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Abstract. Accurately characterizing fractures is complex. Several studies have proposed reducing uncertainty
by incorporating fracture characterization into simulations, using a probabilistic approach, to maintain the geo-
logical consistency, of a range of models instead of a single matched model. We propose a new methodology,
based on one of the steps of a general history-matching workflow, to reduce uncertainty of reservoir attributes
in naturally fractured reservoirs. This methodology maintains geological consistency and can treat many reser-
voir attributes. To guarantee geological consistency, the geostatistical attributes (e.g., fracture aperture,
length, and orientation) are used as parameters in the history matching. This allows us to control Discrete Frac-
ture Network attributes, and systematically modify fractures. The iterative sensitivity analysis allows the inclu-
sion of many (30 or more) uncertain attributes that might occur in a practical case. At each uncertainty
reduction step, we use a sensitivity analysis to identify the most influential attributes to treat in each step.
Working from the general history-matching workflow of Avansi et al. (2016), we adapted steps for use with
our methodology, integrating the history matching with geostatistical modeling of fractures and other proper-
ties in a big loop approach. We applied our methodology to a synthetic case study of a naturally fractured reser-
voir, based on a real semi-synthetic carbonate field, offshore Brazil, to demonstrate the applicability in practical
and complex cases. From the initial 18 uncertain attributes, we worked with only 5 and reduced the overall
variability of the Objective Functions. Although the focus is on naturally fractured reservoirs, the proposed
methodology can be applied to any type of reservoir.

Nomenclature

NQD Normalized Quadratic Distance
N Size of a generic sample
Sim Simulated results
Hist Observed data
AQD Acceptable Quadratic Distance
NQDS Normalized Quadratic Distance with Sign
QDS Quadratic Distance with Sign
SD Simple Distance
Tol Tolerance
Cp Constant added to production data
k Number of uncertain attributes
p Uncertain attributes from the simulation model
q Uncertain attributes from the geostatistical

model
DLHC Discrete Latin Hypercube
R Correlation coefficient
Rc Cut-off value for the correlation coefficient

OF Objective Function
LOF Local Objective Function
NIF Number of Influenced Functions
FR-R Reference model
FR-SF Refined simulation model
FR-SC Coarse simulation model
DFN Discrete Fracture Network

1 Introduction

History matching is an important step in reservoir manage-
ment as it can provide reliable models to forecast produc-
tion. A lack of reliable, detailed information about
reservoir characteristics leads to many uncertainties when
modeling. Numerous oil reserves are in naturally fractured
reservoirs, as noted by Nelson (2001), Allan and Sun* Corresponding author: luisnagasaki@gmail.com
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(2003), and Bourbiaux (2010), with a volume of 20% of the
World’s oil reserves and production as estimated by
Firoozabadi (2000). Despite this potential, some oil reser-
voirs might have low recovery factors, as low as 9% (Allan
and Sun, 2003). This suggests the need for new methodolo-
gies to improve productivity.

Natural fractures can act as flow corridors, improving
the permeability and causing early water breakthrough;
or as barriers, impeding the flow. Reservoirs with intense
fracturing can deplete rapidly, going quickly from high ini-
tial production rates to low. Thus, fracture mischaracteriza-
tion can lead to premature well depletion and low recovery
factors while an adequate characterization results in well-
informed management decisions and economically efficient
field production.

Depending on the fracturing intensity, fractures play
different roles in the reservoir. To better represent these
reservoirs, some authors proposed classifying fractured
reservoirs by the effect of fracture systems on the porosity
and permeability of the reservoir (Nelson, 2001; Allan and
Sun, 2003; Bourbiaux, 2010). In particular, Nelson (2001)
classified fractured reservoirs into four types:

d Type I: both porosity and permeability result from
fractures.

d Type II: the essential reservoir permeability comes
mainly from fractures.

d Type III: fractures increase the permeability of an
already producible reservoir.

d Type IV: fractures do not affect the porosity or the
permeability of the reservoir, but create anisotropy
(acting as barriers).

As these types of fractured reservoirs behave differently,
the production strategy should reflect the reservoir behavior
particular to each type (I, II, III or IV).

In this work, we focus on Type II, where fractures signif-
icantly affect the fluid flow. Such reservoirs are character-
ized by the presence of two distinct types of porous
media: matrix and fractures, and we use dual porosity
approach for simulation.

Hydrocarbons usually accumulate in the matrix poros-
ity and flow to fractures, which work as permeable path-
ways to producer wells. Most of these reservoirs have very
low matrix permeability (up to 10 mD), and fractures are
the main fluid-conducting medium (Tran, 2004, p. 3). Thus,
accurately modeling fracture networks improves the relia-
bility of models.

According to Tran (2004), characterizing fractures is
not straightforward as they form a complex system. There
are uncertainties for attributes such as distribution, loca-
tion, size and orientation that characterize the fracture net-
work. Different data sources are used to characterize these
attributes, as they are often present at different scales, from
millimeter (cell scale) to kilometer (reservoir scale).
Tran (2004) notes that no single tool can provide all the
information needed (Tran, 2004, p. 8). For instance, seismic
data and outcrops provide information on a regional scale;

while well log, core, and formation micro scanner images
provide information on a local scale.

Accurate representation of properties using different
scales is difficult; small-scale fractures, smaller than a cell
scale, can be represented as equivalent cell property, in a
Representative Elementary Volume (REV). On the other
hand, large fractures, which can reach kilometers, have to
be discretized individually. Fractures of intermediate scales
(fracture swarms) are difficult to model, as they are too
numerous to model explicitly and too large to form an
equivalent medium at simulator scale Bourbiaux (2010).
The definition of the REV for fractured reservoirs is also
difficult as highlighted and discussed by several authors
(Warren and Root, 1963; Long et al., 1982; Gilman, 2003;
Müller et al., 2010; Kuchuk et al., 2015). The size of the
REV must be larger than the heterogeneity size and smaller
than the macroscopic length-scale, for instance, well spacing
(Royer et al., 2002; Gilman, 2003).

Integrating the static modeling into the history-match-
ing process allows us to directly modify a geostatistical
model, controlling attributes of individual fractures and
getting geologically consistent models, i.e., honoring both
static and dynamic information. Some studies proposed
history matching the fracture attributes (Hu and Jenni,
2005; Gang and Kelkar, 2006), but most only match a
few selected attributes, such as permeability, length, loca-
tion, or size, or use a simplified reservoir. There is a lack
of methodologies for complex reservoirs that include several
fracture attributes.

To deal with attributes of different types, in this work,
we propose a methodology to reduce uncertainty in natu-
rally fractured reservoirs based on the big loop, which
includes the update of the static model during the history-
matching process. There are two significant advantages of
the proposed methodology:

1. The methodology is independent of scale and as such
can be used for any uncertain reservoir attribute. It
considers the whole process from the static modeling,
allowing the combination of attributes of geostatisti-
cal and simulation models in a big loop approach.
Modifying attributes of the Discrete Fracture
Network (aperture, length, orientation, etc.) leads to
geologically consistent models and allows reproducing
the network at the end of the process. This is impossi-
ble when modifying the fracture attributes of the sim-
ulation model, as attributes are the result of
geostatistical and simulation attributes combined.

2. Iterative sensitivity analysis. We focus on the most
influential attributes at each uncertainty reduction
step, maintaining those that are ‘‘non-influencing’’
(explained below in the methodology), to reduce the
number of attributes and improve the likelihood of
obtaining good combinations (models close to the his-
tory). The novelty of our methodology is that after
each uncertainty reduction step, there is a new sensi-
tivity analysis to re-evaluate all attributes. Thus, an
attribute modified in a prior step can be changed in
the following step if considered to be influential.
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2 Literature review

The challenge of history matching is longstanding with
many works focusing on the subject, as shown by Oliver
and Chen (2011), and Rwechungura et al. (2011). However,
some methods are unsuitable for naturally fractured reser-
voirs, such as modeling fractures as discrete objects. This
section looks at different history-matching methods for nat-
urally fractured reservoirs.

Hu and Blanc (1998) first proposed the gradual defor-
mation method for facies modeling, it combines two geosta-
tistical realizations to create a new one, constrained by the
geological information. For example, Hu (2003) applied the
Boolean model to represent geologic objects, such as faults
and fractures, and the Poisson point pattern to create loca-
tions of objects in the reservoir. Then, he modified the
object’s parameter using the gradual deformation method.
He applied the method to a simple synthetic case to model
flow barriers, and modified the object’s location. We pro-
pose the modification of several geostatistical attributes of
fractures and the application to a practical case.

Hu and Jenni (2005) extended the work of Hu (2003) to
include modifying characteristics of objects in the history
matching, such as size, quantity, and shape through grad-
ual deformation. Subsequently, Jenni et al. (2007) applied
the gradual deformation method to large-scale fractures
under seismic resolution (sub-seismic faults and fracture
swarms). In our methodology, we also change the character-
istics of each fracture but through modifying the probability
distribution of the mean of attribute.

After Jenni et al. (2007), Verscheure et al. (2012)
applied the gradual deformation method to change sub-seis-
mic fault locations in a synthetic case with 121 · 150 · 1
blocks and average thickness of 10 m. They divided the
reservoir in four regions and applied the deformation algo-
rithm per region to match the water cut data. In this work
we propose other method to modify fracture properties and
use a 3D case for application.

Caers (2002) applied a training image to measure the
correlation between multiple points, allowing better charac-
terization of complex structures; replacing the variogram,
which commonly measures the geological continuity, com-
puting the correlation between two locations in space
(two-point statistics). Afterwards, Caers (2003) combined
the gradual deformation method and training image
approach, with proxy models based on streamlines to a
2D case of a fractured reservoir. He used the training image
to constrain new realizations; and the proxy, to model the
modified permeability. In another application of training
image approach, Jung et al. (2013) generated a set of train-
ing images from DFN models, and iteratively updated the
occurrence probability of each image, discarding those with
low probabilities. Despite working with DFN models, they
did not change the attributes of the fractures, as we do in
this work.

Cui and Kelkar (2005) based their method on the gradi-
ent, proposing the chain rule to compute the sensitivity of
the fracture intensity to dynamic data, instead of changing
properties directly from the simulation model, such as per-
meability and the sigma factor. Similarly, Gang and Kelkar

(2006) proposed modifying the permeability of each frac-
ture instead of the grid block effective permeability of the
simulation model. Gang and Kelkar (2008) later included
the water-oil capillary pressure and matched fracture per-
meability and water-oil capillary pressure, simultaneously.
Fracture permeability is the result of a combination of dif-
ferent attributes, after the geostatistical simulation. We
propose changing the attributes that are input to the geo-
statistical simulation.

The work of Basbug and Karpyn (2008) also addresses
capillary pressure. They proposed a methodology using
B-Spline functions to model relative permeability and the
Brooks-Corey formula to model capillary pressure. They
used a fractured core sample model for the application.
We also consider relative permeability and capillary pres-
sure, but in a practical case and mixing attributes from dif-
ferent scales.

To reduce the high computational effort required by
naturally fractured reservoirs, some works proposed the
streamline-based approach (Vasco et al., 1997; Bahar
et al., 2003) while Al-Harbi et al. (2004) applied a dual-por-
osity streamline model to simulate fracture flow, treating
fractures and matrix as separate continua, connected
through a transfer function. They applied the concept of
generalized travel time to match the water-cut data by
modifying fracture permeability. While Al-Harbi et al.
(2004) worked on the simulation model (coarse scale), we
work with attributes from the geological model (fine scale).
Moreover, we consider several Objective Functions, such as
oil and water production rates, bottom-hole pressure and
water injection rate.

Similarly, De Lima et al. (2009) proposed the applica-
tion of connectivity analysis to characterize well-reservoir
and well-to-well connectivity in fractured reservoirs. Again,
the authors worked only on the simulation model while we
use the geological and simulation models.

With technological advancement, intensive computa-
tional approaches have emerged in recent years (such as
integrating static modeling into the history-matching pro-
cess). In this context, including 4D seismic data in the his-
tory matching, called Seismic History Matching (SHM), has
the potential to improve matching quality, as it allows sat-
uration maps to be matched, as well as matching produc-
tion data. For instance, Tolstukhin et al. (2012) applied
the SHM to a portion of the Ekofisk field. They identified
the eight most important attributes through traditional
sensitivity analyses (one at a time), including fracture’s
attributes. We propose an alternative; the application to
a whole reservoir case, and a modified sensitivity analysis,
performed iteratively.

Other approaches are: artificial neural networks
(Al-Anazi and Babadagli, 2009), Markov Chain Monte
Carlo (Ginting et al., 2011), probability perturbation
method (Suzuki et al., 2007), recovery curve method
(Ghaedi et al., 2015), Discrete Fracture Network flow sim-
ulator (Lange, 2009), Ensemble Kalman Filter (Lu and
Zhang, 2015; Nejadi et al., 2015), and Kernel principal com-
ponent analysis (Paico, 2008).

Most works use simplified reservoirs for their applica-
tions, such as 2D or large-scale vertical fractures crossing
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the reservoir. Moreover, many of these works modified few
fracture attributes, such as quantity and location, or perme-
ability and capillary pressure. However, we apply our
methodology to a complex reservoir, with several fracture
attributes.

The quantity of uncertain attributes is a concern in any
history-matching problem. By dividing the range of the
attribute into intervals, the number of combinations among
attributes increases significantly. One solution to this prob-
lem is to use sensitivity analyses to select the most influen-
tial attributes and reduce the search space (Almeida Netto
et al., 2003; Rotondi et al., 2006; Kassenov et al., 2014).

To identify the most important input parameters,
Mckay et al. (1999) applied rLHS (replicated Latin Hyper-
cube) and correlation ratio. In each iteration, they applied
rLHS sampling, simulated the system they were studying,
and selected the input parameter with the highest correla-
tion ratio. Next, they maintained this parameter, and
repeated the iteration, determining the parameter with
the highest correlation ratio among those remaining, main-
taining that for the next iteration. This way they sequen-
tially evaluated the importance of each input and
obtained the set of most important input parameters. They
used an example of military aircrafts although LHS is suit-
able to analyze sensitivity in fractured reservoirs. We iden-
tify the most influential attributes, though using correlation
matrix.

Ford and Flynn (2005) presented a statistical screening
procedure applied to dynamic system models. In their
study, they calculated the correlation coefficient of each
uncertain input parameter for each period of the output.
Then, they defined the desired period of analysis and eval-
uated the behavior of the correlation coefficient for that per-
iod. This way, they evaluated the change of the correlation
coefficient during a certain period and determined the most
important inputs. Afterwards, Taylor et al. (2010) proposed
the six-step statistical screening approach. Similarly, we
also evaluate the correlation coefficient, although using
Latin Hypercube for discrete attributes to generate the
combinations.

Feraille and Marrel (2012) applied the Morris method
for screening and sensitivity analysis to identify most
influential attributes of PUNQS field. They used the most
influential attributes to build a proxy model and perform
probabilistic history matching. In this work we propose dif-
ferent approach for screening influential attributes and
show an application to case of a fractured reservoir.

Maschio and Schiozer (2016) applied the correlation
coefficient to a petroleum reservoir. They used the correla-
tion matrix to identify and select affected Objective
Functions for each uncertain attribute. Then, they
computed local Objective Functions (using only those influ-
enced) for each attribute and generated new histograms for
each one. This is the method we base our work on to update
probability distributions of the most influential attributes.

As stated in the introduction, naturally fractured reser-
voirs contain more uncertain attributes when compared to
non-fractured reservoirs. To address the gap in methodolo-
gies that model several fracture attributes in complex cases,
we propose an iterative sensitivity analysis to assess many

uncertain attributes and apply it to a complex case. We
use Discrete Latin Hypercube (DLHC) in a history-match-
ing process integrated with static modeling (as opposed to
traditional history-matching methods, which do not include
this integration), allowing direct contact with geostatistical
attributes and consistent modifications of the reservoir
model.

3 Methodology

Figure 1 shows the general history-matching workflow,
introduced by Avansi et al. (2016). Our methodology con-
tributes to Step 4, sampling and generating models; and
Step 11, reducing global uncertainty. For sampling
(Sect. 3.1), we propose the integration of attributes from
the static modeling, such as fracture aperture, length and
orientation, which generate images, with other attributes
such as coefficient of relative permeability curve or capillary
pressure, differently from previous works by, for instance,
Maschio and Schiozer (2016) who applied regional multipli-
ers and Avansi et al. (2016) who applied a virtual well
method (similar to pilot point) to perturb images. For the
uncertainty reduction step (Sect. 3.2), we propose the appli-
cation of sensitivity analysis iteratively to reduce the uncer-
tainty by groups of influential attributes. We also
considered a different procedure to select models to update
histograms and included the rescaling step, not considered
by the cited authors.

Below we summarize the 15 steps of the general history-
matching workflow:

1. Defining uncertain attributes: define uncertain attri-
butes, discretize their range of variation into levels,
and use a discrete probability distribution to repre-
sent each attribute. By discretizing intervals, we limit
the possible number of combinations, and also avoid
redundant combinations (values too close), which
can occur when sampling continuous intervals.

2. Defining acceptable tolerance: define the tolerance for
observed values. Determine the acceptable quadratic
distance (Eq. (5)) and normalize Objective Functions
(Eq. (1)). Models with a value between �1 and 1
(range) are considered matched (see Tab. 1). In some
specific situations, however, models outside this range
can be accepted. This tolerance remains fixed during
the whole uncertainty reduction process.

3. Defining the process: choose history matching or
uncertainty reduction. Although similar, they have
different objectives. Reducing the uncertainty of
attributes characterizes attributes to fit observed
data, by modifying characteristics of the probability
distribution. History matching finds the best history-
matched model(s), normally using an optimization
method.

4. Sampling and generation of models: generate n combi-
nations of attributes (n models). More details in
Section 3.1.

5. Numerical simulator: this step numerically simulates
n models.

L.A.N. Costa et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 41 (2018)4



6. Diagnosis: analyze the quality of n models through
NQD (Normalized Quadratic Distance), shown in
equation (1):

NQD ¼
XN

i¼1

Simi � Histið Þ2=AQD: ð1Þ

To facilitate the visualization and analysis of the results,
we use NQDS, which is the normalized quadratic distance,
as defined in equation (2):

NQDS ¼ QDS
AQD

; ð2Þ

where, NQDS is the Normalized Quadratic Distance with
Sign, QDS is the Quadratic Distance with Sign, and AQD
is the Acceptable Quadratic Distance. The expression of
QDS is:

QDS ¼ SD
jSDj

XN

i¼1

Simi � Histið Þ2; ð3Þ

where, N is the number of observed data, Sim is the sim-
ulated data, Hist is the observed data, and SD is the sim-
ple distance, computed by equation (3).

SD ¼
XN

i¼1

ðSimi � HistiÞ: ð4Þ

The expression of AQD is:

AQD ¼
XN

i¼1

Tol� Histi þ Cpð Þ2 ð5Þ

where, Tol is the tolerance, given by a percentage of the
observed data, and Cp is a constant to avoid dividing by
zero when the data has values close to zero, which can
occur with water production rate. As highlighted by
Maschio and Schiozer (2016), there is no standard rule
for choosing Tol and Cp, which might depend on engineer-
ing judgement. The choice of either depends on the relia-
bility of observed data and usually depends on the type of
data. For instance, Maschio and Schiozer (2016) give an
example about gas rate. Usually, it is more difficult mea-
sure and measurement error tend to be high. Thus, for

Fig. 1. General history-matching workflow introduced by Avansi et al. (2016). The contributions of this work are on steps 4 and 11
highlighted in red.

Table 1. Quality of models according to NQDS intervals.

NQDS interval [�1, 1] [�2, �1[or]
1, 2]

[�5, �2[or]
2, 5]

[�10, �5[or]
5, 10]

[�20, �10[or]
10, 20]

Outside]
�20, 20]

Quality Excellent Very Good Good Regular Bad Unsatisfactory
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this variable the tolerance should be higher compared to
others, such as oil rate.

7. Acceptable results: through diagnosis, assess if mod-
els are within the acceptance range or whether the
uncertainty must be reduced. The graphical plot of
the NQDS helps to assess this. Figure 2 gives an exam-
ple of seven wells with NQDS plots. In this example,
the range of acceptance is between the lines on
�1 and 1.

In Figure 2, well 6 has the best match, where all models
have NQDS within the acceptance range. For well 4 and
well 5, an uncertainty reduction suffices. For wells 1, 2, 3,
and 7 a review of the static model is necessary, to include
models with NQDS above and below NQDS 0.

The interval [�1, 1] for NQDS is the final objective.
However, in some cases, values outside this range might
be accepted when it is not possible to obtain values within
the range (when there are high uncertainties or lack of
data). Table 1 shows the relationship between the quality
of models and NQDS intervals.

Models with NQDS of 20 or less (absolute value) are still
acceptable, depending on the case and on the objective (or
phase) of the study. These intervals reflect the quality of
the matching and were defined based on the authors’ prac-
tical experience with history-matching problems.

8. Numerical model: search for inconsistencies in the
numerical model. A problem in well productivity is
one reason to review the numerical model.

9. Analysis and changes: correct productivity index or
well completion intervals.

10. Regional/local reduction: evaluate whether a regional/
local matching step is necessary. After a global uncer-
tainty reduction, for instance, this step can further
improve the match.

11. Global uncertainty reduction: reduce global uncertainty
of attributes. Further details of this step are in
Section 3.2.

12. Regional/local uncertainty reduction: reduce regional/
local uncertainty.

13. Increase the number of models: at the end of the pro-
cess, when diagnosis indicates that the results are
acceptable, we increase the number of models to
increase the chance of having more filtered models.

14. Filter: after the uncertainty reduction, some models
might still be out of the acceptance range. Thus, this
step filters out these models, to select only those within
the range.

15. Application: forecast production under uncertainties
using models selected in Step 12.

3.1 Sampling and generation of models

In this section, we detail our method to generate the simu-
lation models, combining the uncertain attributes regard-
less of scale. Figure 3 shows the three steps.

Figure 3 shows how we generate a single simulation
model from a combination of attributes, for instance k
(q geostatistical model attributes and p simulation model
attributes, k = p + q). The process of sampling and gener-
ating models can be summarized in three steps:

1. Combine levels of attributes. Using the DLHC, we com-
bine attributes from both the simulation (e.g., fault
transmissibility, relative permeability, capillary pres-
sure) and the geostatistical models (fracture aperture,
length and orientation). We use DLHC because it
ensures that values over the whole range of a model
attribute are selected. Schiozer et al. (2015) used the
DLHC to combine simulation model attributes and geo-
statistical images (which they called Discretized Latin
Hypercube combined with Geostatistical realizations –
DLHG). They first generated n images and combined
these with the attributes of the simulation model. Thus,
their combination process occurred at a coarse scale.
Unlike this method, we combine the attributes used to
build the images instead, combining those at fine scale
with those at a coarse scale. Hence, we first generate
the combination of attributes from different scales
and, then use the generated value in the workflow
(Fig. 3) (e.g., the aperture in the geostatistical simula-
tion and the exponent of the relative permeability curve,
to generate the relative permeability curve).

2. Generate geological images using the set of attributes
from the geostatistical model and upscale. If we have
n combination of attributes, we will have n images
(e.g. five images for five sets of attributes).

Figure 4 illustrates how a sampled fracture aperture is
input into the geostatistical simulation, and the workflow
to generate the fracture spacing and fracture permeability
in the coarse grid.

In Figure 4, DLHC sampled level 1 (0.11 mm) of a frac-
ture aperture. This value corresponds to the expected value
of the probability distribution (for instance, lognormal),
which is input into the geostatistical simulation. The geo-
statistical simulation then generates one realization of the
discrete fracture network, which is upscaled to generate
the fracture spacing and permeability. For more details

Fig. 2. Example of NQDS plot.
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on DLHC, see Maschio and Schiozer (2016), and Schiozer
et al. (2015).

Fracture permeability and space in I, J and K direc-
tions are inputs to the flow simulator. For instance,
IMEX from CMG� has an option to apply the Gilman
and Kazemi (1983) matrix-fracture transfer coefficient, r,
as follows:

r ¼ 4� kx

L2
x

þ ky

L2
y

þ kz

L2
z

 !
��x ��y ��z: ð6Þ

In equation (6), kx, ky and kz are the permeability in x, y
and z directions, Lx, Ly and Lz are fracture space in x, y and
z directions, and Dx*Dy*Dz is the total matrix volume.

Thus, the DFN must be upscaled to provide these
inputs. Commercial software, such as Petrel (Schlumberger)
has an internal algorithm which calculates these

attributes for each grid cell. Basically, the algorithm, con-
sidering a cell as a cube, traces several perpendicular lines
to each face and calculate distances between consecutive
intersections and use them to compute fracture spacing in
each direction.

3. Combine the image with the set of corresponding attri-
butes of the simulation model.

3.2 Global uncertainty reduction of attributes

Figure 5 shows the workflow to reduce global uncertainty.
One contribution of this work consists on proposing the
application of sensitivity analysis after each uncertainty
reduction step (Step 6). This way it is possible to identify
and focus on groups of influential attributes.

Fig. 3. Steps for sampling and model generation.

Fig. 4. Process of generating simulated scenarios.
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The 7 steps in Figure 5 are explained below:

1. Initial sensitivity analysis: identify the attributes that
most affect Objective Functions. To measure the influ-
ence, we use the correlationmatrix (m rows of uncertain
attributes and n columns of Objective Functions, or
NQDS). Each cell of the matrix stores the correlation
coefficient (R) between an attribute and an objective-
function. The attribute is influential if R > Rc
(threshold).For instance, if therearefiveobjective-func-
tions, there are five R values for each attribute. If one
value of R is greater than Rc, then the attribute is
influential, these influential attributes are grouped
together for this iteration. The attributes are rated
according to R values over Rc, showing the order of
influence.

2. Diagnosis: simulate models to assess the NQDS.
Maintaining mean values for non-influential attri-
butes, we run DLHC sampling again. We maintain
these values to reduce the number of possible combina-
tions of DLHC and validate the analysis. If the
variation of the influential attributes causes major out-
put variability, then NQDS variability varying only
influential attributes and varying all attributes must
be similar. In other words, we compare the NQDS plots
before and after freezing the less influential attributes
to verify if the most variably is preserved.

3. NQDS symmetry OK? Ideally, NQDS should be sym-
metric, but as some asymmetry is likely, it should be
within an acceptance range. The presence of models

with positive and negative NQDS is sufficient to
reduce uncertainty, as the asymmetry can be further
treated by a regional/local approach. The symmetry
guarantees that models are not biased positively nor
negatively, meaning that the combination of the
uncertain attributes is properly covering the observed
data. If they are biased, reducing uncertainty will not
lead to matched models (see Fig. 2, wells 1 and 2).

4. Rescaling: this step follows a sequential approach to
rescale the attributes according to how influential
they are. The most influential attribute in a group is
rescaled first and if necessary (if the asymmetry
remains unimproved), the second most influential
attribute is rescaled.

5. Uncertainty reduction: the uncertainty reduction
method identifies the probability distribution of influ-
ential attributes. In other words, it updates the prob-
ability of each level of influential attributes. The
method is based on the work by Maschio and Schiozer
(2016) and is explained in Section 3.2.1. After reduc-
ing the uncertainty, we maintain the distributions
for these attributes for the next iterations.

6. Sensitivity analysis: we allow non-influential attri-
butes to vary again while maintaining the distribution
of influential attributes. So non-influential attributes
have their original probability distribution again (for
instance, uniform distribution). Thus, we sample again
varying all attributes with their respective probabili-
ties. This is done because after reducing the uncer-
tainty of the attributes strongly affecting Objective

Fig. 5. Workflow to reduce global uncertainty.
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Functions, the influence of other attributes may
become significant at this step (the strong influence
of one attribute may hide the influence of another).

7. New group? If Step 6 produces a new group of influen-
tial attributes Step 5 is repeated, otherwise the global
uncertainty reduction is complete.

3.2.1 Updating the probability of levels of attributes

Here, we go into further detail for the Step 5 listed above
(Fig. 5), specifically on how to update the probability of
each level of influential attribute. To update the probabili-
ties, we based on Maschio and Schiozer (2016) who used
correlation matrix and non-parametric density estimation
to modify the probability distribution of attributes. It fol-
lows Steps 5.1–5.5 as presented on Figure 5. The input
for Step 5 is a group of k influential attributes, with k < n
(n is the number of uncertain attributes).

First, on Step 5.1 the method combines only influential
attributes and identifies which one(s) influence Objective-
Functions (OF) through the correlation matrix; correlation
coefficient R greater than Rc. The correlation matrix is also
applied on Steps 1 and 6 on the method (Fig. 5); the differ-
ence is that on Steps 1 and 6 it is used for all uncertain attri-
butes and on Step 5.1 it is applied only on the group of
influential attributes. Figure 6 shows the correlation matrix
for one iteration to identify which attributes affect which
Objective Functions, if any.

‘‘x’’ marks highlight values of R > Rc. For instance,
Attribute 1 influences Objective Functions OF1, 3 and 4,
while attribute 4 does not significantly affect any Objective
Function.

Next, we compute the Local Objective Function (LOF)
using the equation:

LOF ¼ 1
NIF

XNIF

i¼1

NQDi ð7Þ

where, NIF is the number of influenced functions (for
instance, for attribute 1 NIF is 3 – OF1, 3 and 4). Thus,
for Attribute 1, for example, LOF is computed taking into
account the OF 1, 3 and 4. For Attribute 2, LOF is com-
puted taking into account the OF 1 and 2; and so on. LOF
is the arithmetic average of influenced Objective Func-
tions (with R > Rc). Note that for each influential attri-
bute there is N values for LOF, where N is the number
of models.

We then generate the new probability distribution of
each influential attribute using the non-parametric Kernel
density estimation method.

To select the models to build the histogram, we classify
models in increasing order of LOF and select those lower
than a defined threshold for LOF. If the selected number
of models is less than 100, we select 60% of the models (first
0.6*N models). This is slightly different from Maschio and
Schiozer (2016) method. They proposed two ways to select
models: (1) select a fixed percentage from the ordered
models of LOF, and (2) use a gradually increasing cut-off
value of NQD to ensure a minimum number of models is
selected.

We use these models to generate a histogram. Figure 7
shows an example for Attribute 1.

The histogram might contain discontinuities, which is
undesirable in the initial stages of uncertainty reduction
when the search space is still large and the number of com-
binations may be too small for proper coverage. To avoid
discontinuities, the non-parametric Kernel density estima-
tion generates the new probability distribution by smooth-
ing the histogram. Figure 8 shows the resulting probability
distribution.

This method eliminates the discontinuities without pre-
maturely excluding levels as shown in Figure 8. For more
detail on the theoretical background of this method, see
Maschio and Schiozer (2016). One step not considered by
the authors is the rescaling step. As it might occur, we
included this step, as described in the following.

Despite smoothing the histogram, the Kernel method
might be unable to restore eliminated levels for some situa-
tions. For example, when there are no discontinuities, but
a high increasing/decreasing probability of levels. To illus-
trate, for an attribute with five levels, the uncertainty reduc-
tion eliminated the first three levels, assigning high
probabilities to levels 3 and 4 (as shown in Fig. 9, in red).
In this case, the Kernel method may be able to restore only
levels 1 and 2. This is because for more than 2 consecutive
eliminated levels or highly skewed behavior of the distribu-
tion, (shown in Fig. 9), the Kernel method cannot restore
all eliminated levels. This indicates that the attribute should
have levels with higher values, so we rescale this attribute,
keeping the number of levels, moving them in the direction
indicated (by the method); in this case, to the right.

When generating the new distribution, we can define
the number and width of the levels, and the shape of the
distribution. In this work, we maintain the number and
width of the levels. We also use the form of the histogram
(in red) to define the shape. Figure 9 shows the triangular
distribution we used, indicated by the dashed line, resulting
in the five levels indicated by solid line bars.

To illustrate the global uncertainty reduction methodol-
ogy, Figure 10 shows a demonstration of the uncertainty
reduction of two influential attribute groups.

Fig. 6. Example of correlation matrix example identifying
influential attributes Maschio and Schiozer (2016).

L.A.N. Costa et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 41 (2018) 9



Figure 10 shows that:

(i) Sensitivity analysis (considering all attributes with
uniform discrete distribution) identified aperture
and orientation to be influential. These are grouped
into Group 1. Other attributes have fixed mean
values.

(ii) Uncertainty reduction for Group 1 resulted in the
final distribution for aperture and orientation. We
freeze these distributions from now on.

(iii) Allowing other attributes to vary again with a uni-
form discrete distribution, we identified a second
group of influential attributes, matrix permeability
and porosity. Now, Group 1 has fixed distribution
(from step ii), Group 2 has uniform discrete distribu-
tion, and the others have a fixed mean value.

(iv) The uncertainty reduction for Group 2 resulted in the
final distribution for matrix permeability and poros-
ity. Thus, we find the distribution for Group 1 in step
ii, and the distribution for Group 2 in step iii, other
attributes have a uniform discrete distribution.

4 Case study

We apply our methodology to a synthetic carbonate field
based on a real case. We constructed this reservoir due to
the lack of information for a full characterization of a
naturally fractured reservoir. The reservoir structure and

information on reservoir permeability and fracture size are
based on a real case. Using a synthetic case allows us to
validate our methodology. The synthetic reservoir, called
reference model (FR-R), is the ‘‘real’’ reservoir, with
unknown characteristics. We then constructed a refined
model (FR-SF) using the information from FR-R. Finally,
we upscaled FR-SF to generate the coarse model (FR-SC).

4.1 Reference model (FR-R)

We constructed the reference, FR-R, model from 25 syn-
thetic well logs of matrix porosity and permeability, facies
distribution and fracture intensity. The model has a corner
point grid of 35 · 56 · 30 blocks (58 500) with an average
size of 100 · 100 · 10 m.

Fractures are four sided, and have average lengths,
aperture and orientation of 300 m, 0.4 mm, and 255�
respectively. We simulated fracture properties to create
the Discrete Fracture Network (DFN), further converted
to an equivalent grid property.

To generate the production history, we applied a pro-
duction strategy composed of 17 vertical wells; 12 producers
completed in the first four layers at the top, and 5 injectors
completed in the last five layers at the bottom of the reser-
voir. Note that these wells are different from those used to
build FR-R. We created a viable strategy based on a five
spot, with plausible flow rates and recovery factors for nat-
urally fractured reservoirs to demonstrate the method. To
determine the best recovery strategy is out of the scope of
this work.

Figure 11 shows the production strategy, and the matrix
porosity map. The Simulation of FR-R model generated
8 years of production history. We no longer use this model
after generating the history, as it is the ‘‘real’’ reservoir for
which the characteristics are unknown.

4.2 Refined simulation model (FR-SF)

To construct the refined model, we used the 17 well logs
(from the production strategy we have defined) for FR-R,
for matrix porosity and permeability, facies distribution,
and fracture intensity. This model has the same resolution
as the FR-R, with a grid with 35 · 56 · 30 blocks
(58 500) measuring 100 · 100 · 10 m.

Fig. 7. Histogram example generated from models with LOF
lower than an established threshold (Maschio and Schiozer,
2016).

Fig. 8. Smoothed probability distribution example generated
by the non-parametric Kernel density estimation method (Mas-
chio and Schiozer, 2016).

Fig. 9. Attribute rescaling example.
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The difference between FR-R and FR-SF is that FR-SF
was constructed using well log information from the refer-
ence (‘‘real’’) reservoir FR-R. The FR-SF is constructed
from properties sampled from FR-R at the 17 wells and it
is the base to generate multiple models using different com-
binations of the uncertain attributes (described in Sect. 4.4).
These models are further up scaled for flow simulation.

4.3 Coarse simulation model (FR-SC)

For flow simulation purposes, we upscaled the refined
model (FR-SF) to create the coarse simulation model
(FR-SC). In this work, we applied the upscaling in the ver-
tical direction, grouping every two blocks and halving the
number of blocks in the vertical direction.

The FR-SC model has a corner point grid of dimension
35 · 56 · 15 (29 400 blocks) with blocks measuring
100 · 100 · 20 m. As it is a typical case of Type II natu-
rally fractured reservoir, we applied the dual porosity model
to separate matrix and fracture grids. The main character-
istics of this model are:

d Reference pressure of 250 kgf/cm2, and a bubble point
pressure of 201.5 kgf/cm2.

d Depth of 2350 m and water-oil contact at 2530 m;
d Oil of 38º API.
d Model has two rock types. Rock type 1 with water-wet

trend and rock type 2 with intermediate wettability.

Fractures have a straight-line relative permeability,
which is frequently used as a good approximation (Mazo
and Schiozer, 2013; Correia et al., 2016), and zero capillary
pressure, which is a common practice when simulating nat-
urally fractured reservoirs (Mazo and Schiozer, 2013).

During the history period, the producer wells are con-
trolled by liquid rate and the injector wells are controlled
by water injection rate.

4.4 Uncertain attributes

Table 2 shows uncertain attributes considered in this case.
They are attributes which have potential impact on the
reservoir performance.

Table 2 shows that, of the 18 uncertain attributes, 1–14
are from the geostatistical model and 15–18 are from the
simulation model.

d Variogram in x and y directions: These attributes
influence the porosity map of the static model.

d Attributes 3–7 are the proportion of each facies pre-
sent in the reservoir. They are further grouped in
specific rock type in the simulation model.

d Correlation coefficient between porosity and perme-
ability: these attributes vary the correlation between
permeability and porosity of the static model. Thus,
it has an impact on the permeability map.

Fig. 10. Uncertainty reduction for two attribute groups.
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d Correlation coefficient between fracture intensity and
the distance from a fault: these attributes quantify
how much fractured is a region close to the fault.
It affects the fracture intensity map.

d Variogram in x and y direction of fracture intensity:
these attributes also influence the fracture intensity
map. They are the parameters of the variogram of
fracture intensity map.

d Fracture length, orientation and aperture: they are
fracture characteristics. They define the size (length
and aperture) and direction of fractures (orientation).

The remaining attributes (15–18) are the parameters of
the expression of capillary pressure and relative permeabil-
ity that generated the tables of these properties used in the
simulation model. The five facies of the static model are
grouped in two rock types in the simulation model:

d Coefficient of relative permeability of rock type 1: it is
the coefficient of the relative permeability of rock type
1 and it changes the water relative permeability curve
of rock type 1.

d Coefficient of capillary pressure of rock type 1: it
impacts the capillary pressure of rock type 1, by
changing its curve.

d Coefficient of relative permeability of rock type 2: it
changes the water relative permeability curve of rock
type 2.

d Coefficient of capillary pressure of rock type 2: it
changes the capillary pressure curve of rock type 2.

For the range of variation of each attribute, we have
defined the initial minimum/maximum values not pushed
to the physical plausible limit so that in the case of rescaling
(changes in the minimum/maximum values), we do not
extrapolate the physical limits.

4.5 Parameterization for the uncertainty reduction

We used liquid and water injection rates as well produc-
tion constraints for simulation. To match the observed
reservoir behavior, we considered 56 Objective Functions
(OF): oil production rate and bottom-hole pressure for
12 producers, water injection rate and bottom-hole pressure
for five injectors, water production rate for all wells
but PROD5 and PROD9, and water breakthrough time
for 12 wells. As water rates of wells PROD5 and PROD9
are very low we did not consider as OF. We included the
water breakthrough instead. We measure the quality of
the match using normalized Quadratic Distance with Sign
(Eq. (2)).

In the calculation of the acceptable quadratic distance
given in equation (4), we used a tolerance of 0.05 (5%) for
injected water rate and produced liquid rate (informed
rates) and a tolerance of 0.1 (10%) for other OF, and Cp
of 10 m3/day for the water production rate of well PROD8,
which has low production rate.

The choice of Tol and Cp is subjective and depends on
the reliability of observed data (Maschio and Schiozer,
2016). Using Tol higher than 10% the acceptable solu-
tions may be too far from the history data. We made tests
and observed that with a tolerance of 10% production
curves of solutions were still in an acceptable range.
Regarding injection water rate and produced liquid rate,
as they are informed, we expect smaller deviation from
the history. The constant Cp is added to the production
rates that are zero or close to zero. This way, we avoid
the division by zero when calculating the OF. This value
has to be small enough to not cause an impact on the OF
value. We compared values of 5, 10 and 15 to choose the
value of 10 m3/day.

A common concern for reservoir simulation is the num-
ber of simulations. Schiozer et al. (2015) suggested 100–300
to be a good number for risk quantification in their study.
For this case, we ran tests and concluded that 500 simula-
tions provide an acceptable range of variability of NQDS.

After simulation, we set the threshold at 0.3 (Rc), based
on the work of Maschio and Schiozer (2016), to consider an
attribute as influential. They suggested a value between 0.1
and 0.4 after comparing results applying different values of
Rc. If we use values too high we might not identify influen-
tial attributes, and if we use values too low we end up
choosing all attributes (we cannot identify groups). In this
work, we decided to use 0.3 as the threshold.

We consider an attribute to be influential with at least
one value of R > Rc, i.e., at least one OF must be influ-
enced. The Rc value can be changed depending on the qual-
ity and amount of data, and required accuracy. For each
selected attribute, we classify models according to the
threshold value of LOF. We considered a value of five.
There may only be few models with LOF under five, which

Fig. 11. Matrix porosity and the production strategy. PROD
represents producers and INJ represents injectors.
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is insufficient to construct the new histogram for an attri-
bute. In these cases, we set a minimum of 60% of the models
to generate the new histogram of an attribute.

5 Results and discussions

5.1 Diagnosis

Following the methodology, we simulated 500 models
varying all attributes in their uncertain range. In a clus-
ter with 10 processors AMD Opteron 64 bits, 2.6 GHz, it
took, on average, 24 h to build and simulate these
models.

Figure 12 shows the NQDS of (a) oil rates and (b) water
rates for producers. The dashed lines show the threshold (5)
of NQDS, (absolute value of NQDS).

Figure 12 shows significant variability, which is impor-
tant in the diagnosis step. The same observation is valid
for other OFs. Asymmetry is visible in the NQDS values;
oil rates to the negative side and water rates to the positive
side. However, NQDS distribution encompasses the accep-
tance range for all wells, with positive and negative values
of NQDS. In this case, we considered this asymmetry
acceptable, and continued to the next step of the methodol-
ogy, to choose the most influential attributes.

5.2 Group 1 of influential attributes

Table 3 shows part of the correlation matrix for oil and
water rates.

In Table 3, each cell stores the correlation coefficient
between an attribute and an Objective Function. There is
one column for each of the 56 Objective Functions. The
bolded cells highlight those with R > Rc (0.3). For instance,
the correlation coefficient between fracture aperture (Abf)
and the NQDS of water production rate of well 11 is
�0.88. As shown in Table 3, fracture aperture (Abf) has
R greater than Rc for several wells. This attribute affected
almost all OFs with high R values. Fracture orientation
(Orf) affected oil and water rates for some wells. Coefficient
of capillary pressure of rock type 1 (Pcdf1) showed only one
OF to be influenced. These three attributes form Group 1 of
influential attributes.

5.3 Uncertainty reduction of Group 1 of influential
attributes

We maintained all other attributes on their mean value and
let Group 1 vary (uniform discrete distribution). We called
this G1It1 (Group 1 Iteration 1). Figure 13 shows the
NQDS of the diagnosis and G1It1.

Figure 13 shows that the variability of NQDS for oil and
water rates reduced for some wells. Possibly the strong
influence of aperture is hiding the influence of other attri-
butes. After reducing the uncertainty of Group 1, other
attributes might appear as influential.

Next, using the LOF approach, we select and filter the
models to construct the histogram for Group 1, and the
Kernel method to smooth histograms and create new
probability distributions. Figure 14 shows the smoothed

Table 2. Uncertain attributes, discretized into five levels.

Attribute Level

No Name Symbol 0 1 2 3 4

1 Variogram: x direction (m) Vmx 400 1200 2000 2800 3600
2 Variogram: y direction (m) Vmy 400 1200 2000 2800 3600
3 Proportion of grainstones (%) Pg 0.2 0.6 1 1.4 1.8
4 Proportion of grain/packstones (%) Pgp 6 8 10 12 14
5 Proportion of graywacke/packstones (%) Pwp 34 42 50 58 66
6 Proportion of cement (%) Pc 17.5 22.5 27.5 32.5 37.5
7 Proportion of marlstone (%) Pm 0.5 1.5 2.5 3.5 4.5
8 Correlation coefficient between porosity and permeability Ckm 0.82 0.86 0.9 0.94 0.98
9 Correlation coefficient between fracture intensity and the distance

from a fault
Ckf �0.66 �0.58 �0.5 �0.42 �0.34

10 Fracture length (m) Cf 95 185 275 365 455
11 Fracture aperture (mm) Abf 0.115 0.245 0.375 0.505 0.635
12 Fracture orientation (�) Orf 214.5 233.5 252.5 271.5 290.5
13 Variogram: fracture intensity in x direction (m) Vfx 240 520 800 1080 1360
14 Variogram: fracture intensity in y direction (m) Vfy 240 520 800 1080 1360
15 Coefficient of relative permeability of rock type 1 Krwf1 2 2.5 3 3.5 4
16 Coefficient of capillary pressure of rock type 1 Pcdf1 0.1 0.4 0.6 0.8 1
17 Coefficient of relative permeability of rock type 2 Krwf2 2 2.5 3 3.5 4
18 Coefficient of capillary pressure of rock type 2 Pcdif2 0.4 0.5 0.6 0.7 0.8
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histograms of Group 1 after a single iteration of the global
uncertainty reduction methodology.

As Figure 14 shows, some levels have low frequency, i.e.,
high absolute LOF values. For instance, for fracture aper-
ture, few models with level 0 have acceptable LOF values
and models with level 4 resulted in better match. This
resulted in a probability of 1% for level 0, and 6.3% for level
1 for the next iteration (G1It2).

Figure 15 shows smoothed histograms after G1It2.
In Figure 15, the histogram of fracture aperture shows

the elimination of two levels, even after applying the Kernel
method, which ‘‘restored’’ level two only. Hence, we
rescaled the fracture aperture and the other attributes
assumed the probability distribution according to the pre-
sented histogram.

Following the criteria (defined in Sect. 3.2.1), we used a
triangular distribution, as Figure 16 shows.

In Figure 16, the triangular distribution is centered on
level 4 to honor the shape of the distribution. Moreover,
we kept five levels to avoid reducing the quantity of levels.
Table 4 shows the new levels.

In Table 4, the capital letter ‘‘A’’ is used to distinguish
the new levels from the previous ones. The new distribution
centers on level 4 before rescaling, with 36% probability.
It is important to note that the new levels must honor
the plausible values for each attribute. The value 0.791 is
still a plausible value for fracture aperture.

After these modifications, we ran two more iteration,
totaling four iterations for Group 1. Figure 17 shows the
NQDS for the last two iterations, and the diagnosis for
comparison.

Figure 17 shows significantly improved matching
quality overall. The uncertainty reduction of Group 1
resulted in a great match for oil rates for PROD1, 2, 8, 9,
11, and 12 (Fig. 17a), and water rates for PROD6, 11
and 12 (Fig. 17b). Furthermore, Figures 17c and 17d show
good pressure matches. Almost all models are within the
acceptance range for several wells, such as PROD1, 2, 3,
6, 8, 9, 10, 11, and 12. Attributes of Group 1 are all fracture
related. In Type II reservoirs (see Sect. 1), fractures

influence the flow capacity and, hence, have greater impact
on pressures, which explains the better pressure matches.

5.4 Group 2 of influential attributes

After reducing the uncertainty for Group 1, we fixed distri-
butions for the rest of the methodology. We then ran
500 simulations varying all other attributes with their ini-
tial distribution (uniform discrete distribution). The corre-
lation matrix showed the fracture-fault correlation
coefficient (Ckf) and fracture length (Cf) to be influential
after reducing the uncertainty of Group 1. These attributes
form Group 2 of influential attributes.

Hence, to reduce uncertainty for Group 2, we have:

d Group 1: Attributes that vary according to a fixed
probability distribution.

d Group 2: Attributes that vary according to a proba-
bility distribution that will be modified during the
uncertainty reduction to find the best shape.

d Other attributes: With a fixed value, the mean of the
original uniform distribution.

Therefore, there are five varying attributes, three from
Group 1 and two from Group 2. The difference is that
Group 2 will change the probability distribution of each
attribute and Group 1 will have a fixed distribution.

5.5 Uncertainty reduction of Group 2 of influential
attributes

We ran three iterations to reduce uncertainty for Group 2
(G2It3), and Figure 18 shows the boxplot of NQDS of oil
and water rates for some producer wells. After some itera-
tions, it is difficult to analyze graphics, such as those of
Figure 17, as they look similar from one iteration to
another. In these cases, the boxplot of NQDS enables better
comparison between two iterations.

a) b)

Fig. 12. NQDS of (a) oil rate, and (b) water rate for each producer for the initial run (diagnosis).
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Figure 18 shows similar variability of NQDS following
the uncertainty reduction for Group 2 (G2It3). Thus, we
finish the global uncertainty reduction of Group 2 as there
was no significant improvement after the last iteration.

We run another sensitivity analysis varying all attri-
butes, and the correlation matrix showed there is no other
influential attribute. Therefore, the global uncertainty

reduction is now complete. As NQDS shows, we achieved
good matches for several wells. Figure 19 shows the oil
and water production for well PROD6.

Figure 19 shows significant reduction in the dispersion
of the curves, which translates to good models, i.e., NQDS
ranged between �1 and 1. Figure 20 shows the production
forecast after the uncertainty reduction.

Table 3. Correlation matrix between uncertain attributes and NQDS; showing the matrix for oil and water rates.

No Attribute NQDS NQDS

Oil production rate Water production rate

1 2 3 ... 10 11 12 1 2 3 ... 10 11 12

1 Vmx 0.10 0.08 �0.03 ... 0.01 0.08 0.09 �0.07 �0.02 0.01 ... �0.13 �0.06 �0.07
2 Vmy 0.03 0.06 0.16 ... 0.12 0.06 �0.01 �0.06 �0.09 �0.08 ... 0.02 �0.05 0.07
3 Pg 0.00 �0.08 0.04 ... �0.02 �0.01 �0.05 0.06 �0.08 �0.07 ... �0.03 0.01 0.05
4 Pgp 0.03 �0.03 0.03 ... 0.04 �0.01 0.02 �0.01 0.04 0.05 ... 0.01 0.00 �0.02
5 Pwp �0.03 0.01 0.02 ... �0.08 �0.04 �0.01 0.01 �0.01 �0.06 ... 0.02 0.06 0.05
6 Pc �0.02 0.00 �0.08 ... �0.06 �0.04 �0.02 �0.04 0.04 0.06 ... �0.04 0.04 0.02
7 Pm �0.02 0.08 �0.01 ... 0.02 0.03 �0.01 �0.07 �0.05 �0.01 ... �0.07 �0.03 �0.03
8 Ckm �0.05 0.01 0.05 ... �0.01 0.00 �0.02 �0.05 �0.07 �0.07 ... �0.05 0.01 �0.01
9 Ckf 0.01 0.00 0.02 ... �0.02 �0.01 �0.03 0.05 �0.04 0.07 ... 0.01 0.02 0.01
10 Cf �0.09 �0.15 �0.07 ... �0.08 0.04 0.00 �0.05 �0.08 0.02 ... �0.16 �0.06 �0.16
11 Abf 0.62 0.55 0.34 ... 0.71 0.87 0.70 �0.32 �0.49 0.02 ... �0.58 �0.88 �0.75
12 Orf �0.11 0.21 0.42 ... 0.04 0.23 �0.08 0.48 �0.33 �0.64 ... �0.04 �0.23 0.15
13 Vfx 0.00 0.04 0.06 ... 0.08 0.01 0.01 0.04 0.01 0.04 ... 0.02 0.00 �0.03
14 Vfy 0.06 �0.06 0.01 ... �0.01 0.02 0.09 0.00 0.02 �0.03 ... �0.10 �0.02 �0.01
15 Krwf1 �0.06 0.00 �0.07 ... �0.05 �0.07 �0.07 0.00 0.07 0.04 ... 0.09 0.08 0.04
16 Pcdf1 0.01 0.12 0.07 ... �0.04 0.00 �0.04 �0.12 �0.30 �0.18 ... �0.15 0.02 0.02
17 Krwf2 �0.03 0.01 0.03 ... �0.01 �0.05 0.00 �0.02 0.06 0.03 ... 0.04 0.06 0.04
18 Pcdif2 0.01 �0.03 �0.03 ... �0.01 �0.05 0.00 �0.01 0.08 0.10 ... 0.05 0.07 0.00

a) b)

Fig. 13. Comparison of NQDS of diagnosis and after the first iteration (G1It1) for (a) oil rate, and (b) water rate for each producing
well.
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As shown in Figure 20, the field forecast production
for oil shows good results and reduced the uncertainty of
production in a field level. The field forecast production
for water also shows good results for the history but higher
production in the forecast period.

To better show the matching quality, Table 5 shows the
percentage of models within the acceptance range. ‘‘Diag’’
is the diagnosis, ‘‘It’’ is iteration, and ‘‘Var’’, the dynamic
variable. ‘‘Ql’’ is produced liquid, ‘‘Qo’’ is produced oil,
‘‘Qwp’’ is water rate, ‘‘Wbt’’ is water breakthrough and
‘‘Qwi’’ injected water rate. ‘‘BHP’’ and ‘‘BHPi’’ are Bot-
tom-Hole Pressures for producers and injectors.

As seen in Table 5, Ql, BHP, Qwi, and BHPi improved
after G2It3, as the percentage increased. For instance, the
percentage of BHP for well 5 increased from 99.6% on
G1It4 to 100% on G2It3. For Qo, Qwp, and Wbt, Wells
PROD4, 6 and 10 improved after G2It3. Overall, there is
clear improvement compared to the diagnosis.

Figure 21 shows the number of models as a function of
NQDS cutoff. Each point is the number of models that have
Objective Functions smaller than the corresponding value
on the abscissa. Group 1 and Group 2 refer to the uncer-
tainty reduction of Group 1 and Group 2 (after last itera-
tion of each group).

In Figure 21, it is clear the improvement for the
oil production rate. For water breakthrough, although
Group 2 shows models with NQDS cutoff higher than 10,
there were several wells with good matches. This is because
some wells have NQDS higher than 10.

Table 6 shows the percentage of models within the
acceptance range for all wells and each dynamic variable.

Table 6 shows the improvement after uncertainty reduc-
tion of Group 2 as more models are within acceptance range
for almost all dynamic variables. However, there were no
models with NQDS inside the acceptance range for all
56 dynamic variables.

The application of the methodology improved the
matching quality of several wells. However, as the results
show, the global uncertainty reduction is not sufficient to
match all Objective Functions simultaneously. Thus, local
refinements are necessary to achieve simultaneous match
for all Objective Functions. Regional/local uncertainty
reduction is topic for future works.

Additionally, sampling does not account for possible
correlation between influential attributes. We consider they
are independently distributed. Future works may propose a
methodology to address the interaction between influential
attributes.

a)

c)

b)

Fig. 14. Smoothed histograms after G1It1 for (a) fracture aperture, (b) fracture orientation, and (c) coefficient of capillary pressure
of rock type 1.
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a)

c)

b)

Fig. 15. Smoothed histogram after G1It2 for (a) fracture aperture, (b) fracture orientation, and (c) coefficient of capillary pressure of
rock type 1.

Fig. 16. Rescaling of fracture aperture using triangular distribution after two iterations.
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a) b)

c) d)

Fig. 17. NQDS of the last two iterations for Group 1 (G1It3 and G1It4), and the diagnosis for comparison; (a) for producers’ oil
rate, (b) for producers’ water rate, (c) for producers’ bottom-hole pressure, and (d) for injectors bottom-hole pressure.

Table 4. New levels of fracture aperture after rescaling. In parenthesis are the probabilities of occurrence for each level.

Before Level 0 Level 1 Level 2 Level 3 Level 4
0.115 (0.2) 0.245 (0.2) 0.375 (0.2) 0.505 (0.2) 0.635 (0.2)

After Level 0A Level 1A Level 2A Level 3A Level 4A
0.479 (0.04) 0.557 (0.28) 0.635 (0.36) 0.713 (0.28) 0.791 (0.04)
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a) b)

Fig. 18. Boxplot of NQDS of production rates after three iterations. Graphics show the last two iterations for each well in pairs;
G2It2 to the left and G2It3 to the right. Figure (a) shows wells 1–6 for oil rate and Figure (b) shows wells 7–12 for water rate.

a) b)

Fig. 19. Oil and water rates for PROD6. Gray lines are the initial diagnosis, green lines are the results after global uncertainty
reduction (G3It1), and blue circles are the history. Brown lines are the curves where |NQDS| � 1.

a) b)

Fig. 20. Simulated cumulative (a) oil and (b) water production. In gray are models with |NQDS| � 5 and in brown are models with
|NQDS| < 5. In blue is the reference model.
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Table 5. Percentage of models within the acceptance range (�5 � NQDS � 5), for each well.

Var It PROD

1 2 3 4 5 6 7 8 9 10 11 12

Ql Diag 84.0 92.8 92.8 84.4 85.2 91.0 81.6 91.2 94.0 89.0 99.6 94.4
G1It4 100 100 100 100 100 100 100 100 100 100 100 100
G2It3 100 100 100 100 100 100 100 100 100 100 100 100

Qo Diag 68.6 63.4 51.0 18.6 31.2 59.0 38.4 58.2 65.8 49.6 58.2 60.4
G1It4 99.6 99.6 79.4 56.6 69.4 87.8 83.6 96.6 100 82.8 100 100
G2It3 99.0 99.6 76.0 65.4 87.2 90.4 92.6 95.2 100 83.6 100 100

Qwp Diag 12.2 15.0 18.2 1.8 � 47.6 9.2 6.4 � 13.4 8.6 7.4
G1It4 16.4 32.8 22.0 3.6 � 76.4 18.4 11.8 � 22.6 13.2 11.0
G2It3 20.6 29.2 23.6 9.6 � 78.4 26.8 13.2 � 23.2 13.2 10.8

Wbt Diag 15.4 14.0 32.6 14.4 8.6 98.6 37.4 8.0 38.4 38.8 16.0 14.0
G1It4 20.8 33.2 76.4 42.4 2.6 97.0 78.0 22.6 93.6 38.2 21.8 18.2
G2It3 25.4 27.8 73.6 46.8 7.8 98.2 77.4 24.8 90.2 40.4 23.4 20.6

BHP Diag 66.6 77.8 74.8 67.0 73.0 77.8 58.4 78.6 81.8 73.2 83.0 79.8
G1It4 100 100 100 100 99.6 100 98.0 100 100 100 100 100
G2It3 100 100 100 100 100 100 99.6 100 100 99.8 100 100

Var It INJ

1 2 3 4 5
Qwi Diag 83.2 75.4 86.2 83.8 83.2

G1It4 100 99.6 100 100 100
G2It3 100 100 100 100 100

BHPi Diag 76.6 71.2 83.4 80.8 76.6
G1It4 100 99.2 100 100 100
G2It3 100 100 100 100 100

a) b)

Fig. 21. Number of accepted models as a function of NQDS cutoff.
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6 Conclusion

We proposed a new methodology for uncertainty reduction
in naturally fractured reservoirs, which allows the integra-
tion of history matching with geostatistical modeling of
fractures and other properties in a big loop approach. We
also proposed an iterative sensitivity analysis to reduce
the number of attributes in the uncertainty reduction and
so improve simulation time while still providing good
matches. Furthermore, we demonstrated its applicability
in practical situations through a complex case. The conclu-
sions of this work are:

d The iterative sensitivity analysis allowed to work with
several key attributes, by reducing the number of
uncertain attributes in each iteration. For instance,
after reducing uncertainty of Group 1, we run sensi-
tivity analysis and identified other attributes, previ-
ously hidden by more influential attributes, to affect
OFs.

d We reduced the overall NQDS by modifying only five
attributes (after iteration G2It3), out of the initial 18.
The advantage of fewer attributes is the improved
chances of obtaining good combinations (models clo-
ser to the history), as the search space is significantly
reduced. In this work, we reduced the possible combi-
nations from 518 to 53 for the first iteration. Thus, the
method allowed reducing the uncertainty with fewer
simulation compared to a case varying all 18 uncer-
tain attributes.

d We combined geostatistical attributes and kept geo-
logical consistency. For instance, at the end of the
methodology, we have the values of fracture aperture,
length, and orientation. With these values, we can
reproduce the discrete fracture network. If we had
modified fracture spacing and permeability in the sim-
ulation model, we could not reproduce the discrete
fracture network that generated the results.

d Modifying attributes from geostatistical simulations
together with the local Objective Function approach
reduced the variability of NQDS, improving its values
for all wells. As we worked on a Type II reservoir, frac-
ture attributes have greater impact on pressures than
flow rates, as shown in Figure 17 and Table 5, where
NQDS exhibited quick reduction. The evaluation of
NQDS per dynamic variable (Tab. 6) showed the
improvement on a global level.

We intend to continue this work focusing on a local
approach to improve regions of the reservoir, or individual
wells.
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