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Analysis of acoustic waveguide through the ESEM including parameters uncertainty

Abstract. Sound field behaviour in an acoustic enclosure is an important part of the cabin
passenger transport vehicle design, concert halls, conference rooms, etc., different analytical
methods are available to design engineers, which has its strengths and weaknesses. Cavities in
a low-frequency band and negligible absorption on the wallscan be modelled by Modal Anal-
ysis and Finite Element Method. However, when the frequencyband increases, both methods
become computationally expensive and Statistical Energy Analysis or Sabine model can be an
efficient approach. These methods assume deterministic treatment and almost nothing is known
about the effect of uncertainties in the parameters, acoustic velocity and acoustic pressure in-
side cavities. This paper presents a study on the patterns ofdensity and energy flow generated
guide acoustic waves at high frequencies including uncertainties in geometric parameters and
property of fluids. The waveguide is modelled by the SpectralElement Method Energy. The
mean and variance of energy density and the flow of energy are calculated by using Monte
Carlo simulation. Numerical examples show the influence of the random parameters in the
different variation of the waveguide.

Keywords: Quantification of uncertainty, Waveguides, Spectral element method energy, Monte
Carlo simulation
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1 INTRODUCTION

Currently, for design of products such as aircrafts, cars, trains household appliance, lecture
rooms, and etc., acoustic comfort is a very important factorin determining whether an item
is accepted or not by consumers. A number of tools is now available to aid design engineers
including, Sabine room acoustic model, Modal Analysis, SEA, FEM, and Energy methods. De-
spite that, scientists and researchers have been developing new predictive tools that are more
efficient. FEM have the inherent characteristic to generatehigh order computational models,
which makes their use inadequate at high modal density range. Therefore, complex structure
behaviour at high-frequency band is still an active research subject (Moraeset al., 2009). A
commonly used high frequency modelling approach is SEA (Lyon & DeJong, 1975). Its limi-
tation comes from the inability to calculate the energy spatial variation in each subsystem. EFA
is an enhanced SEA, since it provides the spatial energy distribution within the subsystems
(J.C. Wohlever, 1992). The ESEM consists of applying the same matrix methodology of FEM
to the analytical solution of EFA (Santoset al., 2008).

During the last few years, research has been performed to deal with uncertainties in system
models. The uncertainties can be linked to the geometric properties, material characteristics
and boundary conditions among other possibilities. The Direct Method consists in applying
the moment equations to obtain the random solutions. The unknowns are the moments and
their equations are derived by taking averages over the original stochastic governing equations.
Otherwise, non-sampling approaches may be used, such as thePerturbation method (Kleiber
& Hien, 1992; Xiu, 2010), Neumann expansion method Yamazakiet al. (1988); Zhuet al.
(1992), Moment Equations Xiu (2010), Polynomial Chaos (PC)expansion and Generalized
Polynomial Chaos Ghanem & Spanos (1991); Xiu (2010), Stochastic Galerkin method Maı̂tre
& Knio (2010), Stochastic Partial Differential Equations (SPDEs), and Stochastic Finite Ele-
ment method Ghanem & Spanos (1991). Due to the simple processand high precision, Monte
Carlo simulation has been widely used in probability and statistics analysis; MC also describes
the uncertainty propagation of the input/output variablesSobol’ (1994). Generally, the uncer-
tainty parameters are assumed to follow certain forms of a probability distribution. However, an
extremely large amount of iterative calculations are involved, which might affect the calculation
efficiency.

In this paper the ESEM formulation for acoustic wave propagation problem in a single
and coupled finite one-dimensional waveguide (duct) is presented. To turn the analysis more
realistic, uncertainties are included in the gas properties and duct geometry. Such uncertainties
are assumed to be spatially homogeneous along the length andMonte Carlo simulation is used
to generate samples for the statistical moments analyses. The ESEM used in this work generally
assumes deterministic treatment and almost nothing is known about the effect of uncertainties
in the parameters, acoustic velocity and acoustic pressureinside cavities. Based on that, the
novel of the paper is to study the patterns of density and energy flow generated guide acoustic
waves at high frequencies including uncertainties in geometric parameters and property of fluids
in a single and coupling circular cross section duct. The simulation is carried out for a single
and coupling circular cross section duct using ESEM, also energy density and flow results are
presented.
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Figure 1: Two-node acoustic spectral element

2 ONE-DIMENSIONAL ACOUSTIC ENERGY SPECTRAL ELEMENT

The governing equations for acoustic and structural one-dimensional waveguides are based
on the Spectral Element Method presented by Doyle (1997); Lee (2004). The Helmholtz equa-
tion is the linearised, lossless wave equation for sound propagation in fluids, re-written here as
a lossy wave equation as Kinsleret al. (1982):

∂2p̂

∂x2
− k2

c p̂ = 0, (1)

wherê indicates frequency domain function, andp is the acoustic pressure. The complex
wavenumber is included to account for the energy absorptionmechanism in the gas, given
by kc ≈ k(1 − iη/2) with i =

√
−1. The linear Euler equation states the relationship between

particle velocity and acoustic pressure as:

û = − 1

iωρ

∂p̂

∂x
, (2)

whereρ is the mass density. The general solution of Eq. (1) can be written as,

p̂ (x) = Ae−ikcx +Beikcx, (3)

whereA andB are constant coefficients determined from the boundary conditions.

By applying end conditions in a two-node acoustic spectral element (Fig. 1), the acoustic
pressure at any arbitrary point along the element is,

p̂ (x) = ĝ1(x)p1 + ĝ2(x)p2 (4)

where,ĝ1(x) andĝ2(x) are the interpolation functions of the spectral element. Bysubstituting
Eq. (4) in Eq. (2) the particle velocity at any arbitrary point along the element can be written as,

p̂ (x) =
1

1− e2ikcL
[(
eikcx − eikc(2L−x)

)
p̂1 +

(
eikc(L−x) − eikc(L+x)

)
p̂2
]

(5)

Applying end conditions in the two-node acoustic spectral element (Fig. 1), particle volumetric
velocity can be written in a matrix form as:







Û1

Û2






= − Skc

ωρ (1− e2ikcL)




1 + e2ikcL −2eikcL

−2eikcL 1 + e2ikcL + ZmL











p̂1

p̂2






(6)

Assuming the duct as shown in Fig. 1 which is a duct unflanged open end, a radiation impedance
(ZmL) is included in the model as demonstrated by Kinsleret al. (1982).

ZmL = ρcS

{
1

4
(kr)2 + i0.6kr

}

(7)
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whereS is element section area andr is duct radius. The time-average (indicated by〈〉 ) energy
density in an acoustic medium is the sum of potential and kinetic energy densities as:

〈e〉 = 1

4

(

ρûû∗ +
1

ρc2
p̂p̂∗

)

, (8)

Time-average energy flow (intensity) in an acoustic medium is written as:

〈q〉 = 1

2
ℜ{p̂û∗} , (9)

whereℜ is the real part of a complex number and∗ represents complex conjugate.

An extension of Energy Spectral Element Method (ESEM) to theacoustic medium is pro-
posed, which allows solving the approximated energy flow solution by applying the same matrix
scheme as Finite Element Method and Spectral Element Method. For steady state condition,
harmonic excitation, small gas loss factor(η << 1), the time and space averaged energy den-
sity for acoustic plane waves in a one-dimensional waveguides can be written as J.C. Wohlever
(1992),

− c2

ηω
∇2 〈ē〉+ ηω 〈ē〉 = Π (10)

where− represents space-average,e is the energy density calculated using Eq. (8),η is the gas
loss factor,ω is the circular frequency,c is the sound velocity andΠ is the input power. The
energy flow (intensity) obtained by Eq. (9) is related to the energy density by:

〈q̄〉 = − c2

ηω
∇〈ē〉 . (11)

The one-dimensional homogeneous solution of Eq. (10) is given by:

〈ē〉 (x) = Geηkx +He−ηkx, (12)

wherek = ω/c is the wavenumber,G andH are constant coefficients determined from bound-
ary conditions. By applying end conditions in a two-node acoustic energy spectral element, the
energy density at any arbitrary point along the element is obtained as:

〈ē〉 (x) =
(
eηkx − eηk(2L−x)

1 + e2ηkL

)

︸ ︷︷ ︸

h1(x)

〈ē1〉+
(
eηk(L−x) − eηk(L+x)

1 + e2ηkL

)

︸ ︷︷ ︸

h2(x)

〈ē2〉 (13)

whereh1(x) andh2(x) are the interpolation functions of the energy spectral element. By sub-
stituting Eq. (13) in Eq. (11) the energy flow at any arbitrarypoint along the element can be
written as,

〈q̄〉 (x) = − kc2

ω (1− e2ηkL)

[(
eηkx − eηk(2L−x)

)
〈ē1〉+

(
eηk(L+x) + eηk(L−x)

)
〈ē1〉

]
(14)

By applying end conditions in a two-node acoustic spectral energy element the energy flow can
be written in a matrix form as:







〈q̄1〉
〈q̄2〉






= − kc2

ω (1− e2ηkL)




1 + e2ηkL −2eηkL

−2eηkL 1 + e2ηkL











〈ē1〉
〈ē2〉






(15)
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Reactive-type exhaust mufflers use the ability of a cross section area change to attenuate the
sound energy transmitted in a duct. Also, the medium property change in a duct will attenuate
the sound energy transmitted. In the acoustic filter theory,the medium is assumed to be sta-
tionary and the wave propagation is governed by the 1-D wave equation. To account for these
discontinuities in the energy model, additional coupling relationships need to be formulated and
inserted at these connection points. Since a rod and an acoustic duct are ruled by the same wave
equation, the joint element used in this study is the same proposed by Cho & Bernhard (1998)
for structural coupling type rod-rod. Then, the acoustic coupling relationship is obtained as:







〈q̄1〉
〈q̄2〉






= − τij

2rij




ci −cj

−ci cj











〈ē1〉
〈ē2〉






(16)

whereτij andrij are the power transmission and reflection coefficients at thecoincident nodes
between elementsi andj. The radiation impedance is included in the ESEM as〈q〉 = αc〈e〉,
whereα = τ/(2−τ) andτ = 1−|(ZmL−ρc)/(ZmL+ρc)|2. Specifically, impedance radiation
(ZmL), is the term that accounts for the change in geometry or medium properties.

3 MONTE CARLO SIMULATION

The Monte Carlo simulation has been used for decades, it is a method based on random
samples used in approximations. The name itself is taken from the famous casino located in
Monte Carlo (Sampaio & Lima, 2012). Simulation methods are also named exact methods,
because the simulation result leads to exact outcomes when the sample number goes to infinity.
To avoid certain approximations which occur in analytical methods and to be a non-intrusive
method are another advantages of this type of techniques. Thus, the general idea of the method
is solving mathematical problems by the simulation of random variables (Sobol’, 1994). An
Monte Carlo method example of application is the multidimensional integral approximation.
Supposing the integral of a given real multidimensional functiong in a certain regionB ⊂ R,

I =

∫

B

g(x)d(x) (17)

If g is a simple function, its integral(I) can be calculated easily. However, ifg is a difficult
function or is defined in a region with complicated contour, it may not exist a closed form for
(I). In such cases, numerical integration methods must be applied in order to obtain approx-
imations for(I), such as the trapeze method, Simpson method and Monte Carlo simulation.
Assuming that(I) is a one-dimensional integral,p a function density probability of a random
variableX, rewriting Eq. (17) gives,

I =

∫

B

h(x)p(x)d(x) (18)

whereh(x) = g(x)/p(x)∀x ∈ B. The integralI can be interpreted as the expected value of
h(x), it is:

I = E[h(x)] =

∫

B

h(x)p(x)d(x) (19)

CILAMCE 2016
Proceedings of theXXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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Thus, an approximation(Î) for the integral can be expressed as

Î =
n∑

i=1

h(xi) (20)

wherex(1), x(2), ..., x(n) are samples of the random vectorX with probability density function
p.

The mean and the standard deviation of the result are calculated through the samples gener-
ated. LetX(ξ, ω) be the frequency response of the stochastic system calculated for a realization
ξ, generated by the Monte Carlo method Rubinstein (2008).

4 SIMULATION RESULTS

4.1 Single duct

The one-dimensional acoustic waveguide consists of a rigidwall cylindrical duct with an
unflanged open end and harmonically excited at the other end as illustrated in Fig. (2). The
acoustic medium is the air at20◦C (ρ = 1.21 kg/m3; c = 343 m/s; andη = 2.86 × 10−3),
and the duct geometry isS = 2.0−3 m2 andL = 6.0 m. The harmonic excitation applied at
node 1 for the ESEM model is the corresponding input power calculated with the Eq. (9) at the
frequencyf = 500Hz. By computing the statistic moments of energy density and energy flow
the mass density (ρ) and duct length (L) are assumed to be spatially homogeneous Lognormal
random variables with coefficient of variation (COV) of 2 and10%. The first and second stat-
ical moments are calculated using the non-intrusive Monte Carlo simulation method with 500
samples.

1 2

e
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q
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e
2

q
2

y

x

x=0 x=L

L

ρ, η, c

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
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xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
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xxxxxxxxxxxxxx
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xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

S

Figure 2: Two-node one-dimensional acoustic waveguide element for single duct.

Figures. (3(a)) and (3(b)) demonstrate separately the influence of the variability in mass
density (ρ) and duct length (L), with COV of 10% respectively. The mean and standard devi-
ation (envelope) of the energy density is compared with deterministic result.The mean of the
energies density are found closely follow the deterministic results. It is visible that variability
in ρ is more sensible than inL when the energies density amplitude is analysed. The param-
eters sensibility analyse in the energy density with variability in both parameters are shown in
Fig. (3(c)). Similar behaviour of the Fig. (3(b)) is observed in this cases.
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Figure 3: Mean, standard deviation and deterministic energy density for a single duct withL (a), ρ (b) and
both (L,ρ) (c) as random variable.

In the case of the flow energy also the variability in mass density (ρ) and duct length (L),
with COV of 10% were analysed (Fig. 4). As in density energy, the flow energy mean is close
to the deterministic results. The standard deviation (envelope) is more evident with the variance
of (ρ) than (L). The correspondent behaviour of the Fig. (4(c)) was obtained. In this type of
system, the mass density is directly affected by the air temperature, based on the presented
results a strict temperatures control should be done. In thesingle duct density and flow energy
presented close behaviour. Figures. (5) and (6) show the (ρ) and (L) variability influence in
density and flow energy estimation for different COV’s (2% and 10%). The mean energies with
COV’s of 2% and 10% follow the deterministic result, and the standard deviation (envelope)
demonstrate the variability in these both case. As commented, the temperature control which
implies in mass density variability is essential in this type of system. The behavior can be
seen in Figs. (5 and 6). For small COV the variability in the energies is close to mean response
while that for high COV the envelope increase, especially between 0 to 2 m in the duct length. It
because the energy is more intense at the node 1 (excitation point), after that the energy decrease
in reason of the damping effect.
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Figure 4: Mean, standard deviation and deterministic flow energy for a single duct with L (a), ρ (b) and
both (L,ρ) (c) as random variable.
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Figure 5: Energy density for a single duct with COV of 2% (left-hand side) and 10%(right-hand side).
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Suzana MoreiráAvila (Editor), ABMEC, Brası́lia, DF, Brazil, November 6-9, 2016



Analysis of acoustic waveguide through the ESEM including parameters uncertainty

0 2 4 6
0

2

4

6

8
x 10

−7

Length [m]

E
ne

rg
y 

F
lo

w
 [W

]

 

 

0 2 4 6
0

2

4

6

8
x 10

−7

Length [m]

E
ne

rg
y 

F
lo

w
 [W

]

 

 

Deterministic
Mean
Mean+STD
Mean−STD

Figure 6: Flow energy for a single duct with COV of 2% (left-hand side) and 10%(right-hand side).

4.2 Coupled duct

The coupled acoustic system consists of two one-dimensional acoustic waveguide (rigid
wall ducts) with different geometry (cross section radius and length) or medium property (sound
velocity, gas density and loss factor) connected each other, as showed in Fig. (7). The system is
harmonically excited at the left end and opened in the right end (unflanged). For the geometric
discontinuity the duct dimensions for element 1 areS1 = 2.0 × 10−3 m andL1 = 1.8 m,
while for element 2 areS2 = 4.0 × 10−3 m2 andL2 = 4.2 m. Both elements contains air
at 0◦C (ρ = 1.21 kg/m3; c = 343.0 m/s; andη = 5.8 × 10−3) as acoustic medium. For the
medium discontinuity the element 1 contains air at0◦C (ρ1=1.293 kg/m3, c1 = 331.6 m/s,
η1 = 5.8×10−3), while the element 2 contains hydrogen at0◦C (ρ2 = 0.09 kg/m3; c2 = 1269.5
m/s; andη2 = 8.810−3). Both elements have same geometric dimensions (S = 5.0 × 10−3 m2

andL = 6m). The excitation and end conditions are the same as the single element problem,
but the frequency-averaged energy density and flow responses were calculated by ESEM in
1/3-octave frequency band with center frequencyfc = 8 kHz .
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Figure 7: Two-node one-dimensional acoustic waveguide element for coupling duct.

Likewise the analyses realized for the single duct, Figs. (8(a)) and (8(b)) show the influ-
ence of the variability of 10% in mass densities (ρ andρ2) and duct length (L) with section
variation. The coupling duct, with cross section area discontinuity, causes an energy decay
at the discontinuity position(L1). When the duct length is assumed as a random variable (L1

is related to the duct length), the density energy decay presented a variability at discontinuity
position. Figure. (8(a)) shows mean and standard deviation(envelope) of the energy density
compared deterministic results. For the mass densities (ρ andρ2) assumed as a random variable
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Figure 8: Mean, standard deviation and deterministic energy energy for a coupling duct with L (a), ρ (b)
and both (L,ρ) (c) as random variable.

the amplitude until the discontinuity position presented avariation, while the position indeed
shows significant changes. Figure. (8(b)) shows the comparison of mean, standard deviation
(envelope), and deterministic energy density with mass densities variation. Interesting results
can be seen in Figure. (8(c)) which illustrates mean and standard deviation (envelope) of the
energy density compared with a deterministic result. In this case, duct length and both mass
densities were assumed to be a random variable. An influence of the combination behavior
when the variability in all parameters (L, ρ, ρ2) is presented. Different of the single duct, now
the mass densities and duct length should be strict control in a way to localize the discontinuity
position.

Figures (9(a))- (9(c)) show the (ρ andρ2) and (L) variability influence in the flow energy
estimation for COV of 10%. A light decay can be observed in theflow energy with the change
section. The mean and standard deviation flow energy are veryclose to deterministic result
whenL is random. An amplitude variation is higher between 0 to 2m whenρ andρ2 are the
random variable in reason of the high energy at the node 1 and the damping consequence. the
combination of the behavior whenρ, ρ2 andL are assumed the random variable is demonstrated
in fig. (9(c))

Figures (10) and (11) show the (ρ andρ2) and (L) variability influence in density and
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Figure 9: Mean, standard deviation and deterministic flow energy for a coupling duct with L (a), ρ (b) and
both (L,ρ) (c) as random variable.
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Figure 10: Energy density for a coupling duct with COV of 2% (left-hand side) and 10%(right-hand side).

flow energy estimation for different COV’s of 2% and 10%. In those case, mass density and
duct length induce a dispersion at the discontinuity position. As the single duct analyse, for
small COV the variability in the energies is close to mean response while that for high COV the
envelope increase, especially between 0 to 2 m in the duct length.
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Figure 11: Flow energy for a coupling duct with COV of 2% (left-hand side) and 10%(right-hand side).

5 CONCLUSION

The novel of the paper is to study the patterns of density and energy flow generated guide
acoustic waves at high frequencies including uncertainties in geometric parameters and property
of fluids in a single and coupling circular cross section duct. The ESEM formulation for acoustic
wave propagation problem in a single and coupled finite one-dimensional waveguide (duct)
with a spatially homogeneous uncertainty parameter is presented. To handle with this random
parameter, the Monte Carlo simulation is used to generate samples for the statistical moments
analyses. Interesting behaviors were observed for a singleand coupling duct. In the single
duct density and flow energy presented close behavior. Mass density is shown more sensible
than duct length,the mean energies with COV’s of 2% and 10% follow the deterministic result,
and the standard deviation (envelope) demonstrate the variability in these both case. For small
COV the variability in the energies is close to mean responsewhile that for high COV the
envelope increased. However it was observed and great energy variation close to the node 1
(excitation point), and a damping effect along the duct. In acoupling duct with cross section
area discontinuity causes an energy decay at the discontinuity position(L1). Both parameters,
duct length and mass density showed sensitive, it was more evident in the energy density. In this
case, mass densities and duct length should be strict control in a way to localize the discontinuity
position.

ACKNOWLEDGEMENTS

The authors are grateful to the government research fundingagencies Fundação de Apoio
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