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This paper presents stress influence functions for uniformly distributed, time-harmonic rectangular loads within a three-
dimensional, viscoelastic, isotropic full-space. The coupled differential equations relating displacements and stresses in the full-
space are solved through double Fourier integral transforms in the wave number domain, in which they can be solved algebraically.
The final stress fields are expressed in terms of double indefinite integrals arising from the Fourier transforms. The paper presents
numerical schemes with which to integrate these functions accurately. The article presents numerical validation of the synthesized
stress kernels and their behavior for high frequencies and large distances from the excitation source. The influence of damping
ratio on the dynamic results is also investigated. This article is complementary to previous results of the authors in which the
corresponding displacement solutions were derived. Stress influence functions, together with their displacement counterparts, are
a fundamental part of many numerical methods of discretization such the boundary element method.

1. Introduction

The displacements and stress fields of an elastic full-space
are coupled according to Navier-Cauchy’s differential equa-
tion. Solution to these equations may be obtained through
integral transforms, in which the coupled equations, written
in physical space coordinates, are transformed into the
wave number space where they can be solved algebraically.
Numerous authors have used this technique to obtain stress
and displacement fields through Fourier [1, 2], Radon [3–
5], and Hankel transforms [6], which are selected according
to the coordinate system or type of loading involved in
a particular form of the Navier-Cauchy equations. For an
extensive literature review on this topic, please refer to
Mesquita, Romanini, and Labaki [7].

Influence functions—the response of a medium to non-
singular loadings—can be used directly to model loading
problems such as pavements, foundations, and footings [8],
as well as wave propagation through unbounded media
[9], while adequately accounting for Sommerfeld’s radiation

condition [10]. Moreover, they can be used as auxiliary states
within the framework of the boundary element method
(BEM) to model more sophisticated problems [11, 12].

The authors of the present article have previously derived
a solution for displacement influence functions for rectan-
gular loads within a viscoelastic full-space [7]. The intrica-
cies of the numerical computation of their final indefinite
integral expressions were discussed by the authors in Labaki,
Romanini, and Mesquita [13]. Despite their contribution to
the understanding of the response of elastic media, solutions
for more practical, arbitrarily shaped soil-foundation inter-
action problems through the BEM require the corresponding
stress influence functions to be derived.This is the goal of the
present article. This work presents stress influence functions
for uniformly distributed rectangular loads within three-
dimensional, viscoelastic, isotropic full-spaces. An analytical
procedure involving double Fourier transforms is used to
uncouple the differential equations ofmotion so that they can
be solved algebraically. Closed-form solutions for arbitrary
time-harmonic rectangular loadings are presented in the
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Figure 1: External vertical and horizontal loadings applied within the full-space.

transformed domain, in terms of indefinite double integrals.
The article discusses the characteristics of the corresponding
integrands and numerical schemes with which to integrate
the final equations. Original numerical results are shown for
selected representative parameters.

2. Problem Statement

Consider an unbounded, three-dimensional, isotropic, vis-
coelastic full-space, with complex-valued Lamé’s constants 𝜇
and𝜆, damping coefficient 𝜂, andmass density𝜌, described in
terms of a rectangular coordinate system (x, y, z). A hysteretic
damping model is considered for this medium [14], and
the complex-valued Lamé’s constants relate to their real
counterparts 𝜇r and 𝜆r according to the elastic-viscoelastic
correspondence principle [15]: 𝜇 = 𝜇r(1 + i𝜂) and 𝜆 =𝜆r(1 + i𝜂), in which i = √ − 1. Vertical or horizontal time-
harmonic loads of circular frequency 𝜔 are applied within
a rectangular surface of sides 2A and 2B in the x- and y-
directions, respectively, on the xy plate (z = 0) (Figure 1).The
loads are uniformly distributed within this area.

In the absence of body forces, the displacement field
U = U(x) due to these loadings in the frequency domain is
described by

𝜇∇2U + (𝜆 + 𝜇) ∇ (∇ ∙ U) = −𝜔2𝜌U (1)

The corresponding stress field𝜎 is obtained fromU according
to

𝜎ij = 𝜆 (∇ ∙ U) 𝛿ij + 𝜇 (Ui,j + Uj,i) (2)

The present problem consists of deriving a solution for 𝜎.

3. Solution Strategy

The vector displacement field ui (i = x, y, z) of a continuous,
linear-elastic, unbounded full-space may be assumed to be
continuously differentiable and vanish at spatial infinity, such
that it can be resolved into the linear superposition of a
curl-free vector field Δ and a divergence-free vector fieldΩ, according to the Helmholtz decomposition (Eringen and
Suhubi, 1979)

ui = − 1
k2L

Δ ,i + 2
k2S

eimnΩn,m, (3)

in which

k2L = 𝜔2𝜌𝜆 + 2𝜇 ,
k2S = 𝜔2𝜌𝜇

(4)

are dilatational and distortional wave numbers, respectively.
The corresponding stress field becomes, in terms of this
decomposition,

𝜎ij𝜇 = 𝛿ij 1 − 2n2
n2

Δ − 2
k2L

Δ ,ij + 2
k2S

(eiklΩl,kj + ejklΩk,li) , (5)

in which 𝛿ij is the Kroenecker delta and n2 = k2L/k2S. Trial
solutions may be established for Δ and Ω as

Δ(1) = A(1)k2L exp [𝛼Lz + i (𝛽x + 𝛾y)] , (6)

Ω(1)j = B(1)j k2S exp [𝛼Sz + i (𝛽x + 𝛾y)] , (7)

Δ(2) = A(2)k2L exp [−𝛼Lz + i (𝛽x + 𝛾y)] , (8)

Ω(2)j = B(2)j k2S exp [−𝛼Sz + i (𝛽x + 𝛾y)] , (9)

in which A(m) and Bn
(m) (m = 1, 2; n = 1, 2, 3) are

arbitrary functions corresponding to specific boundary-value
problems; i.e., they will be determined by the boundary
conditions of a specific problem. The index m indicates if
the trial solution corresponds to Δ and Ωj within domain
m = 1 (−∞ < z ≤ 0) or domain m = 2 (0 ≤ z < +∞). It
is necessary to split the trial functions into two expressions,
corresponding to the two domains, m = 1 (−∞ < z ≤ 0) and
domain m = 2 (0 ≤ z < +∞), so that the arguments 𝛼Lz and𝛼Sz of the exponential terms vanish at infinity, as required by
Sommerfeld’s radiation condition [10].

The conditions that Δ(m) and Bn
(m) must be, respectively,

curl-free and divergence-free yield

𝛼2L,S = (𝛽2 + 𝛾2) − k2L,S, (10)

B(1,2)3 = ∓i𝛼S
(𝛽B1 + 𝛾B2) . (11)

The substitution of (6) to (9) into (3) and (5) yields the
expressions of displacement and stress fields in the wave
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number domain (𝛽, 𝛾) for media 1 and 2 in terms of the trial
functions:

u(1,2)X = {−A(1,2)i𝛽e±𝛼Lz ± 2𝛼S
[B(1,2)1 𝛽𝛾

+ B(1,2)2 (𝛾2 − 𝛼2S)] e±𝛼Sz} ei(𝛽x+𝛾y),
(12)

u(1,2)Y = {−A(1,2)i𝛾e±𝛼Lz ± 2𝛼S
[B(1,2)1 (−𝛽2 + 𝛼2S)

− B(1,2)2 𝛽𝛾] e±𝛼Sz} ei(𝛽x+𝛾y),
(13)

u(1,2)Z = {∓A(1,2)𝛼Le
±𝛼Lz − 2i [B(1,2)1 𝛾 − B(1,2)2 𝛽] e±𝛼Sz}

⋅ ei(𝛽x+𝛾y), (14)

𝜎(1,2)XX = 𝜇 {A(1,2) (𝛽2 − 𝛾2 − 𝛼2S + 2𝛼2L) e±𝛼Lz

± 4i𝛽𝛼S
[B(1,2)1 𝛽𝛾 + B(1,2)2 (𝛾2 − 𝛼2S)] e±𝛼Sz} ei(𝛽x+𝛾y)

(15)

𝜎(1,2)XY = 2𝜇 {A(1,2)𝛽𝛾e±𝛼Lz

± i𝛼S
[B(1,2)1 (𝛾2𝛽 + 𝛽𝛼2S − 𝛽3)

+ B(1,2)2 (𝛾3 − 𝛾𝛼2S − 𝛽2𝛾)] e±𝛼Sz} ei(𝛽x+𝛾y)

(16)

𝜎(1,2)XZ = 2𝜇 {∓iA(1,2)𝛽𝛼Le
±𝛼Lz + [2B(1,2)1 𝛽𝛾

+ B(1,2)2 (𝛾2 − 𝛼2S − 𝛽2)] e±𝛼Sz} ei(𝛽x+𝛾y) (17)

𝜎(1,2)YY = 𝜇 {A(1,2) (𝛾2 − 𝛽2 − 𝛼2S + 2𝛼2L) e±𝛼Lz

± 4i𝛾𝛼S
[B(1,2)1 (𝛼2S − 𝛽2) − B(1,2)2 𝛽𝛾] e±𝛼Sz} ei(𝛽x+𝛾y)

(18)

𝜎(1,2)YZ = 2𝜇 {∓iA(1,2)𝛾𝛼Le
±𝛼Lz + [B(1,2)1 (𝛼2S + 𝛾2 − 𝛽2)

− 2B(1,2)2 𝛽𝛾] e±𝛼Sz} ei(𝛽x+𝛾y), (19)

𝜎(1,2)ZZ = 𝜇 {−A(1,2) (𝛾2 + 𝛽2 + 𝛼2S) e±𝛼Lz ∓ 4i𝛼S [B(1,2)1 𝛾
− B(1,2)2 𝛽] e±𝛼Sz} ei(𝛽x+𝛾y). (20)

The six remaining arbitrary functions A(m) and Bn
(m) (m, n =1, 2) in (12) to (20) arise upon establishing both kinematic

compatibilities,

u(1)j (x, y, z = 0) = u(2)j (x, y, z = 0) , (21)

and equilibrium conditions

𝜎(1)Zj (x, y, z = 0) − 𝜎(2)Zj (x, y, z = 0) = pj (𝛽, 𝛾) , (22)

at the loaded interface between media 1 and 2 (z = 0). The
solution of these six algebraic equations summarized in (21)
and (22) (j = x, y, z) results in A(m) and Bn

(m) corresponding
to the full-space boundary-value problem, in which

pj (𝛽, 𝛾) = pj (𝛽, 𝛾) ei(𝛽x+𝛾y) (23)

is the time-harmonic external loads of circular frequency 𝜔
and amplitude pj at the interface between media 1 and 2, pre-
sented in the wavenumber domain (𝛽, 𝛾). For this boundary-
value problem, the solution for the six trial functions is given
by

A(1,2) = 12 i
𝛽pX (𝛽, 𝛾)
𝛼L𝜇∗k∗S 2 + 12

𝛾pY (𝛽, 𝛾)
𝛼L𝜇∗k∗S 2 ± 12

pZ (𝛽, 𝛾)
𝜇∗k∗S 2 , (24)

B(1,2)1 = ∓ 14
pY (𝛽, 𝛾)

𝜇∗k∗S 2 + 14 i
𝛾pZ (𝛽, 𝛾)
𝜇∗𝛼Sk∗S

2
, (25)

B(1,2)2 = ± 14
pX (𝛽, 𝛾)

𝜇∗k∗S 2 − 14 i
𝛽pZ (𝛽, 𝛾)
𝜇∗𝛼Sk∗S

2
. (26)

3.1. Distributed Loads. The nonsingular loading case pro-
posed in this article may be obtained by integrating the
external point load pj(𝛽, 𝛾) within the rectangular patch(−A ≤ x ≤ A, −B ≤ y ≤ B, z = 0) where it is applied. An
expression for this loading in the wavenumber domain has
been derived by Mesquita, Romanini, and Labaki [7]:

pj (𝛽, 𝛾) = − 4Pj𝛽𝛾 sin (𝛽A) sin (𝛾B) , j = x, y, z, (27)

where Pj is the spatially constant amplitude of this uniformly
distributed load.

3.2. Stress Fields in the Physical Domain. The substitution
of (24) to (26) into (15) to (20) yields the stress fields in
terms of the wavenumbers kS and kL. Their physical domain
counterparts are obtained upon applying an inverse double
Fourier transformation to those expressions:
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𝜎XX = PX𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S (𝛽2 − 𝛾2 + 2𝛼2L − 𝛼2S) e−𝛼L|z| + 2𝛼L (𝛾2 − 𝛼2S) e−𝛼S|z|
𝛼S𝛼L

s𝛽s𝛽xdk𝛽
s𝛾c𝛾y
k𝛾

dk𝛾

+ PY𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S (𝛽2 − 𝛾2 + 2𝛼2L − 𝛼2S) e−𝛼L|z| − 2𝛼L𝛽2e−𝛼S|z|
𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽s𝛾s𝛾ydk𝛾

+ z|z| PZ𝜇𝜋2 ∫∞
0

∫∞
0

(𝛽2 − 𝛾2 + 2𝛼2L − 𝛼2S) e−𝛼L|z| + 2𝛽2e−𝛼S|z|
𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽s𝛾c𝛾ydk𝛾

(28)

𝜎XY = PX𝜇𝜋2 ∫∞
0

∫∞
0

2𝛽2𝛼Se
−𝛼L|z| − 𝛼L (2𝛽2 − k2S) e−𝛼S|z|

𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽s𝛾s𝛾ydk𝛾

+ PY𝜇𝜋2 ∫∞
0

∫∞
0

2𝛾2𝛼Se
−𝛼L|z| − 𝛼L (2𝛾2 − k2S) e−𝛼S|z|

𝛼S𝛼L
s𝛽s𝛽xdk𝛽

s𝛾c𝛾y
k𝛾

dk𝛾

− 2 z|z| PZ𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S𝛼Le
−𝛼L|z| − 𝛼S𝛼Le

−𝛼S|z|

𝛼S𝛼L
s𝛽s𝛽xdk𝛽s𝛾s𝛾ydk𝛾

(29)

𝜎XZ = z|z| PX𝜇𝜋2 ∫∞
0

∫∞
0

2𝛽2𝛼S𝛼Le
−𝛼L|z| + 𝛼S𝛼L (𝛾2 − 𝛽2 − 𝛼2S) e−𝛼S|z|

𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽
s𝛾c𝛾y
k𝛾

dk𝛾

+ 2 z|z| PY𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S𝛼Le
−𝛼L|z| − 𝛼S𝛼Le

−𝛼S|z|

𝛼S𝛼L
s𝛽s𝛽xdk𝛽s𝛾s𝛾ydk𝛾

− PZ𝜇𝜋2 ∫∞
0

∫∞
0

2𝛼S𝛼2Le−𝛼L|z| − 𝛼L (𝛾2 + 𝛽2 + 𝛼2S) e−𝛼S|z|
𝛼S𝛼L

s𝛽s𝛽xdk𝛽
s𝛾c𝛾y
k𝛾

dk𝛾

(30)

𝜎YY = − PX𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S (𝛽2 − 𝛾2 − 2𝛼2L + 𝛼2S) e−𝛼L|z| + 2𝛼L𝛾2e−𝛼S|z|
𝛼S𝛼L

s𝛽s𝛽xdk𝛽
s𝛾c𝛾y
k𝛾

dk𝛾

+ PY𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S (𝛽2 − 𝛾2 − 2𝛼2L + 𝛼2S) e−𝛼L|z| − 2𝛼L (𝛽2 − 𝛼2S) e−𝛼S|z|
𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽s𝛾s𝛾ydk𝛾

− z|z| PZ𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S𝛼L (𝛽2 − 𝛾2 − 2𝛼2L + 𝛼2S) e−𝛼L|z| + 2𝛼S𝛼L𝛾2e−𝛼S|z|
𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽
s𝛾c𝛾y
k𝛾

dk𝛾

(31)

𝜎YZ = 2 z|z| PX𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S𝛼Le
−𝛼L|z| − 𝛼S𝛼Le

−𝛼S|z|

𝛼S𝛼L
s𝛽s𝛽xdk𝛽s𝛾s𝛾ydk𝛾

+ z|z| PY𝜇𝜋2 ∫∞
0

∫∞
0

2𝛾2𝛼S𝛼Le
−𝛼L|z| − 𝛼S𝛼L (𝛾2 − 𝛽2 + 𝛼2S) e−𝛼S|z|

𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽
s𝛾c𝛾y
k𝛾

dk𝛾

− PZ𝜇𝜋2 ∫∞
0

∫∞
0

2𝛼S𝛼2Le−𝛼L|z| − 𝛼L (𝛾2 + 𝛽2 + 𝛼2S) e−𝛼S|z|
𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽s𝛾s𝛾ydk𝛾

(32)

𝜎ZZ = − PX𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S (𝛽2 + 𝛾2 + 𝛼2L) e−𝛼L|z| − 2𝛼2S𝛼Le
−𝛼S|z|

𝛼S𝛼L
s𝛽s𝛽xdk𝛽

s𝛾c𝛾y
k𝛾

dk𝛾

− PY𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S (𝛽2 + 𝛾2 + 𝛼2S) e−𝛼L|z| − 2𝛼2S𝛼Le
−𝛼S|z|

𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽s𝛾s𝛾ydk𝛾

− z|z| PZ𝜇𝜋2 ∫∞
0

∫∞
0

𝛼S𝛼L (𝛽2 + 𝛾2 + 𝛼2S) e−𝛼L|z| − 2𝛼S𝛼L (𝛽2 + 𝛾2) e−𝛼S|z|
𝛼S𝛼L

s𝛽c𝛽x
k𝛽

dk𝛽
s𝛾c𝛾y
k𝛾

dk𝛾

(33)
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in which

𝛽 = a0
A
k𝛽,

𝛾 = a0
A
k𝛾, (34)

k∗2S = (a0
A

)2 11 + i𝜇 ,
k∗2L = (a0

A
)2 n21 + i𝜇 ,

(35)

s𝛽 = sin (a0k𝛽) ,
s𝛽x = sin(a0k𝛽 xA) ,
s𝛾 = sin (a0b0k𝛾) ,
s𝛾y = sin(a0b0k𝛾 yB) ,

(36)

c𝛽 = cos (a0k𝛽) ,
c𝛽x = cos(a0k𝛽 xA) ,
c𝛾 = cos (a0b0k𝛾) ,
c𝛾y = cos(a0b0k𝛾 yB) ,

(37)

n2 = k2L
k2S

, (38)

𝛼2L = (𝛽2 + 𝛾2) − k2L,
𝛼2S = (𝛽2 + 𝛾2) − k2S , (39)

a0 = 𝜔A√ 𝜇𝜌 , (40)

in which a0 is a normalized frequency of excitation. Note
in (28) to (33) that unified expressions encompassing both
media 1 and 2 can be obtained by adjusting the expressions
by a factor z/—z—.

3.3. Numerical Evaluation of the Stress Fields. In order to
obtain the stress fields of the full-space in the physical
domain, the double indefinite integrals expressing these
fields (see (28) to (33)) must be evaluated numerically. The
evaluation of these integrals requires a careful selection of
appropriate numerical schemes. The integrands of the stress
fields are characterized by the superposition of a singular
kernel and an oscillatory-decaying kernel.

The singular kernel presents two singularities corre-
sponding to the pressure and shear waves in the full-space
(Labaki, Mesquita, and Romanini, 2012), which are confined
within a predictable region. A monotonic decay of the
singular kernel is observed beyond this region. In order to
deal with these singularities, a small damping factor 𝜂 has
been incorporated to the elastic constants according to the
elastic-viscoelastic correspondence principle [15]. This strat-
egy smooths out the singularities in that kernel and enables

the integral within the singular region to be evaluated with
ordinary adaptive Gaussian quadratures (Piessens, Doncker-
Kapenga, and Überhuber, 1983). The resulting integral then
corresponds to a viscoelastic full-space, rather than an elastic
one.This is a reasonablemodel formany applications of these
influence functions.

Beyond the singular region, the behavior of the integrand
is dominated by the oscillatory-decaying kernel. In this
second region, the integrand oscillates about zero and decays
in amplitude indefinitely. Amethod to approximate indefinite
integrals of such functions has been proposed by Longman
[16] in terms of Euler’s expansion of convergent series. The
present implementation uses Longman’s method to deal with
the oscillatory-decaying component of the integrands. For
a more complete description of the integration scheme and
the division of the integrand into singular and oscillatory-
decaying regions, please refer to (Labaki, Mesquita, and
Romanini, 2012).

4. Validation and Numerical Results

Figures 2–4 show comparisons between the results from
the present implementation and cases from the literature.
Figure 2 considers the case of a static (a0 = 0), concentrated
load within an elastic, three-dimensional full-space.The case
of concentrated load can be approached with the present
implementation by making A and B small. In these results,
A = B = 0.01. The results consider a Poisson ratio ] = 0.25,
coordinates y = 0.3 and z = 0.5, and show selected stress
components along a line 0.1 ≤ x ≤ 0.5. The results agree with
the classical Kelvin solution for this problem [17].

The reference solution for the case of dynamic, distributed
loads has been presented by Barros and Mesquita [18],
which considers a two-dimensional full-space. The two-
dimensional problem can be approached with the present
implementation by making the ratio B/A large. In these
results, A = 1 and B = 50. The results consider ] = 0.25,
x = 0.8, y = 0, and z = 0.5, which correspond to a point on
the plane x-z, for the sake of comparisonwith the 2D solution.
The results are compared for a frequency range 0.5 ≤ a0 ≤ 2.5.
4.1. Boundary Conditions. The aim of this section is to
show that the present implementation satisfies the boundary
conditions of the problem (see (22)). Figure 5 shows two
representative components of the stress fields near the loaded
surface of the full-space (|x| ≤ A; |y| ≤ B; z = 0). When a
unit load is applied at that surface, these components must
satisfy 𝜎ZZZ = 𝜎XZX = ∓0.5 for z = 0±; |x| ≤ A; |y| ≤ B
(under the loaded surface), and 𝜎ZZZ=𝜎XZX=0 otherwise.The
stress fields near the loaded surface are particularly difficult
to compute. Equations (28) to (33) show that the decaying
component of the integrands vanish for very small values
of z. Longman’s series extrapolation integration method,
currently being used to compute the oscillatory-decaying
portion of that integrand, is poorly suited to deal with slowly
convergent series. Nevertheless, Figure 5 shows that the stress
components tend monotonically to the boundary conditions
as the depth z approaches the loaded surface. For these
results, −2 ≤ x ≤ 2, y = 0.5, A = B = 1, and a0 = 0.
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Figure 2: Comparison of the present solution for static, concentrated loads.
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Figure 3: Comparison of the present solution for dynamic loads: vertical loads.
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Figure 4: Comparison of the present solution for dynamic loads: horizontal loads.
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Figure 5: Verification of the boundary conditions in the present implementation.
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Figure 6: Influence of the damping factor: vertical loads.

4.2. Influence of the Damping Factor. Figures 6–9 show how
the behavior of selected stress components is affected by
different damping ratios. In these results, A = B = 1, ] = 0.25,
y = z = 0.5, a0 = 0.5, and 0 ≤ x ≤ 10.

Figures 6–9 show that the effect of the damping coefficient
in the real part of the stress components is negligible, while
a significant influence is observed in the imaginary parts.
The way in which damping ratios affect these imaginary
components at various distances from the excitation source
is different for each of the stress components shown. A small
damping coefficient is introduced in the elastic constants
in the present implementation in order to facilitate the
numerical integration of (28) to (33). It is important to keep
in mind the effect that different values of this coefficient will
have on the solution.

Additionally, Figures 10 and 11 present the effect of
damping ratios in the stress fields for various frequencies of
excitation. For this analysis, x = y = z = 2, A = B = 1, and
] = 0.25. The results show that the stress amplitude decreases
more quickly for larger damping coefficients and frequencies
of excitation. This increase in amplitude decay with larger
damping coefficients is physically consistent [14].

4.3. Long-Distance Behavior. One of the applications of influ-
ence functions such as the one presented in this article is as
fundamental solutions in the analysis of problems through
the boundary element method (BEM). In the solution of
typical problemswith the BEM, these influence functions will
have to be evaluated at points that are far from the excitation
source. This section presents representative cases in which
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Figure 7: Influence of the damping factor: vertical loads.
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Figure 9: Influence of the damping factor: horizontal loads.
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Figure 10: Stress solutions distant from the excitation source: vertical loads.
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Figure 11: Stress solutions distant from the excitation source: horizontal loads.

the stress fields are computed in such situations. Figures 12
and 13 show selected stress components for three different
frequencies of excitation, and y = z = 0.5, A = B = 1,𝜂 = 0.05, ] = 0.25, and 5 ≤ x ≤ 50. These qualitative
results show that the present implementation is capable of
computing stress fields at large distances from the excitation
source.

4.4. Higher-Frequency Behavior. Even though this work
presents the time-harmonic solution of stress fields, the
corresponding transient response may be obtained from
these solutions through Fourier or Laplace transforms. In
order for these transforms to be accomplished successfully,
it is necessary that the time-harmonic solutions be evaluated
at considerably high frequencies. The smallest time step in
the resulting transient solution is inversely proportional to
the highest frequency in the original time-harmonic signal.

Figures 14 and 15 show that the present solution is capable of
computing time-harmonic stress fields for considerably high
frequencies of excitation. In these results, x = y = z = 2.0,
A = B = 1, ] = 0.25, 𝜂 = 0.01, and 0 ≤ a0 ≤ 20.
5. Concluding Remarks

This paper presented a derivation of stress fields within
homogeneous, three-dimensional, viscoelastic, isotropic
full-spaces due to time-harmonic, uniformly distributed
rectangular loads. The derivation is obtained upon the
decomposition of the displacement fields in the full-space
in terms of a curl-free and a divergence-free vector fields,
and their subsequent double Fourier space transform. The
resulting transformation yielded algebraic expression for the
displacement and stress fields within the full-space, in which
the boundary conditions were applied. The resulting stress
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Figure 12: Stress solutions distant from the excitation source: vertical loads.
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Figure 13: Stress solutions distant from the excitation source: horizontal loads.
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fields were expressed in terms of double indefinite integrals
that must be computed numerically for each analysis. The
results showed that the present implementation produces
physically consistent results and is robust for a wide range
of parameters. The present stress field solution can be
used together with the displacement solutions presented
previously by the authors in this journal to solve a variety of
elastodynamic problems through the boundary element and
other meshless methods.
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