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We investigate the band structure of elastic waves propagating in carbon nanostructure phononic 
crystals with square, rectangular, triangular, honeycomb and Kagomé lattices. We also study the influence 
of carbon nanostructure cross section geometry - circular, hollow circular, square and rotated square 
with a 45° angle of rotation with respect to the x and y axes. Plane wave expansion method is used to 
solve the governing equations of motion of a isotropic solid  based on classical elasticity theory, ignoring 
nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. 
Complete band gaps between XY and Z modes are observed for all types of nanostructures. The best 
performance is for nanophononic crystal with circular carbon nanostructures in a triangular lattice 
with high band gap width in a broad range of filling fraction. We suggest that carbon nanostructure 
phononic crystals are feasible for elastic vibration management in GHz.

Keywords: carbon nanostructure phononic crystal, band structure, plane wave expansion method, 
complete band gaps, vibration control
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1. Introduction

Recently, artificial periodic composites known as 
phononic crystals (PCs) have been quite studied1-14. They are 
created by arranging periodically two or more materials with 
different vibrational properties. Elastic/acoustic mismatch 
between the constituent materials can be considered to arise 
either from difference of material properties/geometric 
parameters (e.g., density, elastic modulus, cross-sectional 
area) - continuum-scale theory, or from interatomic force 
constants and masses - atomic-scale theory.

PCs have received renewed attention because they exhibit 
band gaps where there are only mechanical (elastic or acoustic) 
evanescent waves and no mechanical propagating waves. 
Novel physical properties of PCs arise from the possibility 
of creating phononic band gaps and negative refraction 
(phonon branches with negative group velocity)4. Phononic 
band gaps are similar to electronic and photonic band gaps 
in semiconductors and photonic crystals15,16, respectively.

The physical origin of phononic and photonic band gaps can 
be understood at micro-scale using the classical wave theory 
to describe Bragg and Mie resonances, respectively, based 
on the scattering of mechanical and electromagnetic waves 
propagating within the crystal17. PCs have many applications, 
such as vibration isolation technology18-22, acoustic barriers/
filters23-25, noise suppression devices26,27, surface acoustic 
devices28, architectural design29, sound shields30, acoustic 
diodes31, elastic/acoustic metamaterials21,22,25,27,32 (EM/AM), 

also known as locally resonant phononic crystals (LRPC), 
and thermal metamaterials33-39 (TM), also known as phononic 
thermocrystals or locally resonant phononic thermocrystals.

Phononic thermocrystals can reduce the thermal conductivity 
in a nanostructured semiconducting material without affecting 
other important factors, especially electrical conductivity.

LRPCs, differently from traditional PCs which create 
Bragg-type band gaps, present locally resonant (LR) band 
gaps. LR band gaps can be obtained in a frequency range of 
orders of magnitude lower than that given by Bragg limit. LR 
band gaps arise in the vicinity of the local resonator natural 
frequency while Bragg-type band gaps typically occur at 
wavelengths of the order of unit cell size. The concept of 
EM or LRPC generally involves local resonators, and the 
periodicity is advantageous (creates Bragg-type band gaps), 
but it is not necessary in an EM33,34.

Researchers have been studied PCs on µm10,17,40,41 - mm 
scales, with frequency band gaps ranging from GHz and kHz 
to MHz, respectively. However, they present poor electronic 
and optical applications. More recently, with the advance of 
nanomaterial fabrication, nanophononic crystals have been 
studied and it is possible to control wave propagation in a 
frequency range from hypersonic3-6,42-51 to thermal33-39. Only 
few studies have focused on carbon microstructure10 and 
carbon nanostructure PCs in a hypersonic frequency range 
for elastic wave propagation control. Anjos & Arantes10 
studied the influence of carbon microtubes in an epoxy 
matrix achieving band gaps ranging from GHz scale. These 
researchers10 only studied hollow circular cross section 
geometry in a square lattice.
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The main purpose of this study is to investigate the 
elastic band structure, also known as dispersion relation, 
of carbon nanostructure (inclusion)/epoxy (matrix) PCs 
with wave propagation in the xy plane and two-dimensional 
periodicity in a square, rectangular, triangular, honeycomb 
and Kagomé lattices. We consider the following carbon 
nanostructure geometries - circular, hollow circular, square 
and rotated square with a 45° angle of rotation with respect 
to the x and y axes. We apply the plane wave expansion1,2 
(PWE) method to obtain the elastic band structure.

To the best of our knowledge, it is the first time that 
the elastic band structure of a carbon nanostructure PC is 
analyzed varying the inclusion geometries and lattice types 
for mechanical vibration control.

2. 2D Carbon Nanostructure Phononic 
Crystal Model by PWE Method

This section presents PWE formulation for a 2D PC. 
PWE method1,2, also known as ω(k) method, where k is the 
Bloch wave vector, is a semi-analytical method used to predict 
the band structure. PWE is one of the most used methods to 
calculate the elastic band structure of PCs and it has been 
applied in micro10 and nanophononic crystals47,51 (NPCs). 
PWE method is used to solve the constitutive equations 
based on classical elasticity theory, ignoring nanoscopic 
size effects, similar to other studies47,51. Quantum effects 
should be investigated in a near future.

We also consider two-dimensional periodicity, i.e. 2D 
PC, isotropic elastic solid and wave propagation in the xy 
plane. Complete band gaps between XY (longitudinal-
transverse vibration) and Z (transverse vibration) modes are 
observed for all types of carbon nanostructures - circular, 
hollow circular, square and rotated square with a 45° angle 
of rotation with respect to the x, y axes, considering square, 
rectangular, triangular, honeycomb and Kagomé lattices.

2.1 2D Phononic Crystal Model

Figure 1 (a-e) sketches the cross section of carbon 
nanostructure/epoxy PC unit cells taking into account 
square, rectangular, triangular, honeycomb and Kagomé 
lattices, respectively, with arbitrary carbon nanostructure 
geometry. Figure 1 (f-h) represents the first Brillouin zone52 
(FBZ) for square, rectangular, triangular, honeycomb and 
Kagomé lattices.

We consider 1/4 of the FBZ as the actual first irreducible 
Brillouin zone52 (FIBZ) for square and rotated square 
inclusions in triangular, honeycomb and Kagomé lattices 
because the symmetries of phononic crystals are reduced 
since the phononic crystal basis has different symmetry from 
the lattice53. Thus, for these configurations we scan M'-Γ-
X-M-X'-M'. It is necessary to make this adjustment since it 
changes the phononic crystal band structures53. For circular 
and hollow circular inclusions in triangular, honeycomb and 

Kagomé lattices, phononic crystal symmetry is not reduced 
thus we scan only M-Γ-X-M. It is important to highlight that 
exist three variations in the hexagonal lattice54, i.e. triangular, 
honeycomb (or graphite) and Kagomé lattices.

FIBZ points in Figure 1 (f-h) are Γ (0,0), X ***** and 
M ****** for square lattice, Γ (0,0), X *****, M ****** 
and K **** for rectangular lattice, Γ (0,0), X ******, M 
*******, X’ ******** and M’ ****** for triangular lattice, 
Γ (0,0), X *******, M *******, X’ ******** and M’ 
****** for honeycomb lattice, and Γ (0,0), X ******, M 
*********, X’ ******** and M’ ***** for Kagomé lattice, 
respectively, where a is the lattice parameter for square, 
triangular, honeycomb and Kagomé lattices, whereas a1, a2 
are the lattice parameters for rectangular lattice.

The constitutive equations of an elastic material are55:

					            (1)

where σij is the elastic stress tensor, ui is the elastic 
displacement vector and cijkl is the elastic stiffness tensor. 
The standard tensor notation is used with Latin indices 
running from 1 to 3. They obey Einstein's summation 
convention when repeated.

We restricted the treatment to linear media, thus the 
elastic strain tensor εkl is simplified:

					            (2)

Equations of motion in absence of body forces are given by:

					            (3)

where ρ is the mass density and dot denotes differentiation with 
respect to time. Substituting Eq. (1) in Eq. (3), considering 
an isotropic elastic solid and for a two-dimensional problem, 
∂/∂x3=0, one can write:

					            (4)

					            (5)

					            (6)

Note that Eqs. (4-6) are written using Voigt notation. 
Equations (4-6) can also be rewritten in a vectorial notation:

					            (7)

					            (8)
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Figure 1. Transverse cross-section of the binary composite system unit cell: an array of carbon nanostructures periodically distributed 
in an epoxy matrix for square (a), rectangular (b), triangular (c), honeycomb (d) and Kagomé (e) lattices. First Brillouin zone for square 
(f), rectangular (g), triangular (h), honeycomb (h) and Kagomé (h) lattices.

where c66 = 2
1  (c11 - c12) = c44 = G, G

E
2 1 o

= +Q V  is the shear 
modulus, E is the Young's modulus, ν is the Poisson's ratio, 
c11 = λ + 2μ, c12 = λ, E

1 1 2m
o o

o= + -Q QV V  and μ = G are known as 
Lamé coefficients, ∇T = (∂/∂x1)e1 + (∂/∂x2)e2, uT = u1e1 + 
u2e2, and ei (i = 1,2) are the basis vectors in the real space.

In addition, considering a PC, we can note that c11 = 
c11(r), c12 = c12(r), c66 = c66(r), c44 = c44(r), ρ = ρ(r) because 
we consider two different materials - carbon and epoxy, and 
ui = ui(r,t). For a two-dimensional periodicity (the system 
has translational symmetry in z direction and the material 
parameters depend only on the x and y coordinates), then r 
= xe1 + ye2 (x,y ∈ ℝ) is the two-dimensional spatial vector.

In order to eliminate the factor time in Eqs. (4-6), we 
apply the temporal Fourier transform. Applying the Floquet-
Bloch's theorem56,57, expanding Bloch wave amplitude as 
Fourier series in reciprocal space and considering wave 
propagation in the xy plane (k3 = 0), we can write:

					            (9)

where uik (r) is the Bloch wave amplitude. Note that uik (r) 
= uik (r + r) and ui (r + r) = ui (r)ejk.r, where ejk.r is called 
the Bloch periodic boundary condition, k = ub1 + νb2, u, ν 
∈ ℚ are the symmetry points within the FIBZ in reciprocal 
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lattice. Note that g is a two-dimensional vector because we 
consider two-dimensional periodicity.

Furthermore, we may expand c11, c12, c66, c44, ρ in Fourier 
series on the reciprocal space as:

					            (10)

where P is one of the c11, c12, c66, c44, ρ and g has the same 
expressions of g with m, n ∈ ℤ. We use g instead of g to 
highlight the difference between the Fourier series expansion 
of material properties and displacements.

Substituting Eqs. (9) and (10) in Eqs. (4-6), with gu  = g 
+ g, multiplying by e-jg.r and integrating over the unit cell, 
we may write:
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The sub-matrices in Eq. (12) are given by:

					            (13)

					            (14)

					            (15)

					            (16)

					            (17)

The matrix M in Eq. (11) is expressed by:

					            (18)

The vector q in Eq. 11 is given by:

					            (19)

Equation (11) is an infinite system of equations, thus 
we truncate the Fourier series, i.e. m, m, n, n = [-M,...,M] 
and the total number of plane waves is (2M + 1)2. Equation 
(11) represents a generalized eigenvalue problem of ω2(k) 
and should be solved for each k into the FIBZ for square, 
rectangular, triangular, honeycomb and Kagomé lattices 
(Figure 1 (f-h)).

The Fourier coefficients are defined as:

					            (20)

where indexes A and B in Eq. (20) are related to inclusion 
(carbon nanostructure) and matrix (epoxy), respectively, F(g) 
is the structure function and f is the filling fraction of each 

type of carbon nanostructure, considering circular section of 
radius r,̃ square section of width 2l, rotated square section of 
width 2l with a 45° angle of rotation with respect to x and 
y axes and hollow circular section with external radius R̃ 
and internal radius r,̃ R̃ > r.̃ Hollow cylinder inclusion has 
an internal radius r ̃of epoxy and a thickness R̃ - r ̃of carbon 
nanostructure, similar to Anjos & Arantes10.

The filling fraction is defined as f = SA/SC for square, 
rectangular and triangular lattices, whereas for honeycomb 
and Kagomé lattices it is defined as f = 2SA/SC and f = 3SA/
SC, respectively, where SA is the cross section area of the 
carbon nanostructures and SC = ‖a1 × a2‖ is the cross section 
area of the unit cell. Note that differently from the other 
lattices honeycomb and Kagomé lattices have two and three 
inclusions per unit cell, respectively. The filling fractions 
for square, rectangular, triangular, honeycomb and Kagomé 
lattices are:

					            (21)
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					            (25)

respectively.
The structure function for square, rectangular and 

triangular lattices F(g) is defined as:

					            (26)
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The integral in Eq. (26) is performed over the cross 
section of the unit cell. The structure functions for square, 
rectangular and triangular lattices are:

					            (27)

where g = ‖g‖ and g1,2 = ‖g1,2‖.
The structure function for honeycomb lattice FH(g) is 

defined as58:

					            (28)

where u1 = -u2 = a(0, 1/2) are the vectors that define the 
central position of the two scatterers (carbon nanostructures) 
into the honeycomb unit cell. We chose these vectors similar 
to Gao et al.59. Thus, the structure functions of carbon 
nanostructures for honeycomb lattice are the same of Eq. 
(26) multiplied by cos(g.u1), considering f from Eq. (24). 
Note that Eq. (28) is not multiplied by 2cos(g.u1) as other 
authors58,59, because we define the filling fraction as f = 
2SA/SC and not as f = SA/SC.

The structure function for Kagomé lattice FKg(g) is 
defined as:

					            (29)

where , ,u e e u e e u ea a a a a
2 6

3
2 6

3
3
3

1 1 2 2 1 2 3 1=- - = - =r r r  
are the vectors that define the positions of the three carbon 
nanostructures into the Kagomé unit cell. Note that the Eq. 
(29) is multiplied by 1/3, because we define the filling fraction 
as f = 3SA/SC and not as f = SA/SC. It is possible to rewrite Eq. 
(29) separating its real and imaginary parts:

					            (30)

					            (31)

					            (32)

where ui1,2 = ‖ui1,2‖.

3. Results and Discussion

The physical parameters of carbon nanostructure (A) 
and epoxy (B) are listed in Table 1. We use some physical 

parameters of Anjos & Arantes10. We calculate the elastic 
band structure considering initially a fixed filling fraction, 
0.335, for the four carbon nanostructure cross section 
geometries - circular, hollow circular, square and rotated 
square with a 45° angle of rotation with respect to the x, y axes, 
considering square, rectangular, triangular, honeycomb and 
Kagomé lattices. In the course of the numerical calculations, 
the integers m, m, n, n are limited to the interval [-10, 10] 
for all results, i.e. 441 plane waves. This resulted in a good 
convergence. We restrict the band structure plots until a 
maximum reduced frequency, i.e. Ω = ωa/2πc44, of 2, where 
c44 = fc44A + (1 - f)c44B. The reduced frequency for rectangular 
lattice is calculated considering a a a1

2
2
2= + .

Figure 2 (a-d) compares the band structure of a square 
lattice illustrated in Figure 1 (a) and (f) for the four types of 
carbon nanostructures, considering XY (red) and Z (blue) 
modes. We plot the band structure in the three principal 
symmetry directions of the FIBZ (see Figure 1 (f-h)). Plots 
are given in terms of reduced frequency versus reduced Bloch 
wave vector k = ka/2π. The reduced Bloch wave vector for 
rectangular lattice is calculated considering a a a1

2
2
2= +

. In Figure 2 (a), two complete band gaps are obtained for 
circular carbon nanostructure.

The relation between parameters R̃ and r ̃ for hollow 
circular carbon nanostructure is fixed, i.e.r ̃ = 0.2R̃. We 
do not investigate the influence of carbon nanostructure 
thickness, i.e. R̃ - r,̃ on the band structure. The influence 
of carbon microstructure thickness for square lattice was 
investigated by Anjos & Arantes10. Figure 2 (b) presents 
one complete band gap and we can observe that the first 
branches occur in higher frequencies compared to the other 
carbon nanostructures.

Figure 2 (c) shows one complete band gap for square 
carbon nanostructure and it is the broadest one for square 
lattice, with a bandwidth of 0.3478, approximately. When 
these square carbon nanostructures are rotated 45° with 
respect to x and y axes, another three narrow complete 
gaps are created in higher frequencies as illustrated in 
Figure 2 (d). Even though square carbon nanostructure 
presents the broadest complete band gap for square 
lattice, rotated square carbon nanostructure presents more 
complete band gaps.
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Table 1. Physical parameters of carbon nanostructure (A) and 
epoxy (B).

Geometry/Property Value

Lattice parameter (a) 30 x 10-9m

Lattice parameter (a1) 30 x 10-9m

Lattice parameter (a2) 25 x 10-9m

Filling fraction (f) 0.335

Mass density (ρA,ρB) 1800 kg/m3, 120 kg/m3

Young’s modulus (EA, EB) 130 x 109Pa, 6 x 109Pa

Poisson’s ratio (νA, νB) 0.4, 0.35

,
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Figure 2. Elastic band structures of XY (red) and Z (blue) modes of carbon nanostructures in an epoxy matrix for square lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of rotation 
with respect to the x, y axes.



561Band Structure in Carbon Nanostructure Phononic Crystals

Figure 3. Elastic band structures of XY (red) and Z (blue) modes of carbon nanostructures in an epoxy matrix for rectangular lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of rotation 
with respect to the x, y axes.
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Figure 4. Elastic band structures of XY (red) and Z (blue) modes of carbon nanostructures in an epoxy matrix for triangular lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of rotation 
with respect to the x, y axes.
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Figure 5. Elastic band structures of XY (red) and Z (blue) modes of carbon nanostructures in an epoxy matrix for honeycomb lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of rotation 
with respect to the x, y axes.
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Figure 6. Elastic band structures of XY (red) and Z (blue) modes of carbon nanostructures in an epoxy matrix for Kagomé lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of rotation 
with respect to the x, y axes.
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Figure 7. Elastic band gap widths of carbon nanostructures in an epoxy matrix as a function of filling fraction for square lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of rotation 
with respect to the x, y axes.

Figure 3 (a-d) shows the band structures for rectangular 
lattice. For circular, hollow circular and square carbon 
nanostructures, the number of complete band gaps of 
rectangular lattice is similar to square lattice. However, for 
rotated square carbon nanostructure, only two complete band 
gaps are created. Square carbon nanostructure presents the 
broadest complete band gap, as well as in a square lattice, 
with 0.4309 of bandwidth for rectangular lattice.

Figure 4 (a-d) shows the band structures for triangular 
lattice. For square and rotated square carbon nanostructures, 
we observe a wide complete band gap with close bandwidths, 
i.e. 0.3801 and 0.3865, respectively. The broadest complete 

band gap is observed for circular carbon nanostructure with 
a complete band gap width of 0.4141 (Figure 4 (a)). For 
hollow inclusion, two complete band gaps are opened up. 
Comparing the band structures of triangular lattice to the 
square and rectangular lattices, we observe that triangular 
lattice presents broader complete band gaps for all carbon 
nanostructures, except for square carbon nanostructure, where 
rectangular lattice presents the broadest complete band gap.

Figures 5 and 6 illustrate the band structures for honeycomb 
and Kagomé lattices, respectively. Square and rotated square 
carbon nanostructures present close behavior for both lattices. 
The band structure for circular carbon nanostructure shows 
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Figure 8. Elastic band gap widths of carbon nanostructures in an epoxy matrix as a function of filling fraction for rectangular lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of rotation 
with respect to the x, y axes.

four and three complete band gaps considering honeycomb 
and Kagomé lattices, respectively. However, all of them 
narrower than the complete band gaps for square, rectangular 
and triangular lattices. For hollow carbon nanostructure in 
honeycomb and Kagomé lattices, we can observe two and 
one complete band gaps, respectively. In addition, the first 
bands occur in higher frequencies compared to the other 
carbon nanostructures, similar to the other lattices - square, 
rectangular and triangular.

We also observe that Kagomé lattice presents better 
performance (broader band gaps) than honeycomb lattice 
for square and rotated square carbon nanostructures, whereas 

honeycomb lattice shows better performance than Kagomé 
lattice for circular and hollow circular carbon nanostructures.

In Figures 7-11, we analyze the elastic band gap widths 
(ΔΩ) as a function of filling fraction for all types of carbon 
nanostructures and lattices considered. For square lattice, 
Figure 7, the geometries that provide the best behavior are 
circular and square carbon nanostructures with high band 
gap widths in a wide range of filling fraction. Among circular 
and square geometries, square carbon nanostructure presents 
the best performance because it presents complete band gaps 
opened up over a wide range of filling fraction defined by 
0.06 ≤ f ≤ 0.86. Hollow circular carbon nanostructure presents 
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Figure 9. Elastic band gap widths of carbon nanostructures in an epoxy matrix as a function of filling fraction for triangular lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of rotation 
with respect to the x, y axes.

only three small complete band gaps, whereas rotated square 
carbon nanostructure does not improve the square carbon 
nanostructure performance.

For rectangular lattice, Figure 8, carbon nanostructures 
present less complete band gaps than square lattice for 
circular, square and rotated square geometries. All carbon 
nanostructures in square lattice present broader band gap 
widths than rectangular lattice in a large range of filling 
fraction. However, band gap widths are higher for rectangular 

lattice, considering circular, square and rotated square carbon 
nanostructures.

We can observe from Figure 9 that circular carbon 
nanostructure presents the broadest band gap widths for 
triangular lattice and they are opened up over a large range 
of filling fraction, i.e. 0.01 ≤ f ≤ 0.81.

Comparing triangular lattice, Figure 9, to square and 
rectangular lattices, Figures 7 and 8, respectively, it is not 
simple to identify which carbon nanostructure presents the 
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Figure 10. Elastic band gap widths of carbon nanostructures in an epoxy matrix as a function of filling fraction for honeycomb lattice. 
The following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of 
rotation with respect to the x, y axes.

best performance among the lattice types, because there are 
two important variables, that is to say the band gap width 
(the higher, the better) and the filling fraction range in which 
the band gaps are opened (the broader, the better).

From triangular, square and rectangular lattices, we 
observe that square carbon nanostructure presents the best 
performance for square lattice because many complete 
band gaps are opened up in a large range of filling fraction. 
However, in a specific range of filling fraction, square carbon 
nanostructure in rectangular lattice presents higher band gap 
widths. Circular, hollow circular and rotated square carbon 
nanostructures present the best performances for triangular 

lattice. Comparing the best performances until now, that is to 
say square and circular carbon nanostructures for square and 
triangular lattices, Figures 7 (c) and 9 (a), respectively, the 
best performance is found for circular carbon nanostructure 
in triangular lattice, because it presents high band gap width 
in a large range of filling fraction.

From Figures 10 and 11, we can observe that Kagomé 
lattice shows better performance than honeycomb lattice 
considering circular, square and rotated square carbon 
nanostructures. However, the difference among these lattices 
is subtle. Hollow circular carbon nanostructure for honeycomb 
lattice shows better performance than for Kagomé lattice. 
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Figure 11. Elastic band gap widths of carbon nanostructures in an epoxy matrix as a function of filling fraction for Kagomé lattice. The 
following types of inclusions are considered - circular (a), hollow circular (b), square (c) and rotated square with a 45° angle of rotation 
with respect to the x, y axes.

Comparing honeycomb and Kagomé lattices to other lattices 
analyzed, we can observe that for all carbon nanostructures, 
the best behavior is found for square and triangular lattices.

4. Conclusion

We obtain broad complete band gaps between XY and 
Z modes where there are no elastic propagating waves, only 
evanescent waves. We firstly analyze the elastic band structure 
of carbon nanostructures in an epoxy matrix for a fixed filling 
fraction of 0.335. For square lattice, the broadest complete 
band gap is found for square carbon nanostructure with 
0.3478 of bandwidth. This carbon nanostructure geometry 
is also the best one for rectangular lattice with 0.4309 of 

bandwidth. The broadest band gap for triangular lattice is 
observed for circular carbon nanostructure with a complete 
band gap width of 0.4141. The band structures of honeycomb 
and Kagomé lattices also opens up complete band gaps, 
however, all of them narrower than the complete band gaps 
of square, rectangular and triangular lattices.

We also analyze the elastic band gap widths as a function 
of filling fraction for all types of carbon nanostructures and 
lattices. Considering triangular, square and rectangular lattices, 
we observe that square carbon nanostructure presents the 
best performance for square lattice, whereas circular, hollow 
circular and rotated square carbon nanostructures present 
best performances for triangular lattice. For honeycomb and 
Kagomé lattices, Kagomé lattice presents the best performance 
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for circular, square and rotated square carbon nanostructures. 
However, the difference among these lattices is subtle.

In a general way, the best performance observed for the 
nanophononic crystal studied is found for circular carbon 
nanostructures in a triangular lattice. Finally, we consider 
square, rectangular, triangular, honeycomb and Kagomé 
lattices with carbon nanostructures perfectly embedded in 
an elastic background. This means that we neglect the effects 
due to decohesion of carbon nanostructures from epoxy 
matrix and due to roughness at the interface between carbon 
nanostructures and epoxy matrix. These defects can modify 
elastic wave propagation in composite materials, altering 
their band structure. The elastic complete band gaps in 
carbon nanostructure PCs enlarge the potential applications 
for vibration management in GHz.
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