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Abstract. History matching is an inverse problem with multiple possible answers. The petrophysical properties
of a reservoir are highly uncertain because data points are scarce and widely scattered. Some methods reduce
uncertainty in petrophysical characterization; however, they commonly use a single matched model as a refer-
ence, which may excessively reduce uncertainty. Choosing a single image may cause the model to converge to
a local minimum, yielding less reliable history matching. This work improves on the history matching presented
by Oliveira et al. ((2017a) J. Petrol. Sci. Eng. 153, 111–122) using a benchmark model (UNISIM-I-H based on the
Namorado field in Brazil). We use a new approach for a Probability Perturbation Method and image perturba-
tion using Co-Simulation. Instead of using a single image as the reference, a set of best images is used to increase
variability in the properties of the reservoir model while matching production data with history data. This
approach mitigates the risk of the potentially excessive reduction of uncertainties that can happen when using
a single model. Our methodology also introduces a new objective function for water breakthrough, improving
model quality because of the importance of matching the water breakthrough in the process. Our proposed
methodology for image perturbation uses the UNISIM-I-H, which comprises 25 wells and has 11 years of history
data. Our methodology made the process of calibration more effective than the history matching by Oliveira
et al. ((2017a) J. Petrol. Sci. Eng. 153, 111–122). Cross-influence was minimized, making the history matching
more objective and efficient, and consequently, the production forecasts more reliable.

1 Introduction

An essential step in reservoir modeling is the characteriza-
tion of petrophysical properties in the reservoir. Due to
scarce data and reservoir complexity, a large uncertainty
is present in the process, resulting in wide production vari-
ability. In order to minimize the misfit between production
and history data a calibration is necessary with a process
known as history matching or data assimilation. The result-
ing matched models can then be used production forecast
and decision analysis.

History matching is an iterative process that changes
the reservoir model with the objective of decreasing the mis-
fit between production and history data. This misfit can be
measured using the concept of objective function, that rep-
resents the normalized misfit between simulated and history
data, allowing the comparison between different dynamic
data types (e.g. pressure and rates).

While deterministic history matching creates a single
model, probabilistic history matching creates a set of
models that, although fitted to the history data, may pro-
vide different production forecasts. The central idea of

probabilistic approach is to use observed data to condition
the process of reducing reservoir parameter uncertainties,
such as porosity, permeability, for example. Due to the mul-
tiple possible answers to match the data, a single model
(deterministic approach) is no longer a goal and instead,
a probabilistic history matching is preferable in order to
allow uncertainty quantification which will help reservoir
management and decision making.

A single objective function, normally the sum or average
of all objective functions is not enough to capture specific
behavior, and instead a multi-objective function is prefer-
able. This approach allows the evaluation of each objective
function and well individually (Almeida et al., 2014; Caeiro
et al., 2014; Christie et al., 2013; Hajizadeh et al., 2011;
Hutahaean et al., 2015; Mesquita et al., 2015; Schulze-
Riegert and Kroschem, 2007). This improves understanding
of reservoir behavior and enables the identification of neces-
sary changes to history match a particular objective
function (Oliveira et al., 2017a).

Several works have presented reservoir image perturba-
tion methods that improve the geological consistency,
the best known of which are the Probability Perturbation
Method (Hoffman, 2005; Hoffman and Caers, 2003,
2005) for categorical properties such as facies, Gradual* Corresponding author: goncalo@dep.fem.unicamp.br
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Deformation Method (Ding and Roggero, 2010; Gervais
et al., 2007; Hu, 2000; Roggero and Hu, 1998) and
Co-Simulation (Mata-Lima, 2008; Mata-Lima and Soares,
2007; Oliveira, 2014) for continuous properties such as
porosity and permeability.

These methods have the particularity of allowing a local
perturbation within defined non-overlapping regions,
avoiding the perturbation of the entire reservoir equally.
Using the local perturbation has three main advan-
tages: (1) the reservoir images have an increase in variabil-
ity, (2) the method is more flexible to achieve the match
and (3) the convergence is twice as fast than using global
perturbation (Hoffman and Caers, 2005; Oliveira, 2014;
Oliveira et al., 2017b).

Oliveira et al. (2017a) proposed a methodology that was
able to deal with multiple petrophysical properties by
locally reducing the uncertainty in facies, porosity, and
permeability simultaneously. It was noticed that using a
single image could generate multiple solutions but with
similar characteristics (local minimum) making the history
matching process less effective because of the cross-influence
between regions and properties. Occasionally, it was neces-
sary to undo the perturbation to correct the misfit by select-
ing a new reservoir image to perturb the model again.

For continuous properties perturbation, there are several
works, using the gradual deformation method to combine
multiple reservoir images to generate a new image (Ding
and Roggero, 2010; Gervais-Couplet and Le Ravalec, 2018;
Gervais-Couplet et al., 2007). However in co-simulation this
approach has not been used, and for Probability Perturba-
tion (PPM), the method is actually limited to use a single
image.

Oliveira et al. (2017a) proposed using a multivariate
sensitivity analysis to identify the regions and properties
that impact each objective function as well as how to
perturb an image to history match dynamic data.

The purpose of probabilistic history matching is to
efficiently explore the search space and find different models
that fit the history data by combining the uncertain param-
eters. However, in image perturbation, whether for categor-
ical or continuous properties, a single reservoir image is
usually chosen as the reference and conditioned in the
following iterations. This contradicts the concept of proba-
bilistic history matching because the models created will
tend to a set of solutions with a low variability that is highly
dependent on the chosen image.

The objective of this work is to improve the efficiency of
history matching by avoiding the convergence to a local
minimum. We achieve this using a set of models as input
for image perturbation rather than a single image.
We adapt the probability perturbation method and
co-simulation for use in our proposed methodology.

This work also uses an indicator to quantify the misfit
for water time breakthrough to further improve history
matching.

Oliveira et al. (2017a) efficiently explored the advantage
of using multi-objective functions with a multivariate
sensitivity analysis and a local perturbation method. The
multi-objective functions allow problems diagnosis by iden-
tifying the most critical dynamic data for the history

matching. On the other hand, the multivariate sensitivity
analysis supports the user to understand how the reservoir
image (which regions and properties) should be perturbed
and the local perturbation (either using PPM or Co-SGS)
allows the perturbation of specific regions and properties.

This work starts by presenting the necessary modifica-
tions to the Probability Perturbation Method (Sect. 2.1)
and Co-Simulation (Sect. 2.2) in order to use multiple reser-
voir images. Following in Section 3 is a brief explanation of
the general workflow developed in Oliveira et al. (2017a) to
update the reservoir image and the most relevant topics for
the method to quantify match quality, using the concept of
NQDS (Sect. 3.1) and the multivariate sensitivity analysis
for petrophysical properties (Sect. 3.2). In Section 4, the pro-
posed method and modifications are applied to a complex
case study, with a complete history matching of the 25
wells. A comparison between history matching and produc-
tion forecast is done for the cases using a single and multiple
images.

2 Image perturbation methods

During the process of history matching, a problem occasion-
ally occurs: previously history-matched wells get worse
throughout the iterative process. The two most likely
causes are: (1) the limits definition of the influential region
that affect each well and (2) the cross-influence that may
exist (a single region may affect wells in another region that
is further away). As history matching is an inverse and
nonlinear problem with multiple answers, to match a well,
it is not enough to take into account only the regions and
properties local to wells. As time progresses, the area of
influence increases and adjacent wells start to impact well
productions so it is possible that history matching one well
may affect another.

Another influential factor is the defined region. Regions
that take into account the influential area and reservoir
behavior are difficult to define because streamlines are
time-dependent. Many cases end up using geometric regions
like Voronoi, however, there is no guarantee that the region
covers the entire influential area, or that the perturbed area
is larger than necessary.

To deal with this problem, we use a different approach to
perturb the reservoir image for categorical and continuous
properties. A set of the best history-matched images is used
to identify the pattern and characteristics that fit production
data with the history data for each well. These similarities
are searched within the defined region to avoid the perturba-
tion of cell blocks that are far from the wells that we want to
match. Although a region is defined, only some of the cell
blocks within are perturbed andnot the entire defined region.

The modifications made to the Probability Perturbation
Method and Co-Simulation are explained in Sections 2.1
and 2.2, followed by the application to UNISIM-I-H model.

2.1 Probability perturbation method

The Sequential Indicator Simulation (Journel and Alabert,
1990) used in this work for facies modeling uses the location
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of well-log data, the histogram of the property, and the
modeled variogram to calculate a conditioned probability
based on geological data P(A|B). This probability repre-
sents the chance of facies A occurring, taking into account
geological and petrophysical information B. It is then possi-
ble to create a set of models, which, because of the hetero-
geneity and different facies spatial distribution, provides
different reservoir production answers that may, or may
not, be a better fit to history data.

The Probability Perturbation Method integrates
dynamic data (D) with probability P(A|B) creating a
posterior probability P(A|B, D) to reproduce the models
that best fit the history data. In the method developed by
Hoffman (2005), a single image is chosen, based on the infor-
mation of dynamic data (model match quality) to calculate
the probability P(A|D). The weight given to the selected
image ranges between 0 and 1 and is chosen arbitrarily.

In our proposed methodology, we adapt the work of
Oliveira et al. (2017a) to use a set of n models to calculate
the probability P(A|D). This identifies similarities within
the chosen set. Considering this, P(A|D) can be calculated
using equations (1) and (2):

P AjDð Þ ¼ f Að Þ ¼ 1
n

Xn

b¼1

ib a; Að Þ ð1Þ

ib a; Að Þ ¼
1 if s a; bð Þ ¼ A

0 other case

(
ð2Þ

where s a; bð Þ determines the occurrence of facies at
location a of model b among n. If the occurrence of facies
A is high for the chosen reservoir images in a certain
block, the probability PðAjDÞ will tend to have values
near 1 to represent its high chance of occurrence.

To calculate the posterior probability P ðAjB;DÞ, a con-
ditional independence is assumed between B and D, and
equation (3) is used as in Hoffman (2005):

P ðAjB;DÞ ¼
1�PðAÞ

P ðAÞ
1�P ðAÞ

PðAÞ þ
1�PðAjBÞ

P ðAjBÞ

� �
1�PðAjDÞ

PðAjDÞ

� � ð3Þ

2.2 Image perturbation using co-simulation

Co-Simulation was first used to simulate properties with
few observed data but correlated with other properties
that had more information (Deutsch, 2002; Yamamoto
and Landim, 2013). Simulating porosity using seismic data,
or permeability using porosity, are well-known procedures
in the industry. Lately, co-simulation has been used to
reduce global or regional uncertainty in petrophysical prop-
erties, by using, as secondary information, a reservoir image
with the spatial distribution that is to be reproduced
(Mata-Lima, 2008; Mata-Lima and Soares, 2007).

Two inputs are necessary for co-simulation: a reservoir
image of the property with the characteristics we want to
preserve, and a correlation coefficient ranging from 0 to 1
that defines the influence of the chosen image in the
perturbation.

The usual method to reduce uncertainty using
Co-Simulation chooses a single reservoir image as the refer-
ence. The correlation coefficient is usually given to a prede-
fined geometric region, which is normally chosen despite
reservoir dynamic behavior.

The approach proposed here consists in choosing a set of
models with a good match and in using the similarities
between them to generate possible new images that better
fit the history data by perturbing only the influential cell
blocks within a region instead of the entire region. This
can be achieved using statistics (such as mean, variance,
and coefficient of variation) to identify where, from all
images, the variability is the smallest. Cells with high vari-
ability may then be defined as non-crucial to history match-
ing for particular production data because there are no
specific characteristics required to match the production
data (e.g., low local permeability) and for this reason, the ini-
tial variability should be kept. By conditioning only cells
with low variability, we minimize the number of conditioned
cells, increasing variability in petrophysical characterization.

For each region, a set of n best models is chosen and
equation (4) defines the secondary image (SI):

SI ¼ �/ðaÞ ¼ 1
n

Xn

b¼1

/b að Þ ð4Þ

where /b að Þ is the property value at location a and n is
the number of models used to build the secondary infor-
mation. To evaluate variability, standard deviation (r)
and Coefficient of Variation (CV) are used:

r að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

b¼1

/b að Þ � �/ að Þ
� �2

vuut ð5Þ

CV að Þ ¼ r að Þ�/ðaÞ: ð6Þ

Cells with CV (Coefficient of Variation) below a given
cut-off (Cut Value) are given a high correlation coefficient,
while others receive a low value. The high value for the
correlation coefficient can be a constant value defined by
the user or function of the match quality as used in Oliveira
(2014); while for the low correlation coefficient, a low value
can be arbitrarily chosen (in this case, 0.05). We assume
CChigh as a high value and CClow as a low value for the
correlation coefficient between the secondary information
and the new reservoir image. The Sequential Gaussian
Co-Simulation requires each block to have a value for the
secondary information and a correlation coefficient, which
can be defined using equation (7):

CC að Þ ¼
CChigh if CV að Þ < Cut Value

CClow other case :

(
ð7Þ

3 Methodology

The general methodology used in this work follows that
fully detailed in Oliveira et al. (2017a) for reducing
multi-properties and is briefly explained in this paper.
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Oliveira et al. (2017a) treat geostatistical images to achieve
a set of models with good history matching; this process is
integrated into a general workflow for history matching and
uncertainty reduction (Fig. 1).

d STEP 1: Define each uncertainty distribution and the
parameterization limits ensuring that the combination
of the uncertain attributes encompasses the history
data.

d STEP 2: Define an acceptable misfit limit for each
objective function allowing the normalization of dif-
ferent production data using the Normalized Quadra-
tic Difference with Sign (NQDS) function (detailed in
Sect. 3.1).

d STEP 3: Decide whether history matching or uncer-
tainty reduction is preferable. Uncertainty reduction
is designated for the objective of re-characterizing
the distribution function while history matching has
the objective of finding the best matched models, nor-
mally with an optimization algorithm.

d STEP 4: Generate a set of models by combining differ-
ent levels of uncertainty.

d STEP 5: Simulate models.
d STEP 6: Evaluate models variability using the NQDS

function for each production data.
d STEP 7: The iterative process concludes if the models

exhibit acceptable behavior.
d STEP 8: Review simulation model to evaluate if the

problem is in the numeric model, for example, prob-
lems in productivity index, evaluate boundary condi-
tions, aquifer, etc.

d STEP 9: Perform the necessary changes highlighted in
Step 8.

d STEP 10: When, along the process, few or no models
that match the data, a new parameterization is con-
sidered by identifying new influential attributes.

d STEP 11: A re-parameterization is done on the
influential attributes.

d STEP 12: Perform the uncertainty reduction on the
attributes or the history matching using an optimiza-
tion algorithm.

d STEP 13: When a sufficient percentage of models has
an acceptable match, generate new models to be
filtered in the next step.

d STEP 14: The filter will discard models that have an
objective function outside the limits defined by a cut
value.

d STEP 15: Use the filtered models for forecasting or
risk analysis.

The image perturbation method, used to improve reser-
voir models behavior is done in Step 12. In order to do that,
the workflow presented in Figure 2, adapted from Oliveira
et al. (2017a) is used:

d STEP 12.1: Each loop should have an objective. At
this point the objective function related to the mis-
matched production data should be chosen.

d STEP 12.2: In order to match a specific objective
function, it is necessary to understand which petro-
physical properties most affect the dynamic data
and in which region of the reservoir. If the influence
between petrophysical properties and production is
not well known, the sensitivity analysis described in
more details in Oliveira et al. (2017a) and briefly
explained in Section 3.2 should be done.

d STEP 12.3: Perform the multivariate sensitivity anal-
ysis for petrophysical properties (detailed in Sect. 3.2).

d STEP 12.4: Identify which attribute is more influen-
tial in the history matching process and follow the
flowchart properly.

Fig. 1. General workflow for history matching and uncertainty reduction (adapted from Oliveira et al., 2017a).
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d STEP 12.5: Perform the Probability Perturbation
Method as in Section 2.1.

d STEP 12.6 and 12.7: Perform Collocated Co-Simula-
tion as in Section 2.2.

d STEP 12.8: Generate a new set of reservoir images.

The main contribution and changes applied from
Oliveira et al. (2017a) in this work consists in considering
a set of reservoir images to define the secondary information
for probability perturbation method and co-simulation as
explained in Sections 2.1 and 2.2.

3.1 Normalized quadratic difference and water
breakthrough objective function

In order to quantify the quality of each scenario, the con-
cept of Normalized Quadratic Difference with Sign (NQDS)
is used as in Almeida et al. (2014) and Mesquita et al.
(2015). We quantify the misfit between production and his-
tory data for bottom-hole pressure, oil, water, and liquid
rates for production wells, and bottom-hole pressures and
injection rates for injector wells. The NQDS can be
expressed by equations (8) and (9):

NQDSd ¼
LD
LDj j

� �

d

Pt

i¼1
Simi � Histið Þ2d

Pt

i¼1
Tol� Histi þ Cð Þ2d

ð8Þ

LDd ¼
Xt

i¼1

Simi � Histið Þ ð9Þ

where, Simi is the simulated data and Histi is the history
data for an observed data point i for data type d.

The main purpose is not to match the history data
perfectly, but to establish an acceptable misfit between
models to be considered matched. This is calculated using
the definition of tolerance (Tol) and, for some data types
(e.g. water rate), a constant C. Constant C is included to
avoid the exclusion of models which may produce some
water when there is no water on history data, resulting in
high values of NQDS (even if water rate is small and the
model has satisfactory match). This tolerance and constant
are defined in STEP 2 of the general workflow for history
matching and uncertainty reduction. Taking this into
account, values of NQDS between�1 and 1 have an accept-
able misfit and the objective function is considered
matched.

To evaluate the variability and quality of the models the
NQDS values are plotted (Fig. 3), showing whether the
mean behavior of the objective function is above or below
the history data.

The particular case of P3 from Figure 3 does not have
any matched models despite having models above and
below the acceptance limit; this usually happens for oil
and water rates and is caused by incorrect water break-
through times. For this reason, this particular case was

Fig. 2. Flowchart for uncertainty reduction in geostatistical realizations (adapted from Oliveira et al., 2017a).
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treated using an objective function for Water Breakthrough
Time (WBT):

WBT ¼WBTSim �WBTHist

Tolerance
ð10Þ

where WBTSim is the time (days) that water takes to
erupt in the production well in the simulation model,
WBTHist is the time at which the production well starts
to produce water in the history data, Tolerance is used
to normalize the misfit and is the acceptable difference,
in days, between the start of water production in simula-
tion and history data.

3.2 Sensitivity analysis for petrophysical properties

Petrophysical characterization is crucial for reservoir
production behavior; however, the order of magnitude of
the uncertainty can be from thousand to millions due to
the number of grid blocks and possible property values
(e.g., porosity, permeability, etc) to occur in each cell.
Understanding the reservoir and how perturbation should
be done is essential in data assimilation.

In order to do that Oliveira et al. (2017a) proposed a
method by chancing properties’ spatial distribution by
using porosity and permeability multipliers on a chosen
base case (for example, the model with best global match).
The reservoir is split into different regions and the perturba-
tion is done randomly in each region, creating a new set of
models that will be used to correlate the property multiplier
with the dynamic data response. These models are only
used for the sensitivity analysis.

The creation of these models and the corresponding
correlation between the petrophysical characterization
and the dynamic data can be seen in Figures 4 and 5,
respectively.

4 Application and results

The proposed methodology was applied to a complex syn-
thetic reservoir used for history matching and uncertainty
reduction, which uses real well data from the Namorado
Field, Campos Basin. The benchmark case study is known
as UNISIM-I-H (Avansi and Schiozer, 2015). The model has
a corner-point grid with 36.739 active cells, each measuring
100 · 100 · 8 m.

The production strategy has 14 producer and 11 injector
wells. There is a total of 11 years of history data with infor-
mation for oil, water, liquid and water injection rates, and
bottom-hole pressures. During the history matching, liquid
rates were informed for the producers while injection rates
were informed for the injector wells.

In this specific work, we focus only on the petrophysical
properties and, for this reason, all other uncertain attributes
have been reduced to a single level. Avansi and Schiozer
(2015) extensively described all the uncertainties present
in the benchmark case and a brief description of the geosta-
tistical modeling is given as follows.

All the petrophysical properties are correlated some-
how and they are facies, porosity and permeability. For
facies a Sequential Indicator Simulation (SIS) was used,
and net-to-gross is directly related to the facies type.
Within each facies, the porosity was simulated indepen-
dently using the Sequential Gaussian Simulation. To simu-
late permeability, instead of using a deterministic approach
as in Avansi and Schiozer (2015), a cross plot is used for a
probabilistic approach while guaranteeing that the relation-
ship between properties is respected as in Oliveira et al.
(2017a).

An initial set of 150 reservoir images were created to
study the effects of petrophysical properties on production
data. Variability in production data for each model was

Fig. 3. Examples of production curves and NQDS values (adapted from Oliveira et al, 2017b).
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evaluated using the production curves and plotting the
NQDS values for each objective function.

Table 1 lists the tolerance and constant values used to
calculate the NQDS and WBT. The same tolerance and
constant values were used for all wells. However, these

can vary depending on how reliable the history data is or
how rigorous we want the history match to be.

As seen in Figures 6–10, the high variability in the ini-
tial set of models is due to the uncertainty present in petro-
physical properties. Because the injection rates and liquid

Fig. 4. Example of porosity models created for sensitivity analysis (from Oliveira et al., 2017a).

Fig. 5. Plot between attribute and NQDS (from Oliveira et al., 2017a).

G. Soares Oliveira et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 68 (2018) 7



Table 1. Tolerances and constants for each objective
function.

Producer wells

Tol C Tolerance
(%) (m3/month) (days)

Oil Rate 10 0 –
Water Rate 10 25 –
Liquid Rate 5 0 –
BHP 10 – –
WBT – – 60
Injector Wells
Injection Rate 5 0 –
BHP 10 – –

Fig. 6. Average field pressure for the initial set of models.

Fig. 7. Cumulative field liquid production for the initial set of
models.

Fig. 8. Cumulative field water injection for the initial set of
models.

Fig. 9. Cumulative field oil production for the initial set of
models.

Fig. 10. Cumulative field water production for the initial set of
models.

G. Soares Oliveira et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 68 (2018)8



production are not honored, field average pressure has a
large mismatch. For this reason, the first iteration seeks
to improve the injection rates and liquid production for
each well. We performed a preliminary test in the first iter-
ation to compare the proposed methodology, which uses a
set of reservoir images to perform the image perturbation,
with the more common approach of using a single image.

4.1 Preliminary test

The common method for image perturbation is compared
with the proposed methodology. The common method
referred to as ‘‘ApproachA’’ uses a single image for the image
perturbation, while ‘‘Approach B’’ refers to the proposed
methodology and uses a set of images for each region to
locally perturb the reservoir image. The defined region used
to look for a pattern between images was the Voronoi, defin-
ing a region for each well, due to simplicity in using and to use
the same regions as in Oliveira et al. (2017a). In order to
choose the best models, to be used in the perturbation, all
objective functions were taken into account for each well
inside the Voronoi region. In order to be with a good match,
every objective function from the well should be within an
acceptable range of NQDS value. To improve the injection
rate for the wells, we reduced the uncertainty for facies and
porosity, leaving only permeability to perturb together with
the productionwells, to avoid creating preferential flux paths
without excluding the producer match. Starting with the
same initial set of images, each case is described in Table 2.

The initial set of reservoir images is the same for both
approaches. The sequential uncertainty reduction in reser-
voir images was performed, and in each loop, a new set of
150 reservoir images was created.

A major impact of the proposed methodology is that it
seeks to identify a similar spatial pattern and perturb only
those cells that may influence the history matching; for this
reason, fewer cells are conditioned within a certain region in
approach B than in approach A (Fig. 11).

The number of images used in the process was previ-
ously stabilised taking into account the number of models
with reasonable match that could be used to build the ref-
erence image. The number of images chosen was 5, less than
that, the approach would start to be no different than using
a single image.

Figure 12 shows that when calculating the percentage of
occurrence of facies type 1 (from the set of 150 models) in
the cell after the perturbation, the spatial pattern of facies
distribution is highly predictable when using a single image
for perturbation; a geological structure is easily identified
(left side). However, the same is not true when using a set
of reservoir images to perform the Probability Perturbation

Method, the probability changes more smoothly. The prior
probability changes but the probability goes smoothly
through the reservoir, and it is difficult to predict the limit
of occurrence for each facies (right side).

The coefficient of variation was calculated for porosity.
Figure 13 shows that, for image perturbation, variability is
higher when using a set of reservoir images than for only a
single image. Using a single image in co-simulation and a
correlation coefficient for the entire region excessively
reduces uncertainty, affecting not only the conditioned
region but also the surrounding area, because of continuity.

Most importantly, not only the variability in the distri-
bution of spatial properties, but also the effects on produc-
tion data must be considered. To assess these effects, the
NQDS for all objective functions (Fig. 14) are compared.
Figure 14 shows that both methods improved the injection
rate.

For INJ022, for example, the water rate significantly
improved using five images compared to a single image.
However, the values of the correlation coefficient at the
top of reservoir suggest little perturbation in the region
(highlighted region in Fig. 15). On the other hand, analysis
beneath the top of the reservoir, for the proposed method,
identified geological structures that are crucial to the
history matching. In Figure 15B, a channel is highlighted
beneath the top of the reservoir with a high value of
correlation coefficient, while the remaining cells have a
low value.

4.2 Complete history matching

The history matching of the reservoir followed the proposed
methodology. The following step is to history match the
producers.

First, using the sensitivity analysis described in Oliveira
et al. (2017a), the regions that most affected each producer
were identified and the producer-injector groups were
defined.

Second, the best images from each loop were chosen,
(lowest values of NQDS) for each producer-injector group.
These models were used as secondary information for the
Probability Perturbation Method and Co-Simulation
inputs.

Each iteration had an objective requiring several loops
to reach a desirable match. Each loop generated a set of
150 reservoir images. Table 3 summarizes how many loops
were required for each objective.

As stated before, the first iteration matched the injectiv-
ity and productivity of the wells. This not only improved
average reservoir pressure but also the bottom-hole pressure
of producers and injectors.

Table 2. Test between the common and proposed methodology for image perturbation.

Co-Simulation

Approach Objective Images Used PPM Facies Porosity Permeability

A Improve injection
rate

1 rD = 0.15 CC = 0.80 Not perturbed
B 5 – CC = 0.80 CV = 1.2
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The following four iterations matched all the producers
of the model. Because of the complexity of the case study
and the cross-influence between the dynamic data and each
property within the region, adjustments were necessary to
improve the history matching for some objective functions.
These adjustments are local re-characterizations, for exam-
ple, the history matching for PROD09 was very complex.
In this specific case, a downscaling further divided the
region and then a sensitivity analysis was performed. The

downscaling was necessary to better understand how the
heterogeneity within the region affected well production.
In fact, we were able to identify that a barrier was necessary
to decrease water production while the remaining area
should be kept highly permeable to ensure well productivity.

A set of 26 models was finally selected using a cut value
of 15 for the Normalized Quadratic Function. The history
matches for the field and wells were successfully achieved
as shown in Figures 16–18.

Fig. 12. Percentage of occurrence of a facies in the set of 150 reservoir images.

Fig. 11. Correlation coefficient for the first iteration for approaches A and B.
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Most importantly, not only were all models created
through the process of history matching geologically
consistent and realistic, but they also reliably forecasted
production, the ultimate purpose of model calibration
(Figs. 19–21).

To highlight the advantages and contribution of our
proposed methodology, we compared the history matching
resulting from this work (Approach B) and that using the
same model but with a single image to define the secondary
information (Oliveira et al., 2017a), approach A. The
comparison showed that our methodology presented

improvements for both history matching and production
forecasting, also the resulting reservoir images have more
variability using the proposed methodology than using a
single image for image perturbation (Fig. 22).

Using an indicator to quantify the misfit for water
breakthrough time efficiently improved the production data
match. The water breakthrough in wells was corrected
(Fig. 25) and symmetry in NQDS values for oil and water
rates prevailed (Fig. 24). Comparing the NQDS values for
all objective functions, we see that approach A excessively
reduced the production variability (Figs. 23–25). On the

Fig. 13. Coefficient of variation for porosity for approach A and B for the generated set.

Fig. 14. NQDS functions (water rate and BHP) for injector wells (initial set, perturbation using 1, or 5 images).
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other hand, because approach B tries to keep variability in
petrophysical characterization, it affects the variability in
production data. The best scenario would be to have sym-
metrical NQDS value above and below a perfect match.

Figure 25 shows that the water breakthrough time
should be considered when history matching. Because of
the large amount of history data, the water production

may appear to match while the water breakthrough
does not, significantly affecting production forecast.
Increasing the number of objective functions will result in
minimizing the risk of making an incorrect production
forecast.

The mismatch in water breakthrough significantly
affects the match of field production and consequently the

Fig. 15. Correlation coefficient with highlighted channel beneath the top of the reservoir.

Table 3. Iterations and required loops for each objective to history match the reservoir model.

Iter. Loops Objective

2 2 Better match for injection rate for all injector wells
3 4 NA1A, NA2D, NA3D, RJS19, INJ15, INJ17, INJ21
4 5 PROD05, PROD09, PROD23A, PROD24A, INJ05, INJ07, INJ10
5 5 PROD12, PROD14, PROD21, INJ03, INJ19
6 3 PROD08, PROD10, PROD25A, INJ22, INJ23
7 5 FINAL ADJUSTMENTS

Fig. 16. Field cumulative liquid production, for the first
iteration and the filtered models.

Fig. 17. Field cumulative oil production, for the first iteration
and the filtered models.
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Fig. 21. Field cumulative water injection forecast.Fig. 19. Field cumulative liquid production forecast.

Fig. 20. Field cumulative oil production forecast.
Fig. 18. Field cumulative water injection, for the first iteration
and the filtered models.

Fig. 22. Coefficient of variation for permeability using Approach A and Approach B.
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Fig. 23. NQDS for pressure and liquid rates in the first and final iterations for approaches A and B.

Fig. 24. NQDS for oil and water rates in the first and final iterations for approaches A and B.

Fig. 25. NQDS water breakthrough time in the first and final iterations for approaches A and B.
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production forecast as represented in Figure 26. Approach
A converged to a local minimum and reduced uncertainty
excessively, whereas Approach B generated a reliable pro-
duction forecast.

5 Conclusion

The proposed methodology to reduce uncertainty in reser-
voir characterization efficiently achieved good history
matching and a reliable production forecast for a challeng-
ing benchmark case (UNISIM-I-H). Using a set of models,
instead of a single matched model, to identify the character-
istics and geological events to match the dynamic data, we
improved the quality in history matching while increasing
variability in the spatial distribution of petrophysical prop-
erties. This contribution to probabilistic history matching
avoids convergence to a local minimum, while searching
for different answers.

Using a single image for image perturbation has demon-
strated that matching the petrophysical characteristics
(facies, porosity, and permeability) to the history data
may easily converge to a set of similar models with little
variability. This can potentially excessively reduce uncer-
tainty in the first steps of history matching, resulting in
future difficulty when exploring other possible solutions.

Another disadvantage of using a single image for the
probability perturbation method is that from the posterior
probability function it is possible to easily highlight the lim-
its of the geological events such as channels, proving that
the created models are very similar (unique solution). How-
ever, this does not happen when using a set of images to cal-
culate the posterior probability.

The usual method to perform the co-simulation assigns
a correlation coefficient to the entire predefined region.
Parameterizing a predefined region, usually geometric, is
a simple and efficient approach. However, it excessively
reduces uncertainty either through locally perturbing a
region that does not affect the history match of the dynamic

data, or affecting nearby wells. On the other hand, regions
that factor in reservoir behavior, such as streamlines, may
be difficult to parameterize because the region of influence
is time-dependent. Our proposed approach has the advan-
tage of identifying the local characteristics that match the
data, without conditioning an entire region.

The inclusion of the misfit for water breakthrough time
has been extremely useful along with the other objective
functions and we highly recommend its use.

For future works, other uncertain attributes could be
included in the history-matching process to better meet
requirements in the industry.

Acknowledgments. The authors are grateful to PETROBRAS,
the research network SIGER 3 (Grant Agreement
No. 0050.0100204.16.9), the National Agency of Petroleum, Nat-
ural Gas and Biofuels (ANP), the Center of Petroleum Studies
(CEPETRO-UNICAMP) particularly the UNISIM research
group, the Department of Energy of the School of Mechanical
Engineering of the University of Campinas (DE-FEM-
UNICAMP), the Foundation CMG and National Council for
Scientific and Technological Development (CNPq), for support-
ing this research, and also, to the Computer Modelling Group
(CMG) and Schlumberger for software licenses.

References

Almeida F., Davolio A., Schiozer D. (2014) A New Approach to
Perform a Probabilistic and Multi-Objective History Match-
ing, SPE-170623-MS, SPE Annual Technical Conference and
Exhibition, 27–29 October.

Avansi D., Schiozer D. (2015) UNISIM-I: synthetic model for
reservoir development and management applications, Int. J.
Model. Simul. Pet. Ind. 9, 21–30.

Caeiro M., Demyanov V., Soares A. (2014) Multi-objective
History Matching of a Deltaic Reservoir with Non-Stationary
Geostatistical Modelling, European Conference on the Math-
ematics of Oil Reservoir.

Christie M., Eydinov D., Demyanov V., Talbot J., Arnold D.,
Shelkov V. (2013) Multi-Objective Algorithms in History

Fig. 26. Cumulative oil production forecasts for the initial set of models, the matched models using the classic and the
proposed approach.

G. Soares Oliveira et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 68 (2018) 15



Matching of a Real Field, Matching of a Real Field, SPE
163580-MS.

Deutsch C. (2002) Geostatistical Reservoir Modeling, Applied
Geostatistics Series, Oxford University Press, p. 376.

Ding D.Y., Roggero F. (2010) History matching geostatistical
model realizations using a geometrical domain based param-
eterization technique, Math Geosci. 42, 4, 413–432.

Gervais-Couplet V., Le Ravalec M. (2018) Identifying influence
areas with connectivity analysis – application to the local
perturbation of heterogeneity distribution for history matching,
Comput Geosci 22, 3–28, doi: https://doi.org/10.1007/s10596-
017-9663-y.

Gervais-Couplet V., Gautier Y., Ravalec-Dupin L., Roggero F.
(2007) History Matching Using Local Gradual Deformation,
SPE-107173, EUROPEC/EAGE Conference and Exhibition.

Hajizadeh Y., Christie M., Demyanov V. (2011) Towards
multiobjective history matching: Faster convergence and
uncertainty quantification. SPE 141111.

Hoffman B. (2005) Geologically consistent history matching while
perturbing facies, PhD Dissertation, Stanford University.

Hoffman B., Caers J. (2003) Geostatistical history matching using
a regional probability perturbation method, SPE 84409-MS,
SPE Annual Technical Conference and Exhibition, 5–8 October.

Hoffman B., Caers J. (2005) Regional Probability perturbation
for history matching, J. Petrol. Sci. Eng. 46 (1–2), 53–71.

Hu L.Y. (2000) Gradual deformation and iterative calibration of
Gaussian-related stochastic models, Math. Geol. 32, 1, 87–108.

Hutahaean J., Demyanov V., Christie M. (2015) Impact of
model parameterization and objective choices on assisted
history matching and reservoir forecasting, SPE 176389-MS,
SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibi-
tion, 20–22 October.

Journel A.G., Alabert F.G. (1990) New method for reservoir
mapping, J. Petrol. Technol. 42, 212–218.

Mata-Lima H., Soares A. (2007) Geostatistical history matching
with direct sequential transformation of images. Petrol.
Geostat. http://earthdoc.eage.org/publication/publicationde-
tails/?publication=7865.

Mata-Lima H. (2008) Reservoir characterization with iterative
direct sequential co-simulation: integrating fluid dynamic data
into stochastic model, J. Petrol. Sci. Eng., Elsevier Science
63, 3–4, 59–72.

Mesquita F., Davolio A., Schiozer D. (2015) A systematic
approach to uncertainty reduction with a probabilistic
and multi-objective history matching, SPE-174359-MS,
EUROPEC 2015, 1–4 June.

Oliveira G.S. (2014) Integração da Modelagem Geostatı́stica
com o Processo de Ajuste de Histórico. Master Degree Thesis,
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