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Abstract: Sophisticated and high performance embedded systems are present in an increasing
number of application domains. In this context, formal-based design methods have been studied
to make the development process robust and scalable. Models of computation (MoC) allows the
modeling of an application at a high abstraction level by using a formal base. This enables analysis
before the application moves to the implementation phase. Different tools and frameworks supporting
MoCs have been developed. Some of them can simulate the models and also verify their functionality
and feasibility before the next design steps. In view of this, we present a novel method for analysis
and identification of possible automation approaches applicable to embedded systems design flow
supported by formal models of computation. A comprehensive case study shows the potential and
applicability of our method.

Keywords: modeling; simulation; formal models of computation; synchronous; synchronous
dataflow; scenario-aware dataflow

1. Introduction

Embedded systems are present in a growing number of different application areas,
including a wide complexity range, from simple wearable gadgets to aerospace and biomedical.
Power consumption, performance, and cost usually figure as key constraints to these systems.

Besides the growing number of embedded systems applications, their integration and connectivity,
aiming to improve control and monitoring methods, have created the concept of cyber-physical systems
(CPS). This represents the integration of computation and physical processes controlled by embedded
computers and its networks, generally, by using feedback loops. Therefore, computation and physical
systems affect one another [1].

As embedded systems and CPS complexity grows, it gets harder and harder to specify, model
and simulate them, therefore making the system implementation phase more difficult. In this sense,
formal-based design methods have been developed to make this process reliable, robust and scalable.

Towards the correct-by-construction development, optimizing the available resources,
Edwards et al. [2] argue that systems should be implemented at a high abstraction level, using formal
models. This implementation consists on an executable model which makes no references to
implementation code or platforms. Thus, models of computation (MoC) are presented as a key approach
to formal-based system modeling and simulation. There is a range of existing MoCs where each
one represents and captures different aspects and semantics of system’s functionalities. Therefore,
one should carefully choose the MoC to use based on the type of application being modeled, besides the
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modeling and simulation methods [3]. In other words, the selection of a MoC depends on the
application’s characteristics, for example, all events must be synchronized or just parts of them.

Considering the design phase, a range of frameworks were developed aiming to aid in the
modeling and simulation of systems on a formal base. Examples are Ptolemy II [4], ForSyDe [5],
SDF3 [6], and Simulink [7]. Each framework focuses on different design methodologies aspects and
has its own profits and drawbacks when compared to the others.

In view of this, we present a method to identify possible automation approaches within design
flows based on formal models of computation, aiming to assist in a future low-level implementation of
automatic code generation and also a trustable, robust and scalable embedded systems design flow.

We show both the design and the high level implementation, that is, in the specification domain, of a
case study following formal design methods to model and simulate an embedded system.

Basically, two classes of MoCs with different timing abstraction [8] are used here. One is the
timed class, represented by the synchronous (SY) MoC, and the other is the untimed one, represented
by the synchronous dataflow (SDF) and scenario-aware dataflow (SADF). The last being a generalization of
SDF to model dynamic systems.

The main contribution of this paper is the introduction of a novel method to identify automation
approaches applicable to embedded systems’ formal-based designs, along with a demonstration of the
proposed method with both modeling and simulation supported by the theory of MoC.

The remainder of this document is organized as follows. Section 2 presents a background on
the main concepts used in this paper. In Section 3, it is described a proposed method for possible
automation identifications. Next, Section 4 shows the implementation of a case study based on the
introduced method, demonstrating its potential and applicability. Section 5 tackles a discussion
regarding the case study development and results. Finally, Section 6 summarizes the research
conclusions, contributions and possible future works.

2. Background

2.1. Models of Computation (MoC)

According to Jantsch [9] , a model is an abstraction or simplification of an entity, which can
be a physical system or even another model. It includes the tasks’ relevant characteristics and
properties for that particular model. In this context, a MoC is an abstraction of a real computing
device, which can serve different objectives and thus, different MoCs can be used for modeling
different systems depending on its behavior. Essentially, MoCs are collections of abstract rules that
dictate the semantics of execution and concurrency in heterogeneous computational systems.

A meta-model, or framework, for reasoning about properties of MoCs, named tagged signal model
(TSM) was introduced in Reference [10]. This meta-model is used in our work to support the selection
of a MoC to model a given application. Within that framework, systems are regarded as compositions
of processes acting on signals.

Definition 1 (Signal). A signal s, belonging to the set of signals S, is a set of events ei = (ti, vi). Events are
elementary information units composed by a tag ti ∈ T and a value vi ∈ V. A signal can be understood as a
subset of T ×V.

Definition 2 (Process). A process P is a set of possible behaviors, and can be viewed as relations between
input signals sI and output signals sO. The set of output signals is given by the intersection between the input
signals and the process, sO = sI ∩ P. A process is functional when there is a single value mapping F : sI → sO

describing it. Therefore, a functional process has either one behavior or no behavior at all.

Models within the TSM are classified as timed or untimed. In a timed MoC, the set of tags T is
totally ordered, meaning that one can order every event in every signal of the MoC based on its tag.
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In an untimed MoC, the set of tags T is partially ordered, meaning that not all, but only local groups of
events can be ordered based on its tag, for example, the ones belonging to the same signal.

2.1.1. Synchronous (SY) MoC

In the SY MoC, every signal is synchronized, that is, for any event in a signal, there is an event
with the same tag in every other signal. Thus, the SY MoC is classified as a timed MoC within the TSM.

The SY MoC is based on the perfect synchrony hypothesis, which states that neither computation
nor communication takes time [11]. It means that the processes receives an event, computes the output
at zero time and waits for the next event. To make this hypothesis feasible, SY MoC splits the time
axis into slots, where the evaluation cycle and process occur. For this model to work faithfully as the
system physical behavior, the time slot must be chosen in a way that the system is able to respond fast
enough. It means to compute the output event of an input within one evaluation cycle, and before the
next input arrives, leading to a separation of functional and temporal behavior of the system.

2.1.2. Synchronous Dataflow (SDF) MoC

SDF belongs to the family of untimed MoCs, named dataflow. According to Reference [12],
dataflows are directed graphs where each node represents a process and each arc represents a signal
path. Each process when activated, that is, fired, consumes a certain amount of data, denominated
tokens, from its input ports, and generates a certain amount of data for its output ports.

In the SDF, each input and output port is associated with a fixed natural number. Such numbers,
denominated token rates, define the token consumption, for input ports, or the token production,
for output ports in each activation cycle. An actor can fire only if the signal paths have enough tokens
to supply the amount needed by all input ports of the actor. As a consequence, no signal path can have
a negative amount of tokens.

The fact that an SDF actor always consumes and generates the same amount of tokens, that is,
fixed token rates, allows efficient solutions for problems like finding a static schedule for single and
multi-processor implementations and buffer size definitions [12].

2.1.3. Scenario-Aware Dataflow (SADF) MoC

The SADF semantics was first presented by Reference [13]. It consists of a SDF generalization able
to model dynamic system aspects by including the scenarios concept. SADF scenarios describe distinct
modes of processes operation where the execution times and amounts of data can vary at each fire
cycle. In this context, SADF classifies actors into two types: kernels and detectors.

Kernels are reconfigurable actors responsible for computation. Each kernel k has a set Ψk of
scenarios. The scenarios ψ ∈ Ψk selection is controlled by tokens consumed from an input control
channel γk at each fire cycle. The kernel control channel input consumption token rate is always 1.
At each kernel scenario, its data channels inputs consumption token rates ck and outputs production
token rates pk can vary, ensuring the computation dynamism modeled by the kernels [14]. Figure 1a
illustrates a kernel.

Detectors are the actors responsible for determining the kernel scenarios. A detector d can
have multiple data input channels σd, containing fixed token rates cd, and multiple output channels,
which can only be control channels γk, with production rates pd, which serves as control inputs for
kernel [14]. A detector is illustrated in Figure 1b.



Information 2020, 11, 120 4 of 29

Kernel
m × n

...
...

σky1pk1σkx1 ck1

σkynpknσkxm ckm

γk

1

(a) Kernel

Detector
m × n

...
...

γk1pd1σd1 cd1

γknpdnσdm cdm

control channel
data channel

(b) Detector
Figure 1. Scenario-aware dataflow (SADF) actor types, both with m inputs and n outputs,
from Reference [14].

2.2. Frameworks Supporting Formal MoCs

There is a wide range of formal-based development frameworks that differs on a series of aspects,
such as available MoCs, user interface, functionality, underlying programming paradigm and language,
and license styles.

Simulink is considered one of the most powerful and complete available framework, being a
block diagram environment for simulation and model-based design that is integrated to Matlab [7].
Simulink includes tools for modeling, simulating and automatic code generation, among other features.
It also checks the model compatibility with industry standards such as DO-178C, DO-331 and ISO
26262. Its main disadvantage, if one can point that, is the commercial license style, besides being a
proprietary code framework.

Regarding open source frameworks, Modelica is presented as a modeling language alternative
targeting CPS, which was formalized in 1997, and it is supported by a global and non-profit
association [15]. It also provides a modeling and simulation environment, the OpenModelica,
also maintained by a non-profit association, the OSMC [16].

SDF3 [6], read as “SDF For Free”, is presented as a tool that aims the generation, analysis and
visualization of SDF graphs. Its analysis computes parameters of the SDFG, such as the repetition vector,
which represents the number of times each actor should be fired to bring the system back to beginning
state. An actor is the representation of an SDF node. The source code of that framework is accessible
under the SDF3 proprietary license conditions. One disadvantage of this framework is the lack of a
system simulation tool.

A variety of other frameworks can be found in the literature, for example, EWD framework [17]
and the SystemC modeling framework presented in Reference [18].

To reduce the multitude of frameworks to analyze, a set of criteria were defined by Horita et al. [8]
and it is also used in the present research. Frameworks must support both modeling and simulation of
embedded systems, besides the open source code license style. Based on that, the frameworks used in
this paper are ForSyDe and Ptolemy II.

2.2.1. Formal System Design (ForSyDe)

Aiming the elevation of model abstraction level, and still based on formal design methods,
formal systems design (ForSyDe) was first presented in 1999 [19] as a methodology based on a
purely functional language, Haskell, and on the perfect synchrony hypothesis, thus supporting only
synchronous MoC at first. Its main modeling and simulation tool is the ForSyDe-Shallow, implemented
as a Haskell embedded domain specific language (EDSL). Nowadays, ForSyDe methodology
framework has evolved, including new MoCs, such as continuous time, SDF, and scenario-aware
dataflow (SADF) [14], besides other branches and frameworks, for example, ForSyDe-SystemC,
a modeling framework based on the IEEE standard language SystemC [5].

2.2.2. Ptolemy II

The Ptolemy II framework is part of the Ptolemy project, that has been developed at the
University of California at Berkeley, starting in the 80’s. It aims the formal modeling and simulation of
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heterogeneous cyber-physical systems and it is based on the imperative paradigm and object-oriented
design, using Java as base language. This provides multi-threading and graphical user interface [4].

Since Ptolemy II is based on a strongly typed and objected-oriented language, that is, Java,
its architecture has a well-defined package structure and packages functionality.

Nowadays, Ptolemy project has grown and includes different branches based on Ptolemy II,
some sponsored by commercial partners, having as main purpose the application of formal-based
design methodologies. This set of branches composes the Industrial Cyber-Physical Systems Center
(iCyPhy) [20].

2.3. MoCs Perspective under Ptolemy II and ForSyDe

Considering the MoCs variety and complexity, some concepts and implementation methods can
slightly differ from one framework to another, each one having its benefits and drawbacks.

2.3.1. ForSyDe Overview

ForSyDe implements its models of computation based on the TSM. The signals are modeled as
list of events, where the tags can either be implicitly given by the event position in the list or explicitly
specified by a list of tuples, depending on which MoC is used. Two events from different signals with
the same tag do not necessarily happen at the same time, their tags only represent the order of events
in their specific signal.

The ForSyDe processes modeling methodology is mainly based on the concept of process
constructors. These are basically higher-order functions that take side effect-free functions and values as
arguments to create processes. Each MoC implemented in ForSyDe is essentially a collection of process
constructors that enforce the semantics of that specific MoC. The implementation of heterogeneous
systems can be done by using process constructors from different MoC libraries.

ForSyDe defines the untimed MoCs by sets of process constructors and combinators, characterized
by the way its processes communicate and synchronize with each other, and in particular, by the
absence of timing information available to and used by processes. It operates on the causality
abstraction of time. Only the order of events and cause and effect of events are relevant [21]. ForSyDe
includes the following MoCs in this category: dataflow (DF); synchronous dataflow (SDF); cycle-static
dataflow (CSDF); scenario-aware dataflow (SADF); and the untimed MoC (U) [22].

In the timed MoCs, timing information is conveyed on the signals by absent events transmitted in
regular time intervals, allowing the processes to know when a particular event has occurred and when
no event has occurred. The sole sources of processes information are input signals, without the need of
access to a global state variable. ForSyDe includes two timed MoCs, the synchronous (SY) and the
continuous time (CT) [22].

2.3.2. Ptolemy II Overview

The main way to model and simulate systems using Ptolemy II is using its GUI called Vergil.
The models are represented as a set of actors, that communicates through interconnected ports.
The model semantics are driven by an special actor called Director, which is the graphical representation
of the selected MoC.

The actors represent the system processes and can be classified into two groups: opaque and
transparent. The opaque actor has its intern logic invisible to the outside model, that is, the sub-model
inside it can be driven by a different Director, composing a hierarchical and heterogeneous system
model. The transparent actor semantics are driven by the Director included in the model they belong
to. All the actors have its source code available and are customizable.

Ptolemy II includes a wider set of MoCs when compared to ForSyDe. In Ptolemy II,
synchronous-reactive (SR) MoCs execution follows ticks of a global clock. At each tick, each variable,
represented visually in Vergil by the wires that connect the actors, may or may not have a value.
Its value, or absence of value, is given by an actor output port connected to the wire. The actor maps
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the values at its input ports to the values at its output ports, using a given function. The function can
vary from tick to tick.

The Ptolemy II SR MoC is by default untimed, but it can optionally be configured as timed, in case
there is a fixed time interval between ticks.

In Ptolemy II dataflow MoCs, the execution of an actor consists of a sequence of firings, where each
firing occurs as a reaction to the availability of input data. A firing is a computation that consumes the
input data and produces output data.

Considering the SDF domain, when an actor is executed, it consumes a fixed amount of data
from each input port, and produces a fixed amount of data to each output port. As a consequence,
the potential for deadlock and boundedness can be statically checked, and its schedules can be statically
computed. Ptolemy II SDF MoC can be timed or untimed, though it is usually untimed.

2.4. Functional Programming Paradigm

Considering that systems should be first modeled at a high abstraction level during the
specification phase of a project [2], the present work focus is on functional programming
paradigm-based framework, that is, ForSyDe.

The reason is that the functional paradigm elevates the model abstraction level. It is possible to
list higher-order and side-effect free functions, data abstraction, lazy evaluation and pattern-matching
as useful features.

Functional programming base was first introduced in 1936, when Alonzo Church et al. presented
the main concepts of Lambda Calculus [23]. In that paradigm, all the computation functions of a program
are mathematical expressions to be evaluated. This makes the testing and verification processes as
easy to assess as checking whether an expected result is found based on some defined inputs.

Some languages were then created based on that paradigm, including Lisp, Miranda, Scheme and
Haskell. ForSyDe has Haskell as its main programming language.

As Haskell becomes more popular, more tools and packages are developed. Its main compiler
is the Glasgow Haskell Compiler (GHC), commonly used with its interactive environment GHCi,
which supports different operational systems and platforms. Besides, the environment has an useful
system used for building and for packages libraries called cabal. It builds the applications in a portable
way. The main tools can be found in the Haskell home page [24].

2.5. Imperative Programming Paradigm

Although the imperative programming paradigm has not the same abstraction level as the
functional one, it has characteristics that can contribute in model-based design, for example,
concurrency programming or classes inheritance.

The imperative paradigm representation is directly derived from the way digital hardware
works, by signals changing state over time. The machine code works in an imperative way,
without abstractions. This paradigm can be explained as a sequential execution of commands over
time, producing a program that behaves as a state function of time [25]. Some widely used pure
imperative languages are C, Pascal, Basic and Fortran.

Imperative programming paradigm can be divided into some subsets, depending on the research,
this classification can differ. The research presented in Reference [25] includes into these subsets the
von Neumann, scripting and object-oriented paradigms.

2.6. Related Works

In the context of higher abstraction level models and abstraction gap, frameworks and
methodologies have been developed towards possible automation approaches for formal model-based
design flows. Those tools differ in aspects such as input modeling language, output implementation
language and target design step.
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Simulink is one of the most powerful and commercially used tools for model-based design of
systems. One of its design flow automation tool is the Embedded Coder, which generates C and C++
code for embedded processors in mass production. The generated code is intended to be portable
and can be configured to attend standards such as MISRA C, DO-178, IEC 61508 and ISO 26262 [26].
Studies have used that tool to test and implement code into customized applications.

The work presented in Reference [27] discusses Simulink usage for automatic generation of C
code in critical applications, according to DO-178C and DO-331 standards. They also discussed the
possibility of automatic code generation of a whole application or of separate parts, or tasks.

The main difficulties when working with Simulink tools are related to its license costs and
proprietary implementation source code, commonly making it impracticable for researchers and
developers to perform a deeper analysis of its capabilities and algorithms.

The present research advocates to open source frameworks and tools, making it possible to take
advantage of researches collaborative environment and deeper code analysis.

Related to open source software, Copilot is presented as a DSL, based on Haskell, targeting
runtime verification (RV) programs for real-time, distributed and reactive embedded systems [28].
Runtime verification programs are applications which runs in parallel with the systems application,
monitoring its correctness ans consistency at the runtime. Copilot is implemented throughout a range
of packages, including automatic generations of C code: copilot-c99, based on Atom Haskell package,
and copilot-sbv, based on SBV Haskell package.

Although Copilot is a powerful tool for safe C code generation, even for critical systems, it mainly
targets a specific application type, the RVs. The present work aims to address a wider range of
applications and cyber-physical systems.

Requirements to Design Code (R2D2C) project was first presented by NASA aiming full formal
development, from requirements capture to automatic generation of provable correct code [29].
Its approach takes the specifications defined as scenarios using DSLs, or UML cases, infers a
corresponding process-based specification expressed in communicating sequential processes (CSP),
and finally transforms this design to Java programming language. That tool also makes it possible to
apply reverse engineering, extracting models from programming language codes. The present research
aims to analyze possible automation strategies for embedded systems design flows having as inputs
formal MoCs implemented through a framework or an EDSL.

Some challenges, advances and opportunities of embedded systems design automation were
presented in Reference [30]. According to that research, some CPS characteristics were listed as
obstacles for this automation, including: heterogeneity, dynamic and distributed systems, large-scale
and existence of human-in-the-loop. They argued that, for design automation tools, a series of features
would be necessary, for example, cross-domain, learning-based, time-awareness, trust-aware and
human-centric. One of the possible presented approaches was the combination of model-based design
(MBD), contributing with formal mathematical models, and data-driven learning, which inputs data
resulted from extensive field testing.

The present work represents an effort on contributions to the embedded design automation based
on MBD research. A case study is designed, modeled, simulated, verified and implemented in high
level, targeting the identification of automation approaches to help overcoming the listed difficulties.

3. Analysis and Identification of Possible Automation Approaches (AIPAA)

This section introduces a novel method for analysis and identification of possible automation approaches
(AIPAA) applicable to embedded systems design flow supported by formal models of computation.
Towards the automation approaches identification, the introduced method uses a design methodology
separated into well-defined steps.

One of the first steps when designing an embedded system is the system description in the form
of problem statement. This includes functionalities, behaviors, capabilities and constraints of the system.
An accurate and detailed problem statement leads to an effective, robust and optimized design flow.
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Elaborating the embedded system detailed problem statement is not a trivial task. The present
research work considers a design flow methodology assuming the problem statement is already
described. The problem statement is considered as an input for the design flow.

The AIPAA method takes into account only the system specification domain. The implementation
domain comprehends a variety of concepts and tools other than this research scope. However,
the present work presents straightforward guidelines on how the implementation domain can take
advantage of the AIPAA outputs.

Figure 2 illustrates the proposed method, that is, AIPAA. Each one of the five steps are
detailed next.

AIPAA

Problem
Statement

1. Problem
Characterization

2. MoC
Definition

3. Framework
Selection

4. Model
& Simulate

5. Properties
Verification

Implies in
problem state-
ment changes?

Properties
hold?

Implementation
Details

Implement System

YESNO

NO

Y
E
S
,
re
co
n
si
d
er

Input/Ouput

Regular step

Possible of automation

Figure 2. Analysis and identification of possible automation approaches (AIPAA) applicable to
embedded systems design flow. AIPAA needs the “problem statement” as a given input, and aids to
produce a model, which is verified and executable, as output. This output can be used as entry point in
the implementation domain, e.g., “implementation details” and “implement system”.

3.1. Problem Characterization Step

This first step, problem characterization, aims to conduct an initial analysis on the “problem
statement” input aiming the identification of its relevant behaviors and characteristics towards the
design of the system.

To facilitate the identification of problem semantics, both the problem procedures and processing
must be separated into functions, also defining how they should execute and communicate to each
other. These definitions allow for the problem analysis and characterization, which will next support
the MoC selection and definition. When applying this step, the following questions must be answered.

Q1 - Does the problem have concurrent, or only sequential, processes?
Q2 - Are the problem communication paths totally or partially ordered?
Q3 - Is the problem a dataflow problem?
Q4 - Are the inputs and processing cyclic?
Q5 - Can a single clock be used to synchronize all the involved processes?

To summarize, the required input for this step is the problem statement describing the problem
functionalities, behaviors, inputs and desired outputs. After the application of this step, the expected
outputs are the problem separation into functions and their relationship definition, besides a list of
well-defined problem characteristics according to the previously stated questions.
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3.2. MoC Definition Step

As stated in Section 2.1, models of computation describe only the characteristics that are relevant
for a given task. In this sense, it is needed to analyze the problem characterization step outputs aiming
the identification of relevant behaviors and functionality that permits its semantics classification into
one or more MoCs.

A range of complex applications comprehends behaviors that may not be possible to be modeled
using just a single MoC. As a consequence, the model semantics must be split into more than one MoC,
generating the concept of heterogeneous systems modeling. In that case, a second phase should be
included into this step, defined as MoC division, which classifies each problem characteristic into a
MoC that better fits it.

The present paper only addresses the study of a single MoC at a time within a system, that is,
using either SY, SDF or SADF MoCs. For this limitation, an analysis on the available MoCs was
performed and just three MoCs were selected, based on the criteria that they had to be representative,
widely used and should differ on timing abstractions.

As stated in Section 2.1.1, SY is a timed MoC, that is, its signals are totally ordered, and it is based
on the perfect synchrony hypothesis. The SDF, on the other hand, is an untimed MoC, that is, its signals
are partially ordered, composed by nodes with fixed token rates and it is non-terminating, as described
in Section 2.1.2. Finally, the SADF represents a generalization of SDF in which the token rates may
vary on each actor fire cycle.

This step’s required input is the list of problem characteristics. After the application of this step,
the expected output is the definition of a MoC to be used in the system design flow.

3.3. Framework Selection Step

A support framework is an important tool that aids in the system modeling and simulation step of
the design flow. There is a number of facts to be considered when selecting a formal-based framework.
The proposed AIPAA method considers the following, based on Reference [8].

• License style: The framework license style must comply with the project requirements. It can vary
from open source or freeware to a proprietary and paid license style;

• Included MoCs: The set of available MoCs can drastically differ when comparing frameworks.
For example, SDF3 only supports SDF, SADF and CSDF, on the other hand, Simulink, ForSyDe
or Ptolemy II supports a range of MoCs. The selected MoC, in Section 3.2, must be part in the
framework supported MoC list;

• Capabilities: The frameworks varies on its capabilities, including system simulation and
heterogeneous system modeling. In this sense, model simulation figures as an interesting feature
for a framework to have;

• Interfaces: Frameworks differ on its modeling and simulation interfaces. It ranges from a script
environment to a GUI. The simulation input and output interfaces varies from files, predefined or
user inputted and must also be considered;

• Scalability: Towards scalable models, some frameworks are implemented based on programming
languages and have interfaces that facilitates the modeling of large or distributed systems;

• Programming language paradigm: Frameworks are based on a wide range of programming
languages, leading to a variation on its programming paradigm, for example, imperative or
functional. Each paradigm has its own benefits. Functional can lead to a better model scalability
and higher abstraction level, on the other hand, imperative paradigm facilitates new MoCs
modeling due to inheritance capability.

A research on available frameworks must be performed, submitting them to a posterior analysis
considering the previously listed criteria, as a minimum one. Each framework has its own benefits and
drawbacks, and as a consequence the framework that best suits the system modeling and simulation
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varies from one application to another. Horita et al. [8] conducted a research with respect to the
framework selection considering a list of predefined parameters and criteria. That work parameters
are used in the present research.

This step’s required inputs are the problem characterization and the selected MoC. After the
application of this step, the expected output is the definition of the framework to be used for system
modeling and simulation.

3.4. Modeling and Simulation Step

The modeling and simulation step next to the properties verification are fundamental steps towards
the correct-by-construction design. After the application of these steps, the model correctness can be
verified and the system is ready for advancing to the implementation domain.

Based on the problem characterization, the first part of this step is to model the target system,
using the previously selected MoC with the aid of the defined support framework.

Aiming the model consistency verification, some frameworks detects model errors during
compile time, such as inconsistent types in a communication path and processes missing information,
for example, types or number of ports. Besides, a synthetic input data set must be simulated as the last
part of this step, aiming the detection of runtime inconsistencies, such as model infinite loops or model
acceptance of unwanted inputs types, leading to unexpected behaviors.

In case any model inconsistency is detect, it is necessary to modify and fix the model, recompile
and re-simulate it, within an iterative way. After testing boundary conditions and different input types
and sizes, resulting in expected outputs and system behavior, the model can be submitted to the next
step in the AIPAA context.

This step’s required inputs are problem characterization, besides the selected MoC and framework.
After the application of this step, the expected output is the system formally modeled, compiled and
simulated aiming its further properties verification.

3.5. Properties Verification Step

After the model consistency is verified, it is necessary to check whether the system model’s properties,
with respected to the chosen MoC, hold. This is performed by checking a list of minimum defined
system properties.

In this sense, the first part of this step is to identify the minimum or basic properties set that the system
must hold. Each MoC comprehends a set of properties that needs to be verified. Besides the in-use
MoC specific properties, it is also possible to verify system particular properties in this step. Focusing
on the MoCs included in this work scope, the following properties must hold.

• For the SY MoC:

PSY1 signals synchronized and totally ordered;
PSY2 well-defined absent value for an event; and
PSY3 absence of zero-delay feedback, that is, for each loop-back, a delay must be implemented,

avoiding algebraic loop. In SY MoC, there are some options to handle loop-backs [31].
The AIPAA method adopts the strategy of forbidden zero-delay loop-backs.

• For the SDF MoC:

PSDF1 buffer size determination based on a feasible schedule, that is, the buffers must be in
accordance with token rates, so that there is nor data loss neither overflows;

PSDF2 system is non-terminating, that is, it cannot have deadlocks;
PSDF3 schedulability, that is, it must be possible to extract a valid single-core schedule as a

finite sequence of actor firings; and
PSDF4 fixed model token rates. As SDF blocks have fixed token rates, the model also will not

vary its rates.
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• For the SADF MoC [13]:

PSADF1 Boundedness: this property is similar to the PSDF1 . The system model production and
consumption token rates must be designed in a manner that the number of buffered
tokens are bounded;

PSADF2 Absence of deadlocks: As SDF, the SADF must be also non-terminating, that is, it must
not have deadlocks; and

PSADF3 Determinacy: the model performance depends on probabilistic choices that determine
the sequence of scenarios selected by each detector. As discussed by Reference [14],
in the performance SADF model a detector’s behavior is represented by a Markov
chain. On the other hand, in the functional SADF model, representing the detector’s
behavior as a Markov chain would violate the tagged signal model definition’s of
functional process, since a Markov chain describes more than one behavior, that is, it is
non-deterministic. In view of this, the functional model is used in the present work,
where the detector’s behavior is dictated by a deterministic finite-state machine.

The last part of this step consists of verifying whether the system holds the minimum listed properties.
Some properties are verified by explicit analysis, that is, they are simply MoC intrinsic. For the others,
there are different methods for property verification, including mathematical proof, model analysis or
test cases application, which is selected based on the property to be verified.

• For the SY MoC:

VSY1 Signals are synchronized and totally ordered.
This property is MoC intrinsic for SY. As long as the system is modeled following the
SY MoC abstraction, this property holds. It is important that the input signals are
correctly ordered considering this property, not having unexpected model behaviors.
This verification is carried out by explicit model analysis;

VSY2 Well-defined absent value for an event.
This property is also MoC intrinsic for SY. The framework must handle the absent value for
an event towards the maintenance of the perfect synchrony hypothesis; This verification
is through explicit model analysis;

VSY3 For each loop-back, a delay must be implemented.
The verification of this property must be through the model implementation code or
interface analysis. First, it is necessary to check whether the model has any loop-back,
and in positive case, check the existence of the at least one cycle delay in it. This
verification is possible to be automated by using a regular expression checker.

• For the SDF MoC:

VSDF1 Buffer size determination based on feasible schedule.
The verification of this property can be mathematically demonstrated, as presented by
Reference [12]:

(a) Find the model topology matrix Γ; and
(b) Check if rank(Γ) = s− 1.

VSDF2 System is non-terminating.
The absence of deadlocks is mathematically proven, as demonstrated by Reference [12].
To verify this property it is necessary to prove the existence of a periodic admissible
sequential schedule (PASS), which can be done by performing the following:

(a) Check whether the model holds PSDF1 . If not, the system has no PASS;
(b) Find a positive integer vector q belonging to the null space Γ;



Information 2020, 11, 120 12 of 29

(c) Create a list L containing all model blocks;
(d) For each block α ∈ L, schedule a feasible one, just once;
(e) If each node α has been scheduled qα times, go to next feasible α; and
(f) If no block in L can be scheduled, the system has a deadlock.

VSDF3 Schedulability analysis;
For a model to be schedulable, property PSDF1 must hold. Moreover, the model graph
must be connected [12]. This must be verified through model analysis.

VSDF4 Fixed model token rate.
The fixed token rate property is verified by submitting the model to test cases. Different
input values and signal sizes must be used to verify the model robustness.

• For the SADF MoC [13]:

VSADF1 The boundedness verification considers three aspects:

(a) Boundedness in fixed scenarios case: In case all processes only operate in a fixed
scenario, the system behaves as a SDF based model;

(b) The boundedness of control channels: For each kernel k, controlled by a detector d,
the inequality Ed,s ≥ γ(k, s)× Ek,s must hold for every scenario s in which k is
inactive, where Ed,s represents the duration of d to detect and send the scenario
s to kernel k; γ(k, s) represents how many cycles the k computation are executed
in the scenario s; and Ek,s is the duration of each k computation cycle; and

(c) The effect of the scenario changes on boundedness: The number of tokens in channels
between active processes after an iteration of the SADF model is the same as
before. In this context, an iteration is the firing of each process p configured in a
scenario s for γ(p, s) times.

VSADF2 For all kernels’ scenarios combinations, there must have sufficient initial tokens in
each cyclic dependency between processes such that every included process can fire a
number of times equal to its repetition vector entry. Feedback loops can be considered
as a cyclic dependency of a single process; and

VSADF3 The functionality non-determinism only occurs between multiple independent
concurrent processes. If existing in a model, it leads to satisfying the diamond property.
This property states that when two or more independent processes are concurrently
enabled, the system functionality is not affected by the order that they are performed.
This statement proof is fully described in Reference [13].

This is the last step of the system specification domain. This last AIPAA method step produces a
possible entry point for the system implementation domain. For this reason, the system properties’
verification must be checked until the system correctness is proven. The output of this step must be a
verified correct simulateable system, which must be also in accordance to the input problem statements.

This step’s required inputs are the MoC minimum properties list and the simulateable system
model. After the application of this step, the expected output is a formal-based system executable model
with its stated correctness and properties verified.

3.6. Directions to Implementation Details and System Implementation

This section provides some possible directions to the implementation details, as the AIPAA
method does not contemplate this domain. System implementation includes complex and extensive
procedures and methods that can be considered in future works.

Here, an analysis of systems model and functionalities implementation possibilities is performed,
defining a list of implementation details.
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1. Division of the functionalities implemented in hardware and the ones in software, that is,
hardware and software co-design;

2. Communication interfaces, methods and protocols;
3. Hardware architecture comprehending:

(a) Necessary resources for example, memories, processors, power; and
(b) Necessary units, such as arithmetic logic unit (ALU), floating point unit (FPU), graphics

processing unit (GPU), or reconfigurable hardware (FPGA).

4. Software architecture comprehending:

(a) Implementation programming language; and
(b) Programming frameworks and tool-chains to be used.

Implementation models can be developed to assist in this analysis [32]. This step represents the
base of the system implementation. Related to correct-by-construction methodologies, the definition
of implementation details can only proceed when modeling, simulation, and properties checking are
already verified.

This step’s required inputs are the problem characterization and a verified system model,
besides the hardware, software and communication requirements. After the application of this
step, the expected outputs are: system implementation architecture description; hardware platforms to
be used; low-level programming language to be used; and software tool-chains to be used.

Based on the listed implementation details, and on the system model from Section 3.4,
the system can be implemented using hardware description languages, for example, VHDL or Verilog,
and software implementation languages, for example, C, C++ or Assembly.

3.7. Analysis of Possible Automation Approaches

This section introduces two main possibilities identified through the AIPAA method elaboration.
The first one is about the properties verification, and the second about automatic code generation.

3.7.1. Proposed Automation to Properties Verification

The properties verification through test cases application is a labor intensive task. For that reason,
AIPAA considers the use of a partial automated verification tool towards a faster, more scalable,
robust and trustable process.

In this sense Quickcheck can be employed. It is a widely used tool to aid in the process of automatic
verification of the system properties generating test cases to evaluate whether the system behaves
as expected.

Quickcheck was first presented as a domain-specific language, implemented in Haskell, targeting
the test of program properties. It was used as a base for other similar tools having the same purpose.

To accomplish the properties verification, Quickcheck uses predefined verifiable formal system
specifications, named properties, as inputs and it automatically generates random values test cases for
each one, indicating whether the model holds the desired property.

Considering the MoC properties verification methods (Section 3.5), we present the use of
Quickcheck to verify the previously defined property PSDF4 , which is based on the application of test
cases. This example assumes the verification of a model containing 2 input signals and 1 output signal.
The verification is based on two requirements:

Req1 The output signal length divided by its corresponding token rate must be equal to the number
of model firing cycles, which is calculated by selecting the smaller division result among the
input signal length and its token rates; and

Req2 The output signal length should be multiple of its corresponding token rate.
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Listing 1 presents the properties to be verified, comprehending the following variables definitions:

• propFixTr21: Fixed token rate property to be verified;
• c1 and c2: Input signals token rates;
• p: Output signal token rate;
• a1 and a2: Quickcheck automatic generated model test cases; and
• actor: The model to be tested.

Listing 1: Quickcheck usage code example in Haskell/ForSyDe.

1 -- Property to be verified: Model fixed token rates.
2 module PropsSDF (propFixTr21)
3 where
4 import ForSyDe.Shallow
5
6 -- Fixed token rate property for actor with 2 inputs and 1 output
7 propFixTr21
8 :: (S ig n a l b1 -> S ig n a l b2 -> S ig n a l b3)
9 -> ( Int , I n t ) -> I n t -> [b1] -> [b2] -> Bool

10 propFixTr21 actor (c1, c2) p a1 a2 =
11 minimum [div (lengthS in1) c1, div (lengthS in2) c2] == div (lengthS out) p
12 && lengthS out ‘mod‘ p == 0
13 where in1 = s i g n a l a1
14 in2 = s i g n a l a2
15 out = actor in1 in2

The process propFixTr21 models a function that returns a Boolean value which represents
whether the inputted values are according to the described requirements. In this sense, Req1 is verified
by using native Haskell functions to get the smaller quotient between the input signals length divided
by their corresponding token rate. Req2 is verified by checking if the remainder of the output signal
length divided by its token rate is null.

To illustrate the Quickcheck verification usage, Listing 2 presents a minimal model example based
on SDF MoC. In this context, interpolate models a minimal system that interpolates the events of two
input signals into one output signal, using the ForSyDe process constructor actor21SDF. The process
main uses Quickcheck to verify that the model interpolate holds the property propFixTr21.

Listing 2: SDF-based system model example code in Hakell/ForSyDe.

1 -- Example: An SDF based model which interpolates two input s i g n a l events into
2 -- an output s i g n a l .
3 module InterpolateSDF (interpolate)
4 where
5 import ForSyDe.Shallow
6 import Test.QuickCheck
7 import PropsSDF
8
9 -- System Model

10 interpolate :: S ig n a l a -> S ig n a l a -> S ig n a l a
11 interpolate = actor21SDF (1,1) 2 (\[x1] [x2] -> [x1,x2])
12
13 -- Property Verification
14 main = quickCheck (propFixTr21 interpolate (1,1) 2 :: [ I n t ] -> [ I n t ] -> Bool)
15 -- Run the property verification:
16 -- *InterpolateSDF > main
17 -- If the model holds the property , The following will be returned:
18 -- +++ OK , passed 100 tests.

Tests were executed with GHC version 8.6.5, QuickCheck 2.13.2, and ForSyDe 3.4.0.

3.7.2. Automatic Code Generation

The AIPAA output consists on a verified high level abstraction model, in the specification domain.
One of the strategies adopted to overcome the abstraction gap in a more robust and scalable manner is
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a semantic preservation mapping and transformation leading to an automatic code generation using
as input the verified formal system model, as the one resulted in the AIPAA.

Automatic code generation is an extensive and complex subject that have been studied and
implemented by researchs such as that in References [26,33,34]. In this context, ForSyDe framework
includes a deep-embedded DSL, named ForSyDe-Deep [35]. That tool is able to compile and analyze
the model, automatically transforming it to be embedded into the hardware target platform.

4. Case Study—Lempel-Ziv-Markov Chain Algorithm

To demonstrate the applicability of AIPAA, we chose the Lempel-Ziv-Markov Chain Algorithm
(LZMA). This algorithm is a widely used lossless data compression one, first used in 7z file format [36],
and presented as a CPU benchmark in Reference [37]. LZMA intends to generate a compressed file
based on the processing of a general data stream input.

LZMA is composed by two compression algorithms. The first one is based on an optimized sliding
window encoding (SWE), first presented in LZ77 algorithm [38]. The second algorithm is based on the
range encoding (RE) [39]. An additional data filter can be added prior to LZMA default phases (here the
word phase is in lieu of step, thus making step reserved for the AIPAA) towards the optimization of
the compression rate, such as the delta encoding (DE) algorithm, which encodes each byte of the input
stream as its difference from the previous byte. In this case, the first byte is not encoded.

The next sections present the AIPAA method steps application to LZMA, as follows: problem
characterization (Section 4.1); MoC definition (Section 4.2); framework selection (Section 4.3);
model and simulate (Section 4.4); and properties verification (Section 4.5).

4.1. Problem Characterization Step

This step aims to divide the problem into functions and identify how they behave and
communicate with each other. In this sense, the LZMA flowchart is illustrated in Figure 3.

LZMA

Input Data
Stream

Uncompressed
Data

Delta Encoding Delta Decoding

Sliding

Dictionary

Encoding (LZ77)

Sliding

Dictionary

Decoding (LZ77)

Range Encoding Range Decoding

Compressed Data

Figure 3. Lempel-Ziv Markov Chain Algorithm (LZMA) compression and decompression schemes,
based on Reference [40].

4.1.1. Sliding Window Encoding (SWE)

The first compression phase is based on LZ77, which searches for a match string of the current
look-ahead buffer inside a determined maximum length window already processed. As the bytes are
compressed, the look-ahead buffer shifts to the right, together with the search window, thus the name
sliding window. For each compression cycle, the LZ77 outputs a tuple containing:

1. a distance representing the distance between the current byte and its match in the search window.
It is equal to 0 if no match was found and it will be flushed in that case;
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2. a length representing the match length, that is, how many bytes on the look-ahead buffer were
repeated on its match located in the search window. It is equal to 0 if no match was found; and

3. a next symbol representing the next symbol in the look-ahead buffer to be processed.

The LZMA sliding window encoding implements additional features towards a higher
compression rate, as presented next.

4.1.2. Dictionary Structure

When comparing LZMA to LZ77, the sliding window encoding supports larger dictionaries,
which demands an optimized search structure targeting a faster algorithm. The LZMA implements
two structure options that can be configured prior to the compression start, the hash-chain and binary
trees [41]. Both of them are based on arrays of dynamically allocated lists, called hash-arrays. Each index
of the array corresponds to a number N of bytes that are hashed from the input stream at each
compression cycle.

The hash-chain array comprehends an array of linked lists. The nodes list contains the positions of
the corresponding N hashed bytes of that array index in the input stream. The linked list can be long,
and searching for the best match would result in a slow algorithm. For that reason, LZMA only checks
for matches considering the 24 most recent positions.

In the binary tree, the nodes of its structure contains the same information as the hash-chain,
with an optimized search structure, the binary tree. The most recent occurrences are closer to the tree
root. Besides, the tree adopts the lexicographic ordering algorithm.

Without loss of generality, the present case study adopts the hash-chain array dictionary.
When compared to the binary tree, the dictionary structure is simpler and the search algorithm
is faster, since it limits the number of previously processed hash bytes analysis when finding a match.

Besides the dictionary structure, LZMA also employs an array containing the 4 last used match
distances. If the distance of a match is equal to one of this array entries, the 2-bit array index is used to
encode this variable [41].

4.1.3. Output Format

The LZMA sliding window encoding comprehends a range of compressed packages possibilities
that depends on the identified matches. Table 1 shows the output alternatives, presenting a brief
description of each tuple.

Table 1. Sliding window encoding output packages, based on source code [36]. The symbol ⊕
represents concatenation of binary values.

Package Code
[Base 2]

Package Name Package Description

0⊕ byteCode LIT One byte encoded using an adaptive binary range coder

10⊕ len⊕ dist MATCH An LZ77 tuple describing sequence length and distance

1100 SHORTREP One-byte LZ77 tuple. Distance is equal to the last used

1101⊕ len LONGREP[0] An LZ77 tuple. Distance is equal to the last used

1100⊕ len LONGREP[1] An LZ77 tuple. Distance is equal to the second last used

11110⊕ len LONGREP[2] An LZ77 tuple. Distance is equal to the third last used

11111⊕ len LONGREP[3] An LZ77 tuple. Distance is equal to the fourth last used

4.1.4. Range Encoding (RE)

The range encoding (RE) algorithm was first presented by Martin [39]. It consists of a
context-based compression algorithm in which the compressed range in each iteration is estimated
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based on probabilistic algorithms, and it can form a set of predefined types of packages depending on
the input range size.

The LZMA range encoding performs a bit-wise compression of a sliding window tuple output at
each fire cycle, outputting encoded bytes to the final output stream. It can be configured to update its
bit probability at each process cycle, or to use fixed compression probability.

Based on the described LZMA functions and their relationship, the analysis of the problem
behavior lies on the questions in Section 3.1, which are answered as follows:

Q1 - The problem has no concurrent processes, that is, the functions are sequentially executed;
Q2 - The problem communication paths are partially ordered, that is, it is not possible to determine

the sequence of tokens considering different data paths;
Q3 - the model does not have any deadlock and will be finished only when there is no data in the

input stream;
Q4 - the processing of the input streams are cyclic and non-terminating; and
Q5 - The functions cannot be synchronized by a clock, they depend on the data tokens outputted by

other functions.

4.2. MoC Definition Step

The LZMA compression comprehends the processing of an input stream, through defined phases,
resulting in a compressed output stream. This behavior is classified as untimed and concurrent, which is
according to the theory and semantics of the dataflow MoC family.

A first simplified LZMA model was introduced by the author of the present research in
Reference [42] using the SDF MoC. That simplified LZMA modeling considered a set of assumptions
to be valid. It was assumed that predefined fixed token rates for each actor port applies. Although it
models the system process flow, it does not fully address the dynamic behavior of each compression
phase, that is, both the sliding window and the range encoding. In this sense, the dynamic LZMA
behavior can be better modeled based on the scenario-aware dataflow (SADF) MoC.

4.3. Framework Selection Step

Framework ForSyDe was used for the LZMA modeling and simulation, following the same
criteria used in Reference [8]. For the sake of convenience, the points from Reference [8] are listed next.

• License style: the present research work focus is on open source tools;
• Included MoCs: the framework must include the selected MoC, that is, SADF;
• Capabilities: the proposed design includes both modeling and simulation;
• Interfaces: this case study accepts inputs and output from an user interface or from files;
• Scalability: this case study targets model high scalability. In this sense, a text-based coding

interface is better than a GUI;
• Programming language paradigm: towards a higher level of abstraction, Haskell, a pure functional

programming language, was selected as the framework base language.

A functional model for the scenario-aware dataflow (SADF) model of computation (MoC), as well
as a set of abstract operations for simulating it was introduced in Reference [14]. That MoC library
is implemented on top of ForSyDe, and it is used in the present research to model and simulate the
LZMA according to the SADF semantics.

4.4. Modeling and Simulation Step

The case study is formal modeled in this step, using the previously selected MoC and framework,
that is, SADF and ForSyDe. The model consistency is verified through a simulation aiming a
correct-by-construction design, as described in Section 3.4. This case study considers only the LZMA
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compression phase. Assuming that the decompression phase comprehends similar processes, it will
not be modeled here.

4.4.1. SADF LZMA Model Description

The LZMA compression takes an input data stream, processes it through two compression phases
and produces a compressed data output stream, as previously illustrated in Figure 3.

When modeling LZMA using SADF MoC library from ForSyDe, the data streams are represented
by signals, and the processing components by kernels. Besides, a detector is used to control the LZMA
dynamic behavior. Figure 4 illustrates the LZMA high level modeling dataflow graph based on
SADF MoC.
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Figure 4. LZMA high level modeling dataflow graph based on SADF model of computation (MoC).
Initial tokens are represented by • .

Kernels, detector, signal paths, token rates and types in the model (Figure 4) are defined as follows:

• MATd is the match detector, which controls the scenarios from both kernels, SWEk and REk. In this
sense, MATd comprehends two scenarios, that is, S1 and S2, as described in Table 2;

– The input signal σsm transmits the current status of SWEk;
– The SWEk scenarios, ψswe, are outputted to the signal γswe, according to Table 3;
– Although REk contains a single scenario, ψre, the control channel γre is needed for detector

MATd to reach a system feasible schedule. To model this behavior, its output token rate ρmr

can vary from 0 to 1;

• SWEk is the sliding window encoding kernel, which compresses the input stream by outputting
processed tokens. Without loosing system main behavior and properties, the present modeling
adapts the SWEk dictionary structure to a sliding window method based on the original LZ77
algorithm, aiming a simple model however preserving its behavior and properties.

– The σin is an input signal, representing a stream to be compressed. Our model considers the
input stream to be always finished with the NULL character;

– The consumption token rate ρin depends on the current SWEk scenario, as described in Table 3.
It can vary from 0 to 1 Char. Each Char represents a character from the input stream;

– The feedback signal σss carries tuples FBsw = (Wind, Str, Dist). In this context,
Wind represents the window dictionary, Str represents a SWEData package which is being
processed, and Dist models the latest four used distances vector;

– σsr is a signal which carries the SWEk produced tokens to REk;
– The production token rate ρsw can vary depending on the kernel scenario, from 0 to

1 SWEData, as described in Table 3. The possible SWEData formats are described in
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Tables 4 and 5. The original LZMA encodes the variable dist, contained in format MATCH,
with different number of bits and contents depending on the match distance value.
Our model simplifies the variable dist encoding, assuming it to be an integer composed
by 8 bits;

– The control channel, signal γswe, carries tokens comprehending the possible SWEk scenarios
ψswe; and

– The signal σsm carries Boolean values that are either true, if a SWEData package was processed
and is ready to be outputted, or false otherwise.

• REk is the range encoding kernel, which performs a bit-wise compression of SWEData packages,
outputting encrypted bytes to LZMA output stream. Although its token rates are all constants,
its fire cycles are controlled by the detector MATd;

– The REk input port, connected to the signal σsr, has a fixed consumption token rate equals to
1 SWEData;

– The input control port, connected to the signal γre, has a fixed consumption token rate of 1;
– The output signal σout carries the LZMA output stream, composed by encrypted bytes

produced by REk. The REk fixed output token rate is 1 Byte, consisting on a signal of bytes;
– Signal σrr carries tuples that contains the relevant variables for the range encoding, that is,

FBre = (Range, Low, Cache). In this context, Range represents the considered range when
encoding the next bit. Low represents the lower limit of the considered range for the next
bit encoding. Cache represents a processed value to be outputted to σout in the next range
encoder token production;

– Signal σprob (dashed line in Figure 4) represents the bit probabilities updated at each REk
compression cycle, in case the variable probability is configured. Although the fixed
probability configuration has a reduction in the compression rate performance taking into
account some cases where the bits patterns are often repeated, there is no loss of generality
when considering fixed bit probabilities. In this sense, the present work assumes the range
encoder configured to use fixed probability encoding; and

– The initial token in the signal σout is the compressed file header, which includes LZMA
configuration, dictionary size and decompressed file size.

Table 2. MATd output control channels token rates and scenarios discrimination.

Ψmat Scenarios Rates [Kernel Scenario]

γswe γre

S1 1 [Search] 0

S2 1 [Flush] 1 [Read]

Table 3. SWEk Scenarios and token rates discrimination.

Ψswe Scenarios Rates

ρin ρsw

Search 1 0

Flush 0 1

Based on the described definitions, this modeling considers two system scenarios, which are
controlled by the detector MATd.
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Table 4. σsr possible token formats.

Package Model SWEData System Code

LIT LIT ⊕ Char 0⊕ byteCode

MATCH MAT ⊕ Int⊕ Int 10⊕ l ⊕ dist

SHORTREP SREP 1100

LONGREP[0] LREP0⊕ Int 1101⊕ l

LONGREP[1] LREP1⊕ Int 1100⊕ l

LONGREP[2] LREP2⊕ Int 11110⊕ l

LONGREP[3] LREP3⊕ Int 11111⊕ l

Table 5. l variable possible sizes.

l Format len Range

0⊕ 3 bits 2 < len < 9

10⊕ 3 bits 10 < len < 17

11⊕ 8 bits 18 < len < 273

4.4.2. LZMA Modeling with ForSyDe SADF MoC

ForSyDe is used to system modeling based on the model description previously stated and
illustrated in the dataflow graph from Figure 4. The model main definitions and processes (that is,
kernel, detector, actor) signatures are presented in Listing 3, using the process constructors from the
ForSyDe SADF MoC library. In this context, the following concepts are used:

• SWEData represents de kernel SWEk output token type, which can be derived to all the SWEData
package types;

• SWEkScenario and REkScenario models the kernels SWEk and REk scenarios, respectively;
• RangeVars models the tokens contained in the feedback signal FBre, which comprehends the

current encoding Range, its LowerLimit value and the Cache, representing a stored byte to be
outputted when the next output token is produced;

• matD models the detector MATd using the ForSyDe process constructor detector12SADF, with one
input port and two control output ports;

• sweK models kernel SWEk using the process constructor kernel23SADF, indicating it contains two
data input ports and three data output ports; and

• rek represents the range encoder kernel REk, modeled using the process constructor
kernel22SADF, indicating it contains two data input ports and two data output ports;

Listing 3: LZMA model signatures and definitions in Haskell/ForSyDe.

1 -------------------------- SWEData definition --------------------------
2 data SWEData = LIT Char | MAT I n t I n t | SREP |
3 LREP0 I n t | LREP1 I n t | LREP2 I n t | LREP3 I n t d e r i v i n g (Eq, Show)
4
5 ------------- SWE and RE Kernels and MAT detector definitions -------------
6 -- SWE scenarios definition
7 type SWEkScenario = (( Int , I n t ), ( Int , Int , I n t ), [Char] -> [( Str ing , Str ing , [ I n t ])]
8 -> ([Bool], [SWEData], [( Str ing , Str ing , [ I n t ])]))
9

10 -- Range Encoder Feedback = (range , Lower Limit , cache)
11 type RangeVars = ( Int , Int , Char)
12
13 -- RE scenarios definition
14 type REkScenario = (( Int , I n t ), ( Int , I n t ), [SWEData]
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15 -> [RangeVars] -> ([Char], [RangeVars ]))
16
17 -- matD (Match Detector) definition
18 -- Input: identifier of the SWEk current status
19 -- Outputs: matStateOut containing SWEk and REk scenarios
20 matD :: I n t -> I n t -> S ig n a l Bool -> (S i gn a l SWEkScenario , S ig n a l REkScenario)
21 matD b_size w_size = detector12SADF 1 matStateTran (matStateOut b_size w_size) Search
22
23 -- sweK (Sliding Window Encoding Kernel) definition
24 -- Inputs: Control Channel , Input Stream , feedback s i g n a l
25 -- Outputs: SWEData , feedback s i g n a l , Current status
26 sweK :: S i gn a l SWEkScenario -> S ig n a l Char -> S ig n a l (Str ing , Str ing , [ I n t ])
27 -> (S i gn a l Bool , S i gn a l SWEData , S ig n a l (Str ing , Str ing , [ I n t ]))
28 sweK = kernel23SADF
29
30 -- reK (Range Encoding Kernel) definition.
31 -- Inputs: Control Channel , SWEData from SWEk, feedback s i g n a l
32 -- Outputs: Compressed Bytes S i gn a l , feedback s i g n a l
33 reK :: S i gn a l REkScenario -> S i gn a l SWEData -> S i gn a l RangeVars
34 -> (S ig n a l Char , S i gn a l RangeVars)
35 reK = kernel22SADF

Each actor is then presented in separate listings. The LZMA detector model MATd main functions
and definitions are presented in Listing 4, with the following definitions:

• FDscenario represents the detector scenario, comprehending the output token rates of the control
channels ports and the sent kernels scenarios. FDstate models the detector state, based on the
kernel SWEk boolean output through σsm; and

• matStateTran represents the detector function to select the MATd scenarios based on a Boolean
input, and matStateOut outputs the SWEk and REk scenarios.

Listing 4: LZMA detector MATd model functions in Haskell/ForSyDe.

1 ----------- Detector State transition and output functions ------------
2 -- data SWEState = Search | Flush
3 -- data REState = ReRead
4 type FDscenario = (( Int , I n t ), ([ SWEkScenario], [REkScenario ]))
5 data FDstate = Search | Flush
6
7 -- Output decoder function for the MAT detector
8 matStateOut :: I n t -> I n t -> FDstate -> FDscenario -- (Int , [SWEkScenario],Maybe [REkScenario ])
9 matStateOut b_size _ Search =

10 ((1 ,1), ([((1 ,1), (1,0,1), sweSearch b_size)], [((0 ,0) ,(0,0), rekStdBy)]))
11 matStateOut _ w_size Flush =
12 ((1 ,1), ([((0 ,1), (1,1,1), sweFlush w_size)], [((1 ,1) ,(1,1), rekRead)]))
13
14 -- State transition function for the MAT detector
15 matStateTran :: FDstate -> [Bool] -> FDstate
16 matStateTran _ [True] = Search
17 matStateTran _ [ F a l s e ] = Flush
18 matStateTran _ _ = e r r o r "matStateTran: Outside state range"

Listing 5 introduces the main functions used to model the LZMA sliding window kernel SWEk ,
with the following definitions:

• sweSearch and sweFlush model the functions executed by sweK depending on its scenario, where:

– sweSearch represents the scenario in which SWEk consumes a character from input signal
when searching for a match; and

– sweFlush models the output of a found SWEData package to signal σsr.

Listing 5: LZMA sliding window kernel main functions in Haskell/ForSyDe.

1 ------------------------ SWE Kernel functions ----------------------------
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2 sweSearch :: I n t -> [Char] -> [( Str ing , Str ing , [ I n t ])]
3 -> ([Bool], [SWEData], [( Str ing , Str ing , [ I n t ])])
4 sweSearch b_size [c] [(win , buff , distList)]
5 | stringRFind (buff ++[c]) win == Nothing || l en g t h (buff ++[c]) > b_size =
6 ([ F a l s e ], [], [(win , buff ++[c], distList)])
7 | otherwise = ([True], [], [(win , buff ++[c], distList)])
8
9 sweFlush :: I n t -> [Char] -> [( Str ing , Str ing , [ I n t ])]

10 -> ([Bool], [SWEData], [( Str ing , Str ing , [ I n t ])])
11 sweFlush w_size [] [(win , buff , distList)]
12 | l == 0 = i f head buff == ’\x00 ’
13 then ([True], [LIT (head buff)], [(drop n (win ++ buff), "", distList)])
14 e l s e ([ endTest], [LIT (head buff)], [(drop n (win ++ buff), "", distList)])
15 | l == 1 = i f isNothing (stringRFind ( i n i t buff) win)
16 then ([ endTest], [LIT (head buff)], [(win ’, [ l a s t buff], distList)])
17 e l s e i f head distList == dist
18 then ([ endTest], [SREP], [(win ’, [ l a s t buff], distList)])
19 e l s e ([ endTest], [LIT (head buff)], [(win ’, [ l a s t buff], distList)])
20 | distList !! 0 == dist = ([ endTest], [LREP0 l], [(win ’, [ l a s t buff], distList)])
21 | distList !! 1 == dist = ([ endTest], [LREP1 l], [(win ’, [ l a s t buff], distList)])
22 | distList !! 2 == dist = ([ endTest], [LREP2 l], [(win ’, [ l a s t buff], distList)])
23 | distList !! 3 == dist = ([ endTest], [LREP3 l], [(win ’, [ l a s t buff], distList)])
24 | otherwise = ([ endTest], [MAT l dist], [(win ’, [ l a s t buff], take 4 (dist:distList))])
25 where n = max 0 $ l e ng t h (win ++ buff) - w_size
26 win ’ = drop (max 0 $ l e ng t h (win ++ i n i t buff) - w_size) (win ++ i n i t buff)
27 dist = f romJust (stringRFind ( i n i t buff) win)
28 l = l e ng t h buff - 1
29 endTest = not ( l a s t buff == ’\x00 ’)

The range encoder main functions and definitions are presented in Listing 6 with the
following definitions:

• encBit models the bit-wise processing of the SWEData tokens, updating the RangeVars variables;
• normRange models the normalization procedure, executed when the range reaches its lower limit

and needs to be re-scaled, producing one byte that will be outputted to the σout signal, temporarily
stored in Cache;

• normFinalRange and finalBytes models the final normalization cycles executed by REk;
• rekStdBy models the standby state of kernel REk, while waiting for a SWEData token; and
• rekRead models the function to read a SWEData token and encrypt it to σout.

Listing 6: LZMA range encoding kernel main functions in Haskell/ForSyDe.

1 ------------------- RE Kernel functions -------------------
2 normRange :: [Char] -> [RangeVars] -> ([Char], [RangeVars ])
3 normRange nSout [(nRan ,nL,nC)]
4 | nRan < rangeLimit =
5 i f (low < 0xFF000000) || (high > 0) then
6 ( nSout ++ [ chr ((ord nC)+high)], [(newRan , newLow , chr cache)])
7 e l s e
8 (nSout ,[(newRan ,newLow ,nC)])
9 | otherwise = (nSout ,[(nRan ,nL ,nC)])

10 where high = (.&.) (shift nL (-32)) 0x00000000FFFFFFFF
11 low = (.&.) nL 0xFFFFFFFF
12 newLow = (.&.) (shift low (8)) 0x00000000FFFFFF00
13 newRan = (.&.) (shift nRan (8)) 0x00000000FFFFFF00
14 cache = shift ((.&.) low 0xFF000000) (-24)
15
16 normFinalRange :: ([Char],[ RangeVars ]) -> ([Char], [RangeVars ])
17 normFinalRange (nSout , [(nRan ,nL ,nC)]) =
18 i f (low < 0xFF000000) || (high > 0) then
19 ( nSout ++ [ chr ((ord nC)+high)], [(newRan , newLow , chr cache)])
20 e l s e
21 (nSout ,[( newRan ,newLow ,nC)])
22 where high = (.&.) (shift nL (-32)) 0x00000000FFFFFFFF
23 low = (.&.) nL 0xFFFFFFFF
24 newLow = (.&.) (shift low (8)) 0x00000000FFFFFF00
25 newRan = (.&.) (shift nRan (8)) 0x00000000FFFFFF00
26 cache = shift ((.&.) low 0xFF000000) (-24)
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27
28 encBit :: [Bool] -> ([Char], [RangeVars ]) -> ([Char], [RangeVars ])
29 encBit [] (a,b) = (a,b)
30 encBit eIn (encSigOut , [(eRan ,eL,eC)])
31 | (head eIn) == True =
32 encBit ( t a i l eIn) (normRange encSigOut [((eRan -newRan), (eL + newRan), eC)])
33 | (head eIn) == F a l s e =
34 encBit ( t a i l eIn) (normRange encSigOut [(newRan ,eL,eC)])
35 where newRan = quot eRan 2
36
37 toSigSig :: ([Char],[ RangeVars ]) -> ([[Char]], [RangeVars ])
38 toSigSig ([],b) = ([],b)
39 toSigSig (a,b) = ([a],b)
40
41 rekStdBy :: [SWEData] -> [RangeVars]-> ([[Char]], [RangeVars ])
42 rekStdBy _ fb = ([],fb)
43
44 rekRead :: [SWEData] -> [RangeVars]-> ([[Char]], [RangeVars ])
45 rekRead [] s_rr = ([],s_rr)
46 rekRead [(LIT lit)] s_rr =
47 toSigSig (encBit ([ F a l s e ] ++ (toBitsBySize 8 (fromEnum lit))) ([] , s_rr))
48 rekRead [(MAT x y)] s_rr =
49 toSigSig (encBit ([True , F a l s e ] ++ matLen ++ (toBitsBySize 8 y)) ([] , s_rr))
50 where matLen = i f (x < 10) then
51 [ F a l s e ] ++ (toBitsBySize 3 (x-2))
52 e l s e i f x < 18 then
53 [True , F a l s e ] ++ (toBitsBySize 3 (x-9))
54 e l s e [True ,True] ++ (toBitsBySize 8 (x-17))
55 rekRead [(SREP)] s_rr =
56 toSigSig (encBit [True ,True , False , F a l s e ] ([] , s_rr))
57 rekRead [(LREP0 x)] s_rr =
58 toSigSig (encBit ([True ,True , False ,True] ++ (toBitsBySize 8 x)) ([] , s_rr))
59 rekRead [(LREP1 x)] s_rr =
60 toSigSig (encBit ([True ,True ,True , F a l s e ] ++ (toBitsBySize 8 x)) ([] , s_rr))
61 rekRead [(LREP2 x)] s_rr =
62 toSigSig (encBit ([True ,True ,True ,True , F a l s e ] ++ (toBitsBySize 8 x)) ([] , s_rr))
63 rekRead [(LREP3 x)] s_rr =
64 toSigSig (encBit ([True ,True ,True ,True ,True] ++ (toBitsBySize 8 x)) ([] , s_rr))
65 rekRead _ s_rr =
66 toSigSig ([’\NUL ’],s_rr)

Finally, the complete process network is shown in Listing 7. The process lzmaCompressPn models
the LZMA compression, connecting the sweK output to the reK input. The compressed stream is
modeled as sig_out and the input stream as sig_in. In addition, the sliding window encoder process
network is also presented as swePn to illustrate and test this compression step separately.

Listing 7: LZMA compression process network in Haskell/ForSyDe.

1 ----------------------- LZMA process network --------------------------
2
3 -- LZMA compression process network
4 -- Input: Buffer size , window size and input stream of characters σin

5 -- Output: Compressed stream s i g n a l σout and Intermediate s i g n a l σsr

6 lzmaCompressPn :: I n t -> I n t -> S ig n a l Char -> (S ig n a l [Char], S ig n a l SWEData)
7 lzmaCompressPn b_size w_size sig_in = (sig_out ’, s_swetok)
8 where (sig_out , s_rr) = reK ctRe s_swetok s_rr ’
9 (s_det , s_swetok , s_sweFb) = sweK ctSwe sig_in s_sweFb ’

10 (ctSwe , ctRe) = matD b_size w_size s_det ’
11 s_det ’ = delaySADF [True] s_det
12 s_sweFb ’ = delaySADF [("","" ,[-1,-1,-1,-1])] s_sweFb
13 s_rr ’ = delaySADF [( rangeInit , 0 , chr 0)] s_rr
14 sig_out ’ = delaySADF [([ defConfig] ++ (inttoCharList 4 defDictSize)
15 ++ (reverseList (inttoCharList 8 (lengthS sig_in))))] sig_out +-+
16 finBt
17 finBt = i f nullS s_rr
18 then s i g n a l []
19 e l s e finalBytes [] (atS (( lengthS s_rr) -1) s_rr)
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4.4.3. Model Simulation

Towards the verification of system consistency and behavior in accordance to the expected original
LZMA results, some input stream examples are used to test the LZMA model. This step is based on
the GHCi usage.

Listing 8 introduces the defined processes to simulate the model. sweOutTest models the sliding
window output, and lzmaOutTest the LZMA compression output. For a printable character set,
lzmaOutTest in outputted as Integer values, based on the ASCII table.

Listing 8: LZMA compression test processes.

1 (lzmaOutTest ’, sweOutTest) = lzmaCompressPn buffer_size window_size inputTest
2 lzmaOutTest = mapSY (map ord) lzmaOutTest ’

The first example consists on a sequence of five characters, non repeated. Its simulation was
successfully accomplished, as presented in Listing 9. The model behaves as expected. The SWEk
outputs the correct packages, that is, literals, as it has no repetitions. The LZMA outputs the expected
stream of encoded bytes, composed by an initial header followed by a sequence of byte lists, grouped
by the output of each REk cycle.

Listing 9: LZMA compression input example #1.

1 inputTest = s i g n a l "12345\ x00"
2 -- SWE output
3 sweOutTest
4 {LIT ’1’,LIT ’2’,LIT ’3’,LIT ’4’,LIT ’5’,LIT ’\NUL ’}
5 -- LZMA output
6 lzmaOutTest
7 {[93 ,0 ,0 ,0 ,1 ,6 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,[0] ,[24] ,[140] ,[134] ,[98] ,[65] ,[168 ,0 ,0 ,0 ,0]}

The second example comprehends the inclusion of a SWEData package of a found match.
Listing 10 presents the simulation results. The model also behaves as expected in this example,
identifying the match in the previous buffer and successfully encoding all the packages.

Listing 10: LZMA compression input example #2.

1 inputTest = s i g n a l "abracadabra\x00"
2 -- SWE output
3 sweOutTest
4 {LIT ’a’,LIT ’b’,LIT ’r’,LIT ’a’,LIT ’c’,LIT ’a’,LIT ’d’,MAT 6 4,LIT ’\NUL ’}
5 -- LZMA output
6 lzmaOutTest
7 {[93 ,0 ,0 ,0 ,1 ,12 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,[0] ,[48] ,[152] ,[142] ,[69] ,[19] ,[25] ,
8 [132 ,201] ,[16] ,[48 ,0 ,0 ,0 ,0]}

In the third example, the empty input boundary case is tested, as presented in Listing 11. The SWEk
outputs an empty package to REk, which in turn, just outputs the header, without any data to be
compressed, as expected.

Listing 11: LZMA compression input example #3.

1 inputTest = s i g n a l ""
2 -- SWE output
3 sweOutTest
4 {}
5 -- LZMA output
6 lzmaOutTest
7 {[93,0,0,0,1,0,0,0,0,0,0,0,0]}
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As the model compiles with no errors and behaves as expected in all the presented simulations,
its consistency verification is finished.

4.5. Properties Verification Step

This step aims to check whether the system model holds the required properties, with respect to
the in-use MoC. In this sense, this section introduces the LZMA model verification based on the SADF
MoC properties, presented in the Section 3.5.

VSADF1 Boundedness
Property verification—The three verification aspects are considered for the presented
LZMA model:

(a) The first aspect is used for verification of models where all the processes comprehend
a single scenario. In the LZMA case, the kernel SWEk and detector MATd do not
operate in a single scenario, as described in Section 4.4.1. In this sense, this aspect is
not applicable;

(b) The LZMA kernel REk becomes inactive during the detector MATd scenario S1.
In this model, the range encoder fires a single time for each S1 scenario selection
(γ(RE, S1) = 1). For the model to be bounded, the REk duration ERE has to be
smaller than the duration EMAT,S1 between two scenarios S1 detection by MATd;

(c) The third aspect must be analyzed focusing on kernel SWEk and detector MATd,
as these are the only processes with multiple scenarios. The interface between
these processes consists on a cyclic dependency with fixed and equal token rates,
not representing an unboundedness risk. Regarding the boundedness of signal σsr,
the production token rate from SWEk output port is controlled by MATd, and the
consumption token rate from REk is always one. In MATd scenario S1 , SWEk will
not produce any tokens in σsr, and in scenario S2, SWEk will produce one token that
will be promptly consumed by REk in the same iteration. In this context, the third
boundedness aspect will always hold, as MATd controls the system schedule, so that
SWEk will not produce another token before REk consumes the last one.

VSADF2 Absence of deadlocks
Property verification—Analyzing the LZMA model, the included cyclic dependency are
the feedback signals σss, σprob and σrr, in addition to the SWEk and MATd processes cycle.
Initial tokens were added to each of these cycles, satisfying the necessary consumption
token rates. As a consequence, it is verified that the LZMA system holds this property.

VSADF3 Determinacy
Property verification—The LZMA does not comprehend multiple independent concurrent
processes, as the SWEk depends on MATd and vice-versa. Besides, REk also depends on
SWEk. As a consequence, the system holds the determinacy property.

In addition to the introduced properties verification arguments VSADF2 and VSADF3 , Table 6
presents a feasible LZMA static sequential schedule, representing a possible sequence of determined
running processes, starting with an initial token in signal σsm, and without any deadlock. The MATd
reads the initial token S, and sets the system to S1 scenario. SWEk generates the detector input at each
fire cycle. The schedule finishes when input stream σin is empty.

Table 6. A feasible LZMA system static sequential schedule. Token σsm where S = Search and F = Flush.

Token σsm S S F S . . .

Running Processes MATd SWEk MATd SWEk MATd SWEk REk MATd SWEk . . .

MATd Scenarios S1 S1 S2 S1 . . .
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4.6. Implementation Details and Implement System

The implementation domain is not part in AIPAA scope. Nevertheless, different programming
languages, implementation architectures and platforms have been used to implement the LZMA in
other related works. But, no implementation was found based on a functional programming language,
such as Haskell.

The first LZMA implementation was presented in the 7zip open source application, able to be
executed using different platforms, including a range of compression algorithms, and having LZMA
as default [36,41]. Another similar application is presented in XZ Utils, having less languages and
configuration options [43]. Besides the mentioned applications, hardware description languages (HDL)
implementations for FPGA are also available in the literature [40,44]. A benchmark comparing different
implementation architectures and platforms was presented by SPEC.

5. Results and Discussion

AIPAA includes two steps aiming the formal-based modeling: the system model functional
correctness verification and the consistency. The referred steps are model and simulate and model
properties verification, described in Sections 3.4 and 3.5, respectively.

A comprehensive case study was based on Reference [42] published by the authors of this work.
That paper modeled the LZMA compression using the ForSyDe SDF MoC library, but not representing
part of the system dynamic behavior. The present paper modeled the same algorithm, but now using
the ForSyDe SADF MoC library, as described in Section 4.4 and illustrated in Figure 4. The present
case study addressed the compression procedure inherent dynamism. Besides, AIPAA method was
used to prove the model holds SADF MoC properties (Section 4.5).

The AIPAA method comprehends the specification domain, which outputs a verified high level
abstraction executable model.

The implementation domain consists of an extensive subject and, although it is not included
in AIPAA, Section 3.6 presents directives on how to overcome the abstraction gap and implement a
system based on a verified model. Besides, for case study, implementation related works were cited as
a reference to guide possible future researches.

5.1. Analysis Identifying Steps to be Automated

AIPAA includes well-defined design steps on a formal base, making the automation approaches
identification feasible and possible to be systematically analyzed.

As a result, this research introduced in Section 3.7, as possible of automation steps the properties
verification and the automatic code generation based on a formal and verified model, as follows.

5.1.1. Properties Verification with the Tool Quickcheck

AIPAA also includes a step comprehending the system model properties verification, as described
in Section 3.5. Its main purpose is to prove that the model holds the properties of the selected MoCs
and possibly a set of system specific properties. In this sense, a range of methods can be applied to
verify if the system holds each property, for example, mathematical prove and model analysis.

A widely used method for properties verification is the system submission to a range of test cases,
which can be a labor intensive task. Besides, for a robust verification, different tests must be elaborated
aiming the detection of different fail cases.

The present research identifies the automation of this verification method as a possibility. In this
sense, Section 3.7.1 presents Quickcheck as an alternative for automatic test cases generation and system
property verification. A minimal model example based on SDF MoC was presented, using Quickcheck
for verification whether the system holds the property PSDF4 , introduced in Section 3.5, as an example
of its applicability.
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5.1.2. Automatic Code Generation

Although the implementation domain is not included in AIPAA, this research recognizes the
abstraction gap between the formal-based model outputted by the introduced method and the
implemented system and the difficulties to overcome it. In this sense, this research proposes, as an
embedded design automation approach, the automatic low level code generation based on a verified
formal-based model. This represents an extensive work that have been studied in related works and
can be deeper explored as future works, as mentioned in Section 3.7.2.

6. Conclusions

We presented a method to aid in the identification of possible automation approaches within
design flows based on formal models of computation. The method aims to assist in a low-level
implementation of automatic code generation and also a trustable, robust and scalable embedded
systems design flow.

Our method for analysis and identification of possible automation approaches (AIPAA) includes five
basic steps:

1. problem characterization—to identify the relevant behaviors and characteristics of the target
problem, defining intermediate functions that can represent the system processes and their
relationships;

2. MoC definition—based on problem characteristics, select a MoC to be used in the system
design flow;

3. framework selection—to define the formal-based framework for system modeling and simulation;
4. model & simulate—to model the specified system, simulating it to verify its consistency;
5. properties verification—to verify that the system model holds the defined MoC properties.

To develop a deeper analysis method, a review of the formal-based design flow concepts
was performed, including embedded systems, modeling frameworks, MoCs topology and
programming paradigms.

To demonstrate the AIPAA application, a case study was presented, taking the Lempel-Ziv
Markov Chain Algorithm (LZMA).

The AIPAA application results were discussed, identifying the properties verification and automatic
code generation as possible embedded systems design flows’ automation approaches. In this context,
the model’s properties verification and low abstraction level code generation were pointed as steps
that can be automated. The authors of this work believe that the automation of formal-based design
methods is an important alternative to increase the robustness and scalability of CPS and embedded
systems development.

The possible automation approaches identified by AIPAA application in the case study, that is,
properties verification and low level source code generation, are intended to be implemented as future works.
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