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Analysis of acoustic waveguide through the ESEM includargumeters uncertainty

Abstract. Sound field behaviour in an acoustic enclosure is an impantemt of the cabin
passenger transport vehicle design, concert halls, cemiez rooms, etc., different analytical
methods are available to design engineers, which has gngths and weaknesses. Cavities in
a low-frequency band and negligible absorption on the wedlis be modelled by Modal Anal-
ysis and Finite Element Method. However, when the frequbaog increases, both methods
become computationally expensive and Statistical EnergyAis or Sabine model can be an
efficient approach. These methods assume determinisiotemt and almost nothing is known
about the effect of uncertainties in the parameters, atcowsiocity and acoustic pressure in-
side cavities. This paper presents a study on the patterdemdity and energy flow generated
guide acoustic waves at high frequencies including unaetiess in geometric parameters and
property of fluids. The waveguide is modelled by the SpeEleahent Method Energy. The
mean and variance of energy density and the flow of energy aorlated by using Monte
Carlo simulation. Numerical examples show the influencenefrandom parameters in the
different variation of the waveguide.

Keywords: Quantification of uncertainty, Waveguides, Spectral el@meethod energy, Monte
Carlo simulation
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1 INTRODUCTION

Currently, for design of products such as aircrafts, caass$ household appliance, lecture
rooms, and etc., acoustic comfort is a very important factatetermining whether an item
is accepted or not by consumers. A number of tools is now avialto aid design engineers
including, Sabine room acoustic model, Modal Analysis, SEEBM, and Energy methods. De-
spite that, scientists and researchers have been dewglogim predictive tools that are more
efficient. FEM have the inherent characteristic to genenggh order computational models,
which makes their use inadequate at high modal density rahigerefore, complex structure
behaviour at high-frequency band is still an active redeatdject (Moraegt al, 2009). A
commonly used high frequency modelling approach is SEA ijL&deJong, 1975). Its limi-
tation comes from the inability to calculate the energy igphaariation in each subsystem. EFA
is an enhanced SEA, since it provides the spatial energyildigon within the subsystems
(J.C. Wohlever, 1992). The ESEM consists of applying theesaratrix methodology of FEM
to the analytical solution of EFA (Santesal., 2008).

During the last few years, research has been performed tevithaincertainties in system
models. The uncertainties can be linked to the geometripgsties, material characteristics
and boundary conditions among other possibilities. Thed@iMethod consists in applying
the moment equations to obtain the random solutions. Theawks are the moments and
their equations are derived by taking averages over théatigtochastic governing equations.
Otherwise, non-sampling approaches may be used, such &ethebation method (Kleiber
& Hien, 1992; Xiu, 2010), Neumann expansion method Yamaealil. (1988); Zhuet al.
(1992), Moment Equations Xiu (2010), Polynomial Chaos (B&)ansion and Generalized
Polynomial Chaos Ghanem & Spanos (1991); Xiu (2010), Sttah&alerkin method Maitre
& Knio (2010), Stochastic Partial Differential EquatiorB8RDES), and Stochastic Finite Ele-
ment method Ghanem & Spanos (1991). Due to the simple praceskigh precision, Monte
Carlo simulation has been widely used in probability antigttas analysis; MC also describes
the uncertainty propagation of the input/output variat8ebol’ (1994). Generally, the uncer-
tainty parameters are assumed to follow certain forms obbatility distribution. However, an
extremely large amount of iterative calculations are imgd| which might affect the calculation
efficiency.

In this paper the ESEM formulation for acoustic wave propagaproblem in a single
and coupled finite one-dimensional waveguide (duct) isgresl. To turn the analysis more
realistic, uncertainties are included in the gas propedied duct geometry. Such uncertainties
are assumed to be spatially homogeneous along the lengtiamtig Carlo simulation is used
to generate samples for the statistical moments analybesEFEM used in this work generally
assumes deterministic treatment and almost nothing is Rradvut the effect of uncertainties
in the parameters, acoustic velocity and acoustic presasige cavities. Based on that, the
novel of the paper is to study the patterns of density andggrféow generated guide acoustic
waves at high frequencies including uncertainties in geoo@arameters and property of fluids
in a single and coupling circular cross section duct. Theutation is carried out for a single
and coupling circular cross section duct using ESEM, alsygndensity and flow results are
presented.
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Figure 1: Two-node acoustic spectral element

2 ONE-DIMENSIONAL ACOUSTIC ENERGY SPECTRAL ELEMENT

The governing equations for acoustic and structural oneedsional waveguides are based
on the Spectral Element Method presented by Doyle (199'8;(2@04). The Helmholtz equa-
tion is the linearised, lossless wave equation for soundamation in fluids, re-written here as
a lossy wave equation as Kinskfral. (1982):

0?p

— —kXp=0 1

8{,[72 cp Y ( )
where” indicates frequency domain function, apds the acoustic pressure. The complex
wavenumber is included to account for the energy absorptienhanism in the gas, given
by k. ~ k(1 —in/2) with i = /—1. The linear Euler equation states the relationship between
particle velocity and acoustic pressure as:

1 9p

| = ———— 2

“ iwp Ox’ @)
wherep is the mass density. The general solution of Eq. (1) can bgenras,

p(x) = Ae™* 4 Be'er, ©)

whereA and B are constant coefficients determined from the boundaryitions.
By applying end conditions in a two-node acoustic specterhent (Fig. 1), the acoustic
pressure at any arbitrary point along the element is,
p(x) = g1(z)p1 + G2(x)po (4)
where,g, (z) andg,(x) are the interpolation functions of the spectral elements8lystituting
Eq. (4) in Eq. (2) the particle velocity at any arbitrary piaafong the element can be written as,

ﬁ (l‘) _ T [(ezkca: . ezkc(QL—x)) ﬁl + (esz(L—J}) _ ezkc(L—i—x)) ]52] (5)

Applying end conditions in the two-node acoustic specti@hent (Fig. 1), particle volumetric
velocity can be written in a matrix form as:

U1 Sk, 1 4 e%ikeL _9ptkeL I3 (6)
U2 wp (1 _ eQikcL) _2€ikcL 14 eQikCL 4 ZmL pQ

Assuming the duct as shown in Fig. 1 which is a duct unflanget epd, a radiation impedance
(ZmlL) is included in the model as demonstrated by Kinsteal. (1982).

Zmp, = pcS {i (kr)® + i0.6kr} (7)
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wheres is element section area ands duct radius. The time-average (indicated(py energy
density in an acoustic medium is the sum of potential andtkimmergy densities as:

1 A Ak 1 A A%
(e) = 1 (PUU + Epp ) ; 8)
Time-average energy flow (intensity) in an acoustic medisimritten as:
1 A Ak
(@) = ;R {pe"} (9)

whereRt is the real part of a complex number ancepresents complex conjugate.

An extension of Energy Spectral Element Method (ESEM) toett@ustic medium is pro-
posed, which allows solving the approximated energy flowtsah by applying the same matrix
scheme as Finite Element Method and Spectral Element MetRodsteady state condition,
harmonic excitation, small gas loss facfgr<< 1), the time and space averaged energy den-
sity for acoustic plane waves in a one-dimensional wavegggdn be written as J.C. Wohlever
(1992),

c? 9 B

—Ve(e) +nw(e) =11 (10)
nw

where— represents space-averagés the energy density calculated using Eq. (8s the gas

loss factorw is the circular frequency; is the sound velocity antl is the input power. The

energy flow (intensity) obtained by Eg. (9) is related to thergy density by:

CQ

q) = e . 11

(@) ==V @) (12)
The one-dimensional homogeneous solution of Eq. (10) isrgby:

(&) (z) = Ge™™ 4 He ™= (12)

wherek = w/c is the wavenumber; and H are constant coefficients determined from bound-
ary conditions. By applying end conditions in a two-nodeustic energy spectral element, the
energy density at any arbitrary point along the elementiainbd as:

- enkx _ enk(QL—a:) - enk(L—x) _ enk(L-i—J:) -
0 @) = () @+ () @ (13)
ha () ha(o)

whereh, (z) andhy(z) are the interpolation functions of the energy spectral el@mBy sub-
stituting Eq. (13) in Eq. (11) the energy flow at any arbitranint along the element can be
written as,

kc?

<q> (ZC) — _m [(eﬁk‘m . eﬁk‘(QLf:E)) <€—1> + (enk(LJr:c) + enk(Lfm)) <€—1>} (14)

By applying end conditions in a two-node acoustic spectialgy element the energy flow can
be written in a matrix form as:

(@) | ke 14 ek —2enkt (1) (15)
<(j2> w (1 _ 6277kL) _2enk;L 1 + €2nkL <

[y

Ny
<
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Reactive-type exhaust mufflers use the ability of a crossmsearea change to attenuate the
sound energy transmitted in a duct. Also, the medium prgpdrange in a duct will attenuate
the sound energy transmitted. In the acoustic filter thethy,medium is assumed to be sta-
tionary and the wave propagation is governed by the 1-D wguateon. To account for these
discontinuities in the energy model, additional coupliel@tionships need to be formulated and
inserted at these connection points. Since a rod and antacdust are ruled by the same wave
equation, the joint element used in this study is the sampegsed by Cho & Bernhard (1998)
for structural coupling type rod-rod. Then, the acoustigaimg relationship is obtained as:

(1) T G TG {€1)

@ | il -a o || (@

(16)

DN

wherer;; andr;; are the power transmission and reflection coefficients atdireident nodes
between elementsand;j. The radiation impedance is included in the ESEM@s= ac(e),
wherea = 7/(2—71) andr = 1 —|(Z,... — pc)/(Zm1 + pc)|2. Specifically, impedance radiation
(Zn1.), is the term that accounts for the change in geometry or uneg@roperties.

3 MONTE CARLO SIMULATION

The Monte Carlo simulation has been used for decades, it isthad based on random
samples used in approximations. The name itself is taken fre famous casino located in
Monte Carlo (Sampaio & Lima, 2012). Simulation methods ds® aamed exact methods,
because the simulation result leads to exact outcomes Wwkesatmple number goes to infinity.
To avoid certain approximations which occur in analyticathods and to be a non-intrusive
method are another advantages of this type of techniquess, Tlie general idea of the method
is solving mathematical problems by the simulation of rand@riables (Sobol’, 1994). An
Monte Carlo method example of application is the multidisienal integral approximation.
Supposing the integral of a given real multidimensionattion ¢ in a certain regiorB C R,

1= [ st an

If g is a simple function, its integrdl' ) can be calculated easily. Howeveryifs a difficult
function or is defined in a region with complicated contoumay not exist a closed form for
(I). In such cases, numerical integration methods must beeabliorder to obtain approx-
imations for(7), such as the trapeze method, Simpson method and Monte Qawéaton.
Assuming tha{/) is a one-dimensional integral,a function density probability of a random
variableX, rewriting Eq. (17) gives,

lef@m@mw> (18)

whereh(x) = g(x)/p(x)vx € B. The integrall can be interpreted as the expected value of
h(x), itis:

I =Bfux)) = [ nx)pix)i (19)
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Thus, an approximatiofy) for the integral can be expressed as
I= Z h(x") (20)

wherex(1), z(2), ..., z(n) are samples of the random vecXmwith probability density function
P

The mean and the standard deviation of the result are ctcularough the samples gener-
ated. LetX (¢, w) be the frequency response of the stochastic system calddtata realization
¢, generated by the Monte Carlo method Rubinstein (2008).

4 SIMULATION RESULTS

4.1 Single duct

The one-dimensional acoustic waveguide consists of a vigid cylindrical duct with an
unflanged open end and harmonically excited at the other gnklatrated in Fig. (2). The
acoustic medium is the air @0°C (p = 1.21 kg/m?®; ¢ = 343 m/s; andny = 2.86 x 1073),
and the duct geometry iS = 2.07* m? and L = 6.0 m. The harmonic excitation applied at
node 1 for the ESEM model is the corresponding input poweutated with the Eq. (9) at the
frequencyf = 500 Hz. By computing the statistic moments of energy density aragynflow
the mass densitypf and duct length ) are assumed to be spatially homogeneous Lognormal
random variables with coefficient of variation (COV) of 2 at@lb. The first and second stat-
ical moments are calculated using the non-intrusive MoragdCsimulation method with 500
samples.

Figure 2: Two-node one-dimensional acoustic waveguide @hent for single duct.

Figures. (3(a)) and (3(b)) demonstrate separately theeinfle of the variability in mass
density ) and duct length ), with COV of 10% respectively. The mean and standard devi-
ation (envelope) of the energy density is compared withrdatestic result. The mean of the
energies density are found closely follow the determiaisgsults. It is visible that variability
in p is more sensible than ih when the energies density amplitude is analysed. The param-
eters sensibility analyse in the energy density with valitghn both parameters are shown in
Fig. (3(c)). Similar behaviour of the Fig. (3(b)) is obseva this cases.
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Figure 3: Mean, standard deviation and deterministic energ density for a single duct with L (a), p (b) and
both (L,p) (c) as random variable.

In the case of the flow energy also the variability in mass igKg) and duct length k),
with COV of 10% were analysed (Fig. 4). As in density energ, flow energy mean is close
to the deterministic results. The standard deviation (e is more evident with the variance
of (p) than (L). The correspondent behaviour of the Fig. (4(c)) was obtirin this type of
system, the mass density is directly affected by the air egatpre, based on the presented
results a strict temperatures control should be done. Isitigde duct density and flow energy
presented close behaviour. Figures. (5) and (6) showghand () variability influence in
density and flow energy estimation for different COV’s (2%1d19%). The mean energies with
COV's of 2% and 10% follow the deterministic result, and tkenslard deviation (envelope)
demonstrate the variability in these both case. As commdethe temperature control which
implies in mass density variability is essential in thiseypf system. The behavior can be
seen in Figs. (5 and 6). For small COV the variability in thergies is close to mean response
while that for high COV the envelope increase, especialtwben 0 to 2 m in the duct length. It
because the energy is more intense at the node 1 (excitatiot),@after that the energy decrease
in reason of the damping effect.
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Figure 4. Mean, standard deviation and deterministic flow errgy for a single duct with L (a), p (b) and
both (L,p) (c) as random variable.
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Figure 5: Energy density for a single duct with COV of 2% (left-hand side) and 10%(right-hand side).
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Figure 6: Flow energy for a single duct with COV of 2% (left-hand side) and 10%(right-hand side).

4.2 Coupled duct

The coupled acoustic system consists of two one-dimenisamnaustic waveguide (rigid
wall ducts) with different geometry (cross section radind EeEngth) or medium property (sound
velocity, gas density and loss factor) connected each dbeahowed in Fig. (7). The system is
harmonically excited at the left end and opened in the riglt@nflanged). For the geometric
discontinuity the duct dimensions for element 1 &ke= 2.0 x 107> m andL; = 1.8 m,
while for element 2 are5, = 4.0 x 107> m? and L, = 4.2 m. Both elements contains air
at0°C (p = 1.21 kg/m?; ¢ = 343.0 m/s; andp = 5.8 x 10~3) as acoustic medium. For the
medium discontinuity the element 1 contains ai0at' (p;=1.293 kg/m, ¢; = 331.6 m/s,
n = 5.8 x 1073), while the element 2 contains hydrogeat’ (p, = 0.09 kg/m?®; ¢, = 1269.5
m/s; andy, = 8.8107?). Both elements have same geometric dimensiéns (.0 x 1073 m?
and L = 6m). The excitation and end conditions are the same as theestgment problem,
but the frequency-averaged energy density and flow respomeee calculated by ESEM in
1/3-octave frequency band with center frequeficy- 8 kHz .

Figure 7: Two-node one-dimensional acoustic waveguide ehent for coupling duct.

Likewise the analyses realized for the single duct, Fig&a)j@&nd (8(b)) show the influ-
ence of the variability of 10% in mass densitigsand p,) and duct length ) with section
variation. The coupling duct, with cross section area difiooity, causes an energy decay
at the discontinuity positiord(;). When the duct length is assumed as a random varidhle (
is related to the duct length), the density energy decayepted a variability at discontinuity
position. Figure. (8(a)) shows mean and standard devidiovelope) of the energy density
compared deterministic results. For the mass densjiaadp,) assumed as a random variable
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Figure 8: Mean, standard deviation and deterministic energ energy for a coupling duct with L (a), p (b)
and both (L,p) (c) as random variable.

the amplitude until the discontinuity position presentegadation, while the position indeed
shows significant changes. Figure. (8(b)) shows the cosgamf mean, standard deviation
(envelope), and deterministic energy density with massities variation. Interesting results
can be seen in Figure. (8(c)) which illustrates mean anddataindeviation (envelope) of the
energy density compared with a deterministic result. Is ttase, duct length and both mass
densities were assumed to be a random variable. An influehttee@wombination behavior
when the variability in all parameterd. (p, p-) is presented. Different of the single duct, now
the mass densities and duct length should be strict comteoiwvay to localize the discontinuity
position.

Figures (9(a))- (9(c)) show the @and py) and () variability influence in the flow energy
estimation for COV of 10%. A light decay can be observed infkbv energy with the change
section. The mean and standard deviation flow energy areclesg to deterministic result
when L is random. An amplitude variation is higher between 0 to 2nemyhand p, are the
random variable in reason of the high energy at the node 1lhedamping consequence. the
combination of the behavior when p, andL are assumed the random variable is demonstrated
in fig. (9(c))

Figures (10) and (11) show the &ndps) and () variability influence in density and
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Figure 9: Mean, standard deviation and deterministic flow errgy for a coupling duct with L (a), p (b) and
both (L,p) (c) as random variable.
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Figure 10: Energy density for a coupling duct with COV of 2% (left-hand side) and 10%(right-hand side).

flow energy estimation for different COV’s of 2% and 10%. lms$k case, mass density and
duct length induce a dispersion at the discontinuity positiAs the single duct analyse, for
small COV the variability in the energies is close to meapoese while that for high COV the
envelope increase, especially between 0 to 2 m in the dugthen
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Figure 11: Flow energy for a coupling duct with COV of 2% (left-hand side) and 10%(right-hand side).

5 CONCLUSION

The novel of the paper is to study the patterns of density aedyy flow generated guide
acoustic waves at high frequencies including uncertamigeometric parameters and property
of fluids in a single and coupling circular cross section diibie ESEM formulation for acoustic
wave propagation problem in a single and coupled finite aneedsional waveguide (duct)
with a spatially homogeneous uncertainty parameter isepted. To handle with this random
parameter, the Monte Carlo simulation is used to generawgles for the statistical moments
analyses. Interesting behaviors were observed for a samglecoupling duct. In the single
duct density and flow energy presented close behavior. Massitgt is shown more sensible
than duct length,the mean energies with COV’s of 2% and 10d8wdhe deterministic result,
and the standard deviation (envelope) demonstrate thabifs in these both case. For small
COV the variability in the energies is close to mean respamisie that for high COV the
envelope increased. However it was observed and greatyewargtion close to the node 1
(excitation point), and a damping effect along the duct. boapling duct with cross section
area discontinuity causes an energy decay at the discagtpasition(L;). Both parameters,
duct length and mass density showed sensitive, it was materavn the energy density. In this
case, mass densities and duct length should be strict tonéravay to localize the discontinuity
position.
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