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Nomenclature

LHM	 local history matching
IP	 P-impedance
IS	 S-impedance
Sw	 water saturation
Swc	 connate water saturation
Sor	 residual oil saturation
P	 pore pressure
PProdMin	 minimum pore pressure (producer wells)
PInjMax	 maximum pore pressure (injector wells)
Δ4D	 time-lapse difference operator
Vinj	 volume of injected water (standard conditions)
Vprod	� volume of produced water (standard  

conditions)
Vcurrent	� current volume of water present in the reservoir 

(standard conditions)
ϕ	 porosity

Vb	 volume of a grid block
nb	 number of grid blocks
CF	 volume correction factor
Bw	 water formation volume factor
SE	 simple error
QE	 quadratic error

Subscript

seis	 parameter derived from 4D seismic data
sim	� parameter computed from reservoir simulation 

results
base	� parameter computed from the simulation results 

of the base model
seis_cali	� parameter derived from 4D seismic data with the 

volume calibrated
t0	 parameter corresponding to the base survey
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Abstract
Time-lapse seismic data can be used to estimate saturation changes within a reservoir, which is 
valuable information for reservoir management as it plays an important role in updating reservoir 
simulation models. The process of updating reservoir properties, history matching, can incorporate 
estimated saturation changes qualitatively or quantitatively. For quantitative approaches, reliable 
information from 4D seismic data is important. This work proposes a methodology to calibrate 
the volume of water in the estimated saturation maps, as these maps can be wrongly estimated 
due to problems with seismic signals (such as noise, errors associated with data processing and 
resolution issues). The idea is to condition the 4D seismic data to known information provided 
by engineering, in this case the known amount of injected and produced water in the field. The 
application of the proposed methodology in an inversion process (previously published) that 
estimates saturation from 4D seismic data is presented, followed by a discussion concerning the 
use of such data in a history matching process. The methodology is applied to a synthetic dataset 
to validate the results, the main of which are: (1) reduction of the effects of noise and errors in the 
estimated saturation, yielding more reliable data to be used quantitatively or qualitatively and (2) 
an improvement in the properties update after using this data in a history matching procedure.

Keywords: 4D seismic data, saturation estimation, volume calibration, history matching, 
reservoir simulation
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1.  Introduction

Time-lapse seismic data is an important source of information 
for reservoir monitoring because it provides a better under-
standing of the variations of dynamic properties in the reser-
voir. This valuable information can be used to update reservoir 
simulation models, which are an important tool for reservoir 
management (optimization strategy and planning infill drill-
ings). Several works in the literature show successful use of 
4D seismic data [2, 11, 22].

The integration between 4D seismic data and reservoir 
simulation is a topic of intense research. Several approaches 
can be used, from qualitative interpretation of 4D seismic 
anomalies [11, 24], which are incorporated into reservoir 
simulation models, to quantitative use of 4D seismic data 
in history matching procedures. For the latter, different 
approaches in the literature use different optimization algo-
rithms. Gosselin et al [9] have presented a tool based on a 
gradient-type algorithm to perform history matching which 
incorporates seismic impedances and production data in the 
objective function. Brito et al [3] showed an application 
of this tool in the Marlim field, which showed advantages 
of applying an assisted process compared with traditional 
manual history matching. Landa and Horne [14] also used a 
gradient-type optimization procedure to history match pro-
duction data and interpreted maps of changes in pressure and 
in saturation from 4D seismic data. Stephen et al [21] and 
Landa and Kumar [15] used probabilistic approaches with 
different sampling algorithms; the former, the Monte Carlo 
algorithm and the latter, the Neighborhood Algorithm (NA). 
Jin et al [12] compared three stochastic methods: Very Fast 
Simulating Annealing (VSA), Particle Swarm Optimization 
(PSO) and NA. Algorithms based on Ensemble Kalman 
Filter theory also solve the problem within a probabilistic 
approach; Skjervheim et al [20] and Emerick and Reynolds 
[8] are examples of this.

Concerning the type of data used to integrate reservoir sim-
ulation and 4D seismic data, there are three possible domains 
of integration: (1) amplitude, (2) impedance and (3) saturation 
and pressure domains.

This work focuses on the integration in the saturation and 
pressure domain; therefore we need to estimate these prop-
erties from seismic amplitudes or impedances. We can use 
different methodologies to estimate saturation and pressure 
changes from 4D seismic attributes [4, 5, 16–18]. They differ 
according to the type of seismic attribute used to estimate the 
dynamic changes and how the data is manipulated to obtain 
these estimations. These methodologies could be used to any 
field that holds enough seismic data (pre-stack data is usu-
ally needed for base and monitor surveys). However, chal-
lenges remain concerning seismic signal related problems 
(such as noise, tuning and uncertainties in rock properties and 
modeling).

One way of extracting more reliable information from 
time-lapse seismic signals is to use engineering data (well 
production profiles, reservoir simulation data). Engineering 
data, such as reservoir simulation results, are used in forward 
modeling for feasibility studies, or to help interpret 4D seismic 

anomalies. However, few works effectively use this type of 
information to constrain the estimations of dynamic properties 
from 4D seismic data. The work of Huang et al [10] follows 
this idea; in their work they demonstrated that well production 
data (predominantly used for history matching) can be used to 
enhance the 4D seismic interpretation without the need of a 
reservoir model. Their methodology uses frequently repeated 
seismic surveys and correlates changes in the mapped seismic 
attributes directly to the fluid volumes injected and produced 
from the wells. Some ambiguities related to the interpreta-
tion of 4D signals in three different fields were clarified when 
using this methodology.

Toinet et al [23] also used engineering data to constrain 
4D seismic data. The authors used a workflow to perform a 
4D pre-stack inversion constrained by a range of variations 
of elastic properties computed from reservoir simulation 
results. Reservoir model information was also included as 
a constraint to help locate water-bearing sands more accu-
rately. Davolio et al [6] also presented a methodology that 
uses reservoir simulation results to constrain dynamic prop-
erties estimation from 4D seismic data; this work uses the 
constraints, extracted from several models realizations, in 
a petro-elastic inversion that estimates saturation and pres-
sure from seismic impedances, not in a pre-stack inversion 
as Toinet et al [23] did.

The present work also uses engineering information to 
constrain the estimation of dynamic properties from 4D 
seismic data. Specifically, it proposes a methodology to 
correct the volume of water associated with the estimated 
saturation maps from 4D seismic data based on the known 
volume of injected and produced water in the field. This 
calibration is important, especially when employing a quan-
titative use of these properties in a history matching proce-
dure, because inputting poor estimates may lead to incorrect 
model updating. The proposed volume calibration can be 
applied to saturation maps estimated from 4D seismic 
data through any of the previously mentioned techniques. 
This work uses saturation maps estimated by the 4D petro-
elastic inversion constrained to flow conditions proposed by 
Davolio et al [6]. After analyzing the results, we discuss 
the importance of this type of information used as input in 
a history matching procedure. To validate and demonstrate 
the benefits of this methodology, the results are shown with 
synthetic data.

2.  Methodology

Water injection is commonly used to enhance oil recovery 
in petroleum fields. There are two main objectives when 
using this technique; first, to control reservoir pressure which 
decreases with oil production, and second, to improve sweep 
efficiency. However, monitoring the water flood along the 
reservoir is a challenge. This monitoring is very important to 
plan infill drillings as well as defining production strategies, in 
this sense 4D seismic data is helpful and can be used to esti-
mate water saturation changes from time-lapse differences of 
seismic attributes. The quality of these estimations can suffer 
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from seismic signal related problems (such as noise, tuning 
and uncertainties in rock properties and modeling). One way 
of minimizing this is to use knowledge available from engi-
neering to constrain, or calibrate, the information provided by 
4D seismic data. The amount of water injected in a field is 
such an example and is used in the methodology proposed in 
this work.

The methodology aims to calibrate the volume of 
injected water associated with the water saturation (Sw)   
maps provided by 4D seismic data with the known volume 
of injected and produced water. To do that, we apply a 
multiplicative correction factor to the Sw map to calibrate 
it, and then we verify if the updated Sw values belong to 
a feasible range. This range is the key point of the calibra-
tion  procedure and we estimate it from multiple reservoir 
simulations, according to the methodology described in 
Davolio et al [6].

Figure 1, shows more details about the range calcula-
tion. The procedure starts by defining the ‘n’ uncertainties, 
or the ‘n’ most important uncertainties of the reservoir such 
as porosity, absolute permeability, relative permeability, fault 
transmissibility and fluid properties. Then, probability density 
functions are attributed for each uncertainty based on knowl-
edge available at the current characterization stage. These ‘n’ 
properties are then sampled and combined to generate ‘m’ 
simulation model realizations. The next section  details the 
definition of uncertainties, sampling and combination per-
formed in this work.

The ‘m’ models are simulated and for each reservoir 
block, the range of possible values for each cell is defined 
by extracting the minimum and maximum Sw value along all 
the ‘m’ possibilities; this range ([Swmin, Swmax]) is assigned 
to the monitor seismic survey. It is assumed that there is a 
base survey acquired in the pre-production period and a mon-
itor survey acquired after some years of production. Figure 1 
shows that the same procedure can be applied for pressure. 

However, only the Sw limits are needed to calibrate the 
volume of water.

After estimating the range [Swmin, Swmax] for every grid 
block of the model, the volume calibration can be performed 
as described below:

	(1)	 Compute the amount of injected water (in reservoir 
conditions) present in 4D seismic data according to equa-
tion (1):

� ∑ϕ Δ=
=

Vb SwVinj ( ) ,
i

nb

i i iseis
1

4D seis (1)

		 where nb is the number of blocks of the model, ϕ is the 
porosity, Vb is the block volume, Δ4DSwseis is the time-
lapse difference of water saturation estimated from 4D 
seismic data.

	(2)	Compute the correction factor (CF) according to equa-
tion (2):

� =CF Vinj / Vcurrent,seis (2)

		 being that Vcurrent is the current volume of water:

� = BVcurrent (Vinj-Vprod) ,w (3)

		 where Vinj is the known volume of injected water and 
Vprod is the known volume of produced water. Bw is the 
water formation volume factor which is defined as water 
and dissolved gas volume at reservoir conditions divided 
by water volume at standard conditions; it is used to convert 
the volume of water from surface to reservoir conditions.

	(3)	Set i = 1;
	(4)	While i  <= nb calculates the calibrated water satura-

tion value for the ith block by applying the correction 
factor:

Δ Δ=Sw Sw( ) ( ) / CF .i i4D seis_cali 4D seis� (4)

Figure 1.  General procedure used to define outer limits of pressure and saturation for each reservoir block. ‘Property 1’, ‘Property 2’ and 
‘Property n’ are generic representations of the reservoir uncertainties. ‘Model 1’, ‘Model 2’ and ‘Model m’ are generic reservoir models, 
generated from the combination of the reservoir uncertainties (adapted from Davolio et al [6]).
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	(5)	Compute the calibrated Sw for the monitor survey:

� Δ= +Sw Sw Sw( ) ( ) ( ) ;i i t iseis_cali 4D seis_cali 0 (5)

		 where Swt0 is the water saturation value at the initial time 
(base survey).

	(6)	Verify if the calibrated Sw belongs to the feasible range:

≤ ≤Sw Sw Sw( ) ( ) ( ) .i i imin seis_cali max� (6)

	(7)	If inequality 6 holds, then the value of the current reser-
voir block (ith block) is set by equation (5), set i = i + 1 
and return to step 4; else go to step 8.

	(8)	If >Sw Sw( ) ( )i imin seis_cali  then =Sw Sw( ) ( ) ,i iseis_cali min  set 
i = i + 1 and return to step 4, else go to step 9.

	(9)	If <Sw Sw( ) ( )i imax seis_cali  then =Sw Sw( ) ( ) ,i iseis_cali max  set 
i = i + 1 and return to step 4.

Steps 2–9 are repeated until a satisfactory volume cali-
bration is reached, namely CF  −  1  <  tolerance. Steps 1–9 
are applied to the whole reservoir or to reservoir zones 
independently.

Some assumptions are to be considered when applying the 
methodology proposed above:

	 •	4D seismic data are at the same scale of the reservoir 
simulation model. For real data, an upscaling/downs-
caling procedure is needed to convert data from seismic 
to flow simulation scale.

	 •	A 4D base survey was acquired in the pre-production 
period, so that the time-lapse difference of saturation 
provides information about the volume of injected water.

	 •	The methodology was designed for cases where there are 
only connate and injected water in the reservoir, i.e., in 
cases where there is aquifer influx the procedure needs to 
be adapted.

3.  Dataset description

To evaluate the results of the proposed methodology, all data 
used in this work are synthetic, as described in the following 
sections.

3.1.  Reference model

In a real problem, the data needed to apply the proposed 
methodology are: water saturation maps extracted from 4D 
seismic data, the reservoir simulation model and the mul-
tiple model realizations resulting from a combination of 
uncertainties process. This work uses a synthetic dataset, 
so, apart from the simulation model (called base1 model) 
and the multiple realizations, another model (called refer-
ence model) that represents the true earth model is used to 
validate the results. Therefore, the static properties (such as 
porosity and permeability) and dynamic properties (such as 
pressure and saturation) of the reference model represent the 
answer that the processes should reach. Thus, the closer the 

estimated Sw map (from 4D seismic data) is to the simula-
tion result of the reference model, the more accurate it is. 
Similarly, when history matching is applied, the closer the 
updated static properties are to those of the reference model, 
the better. Besides validating the results, the reference model 
is also used to generate the 4D seismic data as explained in 
the next section.

The synthetic dataset represents a sand reservoir that was 
discretized in a corner-point grid with 90  ×  110  ×  5 blocks, 
60 m in the x and y direction (5400  ×  6600 m) and 15 m (on 
average) in the z direction. The reservoir has four faults and is 
drained by eight vertical producer wells, which are supported 
by seven water injectors (figure 2(a)); the producer wells are 
completed at the three top layers and the injectors at the three 
bottom layers (figure 2(e)). The static grid properties (porosity 
and permeability) were generated through a geostatistical tool 
(Sequential Gaussian Simulation). Figures 2(a) and (b) show 
the reference model static properties and figures 2(c) and (d) 
show the dynamic changes after 6 years of production com-
puted through a black-oil simulator (CMG—Imex).

3.2.  Synthetic seismic generation

The synthetic seismic data used in this work were gener-
ated from the reference simulation model. Seismic imped-
ances (IP and IS) were created by forward modeling through 
a petro-elastic model imputing the reference model proper-
ties: porosity, pressure and saturations (figure 2). No seismic 
amplitudes were generated, so no elastic inversion was per-
formed to compute the impedances. All the simulation models 
in this work use the same grid as the reference model, so the 
synthetic seismic data and the simulation models are at the 
same scale.

We used the unconsolidated sand model [19] to calculate 
the dry bulk and shear moduli of the rock frame, and then 
used the Gassmann’s equations to compute the rock saturated 
moduli. The fluids moduli and density were computed through 
the usual Batzle and Wang [1] relations. More details and the 
equations definition are given in Davolio et al [6]. Figure 3 
shows the behavior of computed seismic velocities that gen-
erate the seismic impedances. The vertical lines indicate 
the range of effective pressure used to compute the seismic 
impedances. These velocities were computed assuming a 
100% brine-saturated rock with a porosity of 0.2.

The seismic dataset has four volumes of impedances, P and 
S impedances for two surveys (pre-production and 6 years of 
production).

Independent random noise of 1% of the average was added 
to each P and S impedance 3D volume to have more real-
istic synthetic data. Then a 2D median filter was applied to the 
noisy impedance volumes to remove the high frequency effect 
observed in the time-lapse differences as well as to deform the 
4D anomalies but keep their general aspect. Figure 4 shows 
the time-lapse difference for the synthetic attributes gen-
erated before and after disturbance. Because of the median 
filter application, the perturbation observed in the impedances 
show different magnitudes for each reservoir location ranging 
from 1% to 50%, as shown in figure 5.

1 Base model represents the model available to the engineer, namely the 
model that needs to be matched. There is no relation between the name ‘base’ 
used in this case and the ‘base survey’ that represents the first seismic acqui-
sition in agreement with the traditional nomenclature used in geophysics.

J. Geophys. Eng. 11 (2014) 055001
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The noisy seismic impedances displayed in figures  4(c) 
and (d) were used as input of the inversion procedure used to 
estimate the water saturation for this dataset. The details are 
described in section 4.1.

3.3.  Reservoir uncertainties

Reservoir static properties can be classified as global or local. 
Changes in global properties affect the flow behavior of the 
whole reservoir (or of a large area of it). The latter has a local 
effect, i.e. local changes affect local flow (e.g. around a well).

Here, global uncertainties are: fault transmissibility, rela-
tive permeability (represented by the Corey exponent, see 
Lake [13]) and permeability ratio (vertical/horizontal). The 
local uncertainties are porosity and horizontal permeability.

These uncertainties are the only differences between 
the reference model and all the other simulation models in  
this work.

The second part of this work focuses on the use of a Sw 
map to update the reservoir model’s properties through a his-
tory matching process, i.e., the static properties of the base 
model are updated based on the observed dynamic proper-
ties change (Sw map) We propose to use this information 
to update static properties locally, following the history 
matching methodology in Davolio et al [7]. However, before 
running a local matching, global uncertainties need to be 
calibrated. This work uses a pre-calibrated (global matching) 
dataset, as described by Davolio et al [7]. Therefore, we 
assume only local properties (porosity and horizontal perme-
ability) as uncertainties.

We used the Sequential Gaussian Simulation technique 
(SGS) to generate 200 realizations of porosity. Each porosity 
field was later used as a second variable for the SGS to gen-
erate 200 realizations of permeability (figure 6). To generate 
these images we kept constant geostatistical parameteriza-
tion such as variogram, mean and standard deviation, so each 
image is a geostatistical realization of the SGS. We used each 
pair of images to generate 200 simulation models. Thus, there 
was no need to sample or combine the uncertainties to gen-
erate the model realizations, as each model represents a geo-
statistical realization of porosity and permeability.

Figure 2.  Reference reservoir model. Static properties: (a) porosity and (b) horizontal permeability. Time-lapse changes computed through 
a black-oil simulator: (c) water saturation and (d) pore pressure. (e) Vertical section highlighting the well completions; the grid is colored 
with the horizontal permeability values.

Figure 3.  Computed seismic velocities against effective pressure. 
Vertical lines indicate the range of effective pressure used to 
compute the seismic impedances.

J. Geophys. Eng. 11 (2014) 055001
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Figure 7 shows that, even having geostatistical realizations 
dissimilar to the reference (compare figure 6 with figure 2(b)), 
the characterization process yielded a good dispersion in the 
well production curves, i.e., the curves dispersion comprises 
the history data (figure 7). The top of figure  7 displays the 
field average pressure and water rate for the 200 models and 
the history; the bottom of the figure shows the Bottom Hole 
Pressure (BHP) curves for two wells.

If a poor uncertainty characterization is performed, gen-
erating models that do not comprise the history data (e.g. all 
models below the history curve), the constraints applied to the 
4D seismic might lead to biased estimations.

3.4.  Base model

The base model is the best model among the 200 models 
realizations generated. It presents the smallest error when 

compared to the history curves (pressure and fluid rates for 
every well).

There are three purposes for choosing a base model: (1) 
define the porosity field used in equation  (1); (2) use its 
properties, such as porosity, as input to perform the petro-
elastic inversion described in section 4.1 and (3) perform 
the deterministic history matching described in section 4.2. 
Figure  8 shows the porosity and permeability of the  
base model.

4.  Application

The application is divided in two parts. The first discusses how 
we estimated the Sw maps from 4D seismic data. The second 
describes the history matching procedure applied here to show 
the importance of using a calibrated Sw map to update simula-
tion models.

Figure 4.  Time-lapse difference of the synthetic seismic attributes without adding noise: (a) P-impedance. (b) S-impedance. Time-lapse 
difference of the synthetic seismic attributes after noise addition: (c) P-impedance. (d) S-impedance. Layer 3.

Figure 5.  Percentage of noise added in the synthetic impedances. (a) Noise percentage in Δ4DIP and (b) noise percentage in Δ4DIS.

Figure 6.  Examples of three realizations of permeability.

J. Geophys. Eng. 11 (2014) 055001
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4.1.  Estimating Sw from 4D seismic data

The water saturation map was estimated using a 4D petro-
elastic inversion procedure described in Davolio et al [6]. The 
inversion is done by an optimization process and performed 
for each simulation block, independently. As discussed in 
Davolio et al [5], this is an optimization problem with only 
two unknowns (pore pressure and saturation for each block) 
with a well behaved objective function. So, a gradient-type 
algorithm is used to search for the solution within the defined 
search space. The optimization procedure minimizes the dif-
ference between observed and computed IP and IS and the 
results are values of pore pressure and water saturation (we 
assume no presence of gas) for the monitor survey.

We considered here three error sources for the estimation of 
P and Sw: (1) the time-lapse differences of the noisy synthetic 
P and S impedances (figures 4(c) and (d)), (2) the porosity 
field extracted from the base model (figure 8(a)) and (3) the 
overburden pressure which was overestimated by 20% in the 
inversion. We assumed no errors in the petro-elastic modeling 
as we used the same model to generate the synthetic imped-
ances as in the inversion process.

The initial pressure and saturations distributions (corre-
sponding to the base survey) are considered known, i.e., with 
good estimation of the reservoir initial pressure, water-oil 
contact and capillary pressure. These distributions are used as 

input for the inversion but they are kept fixed during optimiza-
tion, only the dynamic properties of the monitor survey are 
updated (see Davolio et al [5]).

Two inversions were performed to highlight the different 
steps of calibration of 4D seismic data (INV1 and INV2). It 
is known that any optimization procedure can have the search 
space limited to physically feasible ranges. This range defini-
tion is the only difference between the two inversions.

A third estimation of saturation (INV2Ca) corresponds 
to the application of the volume calibration proposed, as 
described below:

	 •	INV1: the inversion procedure is performed with ‘general 
constraints’, the search space is defined by the limits: Swc 
< Sw < 1 − Sor and PprodMin < P < PInjMax.

	 •	INV2: the search space is defined by the minimum and 
maximum values [Swmin, Swmax] and [Pmin, Pmax] esti-
mated by the methodology proposed in Davolio et al [6] 
presented in figure 1.

	 •	INV2Ca: the calibration of the volume of water is applied 
to the second saturation map obtained, namely, INV2.

4.2.  History matching

The history matching procedure used was proposed by 
Davolio et al [7]. The methodology uses 4D seismic 

Figure 7.  Top: field average pressure and field produced water rate. Bottom: examples of bottom hole pressure curves for two wells INJ7 
(left) and PROD5 (right).

J. Geophys. Eng. 11 (2014) 055001
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information to run local matching. The water saturation map 
estimated from 4D seismic data is input to the process to 
update local properties, namely porosity and permeability, 
within regions defined around the injector wells. Other input 
data are several model realizations - the same ‘m’ (m = 200) 
models mentioned before (figure 1). The local matching 
starts by dividing the reservoir into regions according to the 
location of injector wells and their corresponding water satu-
ration error anomaly (figure 9).

The water saturation error between 4D seismic data and 
each reservoir model realization is computed within each 
region. The models with the smallest error for each region 
are chosen and a new simulation model is built by ‘cop-
ying and pasting’ the static properties (porosity and perme-
ability) of selected models in each region, like patchwork. 

As stated in Davolio et al [7], this procedure does not ensure 
that the updated model is geostatistically consistent, but this 
is not an issue here because the procedure is used only to 
compare the differences of the history matched model when 
different inputs from 4D seismic are used. Thus, the quality 
of the matching and the updated model is not an issue.

The history matching procedure was performed three 
times. The only difference among them is the input Sw map:

	LHM1 = �local history matching using as input the estimated 
Sw map from INV1;

LHM2 = �local history matching using as input the estimated 
Sw map from INV2;

LHM3 = �local history matching using as input the estimated 
Sw map from INV2Ca.

Figure 9.  Workflow of the local history matching methodology.

Figure 8.  Base model properties of layer 3. (a) Porosity. (b) Horizontal permeability (mD).
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5.  Results

5.1.  Estimating Sw from 4D seismic data

The volume calibration methodology was applied to the 
whole reservoir, meaning that all the correction factor calcu-
lations considered the volume of water present in the entire 
reservoir.

As mentioned in section 2, steps 2–9 of the volume cal-
ibration proposed are repeated until CF  −  1  <  tolerance. In 
this work, 15 iterations were enough to reach a good cali-
bration. Figure  10 shows the performance of the volume 
calibration. The iterations correspond to steps 2–9. The first 
correction factor computed was: CF = (4.24   ×   107)  m3/
(3.03  ×  107) m3 ≈ 1.4. After the first iteration, the calibrated 
volume was  ≈3.32   ×   107 m3. This new volume yielded a 
CF ≈  1.09. After applying this second CF, the new volume 
was  ≈3.18   ×   107 m3 and so on until the 15th iteration that 
yielded a satisfactory calibration of CF − 1 = 10–4.

The sizable correction factor computed for the dataset used 
comes from the three sources of error present in the estima-
tion of the saturation map: porosity field, noise added to the 
impedances and overestimation of overburden pressure.

Figure 11 shows the estimated water saturation maps for 
the three inversions and the water saturation map yielded 
from the simulation of the reference model, which repre-
sents the answer that the inversions aim to reach. The same 
figure shows the respective error map of the three inversion 
results; the error is the difference between the reference 
map and the estimations. Due to the noise added to seismic 
impedances and the wrong porosity used as inputs for 
the petro-elastic inversion, the results of INV1 presented 
a noisy aspect clearly seen in the error map. A zone with 
high errors is indicated by a red arrow; the white region in 
the error map shows out-of-scale error (bigger than 0.2). 
The poor characterization of porosity in that region (com-
pare figures 2(a) and 8(a)) was the main cause of this error. 

Figure 12 follows the same layout of figure 11 but shows 
the estimates of pressure for INV1 and INV2; the noisy 
behavior of INV1, previously mentioned for Sw, is seen 
in pressure as well. Similarly, the region with the highest 
errors marked in the Sw map also presents a high error for 
pressure.

When the estimation of Sw is constrained to flow con-
ditions (INV2), an error reduction is seen in figure 11. The 
use of constraints corrected some areas that had been incor-
rectly estimated due to seismic noise. Also, the region with 
high errors observed in INV1 now presents a more accurate 
response. This is because the constraints applied to the search 
space ‘forced’ the dynamic properties estimations (saturation 
and pressure) to more physically consistent values, reducing 
the effects of wrong static properties characterization. The 
same improvement can be observed in the estimation of pres-
sure for INV2 (figure 12). The strong error reduction between 
INV1 and INV2 observed in figure  12 was ensured by the 
proper mapping of uncertainties, which generated model real-
izations with pressure behaviors that closely follow history 
data, as verified in figure 7.

Although the result of INV2 presented a water saturation 
map closer to the reference, the error anomalies are mainly 
negative, meaning that the estimated water saturation pre-
sents more water than the reference model, showing the need 
to calibrate the volume of water. As in practice, these errors 
are not available information, this could be checked by a 
computation of the volume of water (equation (1)) and com-
parison with the known volume of injected water in reservoir 
conditions.

After applying our proposed volume calibration 
(INV2Ca), the injection anomalies are better defined and pre-
sent unbiased values. The observed error indicates that the 
mass balance is respected, as it presents positive and negative 
anomalies, meaning that the error is now more related to an 
incorrect water front displacement and not with the amount 
of water.

Figure 10.  Fifteen iterations of the proposed volume calibration procedure (steps 2–9 in section 2). Left: the correction factor computed 
per iteration. Right: the calibrated volume of water per iteration.
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Figure 12.  Pore pressure maps of layer 3 for the second production time (monitor survey). Top: from left to right, the reference model 
(answer), the estimations of INV1 and INV2. Bottom: from left to right, the error (reference—INV) for the two estimations.

Figure 11.  Water saturation maps of layer 3 for the second production time (monitor survey). Top: from left to right, the reference model 
(answer), the estimated Sw map for cases 1–3. Bottom: from left to right, the error (reference—INV) for the three estimations.
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Figure 13 shows statistics of Sw errors seen in the bottom 
of figure 11. The bar graphs show the simple error (SE) and 
the quadratic error (QE) given by the equations,

� ∑= −
=

SE (reference estimated) ,
i

nb

1

(7)

� ∑= −
=

QE (reference estimated) ,
i

nb

1

2 (8)

in this figure, the variables reference and estimated corre-
spond to Sw values of the reference model and those obtained 
from the inversions. The bar graph shows the error reduction 
seen from INV1 to INV2 and INV2Ca. The histogram shows 
that for INV2Ca, the errors are centralized at zero, with some 
positive and negative values, indicating that the amount of 
water present in the estimated map is more balanced than in 
the other two cases.

5.2.  History matching

To perform the local history matching, we first define areas 
based on the observed Sw error and the location of injector 
wells; figure  14 defines these regions. We selected injector 
wells with the highest errors (for all layers) to perform the 
local match: INJ1, INJ3, INJ4 and INJ5 (see Davolio et al [7] 
for details about region definition).

The estimated Sw of INV2 (figure 11) was used to compute 
the error map shown in figure  14, which is the same input 
used to define the regions in Davolio et al [7]. As mentioned, 
the local matching procedure in section  4.2 was performed 
for three cases (LHM1, LHM2 and LHM3), the difference 
was the Sw map used as input. Although region definition 
is dependent on the input data, in this work, the regions 
shown below were used for the three history matching, to  
compare results.

Figure 15(a) shows the Sw error map (compared to 
the true answer) of the base model before local matching. 
Figures  15(b)–(d) show error maps for the three updated 

models. The updated models LHM1 and LHM2 show more 
water than they should; see the predominance of negative 
anomalies. These results are because the matching procedure 
updates static properties to match the Sw maps of INV1 and 
INV2, displayed in figure 11, which also show more water.

Figure 16 shows the saturation error (compared to the Sw 
map estimated from 4D seismic data) for each case, before 
and after the matching; these images indicate the quality of 
the procedure. The matching procedure worked for LHM1 and 
LHM2, i.e., the updated models provided Sw maps closer to 
the observed in 4D seismic data; see the error reduction from 
the top images to the bottom ones. However, these results are 
unsatisfactory, since the two matching processes increased the 
saturation errors when compared to the true results, as shown 
in figures 15(b) and (c).

The quantitative use of estimated Sw from 4D seismic 
data was successful in the third history matching (LHM3). 
Figure  15(d) shows a decrease in the Sw error when com-
pared to figures 15(b) and (c). However, some errors are still 

Figure 14.  Water saturation error map Δ Δ−Sw Sw( )4D base 4D seis  with 
the regions defined to perform the local matching.

Figure 13.  Statistics of the Sw errors displayed in the bottom of figure 11. Left: histogram of the Sw error. Right: graph of the simple Sw 
error (equation (7)) and quadratic Sw error (equation (8)).
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observed for this case for two reasons: (1) although better cali-
brated, the map IN2Cal still carries errors and (2) the charac-
terization process is not assumed to be perfect, i.e., the image 
realizations of porosity and permeability do not reproduce the 
reference properties.

The graphs in figure 17 show the simple Sw errors (equa-
tion (7)) and the quadratic Sw errors (equation (8)) for the 
three cases; in this figure, the variables reference and esti-
mated correspond to Sw values of the reference model and 
those obtained from the simulation of the three history 
matched models. The cumulative error displayed in figure 17 
shows that LHM3 presents a better error balance with posi-
tive and negative values. In the same figure, the 2-norm of the 
errors indicates that LHM3 has the best result.

Figure 16.  Observed water saturation error map (estimated from 4D seismic—simulated). Top: difference between the estimated saturation 
INV1(a), INV2 (b) and INV2Cal (c) and the saturation of the base model before the matching. Bottom: difference between the estimated 
saturation INV1 (d), INV2 (e) and INV2Cal (f) and the saturation of the base model after the respective history matching (LHM1, LHM2 
and LHM3).

Figure 17.  Simple (top) and quadratic (bottom) errors of the Sw 
error map for the three history matching applied.

Figure 15.  Water saturation error map of layer 3 (reference—simulated) of the base model before (a) and after the local matching LHM1 
(b), LHM2 (c) and LHM3 (d).
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One can say that the base model before the matching (figure 
15(a)) presents the same amount of errors as LHM3 (figure 
15(d)). Indeed, there is a slight error reduction in the Sw map 
after the local matching LHM3. This could be improved, for 
instance, by re-defining the regions according to observed 

error anomalies specific to this case, or by improving the char-
acterization process (changing the geostatistical parameteri-
zation). However, the focus of this work is not to guarantee 
the best history matching result but to analyze the importance 
of having better input information to do so. In this sense, the 

Figure 18.  Porosity field of the base model before (a) and after the local matching LHM1 (b), LHM2 (c) and LHM3 (d). Layer 3.

Figure 19.  Horizontal permeability field of the base model before (a) and after the local matching LHM1 (b), LHM2 (c) and LHM3  
(d). Layer 3.

Figure 20.  Field water rate and average pressure. The vertical line divides the period of time into two: history and forecast.
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results of figures 15 and 17 demonstrated that the use of the 
calibrated water saturation map (LHM3) is the most reliable 
option.

The updated porosity field after the matching process 
LHM3 has more similar structures to the reference model than 
the base model and the other two matches (figure 18). The 

regions marked in figure 18(d) are examples of good agree-
ment with the reference porosity field displayed in figure 2(a). 
A less pronounced improvement for permeability is observed 
(figure 19), because the characterization process of permea-
bility needs to be improved, since the image realizations (figure 
6) do not present the expected features seen in figure  2(b). 

Figure 21.  Well water rate and bottom hole pressure for some wells. The vertical line divides the period of time into two: history and 
forecast.
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Even so, figure 19(d) highlights a better definition of a high  
permeability zone.

Figures 20 and 21 show the production curves for the field 
and some of the wells comparing the history matching per-
formances. Of note are the accurate field water rate forecast 
yielded from LHM3 and the good field pressure behavior in 
the history period for the same model. The main improvement 
observed is from the initial base model to the model after 
global matching. Then, small changes are observed between 
the models after global matching and after local matching 
(LHM1, LHM2 and LHM3), showing that the second proce-
dure has not changed the quality of the first.

6.  Final remarks

The results presented here show that it is possible to use res-
ervoir simulation data to reduce errors in the estimation of 
dynamic changes from 4D seismic data. The addition of engi-
neering information helps to lessen the effects of poor static 
properties characterization and seismic signal problems. For 
the history matching process, the results show that the cali-
bration of input data is important to update reservoir models, 
namely LHM3 provided the best result when compared to the 
other two history matching.

We applied our proposed methodology to calibrate the 
volume of water in a synthetic dataset. In this dataset, the 
Sw map provided by 4D seismic presented more water than 
expected for the entire reservoir. However, the volume cali-
bration and the history matching were built to be performed 
locally. For more complex cases, some regions of the reser-
voir may present a volume bigger or smaller than expected. 
In these cases, the correction factor that was computed and 
applied here to the entire reservoir can be computed/applied 
individually for each region of interest. In this case, there 
would be an additional step: identifying the water anomalies 
associated with each injector well to compute individual vol-
umes for each injector.

7.  Conclusions

We proposed a methodology to calibrate the volume of 
water associated with water saturation maps provided by 
4D seismic data. The volume calibration is made based on 
reservoir flow conditions imposed by the simulation of sev-
eral models. As these models account for mapped uncer-
tainties, the calibrated water saturation map is consistent 
with flow conditions resulting from the stage of character-
ization of the reservoir. This process can be repeated when-
ever new information is available (e.g.: after a new run of a 
history matching).

The advantages of applying the proposed methodology 
were shown in two forms: (1) comparing the water saturation 
maps estimated from a petro-elastic inversion process, with 
and without the volume calibration, and (2) comparing the 
results of a history matching procedure that uses the estimated 
water saturation maps to update local static properties.

Synthetic data was used in both cases to validate the meth-
odology and as for the main results we highlight: (1) calibrated 
water saturation maps provided more reliable information (to 
be used qualitatively or quantitatively), as it is more physi-
cally consistent (respecting the mass balance); (2) the use 
of calibrated water saturation maps in a history matching is 
important to ensure that static properties be properly updated.
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