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Abstract - In this study, a computational code has been developed based into Finite Elements Method in the version of LSFEM 
(Least Squares Finite Element Method). The numeric development of this method has as a main advantage, the obtaining of an 
always symmetrical and defined positive algebraic system, independently of the considered partial-differential equation system. 
The computational code was applied in the solution of two-dimensional and three-dimensional convection-diffusion problems, 
through domain discretization of structured meshes of quadratic elements. Obtained numerical results showed a good concordance 
with available results, showing the developed model validity. 
 
Keywords - Finite Element Method, Least Squares, Convection, Diffusion, Peclet number, Conjugate Gradient Method. 
 

1 Introduction 
 

Fluid flow calculations are important to both man and 
nature. Such flows are mathematically modeled by 
Navier-Stokes equations, which are nonlinear partial-
differential equations and, therefore, of difficult analytical 
solution, except in very much simplified cases. 

In view of nonlinearities and geometric complications 
found in real problems, solutions of the Navier-Stokes 
equatio, in their complete form, are only possible by 
means of numerical methods.  

The Finite Element Method has its mathematical basis 
on the weighted residual methods (WRM), which gives 
origin to its several formulations: Galerkin-Bubnov, 
Petrov-Galerkin, Collocation, Subdomain and Least 
Squares. These formulations result from the chice of the 
weight function in the internal product of this by residue 
in the variational or integral formulation of the method. 

The current literature on the Finite Element Method is 
broad, highlighted on [1-4] text-books. [4] presents in 
details a formulation of the Least Squares Finite Element 
Method (LSFEM – Least Squares Finite Element 
Method) for computational fluids dynamics and 
electromagnetism. 

Least Squares Finite Element Method (LSFEM) is a 
method that has been investigated for fluid flow 
simulation, and according to Jiang, for example, does not 
require utilization of “upwind” techniques. Upwind 
techniques have difficult implementation in 
multidimensional problems.   

Although p refinement version is a way of reducing 
some of LSFEM defects, it was opted by adopting h 
refinement of mesh with quadratic elements with 
lagrangian functions, in order to verify the result quality 
of these elements at Least Squares version, because they 
are elements that have already been used by the research 
group in other applications of the Finite Element Method. 
[5] showed a formulation of Least Squares Finite Element 
Method with p refinement for Convection-Diffusion 
equation solution. The second order differential equation, 
describing the Convection-Diffusion problem is 
transformed in a equivalent set of first order differential 
equations, in which the Least Squares formulation is 
constructed using the same order approximation to each 
dependent variable. The functions of hierarchical 
approximation and the nodal variable operator are 
established by the construction of function of 
unidimensional hierarchical approximation of order pξ  and pη in directions ξ and η. Bidimensional polynomials 
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are constructed by the product of unidimensional 
polynomials. Numerical results were showed and 
compared with numerical and analytical solutions in a 
bidimensional test problem for demonstrating the 
precision of convergence characteristics in this 
formulation. 

[6] presented a formulation of Finite Element with p 
refinement for a nonlinear problem of incompressible, 
bidimensional and permanent fluid flow. The 
Navier-Stokes equations were modeled as equations of 
first order, involving viscosity and shear stresses as 
auxiliary variables. Both auxiliary and primitive variables 
were interpolated using C0

 continuity and of equal order. 
Least Squares error functional is constructed using a 
system of partial-differential equations of first order, 
coupled without linearization, approximations and other 
suppositions. Numerical examples were showed to 
demonstrate convergence and precision characteristic of 
this method. 

[7] have utilized Least Squares method for 
approximated solution for Stokes’s equation which results 
in a pression-velocity-vorticity system of first order. 
Among the most attractive characteristics of applied 
methods is that they result in a symmetrical and defined-
positive system of algebraic equations. 

[8] showed a Least Squares Finite Elements 
formulation with p refinement for a bidimensional non-
permanent fluid flow described by Navier-Stokes 
equations from where space and time effects are coupled. 
Element proprieties are derived using p refinement, 
approximation functions in space and time, by 
minimizing the functional formed by integration of sum 
of square errors. A time step procedure is developed in 
the way solution stops at the current time step and 
provides initial conditions for the next step. Coupled 
equations in space-time of p-version approximation 
provide ability for truncation error that, in turn, allows 
very large steps of time. What is literally required by the 
hundreds of time steps in conventional uncoupled 
procedures can be performed at a single time step, using 
the current space-time of coupled approximation. Results 
were compared with analytical solutions and those 
reported by the literature. The showed formulation is 
ideal for adaptable space-time procedures. Element error 
functional values provide a mechanism for h, p or h-p 
refinement.  

[9] show an implementation of a p tridimensional 
version for structural solid problems with almost 
arbitrarily curved surfaces. Applying the method of 
function mixture, complex structures can be modeled 

frequently by some p elements, being the basic for a 
higher order approximation.  

[10] made applications with Least Squares Finite 
Elements method combined with spectral / hp methods 
for numerical problem solutions of viscous fluid flow. 
The study shows an hp spectral algorithm formulation, 
validation and application for a numerical solution of bi 
and tridimensional Navier-Stokes equations for 
incompressible stationary flows and low-speed 
compressible flow. The Navier-Stokes equations are 
expressed as a set of equations of first order through 
introduction of vorticity and velocity gradients as 
independent additional variables. Expansions in high 
order element are used to build the discreet model. The 
discreet model is obtained by Newton’s method 
linearization, resulting a linear system of equation with a 
symmetrical and defined positive coefficient matrix, 
which is solved by preconditioned conjugate gradient 
method. Functional convergence of Least Squares method 
and rule error are verified by means of solutions of 
stationary bidimensional Poisson’s equation and 
incompressible Navier-Stokes equations. Numerical 
results for permanent flow on a circular cylinder, 
tridimensional flow in a cubical cavity, and a 
compressible flow with natural convection in a cavity are 
presented to demonstrate predictive capacity and strength 
of the proposed formulation. Finally, numerical results for 
flow in a lid-driven cavity are presented to demonstrate 
the effectiveness of iterative procedure in the Least 
Squares Finite Elements method.  
In [11], the Navier-Stokes equations for flowing in an 
airplane are reformulated as a system of first order 
depending on tension and streamfunction. Solutions of 
this system are obtained by LSFEM. A characteristic of 
this approach is that, after system linearization, the 
algebraic problem will be symmetrical and defined 
positive in each Newton’s iteration. Care as for 
incompressibility treatment is necessary to guarantee 
good results.  

 
2 Mathematical Model for Tridimensional 
Convective-Diffusive Problems 
 

Initially consider the Energy equation in the form [5],  
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              (1) 
where T is the temperature field; u, v and w are the 
components of the velocity field; ρ  is the density; pc  
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is the specific heat at constant pressure; k is the 
thermal conductivity.  

The equation (1) can be rewritten, as 

+
∂
∂

+
∂
∂

y
Tcv

x
Tcu pp ρρ  

                        0
ˆ
=
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+
∂

∂
+

∂
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z
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y
q

x
q

z
Tcw wyx

pρ  (2) 

The components of heat flux are given by the 
Fourier´s law: 

0=
∂
∂

+
x
Tkqx              (3) 

0=
∂
∂

+
y
Tkqy               (4) 

0=
∂
∂

+
z
Tkqz              (5) 

 
3 Least Squares Finite Elements Method 
 

Equation (2) to (5) constitutes a system of first order 
partial differential equations. With  , ,h h h h

x y zT q q e q  as 
Finite Elements approximations for the true 
solutions ( ), , ,x y zT q q q , it is possible to define the 
following residues or errors for approximated solutions 
within an element, so equations (2) to (5) are rewritten for 
the approximant variables in dimensionless form, 
including a transient term, as: 
 

    1
1

h h h h

hh h
yx z

T T T Tu v w
t x y z

qq q E
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4
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Tq E
z

∂
− =
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where 1E , 2E , 3E  and 4E  are the errors and the index h  
represents the element size.  

The formulation of Least Squares Finite Elements can 
be seen as a variational approximation, in the sense that a 
functional minimizing is searched. In this way, it is 
defined the following functional for an element 
 

 
( ), , ,e h h h h

x y zI F T q q q d
Ω

= Ω∫ 

                     
(10) 

 
In the case of a single differential equation written in a 

compact form as fAT = ; the function inside the 
integral is 2F E= , where EfAT h =− . For a system 
of N  differential equations, F  is taken as a sum of 

squared errors, that is, 2

1

N

i
i

F E
=

=∑ , so the global 

functional in the whole domain will be given by the 
expression 
 

 1

NE

e

e

I I
=

=∑
                                                      

(11) 
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= Ω

dEI
N

i
i

e

e1

2

                                             
(12) 

 
If the vector of unknowns is defined by the expression: 

 

 { } { } { } { } { }, , ,
TT T T T

x y zT q q qδ  =                
(13) 

 
the minimization of functional in Equation (12) requires 
that  
 

 
{ } { }

3

1

0
e

e i
i

i

I E E d
δ δΩ=

∂ ∂
= Ω =

∂ ∂∑∫
                    

(14) 

 
Equation (12) is the functional form when each residue 

is individually considered. In the context of Finite 
Elements, variables are interpolated in the element by 
expressions: 

 

 [ ]{ }hT N T=                                                    (15) 
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 [ ]{ }h
x xq N q=                                                    (16) 

 

 [ ]{ }h
y yq N q=

                                                   
(17) 

 

 [ ]{ }h
z zq N q=                                                    (18) 

 
where [ ]N  is the matrix of interpolation functions 

and{ }T , { }xq , { }yq  and{ }zq  are the nodal variables for 

, , andh h h h
x y zT q q q , respectively. 

Equations (6) to (9) constitute a nonlinear problem of 
initial and boundary values, which after time 
discretization, following [4], can be written as:  

 ( )
1 1* *

n n
A f

t
ϕ θ ϕ

+
+

 + = ∆                                 
(19) 

where 

*
1 2 3 4( )

n
n

A A A A A
x y z
ϕ ϕ ϕϕ ϕ

 ∂ ∂ ∂  = + + +   ∂ ∂ ∂         (20) 

 ( ) ( )* *1
n n

f A f
t

ϕ θ ϕ = − − + ∆                      
(21) 

where θ is a parameter that represents the time 
discretization scheme, since an explicit method until a 
totally implicit method and n indicates time step. 
Following [2]:      
 

21
2

22
3
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= ∆

∆
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






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Equation (19) can be rewritten in a compact form as 

 ( ) 0A fϕ − =                                                    (22) 

where , , ,T
x y zT q q qϕ  =    are the variables and A is a 

differential operator defined as  
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with the coeffients Ai defined as follow: 
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The source term in Equation (22) is defined as 

 
*0 (1 ) ( )n nAf A

t
ϕ θ ϕ= − −

∆                        (29) 
 

If eφ  is an approximated solution for φ inside an 
element, it is possible to get  an alternative formulation by 
defining a residual vector R  from Eq. (21) as 
 

 ( )eR A fϕ= −                                                   (30) 
 

For applying the Least Squares Finite Element method, 
it is defined a functional at an element as follows: 
 

 e

e TI R Rd
Ω

= ⋅ Ω∫                                             (31) 
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Similar to the functional minimizing defined in Eq. 
(12), by considering the Equation (31) we also have 
 
 0eIδ = ;                                                            (32) 
 
it resulting, then  
 

 
0

e

TR Rdδ
Ω

⋅ Ω =∫                                            (33) 
 
in which the first variation of residue is defined from the 
Equation (30) as 
  

( )R Aδ δϕ=                                                      (34) 
 

Substituting Equations (30) and (34) into Eq. (33), it is 
obtained  
 

 
( ) ( ) 0

e

T e e eA A f dδϕ ϕ
Ω

 − Ω = ∫                  (35) 
 
 The vector of unknowns is interpolated in the form: 
  

 
[ ]{ }e Nϕ = Φ                                                     (36) 

 
and therefore, the variation of eϕ  is: 
 

 [ ]{ }e Nδϕ δ= Φ                                                 (37) 
 
[ ]N  and { }Φ  are the matrix of interpolation functions 
and the nodal vector of unknowns.  

If an element is defined by Nn nodal points with ndof 
degrees of freedom per node, Equation (36) can also be 
rewritten as: 
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Using Equations (36) and (37), Equation (35) can be 
rewritten as    
 

{ }( )( ) ( ) 0
e

T eA N A N f dδ
Ω

 Φ Φ − Ω = ∫ .            (39) 
 

For Φδ  arbitrary and different from zero, Eq (39) is 
rewritten in the form:   

{ } { }( ) ( ) ( )
e e

T TA N A N d A N f d
Ω Ω

Ω Φ = Ω∫ ∫           (40) 
 

Adding collectively the contribution of all elements, the 
following system of algebraic equations is obtained 
 
 K FΦ =                                                             (41) 
 
where K is the global matrix of the coefficients, Φ is the 
vector of unknowns and F is the vector source-terms.  

The matrix K and the vector of source-terms are 
obtained from the assembling for all elements, that is, 
  

 1

Nelem

e

e

K K
=

=∑
  ;  1

Nelem

e

e

F F
=

=∑
                          (42) 

 
in which 
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e
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Ω
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{ }( )

e

e TF A N f d
Ω
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and by substitution of 1 2 3 4, , , ,oA A A A A  in the Equation 
(22), A( N )  can be defined as a matrix: 
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a a a a
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 
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with coefficients 
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θ
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 22 33 44 ia a a N= = =                                           (46) 
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From the Equation (28) and the Ai´s matrices, it is 
obtained the source-term in the formula: 
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In the case of LSFEM, the coefficient matrix, 

independently of the differential operator, is always 
symmetric and defined positive; therefore, each matrix 
element is: 

 

 
( ) ( )

( ) ( )
e

e

e
ji j i

e
i j ij

K A N A N d

A N A N d K

Ω

Ω

= Ω
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and 
  

 
( )2( ) 0

e

e
ii iK A N d

Ω

= Ω >∫                              (56) 
 

The prediconditioned conjugate gradient method is well 
appropriated for solutions of linear systems with the 
characteristics fo those originated from LSFEM.  
 
4 Conjugate Gradient Method with 
Preconditioner Element by Element 
(PCG-EBE) 
 

By using a PCG-EBE, we can avoid the assembling of 
the global matrix in Eq. (41). And by considering the 
large sparsity of the matrix, we can save computational 
time and storage of data. The PCG used for solution of 
the algebraic system in this work was presented by [12]. 
The main steps are outlined bellow. Conjugate Gradient 
methods (CGM) can be implemented as follows. 
Consider a global system in the symbolic form: 
 

 K U Fαβ β α=                                                       (57) 
 

Now the matrix Kαβ  can be decomposed into a 
diagonal matrix plus an off-diagonal matrix in the form:  

  

 K D Nαβ αβ αβ= +                                               (58) 
 
so, the system (57) can be rewritten as 
 

 ( )D N U Fαβ αβ β α+ =
                                    (59) 

 
The system (59) can be used to generate a recurrence 

relation for finding the unknowns, that is, 
 

 
1r r rD U F N Uαβ β α αβ β
+ ≅ −                                    (60) 

 
Subtracting rD Uαβ β  term from both sides of Equation 

(60) sides, ones obtians 
 

 ( ) ( )1r r r rD U U F D N Uαβ β β α αβ αβ β
+ − ≅ − +

       (61) 
 

that can be solved for 1rUα
+ , resulting in 
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 ( )1 1r r r rU U D F Fα α αβ β β
+ −= − −

                             (62) 
 
The vector Fα  is built from the assembly or   union of 

all fα  vectors of elements in the form 

( )
1

E
r r r

n n
e

F D N U K U fUα αβ αβ β αβ β αδ
=

= + = =
            (63a) 

with 
 

 
e e

n nm mf k u=                                                       (63b) 
 

 
1 if the local node is at global node 
0 if the contrary occurs.na

α
δ


= 


 

                                                                                    (63c) 
 

By means of the equation (62), it is verified that the 
diagonal matrix play the role of preconditioner, while by 
Equations (63) procedure the global matrix assembly is 
avoided, once the operations are performed element by 
element for the construction of global vector, according to 
the element connectivity. EBE scheme can be 
incorporated to CGM, leading to the following solution 
procedure: 
 
1. Assume an initial value for rUα ; 

2. Calculate the residue rEα  as 
r rE F K U F Fα α αβ β α α= − = −                (64a) 

with 

1

E
r

n n
e

F fUα αδ
=

=
                                    (64b) 

and 
e e

n nm mf k u=                                                                  (64c) 
3. Define an auxiliary variable rPα :  

 
r rP Eα α=                                                           (65) 

4. Calculate the residue in the iteration r: 

  1

E
r r

n n
e

E K P HUα αβ β αδ
=

= =
                               (66a) 

with 
 

 
e r

n nm mH k P=                                                      (66b) 
 
5.  Calculate the correction factor ra : 

 

r r
r

r r
E Pa
E P
α α

β β

=
                                                (67) 

6. Calculate the solution at iteration 1r + : 
1r r r rU U a Pα α α
+ = +                         (68) 

7. Calculate the residue in iteration 1r + : 
1r r r r

aE E a Eα α
+ = −                          (69) 

8. Calculate the correction factor, 
1rb +
:  

1 1
1

r r
r

r r
E Eb

E E
α α

β β

+ +
+ =

                         (70) 
9. Calculate an auxiliary variable: 1 1 1r r r rP E b Pα α α

+ + += +                                      (71) 
10. Go back to the step 4, and repeat untill convergence, 
that is, when the residue, rEα  , satisfies a given tolerance.  
 
5 Results for a 2D Convective-Diffusive 
Problem 

 
A computational code has been developed for solving 

linear systems resulting of application of LSFEM to 
convection–diffusion problems. A test case presented by 
[5] was solved and the results are presented. The problem 
is a reverse flow in a cavity, illustrated in Figure 1. The 
domain is: 1 1 0 1x ; y− ≤ ≤ ≤ ≤ . The velocity profile is 
known and defined as: 

 

 ( )22 1u y x= −
;   ( )22 1v x y= − −

                  (72) 
 

The inlet of the flow is in the region 1 0x− < < , and 
exit is in the region 0 1x< < . With the velocity specified, 
the problem consists in solving a transport equation for 
the temperature field similar the system defined in 
Equation (22). The system of equations discretized in 
time has the form: 
 

             −















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∂

+
∂
∂

+
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+1n

y
Tv

x
Tu

t
T α  

            0
1

=−







∂

∂
+

∂
∂

−
+

n
n

yx f
y

q
x
q

Pe
α                   (73) 
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Figure 1- Geometry of the cavity and essential 

characteristics of the test-problem. 
 

In the Equations (73) to (76), 0 1α≤ ≤  is a parameter 
of time scheme discretization. The boundary conditions 
for solution of Eqs. (73) to (75) are:  

 
)]12(10tanh[1 ++= xT ; 1 0; 0x y− < < =           (77a) 

 

)10tanh(1−=T
1 0 1

1 1 1
1 0 1

x , y
y , x
x , y

= − ≤ ≤
 = − ≤ ≤
 = ≤ ≤                  

(77b, c, d) 

 

0=
∂
∂

y
T

; 0 1; 0x y< < =                                        (77e) 

With the boundary conditions specified the values T 
will be nule in 1x = ±  and 1y =  and approximately 2 in 
the origin of the coordinate system. The domain was 
discretized by a mesh of 80 by 40 elements in the X and Y 
axes, respectively, in a total of 3200 nine node 
quadrilateral elements. This corresponds to a total of 
13041 of nodes in the mesh. Since there are 3 degrees of 
freedom by node, the total of unknowns will be 
approximately 39123, and the dimension of the global 

matrix would be 39123 by 39123, if the complete system 
was assembled. In each element, there will be 27 degrees 
of freedom. Only the element matrix needs to be 
assembled, element by element, in the PCG-EBE 
procedure of solution. 

The results obtained from the computational code are 
presented in the Figure 2(a) for several numbers of Péclet. 
These results agree well qualitatively with results from 
[5]. In Figure 2(b), their results from Winterscheidt & 
Surana are compared with the results from [13]. It is 
observed that for high number of Pèclet, the convection is 
dominat as expected. 
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 Pe = 100
 Pe = 500
 Pe = 1e+3
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Figure 2 (a) – Temperature profiles at the cavity exit for 

several numbers of Pe. 
 

 
Figure 2 (b) – Temperature Profiles at the cavity exit for 

several numbers of Pe . 
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6 Results for Tridimensional Convective-
Diffusive Problems  

 
In this simulation, tests with a uniform mesh with 1000 

elements (9261 points), corresponding to 10 divisions in 
each edge, were performed. Following [14], three 
different profiles of velocity were imposed: Case 1, Case 
2 and Case 3, being based into. They are:  
 

Case 1: 1 1; ; 0;
2 2

U V W= = =
                    

(78) 

 

Case 2: 1 1 1; ; ;
3 3 3

U V W −
= = =

                 
(79) 

 

Case 3: 1 1 1; ; ;
3 3 3

U V W= = =
                 

(80) 

 
 

For the three cases, the boundary are illustrated in 
Figure 3. For each case, it has been kept the same 
boundary conditions and profile of velocity was varied 
according to [14], in order to analyse the influence of 
flow direction.  

 
 

 
Figure 3 – Geometry and boundary conditions for 

tridimensional problems. 
 
 

 
Convection-Diffusion in a Cubic Cavity (Case 1) 

 
The temperature profile in the Case 1, for parallel flow 

to X-Y plan in a cubic cavity, was obtained for Pe = 10, 
102, 103, 104, 105, 106, 107, 108 and 109

. Results of 

temperature surfaces and isotherms are shown from 
Figures 4 to 12. Figures show temperature surfaces and 
isotherms, seen from X, Y and Z plans equal to 0.5. 
Therefore, isotherms in graphs are seen from the cuts at 
the respective X, or Y or Z plans.  
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Figure 4 – Distribution of temperature in X = 0.50 plan with   

Pe = 10, Case 1. 
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Figure 5 – Distribution of temperature in X = 0.50 plan with   
Pe = 210 , Case 1. 
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Figure 6 – Distribution of temperature in X = 0.50 plan with   

Pe = 410 , Case 1 
For low numbers of Pèclet, as can be observed at 

Figures 4 and 5, the temperature fields don´t present any 
apparent oscillations. For high numbers of Pèclet, some 
oscillations appear in the solutions a. As the method 
should stabilize the solution, probably the causes of 
oscillation maybe due to the gross mesh or for the fact of 
imposing the direction fo the flow not aligned with the 
mesh. But, they are speculations that must be more 
profoundly and well verified. Anyway, the solution has 
always converged. 
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Figure 7 – Distribution of temperature in Y = 0.50 plan with   

Pe =10, Case 1. 
 

In sequence, some tridimensional graphs and cuts in 
plans Y = 0.5 are shown. At sights from Y plan, it is 
observed that for number of  Péclet 100, some 
disturbance regions next to the corners start appearing, 
which are going to be accentuating as Péclet’s number 
increases, as it can be observed at figures next, for Case1. 
In general, the same trend of previous graphs is also 
observed from the sights of Y plan. 
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Figure 8 – Distribution of temperature in Y = 0.50 plan with   
Pe = 102, Case1. 
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Figure 9 – Distribution of temperature in Y = 0.50 plan with   

Pe = 104, Case1. 
 

Now, some tridimensional graphs  cuts in plans     
Z = 0,5 are presented for Case1. The same trend of 
previous graphs is also observed from sights of Z plan. 
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Figure10 – Distribution of temperature in Z =0.50 with Pe = 10, 
Case 1. 
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Figure 11 – Distribution of temperature in Z =0.50 plan com   

Pe = 102, Case 1. 
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Figure 12 – Distribution of temperature in Z =0.50 plan with  

Pe = 104, Case 1. 
 

Analysis of Figures from 4 to 12 shows that, for low 
numbers of Péclet, qualitative the behavior is simulated; 
however, when the numbers of Péclet increases, 
oscillations start appearing at solution, which can occur 
because the mesh is not enough refined. The computers 
used for simulation were of low capacity of processing, 
and therefore, it was not possible to use very fine meshes. 
For these simulated cases, results took until 36 hours of 
running time to be obtained. It is probable that the 
problem is already characterized as a predominantly 
convective for Pe=104, which can also be the cause of 
oscillation. But, the same phenomenon can occur with 
upstream and exponential schemes.  

 
 
 
 
 

Convection-Diffusion in a Cubic Cavity (Case 2) 
 
 

The boundary conditions are those illustrated ones in 
Figure 3. Temperature profile in Case 2, for a cubic 
cavity with 1000 elements, was obtained for Pe = 10, 102, 
103, 104, 105, 106, 107 and 108. Temperature surfaces and 
isotherms in X, Y and Z = 0.50 of the cavity are 
illustrated in Figures from 13 to 21. 

In this case, until  a number of Péclet equal to 103, 
solutions seem to be smooth with no visible disturbances 
at the corners. For a number of Péclet equal 104 we can 
observe some oscillation. 
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Figure 13. – Distribution of temperature in X = 0.50 plan with 

Pe = 10, Case 2. 
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Figure 14. – Distribution of temperature in X = 0.50 plan with 

Pe = 102, Case 2. 
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Figure 15 – Distribution of temperature in X = 0.50 plan with 

Pe = 104, Case 2. 
 

At Figures from 16 to 18, temperature surfaces and 
isotherms seen from Y = 0.5 plan are shown. None 
oscillations at solutions are observed. From the Figure 19, 
sights from Z =0.5 plan can be viewed.. In the Case 2, the 
obtained results seem to be better than those of Case 1, 
showing that direction of speed field has a great influence 
on the convection-diffusion process. Even for Peclet’s 
high numbers, oscillations are almost inexistent.  
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Figure 16 – Distribution of temperature in Y = 0.50 plan with 

Pe = 10, Case 2. 
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Figure 17 – Distribution of temperature in Y = 0.50 plan with 

Pe = 102, Case 2. 
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Figure 18 – Distribution of temperature in Y = 0.50 plan with 

Pe = 104, Case 2. 
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Figure 19 – Distribution of temperature in Z = 0.50 plan with 

Pe = 10, Case 2. 
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Figure 20 – Distribution of temperature in Z = 0.50 plan with 

Pe = 102, Case 2. 
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Figure 21 – Distribution of temperature in Z = 0.50 plan with 

Pe = 104, Case 2. 
 

 
Convection-Diffusion in a Cubic Cavity (Case 3) 

 
For the Case the  results are showed in next figures. 

The boundary conditions are illustrated at Figure 3. 
Temperature fields are shown in Figures from 22 to 27. In 
this case, we don´t have simulations for high number of 
Pèclet. The simulations are for Pèclet equal to 20 and 
100. For these low numbers of Pèclet the solutions seems 
to be free os oscillations. 
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Figure 22 – Distribution of temperature in X = 0.50 plan with 

Pe = 20, Case 3. 
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Figure 23 – Distribution of temperature in X = 0.50 plan with 
Pe = 100, Case 3. 
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Figure 24 – Distribution of temperature in Y = 0.50 plan with 

Pe = 20, Case 3. 
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Figure 25 – Distribution of temperature in Y = 0.50 plan with 

Pe = 100, Case 3. 
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Figure 26 – Distribution of temperature in Z = 0.50 plan with 

Pe = 20, Case 3. 
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Figure 27 – Distribution of temperature in Z = 0.50 plan with 
Pe = 100, Case 3. 

7 Conclusions 
 

LSFEM has been applied for solution of first order 
partial differential equation systems in the case bi and 
tridimensional heating transfer problems. It is always 
possible, by using auxiliary variables, such as heat flows 
or vorticity, or tension, to write partial differential 
equations of second order as a partial differential 
equations system of first order.  

LSFEM application always results into a 
symmetrical and defined positive algebraic system, 
independently of the form original differential operator. 
This kind of system is appropriately solved by conjugate 
gradient methods. Resultant algebraic systems have been 
solved by the preconditioned conjugate gradient method, 
with a preconditioner element by element, eliminating the 
need for a global matrix assembly. Globaly only vectors 
are used for storage of variables. All operation with 
matrices are performaed at element level. In these 
simulations, Quadratic Quadrilateral Finite Elements of 
nine nodes were used, for bidimensional problems and 
quadratic hexahedrons with twenty-seven nodes in the 
tridimensional cases.  

Results from simulations have presented the 
expected behavior; however, in the tridimensional cases, 
when Peclet’s number increases, there are still certain 
oscillations in the solutions, mos t probably  due to the 
utilization of coarse meshes, once that well refined 
meshes were not able to be achieved, because of the 
utilized computational capacity. All of the simulations 
were performed through microcomputers of medium 
capacity of processing.  
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