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Abstract 
 

In this work, a numerical scheme using Crank-Nicolson scheme and the 
high-order Finite Difference Method were used, respectively, for the temporal and 
spatial discretization of the nonlinear two-dimensional convection-diffusion 
equation. Numerical applications are implemented and valuated making use of the 
L2 error norm and the numerical results were compared with the exact solution 
obtained via literature review. 
 
Keywords: Convection-diffusion equation, linearization technique, high-order 
finite difference method 
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1 Introduction 

The two-dimensional parabolic differential equations appeared in many 
scientific fields of engineering and sciences such as neutron diffusion, heat 
transfer and fluid flow problems [1]. An attractive problem is 
convection-diffusion equation for which various numerical methods have been 
suggested by a number of researchers to solve them. Application of this equation 
may be seen in computational fluid dynamics, hydrodynamic turbulence, 
shockwave theory, wave processes in thermoelastic medium, transport and 
dispersion of pollutants in rivers and sediment transport for modeling 
convection-diffusion of quantities such as mass, energy, vorticity, heat, among 
others [2,3]. In recent years, the solution of two-dimensional nonlinear 
convection-diffusion equation has attracted a lot of attention and many authors 
have used various numerical techniques for the solution of this equation. 
 
 
2 Numerical Formulation 
 
   In this work, we propose a solution, by the high-order finite difference method 
for the nonlinear two-dimensional convection-diffusion equation which is given 
by 
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where u(x,y,t) is the velocity field in the x,y-directions and υ is the kinematic 
viscosity. 

Here, due to efficiency and simple implementation, to carry out the time 
discretization of the equation (1) will use the Crank-Nicolson method [4] as 
follows: 
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The main purpose of this work is to use the Newton’s method for the 

linearization of the terms 
x
uu
∂
∂

and 
y
uu
∂
∂  in the following manner 
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Note that this technique does not require an iterative linearization at each time 
step, making quicker the computation of u. 
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Substituing the Eqs. (3a-b) in the Eq. (2), we have: 
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In the applications 1 and 2 below, the initial value of the exact solution is taken 
as the initial condition, and boundary conditions are also specified by the above 
equation and change with time. However, for the application 3, the conditions will 
be specified in the same case. 

Considering nodes with Δx or Δy distance from the boundary using the Central 
Difference Method with O(Δx2), we have: 
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Now, considering the internal nodes using the Central Difference Method with 
O(Δx4), we have: 
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3 Numerical Applications 
 

In the following applications, the numerical solution to nonlinear 
two-dimensional convection-diffusion equation on a computational domain 0 ≤ x 
≤ Lx, 0 ≤ y ≤ Ly with t > 0. In the applications 1 and 2, the numerical solution is 
compared to the exact solution found in the literature using the L2 norm defined as: 
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iε  where Nnost is the total number of nodes in the mesh 

and 
ii annumi uue )()( −= , where u(num) is the result from the numerical solution and 

u(an) is the result from the numerical solution and the result from the analytical 
solution. Now, since the application 3 has no analytical solution used a coarse 
mesh and a more refined to present the numerical oscillations in the solution in 
each case, it is possible to note that the oscillations decreased as the refinement.  
 
 
Application 1: In this application, the exact solution of the Eq. (1) is specified by 
the following equation 
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tyxu  [5] and compared with the 

numerical solution. The values of x, y, t e v were chosen so that the velocity 
profile assume values between 0 and 1. Thus, in the by Fig. (1) on the right, for 
example, were taken, for ν = 0.1 and t = 0.1, 0 ≤ x,y ≤ 0.1. 
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Figure 1: Mesh with Δx = Δy = Δt = 0.1/100 considering, on the left, ν = 0.1 with 
||ε||2 = 7.78E-04 and, on the right, ν = 0.01 with ||ε||2 = 6.12E-02 both in t = 0.1. 

  

 
Figure 2: Mesh with Δx = Δy = 0.1/100 and Δt = 0.2/100 considering, on the left, ν = 0.1 
with ||ε||2 = 4.56E-04 and, on the right, ν = 0.01 with ||ε||2 = 2.61E-02 both in t = 0.2. 
 

In Figures 1 and 2 is noted that the numerical results for some refined meshes 
was obtained a precision of at least two decimal places, which is considered 
suitable for engineering. 

 
Application 2: For the second example, we consider the following analytical 

solution ⎟
⎠
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⎜
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υ2

tanh
2
1),,( tyxtyxu  [6]. The initial value of the exact 

solution is taken as the initial condition, and boundary conditions are also 
specified by the above equation and change with time. 

It may be noted, the analysis of Figs. (1)-(4), for large values for ν, the forces 
dominate diffusive profile and the solution evolves toward a flat surface. As the ν 
decreases, the convective forces take over and the solution develops into a viscous 
shock that travels to the right. 
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Figure 3: Mesh with Δx = Δy = Δt = 0.1/100 considering, on the left, ν = 0.05 

with ||ε||2 = 3.74E-03 and, on the right, ν = 0.01 with ||ε||2= 3,07E-02  
both in t = 0.1. 

 

 
Figure 4: Mesh with Δx = Δy = 0.1/100 and Δt = 0.2/100 considering, on the left, 
ν = 0.1 with ||ε||2 = 1.27E-02 and, on the right, ν = 0.05 with ||ε||2= 1.27E-02 both 

in t = 0.2. 
 

Application 3: Here, was considered the computational domain 0 ≤ x,y ≤ 1 and t 
> 0, and the following initial condition u(x,y,0) = 0, as well the boundary 

conditions u(0,y,t) = 1, u(x,0,t) = u(x,0.1,t) = 0 and ( ) .0,,0.1 =
∂
∂ ty

x
u

 

A qualitative analysis of the results of the two time instants for a mesh adopted 
and ν = 0.1 (Fig. 5) shows that they have no numerical oscillations, and further, 
the numerical point are in the interval 0 to 1. However, for Δt = 0.05, obtained a 
maximum value for u = 1.48537, totally out of interval 0 to 1. In order to reduce 
numerical oscillations present in Figure 6 (left) was applied in step a refinement 
(Δt = 0.001) in step time. 
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Figure 5: u profile for ν = 0.1 and t = 1, on the left, and for t = 2, on the right, 

with Δx = Δy = 0.01 and Δt = 0.05, in the application 3. 
 

 
Figure 6: v profile for ν = 0.01 and t = 1 with Δx = Δy = 0.01 and Δt = 0.05  

in the left and Δt = 0.001 in the right, in the application 3. 
 
A qualitative analysis of the results of the two time instants for a mesh adopted 

and ν = 0.1 (Fig. 5) shows that they have no numerical oscillations, and further, 
the numerical point are in the interval 0 to 1. However, for Δt = 0.05, obtained a 
maximum value for u = 1.48537, totally out of interval 0 to 1. In order to reduce 
numerical oscillations present in Figure 6 (left) was applied in step a refinement 
(Δt = 0.001) in step time. 
 
4 Conclusions 

In this paper, we propose a high-order Finite Difference Method for nonlinear 
two-dimensional convection-diffusion equation. Numerical examples show that 
the method can be used to simulate the numerical solution of the equation. By  
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observing the detailed comparison of numerical and analytical results, it is 
convinced that the proposed scheme is very simple, stable and accurate for the 
solutions of the equation. Especially regarding the linearization of nonlinear terms 
of the equation, this work was presented a very efficient technique, with large 
time intervals Δt, when compared with those used by other authors. Moreover, 
this technique does not require any type of iterative process within each time step, 
which represents a major saving on the computational time. 
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