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We investigate theoretically and experimentally the forced response of flexural waves propagating 
in a 1D phononic crystal (PC) Euler-Bernoulli beam, composed by steel and polyethylene, and its 
band structure. The finite element, spectral element, wave finite element, wave spectral element, 
conventional and improved plane wave expansion methods are applied. We demonstrate that the 
vibration attenuation of the unit cell can be improved choosing correctly the polyethylene and steel 
quantities and we suggest the best percentages of these materials, considering different unit cell lengths. 
An experiment with a 1D PC beam is proposed and the numerical results can localize the band gap 
position and width close to the experimental results. A small Bragg-type band gap with low attenuation 
is observed between 405 Hz - 720 Hz. The 1D PC beam with unit cells of steel and polyethylene 
presents potential application for vibration control.

Keywords: 1D phononic crystal, Euler-Bernoulli beam, flexural vibration, band gaps, vibration 
control.
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1. Introduction
Artificial periodic composites known as phononic 

crystals (PCs), consisting of a periodic array of scatterers 
embedded in a host medium, have been quite studied1-14. They 
have received renewed attention because they exhibit band 
gaps where there are only mechanical (elastic or acoustic) 
evanescent waves. There are no mechanical propagating 
waves in the band gaps. This ability of creating phononic 
band gaps is similar to the electronic and photonic band 
gaps in semiconductors and photonic crystals, respectively.

The physical origin of phononic and photonic band gaps 
can be understood at micro-scale using the classical wave 
theory to describe the Bragg and Mie resonances based on 
the scattering of mechanical and electromagnetic waves 
propagating within the crystal15.

PCs have many applications, such as vibration isolation 
technology16-20, acoustic barriers/filters21-23, noise suppression 
devices24,25, surface acoustic devices26, architectural design27, 
sound shields28, acoustic diodes29 and elastic/acoustic 
metamaterials19,20,23,25,30-32 (EM/AM), also known as locally 
resonant phononic crystals (LRPC).

LRPCs, differently from the traditional PCs which create 
the Bragg-type band gaps, present the locally resonant 
(LR) band gaps. These LR band gaps can be obtained in a 
frequency range of orders of magnitude lower than that given 
by the Bragg limit. LR band gaps arise in the vicinity of the 
natural frequency of the local resonators while Bragg-type 

band gaps typically occur at wavelengths of the order of 
the unit cell size. The concept of an EM or LRPC generally 
involves the inclusion of local resonators, and the periodicity 
is advantageous (creates the Bragg-type band gaps), but it 
is not necessary in an EM31,32.

Most of the studies concerning PCs focused on investigation 
of bulk mechanical waves1,2,7-10,12 and its results have shown 
that the band gaps may appear because of the contrast 
between the physical properties, for instance elastic modulus 
and density of the inclusions and matrix. Other important 
properties that influence the band gap width are the inclusion 
geometry, filling fraction and PC lattice. The band gaps may 
also be affected by the physical nature of PC, which can be: 
solid/solid9,10,12, fluid/fluid33 and mixed solid/fluid34 PCs.

Some studies have concentrated on 1D PCs11,35-48 and 
all of them considered solid/solid PC. Among them, some 
researches focused on flexural vibration in beams11,35,36,40,41,43,45-47, 
longitudinal vibration in rods39,48 and wave propagation in 
one direction in a 1D solid (considering one-dimensional 
periodicity)37,38,42,44. Almost all of them used the traditional 
analytical (spectral element - SE49), semi-analytical (plane 
wave expansion - PWE1,2) and/or numerical (finite element 
- FE50, transfer matrix - TM51) methods to obtain the forced 
response and/or the band structure.

Only few researchers used methods developed recently46,48. 
Junyi et al.46 developed an inverse method to calculate the 
band structure of one dimensional periodic structures based 
on Bloch wave boundary conditions and wave superposition, 
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whereas Nobrega & Dos Santos48 used the wave finite element 
(WFE)52 and wave spectral element (WSE) methods.

In this context, the main purpose of this study is to 
investigate the Bragg-type band gap formation, band structure, 
also known as dispersion relation, and attenuation constant of 
a 1D PC beam using the FE, SE, WFE, WSE, conventional 
plane wave expansion (CPWE) and improved plane wave 
expansion (IPWE) methods. Furthermore, we demonstrate 
the accuracy and efficiency of the methods cited for modeling 
PCs. We also compare the analytical and numerical results 
with an experimental validation. A small band gap with low 
attenuation is observed between 405 Hz - 720 Hz for the 
real 1D PC beam.

To the best of our knowledge, it is the first time the band 
structure of a PC is compared using both CPWE, IPWE, 
WFE and WSE methods. Only few studies48 have used the 
advantages of the recent WFE and WSE methods to study 
PCs. In addition, the attenuation constant surface of a 1D 
PC unit cell is obtained from varying the percentages of 
polyethylene and steel.

2. 1D Phononic Crystal Euler-Bernoulli 
Beam Model by FE, SE, WFE, WSE, 
CPWE and IPWE Methods

This section presents the formulation for a 1D PC Euler-
Bernoulli beam using the FE, SE, WFE, WSE, CPWE and 
IPWE methods. FE and SE are methods well stablished in 
literature49,50. SE is an analytical method and has solution 
only for simple structures, such as rods, beams and plates 
and shells for specified boundary conditions, while the FE is 
a numerical method and can handle complex structures. WFE 
and WSE are methods that present some special advantages, 
such as that the discretization is only on the PC unit cell.

CPWE method, also known as ω(k) method, is a semi-
analytical method used to predict the band structure. CPWE 
method presents a slow convergence, mainly for systems 
with a large property mismatching. To solve this convergence 
problem, we use the IPWE method. Cao et al.53 proposed the 
IPWE method to handle PCs and showed that this method 
provides much more accurate numerical results than the CPWE.

2.1 1D Phononic crystal beam model

Figure 1 sketches a 1D PC beam with a periodic array of 
unit cells containing two different materials, i.e. steel (blue) 
and polyethylene (white). The PC beam lattice parameter 
is a. Each unit cell is composed by 2/3 of steel and 1/3 of 
polyethylene, Figure 1 (a), and 2/3 of polyethylene and 
1/3 of steel, Figure 1 (c), called as model 1 and model 2, 
respectively. It is important to mention that we consider the 
Euler-Bernoulli (EB) beam theory.

2.2 SE and FE methods for 1D PC EB beams

We calculate the dynamic stiffness matrix using two 
approaches, i.e. one analytical, SE method and the other 

numerical, FE method. The dynamic stiffness matrix of EB 
beam element modeled by SE method49 is:

     
            (1)

where

            (2)

            (3)

            (4)

            (5)

            (6)

            (7)

where k is the Bloch wave vector, also known as wavenumber, 
E is the Young's modulus, ρ is the density, I is the second 
moment of area, Lse is the length of the spectral element, 
i 1= - , S is the cross section area of the beam and ω 
is the angular frequency. If the geometry of the beam is 
uniform and regarding just one material, the global dynamic 
stiffness matrix of the EB beam modeled by SE method 
can be considered as equal to the dynamic stiffness matrix 
of the EB beam element, i.e.Dbeamse = De

beamse. However, 
we discretize each unit cell in three spectral elements, one 
element for each part of the unit cell in Figure 1 (b) and (d). 
Thus, the global dynamic stiffness matrix can be obtained 
by the assembly of the dynamic stiffness matrices of the EB 
beam elements modeled by SE method.

The dynamic stiffness matrix can also be obtained by the 
FE method, De

beamfe = Ke
beamfe - ω

2Me
beamfe, where50:

           
            (8)

            

            (9)

where Lfe is the length of the finite element. The global 
dynamic stiffness matrix is given by Dbeamfe = Kbeamfe - ω

2Mbeamfe, 
where Kbeamfe and Mbeamfe are the global stiffness and mass 
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matrices, respectively. They are obtained by assembling 
the stiffness and mass matrices of the EB beam elements 
modeled by FE method. Initially, we discretize each unit 
cell in six finite elements, two elements for each part of the 
unit cell in Figure 1 (b) and (d).

2.3 WSE and WFE methods for 1D PC EB beams

Considering a finite EB beam divided into unit cells (the 
unit cells are meshed with an equal number of nodes on their 
left- and right-hand edges), see Figure 1, one can obtain a 
dynamic stiffness of the unit cell, Dcell

u , from FE, Dcellfe
u , or 

from SE, Dcellse
u , methods. The Dcell

u  can be portioned and the 
dynamic equation of motion can be written as:

            
          (10)

where u is the vector of the displacement degrees of freedom, 
p is the vector of the applied forces, i represents the interior 
degrees of freedom of the unit cell and l and r represent the 
left and right boundaries of the unit cell, respectively. The 
interior degrees of freedom can be eliminated using the first 
row of Eq. (10)54, which results in:

            (11)

Inserting Eq. (11) into Eq. (10) leads to:

            (12)

where 

Equation (12), which relates the forces and the displacements 
on the two sides of the unit cell, is the starting point for the 
WFE54 and WSE analysis. Note that Dcell can be obtained by 
FE method, Dcellfe, or by SE method, Dcellse. Thus, this is the 
difference between the WFE and WSE methods.

One can reformulate Eq. (12) in terms of state vectors as:

            (13)

where T is a symplectic55 matrix and it is known as transfer 
matrix, qr is the right state vector and ql is the left state vector. 
The continuity of displacements and equilibrium forces at 
the boundary between cells m and m + 1, yields,

            (14)

            (15)

Substituting Eqs. (14) and (15) in Eq. (13), one can write:

            (16)

Invoking Floquet-Bloch's theorem56,57, say:

            (17)

where μ = -ika is the attenuation constant of the unit cell. 
Substituting Eq. (17) in Eq. (16) leads to:

            (18)

As pointed out by Zhong & Williams55, direct calculation 
of the eigenvalue problem in Eq. (18) can lead to numerical 
ill-conditioning. According to Mencik52, this ill-conditioning 
can be explained by the Bauer-Fike theorem58, which says 
that the problem is that the eigenvector of T can be ill-
conditioned. This can be explained as it is partitioned into 
displacement and force components, thus the values can be 
largely disparate. To solve this issue, Zhong and Williams55 
proposed (for symmetric unit cells) a homogeneous generalized 
eigenvalue problem of the following form:

            (19)

            (20)

where In is the n-dimensional unit matrix (identity matrix) 
and substituting Eqs. (19) and (20) in Eq. (13), we can note 
that T = NL-1. Thus, rewriting Eq. (18):

            (21)

The solutions of Eq. (21) are denoted as {(eμj, wj)}j, where 
{(eμj)}j are the eigenvalues and {wj}j are the eigenvectors 
associated with a given mode j. One can notice that each 
eigenvector of Eq. (18), and using Eq. (19), can be obtained 
by qlj = Lwj. It can also be shown that {(e-μj, (JLw)j)}j are also 
eigenvalues of Eq. (21) and left eigenvectors, respectively, 
because one can rewrite Eq. (21) as eμNT(JLw) = LT(JLw) 
∴ (JLw)T(N - e-μL) = 055, where:

            (22)

Therefore, the 2n eigenvalues obtained from Eq. (21), 
when ordered appropriately, can be subdivided into two 
groups. The first corresponds to the waves travelling to the 
right, eμj, j = 1,2,...,n with |eμj| < 1 and the second corresponds 
to the waves travelling to the left, e-μj, j = 1,2,...,n with |e-μj| 
> 1. Note that to consider these hypotheses the substructure 
needs to have damping. If the substructure does not have 
damping, |e±μj| = 1.

For the eigenvalues {eμj}j and {e-μj}j, one can obtain 
the associated eigenvectors {qlj}j, and {q*

lj}j, respectively. 
Each eigenvector can be split into displacement and force 
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components as qlj = 
u
p

l

l

j

j

G J and q*
lj = 

u
p

*

*

l

l

j

j

G J. An important 
relation between the components of each eigenvector is u*

lj 

= Rulj and q*
lj = -Rqlj

52, where R is the diagonal symmetry 
transformation matrix. Tracking the frequency evolution 
of each wave mode is a crucial step of the WFE and WSE 
methods, for more details see Mencik52.

After some mathematical manipulation52, to predict the 
harmonic response of a structure composed of N unit cells, 
we can write:

            (23)

            (24)

where ql
(1) is the state vector of the structure first node, 

qr
(N) is the state vector of the structure last node and q is 

the vector form of the modal amplitude. Equations (23-24) 
and the calculation of the modal amplitudes are discussed 
by Mencik52.

2.4 CPWE and IPWE methods for 1D PC EB 
beams

From EB beam theory, the governing equation for flexural 
vibration of a uniform beam system can be written as:

            (25)

where u is the transversal displacement.
Considering the 1D PC beam illustrated in Figure 1, 

however, an infinite beam for this formulation, we can note 
that E = E(x), I = I(x), ρ = ρ(x) and S is constant. In order to 
eliminate the factor time in Eq. (25), we apply the temporal 
Fourier transform.

Applying the Floquet-Bloch's theorem56,57, expanding 
u as a Fourier series, and considering wave propagation on 
the x axis (k2 = k3 = 0), we can write:

            (26)

where x = xe1, uk(x) is the amplitude of the Bloch wave, note 
that uk(x) = uk(x + r) and u(x + r) = u(x)eik.r, eik.r is called the 
Floquet-Bloch periodic boundary condition, k = vb1, v ∈ ℚ 
is the symmetry point within the first irreducible Brillouin 
zone (FIBZ)59 in reciprocal space, , a0 r# & , or one may write 
k = k1e1, k1 ∈ ℝ is the point coordinate within the FIBZ for 
the reciprocal space, b1 is the basis vector in the reciprocal 
space defined as b1 = 

a
2r  e1, a1 = ae1 is the component of 

the lattice vector r = pa1, p ∈ ℤ.
The reciprocal lattice vector is defined as g =  a

2r  me1, 
m ∈ ℤ. Note that g is a one-dimensional vector, because 
we consider one-dimensional periodicity. Furthermore, we 
may write:

            (27)

where P is one of α = ρS, β = EI and g has the same 
expressions of g, with m ∈ ℤ. Note that we use g to highlight 
the difference between the expansions of material properties 
and the displacement. For CPWE method, the material 
parameters are all directly expanded in Fourier series 
according to the spatial periodicity. However, in the IPWE 
method, the inverses of the material parameters (excluding 
the mass density) are expanded in Fourier series in order to 
get a good convergence53, thus P is one of the α and β for 
the CPWE and one of the α and 1/β for the IPWE.

Substituting Eqs. (26) and (27) in Eq. (25), with 
g g g= +u r  , multiplying by e-ig.x and integrating over the 
unit cell, one may write (for all x) for CPWE and IPWE 
methods, respectively:

            (28)

            (29)

Equations (28) and (29) represent a generalized 
eigenvalue problem of ω2(k) and should be solved for each 
k into the FIBZ.

The Fourier coefficients are:

            (30)

where the indexes A and B of Eq. (30) are related to the 
inclusion (steel) and the matrix (polyethylene), respectively, 
considering model 1, Figure 1 (a), or can also be related to the 
inclusion (polyethylene) and the matrix (steel), respectively, 
considering model 2, Figure 1 (c). F(g) is the structure 
function and f a

LA=r   is the filling fraction, where LA is the 
inclusion length. The structure function F(g) is defined as:

            (31)

The integral in Eq. (31) is performed over the unit cell 
length and results in:

            (32)

where g = ||g||.

3. Results and Discussion

3.1 Numerical validation

The PC EB beam parameters and material properties are 
summarized in Table 1, where the subscripts A and B, as 
mentioned before, refer to steel and polyethylene, considering 
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model 1, Figure 1 (a), and polyethylene and steel, considering 
model 2, Figure 1 (c), respectively. Note that the structural 
damping, ηA, ηB, also known as loss factors, are included as 
a complex Young's modulus, EA = EA(1 + iηA), EB = EB(1 + 
iηB). It is important to mention that we limited the most part 
of the results analysis until 10240 Hz.

3.1.1 Method comparison

The forced response of the PC beam is analyzed 
considering a free-free boundary condition and an excitation 
force as a cosine-shaped pulse only on the left side of the 
beam. Figure 2 shows the PC beam displacement of left 
(first node) and right (last node) sides for the models 1 and 2.

We can see in Figure 2 some regions where the resonances 
do not appear, however, it is difficult to localize exactly 
the band gaps. To overcome this limitation, we plot the 
frequency response function (FRF) in Figure 3 and the 
transmittance in Figure 4, defined as the division between 
the displacements of the last and first nodes. For the FRF, 
we choose the receptance, i.e. the division between the 
displacement of the first or the last nodes, and the force, 
which gives H11 or H21, also known as point receptance and 
transfer receptance, respectively.

From Figures 3 (a-b) and 4 (a), that is to say model 1, 
we can see that the band gap is opened up between 2780 

Hz and 5798 Hz. This band gap is known as a Bragg-type 
band gap, because the mechanism involved is the Bragg 
scattering. Thus, the frequency location is governed by the 
Bragg's law, a = n(λ/2), (n ∈ ℕ* 

>0), where λ is the wavelength 
of waves in the host material. The Bragg's law implies that 
it is difficult to achieve a low frequency Bragg-type band 
gap in PCs with small size. For model 2, Figures 3 (c-d) 
and 4 (b), it is not possible to identify clearly the band gap 
formation, because its low attenuation, as will be discussed 
in band structure results.

3.1.2 Influence of unit cell length

In Figure 5 (a-b), we compare the transmittance for 
different lattice parameters calculated by WSE method, 
considering models 1 and 2, respectively. We consider a = 
0.212, 0.106, 0.0707, 0.053, which results in N = 2, 4, 6, 8, 
for a fixed beam length L = 0.424 in Table 1. We choose the 
WSE method because it is an analytical method.

For models 1 and 2, and the first case, a = 0.212, N = 2, 
we can see in Figure 5 (a) and (b) four and six Bragg-type 
band gaps, respectively, and the first band gap widths are 
122.5 Hz - 456.9 Hz and 103.8 Hz - 128.8 Hz, respectively. 
For the other cases, a = 0.106, 0.0707, 0.053, N = 4, 6, 8, 
Figure 5 (a) and (b), the first band gap widths are 456.9 
Hz - 1204 Hz , 1008 Hz - 2325 Hz and 1782 Hz - 3849, for 

Figure 1. Schematic representation of a PC beam with N unit cells of steel (blue) and polyethylene (white) considering models 1 (a) and 
2 (c). The PC beam unit cells are illustrated in (b) and (d).

Table 1. Beam geometric parameters and material properties.

Geometry/Property Value

Unit cell length (a= 2aA+aB),aA=aB= a3
1 0.0424 m

Beam length (WSE, WFE, FE and SE methods) 0.424 m

Beam length (CPWE and IPWE methods) ∞

Number of unit cells (WSE, WFE, FE and SE methods) (N) 10

Circular cross section area (S=πr2,r= 9.45 mm) 2.8055 x 10-4 m2

Young’s modulus (EA, EB) 21 x 1010 Pa, 0.72 x 109 Pa

Mass density (ρA, ρB) 7800 kg/m3, 935 kg/m3

Loss factor (ηA, ηB) 0.0013, 0.01

Second moment of area (I=πr4/4) 6.2635 x 10-9 m4
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Figure 2. PC beam displacement of the left (a-c) side, first node, and right (b-d) side, last node, calculated by WSE, 
WFE, FE and SE methods, considering models 1 (a-b) and 2 (c-d).

Figure 3. Point receptance (a-c) and transfer receptance (b-d) of the PC beam calculated by WSE, WFE, FE and 
SE methods, considering models 1 (a-b) and 2 (c-d).
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Figure 4. Transmittance of the PC beam calculated by WSE, WFE, FE and SE methods, considering models 1 (a) and 2 (b).

Figure 5. Transmittance of the PC beam calculated by WSE method for N = 2, 4, 6, 8, 10 (a-b) and the transmittance 
calculated by WSE, WFE, FE and SE methods for N = 2 (c-d), considering models 1 (a-c) and 2 (b-d).

model 1, and 415 Hz - 514.4 Hz, 936.3 Hz - 1160 Hz and 
1679 Hz - 2046, for model 2, respectively. Thus, increasing 
the length of the unit cell, the Bragg-type band gap will 
occur in low frequencies, as expected by Bragg's law. The 
best behavior is found for the model 1, at least considering 
the first Bragg-type band gap, because this model presents 
the higher band gap widths.

In Figure 5 (c) and (d), we show the transmittance for 
N = 2, calculated by WSE, WFE, FE and SE methods for 
models 1 and 2, respectively. We can see that the WFE and 

FE methods do not converge with WSE and SE methods in 
high frequencies. This happens because the discretization 
of the unit cell (two finite elements for each part of the unit 
cell, as mentioned before) using the FE method is not enough 
in higher frequencies.

3.1.3 Complex elastic band structure

Figure 6 illustrates the real and imaginary parts of the 
elastic band structure, considering the data in Table 1, N = 
10, for models 1 (a-b) and 2 (c-d). Figure 6 (a-c) shows the 
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Figure 6. Complex elastic band structure of the PC beam considering N = 10 for models 1 (a-b) and 2 (c-d). The real part 
of the reduced Bloch wave vector (dimensionless) (a-c) is calculated by WSE, WFE and IPWE methods and the imaginary 
part of the reduced Bloch wave vector is calculated by WSE and WFE methods.

real part of the reduced Bloch wave vector (dimensionless), 
ka/π, using WSE, WFE and IPWE methods and Figure 6 
(b-d) shows the imaginary part of the reduced Bloch wave 
vector using WSE and WFE methods.

The same Bragg-type band gap observed in Figures 3 
(a-b) and 4 (a) for model 1, between 2780 Hz and 5798 Hz, 
can be observed in Figure 6 (a-b). For model 2, the Bragg-
type band gap is not observed in Figures 3 (c-d) and 4 (b), 
as mentioned before, however, it exists and it is opened up 
between 2643 Hz and 3175 Hz, as we can see in Figure 6 (c-d).

The unit cell attenuation constant, μ, is an important 
information that can be analyzed from the imaginary part 
of the Bloch wave vector, Figure 6 (b-d), because they are 
related as ℜ(μ) = ℑ(k)a for a complex k. In Figure 6 (b-d), we 
can see that the attenuation performance of the Bragg-type 
band gaps is better for the model 1, because the existence 
of a broader band gap with higher attenuation.

In IPWE and CPWE calculations, we consider 101 plane 
waves in the Fourier series expansion and we only show 
the FIBZ59, [0, π/a], in Figure 6 (a) and (c). It can be seen 
a good matching from WSE, WFE and IPWE methods in 
Figure 6 (a) and (c).

Figure 7 (a-b) shows the comparison between the IPWE 
and CPWE methods inside the FBZ59, i.e. [-π/a, π/a], for 
models 1 and 2, respectively. In Figure 7, only the first 10 
branches are illustrated. The matching between IPWE and 
CPWE does not occur only for the higher branches, even 
considering a high number of planes waves.

In order to demonstrate the matching between WSE and 
IPWE methods for other values of N, we plot in Figure 8 (a) 
and (c) the real part of reduced Bloch wave vector for N = 2, 
4, 6, 8, 10. It can be observed a good matching between WSE 
and IPWE methods. In Figure 8 (b) and (d), it is presented 
the imaginary part of reduced Bloch wave vector for N = 
2, 4, 6, 8, 10 and its behaviour is similar to the discussed in 
Figure 5 (a-b), however, we also have the information of the 
unit cell attenuation performance and not only the band gap 
width. In Figure 8 (b-d), the best attenuation performance 
for N = 4, 6, 8, 10 is found for model 1, because more broad 
band gaps with higher attenuation are created. However, for 
N = 2, the best attenuation performance between models 1 
and 2 is not clear, because both models present many band 
gaps with high attenuation.
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Figure 7. Real part of the reduced Bloch wave vector (dimensionless) calculated by IPWE and CPWE methods for models 1 
(a) and 2 (b).

Figure 8. Complex elastic band structure of the PC beam considering N = 2, 4, 6, 8, 10 for models 1 (a-b) and 2 (c-d). The real part of 
the reduced Bloch wave vector (dimensionless) (a-c) is calculated by WSE and IPWE methods and the imaginary part of the reduced 
Bloch wave vector is calculated by WSE method (b-d).
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3.1.4 Influence of polyethylene and steel quantities on 
unit cell attenuation

Figure 9 (a-j) shows the influence of the polyethylene 
quantity (5% to 95%), model 1 (a,c,e,g,i), and steel quantity 
(5% to 95%), model 2 (b,d,f,h,j), on the unit cell attenuation 
for N = 2 (a-b), N = 4 (c-d), N = 6 (e-f), N = 8 (g-h) and 
N = 10 (i-j), respectively, calculated by WSE method. It 
is important to mention that until Figure 8, we have only 
considered 1/3 (≈ 33,33%) of polyethylene for model 1, and 
1/3 (≈ 33,33%) of steel for model 2, as illustrated in Figure 
1. The influence of the polyethylene and steel quantities on 
the unit cell attenuation performance is complex and depends 
on the unit cell length.

For model 1, no attenuation is observed for N = 2, 4, 6, 
8, 10 until 98 Hz, 406 Hz, 874 Hz, 1612 Hz and 2500 Hz, 
see Figure 9 (a,c,e,g,i), respectively, independently of the 
polyethylene quantity. Whereas for model 2, no attenuation 
is observed for N = 2, 4, 6, 8, 10 until 98.75 Hz, 402.5 Hz, 
910.6 Hz, 1593 Hz and 2488 Hz, see Figure 9 (b,d,f,h,j), 
respectively, independently of the steel quantity. Thus, 
depending on the application, choosing the polyethylene 
and steel quantities, on models 1 and 2, correctly it is not 
an easy task, because it is related to the unit cell length and 
in which frequency the band gap appears.

For model 1, in Figure 9 (c,e,g,i), there are some regions 
which present higher attenuation, i.e. between 25% - 65%, 
35% - 55%, 45% - 65% and 5% - 25% of polyethyelene, 
for, N = 4, 6, 8, 10, respectively. For model 2, can also be 
observed that there are some regions which present higher 
attenuation, see Figure 9 (d,f,h,j), i.e. between 45% - 85%, 
55% - 75%, 45% - 65% and 85% - 95% of polyethyelene, for, 
N = 4, 6, 8, 10, respectively. In Figure 9 (a-b), it is difficult to 
identify where is the best attenuation region, because there 
are many band gaps, but below 20% of polyethyelene and 
20% of steel are the worst attenuation regions for models 1 
(a) and 2 (b), respectively.

3.2 Experimental Validation

A 1D PC beam is used to perform an experimental test. 
The PC beam is similar to the model 1 proposed in Figure 
1 (a-b) in a free-free boundary condition, however, aB = 
0.041 m and aA = 0.0325 m, with a = 2aA + aB = 0.106 m. 
The properties are the same described in Table 1, with N = 4.

The measurement instruments used in the experimental 
setup are summarized in Table 2. Figure 10 shows the 
experimental setup with the details of the impact hammer and 
accelerometer position. By using an impact force excitation 
applied to the right and left ends of the PC beam, acceleration 
measurements are taken on the right end of the PC beam.

However, we choose to plot the displacement, that is  
u ac

2~
=

-
, where ac is the acceleration measured. Inertance 

point and transfer FRFs are measured with 5 averages, with 
the frequency discretization of 0.625 Hz.

Figure 9. Unit cell attenuation constant surface x-y view of the 
PC beam considering N (a-b), N = 4 (c-d), N = 6 (e-f), N = 8 (g-h) 
and N = 10 (i-j), for models 1 (a,c,e,g,i) and 2 (b,d,f,h,j), calculated 
by WSE method.

Figure 11 (a-d) illustrates the displacement of the last 
beam node (right side), the transmittance and the FRFs H11 
and H21, respectively. The numerical results present good 
agreement with the experimental results, however, FE and 
WFE methods do not match in higher frequencies with the 
analytical methods, as discussed before. Furthermore, there 
is some mismatch related to the experimental results.
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Table 2. Measurement instruments.

Instrument Manufacture and model Sensitivity Measure range

Impulse Hammer PCB 86E80 22.5 mV/N 222.0 N (peak)

Accelerometer KISTLER 8614A500M1 3.46 mV/g (± 5%) 0-12.5 kHz

Data Acquisition LMS SCR05 - -

Figure 10. Experimental setup of the PC beam.

Figure 11. PC beam displacement of the right (a) side, transmittance (b), point receptance (c) and transfer receptance (d) 
calculated by the WSE, WFE, FE, SE methods and measured experimentally (EXP).

The numerical band gap widths do not match exactly 
with the experimental band gap widths, as expected, because 
our numerical model may not capture all the real aspects of 
the PC beam, such as the material used to glue the polymer 
and metal, the material properties may not be exactly the 
same of Table 1, among others. In addition, we use the EB 
beam theory, perhaps considering higher beam theories, such 
as Timoshenko beam theory60, the results may be improved 
in high frequencies.

Figure 12 shows the complex elastic band structure of the 
real PC beam, illustrated in Figure 10, with the Bragg-type 
band gaps. The band gap widths observed in Figure 11 can 
be confirmed in Figure 12. Furthermore, we may observe 
in Figure 12 a small Bragg-type band gap between 405 Hz 
- 720 Hz with low attenuation.
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Figure 12. Complex elastic band structure of the real PC beam. The real part of the reduced Bloch wave vector (dimensionless) 
(a) calculated by WSE, WFE and IPWE methods and the imaginary part of reduced Bloch wave vector calculated by WSE and 
WFE methods.

4. Conclusion
We obtain the forced response and the complex elastic 

band structure of a 1D PC beam proposed by models 1 and 
2. The forced response is obtained by the WFE, WSE, FE 
and SE methods and a good matching is observed, except for 
high frequencies, where WFE and FE do not match with the 
spectral analytical methods. The real part of the Bloch wave 
vector is calculated by the WFE, WSE and IPWE methods 
and it is shown a good agreement. The CPWE method is not 
accurate compared to the IPWE method for the higher bands.

The influence of the unit cell length is also studied and 
for longer unit cells, Bragg-type band gaps are opened up 
in low frequencies. The polyethylene or steel quantity into 
the unit cell, considering models 1 and 2, respectively, is an 
important variable and its influence in the unit cell attenuation 
constant it is complex and depends of the unit cell length. 
We show some ranges of frequency, considering fixed unit 
cell lengths, which no unit cell attenuation is observed 
independently of the polyethylene and steel quantities. We 
also show the regions that present higher attenuation. In a 
general way, the model 1 proposed presents better unit cell 
attenuation behaviour than model 2.

The analytical and numerical results present a good 
agreement with the experimental results and they can localize 
the band gap position and width close to the experimental. A 
small Bragg-type band gap with low attenuation is observed 
between 405 Hz - 720 Hz. The 1D PC beam with unit cells 
of steel and polyethylene presents potential application for 
vibration management.
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