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We study the band structure of elastic waves propagating in a nano-piezoelectric phononic crystal 
consisting of a polymeric matrix reinforced by BaTiO3 inclusions in square, rectangular, triangular, 
honeycomb and Kagomé lattices. We also investigate the influence of inclusion cross section geometry - 
circular, hollow circular, square and rotated square with a 45º angle of rotation with respect to x 
and y axes. Plane wave expansion method is used to solve the governing equations of motion of a 
piezoelectric solid based on classical elasticity theory, ignoring nanoscopic size effects, considering 
two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY 
and Z modes are observed for all inclusions and the best performance is for circular inclusion in a 
triangular lattice. Piezoelectricity influences significantly the band gaps for hollow circular inclusion 
in lower frequencies. We suggest that nano-piezoelectric phononic crystals are feasible for elastic 
vibration management in GHz.

Keywords: nano-piezoelectric phononic crystal, band structure, plane wave expansion method, 
complete band gaps, vibration control.
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1. Introduction

Phononic crystals (PCs) are artificial periodic composites 
designed to exhibit phononic band gaps and they have been 
quite studied1-14. There are no mechanical (elastic or acoustic) 
propagating waves in phononic band gaps, only evanescent 
waves. These band gaps are created by the periodically 
mismatch between the constituent materials. This mismatch 
can be considered to arise either from difference of material 
properties or geometry (continuum-scale theory), or from 
interatomic force constants and masses (atomic-scale theory).

The ability of creating phononic band gaps is similar 
to the electronic and photonic band gaps in semiconductors 
and photonic crystals15-16, respectively. The physical origin 
of phononic and photonic band gaps can be understood at 
micro-scale using the classical wave theory to describe 
the Bragg and Mie resonances, respectively, based on 
the scattering of mechanical and electromagnetic waves 
propagating within the crystal17.

PCs have many applications, such as vibration isolation 
technology18-22, acoustic barriers/filters23-25, noise suppression 
devices26-27, surface acoustic devices28, architectural design29, 
sound shields30, acoustic diodes31, elastic metamaterials21-22,25,27,32 
and thermal metamaterials33-39. 

There are also smart PCs that have been studied, such as 
piezoelectric40-54, piezomagnetic55-58 and magnetoelectroelastic14,59-63 
PCs. Among these intelligent PCs, piezoelectric PCs are 
sensitive to elastic and electric field. Even though the band 

structure behavior of piezoelectric PCs have been already 
investigated, to our knowledge only few studies46-49,51 
focused on the influence of inclusion geometry and lattice 
on band gap formation. Wang and co-workers46 considered 
a piezoelectric PC with square lattice and different inclusion 
geometries (regular triangle, square, hexagon, circle and 
oval). They found that the largest complete band gap is 
obtained by selecting the inclusion with the same symmetry 
of lattice for the first band gap. Hsu et al.47 studied the band 
structure of a piezoelectric PC with square and triangular 
lattices using Mindlin-Reissner plate theory and considering 
only circular inclusion. Qian and co-workers48 studied the 
band structure of piezoelectric PCs with square lattice and 
circular and square inclusions. They revealed the existence of 
several very large complete band gaps in PZT rods reinforced 
polythene composite. Zhou et al.49 investigated the band 
structure of piezoelectric PCs consisting of rectangular 
inclusion in an epoxy substrate. They considered a PC 
with square and triangular lattices. Wang and co-workers51 
considered a piezoelectric PC with circular inclusions and 
square and rectangular lattices. They verified that the largest 
band gap width is not always obtained for a square lattice. 
In some cases, rectangular lattice can produce broader gaps. 
In this context, we extend the studies about piezoelectric 
PCs40-54 considering the influence of different inclusion 
geometries - circular, hollow circular, square and rotated 
square with 45º angle of rotation with respect to the x and y 
axes, and different lattices - square, rectangular, triangular, 
honeycomb and Kagomé on the band structure.
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Furthermore, researches have used PCs on the scale 
µm10,17,64,65 and mm, resulting in band gaps ranging from 
GHz and kHz to MHz, respectively. More recently, with 
the advance of nanomaterials fabrication, nanophononic 
crystals have been studied and it is possible to control wave 
propagation in a frequency range from hypersonic3-6,66-75 to 
thermal33-39. However, nano-piezoelectric PCs have not been 
investigated yet even though studies about nano-piezoelectric 
materials have been reported76-79.

The main purpose of this study is to investigate the 
elastic band structure, also known as dispersion relation, of a 
nano-piezoelectric phononic crystal with square, rectangular, 
triangular, honeycomb and Kagomé lattices, composed by a 
polymeric matrix and BaTiO3 inclusions, considering wave 
propagation in the xy plane and two-dimensional periodicity. 
We consider the following inclusions geometries - circular, 
hollow circular, square and rotated square with a 45º angle 
of rotation with respect to the x and y axes. To obtain the 
elastic band structure we use the semi-analytical plane wave 
expansion1,2 (PWE) method.

To the best of our knowledge, it is the first time that 
the band structure of nano-piezoelectric PCs with different 
inclusion geometries and different lattices is investigated.

2. 2D Nano-Piezoelectric Phononic Crystal 
Model by PWE Method

PWE formulation of a 2D PC is presented in this section. 
PWE method1,2, also known as ω(k) method, is one of the 
most used methods to calculate the elastic band structure of 
PCs and it has been applied in micro10 and nanophononic 
crystals71,75 (NPCs). PWE method is used to solve the 
constitutive equations of a piezoelectric material based on 
classical elasticity theory, ignoring nanoscopic size effects, 
similar to other studies10,71,75. 

We consider two-dimensional periodicity, transversely 
isotropic elastic solid and wave propagation in the xy plane. 
Complete band gaps between XY (longitudinal-transverse 
vibration) and Z (transverse vibration) modes are observed 
for all inclusion geometry - circular, hollow circular, square 
and rotated square, considering square, rectangular, triangular, 
honeycomb and Kagomé lattices. Piezoelectric effect on the 
Z modes is also investigated.

2.1 2D Phononic Crystal Model

Figure 1 (a-e) sketches the cross section of nano-
piezoelectric PC unit cells taking in to account square, 
rectangular, triangular, honeycomb and Kagomé lattices, 
respectively, with arbitrary inclusion geometry. Figure 1 
(f-h) represents the first Brillouin zone80 (FBZ) for square, 
rectangular, triangular, honeycomb and Kagomé lattices. 
Note that triangular, honeycomb and Kagomé lattices present 
the same FBZ shape (Figure 1 (h)). We consider four types 
of BaTiO3 inclusions: circular, hollow circular, square and 

rotated square with a 45º angle of rotation with respect to 
the x, y axes. We underline that only BaTiO3 inclusions are 
rotated for rotated square configuration, not the entire lattice.

In addition, we highlight that we consider 1/4 of the 
FBZ as the actual first irreducible Brillouin zone80 (FIBZ) 
for square and rotated square inclusions in triangular, 
honeycomb and Kagomé lattices because the symmetries 
of phononic crystals are reduced since the phononic crystal 
basis has different symmetry from the lattice81. Thus, for 
these configurations we scan M'-Γ-X-M-X'-M'. It is very 
important to make this adjustment since it changes the 
phononic crystal band structures81. For circular and hollow 
circular inclusions in triangular, honeycomb and Kagomé 
lattices, phononic crystal symmetry is not reduced thus we 
scan only M-Γ-X-M.

FIBZ points in Figure 1 (f-h) are Γ (0,0), X ***** and 
M ****** for square lattice, Γ (0,0), X *****, M ****** 
and K **** for rectangular lattice, Γ (0,0), X ******, M 
*******, X' ******** and M' ****** for triangular lattice, 
Γ (0,0), X *******, M *******, X' ******** and M' 
****** for honeycomb lattice, and Γ (0,0), X ******, M 
*********, X' ******** and M' ***** for Kagomé lattice, 
respectively, where a is the lattice parameter for square, 
triangular, honeycomb and Kagomé lattices, whereas a1, a2 
are the lattice parameters for rectangular lattice.

The constitutive equations of an elastic piezoelectric 
material are41:

					            (1)

					            (2)

where i,j,k,l = 1,2,3, σij is the elastic stress tensor, Di is 
the electric displacement vector, ui is the elastic displacement 
vector, El is the electric field vector, cijkl is the elastic stiffness 
tensor, elij is the piezoelectric tensor and ϵil is the dielectric 
tensor. The standard tensor notation is used with Latin 
indices running from 1 to 3. They obey Einstein's summation 
convention when repeated.

We restricted the treatment to linear media, thus the 
elastic strain tensor εkl is simplified:

					            (3)

Furthermore, based on the quasi-static approximation, 
there is no electro source (i.e. since there is no voltage source, 
this configuration is also known as an open circuit) and the 
curl is zero, thus the electric field is taken as gradient of 
scalar potential and one can write:

					            (4)

,a 0rS X

,a a
r rS X ,a 0

1

rS X ,a a1 2

r rS X
, a0

2

rS X ,a3
4 0rS X

,a a3
r rT Y ,a a3

2
3

2r rT Y ,
a

0
3

2rT Y

,
a3 3

4 0rT Y ,
a a3 3

r rT Y ,a a9
2 3

3
2r rT Y

, a0 3
2rS X ,a3

2 0rS X
,a a2 2 3

r rT Y ,a a3 3
r rT Y

,c u e E.ij ijkl k l lij lv = -

,D e u E.i ikl k l il le= -

.u u2
1

, ,kl k l l kf = +Q V

.E ,l lz=-

,
a

0
3
rT Y



17Complete Band Gaps in Nano-Piezoelectric Phononic Crystals

Figure 1. Transverse cross-section of the nano-piezoelectric phononic crystal unit cell: BaTiO3 inclusions distributed in a polymeric matrix 
for square (a), rectangular (b), triangular (c), honeycomb (d) and Kagomé (e) lattices. First Brillouin zone for square (f), rectangular (g), 
triangular (h), honeycomb (h) and Kagomé (h) lattices.

The differential equations of motion in absence of body 
forces are given by:

					            (5)

					            (6)

where ρ is the mass density and dot denotes differentiation 
with respect to time. Substituting Eqs. (1-2) in Eqs. (5-6), 
applying the simplifications of Eqs. (3-4), considering a 
transversely isotropic elastic solid and for a two-dimensional 
problem, ∂/∂x3=0, results:

					            (7)

					            (8)

					            (9)

					            (10)

where c66= ** (c11 - c12). Note that Eqs. (7-10) are written 
using Voigt notation and from now on this notation is adopted. 

In addition, considering a piezoelectric PC, one can 
note that c11 = c11 (r), c12 = c12 (r), c66 = c66 (r), c44 = c44 (r), 
e15 = e15 (r), ϵ11 = ϵ11 (r), ρ = ρ(r), because we consider two 
different materials - BaTiO3 inclusions and a polymeric 
matrix, and ui = ui (r,t). For a two-dimensional periodicity 
(the system has translational symmetry in z direction and 
material parameters depend only on the x and y coordinates), 
then r = xe1 + ye2 (x,y ∈ ℝ) is the two-dimensional spatial 
vector and ei (i = 1,2) are the basis vectors in real space.

In order to eliminate the factor time in Eqs. (7-10), we 
apply the temporal Fourier transform. Applying Floquet-
Bloch's theorem82-83, expanding Bloch wave amplitude as 
Fourier series in reciprocal space and considering wave 
propagation in the xy plane (k3 = 0), we can write:

					            (11)

where uik (r) is the Bloch wave amplitude, note that uik 
(r) = uik (r + r) and ui(r + r) = ui(r)ejk.r, ejk.r is called Bloch 
periodic boundary condition, k = ub1 + 𝑣b2 is the Bloch wave 
vector, u, 𝑣 ∈ ℚ are the symmetry points within the FIBZ in 
reciprocal space, or we may write k = k1e1 + k2e2, k1, k2 ∈ ℝ 
are the point coordinates within the FIBZ in Figure 1 (f-h) 
for the reciprocal space. The basis vectors in reciprocal space 
bi (i = 1,2) are defined as ai ∙ bj = 2πδij, δij = 0 if i ≠ j or δij 
= 1 if i = j is the Kronecker delta, b1 = 2π ********* b2 = 
2π ********* ai (i = 1,2) are the components of the lattice 
vector r = (pa1 + qa2), p, q ∈ ℤ.

The lattice vector components are ai = aei (i = 1,2) for 
square lattice, a1 = a1e1, a2 = a2e2 for rectangular lattice, a1 = 
ae1, a2 = **e1 + *****e2 for triangular lattice, a1 = *****e1 
+ ***e2, a2 = - *****e1 + ***e2 for honeycomb lattice and 
a1 = ae1 + ****e2, a2 = -ae1 + ****e2 for Kagomé lattice.

The reciprocal lattice vector is defined as *************** 
(m, n ∈ ℤ) for square lattice, ***************** for 
rectangular lattice, ******************** for triangular 
lattice, ************************ for honeycomb lattice 
and ************************ for Kagomé lattice. Note 
that g is a two-dimensional vector because we consider two-
dimensional periodicity.

Furthermore, we may expand c11,c12,c66,c44,e15,ϵ11, ρ in 
Fourier series on the reciprocal space as:
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					            (12)

where P is one of the c11,c12,c66,c44,e15,ϵ11, ρ and g has 
the same expressions of g with m, n ∈ ℤ. We use g instead 
of g to highlight the difference between the Fourier series 
expansion of material properties and displacements.

Substituting Eqs. (11) and (12) in Eqs. (7-10), with * = 
g + g, multiplying by e-jg.r and integrating over the unit cell, 
we may write:

					            (13)

where

					            (14)

The sub-matrices in Eq. (14) are given by:

					            (15)

					            (16)

					            (17)

					            (18)

					            (19)

					            (20)

					            (21)

					            (22)

The matrix M in Eq. (13) is expressed by:

					            (23)

The vector q in Eq. (13) is given by:

					            (24)

Equation (13) is an infinite system of equations, thus 
the Fourier series needs to be truncated. We choose m,m,n,n 
= [-M, ..., M] and the total number of plane waves is (2M 
+ 1)2. Equation (13) represents a generalized eigenvalue 
problem of ω2 (k) and should be solved for each k into the 
FIBZ for square, rectangular, triangular, honeycomb and 
Kagomé lattices (Figure 1(f-h)).

The Fourier coefficients are defined as:

					            (25)

where the indexes A and B in Eq. (25) are related to inclusion 
(BaTiO3) and polymeric matrix, respectively, F(g) is the 
structure function and ƒ is the filling fraction of each type 
of inclusion, considering circular section of radius r,̃ square 
section of width 2l, rotated square section of width 2l with a 
45º angle of rotation with respect to x and y axes and hollow 
circular section with external radius R̃ and internal radius r,̃ 
R̃ > r.̃ The hollow cylinder inclusion has an internal radius 
r ̃of the same polymer at matrix and a thickness R̃ - r ̃of 
BaTiO3, similar to Anjos & Arantes10.

The filling fraction is defined as ƒ = SA/SC for square, 
rectangular and triangular lattices, whereas for honeycomb 
and Kagomé lattices it is defined as ƒ = 2SA/SC and ƒ = 3SA/SC, 
respectively, where SA is the cross section area of the BaTiO3 
inclusions and SC = ‖a1 × a2‖ is the cross section area of the 
unit cell. Note that differently from other lattices honeycomb 
and Kagomé lattices have two and three inclusions per unit 
cell, respectively. 

The filling fractions for square, rectangular, triangular, 
honeycomb and Kagomé lattices are:

					            (26)
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					            (27)

					            (28)

					            (29)

					            (30)

respectively.
The structure function for square, rectangular and 

triangular lattices F(g) is given by:

					            (31)

The integral in Eq. (31) is performed over the unit cell 
cross section. The structure functions for square, rectangular 
and triangular lattices are calculated by:

					            (32)

where g = ‖g‖ and g1,2 = ‖g1,2‖.
The structure function for honeycomb lattice FH(g) is 

defined as84:

					            (33)

where ū1 = -ū2 = a(0,1/2) are vectors that define central 
position of the two BaTiO3 inclusions within the honeycomb 
unit cell. We choose these vectors similar to Gao et al.85. Thus, 
the structure functions of BaTiO3 inclusions for honeycomb 
lattice are the same of Eq. (31) multiplied by cos(g ∙ u1), 
considering ƒ from Eq. (29). 

Table 1. Physical parameters of BaTiO3 inclusion (A) and polymeric 
matrix (B).

Geometry/Property Value

Lattice parameter (a) 30 x 10-9m

Lattice parameter (a1) 30 x 10-9m

Lattice parameter (a2) 25 x 10-9m

Filling fraction (ƒ) 0.335

Mass density (ρA,ρB) 5730 kg/m3, 1150 kg/m3

Elastic constant (c11A,c11B) 166 x 109N/m2, 7.8 x 109N/m2

Elastic constant (c12A,c12B) 77 x 109N/m2, 4.7 x 109N/m2

Elastic constant (c44A,c44B) 43 x 109N/m2, 1.6 x 109N/m2

Elastic constant (c66A,c66B) 44.5 x 109N/m2, 1.55 x 109N/m2

Piezoelectric 
coefficient(e15A,e15B) 11.6 C/m2, 0 C/m2

Dielectric coefficient 
(𝜖11A,𝜖11B)

11.2 x 10-9C2/Nm2, 0.0398 x 
10-9C2/Nm2

Note that a is the lattice parameter for square, triangular, honeycomb 
and Kagomé lattices, and a1, a2 are the lattice parameters for 
rectangular lattice.

The structure function for Kagomé lattice FKg (g) is 
defined as:

					            (34)

where ************************************ 
are vectors that define the three BaTiO3 inclusion positions 
within the Kagomé unit cell. It is possible to split Eq. (34) 
in its real and imaginary parts:

					            (35)

					            (36)

					            (37)

where ūj1,2 = ‖ūj1,2‖.

3. Results and Discussion

The physical parameters of BaTiO3 inclusion (A) and 
polymeric matrix (B) are listed in Table 1. We calculate the 
elastic band structure considering initially a fixed filling 
fraction, 0.335, for the four inclusion cross section geometries 
considered - circular, hollow circular, square and rotated 
square with a 45º angle of rotation with respect to the x, y 
axes, in a square, rectangular, triangular, honeycomb and 
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Figure 2. Elastic band structures of XY (red) and Z (blue) modes of BaTiO3 inclusions in a polymeric matrix for square lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45º angle of rotation 
with respect to the x, y axes.
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Figure 3. Elastic band structures of XY (red) and Z (blue) modes of BaTiO3 inclusions in a polymeric matrix for rectangular lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45º angle of rotation 
with respect to the x, y axes.
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Kagomé lattices. In the course of numerical calculations, we 
consider 441 plane waves for Fourier series expansion (i.e. M 
= 10), which results in a good convergence. Band structure 
plots are limited until a maximum frequency of 0.12 THz.

Figure 2 (a-d) shows the band structures of the nano-
piezoelectric PC for square lattice, considering the four types 
of inclusions and XY (red) and Z (blue) modes. We plot the 
band structures in the principal symmetry directions of FIBZ 
(see Figure 1 (f-h)). Plots are given in terms of frequency 
in Hz versus the reduced Bloch wave vector, k = ka/2π. 
The reduced Bloch wave vector for rectangular lattice is 
calculated taking into account ************. In Figure 2 (a), 
two complete band gaps are obtained for circular inclusion. 

From now on the relation between parameters R̃ and 
r ̃ for hollow circular inclusion is r ̃= 0.2R̃ and we do not 
investigate the influence of BaTiO3 thickness, i.e.R̃ - r,̃ in 
the band structure. The thickness influence of a carbon 
microstructure inclusion for square lattice was investigated 
by Anjos & Arantes10. Figure 2 (b) presents one complete 
band gap for hollow circular inclusion and we can observe 
that first branches occur in higher frequencies compared to 
the other inclusions.

Figure 2 (c) shows two complete band gaps for square 
inclusion and its first complete band gap is broader than 
the complete band gaps for circular and hollow circular 
inclusions. When these square inclusions are rotated 45º with 
respect to x and y axes (Figure 2 (d)) three complete gaps 
are opened up. The broadest complete band gap for square 
lattice is for rotated square inclusion with a bandwidth of 
11.97 GHz (43.5 GHz is the center frequency).

Figure 3 (a-d) shows the band structures for rectangular 
lattice. For circular and hollow circular inclusions, the band 
gap behavior of rectangular lattice is similar to square lattice, 
however they are narrower than the complete band gaps in a 
square lattice. For square and rotated square inclusions, only 
one and two complete band gaps are opened up, respectively. 
Similar to square lattice, the broadest complete band gap for 
rectangular lattice is opened up for rotated square inclusion 
with a bandwidth of 8.51 GHz (44.59 GHz is the center 
frequency).

Figure 4 (a-d) illustrates the band structures for triangular 
lattice. For circular, square and rotated square inclusions, a wide 
complete band gap is created. The broadest complete band gap 
for triangular lattice is for circular inclusion with a bandwidth 
of 12.98 GHz (36.31 GHz is the center frequency). A narrow 
complete band gap is also opened up for circular inclusion 
in high bands. For hollow inclusion, one complete band gap 
is created between 58.69 GHz-49.94 GHz. Comparing the 
band structures of triangular lattice to square and rectangular 
lattices, we observe that triangular lattice with circular inclusion 
presents the broadest complete band gap.

In Figures 5 (a-d) and 6 (a-d), honeycomb and Kagomé 
lattices, respectively, the band structures of square and 
rotated square inclusions present similar band gap behavior. 
The band structure of circular inclusion in honeycomb and 
Kagomé lattices presents seven and five complete band 
gaps, respectively. For Kagomé lattice, all the complete 
band gaps are narrower than the broadest complete band 
gap from square, rectangular, triangular and honeycomb 
lattices. The broadest complete band gap for honeycomb 
lattice is for circular inclusion with a bandwidth of 9.77 GHz 
(31.19 GHz is the center frequency). For hollow inclusion 
in honeycomb and Kagomé lattices, we can observe two 
and one complete band gaps, respectively, and the first 
bands appear in higher frequencies compared to the other 
inclusions, similar as observed to other lattices - square, 
rectangular and triangular.

Comparing the band structures for honeycomb and 
Kagomé lattices, we observe that honeycomb lattice presents 
the best performance (more complete band gaps and broader 
complete band gaps) for all inclusions.

In Figures 7-11, we show the comparison between Z 
modes of the nano-piezoelectric PC with (blue asterisks) 
and without (e15A = 0) (black circles) piezoelectricity for 
square, rectangular, triangular, honeycomb and Kagomé 
lattices, respectively. The influence of piezoelectricity is 
significant on the band gaps for all lattices and inclusions. 
This influence is more evident in high frequencies60 for 
circular, square and rotated square inclusions. However, for 
hollow circular inclusion in all lattices (Figures 7-11 (b)), 
the piezoelectricity is also significant in lower frequencies.

We illustrate in Figures 12-16 the complete band gap 
widths between XY and Z modes as a function of filling 
fraction for all inclusions and lattices. Piezoelectricity is 
included in this analysis.

In a square lattice (Figure 12), circular and square 
inclusions provide the best behavior with high complete band 
gap widths in a broad range of filling fraction. Considering 
the first band gap, square inclusion shows the highest one 
in a broad range of filling fraction. Furthermore, square 
inclusion also presents four complete band gaps. Hollow 
circular inclusion presents only one complete band gap, 
whereas rotated square inclusion does not present better 
performance than square inclusion.

For rectangular lattice, Figure 13, hollow circular 
inclusion opens up just one narrow complete band gap, 
whereas rotated square inclusion creates three complete 
band gaps, however, only the second one appear in a broad 
range of filling fraction. Similar as square lattice (Figure 12), 
circular and square inclusions present the broadest complete 
band gaps for rectangular lattice. Complete band gap widths 
in rectangular lattice are lower than in square lattice for all 
inclusions.

a a a1
2

2
2= +
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Figure 4. Elastic band structures of XY (red) and Z (blue) modes of BaTiO3 inclusions in a polymeric matrix for triangular lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45º angle of rotation 
with respect to the x, y axes.
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Figure 5. Elastic band structures of XY (red) and Z (blue) modes of BaTiO3 inclusions in a polymeric matrix for honeycomb lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45º angle of rotation 
with respect to the x, y axes.
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Figure 6. Elastic band structures of XY (red) and Z (blue) modes of BaTiO3 inclusions in a polymeric matrix for Kagomé lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45º angle of rotation 
with respect to the x, y axes.
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Figure 7. Elastic band structures of BaTiO3 inclusions in a polymeric matrix considering Z mode with (blue asterisks) and without (black 
circles) piezoelectricity for square lattice. The following types of inclusions are considered - circular (a), hollow circular (b), square (c) 
and rotated square with a 45º angle of rotation with respect to the x, y axes.
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Figure 8. Elastic band structures of BaTiO3 inclusions in a polymeric matrix considering Z mode with (blue asterisks) and without (black 
circles) piezoelectricity for rectangular lattice. The following types of inclusions are considered - circular (a), hollow circular (b), square 
(c) and rotated square with a 45º angle of rotation with respect to the x, y axes.
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Figure 9. Elastic band structures of BaTiO3 inclusions in a polymeric matrix considering Z mode with (blue asterisks) and without (black 
circles) piezoelectricity for triangular lattice. The following types of inclusions are considered - circular (a), hollow circular (b), square 
(c) and rotated square with a 45º angle of rotation with respect to the x, y axes.
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Figure 10. Elastic band structures of BaTiO3 inclusions in a polymeric matrix considering Z mode with (blue asterisks) and without 
(black circles) piezoelectricity for honeycomb lattice. The following types of inclusions are considered - circular (a), hollow circular (b), 
square (c) and rotated square with a 45º angle of rotation with respect to the x, y axes.
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Figure 11. Elastic band structures of BaTiO3 inclusions in a polymeric matrix considering Z mode with (blue asterisks) and without (black 
circles) piezoelectricity for Kagomé lattice. The following types of inclusions are considered - circular (a), hollow circular (b), square (c) 
and rotated square with a 45º angle of rotation with respect to the x, y axes.
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Figure 12. Elastic complete band gap widths between XY and Z modes of BaTiO3 inclusions in a polymeric matrix as a function of filling 
fraction for square lattice. The following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square 
with a 45º angle of rotation with respect to the x, y axes.

Figure 14 shows complete band gap widths for triangular 
lattice. Circular inclusion presents the best performance. 
Comparing triangular lattice (Figure 14) to square lattice 
(Figure 12), triangular lattice presents the best performance 
for circular (first complete band gap), hollow circular and 
rotated square inclusions. However, for square inclusion, 
square lattice shows better performance than triangular 
lattice. There are two important variables to conclude which 
is the best band gap performance, that is to say the band gap 
width (the higher, the better) and the filling fraction range 
in which the band gaps are opened (the broader, the better).

Comparing honeycomb (Figure 15) and Kagomé (Figure 
16) lattices, the best performance is found for honeycomb 
lattice considering circular, hollow circular and rotated 
square inclusions. However, the difference among these 
lattices is subtle. The highest band gap width for honeycomb 
and Kagomé lattices is for circular inclusion. Comparing 
honeycomb and Kagomé lattices to the other lattices, we 
can observe that for all inclusions, the best behavior is found 
for square (Figure 12) and triangular (Figure 14) lattices. 
The worst performance is found for rectangular lattice with 
hollow circular inclusion (Figure 13 (b)).
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Figure 13. Elastic complete band gap widths between XY and Z modes of BaTiO3 inclusions in a polymeric matrix as a function of filling 
fraction for rectangular lattice. The following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated 
square with a 45º angle of rotation with respect to the x, y axes.
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Figure 14. Elastic complete band gap widths between XY and Z modes of BaTiO3 inclusions in a polymeric matrix as a function of filling 
fraction for triangular lattice. The following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated 
square with a 45º angle of rotation with respect to the x, y axes.
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Figure 15. Elastic complete band gap widths between XY and Z modes of BaTiO3 inclusions in a polymeric matrix as a function of filling 
fraction for honeycomb lattice. The following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated 
square with a 45º angle of rotation with respect to the x, y axes.

4. Conclusion
Broad complete band gaps are obtained for a nano-

piezoelectric PC, consisting of BaTiO3 inclusions embedded 
in a polymeric matrix, for different inclusion geometries and 
different lattices. We firstly study the elastic band structure for 
a fixed filling fraction of 0.335 considering XY and Z modes. 
For square lattice, the broadest complete band gap is found 
for rotated square inclusion with 11.97 GHz of bandwidth. 
This inclusion geometry is also the best one for rectangular 
lattice. Triangular lattice presents the broadest complete 
band gap than the other lattices for circular inclusion. The 
elastic band structure for honeycomb and Kagomé lattices 
presents several complete band gaps. However, for Kagomé 

lattice, all of them are narrower than the complete band gaps 
from square, rectangular, triangular and honeycomb lattices.

The Z mode with and without piezoelectric effect is also 
investigated for a fixed filling fraction of 0.335. This effect is 
significant on the band gaps for all lattices and inclusions, and 
it is more evident in higher frequencies for circular, square 
and rotated square inclusions. However, piezoelectricity is 
significant in lower frequencies for hollow circular inclusion.

We also analyze the complete band gap bandwidths as a 
function of filling fraction for all inclusions and lattices with 
piezoelectric effect. Among square, rectangular and triangular 
lattices, triangular lattice presents the best performance for 
circular inclusion (first complete band gap), hollow circular 
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Figure 16. Elastic complete band gap widths between XY and Z modes of BaTiO3 inclusions in a polymeric matrix as a function of filling 
fraction for Kagomé lattice. The following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated 
square with a 45º angle of rotation with respect to the x, y axes.

and rotated square inclusions. For square inclusion, square 
lattice shows the best performance. Among honeycomb 
and Kagomé lattices, the best performance is found for 
honeycomb lattice considering circular, hollow circular and 
rotated square inclusions.

The best band gap performance (i.e. highest band gap 
width and band gap opened up in a broad range of filling 
fraction) of the nano-piezoelectric PC investigated is for 
circular inclusion in a triangular lattice. However, it also 
depends on the application, for instance the frequency 
range of interest. Finally, we suggest that elastic complete 
band gaps in nano-piezoelectric PCs enlarge the potential 
applications for elastic vibration control in GHz.
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