuadH5 � h 8.07 6.79
T ri � h 16.00 12.21

Element Equation (6.9) Calculated
QuadH3 � p 2:44 � 1012 .b D 27:82/ 1:11 � 1011 .b D 24:74/

QuadH5 � p 1:78 � 108 .b D 18:30/ 3:23 � 107 .b D 16:60/

T ri � p 5:12 � 108 .b D 17:97/ 1:27 � 108 .b D 19:36/
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Equation (6.7) and those calculated using the h- and p-refinements. The rates for the three elements
in the p-refinement are exponential.

Figure 26 shows the error in energy norm for the clamped plate using hp-refinement for quadri-
lateral meshes of Figure 17(a), (b) and (c) and triangular meshes of Figure 18(a), (b) and (c). For this
problem with smooth solution, the p-refinement achieved optimal behaviour for the error decrease
in terms of the number of degrees of freedom.

6.5. Plate with singularity

Consider the L-shaped domain illustrated in Figure 27 with the given dimensions, Young’s modulus
E D 109:2 GPa, Poisson ratio � D 0:3 and thickness t D 0:01m. The external edges of the domain
are all simply supported, and a constant transversal distributed load of intensity q0 D 100 N/m2 is
applied. We will follow a similar procedure adopted in [29] for a plane strain model.

We considered five sets of meshes for the h- and p-refinements. The first set is a sequence of three
uniformly refined meshes with 1587, 11 907 and 30 000 elements and, respectively, 6720, 48 640
and 121 604 degrees of freedom used for the h-refinement with the H3 element. The coarsest mesh
is illustrated in Figure 28(a). The second set is a sequence of three refined meshes closed to the
singular point with 473, 806 and 4888 elements used for the h-refinement with the triangle. The
coarsest mesh is illustrated in Figure 28(b), and there are 12 938, 21 845 and 131 203 degrees of

Figure 26. Error in the energy norm for the clamped plate using hp-refinement.

Figure 27. L-shaped domain for the plate with singularity.
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freedom. The p-refinement with the H3 element used the mesh of Figure 28(c) with 96 elements
and 12 104 degrees of freedom for P D 12. Finally, the p-refinement with the triangle used the
mesh of Figure 28(d) and the geometrical mesh of Figure 28(e) with, respectively, 192 elements and
20 516 degrees of freedom and 60 elements and 6564 degrees of freedom for P D 12.

The reference solution for the energy norm Ur was taken for the finest mesh of the h-refinement
with the H3 element. The percentage relative errors er between Ur and the energy norms Ui
obtained with the other meshes were calculated as

er D
jUr � Ui j

Ur
� 100% (6.10)

Figure 29 illustrates the behaviour of the h- and p-refinements for the meshes of the H3 and
triangular elements. The h-refinements recovered the same errors for the meshes of squares and

Figure 28. Meshes used for the plate with singularity.

Figure 29. Error in the energy norm for the plate with singularity.
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triangles. We observe that the p-refinement achieved the same errors with less degrees of freedom
than the h-refinement. The average angular coefficients of the relative errors in logarithmic scale
for the p-refinement are 5.03 for the square mesh of Figure 28(c), 6.65 for the triangular mesh of
Figure 28(d) and 4.61 for the triangular mesh of Figure 28(e). The p-refinements worked well for
this singular problem, and the best convergence rate was obtained for the graded triangular mesh of
Figure28(d) .

6.6. Transient analysis

To evaluate the performance of the proposed elements in transient problems, we solved the
rectangular simply supported plate of Section 6.3 under sinusoidal distributed load q.x; y/ D
100.x2y2/ sin.!pT / with E D 109:2GPa, � D 0:3 and thickness t D 0:01m, where the frequency
of excitation is !p D 20Hz close to the natural frequency of the considered plate ! D 19:7Hz. In
this way, it is expected that deformed shape will change significantly, and the effect of p-refinement
on displacements and stress components can be better observed. The time interval is T D Œ0; 2� s
with 10 000 time steps for the implicit Newmark method.

We considered the same distorted meshes of the projection problem illustrated in Figures 17(a)
and 18(a) and polynomials orders 3, 5, 7 and 9 for the H3 quadrilateral and 5, 7 and 9 for the
H5 quadrilateral and triangle. The displacements and stress components of the central node and
the error in the energy norm were considered to verify the convergence. The relative errors for
displacement and stress components are calculated using the displacement and stresses obtained
with the finest regular mesh with 144 elements and P D 8. The results are presented in Figure 30
for the transversal displacement w and normal .	yy) and shear (
xy) stress components. Table XI
presents the convergence rates for the energy error norm given by the angular coefficients of the
fitted lines. We can observe that theH5 quadrilateral and triangular elements had better convergence
rates to the error in the energy norm. The results for the H3 element are worse because of the
mesh distortion.

Figure 30. Errors for displacement, stress components and energy norm for the transient plate analysis.
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Table XI. Rates of convergence
for the energy error norm for the

transient plate analysis.

Element Rate

QuadH3 0.51
QuadH5 3.95
T ri 4.18

7. CONCLUSIONS

We presented the construction ofC 1 high-order conforming finite bases applied to the solution of the
Kirchhoff plate based on the tensor product of one-dimensional polynomial bases and investigated
the convergence rates of the respective finite elements. Results for a patch test, projection, static and
transient plate problems with smooth fabricated solutions were presented. The equivalence between
the projection and plate problems was discussed, and the obtained convergence rates were compared
with the estimated theoretical rates. The analysis of h- and p-refinements for a singular plate in a
L-shaped domain was also considered.

The H3 high-order square element had high convergence rates for non-distorted meshes. For dis-
torted meshes, this element looses the global C 1 continuity, and the convergence rates deteriorated.
This element can be applied with satisfactory accuracy to solve plate problems with non-distorted
meshes. The accuracy deteriorates for distorted meshes.

TheH5 high-order quadrilateral and triangular elements also had high convergence rates for non-
distorted meshes. The rates were smaller for distorted meshes for both elements but still with good
accuracy. The H5 high-order quadrilateral had higher rates than the triangular element. Both ele-
ments recovered the second-order derivatives of the transversal displacement, and the H5 element
had the same rates for distorted and non-distorted meshes. These elements can be applied with sat-
isfactory accuracy and convergence rates to conforming approximation for problems which require
C 1 continuity with distorted and non-distorted meshes.

We highlight the simpler implementation of the proposed bases because of the tensor-based nature
compared with other plate elements in the literature. Another aspect is the exponential convergence
rates for the examples considered and the use of distorted meshes. We have extended the presented
bases for three-dimensional elements to be applied to Stokes flow problems, shell formulations and
Cahn–Hilliard equation.
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