
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://link.springer.com/article/10.1007/s40430-018-1330-2

DOI: 10.1007/s40430-018-1330-2

Direitos autorais / Publisher's copyright statement:

©2018 by Springer. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/


REVIEW

Spectral element-based method for a one-dimensional damaged
structure with distributed random properties

M. R. Machado1 • S. Adhikari2 • J. M. C. Dos Santos3

Received: 29 January 2018 / Accepted: 28 July 2018 / Published online: 9 August 2018
� The Brazilian Society of Mechanical Sciences and Engineering 2018

Abstract
Stochastic methods have received considerable attention because they address the randomness present in structural

numerical models. Uncertainties represent important events in dynamic systems regarding vibration response prediction,

especially in the mid- and high-frequency ranges, when responses have higher dispersions. The spectral element method

(SEM) is suitable for analysing wave propagation problems based on large frequency ranges. It is a powerful tool for

structural health monitoring. This paper unifies these two techniques to use the SEM with distributed randomness in the

system parameters to model structural damage. Parameters are assumed to be distributed along the structure and expressed

as a random field, which are expanded in the Karhunen–Loève spectral decomposition and memoryless transformation. A

frequency-dependent stochastic stiffness and mass element matrices are formulated for bending vibration. Closed-form

expressions are derived by the Karhunen–Loève expansion. Numerical examples are used to address the proposed

methodology.

Keywords Spectral element method � Uncertainty quantification � Karhunen–Loève expansion �Memoryless transformation

1 Introduction

An effective and well-known technique used in many

engineering areas is the finite element method (FEM) [1], a

stochastic treatment [2–4]. Nevertheless, wave propaga-

tion-based models and high-frequency band analyses

require many finite elements to obtain an accurate solution.

In these cases, FEM solution can be expensive or infeasible

from a computational perspective. An alternative is to use

other suitable approaches, such as the spectral element

method (SEM). With this method, the dynamic system

governing equations written in the frequency domain is

formulated using the concept of dynamic stiffness method

(DSM) [5]. SEM is a meshing method similar to FEM,

where the approximated element shape functions are sub-

stituted by shape functions obtained from the exact solu-

tions to the governing differential equations. Therefore, a

single element is enough to model any continuous and

uniform part of the structure. This feature significantly

reduces the number of elements required in the structure

model and improves the accuracy of the dynamic system

solution. In SEM, the responses are assumed to be wave-

mode superposition procedures from the discrete Fourier

transform (DFT) theory. Like FEM, mesh refinement can

be applied to any discontinuity (e.g., geometric, material,

external forces) in the spatial domain and assembly tech-

nique to form the global matrix equation. A linear problem

solution is solved by using a matrix equation related to the

global spectral nodal degrees-of-freedom (DoF). The

inverse-DFT is used in cases of time domain solutions.

Because the SEM assumes an exact frequency domain

solution, it implies high accuracy. Other advantages of this

method are the reduction of the problem size and DOFs,

low computational costs, effectiveness in dealing with

frequency domain problems and adequate care with the

non-reflecting boundary conditions of the infinite or semi-

infinite domain problems [6]. There are some drawbacks,
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however, such as the unavailability of exact wave solutions

for more complex, 2-dimensional and 3-dimensional

structures. However, approximated SEM can be used and

may still provide an accurate solution. Whereas SEM

ensures an exact frequency domain, it is not right for time

domain solutions, because errors of aliasing or leakage,

which are inevitable in the use of the inverse-DFT process,

require particular attention. To avoid distortion caused by

reflections, a damped structure or a semi-infinite (throw-

off) element should be employed with a large time window

[7].

In 1978, the first SEM proposal was presented by Bes-

kos and Narayanan [8], called ‘dynamic stiffness influence

coefficients in flexural forced vibration.’ They formulated

the dynamic stiffness matrix for two uniform Euler–Ber-

noulli beam element nodes in a frequency domain using

DFT theory. Their work was further improved and gener-

alised by Spyrakso and Beskos [9]. SEM [6, 10] has dif-

ferent names, such as DSM [11–21], spectral FEM [22, 23]

and dynamic FEM [24, 25]. Doyle [26] published his first

work about SEM for longitudinal wave propagation in

rods. He was the first to call this approach ‘spectral element

method.’ Later, he presents an excellent compilation of

works and other studies up to 1997 [7]. The book’s content

refers to SEM fundamentals with applications, mostly for

wave propagations in structures. In 2004, another book

about SEM was published by Lee [6], presenting an

extensive study of the fundamentals and a variety of new

applications (e.g., rotor dynamics, composite laminated,

periodic lattice, damage detection) not covered by Doyle’s

book. A third book of SEM was published by Gopalakr-

ishnan et al. [23], which was more focused on the wave

behaviour of composites, inhomogeneous media and active

vibration controls. More recently, a book with applications

to structural health monitoring was published by Osta-

chowicz et al. [27].

Probabilistic treatment of uncertainties using SEM is a

recent phenomenon. Works in this sense include papers by

Ajith and Gopalakrishnan [28] and Adhikari [29]. Owing to

SEM formulated with an exact wave propagation solution,

it becomes a suitable technique to model damaged struc-

tures. Generally, changes in global or local structural

properties can be associated with imperfections or damage.

Over the last two decades, many vibration-based works

have been developed for non-destructive evaluation tests

and structural health monitoring. They use changes in

modal parameters or dynamic responses to localise and

quantify damage [30, 31]. These techniques are well suited

to detect relatively large damages (i.e., not small), such as a

crack. A structural crack does not impose significant

changes in the low-frequency band, nor does it influence

global structural behaviour. However, the presence of a

crack in the structure introduces a local flexibility change

that affects the vibrational response. It generates an evident

change in the elastic waves that propagate through the

structure. Consequently, in the last decades, damage

detection researchers have focused on methods that use

elastic wave propagations at medium- and high-frequency

bands [32–36]. They use inherent material properties with

discontinuities (e.g., cracks) to generate changes in the

elastic waves propagating in the structure. There are some

advantages to elastic wave-based damage detection, such

as the capacity to propagate over significant distances and

high sensitivities to discontinuities near the wave propa-

gation path. Studies related to structural damage detection,

including a stochastic treatment and wave propagation

approaches, were also developed. Fabro et al. [37] pre-

sented a cracked rod modelled by SEM with randomness in

the crack local flexibility. Ng et al. [38] in 2011 published a

paper using a SEM-damaged rod structure and the Baye-

sian inference approach to determine the uncertain

parameters. Machado et al. [39] proposed the damaged rod

spectral element in a stochastic context. Other works that

use wave propagation and SEM to detect damage in the

presence of structural randomness can also be found in

[40, 41].

The central goal of this paper is to develop a formulation

for a stochastic approach of the SEM for a damaged one-

dimensional (1D) structure. Thus, a new formulation for a

damaged beam spectral element in a stochastic framework

is presented. The random parameters are assumed to be

spatially distributed and expressed by a random field.

Considering that the mechanical system random field (e.g.,

stiffness and mass) should not be understood as a Gaussian

distribution [42], the spectral decomposition known as the

Karhunen–Loève (KL) expansion is applied for a non-

Gaussian random field by using the memoryless transfor-

mation. Numerical simulations are used to demonstrate the

proposed formulation.

2 Stochastic SEM

This section presents a review of the general derivation for

the stochastic SEM [29] applied to dynamic mechanical

systems and the non-Gaussian random parameters

approximated by KL expansion.

2.1 General formulation

ðH;F ;PÞ is a probability space, and h 2 H denotes a

sampling point in the sampling space, H. F is the complete

r-algebra over the subsets of H, and P is the probability

measure. A linear damped distributed parameter dynamic

system is governed by a linear partial differential equation

[43] given by
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qðr; tÞ o
2Uðr; tÞ
ot2

þ L10ðhÞ
oUðr; tÞ

ot
þ L20ðhÞUðr; tÞ

¼ qðr; tÞ; r 2 D; t 2 T;

ð1Þ

where Uðr; tÞ is the displacement variable, qðr; tÞ is the

random mass distribution, qðr; tÞ is the distributed time-

varying forcing function, L10 is the random spatial self-

adjoint damping operator, L20 is the random spatial self-

adjoint stiffness operator, r 2 Rd is the spatial position

vector, d� 3 is the dimension of the model specified in

some domain, and D and t denote time domain. When

parametric uncertainties are considered, the mass density,

qðr; tÞ : ðRd �HÞ ! R, and the stiffness operator involve

a random process. The homogeneous deterministic system

of Eq. (1), without any external force [43], is given by,

q0
o2Uðr; tÞ

ot2
þ L10

oUðr; tÞ
ot

þ L20Uðr; tÞ ¼ 0; r 2 D;

ð2Þ

with a proper homogeneous boundary and initial condi-

tions. Taking the Fourier transform of Eq. (2) and con-

sidering zero initial conditions, one obtains

�x2q0uðr;xÞ þ ixL10fuðr;xÞg þ L20fuðr;xÞg ¼ 0;

ð3Þ

where x 2 ½0;X� is the circular frequency and X 2 R is the

maximum frequency. Like FEM, SEM considers that fre-

quency-dependent displacement within an element is

interpolated by using the nodal displacements as

ueðr;xÞ ¼ gðr;xÞdðxÞ; ð4Þ

where dðxÞ 2 Cn is the nodal displacement vector,

gðr;xÞ 2 Cn is the vector of frequency-dependent shape

functions, and n is number of the nodal DoF. Suppose the

sj 2 C, j ¼ 1; 2; . . .;m are the basis functions that exactly

satisfy Eq. (3), where m is the order of the ordinary dif-

ferential equation. The shape function vector can then be

expressed as

gðr;xÞ ¼ sðr;xÞCðxÞ; ð5Þ

where the vector, sðr;xÞ ¼ fsjðr;xÞgT; 8j ¼ 1; 2; . . .;m;

and the complex matrix, CðxÞ 2 Cn�m, depends on the

boundary conditions. The derivation of CðxÞ for the

bending vibration of beams is given in the next sections.

By extending the weak-form of the finite element

approach to a complex domain, the frequency-dependent

n� n complex random stiffness and mass element matrices

can be obtained as

Kðx; hÞ ¼
Z
D
ksðr; hÞL2fgTðr;xÞgL2fgðr;xÞgdr: ð6Þ

Mðx; hÞ ¼
Z
D
qðr; hÞgTðr;xÞgðr;xÞdr; ð7Þ

where ð�ÞT is the transpose matrix, ksðr; hÞ : ðRd �HÞ !
R is the random distributed stiffness parameter, and L2f�g
is the strain energy operator.

The uncertainty parameters are modelled within the

framework of a random field and are treated similarly to the

stochastic FEM proposed by Ghanem and Spanos [2]. The

random fields, ksðr; hÞ and qðr; hÞ, are expanded using the

KL expansion with a finite number of terms. Each complex

element matrix can be expanded in a spectral series. For the

case of the stiffness element matrix, it can be obtained as

Kðx; hÞ ¼ K0ðxÞ þ
XNK

j¼1

nKjðhÞKjðxÞ; ð8Þ

where NK is the number of terms kept in the KL expansion

and nKjðhÞ are uncorrelated random variables. The complex

deterministic symmetric stiffness element matrix is

K0ðxÞ ¼
Z
D
ks0ðr; hÞL2fgTðr;xÞgL2fgðr;xÞgdr

¼ CTðxÞ
Z
D
ksðr; hÞL2fsTðr;xÞgL2fsðr;xÞgdr

� �
CðxÞ;

ð9Þ

and

KjðxÞ ¼
ffiffiffiffiffiffi
kKj

q Z
D
uKj

ðrÞL2fgTðr;xÞgL2fgðr;xÞgdr

¼
ffiffiffiffiffiffi
kKj

q
CTðxÞ

Z
D
uKj

ðrÞL2fsTðr;xÞgL2fsðr;xÞgdr
� �

CðxÞ

8 j ¼ 1; 2; . . .;MK ;

ð10Þ

where kKj and uKj are the eigenvalues and eigenfunctions

satisfying the integral equation of covariance function

(Eq. 14). Equivalent equations corresponding to the mass

element matrix can be obtained similarly. The spectral

dynamic stiffness element matrix, expressed as a function

of the stiffness and mass element matrix, is

Dðx; hÞ ¼ Kðx; hÞ � x2Mðx; hÞ; ð11Þ

where Dðx; hÞ is a complex random symmetric element

matrix that needs to be inverted for every x to obtain the

dynamic response. In the next sections, this approach is

applied to the damaged beam model.

2.2 KL expansion

In probability theory, a stochastic or random process is

indexed by a subset of the real random variables repre-

senting the evolution of some system of random values

over time. It can also consider more general parameter
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spaces so that the stochastic process becomes a random

function of more than one variable. This type of stochastic

process is usually called a random field [44]. Various

points expressed by random variables describe a random

field. Thus, many mathematical procedures can be used to

solve the resulting discrete stochastic differential equa-

tions. The method applied here is a random field spectral

decomposition using KL expansion. Therefore, many

points are required for a good approximation. The nonzero

mean random process is decomposed as follows.

-ðx; hÞ ¼ -0ðxÞ þ Yðx; hÞ; ð12Þ

where -0ðxÞ implies the corresponding expected value and

Yðx; hÞ is a random field with the covariance function,

Cðx1; x2Þ defined in a space, D. By definition, Cðx1; x2Þ is
finite, symmetric and positive definite. Then, the random

field can be written as

Yðx; hÞ ¼
X1
j¼1

njðhÞ
ffiffiffiffi
kj

p
ujðxÞ; ð13Þ

where njðhÞ are uncorrelated random variables and kj and
ujðxÞ are, respectively, eigenvalues and eigenfunctions

satisfying the Fredholm integral equation:Z
D
Cðx1; x2Þujðx1Þdx1 ¼ kjujðx2Þ 8j ¼ 1; 2; . . .: ð14Þ

By multiplying Eq. (13) by ujðxÞ and integrating over the

domain, D, an explicit expression for njðhÞ, is obtained as

njðhÞ ¼
1ffiffiffiffi
kj

p
Z
D
Yðx; hÞujðxÞdx; ð15Þ

with mean and covariance functions given by

E½niðhÞ� ¼ 0;

E½niðhÞnjðhÞ� ¼ dij;
ð16Þ

where dij is the Kronecker-delta function. The integral in

Eq. (15) can be interpreted as an infinite series of zero

mean uncorrelated random variables. If the process,

-ðx; hÞ, has a Gaussian marginal probability density

function (PDF), Yðx; hÞ, it reduces to a zero mean Gaussian

variable for a fixed position, x [42]. The KL coefficients are

independent uncorrelated standard Gaussian variables. By

applying the expansion to real cases, the infinite series is

truncated with N terms to obtain -ðx; hÞ. Rewriting

Eq. (12), one has

-ðx; hÞ ¼ -0ðxÞ þ
XN
j¼1

njðhÞ
ffiffiffiffi
kj

p
ujðxÞ: ð17Þ

The spectral decomposition of the covariance function

implies the solution of Eq. (14). Some covariance functions

can be solved analytically, such as the first-order Markov

processes, given by

Cðx1; x2Þ ¼ e�jx1�x2j=b; ð18Þ

where b is the correlation length, an important parameter to

describe the random field. A random field becomes a ran-

dom variable when the correlation length is large, com-

pared to the domain under consideration. An analytical

solution in the interval �a\x\a, where it is assumed that

the mean is zero, produces a random field for Eq. (17).

Given c ¼ 1=b, the corresponding eigenvalues and eigen-

functions for odd j are given by

kj ¼
2c

w2
j þ c2

; ujðrÞ ¼
cosðwj

L
2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ sinð2wjaÞ
2wj

q

where tanðwjaÞ ¼
c

wj

;

ð19Þ

and for even j, expressed as

kj ¼
2c

w2
j þ c2

; ujðrÞ ¼
sinðwj

L
2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� sinð2wjaÞ
2wj

q

where tanðwjaÞ ¼
wj

�c
:

ð20Þ

2.3 Non-Gaussian process using memoryless
transformation

Owing to the simplicity and symmetry of the Gaussian

distribution, it is often assumed random properties can be

modelled in engineering analysis [45, 46]. However, some

realistic processes and fields do not follow the Gaussian

distribution. Some material properties, such as Young’s

modulus, are quantities that cannot take negative values,

and some processes, such as wind velocity, follow distri-

butions that are non-Gaussian [47]. Schevenels et al. [42]

demonstrated analytically and numerically that the vari-

ance of the displacement of a mechanical system with a

Gaussian stiffness subjected to a deterministic force is

infinite. Thus, such a system is physically inconsistent, and

a random stiffness should not be assumed to be Gaussian.

Therefore, a KL-series expansion for a non-Gaussian

stochastic field is used, employing a non-Gaussian process,

expressed as a memoryless transformation of an underlying

Gaussian process. The memoryless transformation is a

nonlinear mapping from a specified probability distribution

to a target or request distribution. This method allows

starting with any distribution and converting it into a target

one. Here, the application regards it a correlated Gaussian

stochastic process and produces a correlated process having

the distributional characteristics of interest. In more detail,

the concept and implementation of memoryless transfor-

mation can be found in [42, 45, 48, 49].
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The main idea of most techniques for simulating a non-

Gaussian, scalar or random field, R(t), with a prescribed

correlation function, CRðsÞ, and a prescribed 1D marginal

cumulative density function (CDF), FRðxÞ, is to generate a

zero mean and unit variance, scalar or Gaussian random

field, Z(t), with a prefixed correlation function, CZðsÞ, and
mapping (transformation), ZðtÞ �! RðtÞ, according to

RðtÞ ¼ g½ZðtÞ�; ð21Þ

where g½�� is an adequate function. This procedure is called
a memoryless transformation, because the value of R(t) at

an arbitrary t1 depends only on the value of Zðt1Þ and not

on any other past or future values of Z(t).

In this paper, the following technique is applied. The

covariance function, Cðx1; x2Þ, of the underlying Gaussian

process, is chosen so that the transformation leads to a non-

Gaussian process with the prescribed covariance function,

CRðx1; x2Þ. A non-Gaussian process, Yðx; hÞ, is expressed

as a memoryless transformation of an underlying standard

Gaussian process, Zðx; hÞ, through the CDFs of both

processes:

Yðx; hÞ ¼ F�1
Yx
fFZ ½Zðx; hÞ�g; ð22Þ

where FYxðyÞ is the marginal CDF of the non-Gaussian

process, FZðzÞ is the standard Gaussian CDF, and the

function g½�� ¼ F�1
Yx
fFZ ½��g.

In the case that an analytical solution is not feasible, it is

necessary to apply numerical methods. An approximation

of the transformation can be obtained regarding the 1D

polynomial chaos of order P:

Yðx; hÞ �
XP
n¼0

anðxÞhnðZðx; hÞÞ; ð23Þ

where hn is the n-order 1D Hermite polynomial, given by

hnðzÞ ¼
1ffiffiffiffi
n!

p HnðzÞ: ð24Þ

The polynomial, HnðzÞ, follows from the recurrence

relation,

H0ðzÞ ¼ 1 H1ðzÞ ¼ z Hnþ1ðzÞ ¼ zHnðzÞ � nHn�1ðzÞ:
ð25Þ

Owing to the orthonormality of the Hermite polynomials

concerning the Gaussian probability distribution, the

coefficients are obtained as

anðxÞ ¼
Z 1

1
F�1
Yx ðFZðzÞÞhnðzÞpZðzÞdz; ð26Þ

where pZðzÞ is the standard Gaussian PDF. The covariance

function of the non-Gaussian process becomes

CRðx1; x2Þ �
XP
n¼0

anðx1Þanðx2Þ½Cðx1; x2Þ�n: ð27Þ

Considering Yðx; hÞ is a stationary process, the covariance

can be reduced to

CRðDxÞ �
XP
n¼0

a2n½CðDxÞ�
n: ð28Þ

The covariance function of the underlying Gaussian pro-

cess is obtained by solving Eq. (28) for every distance, Dx,
to produce a nonnegative definite function, CðDxÞ. Then
KL decomposition of the underlying Gaussian process is

performed (Sect. 2.2). Realisations of this process are

generated and transformed into realisations of the non-

Gaussian process, Yðx; hÞ, using Eq. (22).

The non-Gaussian realisations are projected on the KL

modes (Eq. 15) to produce the realisations of the non-

Gaussian KL coefficients required to solve the SEM

equations.

The Monte Carlo method, used as a stochastic solver,

consists of solving the problem repeated times, each using

a new random input. The mean and the standard deviation

of the result are calculated through the generated samples.

Let Xðn;xÞ be the frequency response of the stochastic

system calculated for a realisation, n, generated by the

Monte Carlo method [50]. The mean-square convergence

analysis concerning independent realisations of the random

variable, X, denoted by Xjðn;xÞ, is accomplished by

studying the function, nS 7!convðnSÞ, defined by:

convðnSÞ ¼
1

nS

XnS
j¼1

Z
B

Xjðn;xÞ
�� ��2dx: ð29Þ

3 1D damaged structures by SEM

This section presents the regular deterministic and the

proposed stochastic formulations for damaged beam SEMs,

a complete formulation for a rod can be found in reference

[39].

3.1 Deterministic beam model

A spectral damaged Euler–Bernoulli beam element with a

transverse, open and non-propagating crack [32, 51] is

addressed. Figure 1 shows a two-node damaged beam

element with uniform rectangular cross section, length L,

crack position L1, and crack depth a. The crack is modelled

by dimensionless local crack flexibility, Hb.

The undamped equilibrium equation in the frequency

domain can be written as [6]
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EI
d4vðxÞ
dx4

þ x2qAvðxÞ ¼ pðxÞ; ð30Þ

where I is the inertia moment, v is the transverse dis-

placement, and p is the distributed external transversal

force. Structural internal damping is introduced into the

beam formulation by adding a complex damping factor in

the flexural rigidity, EI. In the deterministic case of

EI ¼ EI0ð1þ igÞ, where EI0 is the flexural rigidity deter-

ministic value, g is the damping factor and i is the imagi-

nary unit. In the stochastic case, it is given by

EIðhÞ ¼ ÊIðhÞ þ EI0ig, where the random part of flexural

rigidity is a real value, ÊIðhÞ, and the deterministic part is

the complex value, EI0ig. The homogeneous displacement

solution for Eq. (30) must be described in two parts, one for

the left-hand side of the crack, vLðxÞ, and another for the

right-hand side of the crack, vRðxÞ. From the general for-

mulation (Sect. 2.1) one has

vLðxÞ ¼ a1e
�iðkbxÞ þ a2e

�ðkbxÞ þ a3e
�ikbðL1�xÞ

þ a4e
�kbðL1�xÞ ð0� x� L1Þ

¼ sLðx;xÞaL;
ð31Þ

where kb ¼
ffiffiffiffi
x

p
ðqA=EIÞ1=4 is the beam wavenumber,

sLðx;xÞ ¼ e�iðkbxÞ e�ðkbxÞ e�ikbðL1�xÞ e�kbðL1�xÞ� �
,

aL ¼ fa1 a2 a3 a4gT, and

vRðxÞ ¼ a5e
�ikbðL1þxÞ þ a6e

�kbðL1þxÞ þ a7e
�ikbðL�ðL1þxÞÞ

þ a8e
�kbðL�ðL1þxÞÞ ð0� x� L� L1Þ

¼ sRðx;xÞaR;
ð32Þ

where sRðx;xÞ ¼ e�ikbðL1þxÞ e�kbðL1þxÞ e�ikbðL�ðL1þxÞÞ�
e�kbðL�ðL1þxÞÞ�, and aR ¼ fa5 a6 a7 a8gT.

Writing Eqs. (31) and (32) in a matrix form,

vLðxÞ
vRðxÞ

� 	
¼ d ¼

sLðx;xÞ 0

0 sRðx;xÞ


 �
aL

aR

� 	
¼ sðx;xÞa;

ð33Þ

where d is the nodal displacement vector, a is the coeffi-

cient vector, and s is a matrix dependent on the element

boundary and compatibility conditions. The element

boundary conditions are given by vLð0Þ ¼ v1 and

ovLð0Þ=ox ¼ /1 at node 1 and vRðL� L1Þ ¼ v2 and

ovRðL� L1Þ=ox ¼ /2 at node 2. Compatibility conditions

are given by displacement at crack position, where

ovLðL1Þ=ox� ovRð0Þ=ox ¼ Hbo
2vLðL1Þ=ox2 at cracked

region of the cross section and vLðL1Þ ¼ vRð0Þ,
o2vLðL1Þ=ox2 ¼ o2vRð0Þ=ox2 and o3vLðL1Þ=ox3 ¼
o3vRð0Þ=ox3 at the non-cracked region of the cross section.

Applying boundary and compatibility conditions in

Eq. (33) it has,

where m ¼ eikL1 , n ¼ e�kL1 , o ¼ e�ikðL�L1Þ, p ¼ ekðL�L1Þ,

r ¼ e�ikL and t ¼ e�kL. From Eq. (34), we can relate the

coefficient vector with the nodal displacement vector by

a ¼ G�1
br d; ð35Þ

1 1 m n 0 0 0 0

�ik � k ikm kn 0 0 0 0

�m � n� � 1 � 1 m n o p

imk �mHbk
2 nk þ nHbk

2 � ik �Hbk
2 � k þHbk

2 � ikm � kn iko kp

�k2m k2n � k2 k2 k2m � k2n k2o � k2p

ik3m � k3n � ik3 k3 � k3m k3n ik3o � k3p

0 0 0 0 r t 1 1

0 0 0 0 � ikr � kt ik k

2
66666666666664

3
77777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gb

a1

a2

a3

a4

a5

a6

a7

a8

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

v1

/1

0

0

0

0

v2

/2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

;

ð34Þ

Fig. 1 Two-node damaged beam spectral element
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where G�1
br is the inverse of Gb reduced to the order

½8� 4�, owing to the zeros in the displacement vector, d.

Substituting Eq. (3.1) into (33) one has,

vLðxÞ
vRðxÞ

� 	
¼

sLðx;xÞ 0

0 sRðx;xÞ


 �
G�1

br d ¼ gðx;xÞd;

ð36Þ

where gðx;xÞ is the frequency-dependent shape function.

Comparing Eq. (36) with (5), we learn that

CðxÞ ¼ G�1
br : ð37Þ

The stiffness operator is given by

L2ð�Þ ¼ o2ð�Þ=ox2 ¼ ð�Þ00, and, assuming constant nomi-

nal values for the deterministic stiffness and mass param-

eter, ks0ðrÞ ¼ EI0 and ms0ðrÞ ¼ qA0, respectively. Because

spatial reference in damaged model equations must be

integrated according to the corresponding limits, then

K0ðxÞ ¼ EI0 C
T
d ðxÞ

Sk0L 0

0 Sk0R


 �
CðxÞ; ð38Þ

M0ðxÞ ¼ qA0 C
T
d ðxÞ

Sm0L 0

0 Sm0R


 �
CðxÞ; ð39Þ

where

Sk0L ¼
Z L1

0

s00
T
Lðx;xÞs00Lðx;xÞdx;

Sk0R ¼
Z ðL�L1Þ

0

s00
T
Rðx;xÞs00Rðx;xÞdx;

ð40Þ

Sm0L ¼
Z L1

0

sTLðx;xÞsLðx;xÞdx;

Sm0R ¼
Z ðL�L1Þ

0

sTRðx;xÞsRðx;xÞdx:
ð41Þ

Substituting Eq. (40) in Eq. (38) and Eq. (41) in Eq. (39),

the deterministic stiffness and mass matrices as closed-

form expressions can be obtained.

3.1.1 Bending crack flexibility

The bending crack flexibility can also be obtained from the

Castigliano’s theorem, considering that only crack mode I

is shown in the beam element. Figure 2 can represent the

damaged beam element cross section at the crack position,

including the geometric definitions of crack depth as

a ¼ a=h.

Crack flexibility coefficient can be written as a function

of the crack depth by [32],

cð�aÞ ¼ 72p
bh2

Z �a

0

�af2ð�aÞd�a; ð42Þ

where �a ¼ a=h, �a ¼ a=h, and

f
a
h


 �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h

pa
tan

pa
2h


 �r
0:923þ 0:199 1� sin pa

2h

� �� �4
cos pa

2h

� � :

ð43Þ

The dimensionless local crack-bending flexibility can be

written as

Hb ¼
EIc

L
: ð44Þ

3.2 Stochastic beam model

The stochastic dynamic stiffness element matrix for the

damaged beam spectral element, Ddðx; hÞ, is developed.

Flexural rigidity, EI, and mass per unit of length qA are

assumed distributed random fields, respectively, as

EIðx; hÞ ¼ EI0½1þ e1-1ðx; hÞ�; ð45Þ

Fig. 2 Damaged structure cross

section at the crack position
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and

qAðx; hÞ ¼ qA0½1þ e2-2ðx; hÞ�: ð46Þ

Following Eq. (8), we can express the stochastic damaged

beam stiffness and mass element matrices, respectively, as

Kdðx; hÞ ¼ K0dðxÞ þ DKdðx; hÞ; ð47Þ

Mdðx; hÞ ¼ M0d ðxÞ þ DMdðx; hÞ: ð48Þ

From the KL expansion and Eqs. (45) and (46) one has,

DKdðx; hÞ ¼ e1
XN
j¼1

nKjðhÞ
ffiffiffiffiffiffi
kKj

p
KjdðxÞ; ð49Þ

DMdðx; hÞ ¼ e2
XN
j¼1

nMjðhÞ
ffiffiffiffiffiffiffi
kMj

p
Mjd ðxÞ: ð50Þ

where N is the number of terms kept in the KL expansion

and nKjðhÞ and nMjðhÞ are uncorrelated Gaussian random

variables with zero mean and unit standard deviation. From

Eq. (10), and considering different limits of integration

(left and right-hand sides) for the damaged beam model,

one has

KjdðxÞ ¼ EI0C
T
d ðxÞ

SkL 0

0 SkR


 �
CdðxÞ; ð51Þ

MjdðxÞ ¼ qA0C
T
d ðxÞ

SmL 0

0 SmR


 �
CdðxÞ; ð52Þ

where

SkL ¼
Z L1

0

uKjðxe þ xÞs00TLðx;xÞs00Lðx;xÞdx;

SkR ¼
Z ðL�L1Þ

0

uKjðxe þ xÞs00TRðx;xÞs00Rðx;xÞdx
ð53Þ

SmL ¼
Z L1

0

uMjðxe þ xÞsTLðx;xÞsLðx;xÞdx;

SmR ¼
Z ðL�L1Þ

0

uMjðxe þ xÞsTRðx;xÞsRðx;xÞdx:
ð54Þ

Substituting Eq. (19) and Eq. (20) in Eq. (53) and Eq. (54),

the random part of the stiffness and mass matrices as

closed-form expressions can be obtained. Again, the

closed-form expressions are found. Thus, only the matrix

forms of SkL; SkR; SmL; SmR for each jth terms, respecting

the odd and even KL formulation, will be shown. By

considering odd j, one has,

SkoddL ðxÞ ¼ EI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ sinð2wjaÞ

2wj

q
SkLo11 SkLo12 SkLo13 SkLo14

SkLo22 SkLo23 SkLo24

SkLo33 SkLo34

Sym SkLo44

;

2
6664

3
7775

SkoddR ðxÞ ¼ EI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ sinð2wjaÞ

2wj

q
SkRo11 SkRo12 SkRo13 SkRo14

SkRo22 SkRo23 SkRo24

SkRo33 SkRo34

Sym SkRo44

2
6664

3
7775;

Smodd
L ðxÞ ¼ qA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ sinð2wjaÞ
2wj

q
SmLo11 SmLo12 SmLo13 SmLo14

SmLo22 SmLo23 SmLo24

SmLo33 SmLo34

Sym SmLo44

2
6664

3
7775;

Smodd
R ðxÞ ¼ qA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ sinð2wjaÞ
2wj

q
SmRo11 SmRo12 SmRo13 SmRo14

SmRo22 SmRo23 SmRo24

SmRo33 SmRo34

Sym SmRo44

2
6664

3
7775;

and for even j,

SkevenL ðxÞ ¼ EI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� sinð2wjaÞ

2wj

q
SkLe11 SkLe12 SkLe13 SkLe14

SkLe22 SkLe23 SkLe24

SkLe33 SkLe34

Sym SkLe44

2
6664

3
7775;

SkevenR ðxÞ ¼ EI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� sinð2wjaÞ

2wj

q
SkRe11 SkRe12 SkRe13 SkRe14

SkRe22 SkRe23 SkRe24

SkRe33 SkRe34

Sym SkRe44

2
6664

3
7775;

Smeven
L ðxÞ ¼ qA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� sinð2wjaÞ
2wj

q
SmLe11 SmLe12 SmLe13 SmLe14

SmLe22 SmLe23 SmLe24

SmLe33 SmLe34

Sym SmLe44

2
6664

3
7775;

Smeven
R ðxÞ ¼ qA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� sinð2wjaÞ
2wj

q
SmRe11 SmRe12 SmRe13 SmRe14

SmRe22 SmRe23 SmRe24

SmRe33 SmRe34

Sym SmRe44

2
6664

3
7775;

Considering that all parameters and matrices of Eqs. (51)

and (52) are presented, it is easy to implement them in

software similar to MATHEMATICA to obtain the random

damage stiffness and mass matrices, KjðxÞ and MjðxÞ.
The stochastic spectral damaged beam dynamic stiffness

matrix is obtained as

Dðx; hÞ ¼ Kðx; hÞ � x2Mðx; hÞ: ð55Þ

4 Numerical simulation

By demonstrating the random field transformation via the

memoryless transformation, the analysis provides a case

where the target PDF is the Gamma distribution. Figure 3

shows the Gamma translation process expressed as a trans-

formation of a homogeneous Gaussian field with zero mean,

unit variance and exponential covariance function. The
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projection of this transformation is based on the Hermite

polynomial degree function (Eq. 28). The approximation of

Yðx; hÞ, as a function of Zðx; hÞ, improves as the Hermite

polynomial degree increases. Figure 4 shows the correlation

function convergence related to the P-th order Hermite

polynomial approximation, herein P ¼ 1; 3; 5 and 7. The

transformation with 3rd–7th order shows good agreement

with the input correlation. It was performed for 10,000

realisations of the underlying Gaussian process, Zðx; hÞ.
Figure 5 illustrates the marginal PDF, pYðyÞ, of the zero

mean non-Gaussian process obtained via transformation of

the underlying Gaussian process. The first-order approxi-

mation of the transformation leads to a Gaussian process.

The higher the polynomial degree, the better the conver-

gence with the targeted PDF. The fifth-order approximation

leads to a process with an acceptable, but marginal, PDF,

whereas, with the seventh-order approximation, the curves

are practically coincident.

Next, the analysed problem is a dynamic system mod-

elled by using a Gaussian random field and a non-Gaussian

random field target with a Gamma distribution, as

demonstrated. This numerical example presents a free–free

rod structure modelled by a two-node cracked-rod spectral

element [39] with variabilities considered in the longitu-

dinal rigidity, EA, and the mass per unit length, qA. The
measured frequency response function (FRF) simulates the

receptance FRF with force excitation at node 1 and

0 200 400 600 800 1000
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0

5

Time, t

Gaussian

0 200 400 600 800 1000
−5

0

5

Time, t

Non−Gaussian

Fig. 3 Gaussian translation process with target (Gamma) distribution using third-order numerical approaches in a Hermite polynomial

0 5 10 15

0

0.2

0.4

0.6

0.8

1

Time lag

1st order
3rd order
5th order
7th order
Input

Fig. 4 Input covariance function compared with approximated

covariance function estimated with 1–7 orders in a Hermite

polynomial
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Fig. 5 Approximation of the

Y(t) PDF obtained through the

Hermite polynomial expansion

with P ranging from 1 to 7. In

all tests, the number of samples

is equal to 10,000
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response at node 2. The unperturbed physical and geo-

metrical properties of the rod are the length, L ¼ 0:35 m,

cross section height, h ¼ 0:02 m, base, b ¼ 0:02 m, crack

position, L1 ¼ 0:3L m, crack depth a ¼ 10% of the cross

section height and damping factor g ¼ 0:01. The material

is polyamide with q ¼ 1250 kg/m3 and E ¼ 1:1 GPa. The

variations of unperturbed value, EA and qA, are modelled

by a homogeneous Gaussian random field and then trans-

posed to a Gamma distribution using a memoryless trans-

formation. For numerical calculations, it is considered 1, 5

and 10% for the coefficient of variation (COV) with a

correlation length of b ¼ L=3 and four modes of KL

expansion. The correlation length value is a chosen referent

with the number of terms, as mentioned in [52].

The response is calculated up to 10,000 Hz, covering the

5-to-6 vibration modes of the system. Receptance FRF for

the mean value, standard deviation of the absolute value

and deterministic response of the rod for different COV’s

are shown in Figs. 6, 7 and 8. For all cases, the receptance

curves of mean value and deterministic are very close. At

lower frequencies, the standard deviation is biased by the

mean. As the frequency increases, the standard deviation

curve flattens. This behaviour is more accentuated with the

increase in the COV. These results are obtained using a

Monte Carlo simulation with 200 samples. The mean

converges faster for small COVs. For all cases, approxi-

mately 120 realisations are necessary for the standard

deviation square convergences.

The central goal of this paper is developing a stochastic

spectral crack element. Whereas damage detection is not

addressed, an example related to changes in the FRF owing

to the crack depth variation is demonstrated. Consider the

previous example, where the COV is 5%, and the crack

depth is varied as a ¼ f0; 1; 10; 20; 30g% of cross section

height. The receptance FRFs of mean and standard devia-

tion for different crack depths are shown in Fig. 9. The

mean receptance FRF without crack (a ¼ 0), compared to

the FRFs with crack depths of a ¼ 1% and 10%, presents

no significant changes in the frequency range of 0–5 kHz.

However, for crack depths of a ¼ 20% and 30%, the fre-

quency shifts and amplitude variations are present in

almost all resonance peaks of the analysed band. By

associating the mean FRFs with the standard deviation

envelope of FRFs considering COV of 5%, they are small

at low frequencies and small crack depths (1 and 10%), but

become larger as the frequency increases up to 5 kHz and

crack depths grow (20 and 30%). The standard deviation

curve flattening behaviour is more accentuated at fre-

quencies higher than 5 kHz and larger crack depths. The

changes in dynamic response can be related to changes in

geometry and structural material properties. The use of a

stochastic model is one way to address the randomness of

the structure in damage detection problems.

Another example, consisting of a free–free beam struc-

ture modelled by a two-node beam spectral element, is

considered. Variabilities of the beam flexural rigidity, EI,
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Fig. 6 Rod deterministic, mean

(l), standard deviation (r) FRF
and convergence analyse for

COV of 1%
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and mass per unit length, qA are considered and both

structural variabilities are Gamma marginal distributions.

The measured FRF simulates the transfer receptance FRF

with force excitation at node 1 and displacement response

at node 2. The geometric parameters of the beam are

length, L ¼ 0:35 m, cross section, h ¼ 0:006� b ¼ 0:018

m, crack position, L1 ¼ 0:3L m, crack depth a ¼ 10% of

cross section height and damping factor, g ¼ 0:01. The
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Fig. 7 Rod deterministic, mean

(l), standard deviation (r) FRF
and convergence analysis for

COV of 5%

20 40 60 80 100 120 140 160 180 200
0

0.5

1

M
ea

n

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Number of RealizationsSt
an

da
rd

 d
ev

ia
tio

n
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and convergence analysis for

COV of 10%
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material properties and random fields are the same as in the

previous examples.

The receptance FRFs of deterministic, mean and stan-

dard deviation, calculated up to 10 kHz for COVs = 1, 5

and 10%, are shown in Figs. 10, 11 and 12, respectively.

These results are obtained using a Monte Carlo simulation

with 200 samples, presenting a convergence test calculated

using Eq. 29. For all cases, the mean FRF is very close to
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Fig. 9 FRF mean and standard

deviation amplitudes for a

cracked rod with various crack

depth ratios (uncracked,

a ¼ 1%, a ¼ 10%, a ¼ 20%

and a ¼ 30%). The coefficient

of variation is 5% for all cases
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the deterministic FRF, and the standard deviation is biased

by the mean. However, at higher frequencies, the standard

deviation FRF flattens, which could be influenced by the

damping of our stochastic approach. The square conver-

gence of the mean and standard deviation is calculated for

200 realisations, converging near 150.
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Fig. 11 Beam deterministic,

mean (l), standard deviation (r)
FRF and convergence analysis

for COV of 5%
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Likewise, for the rod structure, an analysis related to

changes in the FRF, caused by the crack depth variation, is

also performed for the beam. By using the same cracked

beam properties and parameters, COV is 5% and the crack

depth variation is a ¼ f0; 1; 10; 20; 30g% of cross section

height. Figure 13 shows the mean and standard deviation

receptance FRFs of the cracked beam with different crack

depths. In this case, at low-frequency ranges, the mean FRF

without crack, compared to cracked beam responses for

small crack depths, do not exhibit significant changes.

However, as the frequency increases (up to 800 Hz) and for

crack depths from 20 to 30%, a considerable change in

FRFs, related to shifts in the resonance frequency and

changes in amplitude, are observed. The standard deviation

FRF flattens. This behaviour is more accentuated at higher

frequency bands with larger crack depths. By associating

the mean responses with the standard deviation envelope

for crack depths greater than 10%, we notice a whole

frequency range. As the crack depth increases, the standard

deviation response envelope exhibits similar behaviour.

5 Conclusion

The formulation of a 1D damaged structure with dis-

tributed parametric uncertainty was proposed. The spatial

displacement fields were discretised using frequency-

complex shape functions. The spatial random fields were

discretised using the KL expansion. This paper unified the

two techniques aiming to use SEM to model damaged

structure elements, considering distributed uncertainties in

the parameters. The resulting frequency-dependent random

element matrices, in general, turned out to be complex

symmetric matrices. The detailed derivations for a dam-

aged beam in bending vibration were given. Numerical

examples demonstrated the applicability of the proposed

method, which was solved using a Monte Carlo simulation.

Thus, a convergence technique should be applied to verify

the suitability of the number of samples. The presented

methodology was compared to the deterministic approach

presented in the literature; good agreement was observed

and efficiency noted. The use of a stochastic model is a

way to predict randomness in the structure in damage

detection problems.
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