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Abstract. A key decision in field management is whether or not to acquire information to either improve project
economics or reduce uncertainties. A widely spread technique to quantify the gain of information acquisition is
Value of Information (VoI). However, estimating the possible outcomes of future information without the data is
a complex task. While traditional VoI estimates are based on a single average value, the Chance of Success (CoS)
methodology works as a diagnostic tool, estimating a range of possible outcomes that vary because of reservoir
uncertainties. The objective of this work is to estimate the CoS of a 4D seismic before having the data, applied to
a complex real case (Norne field). The objective is to assist the decision of whether, or not, to acquire further
data. The methodology comprises the following steps: uncertainty quantification, selection of Representative
Models (RMs), estimation of the acquisition period, production strategy optimization and, finally, quantification
of the CoS. The estimates use numerical reservoir simulation, economic analysis, and uncertainty evaluation. We
performed analyses considering perfect and imperfect information. We aim to verify the increment in economic
return when the 4D data identifies the closest-to-reality reservoir model. While the traditional expected VoI cal-
culation provides only an average value, this methodology has the advantage of considering the increase in the
economic return due to reservoir uncertainties, characterized by different RMs. Our results showed that de-
creased reliability of information affected the decision of which production strategy to select. In our case, infor-
mation reliability less than 70% is insufficient to change the perception of the uncertain reservoir and
consequently decisions. Furthermore, when the reliability reached around 50%, the information lost value, as
the economic return became similar to that of the case without information acquisition.

Nomenclature

4DS 4D Seismic data
CoS Chance of Success
d Distance
EMV Expected Monetary Value
EVII Expected Value of Imperfect Information
EVoI Expected Value of Information
EVPI Expected Value of Perfect Information
Max Maximum value of determined indicator
Min Minimum value of determined indicator
Ng Number of grid cells
Np Cumulative oil produced
NPV Net Present Value
NPVwi Net Present Value with information
NPVwoi Net Present Value without information

NSCNr Number of scenarios having the lowest
distance value (d) with respect to the RMr

P50 Percentile 50
Pc Current probability
Pp Predicted probability
Pr Reliability probability
PRMr Probability of the representative model r
Pu Updated probabilities
RF Oil Recovery Factor
RM Representative Model
Swi

base Water saturation of the base model for each
grid block i

Swi
scenario Water saturation of each scenario for each grid

block i
TSCN Total number of scenarios
VoI Value of Information
VOPI Value Of Perfect Information* Corresponding author: botechia@cepetro.unicamp.br
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Wp Cumulative water produced
DNPV Difference between NPVwi and NPVwoi
e Water saturation error
enorm Normalized water saturation error

1 Introduction

An efficient way to evaluate strategies is fundamental to
maximize economic performance of field operation and
infrastructure decisions. However, this can be very complex
since many decisions are made in scenarios involving high
investments and multiple uncertainties. The decision to
acquire information can aid the selection of a better strat-
egy, but the costs and benefits must be justified.

A widely used tool to assist decision makers in how to
reduce uncertainty before selecting a course of action is
Value of Information (VoI) (Schlaifer, 1959; Grayson,
1960; Howard, 1966). A classical definition of VoI is the dif-
ference between the expected value with information and
the expected value without information (Coopersmith and
Cunningham, 2002). However, Bratvold et al. (2009) state
that this is a misconception of VoI, while the concept is true
in many cases, for example, under risk neutrality, it is not in
general.

The value of gathering new information depends on
several factors: degree of uncertainty (the greater the uncer-
tainties, the greater the VoI), representativeness of the
information, decision flexibility, the magnitude of future
monetary impact on changing decisions, and the reliabil-
ity of the information (Gerhardt and Haldorsen, 1989;
Coopersmith and Cunningham, 2002).

Eidsvik et al. (2015) presented applications of VoI in
earth sciences, integrating this topic with spatial modeling.
Abellan and Noetinger (2010) proposed an approach that
allows quantifying the information contained in measure-
ments in a geoscience context. Recently, the VoI concept
is being used in history matching contexts, involving data
gathered at different times (Barros et al., 2015, 2016; He
et al., 2016; Chen et al., 2017; Hong et al., 2018). Hong
et al. (2018) discussed the variability of VoI over ensembles,
including Bayesian inference with ensemble Kalman filter
(EnKF) (Evensen, 1994).

An important source of information that can add value
to an oil field project is 4D seismic data because it provides
a better understanding of the variations of dynamic proper-
ties in the reservoir (Davolio and Schiozer, 2018). This type
of information has been widely used in model-based
approaches, such as reservoir management, production opti-
mization, and history matching techniques (Le Ravalec
et al., 2012a, 2012b; Roggero et al., 2012; Tillier et al., 2012).

The presence of uncertainties and the complex inter-
relationships involved in large development decisions
require probabilistic approaches to calculate VoI (Begg
et al., 2002). Decision trees and Bayesian analyses
(statistical method to revise probability estimates given
new information–Waggoner, 2002) arewidelyused in the lit-
erature to assess VoI (Raiffa, 1968; Waggoner, 2002; Galli
et al., 2004; Ballin et al., 2005; Bailey et al., 2011; Santos
et al., 2017).

If the information provides perfect knowledge of the
state of the world, then it is called perfect information, and
VoI is referred to as Value Of Perfect Information (VOPI)
or Expected Value of Perfect Information (EVPI) (Bratvold
et al., 2009). However, in practice, information is rarely
perfect because of uncertainty.This is imperfect information.
In fact, perfect information works as an upper limit for
imperfect information (Coopersmith and Cunningham,
2002), and the VoI, in this case, can be also referred to as
Expected Value of Imperfect Information (EVII).

Usually, VoI determines the Expected Monetary Value
(EMV) of acquiring and analyzing data to reduce uncer-
tainty (Begg et al., 2002). Estimating VoI before data
acquisition is complex because of the many possible out-
comes and must consider the uncertainties of the reservoir
models (Dunn, 1992). In this context, Ferreira and Schiozer
(2014) use the term Expected Value of Information (EVoI)
when the valuation is made before the data acquisition, and
this is the term we use in the text from now on.

Ferreira et al. (2015) claimed that being a weighted aver-
age, the EVoI does not reflect the variation in the increase of
the expected revenue due to information acquisition.
In order to complement the traditional approach, the
authors proposed the Chance of Success (CoS) methodol-
ogy, a diagnostic tool that gives ranges of possible outcomes
for the increase in the difference of the Net Present Value
(NPV) with (NPVwi) and without information (NPVwoi)
considering different scenarios. This allows the estimation
of the probability of increased expected revenue to surpass
the costs of information acquisition, considering perfect
information and a simple synthetic reservoir model.

The idea of this approach is to decide whether the infor-
mation should be acquired. If the information is acquired, it
will inform which the most-likely RM is; hence, we can
decide which production strategy should be selected.

2 Objectives and assumptions

This work estimates the CoS of a 4D seismic project before
acquiring 4D seismic data (based on the works of Ferreira
and Schiozer, 2014 and Ferreira et al., 2015), applied to
the Norne benchmark model, considering perfect and
imperfect information. The objective is to identify which
Representative Model (RM) is closest to the real model
and assess the increment on the economic return.

3 Methodology

The proposed CoS methodology is based on the works of
Ferreira and Schiozer (2014) and Ferreira et al. (2015),
comprising the six steps shown in Figure 1.

3.1 Uncertainty and risk analyses

The first step defines the uncertain parameters of the reser-
voir model. Statistical procedures combine all uncertainties
to generate many scenarios (simulation models). A base
case is chosen from these models (usually that closest to
the percentile P50).
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We optimize a production strategy for the base case
(base production strategy). This strategy is applied to all
the other models, the NPV for each model is calculated,
and a risk curve (descendent or complementary cumulative
distribution function) is plotted.

3.2 Selection of representative models

Optimizing the hundreds ofmodels generated in the first step
is computationally impractical, so in this step, RMs are
selected to reduce the number of models to be optimized
(Schiozer et al., 2004; Costa et al., 2008; Marques et al.,
2013; Sarma et al., 2013; Shirangi and Durlofsky, 2015; Meira
et al., 2016). The RMs represent the variability of the uncer-
tainties (input and output) in a few models. These are then
optimized to have different project options, each represent-
ing the best decision for different scenarios. We base the
selection of representative models on the procedure by Meira
et al. (2017), which evaluates the variability of the models on
the following parameters: NPV, oil Recovery Factor (RF),
cumulative oil (Np), and cumulative water (Wp).

Each RM may have a specific probability of occurrence,
which we determine according to Ferreira et al. (2015) –
equation (1):

P RMr ¼
N SCNr

T SCN

� �
� 100 ð1Þ

where PRMr is the probability of the representative model
r, NSCNr is the number of scenarios with the lowest dis-
tance value (d) with respect to the representative model
RMr and TSCN is the total number of scenarios.

The measure referred to as ‘‘distance’’ (d) is a compar-
ison between the normalized production and economic
results of each representative model and is calculated using
equation (2):

d jr ¼
Npj � NpRMr

� �2
MaxðNpjÞ �MinðNpjÞ
� �2

þ
Wpj �WpRMr

� �2
MaxðWpjÞ �MinðWpjÞ
� �2

þ
RFj � RFRMr

� �2
MaxðRFjÞ �MinðRFjÞ
� �2

þ
NPVj � NPVRMr

� �2
MaxðNPVjÞ �MinðNPVjÞ
� �2 ð2Þ

where d is the distance of the normalized production and
economic results from the scenario j to the representative
model (RMr) under analysis. Max and Min refer to the
maximum and minimum values, respectively, obtained
for each indicator among all scenarios.

3.3 Estimation of the acquisition period

The time for 4D seismic acquisition is best when: (1) only
4D seismic data can identify that the base model is non-
representative of the true earth model, and (2) there is time
to make or change decisions (Ferreira et al., 2011).

Thus, the value of 4D seismic data is affected by the per-
iod of acquisition. We evaluate the information from the 4D
seismic data using water saturation maps to consider two
points: (1) ensure that the base reservoir model does not
represent the true earth model, and (2) anticipate the water
breakthrough for producers.

To find the best time to acquire information, we use the
methods by Ferreira et al. (2011) and Ferreira and Schiozer
(2013), which calculate an error function that represents
the mismatch between the simulation scenario and the
water saturation maps for the base model (Eq. (3)). The
normalized error function is given by equation (4).

e ¼
XNg

i¼1

ðSwscenario
i � Swbase

i Þ ð3Þ

enorm ¼
e

highestðeÞ ð4Þ

where e is the error, Ng is the number of grid cells,
Swi

scenario is the water saturation of a specific scenario
for each grid block i and Swi

base is the water saturation
of the base model for each grid block.

3.4 Production strategy optimization

In this step, the production strategy for eachRM is optimized
for the time of data acquisition and processing. This enables
the quantification of the economic impact of the 4D seismic
data acquisition since these data identify the true representa-
tive model, and so the respective strategy should be imple-
mented. The optimization aims to maximize the NPV.

This work uses a field model with a pre-developed strat-
egy and 4 years of production history (i.e. the field is in the
management phase), we consider the following variables in
the optimization process: production and injection rates,
optimal time to shut-in producers and injectors, implemen-
tation of sidetracks in existing wells and allocation of new
wells.

Start
1. Uncertainty 

and Risk 
Analysis

2. Representative 
Models Selection

3. Acquisition 
Period Estimation

4. Production 
Strategy 

Optimization

5. Chance of 
Success 
analysis 

6. Decision Maker 
Evaluation

End

Fig. 1. Methodology to estimate the chance of success of 4D seismic acquisition (adapted from Ferreira and Schiozer, 2014).
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3.5 Chance of Success (CoS) analysis

We estimate the EVoI using the results obtained in the pre-
vious step. The probability of the EVoI must be high
enough to cover the cost of data acquisition.

The first analysis considers perfect information. We
compare the traditional EVoI calculation with the CoS
analysis. The EVoI gives an average value for the informa-
tion value and is calculated as the difference between the
EMV of the project with information and the EMV without
information (Eq. (5)). The EMV is the sum of the NPV of
each scenario, weighted by its respective probability of
occurrence.

EVoI ¼ EMVwith information � EMVwithout information ð5Þ

For the CoS analysis, we consider the cumulative prob-
ability curve of the DNPV for each RM. The DNPV is the
difference between the NPV with information (NPVwi) and
the NPV without information (NPVwoi) (Eq. (6)) for each
RM. NPVwoi refers to the economic return of the produc-
tion strategy of each RM chosen if 4D seismic is not
acquired, while NPVwi refers to the economic return of
the production strategies optimized for each RM.

�NPV ¼ NPVwi � NPVwoi ð6Þ

Tables 1 and 2 exemplify the DNPV calculation, as well
as the difference between EVoI and DNPV. The number of
the strategy in Table 1 refers to the number of the RM it
was optimized for. For instance, S1 is the strategy opti-
mized for RM1. This strategy is simulated for all RMs, so
that the EMV of each strategy can be calculated. To sim-
plify this example, we consider the RMs having the same
probability of occurrence prior to information acquisition.

Note that, in this example, S3 presents the highest EMV
(EMVwithout information = USD 3092 million). Thus, this
strategy would be the chosen if we do not acquire informa-
tion, and the DNPV is calculated as the difference between
the NPV of the optimized strategy (with information) and
the NPV of strategy S3 applied to each RM (without
information).

The EMV with information is the average NPV of the
optimized strategies (EMVwith information = (3022 +
3172 + 3204)/3 = USD 3133 Million). The EVoI, in this
example is (3133 � 3092) = USD 41 million.

Figure 2 shows the CoS analysis for this example. The
economic chance of success depends on the cost of the infor-
mation acquisition. Suppose that a seismic cost is USD 30
million, thus the chance of success is around 60% (chance
of the outputs be higher than this value).

Then, we verify the EVoI when its reliability decreases
(imperfect information). To deal with imperfect informa-
tion, we update the probabilities of occurrence of each
RM based on the Bayesian theorem (Clemen, 1996; Santos
et al., 2017) shown in equations (7) and (8). This updating
procedure is dependent on the level of reliability. A reliabil-
ity of 100% reflects perfect information, and as the reliabil-
ity decreases, the EVoI information decreases.

P ui ¼
P ri � P ci

P P
ð7Þ

P P ¼
Xn

i¼1

P ri � P ci½ � ð8Þ

where Pu is updated probability, Pr is reliability probabil-
ity, Pc is the current probability and PP is predicted prob-
ability, i is the index or number of the RM, and n is the
total number of RM.

That is, PP is the probability of the seismic data to pre-
dict which RM is the closest to the true reservoir model.

Table 1. Example of NPV for three RMs (RM1 to RM3,
equiprobable prior to information acquisition) simulated
for all production strategies (S1–S3) and respective EMV.
S3 is selected as the best strategy without further
information.

Strategy

S1 S2 S3

NPV (millions USD) RM1 3022 2984 2930
RM2 3059 3172 3142
RM3 2983 3030 3204

EMV (106 USD) 3021 3062 3092

Table 2. Example of NPV without information
(NPVwoi), NPV with information (NPVwi) and DNPV
for the three RMs.

RM
NPVwoi

(106 USD)
NPVwi

(106 USD)
DNPV

(106 USD)

Prob. of
occurrence

(prior to inform.
acquisition)

1 2930 3022 92 0.333
2 3142 3172 30 0.333
3 3204 3204 0 0.333

Fig. 2. Example of CoS analysis – DNPV · cumulative
probability.
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The purpose of Pu is to answer the following question: if the
seismic data indicate a specific RM to be the closest to the
true reservoir model, what is the probability of this
information to be correct (i.e. is the indicated RM truly
the closest to the real reservoir model)? Finally, PCi is the
initial probability, calculated as shown in the previous
subsections.

3.6 Decision-maker evaluation

Based on the results from previous analyses, the decision
maker can end the process (already deciding whether the
information must be acquired) or re-evaluate by re-starting
the process with the following possibilities: (1) improving
the accuracy of analyses by choosing more RMs, (2) evalu-
ating a different acquisition period, or (3) improving the
production strategy optimization process.

4 Application

This study is applied to the Norne benchmark case. The
Norne field is located in the Norwegian continental shelf
(200 km west of the mid-Norway coast), extending for
10 km, 2 km wide, and at a water depth of 380 m (Adlam,

1995). The Norne field comprises two separate oil compart-
ments, the Norne Main structure (Norne C, D, and E seg-
ments) and the Northeast Segment (Norne G-Segment)
(Fig. 3a). It also consists of five formations, from top to
base: Garn, Not, Ile, Tofte, and Tilje (Lind, 2004).

The simulation model is a corner-point grid with
46 · 112 · 22 blocks (44 431 active cells). Figure 3b shows
a 3D view of a porosity map of the simulation model. This
case has four years of production data (from 1997 until
2001), with a production strategy comprising 12 producers
and 8 injectors.

4.1 Economic parameters

Table 3 shows the economic parameters for the optimiza-
tion process. Since this is the Norne 2001 case, we consid-
ered the optimization for that time, and hence these were
the values in force in 2001.

5 Results

5.1 Risk analysis and selection of representative models

The uncertainties considered in this work were: rock com-
pressibility, oil-water contact, gas-oil contact, horizontal

(a) (b)

Fig. 3. (a) Norne segments (Lind, 2004) and (b) 3D view of porosity map for the simulation model.

Table 3. Economic parameters

Market values Discount Rate (%) 10
Oil Price (USD/bbl) 25

Royalties (%) 10
Costs Oil Production (USD/bbl) 3.2

Water Production (USD/bbl) 1.3
Water Injection (USD/bbl) 1.3

Investment Investment in drilling a new horizontal well from subsea surface
to completion zone (106 USD/m)

4

Horizontal well’s investment on drilling a completion
or sidetrack zone + completion (USD/m)

20 000

Additional Vertical Well (106 USD) 6

V.E. Botechia et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 54 (2018) 5



and vertical permeability multipliers, porosity multipliers,
relative permeability tables, and fault transmissibility.
Combining all these uncertainties, 2000 models were gener-
ated and a history matching process was performed, filter-
ing 89 models which honored production data. Figure 4
shows the cumulative oil and water production for all
scenarios.

We selected nine representative models based on risk
curves and cross-plots for the following indicators: NPV,
Np, Wp, and RF. Figure 5 shows the risk curves for NPV
and Np, while Figure 6 exemplifies cross-plots analyses. In
these graphs, each point represents a simulation model;
the purple dots represent all scenarios, while the black dots
are the selected RMs. Note that the RMs represent the vari-
ability of the uncertain outputs.

Table 4 shows the NPV, cumulative oil and water
production, and the probability of occurrence for each
RM (calculated using Eqs. (1) and (2)).

5.2 Acquisition period estimation

Figure 7 shows the curves of water saturation errors, the
sum of the difference of water saturation over every grid
cell. There are many scenarios with fluid distributions very
different from the base model (Sw error higher than 50%)
from the beginning of the analysis (year 4). Note that the
first 4 years relate to past production of the production
strategy already implemented, thus our analysis starts at
this point.

Figure 8 shows the histograms of production time for a
normalized water saturation error of 60% (Fig. 8a) and 50%
(Fig. 8b), confirming the high level of differences in water
distribution between models.

To estimate the best time to acquire 4D seismic data, we
also consider the water breakthrough. If the seismic data
are acquired before breakthrough, the water flow path
can be identified and so the well control optimized to

(a) (b)

Fig. 4. Cumulative (a) oil and (b) water production for all scenarios.

(a) (b)

Fig. 5. Risk curves for (a) NPV and (b) Np. Purple dots represent all scenarios; black dots, the RMs.
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improve project economics. Figure 9 shows the number
of wells (considering all scenarios) which reached the

breakthrough for each production time (Fig. 9a) and the
percentage of the number of wells which reached the break-
through for each production time (Fig. 9b). Note that
nearly 50% of the wells reached breakthrough in the first
year of the analysis (year 4).

Considering the water saturation error curves and the
breakthrough time, we concluded that the best acquisition
period is at the beginning of the management phase, i.e.,
4 years after the start of production.

5.3 Production strategy optimization

After estimating the best time for 4D seismic data acquisi-
tion, we then optimize the production strategy. As this case
is in the management phase (i.e., the production strategy is
already implemented), there is little flexibility for changes.
The variables we considered are: production and injection
rates, optimal shut-in time of producers and injectors,
implementation of sidetracks in existing wells, and alloca-
tion of new wells.

(a) (b)

(c) (d)

Fig. 6. Cross-plots: (a) NPV · Np, (b) NPV · Wp, (c) NPV · RF, and (d) Np · Wp. Purple dots represent all scenarios; black dots,
the RMs.

Table 4. NPV, cumulative oil and water production, and
the probability of occurrence of each RM.

RM
NPV

(106 USD)
Np

(106 m3)
Wp

(106 m3)
Prob. of occurrence

1 2868 97.7 187.9 0.10
2 3071 96.8 171.9 0.04
3 3003 99.3 198.4 0.19
4 3099 102.3 177.5 0.07
5 3423 104.8 204.2 0.23
6 3382 107.7 219.6 0.09
7 3376 106.1 177.0 0.11
8 3481 111.4 209.4 0.12
9 3561 113.9 197.2 0.04

V.E. Botechia et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 54 (2018) 7



The NPVwoi is the economic return for the selected
strategy without information acquisition (i.e. the strategy
that maximizes EMV) applied to each RM. The economic

return after each RM is optimized is NPVwi. Figure 10
shows the difference between NPVwi and NPVwoi. Table 5
shows the results for DNPV calculation. As S3 is the

(a) (b)

Fig. 7. (a) Water saturation error curves and (b) normalized water saturation error curves.

(a) (b)

Fig. 8. Histograms – number of scenarios that reached an Sw error of (a) 0.60 and (b) 0.50 in each year of production.

(a) (b)

Fig. 9. (a) Histogram of number of wells (considering all scenarios) according to time of breakthrough (years), and (b) rate of total
number of wells which reached breakthrough in each year of production.
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strategy that maximizes EMV (Tab. 6) and, hence, it would
be chosen if no information is acquired, the DNPV of this
strategy is 0.

5.4 Chance of Success (CoS) analysis

5.4.1 Perfect information analysis

First, we considered perfect information and calculated the
EVoI using the traditional decision tree, for comparison
with the chance of success methodology.

Figure 11 shows the decision tree used to calculate the
EVoI. The green squares are decision nodes, the brown
circles are chance nodes. The branch labeled ‘‘Do not
acquire 4DS’’ represents the possible outcomes from the
decision not to acquire information. We simulated the set
of production strategies (previously optimized deterministi-
cally for each RM) in all possible RMs. We named the
strategies according to the RM they were optimized for.
Thus, S1 is the strategy optimized for RM1, S2 is the strat-
egy optimized for RM2, and so on. Then, we calculated the
EMV of each strategy. If seismic data is not acquired, we
chose the production strategy S3, which maximized EMV
(Tab. 6).

The chance node labeled ‘‘Acquire 4DS’’ is in a compact
form, since we treated the information as perfect. Thus, as
we expect seismic data to provide enough information to
identify the closest-to-reality RM, the EMV of the 4DS pro-
ject is the NPVwi of each RM multiplied by its probability
of occurrence.

The EVoI – the difference between the EMV when seis-
mic data are acquired and are not acquired – reached the
value of USD 47 million.

Being based on a single value, the EVoI cannot express
the variability of the increase in the NPV caused by reser-
voir uncertainties. In the estimation of the chance of success
of the 4DS project, we consider the cumulative probability
curve of DNPV for each RM (Fig. 12). Moreover, the
chance of success also depends on the cost of information
acquisition, i.e. the increased economic return (DNPV)
must be higher than the cost to acquire information. In this
study, for a chance of success higher than 50%, the seismic
data must cost less than USD 32 Million.

Note the difference between the response of EVoI and
CoS: while the former estimated an average economic gain
of USD 47 Million, the latter estimated a 45% chance of the
4DS project yielding a higher return than that (Fig. 12).
As these analyses assume perfect information, they provide
an upper limit for value information estimate.

Ferreira et al. (2015) showed that the number of
selected RMs impacts the analysis. Higher number of
RMs leads to more accurate results, but at a certain point
the results stabilize. However, choosing many RMs would
be too much time consuming, hence it is necessary to bal-
ance the accuracy of the results and the time consumption.

In this sense, we performed a sensitivity analysis on the
number of RMs (Fig. 13). Using only 3 RMs, the results are
very different from the previously obtained. However, with
6 RMs, the results are very similar to the ones obtained
with 9 RMs.

5.4.2 Imperfect information analysis

As information is usually imperfect, some unreliability is
expected. In this case, there is a probability that incorrect
information could be provided, diminishing the economic
return.

Table 7 shows an example of Pr (reliability probability)
for an information reliability of 0.9. That is, if the true
model is RM1, there is a probability of 90% of the seismic
data predicting RM1 to be the true model. The other
10% is divided between the other RMs, weighted by their
current probability of occurrence. The same applies to the
other RMs.

Table 8 shows the values of Pp (predicting probabili-
ties), and Table 9 shows an example of Pu (updated
probabilities) values, both for an information reliability of
0.9. In this example, if the seismic data predicts RM1 to
be the true model, then there is a probability of 89.4% of
RM1 being the true model.

Figure 14 exemplifies a decision tree to calculate EVoI
considering a reliability of 0.9. The example presents only
the branch ‘‘Acquire 4DS’’ since the branch to calculate

Table 5. Net Present Value without information
(NPVwoi), Net Present Value with information (NPVwi),
DNPV and probability of occurrence (Prob.) for each
strategy.

RM
NPVwoi

(106 USD)
NPVwi

(106 USD)
DNPV

(106 USD) Prob.

1 2930 3022 92 0.10
2 3142 3172 30 0.04
3 3204 3204 0 0.19
4 3145 3176 31 0.07
5 3399 3423 24 0.23
6 3452 3483 32 0.09
7 3430 3495 65 0.11
8 3564 3670 106 0.12
9 3626 3744 118 0.04

Fig. 10. DNPV for each strategy.
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Fig. 11. Compact decision tree for the calculation of the EVoI.

Table 6. NPV of each RM (RM1 to RM9) simulated for all production strategies (S1–S9) and respective EMV. The
bold values represent the NPVwi of each strategy. The bold value in EMV line represents the maximum EMV among the
strategies.

Strategy

S1 S2 S3 S4 S5 S6 S7 S8 S9

NPV for each RM (106 USD) RM1 3022 2984 2930 2900 2868 2900 2859 2859 2968
RM2 3059 3172 3142 3072 3071 3103 3072 3003 3091
RM3 2983 3030 3204 3046 3003 3073 3077 2992 2988
RM4 3171 3085 3145 3176 3099 3121 3126 3054 3167
RM5 3225 3323 3399 3315 3423 3275 3314 3266 3347
RM6 3331 3447 3452 3348 3382 3483 3417 3257 3338
RM7 3363 3419 3430 3344 3376 3369 3495 3341 3418
RM8 3472 3516 3564 3522 3481 3509 3548 3670 3577
RM9 3599 3641 3626 3567 3561 3567 3645 3558 3744

EMV (106 USD) 3219 3270 3325 3245 3255 3252 3273 3218 3271

V.E. Botechia et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 54 (2018)10



the EMV without information is the same as that shown in
Figure 11. Also, we exemplify with one strategy for the first
RM, but the branches should be expanded to all nine strate-
gies for all RMs.

We performed a sensitivity analysis on the EMV of the
4DS project according to the reliability of the information
(Fig. 15). When information reliability nears 50%, it is
better not to acquire the information. Similarly, we calcu-
lated the EVII, according to each level of reliability, which
also showed to be closer to zero as the reliability tends to
50% (Fig. 16).

The level of reliability also affected the strategy to be
chosen when the seismic data indicates an RM to be closest
to reality. Table 10 shows the best strategy (with maximum
EMV) for each 4DS outcome according to each reliability
level. Note that, depending on the reliability of the informa-
tion, a strategy different to that optimized for the RM itself
could be chosen (strategies in bold). For instance, when the
seismic data suggests RM4 with a reliability of 70%, strat-
egy S3 is selected (for RM3, the best on average without
further information) instead of strategy S4 (optimized for
RM4). Most of these changes occur when reliability is

between 70% and 50%. Thus, highly imperfect information
(less than 70% reliable in our case study) is insufficient to
alter the perception of the uncertain reservoir and thus
inadequate to change decisions.

Table 7. Example of Pr (reliability probability) for an information reliability of 0.9.

When the true model is...

RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9

...the seismic data predict RM1 0.900 0.010 0.012 0.011 0.013 0.011 0.011 0.011 0.010
RM2 0.005 0.900 0.005 0.005 0.006 0.005 0.005 0.005 0.005
RM3 0.021 0.020 0.900 0.020 0.025 0.021 0.021 0.022 0.020
RM4 0.007 0.007 0.008 0.900 0.009 0.007 0.008 0.008 0.007
RM5 0.026 0.024 0.029 0.025 0.900 0.026 0.026 0.027 0.024
RM6 0.010 0.009 0.011 0.010 0.012 0.900 0.010 0.010 0.009
RM7 0.012 0.012 0.014 0.012 0.014 0.012 0.900 0.013 0.012
RM8 0.014 0.013 0.015 0.013 0.016 0.013 0.014 0.900 0.013
RM9 0.005 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.900

Fig. 12. CoS evaluation for perfect information: cumulative
probability curve of the DNPV.

Fig. 13. Sensitivity analysis – CoS with different number of
RMs.

Table 8. Example of Pp values for an information
reliability of 0.9.

RM Predicting probability (Pp)

RM1 0.101
RM2 0.045
RM3 0.188
RM4 0.067
RM5 0.230
RM6 0.090
RM7 0.112
RM8 0.123
RM9 0.045
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Table 9. Example of updated probabilities (Pu) for an information reliability of 0.9.

When the seismic predicts. . .

RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9

. . .the true model is RM1 0.894 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011
RM2 0.005 0.889 0.005 0.005 0.005 0.005 0.005 0.005 0.005
RM3 0.023 0.023 0.905 0.023 0.024 0.023 0.023 0.023 0.023
RM4 0.007 0.007 0.007 0.891 0.007 0.007 0.007 0.007 0.007
RM5 0.030 0.030 0.031 0.030 0.912 0.030 0.030 0.030 0.030
RM6 0.010 0.010 0.010 0.010 0.010 0.893 0.010 0.010 0.010
RM7 0.012 0.012 0.013 0.012 0.013 0.012 0.896 0.012 0.012
RM8 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.897 0.014
RM9 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.889

Fig. 14. Simplified decision tree for EVoI calculation considering imperfect information with a reliability of 0.9.

Fig. 15. Variation of the EMV of the 4DS project with
information reliability. Fig. 16. Variation of EVII according to each level of reliability.
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6 Conclusion

This work presented the practical application of the CoS
estimation in a real case, providing decision-makers with
a tool to decide whether or not to acquire information
(in the case of this work, the information would be pro-
vided by 4D seismic). This is a model-based study, where
information identifies the representative model closest to
the true reservoir model, and decisions correspond to
implementing the production strategy optimized for that
model.

While the traditional expected value of information
calculation provides only an average value, the chance of
success considers the variability in the economic return
due to reservoir uncertainties. We assessed perfect informa-
tion to obtain the upper limit for the VoI.

We also showed that, when information is imperfect, the
decision of which production strategy to implement changes
with information reliability. Moreover, when the reliability
reaches a level of around 50%, the information no longer has
value, since the economic return, in this case, is similar to
that of the case without information. Furthermore, highly
imperfect information (less than 70% reliable in our case
study) is insufficient to change the perception of the uncer-
tain reservoir and consequently decisions.
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