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Abstract - In this paper a study to application of Least Squares Finite Element Method (LSFEM) is made and with 
auxiliary equations (temperature derivatives) in the solution of Transient Three-dimensional Diffusion-Reaction. In 
order to do so, two applications are presented and discussed, one of them Pure Diffusion and another Diffusion-
Reaction, both solved towards the constructive meshes with hexahedron of 8 and 27 nodes. This analysis uses the 
standard L∞ (maximum error in all meshes) and L2 (average error in all the meshes) to verify the numerical error 
committed in the solution. 
 
Key-Words - LSFEM, Diffusion, Reaction-Diffusion, Hexaedrals, Error norms. 
 
1 Introduction 
 

Most of the activities and researches’ related to 
engineering are not motivated exclusively by the 
human curiosity, but mainly by real needs which, in 
most of the cases, should be solved rapidly and 
precisely. The heat transfer has high importance in the 
engineering field and special interest in the 
knowledge of its mechanisms present in important 
equipments like; boilers, condensers, air pre-heaters, 
etc.. In refrigeration systems and air conditioning, for 
example, the heat transferring is crucial to a better 
understanding of mechanical engineering in terms of 
heat. Most of the real-physic problems are governed 
or either represented by Partial Differential Equations. 
Some mathematical methods are able to produce 
analytical solutions for physical problems, more 
precisely related to heat transfer problems (Arpaci [1], 
Bejan [2], Carslaw and Jaeger [3]). These methods are 
applied only for few problems and under a certain 
simplification. This fact brings the importance of the 
numerical methods in the heat transfer problems 
solution. For decades, the numerical methods is used 
in the solution of these problems, between the 
methods it is underlined the Method of Finite 
Differences (Smith [4]), of Finite Volumes (Chung 

[5]) and Finite Elements (Lewis [6], Donea and 
Huerta [7], Reddy [8]). In this paper is used the Finite 
Element Method in its variant of Quadratic Minimum. 
Since the beginning of 50´s, Turner [9], Clough [10], 
Argyris [11], Zienkiewicz and Cheung [12], Oden and 
Wellford [13] have used successfully the Finite 
Element Method in several branch of engineering. 

In Donea and Quartapelle [14] the Finite Element 
Method is shown to solve transient problems 
governed by linear or either non-linear equations with 
advective dominant terms. Due to several numerical 
difficulties in the simulation of permanent and 
transient problems with dominants advective terms in 
the classical problems of Galerkin, the authors made 
use of alternative methods to solve such problems. 
The first method is the General Galerkin Method, 
which supplies expressive results due to the correct 
relation between the spatial and temporal variables 
expressed by the theory of the characteristics. The 
authors also refers to discretization with time, among 
them, as a solution. The Explicit Method of Euler 
does not provide good results when the problems are 
handled with non structured meshes in the finite 
element method. However, when methods based on 
the Series of Taylor with time are used, the Taylor-
Galerkin has present significative advantages. Among 
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them, a simple implementation and precision or third 
order in non-linear problems is present. To finalize, 
the Method of Least Squares presents the simplicity 
of the Taylor-Galerkin Method and the unconditional 
stability of the Method of Characteristics, however, 
its precision is jeopardized for the numbers of 
Courant higher than the unity.  

Winterscheidt and Surana [15] showed a p-version 
of LSFEM to the two-dimensional convection-
diffusion equation. The differential equation of 
second order which governs the convective-diffusive 
problem is reduced for a system of differential 
equations of first order. For this, the formulation of 
least squares is built and uses the same approximation 
order and for each dependable variable. At this article 
the authors made use of the Quadrature Rule of Gauss 
to calculate the numerical values of elements of 
matrixes and vectors. One of the advantages shown is 
the use of the rule of accurate integration, which 
generates functional much lower errors when 
compared to the rule of reduced integration.  

It is important to highlight the work done by Burrel 
[16], where the authors presented the numerical 
solution via LSFEM in a case of advective transport 
of a pollutant in a one-dimensional domain. Making 
use of the Cranck-Nicolson Method formulation for 
temporal discretization, the authors compare the 
results obtained by LSFEM with the Galerkin 
Method, obtaining good results, mainly when using 
interpolation of forth order, fact described as 
fundamental by the authors. Howle [17] makes a 
study of computational efficiency of two numerical 
methods, based on the Galerkin/Finite Differences: 
Reduced Galerkin and Pseudo-Spectral in the solution 
of a problem of convection in permanent regime of 
Rayleigh-Bénard. The author, after showing the 
formulation in both methods, presented a numerical 
test where the Pseudo-Spectral uses a higher number 
of interactions than the Reduced Galerkin to converge 
the solution. 

Bramble [18], introduce and analyze two Least 
Squares Methods for elliptic differential equations of 
second order in mixed boundary conditions. The main 
difference between the methods is the usage or not of 
an additional variable in the heat flux. The authors 
analyzed the convergence in two solutions, one soft 
and another singular, showing tables and comparing 
the mesh refinements, a discrete error L2 and the 
Norm of maximum error. This example is solved 
without any additional variable.  

Codina [19] compares several methods for the 
solution of diffusion-convection-reaction equation. 
Among them, the author showed that the Classical 
Method of Streamline Upwind Petrov-Galerkin 
(SUPG) is similar to the explicit version of Galerkin 
Characteristic (GC), and the Taylor-Galerkin (TG). 
This last has a similar effect of stabilization of the 
Sub-Mesh Scale (SGS); finally the author develops 
the Galerkin/Least Squares. After describing the basic 
concepts and the formulations of the cited methods 
and realize some numerical tests, the author makes a 
comparison among the methods and reaches 
interesting conclusions, like the Petrov-Galerkin who 
could generate a modification in the mass-matrix 
associated with the original Galerkin Method, making 
it non-symmetric, once the discretization with time is 
applied in the residual R. The same occurs with the 
Galerkin/Least Squares.  

Vujicic e Brown [20] showed a numerical solution 
for a tridimensional transient heat conduction case, 
for which several discretization methods are tested, 
among them, the feature β-method where the β value 
is assumed as 0; 0.5; 0.75 and 1, beyond the Least 
Squares Method (LSM). In the spatial discretization 
by the finite element method, hexahedron linear 
elements are used (8 nodes) and quadratic (20 nodes), 
where comparison between the meshes with 1,000, 
8,000, 27,000, 64,000 e 125,000 are made. Relevant 
results are reached and presented at this article, but 
the author did not compare the results with the 
analytical solution or either with the results obtained 
by other authors found in literature.  Catabriga [21] 
present a numerical solution of problems of linear and 
non-linear convection-diffusion one –directional both 
in permanent regime. Despite the authors make use at 
this paper of finite element method as well as the 
finite differences for spatial discretization; the main 
focus is the method of solution for the linear system 
of spatial discretization. The main proposal is the use 
of LCD (left conjugate direction method), where, in 
order to validate the method, a comparison is made 
within the known GMRES (Generalized Minimal 
Residual). The authors conclude that the utilization of 
the GMRES the finite element method brings a “faster 
solution” while the LCD present itself faster when 
gathered with the finite differences method. Still in 
this year, Dag [22] showed a numerical solution of 
one-directional convection-diffusion transient by the 
LSFEM using interpolation functions and quadratics 
(B-spline). To validate the numerical results, the 
authors used the norm L2 and norm L∞ to compare 
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with the analytical solution. How might be expected, 
the numerical results were better when using the 
quadratic interpolation functions, however the authors 
did not compare the precision/time in order to have an 
exact notion of which way is more advisable, linear or 
quadratic interpolation function.  

Asensio [23] studied the transient one-directional 
advection- diffusion- reaction; the authors used the 
Crank-Nicolson Methods for the temporal 
discretization, while for the spatial discretization 
some schemes of finite element are used, among them 
Streamline-Upwind Petrov-Galerkin (SUPG), DWG 
Method (initially proposed by  Douglas e Wang, 
1989), the Galerkin-Least Squares (GLS) and 
underlined the strategy used by Link-Cutting Bubble 
(LCB). The authors also showed applications of 
advection- diffusion – reaction and pollutant 
dispersion 1D. The methods bring good results for 
refined meshes with special highlight for LCB, which 
in general presents better results. In Si [24] the 
authors made use of semi-discrete finite element 
method using the element P1 to solve numerically 
problems of transient one-directional convection-
diffusion; the obtained results are compared with the 
analytical solution and with the finite difference 
streamline diffusion method. Expressive results were 
obtained, even when more convective problems were 
treated. In this case, the authors tested some values to 
the term conductivity, keeping fixed and unitary the 
constant which follows the convective term. In 
Hannukainen [25] the authors presented an 
application of a scheme of finite elements with super 
convergence of 4th order to solve a problem of 
tridimensional diffusion in permanent regime. Two 
applications are shown where the maximum error is 
found in some mesh refinements. The analysis of 
maximum error committed is possible due to the fact 
the two cases have analytical solutions. Beyond of 
having the analysis in conforming to some types of 
refinements, the authors also analyzed the refinements 
realized, since certain types of elements, cube, 
tetrahedron and prism (this latter presents the better 
results) applied for all the refinements proposed in 
this paper. This paper aims to apply the Finite 
Element Method (LSFEM) with three auxiliary 
equations in the numerical solution of tridimensional 
diffusive-reactive phenomena in transient regime. In 
underline is LSFEM with three auxiliary equations 
which provide none only the numerical solution for 
temperature, T, how also the three partial derivatives. 
This proposal aims to enhance the literature mainly in 

terms of the LSFEM application, which, how was 
demonstrated in the introduction (bibliography) is still 
too much to come. 
  
2 Model Equation 
 

It is introduced here a numerical study of partial 
differential equation that models the phenomenon 
tridimensional diffusive-reactive transient and 
generic, defined in the domain 3ℜ⊂Ω⊗Ξ=Θ , 

ℜ⊂Ξ ,  3ℜ⊂Ω , for which Ξ  e Ω  are limited 
domains and closed, described as, 
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3 Formulation of LSFEM 
 

The application of the LSFEM for tridimensional 
phenomena uses the sum of three auxiliary equations, 
generating a system of four partial differentials with 
four unknowns, defined as follow, 
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First, doing the discretization in time the equations 

(2-5), and making use of approximate equations of  T, 
xq , yq  e zq , respectively, by the equations T~ , xq~ , 

yq~  e zq~  at the following way, 
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In Eq. 6 was utilized the Cranck-Nicolson [8] for the 

temporal discretization. Now, some spatial 
approximations are done for each element of the 
functionsT~ , xq~ , yq~  e zq~ by the functions eT̂ , e

xq̂ , 
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zq̂ , at the following way, 
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for any step on time and with Nnodes being the 
number of nodes for each element. After defined the 
spatial approximations it is possible to write the 
residual equations for (6-9) as ahead (below, will be 
adopted R1 = R1(x,y,z),  R2 = R2(x,y,z), R3 = R3(x,y,z), 
R4 = R4(x,y,z)),  
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Once this problem is composed for four equations, 

the functions are defined at the following manner [26], 
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with the following properties undependable of time,  
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Substituting the Eqs. (23-26) and (27-42) into Eq. 
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Reorganizing the previous equation, it is seen, 
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In order to satisfy the Equation (43) it is required 
simultaneously, 
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not identically nulls in all the domain. 
The Eqs. (55-58) generate the follow linear system, 
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Once the variables seT ,ˆ , se
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already known from the previous step on time “ s ”, 
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for which, 
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In order to use the Quadrature of Gauss-Legendre to 

calculate the integrals in the coefficients of the linear 
system described in (60), the transformations from 
global coordinates to local coordinates are required    
( ξ→x , η→y , ζ→z ), and more details about the 
transformations can be found in [27].  
 
4 Numerical Applications 
 

All formulations shown in this paper were 
implemented in a computational code written in 
FORTRAN. To solve the linear system (60) is used a 
routine DL2LXG of IMSL FORTRAN. Thus, only 
the coefficients non null in the linear system (60) 
were stored. For the two proposed applications is 
adopted the following analytical solution,  
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To evaluate the error committed in the numerical 

solution, two Norms were adopted; norm L∞ which 
represents the maximum error committed in all the 
mesh found by the higher value calculated by the 
expression   |||||| num
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the mesh and can be calculated by the expression; 
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Application 1 – Diffusion Equation. For this case, 
the following equation is adopted as model, 
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in a domain of unity cube. 
To analyze the results of this application, it was 

taken as the main factor for comparison the usage of 
hexahedron elements with 8 or 27 nodes and the 
quantity of nodes in all the mesh. Thereby, the 
numerical value of h, which in this application and 
others is adopted as h = ∆x = ∆y = ∆z, was analyzed 

in such way to generate situations with the same total 
number of nodes in all mesh for both 8 and 27 nodes. 
For instance, in a situation where h = 1/6 (8 nodes) 
and h = 1/3 (27 nodes) in both cases the mesh has 343 
nodes. 

From this proposal it is expected a comparison of 
results of the two hexahedron adopted at this paper, 
the most conclusive possible, once at this way, 
situations with global matrixes with same size and 
with the same freedom degrees in all domain will be 
present.   

In Tables 1 and 2 are shown the results from the two 
proposed norms in the analysis of error to the solution 
of the variable T. In those is noted better numerical 
results for two temporal refinements adopted (∆t = 0.1 
e ∆t = 0.01) with hexahedron of 8 nodes. On the other 
hand, for the solution of the variables Tx, Ty e Tz 
(Tables 3 e 4), which at this paper presented very 
similar results in a point of being considered equals. 
The hexahedron with 27 nodes showed the best 
results, reaching situations where the precision order 
is higher than the hexahedron of 8 nodes (for 
example, case h = 1/7 e ∆t = 0.01). It should be also 
underlined that for the temporal refinement ∆t = 0.1 
the proposed spatial refinement presented few 
enhanced in precision for two hexahedrons. 

 
 

Table 1. Norm L∞ of error committed in T by LSFEM in t = 1. 
NNost 8 nodes 27 nodes 

h ∆t = 0.1 ∆t = 0.01 h ∆t = 0.1 ∆t = 0.01 
343 1/6 3.10E-03 5.64E-03 1/3 5.33E-03 1.60E-02 
729 1/8 3.35E-03 2.74E-03 1/4 4.17E-03 6.29E-03 

1331 1/10 3.53E-03 1.48E-03 1/5 4.13E-03 2.92E-03 
2197 1/12 3.65E-03 9.47E-04 1/6 3.93E-03 1.53E-03 
3375 1/14 3.73E-03 6.98E-04 1/7 4.00E-03 8.78E-04 

 
 
 

Table 2. Norm L2 of error committed in T by LSFEM in t = 1. 
NNost 8 nodes 27 nodes 

h ∆t = 0.1 ∆t = 0.01 h ∆t = 0.1 ∆t = 0.01 
343 1/6 1.13E-03 1.14E-03 1/3 1.76E-03 4.64E-03 
729 1/8 1.38E-03 6.51E-04 1/4 1.67E-03 1.94E-03 

1331 1/10 1.52E-03 4.18E-04 1/5 1.70E-03 9.20E-04 
2197 1/12 1.61E-03 2.91E-04 1/6 1.73E-03 4.83E-04 
3375 1/14 1.67E-03 2.15E-04 1/7 1.75E-03 2.75E-04 
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Table 3. Norm L∞ of error committed in Tx ≅ Ty ≅ Tz by LSFEM in t = 1. 
NNost 8 nodes 27 nodes 

h ∆t = 0.1 ∆t = 0.01 h ∆t = 0.1 ∆t = 0.01 
343 1/6 1.23E-03 1.59E-03 1/3 6.88E-04 6.06E-04 
729 1/8 4.87E-04 7.58E-04 1/4 5.50E-04 2.78E-04 

1331 1/10 2.06E-04 4.18E-04 1/5 5.23E-04 1.27E-04 
2197 1/12 2.56E-04 2.63E-04 1/6 5.16E-04 7.17E-05 
3375 1/14 3.17E-04 1.94E-04 1/7 5.06E-04 4.78E-05 

 
Table 4. Norm L2 of error committed in x ≅ Ty ≅ Tz by LSFEM in t = 1. 

NNost 8 nodes 27 nodes 
h ∆t = 0.1 ∆t = 0.01 h ∆t = 0.1 ∆t = 0.01 

343 1/6 4.10E-04 5.55E-04 1/3 2.81E-04 1.76E-04 
729 1/8 1.49E-04 3.20E-04 1/4 2.69E-04 7.19E-05 

1331 1/10 8.58E-05 2.07E-04 1/5 2.70E-04 3.47E-05 
2197 1/12 1.24E-04 1.45E-04 1/6 2.74E-04 1.95E-05 
3375 1/14 1.63E-04 1.06E-04 1/7 2.77E-04 1.23E-05 

 
 
 

From Tables 1 to 4, in general was fixed two 
refinements in time and changed some spatial 
refinements.  

On the other hand, in the Figures 1 and 2 were 
fixed two spatial refinements and changed the steps 
from 10 to 100 in time; in order to analyze till 
when would be advantageous refine in time for a 
determined spatial refinement. It is noted in Figure 
1 that the numerical results for the solution of T are 
better for h = 1/10 with a hexahedron with 8 nodes, 

and more, at this the refinement reached of 30 steps 
in time showed advantageous; from that point on 
the results worsen. Now the Figure 2, the best 
results in the derivatives solution occurs in h=1/5 
in a hexahedron with 27 nodes, where is also 
advantageous to refine the mesh till 30 steps in 
time. It is important underline that by the Figure 2 
it is noted for hexahedron with 8 nodes, being to h 
= 1/8 as also for h = 1/10, the temporal refinement, 
at this case is always damaging. 

 
 
 

 
Fig. 1 Norm L∞ of error committed changing the number of steps in time for temperature solution . 
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Fig. 2 Norm L∞ of error committed changing the number of steps in time for the solution of first derivatives of 

temperature. 
 
 
Application 2 – Reaction-Diffusion Equation. 
For this case the following equation is adopted as a 
model; 

t
TT

z
T

y
T

x
T

∂
∂

=−
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

222  

in an unity domain. 
From Table 5 to 8 it is noted that for the case of 

diffusive-reactive the usage of hexahedron with 8 
and 27 nodes presented superior results with 
meshes relatively coarse, and more, in a general 

view, on both proposed hexahedron. The precision 
order was the same, demonstrating that whether the 
focus is the numerical precision, being hexahedron 
with 8 or 27 nodes the results are equivalent and 
considered good. Thus, per the application 1, for   
∆t = 0.1, the numerical results of temperature few 
enhance with the spatial refinement, but for the 
derivatives the hexahedron with 8 nodes shows a 
slight improvement. 
  

 
 

Table 5. Norm L∞ of error committed in T by LSFEM in t = 1. 
NNost 8 nodes 27 nodes 

h ∆t = 0.1 ∆t = 0.01 h ∆t = 0.1 ∆t = 0.01 
343 1/6 4.27E-03 1.52E-02 1/3 6.45E-03 3.57E-02 
729 1/8 3.79E-03 7.20E-03 1/4 4.55E-03 1.32E-02 

1331 1/10 3.72E-03 4.35E-03 1/5 4.28E-03 6.14E-03 
2197 1/12 3.73E-03 2.98E-03 1/6 3.97E-03 3.17E-03 
3375 1/14 3.76E-03 2.13E-03 1/7 4.04E-03 1.75E-03 

 
Table 6. Norm L2 of error committed in T by LSFEM in t = 1. 

NNost 8 nodes 27 nodes 
h ∆t = 0.1 ∆t = 0.01 h ∆t = 0.1 ∆t = 0.01 

343 1/6 1.23E-03 3.45E-03 1/3 1.95E-03 9.47E-03 
729 1/8 1.35E-03 2.05E-03 1/4 1.63E-03 4.02E-03 

1331 1/10 1.47E-03 1.35E-03 1/5 1.63E-03 1.92E-03 
2197 1/12 1.54E-03 9.56E-04 1/6 1.66E-03 1.01E-03 
3375 1/14 1.60E-03 7.12E-04 1/7 1.69E-03 5.80E-04 
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Table 7. Norm L∞ of error committed in Tx ≅ Ty ≅ Tz by LSFEM in t = 1. 
NNost 8 nodes 27 nodes 

h ∆t = 0.1 ∆t = 0.01 h ∆t = 0.1 ∆t = 0.01 
343 1/6 1.58E-03 2.30E-03 1/3 3.52E-04 6.26E-04 
729 1/8 7.21E-04 1.27E-03 1/4 3.61E-04 3.77E-04 

1331 1/10 3.55E-04 8.13E-04 1/5 3.45E-04 1.98E-04 
2197 1/12 1.68E-04 5.53E-04 1/6 3.51E-04 1.06E-04 
3375 1/14 7.53E-05 4.55E-04 1/7 3.53E-04 5.87E-05 

 
Table 8. Norm L2 of error committed in Tx ≅ Ty ≅ Tz by LSFEM in t = 1. 

NNost 8 nodes 27 nodes 
h ∆t = 0.1 ∆t = 0.01 h ∆t = 0.1 ∆t = 0.01 

343 1/6 6.65E-04 1.02E-03 1/3 1.15E-04 2.00E-04 
729 1/8 3.33E-04 6.14E-04 1/4 1.37E-04 8.61E-05 

1331 1/10 1.67E-04 4.07E-04 1/5 1.46E-04 4.05E-05 
2197 1/12 7.50E-05 2.88E-04 1/6 1.50E-04 2.11E-05 
3375 1/14 2.67E-05 2.14E-04 1/7 1.53E-04 1.19E-05 

 
On the other hand, in Figures 3 and 4 with the 

temporal refinement for two spatial refinements, it 
is noted that as the solution of T as its derivatives, 
the case h = 1/6 with 27 nodes presents the best 
results and again around 30 steps in time, it means 

it is not necessary higher refinements in time for 
this h. 
  
 

 
 

 
Fig. 3 Norm L∞ of error committed changing the number of steps in time for the temperature solution. 
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Fig. 4 Norm L∞ of error committed changing the number of steps in time for the solution of first derivatives of 
temperature. 
 
 
5 Conclusions 
 

The LSFEM showed very efficient in the 
solution of unsteady tridimensional diffusive-
reactive problems. The auxiliary equations 
create an advantage in obtain the derivative of 
temperature in three spatial directions at the 
same order of precision than the numerical 
solution of T. It would not happen whether it 
was necessary a routine which calculated the 
derivatives from only the results obtained of 
temperature. In heat transfer problem is true 
that the unique variable is the temperature, and 
other three are inserted (the derivatives). It is 
the same as insert three new freedom degrees in 
the problem, but the numerical efficiency 
compensate the cost (see [28-31] what happens 
with the Galerkin method in terms of calculus 
of derivatives). To the same number of nodes 
in the mesh it is important to mention that the 
use of 8 or 27 nodes result in equivalent results. 
For real problems of diffusion-reaction it is 
advisable the use of hexahedron with 8 nodes, 
once the matrix of the element for this case is 
of order 32, while to the hexahedron with 27 
nodes is of order 108. It means that, despite of 
the comparison of two hexahedrons in global 
matrix presents equivalent results; the quantity 
of coefficients non nulls in a global matrix is 
lower in cases with hexahedron with 8 nodes. 

The cost of storage within a computational 
time, are both smaller than the hexahedron with 
27 nodes. 
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