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A B S T R A C T

Decisions in petroleum field development are typically complex because of high investments under high un-
certainty. To improve project performance, decision makers study the effects of uncertainty and consider actions
to both mitigate risks and exploit upsides. Uncertainty can be managed with flexibility, which has high potential
to manage the long-term systems in petroleum field development, reacting to uncertainty as it unfolds over time.
Although increasingly popular in the petroleum industry, the literature still lacks systematic, objective ap-
proaches to quantitatively estimate the expected value of flexibility (EVoF). This work sets out a decision
structure applied to petroleum field development that (1) uses a predefined set of rigid candidate production
strategies (robust and specialized strategies) to define the flexible strategy, (2) establishes probabilistic-based
implementation rules, and (3) improves estimates of EVoF by both accounting for the purpose of flexibility (to
mitigate the risks or exploit the upsides of uncertainty) and weighting the decision maker's attitude. We show
that our proposed method is applicable to complex reservoirs in the development phase, with multiple un-
certainties affecting the production strategy selection. Finally, we assessed the effects of delayed implementation
on EVoF.

1. Introduction

Petroleum field development is a high-risk venture because of
considerable investment in complex, uncertain scenarios. These typi-
cally include (1) reservoir uncertainties, associated with recoverable
reserves and flow characteristics; (2) operational uncertainties, related
to production system availability; and (3) economic uncertainties, re-
lated to market variables, capital expenditures, and operational ex-
penditures. Three approaches are typically considered to manage the
uncertainties: (1) acquiring additional information to reduce reservoir
uncertainty, (2) defining a flexible production system that allows
system modifications as uncertainty unfolds over time, and (3) defining
a robust production strategy able to cope with uncertainty without
requiring system modifications after production has started. This study
focuses on the second approach.

Flexibility can be considered a way of creative stochastic thinking
(Pye, 1978; Begg et al., 2002; Bratvold and Begg, 2010). When defining
a flexible system, decision makers split the development decision into a
sequential problem of multiple decisions over time. This allows an ac-
tive reaction based on the knowledge gained between decisions. Thus,
the appeal of flexibility stems from options to mitigate risk and exploit
the upsides of uncertainty (Jones and Ostroy, 1984).

Early discussions of flexibility can be traced back to the early 1920's
in the economics literature when Lavington recognized the “risk arising
from the immobility of invested resources” (Lavington, 1921, p. 91).
Flexibility has been developed in different domains and today is a
multidisciplinary concept (Sethi and Sethi, 1990; Saleh et al., 2009).
Although popular, the concept of flexibility is not academically mature
(Saleh et al., 2009).

In the petroleum literature, mentions of flexibility date back to the
late 1980's and typically cover the general decision options for oil
prospects: develop, explore, delineate, wait, or stop the project
(McDonald and Siegel, 1986; Benkherouf and Bather, 1988; Bjørstad
et al., 1989; Laughton, 1998; Smith and McCardle, 1998). Flexibility of
the production system has been addressed mainly since the 2000's and
includes capacity expansion (Lund, 2000; Begg et al., 2002; Babajide
et al., 2009; Jablonowski et al., 2011; Moczydlower et al., 2012; Lin
et al., 2013; Marques et al., 2013; Silva et al., 2017), modularity
(Hayashi et al., 2010; Moczydlower et al., 2012), intelligent wells (Han,
2003; Moczydlower et al., 2012; Sampaio et al., 2015; Morais et al.,
2017), flexible subsea layouts (Moczydlower et al., 2012; Lin et al.,
2013), and the ability to redistribute injection quotas or switch the
injected fluid (Moczydlower et al., 2012).

Flexibility is typically considered when (1) acquiring information is

https://doi.org/10.1016/j.petrol.2018.07.048
Received 9 February 2018; Received in revised form 27 June 2018; Accepted 17 July 2018

∗ Corresponding author.
E-mail address: sgsantos@cepetro.unicamp.br (S.M.G. Santos).

Journal of Petroleum Science and Engineering 171 (2018) 516–528

Available online 18 July 2018
0920-4105/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09204105
https://www.elsevier.com/locate/petrol
https://doi.org/10.1016/j.petrol.2018.07.048
https://doi.org/10.1016/j.petrol.2018.07.048
mailto:sgsantos@cepetro.unicamp.br
https://doi.org/10.1016/j.petrol.2018.07.048
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2018.07.048&domain=pdf


impossible, (2) the expected value of information is small or the ac-
quisition cost is too high, (3) managing uncertainty that remains after
information acquisition, and (4) flexibility creates additional value by
exploiting potential upsides of uncertainty (Begg et al., 2002; Bratvold
and Begg, 2010). Flexibility may also be attractive in cases of multiple
uncertainties affecting production strategy selection, where robust so-
lutions may be insufficient to cope with the possible scenarios.

Although less discussed than information, flexibility is particularly
suited to handle uncertainty in petroleum field development. Flexibility
can manage endogenous and exogenous uncertainties (Lin et al., 2013;
Silva et al., 2017) including oil price (Lund, 2000; Begg et al., 2002; Lin
et al., 2013; Silva et al., 2017), which cannot be managed with in-
formation. In addition, flexibility is particularly appropriate both for
systems that are designed to have a long lifetime (Saleh et al., 2009)
and to manage the impact of unlikely but high-consequence events
(Bratvold and Begg, 2010).

However, “flexibility is not a free good” (Stigler, 1939, p. 310–311),
meaning that the benefits of defining a flexible production system must
be quantified prior to the decision because (1) flexible systems incur
additional upfront investment and (2) implementing flexibility has a
cost, in addition to the cost of delayed production due to the time value
of money (Begg et al., 2002; Bratvold and Begg, 2010). The Expected
Value of Flexibility (EVoF), an approach similar to that of the Expected
Value of Information (EVoI), is typically employed (Begg et al., 2002).
In this study, we use the term “expected” to emphasize that we are
determining the expected gain of investing in a flexible system.

EVoF is often calculated as the expected increase in Expected
Monetary Value (EMV) (Lund, 2000; Begg et al., 2002; Jablonowski
et al., 2011; Moczydlower et al., 2012). However, the breadth of risk
reduction and increased upside potential may not be recorded in the
magnitude of changes in EMV. This often makes the EMV alone in-
adequate to base decisions on during the development phase (Santos
et al., 2017a). As a result, EMV has been complemented with risk
measures and other economic indicators when choosing flexible stra-
tegies (Babajide et al., 2009; Hayashi et al., 2010; Lin et al., 2013;
Marques et al., 2013; Silva et al., 2017).

Determining whether and when flexibility should be implemented is
a challenge. This is based on triggering conditions (referred to as de-
cision rules or implementation rules) defined by the decision makers.
Examples include achieving not only a target oil price (Lin et al., 2013;
Silva et al., 2017) or a threshold estimated ultimate recovery (Lin et al.,
2013), but also premature water breakthrough (Moczydlower et al.,
2012), and gas-oil ratio above the expected (Moczydlower et al., 2012).
It is common for decision makers to define minimum and maximum
dates to implement the flexibility based on various reasons including
logistics, estimated time for uncertainty to unfold, remaining hydro-
carbon reserves, and difficulties meeting additional investments
(Babajide et al., 2009; Lin et al., 2013; Silva et al., 2017).

1.1. Motivation and objectives

To maximize project value, decision makers must consider actions
to manage uncertainty both to mitigate risks and exploit upsides. While
disregarding the effects of uncertainty may lead to underperformance
(Begg et al., 2002, 2004), neglecting the possibility of flexibility as a
response to uncertainty may result in project undervaluation (Begg
et al., 2002; Jablonowski et al., 2011). Although increasingly popular,
the petroleum literature still lacks systematic, objective approaches to
define and evaluate flexibility.

This study presents a method to assess the potential of flexibility in
the development phase of a petroleum field. The focus is on indicators
that assess the potential of flexibility and the reduction of subjectivity
of decisions using probabilistic-based implementation rules. To further
improve the estimate of EVoF, we include the decision maker's objec-
tive when buying a flexible system whether mitigating risk or exploiting
upsides of uncertainty.

2. Methodology

This work is integrated into the twelve-step decision analysis fra-
mework by Schiozer et al. (2015). Their work is based on the concept of
Closed-Loop Field Development and Management and covers all stages
of field development and management combining reservoir character-
ization under uncertainty, reservoir simulation, history matching, un-
certainty reduction, representative models, and production strategy
optimization.

The twelve steps by Schiozer et al. (2015) are summarized as fol-
lows: (1) reservoir characterization under uncertainty, (2) construction
and calibration of the simulation base model, (3) verification of in-
consistencies in the base model using dynamic well data, (4) generation
of scenarios considering the full range of uncertainties, (5) reduction of
scenarios using dynamic data, (6) selection of a deterministic produc-
tion strategy using an optimization procedure, (7) initial risk assess-
ment, (8) selection of representative scenarios based on multiple ob-
jective functions and the full range of uncertain attributes, (9) selection
of a specialized production strategy (SPS) for each representative sce-
nario (as in Step 6), (10) selection of the best production strategy from
the set of specialized strategies (obtained in Step 9), (11) identification
of potential for changes in the best strategy to mitigate risk or increase
value (e.g., information, flexibility, and robustness) and integration
with production facilities, and (12) final risk assessment.

This study presents a methodology for Step 11, considering flex-
ibility to manage reservoir uncertainty. In Fig. 1, we propose the
workflow, which is an iterative procedure and compares a set of rigid
specialized strategies and a robust strategy to define and select flexible
strategies. The following subsections provide details for each process

Fig. 1. Workflow to implement our proposal for EVoF analysis to manage un-
certainty in petroleum field development.
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(numbered boxes) of the workflow.

2.1. Inputs: uncertain scenarios, specialized production strategies, and a
robust strategy

The inputs for our workflow come from previous steps of the fra-
mework by Schiozer et al. (2015): (1) a set of uncertain scenarios that
match production data (obtained in Step 5), (2) a set of rigid SPSs
(obtained in Step 9), and (3) a robust production strategy, the best
under uncertainty, disregarding flexibility (obtained in Step 10).

Uncertain scenarios are defined here as particular combinations of
all uncertain attributes and are obtained through statistical sampling
techniques (e.g., Schiozer et al., 2017). Decision makers must select the
uncertain scenarios that match production data before proceeding to
probabilistic-based forecasts. History matching and uncertainty reduc-
tion procedures are not the focus of this work. Many tools for these
analyses can be found in the literature (e.g., Maschio and Schiozer,
2016; Emerick and Reynolds, 2013).

To reduce the subjectivity of decisions and to automate analyses, we
use a predefined set of candidate production strategies, including spe-
cialized strategies and a robust production strategy to define the best
flexible strategy.

We obtain the specialized strategies using a small subset of sce-
narios, called representative models (RMs), chosen from the set of un-
certain scenarios that match production data. The literature provides
methods for the selection of representative models (e.g., Jiang et al.,
2016; Meira et al., 2016, 2017; Shirangi and Durlovsky, 2016). In this
work, we apply the proposal by Meira et al. (2016), which combines a
mathematical function that captures the representativeness of a set of
models with a metaheuristic optimization algorithm. This approach
ensures that the set of RMs represents both the probability distribution
of the input variables (uncertain attributes) and the variability of the
main output variables (production, injection, and economic forecasts).

One production strategy is optimized individually for each RM (in
Step 9) to generate a set of SPSs. Multiple decision variables (v) must be
defined in the optimization procedure including (1) number and pla-
cement of wells, (2) well opening schedule, (3) recovery mechanism,
(4) number of platforms, and (5) fluid processing capacities.
Optimization algorithms are not the focus of this work, and many tools
can be found in the literature (e.g., Bittencourt and Horne et al., 1997;
Yang et al., 2007; Gaspar et al., 2016; von Hohendorff Filho et al.,
2016).

The robust production strategy is that which ensures the best per-
formance across multiple scenarios without requiring system mod-
ifications after production has started. The robust production strategy
can be obtained through a Robust Optimization procedure (e.g., van
Essen et al., 2009; Yang et al., 2011; Yasari and Pishvaie, 2015), opti-
mized for the set of RMs simultaneously and maximizing a probabilistic
objective function (such as the EMV). Alternatively, the robustness of

an SPS can be increased using probabilistic-based performance in-
dicators over multiple scenarios (e.g., Santos et al., 2017b).

As the set of RMs represents the uncertain system, the set of SPSs
provides decision makers with different possibilities to develop the
field, namely number and placement of wells, number of platforms, and
fluid processing capacities. Thus, we use the SPSs as indicators for the
degree and type of flexibility required by the system.

2.2. Defining flexible production strategies

First, we compare the values defined for each decision variable for
each SPS (box 1 in Fig. 1). If the values of decision variables (e.g.,
number of wells, coordinates for well placement, number of platforms,
fluid processing capacities) are similar between SPSs, no further action
is required. Meaning that, regardless of the true reservoir model, a si-
milar production strategy would be selected. However, if they are dif-
ferent, an action is recommended to mitigate risk or exploit the upsides
of uncertainty.

This iterative procedure goes through each decision variable (vk in
{v1, v2, …, vn}) (boxes 2 to 4 in Fig. 1). If the value of the decision
variable vk is similar between SPSs, vk is set as in the robust production
strategy (box 3 in Fig. 1). Conversely, the different values of vk are
treated as candidate flexibilities (box 4 in Fig. 1), except when vk is
inflexible (e.g., placement of wells) and is set as in the robust produc-
tion strategy (box 3 in Fig. 1).

Weights can be assigned for each SPS before they are compared.
That is, we assess the representativeness of each SPS based on the
percentage of uncertain scenarios for which each SPS is best. For de-
tails, see the results section.

2.3. Defining implementation rules

We use numerical reservoir simulation to obtain production, injec-
tion, and economic forecasts for all scenarios under all possible im-
plementations of each candidate flexibility. This information is stored
in a database and is used both to define implementation rules (box 5 in
Fig. 1) and to determine the EVoF (box 6 in Fig. 1; described in §2.4)
(Fig. 2).

We identify and select the best action for each scenario individually,
i.e., whether or not flexibility should be implemented, and the level and
type of implementation. We use these optimal values to calculate the
maximum theoretical value of flexibility (i.e., EVoF is estimated
without defining a decision rule), providing an upper limit for the
EVoF. If the candidate is unsuitable for the theoretical case, it is re-
jected; otherwise, decision makers define probabilistic-based im-
plementation rules.

Having identified whether or not flexibility should be implemented,
and the optimal level and type of implementation (for each scenario),
we group the subsets of scenarios according to this preference. We

Fig. 2. Procedures for defining implementation rules (box 5 in Fig. 1) and for determining the EVoF (box 6 in Fig. 1).
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analyze histograms for all reservoir uncertainties, comparing each
subset to the full set of scenarios. This way, we identify the uncertainty
dominating the implementation of flexibility and set the decision rules
according to the reservoir uncertainties that control it.

2.4. Determining the expected value of flexibility

To estimate EVoF (box 6 in Fig. 1), we apply the objective-function
proposed by Santos et al. (2017a) for production strategy evaluation
under uncertainty, which was already applied for EVoI by Santos and
Schiozer (2017). Santos et al. (2017a) follow on from the classic mean-
variance model and propose a mean-semivariance framework based on
the premise that variance only reflects the overall uncertainty in returns
but not necessarily the risk of a project. In petroleum field development,
risk is typically associated with the chance of failure to achieve a tar-
geted or benchmark return (B). Thus, variability above this target is not
commonly perceived as risk, but as potentially exploitable optimistic
scenarios.

The risk curve is divided into two domains (Fig. 3): (i) the downside
risk or uncertainty in losses, i.e., the undesirable domain of uncertainty,
reflecting the failure to achieve the benchmark return and (ii) the up-
side potential or uncertainty in gains, i.e., the optimistic tail of the risk
curve above B. Note that, risk curves are also referred to in the statistics
literature as descending or complementary cumulative distribution
functions. We construct them with the production forecasts of multiple
scenarios from numerical reservoir simulation.

Santos et al. (2017a) combined the expected monetary value (EMV),
downside risk, and upside potential in a new objective-function (Eq.
(1)) to determine the economic value of a production strategy under
uncertainty. This incorporates the decision maker's attitude while
maintaining the units and dimension of the net present value (NPV).

= − + = − +
− +

− +EMV c S c S EMV
S
τ

S
τ

ε(NPV) dr B up B
B

dr

B

up

2 2
2 2

(1)

where: ε(NPV) is the economic value of the production strategy ad-
justed to the decision maker's attitude; NPV is the net present value;
EMV is the expected monetary value (given by the sum of the NPV of
each scenario weighted by its probability);

−
SB

2 and
+

SB
2 are the lower

and upper semi-variance from the benchmark B, respectively; cdr is the
aversion coefficient to downside risk; cup is the expectation coefficient
to upside potential; and τdr and τup are the tolerance (or indifference)
levels to downside risk and to upside potential, respectively.

Decision makers define the benchmark depending on their

definitions of loss and gain. A fair comparison uses the same benchmark
for all production strategies. Santos et al. (2017a) used the SPS with
maximum EMV as the reference and its EMV as the benchmark. Santos
and Schiozer (2017) used the EMV of the best strategy without in-
formation acquisition as the benchmark.

Semi-deviation (short for semi−standard deviation) from the
benchmark return measures subsets of standard deviation and differ-
entiates good variability from bad. Lower semi-deviation (Eq. (2))
quantifies downside risk, while upper semi-deviation (Eq. (3)) quanti-
fies upside potential.

= = −− −
S S E min NPV B{ [( ), 0] }B B

2 2 (2)

= = −+ +
S S E max NPV B{ [( ), 0] }B B

2 2 (3)

where: −SB is the lower semi-deviation from the benchmark B,
−

SB
2 is the

lower semi-variance from B, +SB is the upper semi-deviation from B,
+

SB
2

is the upper semi-variance from B, E is the expectation operator, and
NPV is the net present value.

In Eq. (1), the
−

SB
2 decreases the expected value according to the

level of risk of the production strategy and the decision maker's risk
aversion (cdr), while the

+
SB

2 increases the expected value according to
the upside potential of the strategy and the decision maker's expecta-
tions (cup). Attitudes can also be modeled with tolerance levels to each
domain of uncertainty, where =τ c1/ . When → ∞τ , decisions are
based on EMV.

Following the proposal by Santos et al. (2017a) and the application
of EVoI by Santos and Schiozer (2017), EVoF is given by Eq. (4). This
approach improves EVoF assessments because it accounts for individual
changes in the risk curve, and weights the decision maker's attitude
toward downsides and upsides. EVoF can be calculated as the expected
increase in EMV (Eq. (5)) in a particular case of Eq. (4) ( = =c c 0)dr up .

= −EVoF ε NPV ε NPV( ) ( )with flexibility without flexibility (4)

= −EVoF EMV EMVwith flexibility without flexibility (5)

3. Case study

We applied our methodology to the benchmark reservoir model
UNISIM-I-D (Gaspar et al., 2015), a case study for production strategy
selection. UNISIM-I-D is a sandstone oil reservoir located 80 km off-
shore. Based on the Namorado Field in the Campos Basin, Brazil, the
field is in the development phase, with four years of initial production
for four vertical production wells. The reservoir depth varies between
2900m and 3400m and the water depth is 166m. The recovery me-
chanism for this reservoir is waterflooding. The simulation model has a
corner point grid with 81× 58×20 cells measuring 100×100×8 m,
with a total of 36,739 active cells. The simulation runtime for this re-
servoir model is approximately five minutes using a commercial black-
oil numerical reservoir simulator and four processors in parallel com-
puting.

UNISIM-I-D has a set of reservoir (Table 1), operational (Table 2),
and economic uncertainties. In this application, we focused on the use
of flexibility to manage reservoir uncertainties and used a deterministic
economic scenario to calculate the NPV (Table 3). The reservoir has two
regions separated by a fault of unknown transmissibility, the West block
and the East block (Fig. 4). The absence or presence of hydrocarbons in
the East block is a key uncertainty because this region has not yet been
drilled. This uncertainty affects production strategy selection.

The platform investment (Invplat), in US$ million, is given by Eq. (6)
(Gaspar et al., 2015) where Qo is the oil processing capacity (1000m3/
day), Qw is the water processing capacity (1000m3/day), Qwi is the
water injection capacity (1000m3/day), and n is the number of well
slots.

= + × + × + × + ×Inv Q Q Q n417 (16.4 3.15 3.15 0.1 )plat o w wi (6)

Fig. 3. Benchmark return (B) separates the domains of undesirable variability
(downside risk, marked in red) and desirable variability (upside potential,
marked in green) of the net present value (NPV) risk curve (continuous black)
(modified from Santos et al., 2017a). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)
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The initial investment of a flexible platform (Invflex plat) is given by
Eq. (7) (Marques et al., 2013), which considers a premium (Δ) paid to
prepare the system for expansion. The cost of expansion from the initial
capacity (Invplat, initial capacity) to the expansion capacity (Invplat, expansion
capacity) is given by Eq. (8) (Marques et al., 2013), where α is the cost
relationship between installing the expansion before and after the start
of production.

= +Inv Inv Δflex plat plat (7)

= ∗ −Expansion cost α Inv Inv( )plat expansion capacity plat initial capacity, , (8)

In this case study, Δ=US$ 10 million and α=1.6 as Marques et al.
(2013) suggested for a similar case study.

We calculated the NPV using a simplified net cash flow formulation
based on the Brazilian Royalty & Tax fiscal regime (Eq. (8)), where NCF
is the net cash flow, R is the gross revenue, Roy is the amount paid in
royalties, ST is the amount paid in social taxes, OPEX is the operational
expenditure, T is the corporate tax rate, CAPEX is the investment in
equipment and facilities, and AC are abandonment costs.

= − − − ∗ − − −NCF R Roy ST OPEX T CAPEX AC[( ) (1 )] (9)

In this application, we used a fictitious decision maker with the
same attitude as that described by Santos and Schiozer (2017) to assess
EVoI for the development of UNISIM-I-D. The decision maker is averse
to downside risk (τdr =US$ 700 million) and willing to exploit upside
potential (τup =US$ 700 million). For the semi-deviation calculation,
we set the benchmark as the EMV of the best production strategy
without flexibility.

4. Results

We used the results of the application of Schiozer et al. (2015) of
UNISIM-I-D as follows: (1) a set of 214 equiprobable scenarios that
match production data, combining all reservoir and operational un-
certainties and (2) a set of nine rigid specialized production strategies
(S1 to S9) (Table 4).

Schiozer et al. (2015) sampled 500 scenarios using the statistical

technique discretized Latin Hypercube with geostatistics (Schiozer
et al., 2017) combining all reservoir and operational uncertainties
(Tables 1 and 2). Schiozer et al. (2015) conducted a multi-objective
uncertainty reduction process (Avansi and Schiozer, 2015; Bertolini
et al., 2015) using the four years of production data for four vertical
production wells. Many scenarios recorded good matches because of the
brief history period with almost no water production. Thus, 214 sce-
narios were accepted and maintained as equiprobable because of the
lack of evidence to prioritize scenarios. Schiozer et al. (2015) selected a
subset of nine RMs from the set of 214 scenarios using the proposal by
Meira et al. (2016). The subset of RMs reflects the degree of uncertainty
for input variables (reservoir and operational uncertainties) and output
variables (production, injection, and economic forecasts) observed in
the full set of 214 scenarios.

Schiozer et al. (2015) optimized one production strategy for each
RM, providing a set of nine rigid SPSs (S1 to S9). The optimization of
each SPS was divided into five phases: (1) number and type of wells,
and platform capacity; (2) placement of wells and fine-tuning of plat-
form capacity constraints; (3) well opening schedule; (4) well operating
and monitoring constraints; and (5) fine-tuning. These SPSs were

Table 1
Reservoir uncertainties of the UNISIM-I-D case study with updated probabilities after history-matching procedures (Gaspar et al., 2015). Data files for all uncertain
attributes, namely PVT tables and water relative permeability curves are available at https://www.unisim.cepetro.unicamp.br/benchmarks/br/unisim-i/unisim-i-d.

Attribute Description Type Value (probability)

−2 −1 0 +1 +2

img Petrophysical characteristics discrete [realization] 214 equiprobable geostatistical realizations of porosity, permeability, and net-to-gross ratio (0.0047)
kr Water relative permeability discrete [table] kr1 (0.08) kr2 (0.19) kr0 (0.41) kr3 (0.19) kr4 (0.13)
pv East block pvt data discrete [table] – pv1 (0.34) pv0 (0.33) pv2 (0.34) –
bl Structural model discrete [map] – Without east block

(0.31)
With east block
(0.69)

– –

wo East block water-oil contact Continuous discretized
[scalar]

3074m (0.248) 3124m (0.341) 3174m (0.121) 3224m (0.173) 3274m (0.117)

cp Rock compressibility Continuous discretized
[scalar]

– 23.6E-6 cm2/kgf
(0.12)

53.0E-6 cm2/kgf
(0.66)

82.4E-6 cm2/kgf
(0.22)

–

kz Vertical permeability
multiplier

Continuous discretized
[scalar]

0.475 (0.12) 0.949 (0.19) 1.500 (0.25) 2.051 (0.23) 2.525 (0.21)

Table 2
Operational uncertainties of UNISIM-I-D case study (Gaspar et al., 2015).

Attribute Description Type Value (probability)

−1 0 +1

ogr Group availability continuous discretized [scalar] 0.91 (0.33) 0.96 (0.34) 1.00 (0.33)
opl Platform availability continuous discretized [scalar] 0.90 (0.33) 0.95 (0.34) 1.00 (0.33)
opw Production-well availability continuous discretized [scalar] 0.91 (0.33) 0.96 (0.34) 1.00 (0.33)
oiw Injection-well availability continuous discretized [scalar] 0.92 (0.33) 0.98 (0.34) 1.00 (0.33)
ff Well-index multiplier continuous discretized [scalar] 0.70 (0.33) 1.00 (0.34) 1.40 (0.33)

Table 3
Deterministic economic scenario of UNISIM-I-D case study (Gaspar et al., 2015).

Type Attribute (unit) Value

Market variables Oil price (US$/m3) 314.50
Discount rate (%) 9.00

Taxes Royalties (%) 10.00
Social taxes (%) 9.25
Corporate taxes (%) 34.00

OPEX Oil production (US$/m3) 62.90
Water production (US$/m3) 6.29
Water injection (US$/m3) 6.29
Abandonment (US$ Million) (% of well investment) 8.20

CAPEX Horizontal well drilling and completion (US$
Thousand/m)

61.17

Vertical well drilling and completion (US$ Million) 21.67
Well – platform connection (US$ Million) 13.33
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optimized using CMG's commercial software CMOST, using the De-
signed Exploration Controlled Evolution (DECE) optimization algo-
rithm (Yang et al., 2007).

From the set of nine SPSs, production strategy S9 was the best under
uncertainty, maximizing Eq. (1). In this study, we used S9 as the robust
production strategy as it ensured the best performance under un-
certainty.

4.1. Comparing the specialized production strategies

We identified the best SPS for each scenario individually using a
black-oil numerical reservoir simulator (Fig. 5). We used the frequency
of each specialized strategy as weight when computing data statistics of
decision variables.

The decision variables we considered are number of wells (Fig. 6
and Fig. 7), placement of wells, and platform size (fluid processing and
injection capacities, and number of well slots) (Fig. 8). We found major
differences in the number of wells in East block, placement of wells in
West block, and platform size, meaning that the value of flexibility
should be assessed.

4.2. Defining candidate flexibilities

The number of wells in the West block does not vary significantly
(Fig. 6) and so was set as in the robust production strategy: nine pro-
ducers and five injectors, totaling fourteen wells. Regarding the number
of wells in the East block, one third of the strategies has no wells in this
block, one third has three wells (two producers and one injector), and
the remaining third has six wells (four producers and two injectors)
(Fig. 7). Thus, we consider the flexibility to connect additional wells in
the event that hydrocarbons are found in this region: three well slots
available (allowing the connection of three additional wells), and six
well slots available (allowing the connection of up to six additional
wells).

The placement of wells in the West block is a key difference between
production strategies, and they are placed as in the robust production

strategy. In the East block, the placement of wells has similarities be-
tween the strategies with three wells (S1, S2, and S4), and those with
six wells (S5, S8, and S9). To choose the robust placement of wells for
each case, we identified the best strategy for each value the uncertain
attributes can take (Table 5).

Platform sizes also differed significantly (Fig. 8), so we added
flexibility by starting with smaller capacities to expand as needed. The
two possibilities for the initial capacity correspond to the following
strategies: (1) S1, the best on average for the subset of models without
hydrocarbons in the East block (Table 5) and (2) S7, the smallest
platform of the set of specialized strategies (Fig. 8 and Table 4). Two
degrees of expansion were considered: (1) up to S8, the largest platform
of the set (Fig. 8 and Tables 4) and (2) up to S4, the medium-sized
platform with capacities close to the mean values (Fig. 8 and Table 4).

Table 6 summarizes these proposed flexibilities, while investments
and expansion costs are shown in Table 7.

Note that the viability of intelligent well completion as a flexibility
in UNISIM-I-D was already studied by Morais et al. (2017) and we did

Fig. 4. Porosity map of UNISIM-I-D reservoir model, including the position of the four producers already drilled: (a) a scenario with the East block, and (b) a scenario
without the East block.

Table 4
Characteristics of the nine specialized production strategies. Prod: number of production wells; Inj: number of water injection wells.

Production Strategy Wells in West block Wells in East block Total Wells Platform (1000m3/day)

Prod Inj Total Prod Inj Total Ql Qo Qw Qwi

S1 10 5 15 2 1 3 18 16.3 16.3 9.1 23.3
S2 8 5 13 2 1 3 16 16.3 16.3 11.2 22.8
S3 9 5 14 0 0 0 14 14.0 14.0 9.8 19.5
S4 9 5 14 2 1 3 17 18.2 18.2 11.5 25.5
S5 9 5 14 4 2 6 20 17.8 17.8 10.5 23.8
S6 9 6 15 0 0 0 15 14.3 14.3 7.3 20.6
S7 9 6 15 0 0 0 15 13.2 13.2 5.2 19.5
S8 10 5 15 4 2 6 21 21.7 21.7 14.6 29.8
S9 9 5 14 4 2 6 20 20.2 20.2 9.8 28.2

Fig. 5. Best production strategy according to the number of scenarios. Bars
show the number (and frequency) of scenarios (out of 214) for which each SPS
is best.
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not consider this type of flexibility here. Also note that we applied the
same rules for well control as in the SPS and we did not further optimize
these variables.

4.3. Assessing candidate flexibilities and defining implementation rules

The first assessment of viability is estimated using the maximum
value of flexibility, which is calculated by selecting the best action for
each scenario, without pre-defining a decision rule. The probabilistic-
based decision rule is defined only for the viable candidates.

4.3.1. Candidate flexibility F1
Candidate flexibility F1 is rejected (Fig. 9) because it is less at-

tractive than S9. Despite some risk reduction (−3.9%), F1 recorded
lower EMV (−2.5%) and lower upside potential (−19.2%), thus

reflecting an expected loss of ε(NPV) by −5.7%.

4.3.2. Candidate flexibility F2
Candidate flexibility F2 is accepted because of the potential to in-

crease ε(NPV) by +10.5%. Before defining the implementation rule, we
assessed the percentage of scenarios that implement the candidate
flexibility. Many scenarios use all six available well slots (50.5%), but
platform expansion to the highest capacities (S5, S8, S9) is rarely used
(Fig. 10) (9.8% of scenarios use capacities S5, S8, or S9, i.e., 21 out of
214 scenarios). Thus, we modify F2 to consider capacity expansion only
up to the medium-sized S4, maintaining six available well slots. The
new risk curve for the maximum value of flexibility supports this
modification because it mostly coincides with that for F2 (expansion up
to S8) (Fig. 11).

We defined probabilistic-based implementation rules (Table 8) by

Fig. 6. Comparison of specialized production strategies considering number of wells in the West block: (a) number of producers; (b) number of injectors; (c) total
number of wells; and (d) data statistics, including minimum (min), maximum (max), mean, and standard deviation (SD) of number of wells.

Fig. 7. Comparison of specialized production strategies considering number of wells in the East block: (a) number of producers; (b) number of injectors; (c) total
number of wells; and (d) data statistics, including minimum (min), maximum (max), mean, and standard deviation (SD) of number of wells.
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characterizing the subsets of scenarios that implement each level of
flexibility. That is, we analyzed histograms of uncertain attributes,
comparing the different subsets of scenarios. Although this case study
has multiple uncertain attributes (Tables 1 and 2), we found that only
bl, wo, and kr significantly impact the response and correlate with the
choice of flexibility. Fig. 12 exemplifies analyses of the number of wells
according to the presence (bl[0]) or absence (bl[−1]) of hydrocarbons
in the East block and the five depths of water-oil contact (wo[−2] to wo
[+2]).

We compared risk curves for the case with the maximum value of
flexibility and with decision rules (Fig. 13 and Table 9), revealing that
the probabilistic rule we defined closely captures the full potential of
flexibility F2, with mild limitations in capturing the upsides.

4.3.3. Candidate flexibility F3
Candidate flexibility F3 is accepted because of the potential to in-

crease ε(NPV) by +7.6%. We defined probabilistic-based im-
plementation rules (Table 10) by characterizing the scenarios that use
each level of flexibility using the same procedure as described for F2.

We compared risk curves for the case with the maximum value of
flexibility and with decision rules (Fig. 14 and Table 11), revealing that
the probabilistic rules we defined captured the downsides but limited
the upsides of flexibility. Positive EVoF is still ensured.

4.4. Selecting the best flexible candidate production strategy

Candidates F2 and F3 with decision rules are both suitable, but F2 is
the best (Fig. 15 and Table 12). Platform capacity expansion is installed
in 51% of the scenarios (Fig. 16a), with 69% usage of the additional
well slots (Fig. 16b), and F2 recording an EVoF of US$ 123 million.

4.5. Assessing the effects of delays in the implementation time

The results presented so far assumed that flexibility could be im-
plemented immediately following the installation of the initial pro-
duction strategy (t1) (initial platform capacities and wells in the West
block), i.e., 1.5 years after the beginning of production. However, many
factors can delay implementation, such as logistics, time for uncertainty

Fig. 8. Comparison of specialized production strategies considering platform
size: (a) fluid processing capacities for liquid (Ql), oil (Qo), water (Qw) pro-
duction, and for water injection (Qwi); and (b) number of well slots. Data sta-
tistics include minimum (min), maximum (max), mean, and standard deviation
(SD).

Table 5
Best production strategy, based on ε(NPV), for the subset of scenarios (out of
214) grouped by uncertainty level (−2 to +2) of the uncertain attributes bl and
wo.

bl wo

−1 0 −2 −1 0 +1 +2

Best strategy based on ε(NPV) S1 S9 S1 S9 S9 S9 S9

Table 6
Flexible candidate production strategies.

Candidate flexibility Flexible attributes Rigid or pre-established attributes

F1 - Initial platform capacity S1, expandable up to S8.
- 3 well slots available for the East block.

- Number and placement of wells in West block: S9
- Placement of wells in East block, if present: S1
- Number of well slots: 17

F2 - Initial platform capacity S1, expandable up to S8.
- 6 well slots available for the East block.

- Number and placement of wells in West block: S9
- Placement of wells in East block, if present: S1 (if 3 wells) or S9 (if 6 wells)
- Number of well slots: 20

F3 - Initial platform capacity S7, expandable up to S4.
- 6 well slots available for the East block.

- Number and placement of wells in West block: S9
- Placement of wells in East block, if present: S1 (if 3 wells) or S9 (if 6 wells)
- Number of well slots: 20

Table 7
Platform investment and capacity expansion costs for the flexible candidate
production strategies (excluding drilling and completion costs of additional
wells). Values in US$ million.

Candidate flexibility Platform investment Expansion costs

F1 Invplat S1, 17 well slots + Δ = 797.7 Capacity S2=10.5
Capacity S4=74.1
Capacity S5=50.4
Capacity S8=203.3
Capacity S9=129.8

F2 Invplat S1, 20 well slots + Δ = 798.0 Capacity S2=10.5
Capacity S4=74.1
Capacity S5=50.4
Capacity S8=203.3
Capacity S9=129.8

F3 Invplat S7, 20 well slots + Δ = 723.1 Capacity S1=119.8
Capacity S2=127.6
Capacity S4=194.7

Fig. 9. NPV risk curve for the robust production strategy S9 and the candidate
flexibility F1 without an established decision rule. The vertical dashed line
marks the benchmark separating downside risk from upside potential.
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to unfold, and time to incorporate this information into model updating
and decision-making. Here, we did not investigate these causes, only
assessed how implementation delays affected the EVoF.

We considered a one-year delay (t2) and a two-year delay (t3),
which revealed that delays in implementation decrease the value of
flexibility and may completely negate its value (Fig. 17 and Table 13).

As the fault separating the West and the East blocks is sealing, im-
plementation delays resulted in delayed oil recovery. Thus, we attrib-
uted the decreases of EVoF to the time value of money.

Fig. 10. Assessing the percentage of scenarios that implement the flexibility F2 (expansion up to S8): (a) platform capacity expansion and (b) additional well slot
usage.

Fig. 11. NPV risk curve for the robust production strategy S9 and the candidate
flexibility F2 with platform expansion up to S4 and S8, without an established
decision rule. The vertical dashed line marks the benchmark separating
downside risk from upside potential.

Table 8
Decision rules for candidate flexibility F2.

bl wo kr Platform expansion? Additional wells?

−1 – all No No
0 −2 −2, −1 No +3

0, +1, +2 S2
−1, 0, +1, +2 −2 No +6

−1 S2
0, +1, +2 S4

Fig. 12. Optimal number of wells according to the attributes: (a) structural uncertainty (bl) and (b) water-oil contact (wo) in the East block (exclusive to the scenarios
with East block, bl[0]).

Fig. 13. NPV risk curve for the robust production strategy S9 and the candidate
flexibility F2 without an established decision rule (Max), and with the prob-
abilistic-based decision rule (DR). The vertical dashed line marks the bench-
mark separating downside risk from upside potential.

Table 9
Assessing the candidate flexibility F2 versus robust production strategy S9,
considering the maximum value of flexibility (Max) and the probabilistic-based
decision rule (DR). Values in US$ million.

S9 F2 Max F2 DR

EMV 1677.9 1761.2 +5.0% ✓ 1742.0 +3.8% ✓
SB- 369.3 324.8 −12.1% ✓ 330.2 −10.6% ✓
SB+ 373.6 410.7 +9.9% ✓ 391.2 +4.7% ✓
ε(NPV) 1682.4 1851.5 +10.1% ✓ 1804.9 +7.3% ✓
EVoF(EMV) 83.3 64.1
EVoF(ε) 169.6 122.5
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5. Discussion

Our proposal is based on the concept of representative models and
uses a predefined set of specialized production strategies optimized
individually for these models. This is only possible if RMs are ade-
quately selected, ensuring that both system inputs (probability dis-
tribution of uncertain attributes) and outputs (variability of production,
injection, and economic forecasts) are represented. If the set of RMs
represents the system, the set of production strategies provides decision
makers with the different possibilities to develop the field, including
number and placement of wells, and platform processing capacities.
Decision makers objectively assess how different (and similar) these
alternatives are and their characteristics, reducing the subjectivity in
defining a flexible system. Previous studies suggest that around nine
RMs are sufficient for production strategy selection (Schiozer et al.,
2004, 2015), but we recommend additional research on the optimal
number of RMs and specialized production strategies applied to EVoF
analyses.

Furthermore, note that the effectiveness of the flexible strategy in

managing uncertainty depends on a thorough optimization process to
generate adequate SPSs. In addition, similarly to any risk management
procedure, our method also relies on the adequate representation of
uncertainty. As reservoir characterization under uncertainty, un-
certainty reduction, or history matching are not the focus of this work,
we refer interested readers to Steps 1 through 5 of Schiozer et al.
(2015).

We used the specialized strategy that performed best under un-
certainty as the robust production strategy. The Robust Optimization,
an optimization problem formulated under uncertainty to maximize a
probabilistic objective function, has shown good results in the litera-
ture. For future research, we plan to consider a robust production
strategy obtained through a Robust Optimization procedure as an input
for our method. Note that both economic gains and additional com-
putational costs should be carefully assessed.

The comparison of candidate production strategies was a manual
process. To enable automation of this step, we recommend research on
quantitative indicators to compare the SPSs, especially for well place-
ment. Automating this step, the workflow we proposed to define flex-
ible production strategies can become a fully automated procedure.

A key challenge when choosing a flexible strategy is defining the
implementation rules. A prime advantage of our methodology is that it
does not apply pre-defined rules as inputs, thus eliminating biases and
ensuring more objective decision rules. However, the decision rules we
established did not capture the full potential of all flexibilities. We used
histograms to compare different subsets of scenarios according to the
optimal implementation of flexibility. This way, we aimed to correlate
the reservoir uncertainties that will unfold over time with the optimal
production strategy. Thus, limitations of decision rules may be attrib-
uted to difficulties in identifying the dominant reservoir uncertainties
affecting production strategy selection, namely the effects of geosta-
tistical realizations. Further research is recommended on indicators to
improve this analysis.

Table 10
Decision rules for candidate flexibility F3.

bl wo kr Platform expansion? Additional wells?

−1 – −2, −1, 0,
+1

No No

+2 S1
0 −2 −2 No +3

−1 S1
0, +1, +2 S2 +6

−1, 0, +1, +2 −2 S1
−1 S2
0, +1, +2 S4

Fig. 14. NPV risk curve for the robust production strategy S9 and the candidate
flexibility F3 without an established decision rule (Max), and with the prob-
abilistic-based decision rule (DR). The vertical dashed line marks the bench-
mark separating downside risk from upside potential.

Table 11
Assessing the candidate flexibility F3 versus robust production strategy S9,
considering the maximum value of flexibility (Max) and the probabilistic-based
decision rule (DR). Values in US$ million.

S9 F3 Max F3 DR

EMV 1677.9 1742.8 +3.9% ✓ 1718.3 +2.4% ✓
SB- 369.3 321.8 −12.9% ✓ 329.5 −10.8% ✓
SB+ 373.6 389.0 +4.1% ✓ 366.7 −1.8% ✘

ε(NPV) 1682.4 1811.0 +7.6% ✓ 1755.4 +4.3% ✓

EVoF(EMV) 64.9 40.4
EVoF(ε) 128.6 72.9

Fig. 15. NPV risk curve for the robust production strategy S9 and the candidate
flexibilities F2 and F3 with the probabilistic-based decision rule (DR). The
vertical dashed line marks the benchmark separating downside risk from upside
potential.

Table 12
Assessing the candidate flexibilities F2 and F3 with decision rules versus robust
production strategy S9. Values in US$ million.

S9 F2 DR F3 DR

EMV 1677.9 1742.0 +3.8% ✓ 1718.3 +2.4% ✓
SB- 369.3 330.2 −10.6% ✓ 329.5 −10.8% ✓
SB+ 373.6 391.2 +4.7% ✓ 366.7 −1.8% ✘

ε(NPV) 1682.4 1804.9 +7.3% ✓ 1755.4 +4.3% ✓
EVoF(EMV) 64.1 40.4
EVoF(ε) 122.5 72.9
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Because we used hundreds of scenarios, we ensured a more accurate
estimate of the EVoF. This is key because, as the difference between two
expected values, EVoF is highly sensitive to approximations and sus-
ceptible to errors. However, this approach made defining the decision
rules computationally demanding, requiring hundreds of flow simula-
tion runs. Future research is planned on assessing the feasibility of
defining the probabilistic analyses based on the small subset of re-
presentative models, each characterized by a probability of occurrence.
Having validated all steps of the workflow using the small subset of
RMs alone, we achieve a fully automated and computationally feasible
procedure to define flexible strategies.

In our case study, risk curve analyses showed that flexibility is im-
portant to reduce risk (−10.6%) and improve the upside potential
(+4.7%). However, the flexible production strategy recorded a mild
increase in the EMV (+3.8%), meaning that using the EMV alone
tended to underestimate the potential of flexibility. Conversely, when
considering delays in implementation, we recorded strong compromises
on the upside potential (decreases of up to −10.0%), while the EMV
still increased (+0.6%). In this case, the EMV overestimated the EVoF.
Thus, our proposal ensured a more quantitative EVoF estimate when
considering the decision makers attitude toward upsides and down-
sides.

We proposed flexibility to manage reservoir uncertainty. In our case
study, the use of flexibility was limited to the development of the East
block, which has lower oil in place than the already proven West block.
Still, we recorded an EVoF of US$ 123 million, an increase in project
value of over +7%. Higher increases are expected for case studies with
a higher degree of uncertainty and more uncertain attributes affecting
production strategy selection. Specifically, we recommend future re-
search on the use of flexibility to mitigate or exploit exogenous un-
certainties, such as uncertainty in oil price.

Simplifications may affect the EVoF. We defined decision rules ac-
cording to the different values of the uncertain reservoir attributes, in
other words, the decision to implement is based on knowledge gained
over time. We may have overestimated the EVoF because we did not

consider imperfect information. Conversely, the EVoF may have been
underestimated because we used a simplified approach for well control.
We also demonstrated implementation delays may strongly compro-
mise the estimated EVoF. That is, if it takes too long to learn about the
reservoir or if logistics prevent an early implementation, the EVoF de-
creased to the point that it had no value. Accordingly, including all
factors that may affect EVoF improves estimates of the value of flex-
ibility, and so improves decisions.

6. Conclusions

We proposed a decision structure to objectively define a flexible
production strategy to manage reservoir uncertainty in petroleum field
development. Our methodology (1) used a predefined set of rigid can-
didate production strategies (robust and specialized strategies) to de-
fine the flexible strategy, (2) established probabilistic-based im-
plementation rules, and (3) applied an objective-function that improved
the EVoF calculation by accounting for the purpose of flexibility to
mitigate risks or to exploit the upsides of uncertainty. Specific conclu-
sions of this work include:

• Efficient representative model selection and optimization allow
analyses to be based on a predefined set of candidate production
strategies;

• Defining the flexible strategy based on a set of rigid candidate
strategies reduces the subjectivity of decisions and eliminates prior
misconceptions and bias toward particular flexibilities;

• Implementation rules can be defined objectively using the reservoir
simulation outputs for multiple uncertain scenarios;

• Accounting for all changes in risk curves (increased EMV, reduced
downside risk, and increased upside potential) improves the EVoF
estimate, which cannot be ensured by the EMV alone;

• Implementation delays decrease EVoF to a point where flexibility
may lose its value.

Fig. 16. Assessing the percentage of scenarios that implement the flexibility F2: (a) platform capacity expansion and (b) additional well slot usage.

Fig. 17. (a) NPV risk curves for the robust production strategy S9 and the candidate flexibility F2 implemented at different times; the vertical dashed line marks the
benchmark separating downside risk from upside potential. (b) Difference between the NPV risk curves for F2 implemented at different dates and the NPV risk curve
for S9.
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