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Abstract
The heterogeneous distribution of reservoir properties is one of the most important uncertainties
in static and dynamic reservoir modelling. Petrophysical properties are usually interpolated
within reservoir models from sparse well-log data, which can lead to highly uncertain estimates
at inter-well locations that directly affect the reliability of fluid-flow model predictions of
reservoir behaviour. To address this issue, one approach is to build an ensemble of equiprobable
models that combine different geostatistical realisations of reservoir properties that ideally span
the range of potential outcomes. While this process captures the impact of reservoir property
distributions on the model response, a major challenge is classifying the subset of models in the
ensemble best representing reservoir fluid-flow behaviour. Time-lapse seismic attributes are
useful for reducing such uncertainties, since they image fluid-movement trends that provide
insights regarding fault locations and distribution of reservoir properties, such as permeability
and porosity. Accordingly, we introduce a methodology combining 4D seismic amplitude
attributes and reservoir production data to classify fluid-flow models. This classification is based
on applying thresholds for independent seismic and production objective functions. We develop
and apply a new formulation of local dissimilarity maps to quantify differences between
observed and modelled 4D seismic amplitudes. We test our methodology on the benchmark case
UNISIM-I developed from observations from the Namorado Field, Campos Basin, Brazil. By
comparing injection and production rates in relation to 4D seismic amplitude trends within each
region, we identify nine models out of an ensemble of 100 that are judged optimal via the
required seismic and production objective function thresholds. Thus, we obtain an improved
quantitative evaluation of the impact of reservoir production on the 4D seismic signal.
Combining seismic and production data offers interpretation scenarios that automatically identify
realistic fluid-flow models that would be helpful for updating reservoir properties.

Keywords: fluid-flow model, time-lapse (4D) seismic, ensemble of models, history matching,
model selection, reservoir property update
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1. Introduction

Fluid-flow models have long been used to assist in reservoir
development and management activities (Aziz and Settari
1979, Oliver et al 2008, Oliver and Chen 2011, Schiozer
et al 2015). These models simulate the dynamics of fluid flow
in porous media, which is used to predict future hydrocarbon
reservoir behaviour. Flow models have been developed based
on a wide range of different data sources including well logs,
field seismic data and laboratory measurements of rock and
fluid properties (Fanchi 2006). However, because each data
source has its own characteristic scale length, horizontal and
vertical resolution and areal coverage, it is unlikely that a
single fluid-flow model will adequately capture the hetero-
geneity of reservoir properties. One key fluid-flow model
building challenge is reliably extrapolating information
derived from geographically sparse well logs to provide
estimates of porosity and permeability distributions through-
out a reservoir. Accordingly, in static and dynamic reservoir
modelling, property heterogeneity is a source of errors, such
as the number, locations and hydraulic properties of faults,
which altogether can lead to highly uncertain production
forecasts.

Even though uncertain production forecasts increase
reservoir management risks, deterministic approaches using a
single model are often the initial (and final) choice for static
and dynamic reservoir modelling. Deterministic approaches
cannot capture the full range of expected reservoir response to
development activity as they do not account for the significant
uncertainties associated with reservoir property heterogeneity.
To examine the impact of reservoir property heterogeneity,
one increasingly common strategy is to follow a stochastic
approach and build an ensemble of equiprobable models that
combine different geostatistical realisations of reservoir
properties that ideally span the range of potential outcomes
(Doyen 2007, Schiozer et al 2017). By sampling the para-
meter space one can generate posterior statistics that help
quantify uncertainties on the model response due to variable
reservoir property realisations, which provides invaluable
information for reservoir development and management
engineers (Mesquita et al 2015). However, a major challenge
with this approach is selecting the subset of stochastic models
that optimally represent reservoir behaviour. Effectively and
efficiently addressing this issue requires developing an auto-
mated assessment procedure for identifying and classifying
fluid-flow models that are both physically realisable and
consistent with all available geophysical, production and
geological data.

Current model classification procedures typically use
criteria based on a combination of production data, such as
bottom-hole pressure, water production rates and water cut
values (Avansi and Schiozer 2015a, Maschio and Schiozer
2016). While this approach can identify models that reason-
ably reconstruct production history, the absence of geological
information poses a challenge for identifying models con-
sistent with the observed geological settings. In addition,
inferring distributions of reservoir properties remains highly
uncertain where no 4D seismic attributes are available to

indicate fluid-movement trends (Lumley 1995b, Lumley and
Behrens 1998, Kjelstadli et al 2005, Ullmann et al 2011,
Barkved 2012). This suggests that incorporating additional
information obtained from 4D seismic data, where present,
should improve the model classification process.

Incorporating seismic data in a quantitative manner
requires transforming the information content into a format
compatible with fluid-flow modelling outputs. One of the
main associated challenges is that 4D seismic amplitude
information exists in volumes acquired at a few sparse points
in calendar time, which is in contrast to the relatively con-
tinuous production time-series data. A number of approaches
extract, filter and segment 4D seismic attribute maps to
quantify time-lapse reservoir changes (Tillier and Veiga 2012,
Derfoul et al 2012). These methods binarize 4D attribute
maps to calculate a local modified Haussdorff distance
quantifying the (dis)similarity of two images (e.g. modelled
and observed 4D seismic amplitude maps). Tillier and Veiga
(2012) successfully apply this method in a synthetic steam-
assisted gravity drainage production scenario, and improve
objective function convergence in a history matching (HM)
procedure when compared to a conventional least-squares
optimisation approach (Gosselin et al 2003). Obidegwu
(2015) compares binary images from saturation maps
extracted from fluid-flow models directly with their binary
seismic counterparts, which leads to the binary inversion
domain being a ‘quick-look alternative’for reservoir man-
agement. However, these approaches neither account for rock
physics nor seismic forward modelling constraints, and thus
neglect the influence that subsurface properties (e.g. rock bulk
modulus) and acquisition parameters (e.g. seismic wavelet)
have on the seismic amplitude response. This leads to an
inconsistency between the mathematical model and observed
physical system that may decrease the reliability of model
predictions.

The goal of our study is to define quantitative criteria for
use in classifying fluid-flow models from an ensemble of
equiprobable realisations, according to their consistency with
both 4D seismic amplitude maps and production data. Our
approach accepts (or rejects) models based on acceptance
thresholds defined independently for seismic and production
objective functions. For our seismic objective function, we
reformulate the binarisation method developed by Tillier
et al (2012) introducing a new ‘informative’local dissim-
ilarity map (ILDM) that identifies the source of the differ-
ences (e.g. observed or modelled seismic data). We define our
production objective function following the normalised
quadratic deviation with signal (NQDS) approach (Avansi
et al 2016). Thus, the suite of models that optimally satisfy
both objective functions are likely to be those most consistent
with the available geological, geophysical and engineering
data, and thereby offer the most physically consistent insights
into fluid-flow, porosity and permeability distributions as well
as fault locations and fluid-flow characteristics.

This manuscript begins by exploring the role of pro-
duction objective functions on fluid-flow model calibration
and their integration with 4D seismic amplitudes for mon-
itoring purposes. We discuss seismic forward modelling
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based on the zero-offset seismic amplitude response of fluid-
flow models, and specifically discuss how to effectively
compare synthetics and reference 4D seismic data attributes.
After formulating our seismic and production objective
functions, we define the quantitative acceptance threshold
criteria used for model selection. We then apply these prin-
ciples in a synthetic 4D case study based on a benchmark
fluid-flow model built on observations from the Namorado
Field in Campos Basin, Brazil (Avansi et al 2016). We
conclude with a discussion on the implications of these results
for integrating 4D seismic attributes into workflows aiming to
estimate and/or update reservoir properties and structural
features for fluid-flow modelling, and their potential benefits
for the monitoring and optimal recovery of hydrocarbon
reservoirs.

2. Seismic objective function

The heterogeneous distribution of reservoir properties is one
of the most significant uncertainties in static and dynamic
reservoir modelling (Lumley 2006, Doyen 2007). Thus,
accurately calibrating these reservoir properties within fluid-
flow models is mandatory for predictive reliability (Oliver and
Chen 2011, Schiozer et al 2015). Procedures for the updating
of reservoir properties within fluid-flow models (e.g. HM)
often use numerical optimisation approaches (i.e., gradient-
based) that aim to minimise a production objective function
(OFP) defined as the mismatch (e.g. L2 norm) between for-
ward modelled and observed production data (Gomez
et al 1999, Oliver and Chen 2011). While there are many
successful HM cases (Oliver and Chen 2011, Bertolini and
Schiozer 2011), solely examining production data does not
allow the use of important spatial information derived from
4D seismic data. In particular, because subsurface fluid
changes are commonly observable in 4D seismic attribute
maps, these maps are useful for assessing a fluid-flow modelʼs
ability to predict 4D seismic observations. While extending
the HM procedure to directly include 4D seismic data within a
joint global inversion strategy represents an ideal goal, a
number of studies suggest that following this approach can
lead to unstable inversion procedures (Gosselin et al 2003,
Roggero et al 2007). This observation motivates us to
develop an alternative approach based on an independent
seismic objective function (OFS) that, when used in con-
junction with a production objective function OFP, is useful
for fluid-flow model assessment and, potentially, for inclusion
in model updating workflows.

Developing an effective OFS requires recognising and
accounting for a key difference between seismic amplitude
maps (or volumes) and production data: the former typically
consist of millions of pixels (billions of voxels), while the
latter comprise hundreds of values. A typical HM analysis
uses production data in a least-squares optimisation proce-
dure to estimate reservoir properties such as porosity and
permeability at each model grid cell. However, an HM
procedure is unlikely to converge due to the lack of sensi-
tivity of global objective functions to differences between

synthetic and observed 4D seismic amplitude calculated at
each pixel (or voxel). Moreover, the high computational
demand of fluid-flow simulations limits the number of
parameters in HM procedures. Therefore, the goal of seis-
mic HM should not be to accurately recover each pixelʼs
value; rather, it should aim to capture the main fluid-flow
features such as high-permeability channels, flow barriers
and fault locations that offer the greatest influence on fluid-
flow patterns (Lumley and Behrens 1998, Calvert 2005,
Tillier and Veiga 2012).

We develop a procedure for calculating an OFS that is
based on image binarisation and dissimilarity assessment.
This procedure allows us to locally highlight main fluid-
flow reservoir features in the seismic data (e.g. high-per-
meability channels and faults) to assist with interpreting the
effects of hydrocarbon production on observed 4D seismic
amplitudes.

2.1. Image binarisation and similarity

One strategy for developing an OFS is to adapt image analysis
techniques that locate and quantify the (dis)similarities
between any two given images (here the synthetic and
observed 4D seismic attribute maps). One candidate approach
is to apply a Haussdorff distance (HD) measure (Matheron
1975, Huttenlocher et al 1993), which is an established image
comparison metric. In practice, though, the HD metric is
very sensitive to outlier pixels, which means that isolated
small image artefacts might significantly affect this measure.
It is also not well adapted to noisy images (Tillier and
Veiga 2012). In this case, the HD represents a global measure
that cannot highlight local dissimilarities. Baudrier et al
(2008) address the issue of the local distance by introducing
the local dissimilarity map (LDM) measure between any two
images. This approach uses a sliding window to calculate the
local dissimilarity at any given pixel using a modified HD
measure between two sub-images within the local window
centred at that pixel. This definition both handles empty point
sets and permits tuning of the sliding window parameters to
more efficiently capture local dissimilarity.

The first step in estimating an LDM is to cluster the
information contained in 4D seismic attribute maps into
binary groups by applying a k-means++ algorithm (Arthur
and Vassilvitskii 2007). The k-means++ algorithm chooses
the clusters centroids and estimates a distance transform (DT)
map that measures the discrepancy between each point in the
map in relation to each centroid. We use the squared Eucli-
dean distance to define the DT between the pixel value at xm
and that at the cluster centroid cj:

DT x c x c, , 1m j m j
2= -( ) ( ) ( )

where m=1, N data points (or pixels) in the image and
j=1, K are the number clusters. Note that DT is a measure of
how far the amplitude value at the xm location is from that at
the centroid cj. Other metrics (e.g. Hamming distance or
current measurement) may also be applicable (Obidegwu
2015). In this context, Tillier et al (2012) defines the LDM
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between two images A=A(xm) and B=B(xm) as

LDM A B c A B DT A c DT B c, , max , , , ,

2
j c c j j= -( ) ∣ ∣ ( ( ) ( ))

( )

where Ac=Ac(xm) and Bc=Bc(xm) are the clustered images
of A and B, respectively. Figure 1 illustrates the LDM con-
cept. Let images Ac and Bc (figures 1(a)–(c)) represent clus-
tered baseline and monitor seismic attributes, respectively. In
these maps, we associate locations exhibiting a 4D signal with
values of one (black pixels) and those without with zeros
(white pixels). Figures 1(b)–(d) show the calculated DT(A, cj)
and DT(B, cj) maps, respectively, while figure 1(e) presents
the associated LDM(A, B, cj). The LDM is zero for pixels
where the two images are equal and is otherwise equal to the
maximum distance value as per equation (2). We note that the
LDM highlights the local dissimilarities between these two
images, and thus offers a quantitative alternative for com-
paring 4D seismic attribute maps. However, they neither
identify the image from which any dissimilarities arise nor do
they differentiate between areas with no 4D signal from those

with an equal 4D signal. We address these issues in the fol-
lowing section.

2.2. Informative image binarisation and dissimilarity for fluid-
flow applications

The example presented in figure 1 suggests that the LDM
approach can provide a quantitative comparison between
observed and synthetic 4D seismic amplitude maps. Con-
ceptually speaking, the observations highlighted in figure 1
can be replicated by applying a coupled four-step seismic-
reservoir modelling procedure: (1) develop a physical
model of reservoir and elastic properties; (2) use a fluid-
flow modelling engine to simulate the dynamic reservoir
response over the selected period of time; (3) apply a
seismic modelling procedure to generate the baseline and
monitor synthetic seismic data sets, extract seismic attribute
maps from each survey, and derive the 4D seismic ampl-
itude change map; and (4) estimate the LDM for analysis
purposes.

Figure 2 presents a reservoir scenario that highlights
injection activities. Figure 2(a) presents a map of the
reference 4D seismic amplitude changes where negative
values indicate stiffening of the porous rock due to
increased water saturation. We apply the k-means++
algorithm to cluster information in figure 2(a) into two
clusters to form the binarised map BC shown in figure 2(b).
Blue (white) values indicate a presence (absence) of 4D
seismic signal. Figure 3(a) shows the noise-free synthetic
4D seismic amplitude map A resulting from the 1D con-
volution between the 50 Hz Ricker wavelet and the reflec-
tion coefficient (RC) extracted from the fluid-flow model,
which resembles the main observed 4D amplitude trends
when compared to figure 2(a). Figure 3(b) presents the
clustered map AC of A (figure 3(a)) that similarly shows the
presence (orange) or the absence (white) of 4D signal.
Figure 4(a) superimposes the clustered images extracted
from the maps of modelled (AC in orange) and observed (BC

in blue) 4D amplitude changes from figures 2(a)and 3(a),
which allows us to identify locations where the model and
observations (dis)agree.

To quantify this degree of local (dis)similarity, we
adapt the DT measure in equation (1) of the observed
and synthetic clustered maps (figures 2(b) and 4(b)),
respectively) to define a new 4D ILDM measure for each
pixel:

IDLM A B
A B if A B

A B otherwise
,

,

.

3

c c
DT A c

DT A c c c

c c
DT B c

DT B c

,

max ,

,

max ,

j

j

j

j

=
- >

-

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( )

( )

( )

( )
( ( ))

( )
( ( ))

Note that the ILDM in equation (3) both identifies the map
containing the more significant information and assigns a
scaled single value to each pixel. Identical pixels have zero
ILDM values, while non-zero values quantify the (dis)

Figure 1. Illustration of Euclidean DT: (a) binary image A; (b) image
A distance transform Ac; (c) binary image B; (d) image B DT Bc; and
(e) images A and B LDM from equation (3) and the respective LDM
objective function from equation (5). Adapted from Tillier
et al (2012).

1564

J. Geophys. Eng. 15 (2018) 1561 R Souza et al

D
ow

nloaded from
 https://academ

ic.oup.com
/jge/article-abstract/15/4/1561/5204267 by BIBLIO

TEC
A C

EN
TR

AL U
N

IV ESTAD
U

AL C
AM

PIN
AS user on 21 July 2020



similarity between two clustered maps. The upper (lower)
expression is applied if the dissimilarity information comes
from map Ac (Bc). Figure 4(b) presents the 4D ILDM for the
modelled and observed 4D amplitude maps, A and B,
respectively. In this case, positive values (red) indicate that

information comes from the simulation data, while negative
(blue) indicates information from the observed 4D seis-
mic data.

To associate a quantitative indicator of data mismatch for
each simulation model, we define our seismic objective

Figure 2. Illustration of: (a) observed 4D seismic amplitude changes; and (b) binary 4D seismic amplitude map where the 4D seismic signal is
highlighted by the blue clusters, and the background information (i.e. no 4D changes) is shown in white.
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function OFS as:

4OF
ILDM A B,

max DT A , DT B
,S

2

2 2
= ( )∣∣ ( )∣∣

(∣∣ ( )∣∣ ∣∣ ( )∣∣ )

where 2∣∣ · ∣∣ indicates an L2 norm and OFS is normalised to
fall within 0�OFS�1. Low (high) OFS values indicate that
images A and B are more (dis)similar.

Figure 3. (a) Synthetic 4D amplitude changes in map A computed from a fluid-flow model. (b) Clustered map AC of the map in (a), where the
presence and absence of 4D signal is indicated by orange and white pixels, respectively.

1566

J. Geophys. Eng. 15 (2018) 1561 R Souza et al

D
ow

nloaded from
 https://academ

ic.oup.com
/jge/article-abstract/15/4/1561/5204267 by BIBLIO

TEC
A C

EN
TR

AL U
N

IV ESTAD
U

AL C
AM

PIN
AS user on 21 July 2020



3. Methodology

This section develops our methodology for classifying a suite of
earth models from an ensemble that is internally consistent with

both seismic and production data. We define consistency as
satisfying independent acceptance thresholds for both seismic
and production objective functions, TS and TP, respectively. We
divide our methodology into four steps, which we illustrate in

Figure 4. (a) Superimposition of the clustered maps of the modelled (orange) and observed (blue) 4D amplitude changes. (b) Respective
ILDM defined in equation (3). Note that the ILDM highlights the dissimilarities between observed and synthetic 4D seismic amplitude maps
in figures 2(a) and (b).
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figure 5: (1) generate an ensemble of equiprobable fluid-flow
models; (2) apply a 4D seismic workflow; (3) apply a pro-
duction modelling workflow; and (4) assert the model classifi-
cation routine. We discuss each step below.

3.1. Step 1: ensemble of models

The first step is to define an ensemble of fluid-flow models to
be used as input to the ensuing procedural steps. As our
methodology focuses on model classification and not on
model development, we assume that a suitable model
ensemble already exists that possesses representative char-
acteristics aligned with the aims of the study. For instance, in
this study we opt for an ensemble of equiprobable models that
capture reservoir property heterogeneity by combining dif-
ferent geostatistical realisations that ideally span the range of
potential reservoir responses. Accordingly, this ensemble
collectively captures the uncertainty estimates associated with
the reservoir model predictions. The generation of a repre-
sentative ensemble of Earth models used in our example is
detailed in Schiozer et al (2017) and Avansi et al (2016).

3.2. Step 2: 4D seismic modelling workflow

In this step, we forward the seismic model the synthetic
seismic amplitude response of all models in the ensemble
using the procedure discussed in section 5 below. We assume

that the seismic data image polarity is equivalent to a zero-
phase wavelet, and use a convention where positive values
correspond to positive reflectivity and 4D differences are
defined as the monitor minus the baseline seismic survey data
(Lumley 1995a, 2001). We then extract rms maps of the
observed and synthetic 4D seismic amplitude in order to
apply the ILDM (equation (3)) for calculating the seismic
objective function (equation (4)). The map extraction proce-
dure is defined on a case-by-case basis; therefore, we describe
our specific example in section 5 below. Note that the optimal
domain for the integration of production and seismic data
(e.g. seismic amplitudes or impedances) needs to be deter-
mined on a case-by-case basis. In this study, we identify
production induction 4D seismic amplitude differences in the
maps. Our choice of domain builds upon previous research
that quantitatively confirms that the uncertainties associated
with seismic amplitude changes are lower than those of the
seismic impedances due to the combined impact of seismic
noise and the instability of the seismic inversion procedures.
We also observe an uncertainty increase proportional to the
seismic data signal-to-noise levels (Souza et al 2017).

3.3. Step 3: production workflow

To quantify the mismatch between the reference (historical)
and simulated production data at time ti (obsi and simi,

Figure 5. Workflow steps to define the model selection criteria. Step 1 generates the ensemble of models. Step 2 involves seismic forward
modelling and interpreting the 4D amplitude changes maps and evaluating the seismic objective function OFS. Step 3 estimates the
production objective function (OFP). Step 4 selects the optimal models by applying our criteria to the OFS and OFP.
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respectively), we use a production objective function, OFP,
that is based on the NQDS approach (Avansi et al 2016):

OF NQDS obs sim
QDS obs sim

AQD obs
,

,
, 5P i i

i i

i
º =∣ ( )∣ ( )

( )
( )

where ∣·∣ is absolute value, QDS is the quadratic deviation
with signal,

QDS obs sim
SD

SD
obs sim, , 6i i i i 2= -( )

∣ ∣
∣∣ ∣∣ ( )

SD is the simple deviation,

SD obs sim obs sim, , 7i i
i

N

i i
1

t

å= -
=

( ) ( ) ( )

and AQD is the acceptable quadratic deviation

AQD obs obs , 8i i 2g= +( ) ∣∣ ∣∣ ( )

where γ is a user-defined positive-valued acceptance criterion
(percentage) for each data series, and ò is a small positive
constant to avoid division by zero. The NQDS value indicates
the quality of the match between observed and simulated
production data and its absolute value can be used to define a
production selection criteria in Step4 below. Note that
because we define and apply OFP independently of OFS there
is no need to cross-normalise this function.

3.4. Step 4: model classification

The final step combines the measures calculated in Steps
2and3 to classify the models in the ensemble. We define
our model classification criterion by applying independent
seismic and production acceptance thresholds, TS and TP on
OFS and OFP defined in equations (4) and (5), respectively.
The value of each acceptance threshold is determined on a
case-by-case basis (see section 5). These criteria allow us to
identify models with an acceptable match between seismic
and production data that satisfy both OFS<TS and
OFP<TP. Figures 6(a) and (b) illustrate how TP is

applied to OFP values (i.e. prior to applying the absolute
value operator in equation (5)), respectively. We consider
acceptable any given model that has OFP values within

NQDS T0 P ∣ ∣ .

3.5. Model classification

To facilitate understanding of our model classification pro-
cedure, we introduce four model classes: (1) Type1 models
that satisfy both seismic and production data according to our
defined criteria (OFS<TS and OFP<TP); (2) Type2
models that are acceptable by seismic constraints, but are
rejected by production data (OFS<TS and OFP>TP);
(3) Type3 models that are rejected by seismic data, but are
acceptable by production data constraints (OFS>TS and
OFP<TP); and (4) Type4 models are rejected by both
seismic and production data (OFS>TS and OFP>TP).
Models falling in each type are important as they offer a
different perspective of the results. For example, Type 2
models could suggest an unconsidered interpretation
hypothesis that may be overlooked due to rejection based on
production data. Similarly, a better correlation with the 4D
seismic amplitude map may indicate that away from the wells,
the property distribution (e.g. porosity and permeability) is
closer to the true model than a model selected by the pro-
duction data alone. Similar understandings arise when inter-
preting Types 3 and 4.

Note also that the goal of our method is to classify
reservoir models based on the dual objectives of fitting both
production and seismic data. Once we classify the models,
they can be further refined by applying practical business
decision methods. For instance, we could select from our
Type 1 range three reservoir models based on their occurrence
probability (e.g. P10/P50/P90) (Schiozer et al 2004, Meira
et al 2016). We could also select model Types 1–3 and dis-
card the Type 4 model (i.e. poor fit to both production and
seismic criteria). In fact, our method provides more choices

Figure 6. Assessment of production data: (a) time-varying bottom-hole pressure and an associated production acceptance threshold TP;
(b) OFP per well indicating the range of acceptable values (dashed line in red).
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and information of how to select/subsample model space than
just P10/P50/P90.

4. Data set description

This section provides an overview of the UNISIM-I bench-
mark model (Maschio et al 2015) that we use to validate our
methodology. We outline the methodology used to generate
the initial ensemble of models. We then discuss our metho-
dology for forward modelling baseline and monitor seismic
data sets, the computation of 4D seismic amplitudes attributes
and our map extraction procedure.

4.1. Benchmark case UNISIM-I and the ensemble of models

Benchmark models commonly play an important role in
testing methodologies for calibrating fluid-flow models. In
this study, we validate our methodology using the synthetic
UNISIM-I benchmark model (Avansi and Schiozer 2015b)
consisting of the UNISIM-I-R reference model and a suite of
derivative models. UNISIM-I-R is a fluid-flow model built in
a high-resolution grid using publicly available data (e.g. core
descriptions, well logs, 2D/3D seismic data) from the
Namorado field, Campos Basin, Brazil. While the original
structural interpretation is used to define the top and bottom
reservoir surfaces and fault locations, sequential indicator
simulation was used to model the facies distribution. The
UNISIM-I-R performance evaluation accounts for small-scale
heterogeneities distributed within these facies using a [Δx,
Δy, Δz]=[25, 25, 1] m grid-cell size discretised into a
corner-point grid with 326×234×157 active cells
(approximately 3.4 million in total). The high level of detail
offers both a reliable geological model and suitable derivative
models for simulations that honour production history data.
For a detailed description of the UNISIM-I-R model, we refer
the reader to Avansi and Schiozer (2015b).

Figure 7 illustrates the processes applied to define the
UNISIM-I-R suite of derivative models. Schiozer et al (2017)
details the generation of an ensemble of 500 models that can
be used to evaluate uncertainties in the initial stages of field
production. This approach implies that each model in the
ensemble is a potential reservoir scenario. It further describes
the use of discretized Latin hypercube with geostatistics to
identify reservoir uncertainties and define scenarios combin-
ing: (1) geostatistical realisations of facies, porosity, net-to-
gross (NTG) and permeability (K); and (2) uncertainty para-
meters associated with rocks and fluids (e.g. water-oil-con-
tact, relative permeability), production operations (e.g. well
failures) and economic factors (e.g. oil price, costs). The
authors also indicate that a subset of 100 models is sufficient
for spanning the range of potential outcomes (Schiozer
et al 2017).

Because flow-simulation modelling in high-resolution
grids is a time-consuming process, the geological model
reservoir properties (porosity, permeability, NTG) are up-
scaled, which results in the UNISIM-I-H ensemble of 100
models (figure 7). The UNISIM-I-H reservoir models are built

for HM and uncertainty-reduction analyses in a post-devel-
opment phase at date t2 (31 May 2024). UNISIM-I-H has 11
years of production history (2013-24) based on the operation
of four vertical, ten horizontal producers and 11 horizontal
injectors (see figure 8) discretized into a 81×58×20 cor-
ner-point grid (i, j, k-directions, respectively) with [dx, dy,
dz]=[100,100,8] m grid-cell size. We refer readers to
Avansi and Schiozer (2015b) and Schiozer et al (2017) for
further details on the uncertainty attributes considered when
generating the ensemble.

4.2. Seismic forward modelling

Our 4D seismic workflow begins by applying a standard
simulator-to-seismic workflow (Lumley 1995b, Lumley and
Behrens 1998, Stephen and MacBeth 2006, Emerick and
Rodrigues 2007, Hurren et al 2012) to model synthetic seis-
mic amplitudes from each fluid-flow model in the ensemble.
The workflow begins by extracting static (e.g. porosity, NTG)
and dynamic (e.g. pressure, water saturation) properties and
then applying Gassmann fluid substitution to estimate the P-
and S-wave impedance volumes (Lumley 1995b, Mavko
et al 2011). We use NTG estimates to infer the shale
percentage within each grid cell (VShale). We note that
increasing Vshale values decreases 4D signal sensitivity to
pressure and water saturation changes and therefore should be
accounted for when estimating acoustic impedances asso-
ciated with the static and dynamic response of fluid-flow

Figure 7. Diagram presents UNISIM-I-R derivative models.
UNISIM-I-R provides structural and four vertical wells’ information
to generate 500 independent geostatistical realisations resulting in
the ensemble of geological models. The 100 UNISIM-I-H initial
models are specified after applying an upscaling and sampling
procedure (Schiozer et al 2017).
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models. We invoke the Hertz–Mindlin model to derive
pressure sensitivity of dry bulk and shear moduli (Avseth
et al 2011). While there are pressure sensitivity models that
better predict rock pressure sensitivity (Saul and Lumley
2013, Saul et al 2013), it is beyond our scope to evaluate
the application of these models on simulator-to-seismic
workflows. Finally, we use Batzle and Wang (1992) rela-
tionships to model the fluid response to pressure and
temperature.

We convert the fluid-flow model from depth to two-way
travel time assuming an average background P-wave velocity
(Vp=2.5 km s−1) within all the simulation cells for both the
baseline and monitor surveys. Because the procedure for
time-to-depth conversion (i.e. constant, 1D or 3D velocity
model) is likely very similar for both surveys, the effects of
this choice have only a second-order effect in 4D seismic
applications, since we are looking at relative—not absolute—
model differences. We calculate RCs from computed P-wave
acoustic impedances using a normal-incidence approximation
(Telford et al 1990), and subsequently convolve these with a
50Hz Ricker wavelet to generate synthetic 3D seismic
amplitude volumes. We apply an identical modelling proce-
dure to generate the monitor survey data. The choice of a
50 Hz wavelet frequency assumes that we are operating in a
typical offshore reservoir in Brazil where modern marine
seismic data quality is excellent and a 10–80 Hz spectrum is
common (Ullmann De Brito et al 2010).

Having modelled the two seismic survey vintages, we
can calculate any 4D amplitude attribute, representing the
monitor-baseline difference. We elect to work in the ampl-
itude domain as the errors associated with seismic inversion

can lead to significant uncertainty in P- and S-wave impe-
dance estimates (Lumley 2006, Landa and Kumar 2011,
Souza et al 2017). We first extract independent maps of
baseline and monitor by taking the rms of 4D seismic
amplitudes over a specific time window around the horizon of
interest. Finally, we derive a ΔA map by subtracting the
baseline from a monitor 4D seismic amplitude rms map and
calculating the ILDM attribute and the OFS value used in the
model classification procedure.

5. Results

We present the results obtained by applying the described
methodology for model classification and selection to the
benchmark UNISIM-I-R and UNISIM-I-H models. We start
by partitioning the reference 4D seismic amplitude map into
different logical regions for interpretation. We then examine
reservoir properties of the models to understand why certain
models are classified as different model types (i.e. Types 1–4
discussed above).

5.1. Reservoir target and 4D seismic modelling

Figures 9(a) and (b) present the reference 4D seismic ampl-
itude (ΔA) and water saturation change (ΔSW) maps,
respectively. The overall high visual correlation between
these two maps suggests that 4D seismic amplitudes can be
used as a ΔSW proxy in this scenario (although pressure
changes should also be considered in more general applica-
tions). Most of the reference 4D seismic amplitude change in

Figure 8. UNISIM-I-H: well pattern in the reservoir-top showing the positions of four vertical producers, ten horizontal producers and 11
injectors. Grid cells are colour coded by porosity.
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figure 9(a) is visually correlated with the location of injector
wells; however, closer examination suggests that some
injectors are unlikely to be in communication (e.g. INJ019

and INJ022). Thus, with the aim of establishing linkages
between water injection and local production in the fluid-
movement trends, we partition this map into more locally

Figure 9. (a) 4D amplitude map superimposed with well injector locations; and (b) map of ΔSW extracted from the reference model
(UNISIM-I-R) at the same time interval used to generate the 4D amplitude map. Red arrows show the location of water injector wells that are
unlikely to be interacting. Note that the 4D amplitudes are well correlated with the reference ΔSW. Note that some map areas are not well
correlated due to thin zones of water that the seismic data do not have the adequate resolution to image correctly.
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autonomous regions based on the reference 4D amplitude
map using Voronoi algorithm (Arthur and Vassilvitskii 2007)
injector locations as centroids. The consistency between
injector location and reference 4D signal within each region
should improve our capability to investigate local causal
relations and therefore establish conceptual correlations
between reservoir properties and production behaviour.

Figure 10 shows the partitioned region of interest on
which we focus during this investigation. This region con-
tains three producer (PROD023, PROD024 and PROD025)
and two injector (INJ007 and INJ010) wells, and is isolated
from the rest of the reservoir by the known sealing fault,
FB. INJ007 and INJ010 are completed in Layers 9 and 10
and commence water injection after approximately 2000
and 2200 days of production, respectively. The injection
strategy focuses on sustaining reservoir pressure and
thereby supporting the oil production rate. PROD023A is
completed in Layer 8 and starts producing water after 3167
days of production (figure 11(b)). Note that the models in
the ensemble predict a much earlier water breakthrough
arrival time in comparison with production history, indi-
cating that these models require further property updates in
the vicinity of the well in order to delay the arrival of water.
PROD024A is completed at Layer 2 and starts producing
water after approximately 2600 days of production. Con-
versely to observations at PROD023A, the majority of the
models in the ensemble predict water arrivals much later
than expected, again highlighting the need for reservoir
model updating. Finally, PROD025 completed at Layer 3
starts producing water after approximately 2500 days of
production. The variation on these predictions highlights
that this ensemble of models represent only an initial

attempt to model the correct reference model UNISIM-I-R
response. Thus, our goal is to identify those models out
of the full ensemble that are the most consistent with both
seismic and production data that could form the basis
of a subsequent round of fluid-flow reservoir model
updating.

5.2. Methodology Application

To identify the source of the water produced by the wells in
the region, we extract an rms map around Horizon 5 (top of
Layer 5) of the reservoir (figure 10). The 4D signal in this
region suggests that the water injected by INJ010 is likely to
be moving towards PROD025. We note that the rms seismic
amplitude map has a theoretical vertical resolution of
approximately 12.5m due to the 50Hz Ricker wavelet and
the 2.5 km s−1 velocity in the seismic forward modelling
procedure. This explains why this map does not contain
information related to the PROD023A completed in Layer 8,
approximately 30m below the map extraction window. The
4D seismic signal in the vicinity of PROD024 also suggests
that the INJ010 is the source of the water produced at that
well (figure 11(b)).

5.3. Model classification

To classify the models according to the methodology
described above, we first calculate OFS and OFP and then
apply the TS and TP thresholds. We use a value of TS=0.44
that is half of the OFS range, while OFP values within
TP=±300% are deemed acceptable according to previous
evaluations (Avansi et al 2016). To illustrate this, we show
OFP values per producer well in figure 12, where each

Figure 10. Boundaries of the region of interest from figure 9(a) highlighted in light blue on the 4D seismic amplitude map superimposed with
three producers (PROD023, PROD024 and PROD025) and two injectors (INJ007 and INJ010).
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symbol represents a single model in the ensemble and the
blue region indicates the models deemed acceptable based on
our TP criterion. While a 300% threshold may seem some-
what high, we stress that the ensemble of models require
further updating, as they do not yet present high-quality
matches (figures 11(a)–(c)). In fact, using a lower TP would
likely discard models broadly consistent with both seismic
and production data.

By examining the 4D seismic amplitudes in figure 10, we
identify two major 4D anomalies associated with INJ010 and
INJ007. To quantitatively assess and classify the models, we
estimate OFS using the ILDM within the region of interest for
the entire ensemble. Figure 13 shows a cross-plot of the OFS

and OFP for Region 6 (see figure 9(a)) colour coded by type,
where again each marker represents one model of the
ensemble. This plot shows the classified model Types 1–4, as
well as the four models (m1, m2, m3 and m4, respectively)
used as examples of Types 1–4 in the ensuing discussion
(indicated by the red cross). When enforcing both seismic and
production selection criteria, we classify nine Type1, 49
Type2, 11 Type3 and 25 Type4 models.

Figure 14(a)–(d) present the ILDMs of the four selected
representative models. We observe that the quality of the
match varies within the region. Note that the ILDMs have
zero values at locations where the input attributes are well
matched; thus, the area nearby INJ007 exhibits a better
match than around INJ010. We also observe that the ILDMs
for m3 and m4 show a poorer match than m1 and m2 between
the reference and modelled amplitude maps, which is cap-
tured in figure 14 by the increase in OFS from 0.28 (m1) to
0.64 (m4).

Figure 15(a) superimposes the simulated and production
history of the water rate for Type1 models. These models
indeed provide a better match to the production history when
compared to Type 2 and 4 models (Type 3 models also
provide acceptable production match). Figure 15(b) shows the
water-rate production curves for all models presented in
figure 13 and highlights PROD025 OFP values provided by
the m1, m2, m3 and m4 models. Similar to the OFS values, the
computed OFP values increase once the quality of the match
between the production history and the simulated water rate
deteriorates.

Figure 11. (a) Water injection rate of the wells INJ007 and INJ010 and water-rate production history (in red) superimposed with the flow-
simulation response of the models in the ensemble for the producer wells: (b) PROD023; (c) PROD024A and (d) PROD025.
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5.4. Interpretation of model classification results

The model types indicate how well each model matches (or
not) seismic and production data. We consider these insights
as interpretation hypotheses that should be evaluated
according to their consistency between seismic and produc-
tion data. For example, figures 16(a)–(e) present the fluid-

flow ΔSW distribution at the layer where PROD025 is com-
pleted for the reference model (UNISIM-I-R), m1−m4,
respectively. Both m1 and m2 present a reasonable visual
agreement with the observed ΔSW in the vicinity of the
INJ007 (red arrow); however, there is a greater discrepancy
between the modelled and reference ΔSW in the INJ010 area

Figure 12. NQDS values for each producer well for the ensemble of models where each circle represents a different model. A model is
selected as having an ‘acceptable’production data fit if the OFP value of any given model falls within the±300% acceptance range
highlighted in light blue.

Figure 13. PROD025 production objective function (OFP) versus seismic objective function (OFS). Model Types 1–4 are colour coded in
black, blue, cyan and purple, respectively. Note that m1, m2, m3 and m4 are highlighted in red.
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(yellow arrow). Also note that more water has reached this
area in m1, explaining why the PROD025 starts producing
water before m2 (figure 15(b)). Both the INJ007 and INJ010
areas in models m3 and m4 (figures 16(d) and (e)) poorly
correlate with the referenceΔSW in figure 16(a). Figures 17(a)
–(e) show ΔSW distributions for the true and m1−m4 mod-
els, respectively. We present cross-sections to better highlight
the INJ010 completion. Water moves vertically and sweeps
the area in m1−m4; however, we do not observe this trend in
the true ΔSW distribution (red arrow in figure 17(a)). This
explains why there is a delay in the water arrival-time pre-
dictions made by these models (figures 15(a) and (b),
respectively). The m1 and m2 ΔSW distribution trends indicate
the existence of high vertical permeability zones within the
area. Also, the ΔSW increase at the bottom layers of m1−m4

is not confirmed by the true changes in water saturation.
Figures 18(a)–(e) compare the ΔSW distributions for the

true and m1−m4 models in the vicinity of the horizontal
PROD025 completion, respectively. The water injected by

INJ010 reaches PROD025 in m1 faster than in m2 (see red arrow
in figures 18(b) and (c)). We also note that the ΔSW gradient
between INJ007 and PROD025 is higher in m1 than in m2,
which explains why m2 predicts water arrival 300 days later than
expected (figure 15(b)). The layers in between the INJ007 and
PROD025A completions are completely swept on model m3 (in
figure 18(d)). This pattern is also observed in the reference
model (figure 18(a)), which explains why model PROD025A in
m3 fairly well predicts the history of the water production rate
after 2900 days. ΔSW below INJ007 layers in model m4 is
similar to the distribution on m1 and m4, even though m4 poorly
predicts the water-rate production on PROD025 (figure 15(b)).

Figures 19(a)–(e) present cross-section comparison of the
ΔSW distributions between the true, m1−m4 models for the
horizontal INJ007 completion, respectively. Note the increase
in ΔSW in both models; however, the water sweeps the entire
reservoir range in m2 suggesting the presence of a high ver-
tical permeability trend in the area (red arrow). We observe a
similar, but less pronounced pattern in m1, which offers a

Figure 14. ILDM maps of the (a) m1, (b) m2, (c) m3 and (d) m4 and their correspondent OFS values labelled in the upper right corner. Smaller
OFS values indicate a better match between the reference and synthetic 4D seismic amplitude maps. Injector and producer well locations are
indicated in cyan and green, respectively. Note that the seismic acceptance threshold is 0.44.
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better match with the true ΔSW than m2. This further explains
why m2 has less accurate water-rate predictions as water
moves to the bottom layers instead of towards the top layers
(i.e. where PROD025 is completed). We observe that there is
an agreement between ΔSW at the bottom layers of the model
m3 and m4 reference in figure 19(a).

Overall, such analysis allows us to infer the presence (or
absence) of permeability flow paths and barriers that could
generate the observedΔSW trends. Thus, a closer examination
of the permeability distributions of these models should
provide additional details about the reservoir mechanisms in
place.

Figure 15. Observed (red) and simulated PROD025 water-rate curves from (a) Type 1 (in green) and Type 2–4 models (in grey); and (b)
m1–m4.
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Figure 16.Water saturation distribution from the (a) true reference model (UNISIM-I-R); (b) m1; (c) m2; (d) m3; and (e) m4 fluid-flow models.
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Figure 17. Comparison of the water saturation distribution of the (a) reference; (b) m1; (c) m2; (d) m3; and (e) m4 fluid-flow models
highlighting the INJ010 completion.
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Figure 18. Comparison of the water saturation distribution of the (a) reference; (b) m1; (c) m2; (d) m3; and (e) m4 fluid-flow models
highlighting the PROD025 completion.
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Figure 19. Comparison of the water saturation distribution of the (a) reference; (b) m1; (c) m2; (d) m3; and (e) m4 fluid-flow models
highlighting the INJ007 completion.
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Figure 20. Rms map of the permeability distributions of the: (a) reference (UNISIM-I-R); (b) m1; (c) m2; (d) m3; and (e) m4 models. Maps are
extracted at the same time/depth interval used for the rms map of the amplitude changes.
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5.5. Permeability distribution interpretation

Figures 20(a)–(e) show the rms map (i.e. averaged to the
seismic resolution) of the permeability distribution extracted
from the UNISIM-I-R and m1−m4 models, respectively. A
qualitative comparison between these maps shows locations
that correlate in magnitude and/or pattern with the true
reference permeability distribution presented in figure 20(a).
Note that models m1−m4 offer reasonable visual matches at
the north of the area of interest, while any correlation seems
unlikely towards the south. All models contain a major per-
meability anomaly located at the south (figures 20(b)–(e))
added in earlier attempts to improve the match between
simulated and observed production rates (figure 20(a))
(Mesquita et al 2015). As a result, the water injected by
INJ010 moves southward along the high-permeability
anomaly, decreasing the synthetic 4D seismic amplitudes in
the area. The ILDM of all model types shows extended areas
in blue in the region where the synthetic 4D rms map indi-
cates an absence of 4D signal (figure 14). Furthermore, this
high-permeability structure may be the cause of the delay in
the predicted time of water arrival (figure 15) as the water

saturation front moves from INJ010 to the south instead of
northeast towards PROD025.

In a quantitative interpretation of these permeability
distributions, we should account for the fact that 4D seismic
attributes only highlight the fluid-flow trends between two
fixed moments in time. For instance, figure 10 highlights the
presence of the known sealing fault FB. By inspecting this
map, we infer the faultʼs presence by observing a lack of 4D
signal to the west of INJ010. However, this inference is only
made possible because the water saturation front has reached
the fault; otherwise, we would simply have insufficient
information to do so.

To overcome this issue, we propose a quantitative
interpretation of permeability maps based on the binary maps
used to estimate the ILDM (figures 21(a)–(d)). We develop
4D permeability masks by subtracting the clusters of the
reference and synthetic 4D seismic amplitude maps.
Figures 21(a)–(d) show models m1−m4, respectively. These
are used as boundary masks for cross-plotting true versus
modelled permeability distributions from model Types 1–4
(figures 20(a)–(d), respectively).

Figure 21. Superimposition of the binary images resulting from the reference (in red) amplitude changes with those resulting from synthetic
seismic amplitude maps from (a) m1 (in grey); (b) m2 (in blue); (c) m3 (in pink); and (d) m4 (in cyan).
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In our region of interest, we use the mask 
(figure 21(a)). In figures 22(a)–(d) we cross-plot model Types
1–4 versus the true permeability within region. This area,
located to the north of our region of interest, presents a better
visual match between the observed and modelled perme-
ability distributions (figure 20) than the region in the vicinity
of the INJ010 nearby the permeability anomaly. The m1 and
m2 root-mean-square error (RMSE) are 267.96 and
164.29mD, while the m3 and m4 are 167.89 and 215.39mD
(figure 22). Note that m1 presents the highest error in relation
to the other model types. The differences between the true and
m1 permeabilities within  illustrate these higher errors.
Rather than being the best, a Type 1 model indicates the
optimal compromise between the quality of seismic and
production data predictions as a function of TS and TP.
Illustrating this further, in figure 13 we observe that m2 has a
lower OFS than m1, which justifies the smaller error of the m2

permeabilities; however, m1 outperforms m2 water-rate pre-
dictions at PROD025 (figure 15(b)), highlighting the impact

of the permeability distributions in deeper layers, where the
extracted 4D seismic amplitude maps could not provide any
information. Note that  is located in the vicinity of the
permeability anomaly in the fluid-flow models (figure 20) and
therefore offers a less accurate match between the reference
and modelled 4D seismic amplitudes.

6. Discussion

Our results indicate that the methodology developed above
successfully categorises fluid-flow models in the ensemble
according to their consistency with both 4D seismic and
production data. By doing so, there are several resulting
interpretation scenarios of potential fluid-flow paths and
barriers. Our methodology improves the exchange of infor-
mation between 4D amplitude maps, production data and
static and dynamic reservoir properties. In this section, we
discuss three issues that we view as important in the context

Figure 22. Cross-plots between the reference and modelled permeability distributions within 2 and their respective RMSE values
(figure 21(a)) for (a) m1; (b) m2; (c) m3; and (d) m4.
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of applying this procedure on field data: (1) vertical resolu-
tion; (2) the advantages of model/map partitioning; and
(3) permeability distribution analysis.

6.1. Vertical resolution considerations

Seismic vertical resolution should be taken into account when
incorporating information extracted from 4D seismic maps
into fluid-flow models. In our case, using a 50HzRicker
wavelet results in a theoretical vertical resolution of
approximately 12.5m. Because the UNISIM-I-H model
builds in a grid with cells of dimensions 100×100×8 m3,
this means that our 4D amplitude maps will be unable to
discriminate vertically varying information within less
than±12.5m around the surface chosen to extract the map.
In contrast, UNISIM-I-H has lateral and vertical permeability
distributions for each of the 21 layers of 8m thickness within
the 161m thick reservoir. Because 4D amplitude maps are
extracted along Layer 5 using a±20ms time window, this
implies that the observed hardening in the 4D amplitudes
results from water saturation movements through the vertical
and lateral permeability structures within the length-scale of
vertical seismic resolution. In our case, INJ007 and INJ010
are both completed much deeper (Layers 9 and 10, respec-
tively) than PROD025 (Layer 3). This means that the water
moves up the dip once the injection starts and affects the
water-rate production. Ultimately, this suggests that there are
high vertical permeability structures allowing this fluid-
movement trend. This illustrates how important vertical
resolution is to the quantitative application of 4D seismic
attribute maps into fluid-flow models. Reservoir thickness,
injector and producer completion depths, seismic bandwidth
and map extraction methodology all need to be equally taken
into consideration for an effective integrated interpretation.

6.2. Map partitioning

The partitioning of 4D amplitude maps allows for more
localised quantitative interpretation that leads to better cor-
relations between 4D amplitude changes and well production
data within the region. Ideally, map partitioning should be
based on apparent causal relations between both 4D seismic
amplitude signal and production patterns. There is also a
compromise between the partitioned area and the OFS acc-
uracy. In smaller regions, the OFS values better represent how
well the modelled and observed maps match. For instance, an
independent OFS calculation in the vicinities of the INJ010
and INJ007 in model m2 results is 0.44 and 0.13, respectively.
This further illustrates that the ILDM effectively quantifies
the match between observed and synthetic 4D amplitude
changes. In our case, we choose the entire Region 6 because
the water injected at the INJ007 affects the PROD025 water-
rate production.

Because our model classification methodology is based
on OFS and OFP values, we are able to analyse the goodness
of fit not only between the simulated and observed water-rate
curves, but between the property distributions nearby the
producer locations. Thus, the localised permeability

distributions of the selected models can be used as starting
models for iterative optimisation procedures for further
reservoir property updates (e.g. HM).

6.3. 4D seismic and production data analysis for permeability
distribution estimate

By categorising the fluid-flow models in the ensemble
regarding their consistency between seismic and production
data, our methodology offers a systematic approach to an
often overwhelming task. Systematically and automatically
analysing the different models by considering their (in)con-
sistency with seismic and production data allows us to better
understand water saturation movement trends within the
reservoir and the permeability distribution.

When analysing rms maps of 4D seismic attributes, it is
important to remember that 4D seismic amplitude maps offer
a vertically limited ‘snapshot’of the reservoir fluid distribu-
tion at the time of the monitor survey. This means that the
estimated ΔSw distribution at the top layers of the reservoir
results from the up-dip water movement trend highlighted by
the fluid-flow models. The m1 and m2 cross-sections showing
ΔSw emphasise the importance of combining the 4D seismic
and production data (figures 17–20) as these models offer
potential reservoir scenarios to explain ΔSw trends that are
unclear by interpreting the 4D seismic amplitude maps alone.
Limitations concerning the seismic vertical resolution and
localised well information require this integrated interpreta-
tion for completeness. For instance, the increased ΔSW at
the bottom layers underneath INJ010 explains why m2

(figure 17(c)) shows a delay in the water arrival time, as the
water goes down the dip instead of up the dip towards the
PROD025. Similarly, the poor ILDM match in the vicinity of
INJ010 indicates that the 4D seismic amplitude information
does not comply with the permeability anomaly found in that
area (figures 20(b)–(e)). In this scenario, we could confirm
that there is no anomaly because we have the true perme-
ability distribution; however, this is not the case in practice
and it becomes invaluable to know where to add permeability
trends within the fluid-flow model.

Our approach offers quantitative insights into the per-
meability distributions and, by applying 4D seismic techni-
ques, avoids the uncertainties associated with estimating
permeability based on the inversion of seismic attributes.
Furthermore, by classifying and selecting models in the
ensemble, we estimate permeability distributions that are
consistent with both 4D seismic amplitude and production
data that can be directly used as inputs in future simulation
runs to streamline model calibration processes.

7. Conclusions

We present a new methodology combining 4D amplitude and
production data to select a preferred subset of models out of
an ensemble of equiprobable fluid-flow model realisations.
We develop ILDMs that allow us to quantify differences
between observed and modelled 4D seismic amplitude maps
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in an independent seismic objective function. When com-
bined with a standard production objective function, this leads
to an automated and systematic methodology to classify fluid-
flow model response and to provide insights into delays and
advances in the predicted water arrival times at production
wells. Classifying fluid-flow models by types with respect to
their consistency with seismic and production data is viewed
as a good integration approach that leads to estimates of fault
locations and hydraulic and reservoir property distributions
such as permeability and porosity. The cross-plot analysis
shows that identified models can contain physically coherent
permeability estimates and therefore validates our methodol-
ogy for real data applications. By introducing a quantitative
interpretation integrating 4D seismic attributes and fluid-flow
models, this methodology offers a rapid and systematic
approach for the time-consuming task of interpreting a large
number of fluid-flow models.
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