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Abstract. Reservoir management decisions are often based on simulation models and probabilistic
approaches. Thus, the response of the model must be sufficiently accurate to base sound decisions on and fast
enough to be practical for methodologies requiring many simulation runs. However, simulation models often
forecast production rates different to real production rates for various reasons. Two possible causes of these
deviations are (1) upscaling (a technique to reduce the computational time of simulation models by reducing
the number of grid blocks) and (2) uncertainties (the values established to attributes are different from real
values caused by lack of knowledge of real reservoir). Morosov and Schiozer (2016) applied a closed-loop
technique in a benchmark case where decisions taken using the simulation models are applied to a reference
case. The optimized production strategy, using simulations models, increased the expected monetary value of
the project by about 29%, but the Net Present Value (NPV), calculated using a reference case, decreased by
2%. The real NPV was outside the expected range and revealed that the set of models did not fully represent
the real field, even for high-quality history-matched models. The objective of this study is to identify the
causes of these discrepancies. To reach this goal, we investigate and analyze both the impact of the upscaling
and the uncertainty on production and economic indicators. We use a set of representative models of
benchmark UNISIM-I (Avansi and Schiozer, 2015) to consider the effects of uncertainty and upscaling. Our
main concern was the uncertainties in the distribution of petrophysical properties that strongly influence the
productivity and injectivity of wells, noted by Morosov and Schiozer (2016) as being the main cause for
differences among models. Furthermore, to verify the isolated effects of the possible causes of deviation, we use
a single model to show only the effects of upscaling, and another set of models showing only the uncertainty.
The results showed that the impact of the uncertainties was higher than the upscaling for the studied case. The
upscaling generated an optimistic bias for production and economic indicators, but well-correlated with the
reference case. The uncertainties significantly affected the production forecasts for this study. This happened
because the response of the wells is highly dependent on the petrophysical properties of the model, which varies
widely between the different models representing uncertainties and was not adequately depicted by the
representative models.
1 Introduction

A principal objective of oil companies is to maximize the
economic performance of the field. Efficient management is
fundamental to achieve this goal. Field management is
complex with many decisions involving high investments
and many uncertainties.

Decisions in petroleum industry are often made based
on production forecasts. However, these predictions are
nding author: botechia@cepetro.unicamp.br
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subject to several sources of errors. Begg and Bratvold
(2008) investigated the main sources of prediction errors
and their impact on the decisionmaking. The authors listed
some of the main sources of errors as follows: uncertainty,
biased inputs, mistakes (logic, analysis, data entry,
computation, or limitations of measurement devices),
use of models and variation in the project execution
(changes in decisions).

The optimistic bias of predictions has been reported in
the literature using different terms: post-decision surprise
(Harrison and March, 1984), the optimizer’s curse (Smith
and Winkler, 2006; Schuyler and Nieman, 2007), and
inevitable disappointment (Chen and Dyer, 2009).
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Usually, production prediction tasks, economic analy-
ses, and other oil field management activities involve
numerical simulation. Thus, reliable simulation models are
necessary to accurately predict field performance. One of
the key points concerning model reliability is the grid-cell
size, meaning that a high resolution grid is desirable to
incorporate detailed data and properly represent hetero-
geneities and the flow behavior of fields.

However, fine-scale models may increase levels of
computational effort so much that important petroleum
reservoir activities are unfeasible, mainly those that are
usually addressed using probabilistic approaches and
requiring many simulation runs. Some examples of these
activities are: production strategy optimization (Al-
Harthy, 2010; Korounis et al., 2014; Oliveira et al., 2015;
Gaspar et al., 2016a), decision analysis procedures
(Fletcher and Davis, 2002; Pattillo et al., 2003; Cunha,
2007; Schiozer et al., 2015; Ani et al., 2016), and Value Of
Information (VOI) estimates (Gerhardt and Haldorsen,
1989; Coopersmith and Cunningham, 2002; Bratvold et al.,
2009; Keisler et al., 2014; Santos et al., 2017).

To enable production strategy optimizations, decision
analyses, and VOI estimates, fast models are created to
reduce the computational time. These fast models can be
created, for instance, through upscaling, which takes refined
geostatistical models to make coarser reservoir simulation
models by applying averaging or flow-based techniques
(Gorell and Bassett, 2001). However, the inevitable loss of
information on these models (Maschio and Schiozer, 2003)
means that the accuracy of the results diminishes because of
simplifications made on spatial heterogeneity variation
(Gorell and Bassett, 2001; Bordeaux-Rego et al., 2016).

Romeu and Noetinger (1995) presented one of the first
studies regarding the intrinsic bias of simulations. The
authors conducted an analytical and numerical investiga-
tion of the finite difference computation of the equivalent
conductivity of heterogeneous porous media. They also
proposed a method to correct the bias caused by unrefined
blocks in this case.

Several authors attempted to improve upscaling
techniques. Preux (2014) and Preux et al. (2016) presented
methodologies and indicators to evaluate the most
appropriate upscaling technique for a determined study
case, also assessing the quality of the upscaled reservoir
model.

Furthermore, there is a strong interaction between
the heterogeneity and an unstable character of the
fluid flow displacement. This coupling may change the
form of the large-scale equations and should be
accounted for in the upscaling processes (Artus and
Noetinger, 2004).

Many papers addressed two-phase flow upscaling,
taking into account the interaction between unstable
displacement (or viscous fingering) and heterogeneities in
the upscaling process (Noetinger et al., 2004; Noetinger
et al., 2005; Luo et al., 2016).

Schiozer et al. (2015) presented a closed-loop reservoir
management methodology in which the first steps treat the
construction and calibration of simulation models. The
authors state that, to accurately quantify risk, it is
necessary to trust in the response of the model for each
created scenario. This means that the model must be
calibrated to produce an effective response and be robust
enough to avoid bias.

Besides the upscaling, another source of error in
simulation and management is quantifying and mitigating
uncertainty. Begg et al. (2002) demonstrated that,
generally, oil companies underperform because of poor
investment decisions, which is in turn associated to
inaccurate evaluation of the economic impact of uncer-
tainties. Bickel and Bratvold (2008) stated that while
quantifying uncertainty has improved in the last decade,
this has not yet produced a similar improvement in decision
making.

In fact, this paper evolved from other model-based
management researches that used the same benchmark
case. Morosov and Schiozer (2016), for instance, applied a
closed-loop technique in this benchmark consisting of three
main steps: data acquisition, history matching and
production strategy optimization. These steps were
repeated in several cycles using simulation models. After
that procedure, the expectedmonetary value obtained with
the final strategy increased about 29% in relation to the
base case. However, the same strategy was applied to a
reference case (considered as the real response) and the real
NPV actually decreased by 2%, falling below the expected
range and revealing that the set of models did not fully
represent the real field. The authors quote that the possible
causes of this misrepresentation are: lack of geostatistical
variability, history-matching convergence to incorrect
parameters and the upscaling process.

The objective of this work is to investigate the causes of
errors detected in the simulation models in the work of
Morosov and Schiozer (2016) by quantifying the effects of
upscaling and uncertainties on production and economic
indicators and how they impact model-based decisions.

To represent a real reservoir we use a synthetic fine-
scale model as a reference, and a set of simulation models
derived from the reference case, incorporating both effects
of upscaling and uncertainties. We also use a simulation
model showing only the effects of upscaling and another set
of models showing only the effects of uncertainties (since
they have the same scale as the reference case). All the
models are part of the UNISIM-I benchmark case (Avansi
and Schiozer, 2015). More details about this benchmark are
presented in next section.

In the following sections, we describe the cases used in
this work (2), the methodology (3), the results and
discussion (4), followed by the main conclusions (5).
2 Reference case and simulation models

2.1 UNISIM-I-R (Reference case)

The benchmark UNISIM-I (Avansi and Schiozer, 2015)
was created to be used in numerical simulation and
management integrated studies of petroleum reservoirs,
allowing methodologies to be tested and compared by
different research groups. This constructed benchmark was
intended to substitute a real reservoir for a reference model
with known properties in a high-resolution grid.
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Fig. 1. Benchmark UNISIM-I-R: 3D view of horizontal perme-
ability in logarithmic scale.

Table 1. UNISIM-I-R parameters.

Parameter Value

Permeability (mD) 0.1–2448 (av.∼ 150)
Porosity 0.01–0.32 (av.∼ 0.17)
Depth (m) 2870–3349 (av.∼ 3078)
Oil viscosity (cP) 1.08–1.20 (av.∼ 1.10)
Initial pressure (kg/cm2) 318–357 (av.∼ 332)
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UNISIM-I-R was built in a high-resolution geocellular
model, with public data of the Namorado Field, Campos
Basin, Brazil. The geological model has a high level of detail
to ensure reliability. The model has a corner-point grid,
with 11 976 588 blocks (326� 234� 157), with 3 367 901
active blocks. Each grid cell has measures 25m� 25m�
1 m. The total simulation time is about 70 h in a cluster of
12 processors. For ease of reading, this model is referred to
only as R-f in the remainder of the text.

Figure 1 shows the horizontal permeability map in
logarithmic scale for UNISIM-I-R and Table 1 shows
selected field parameters.

2.2 UNISIM-I-M (Set of simulation models for
management studies)

The benchmark UNISIM-I-M (Gaspar et al., 2016b) is a set
of simulation models designed for studies on the manage-
ment phase, i.e., the period after strategy implementation,
when most of the infrastructure has already been defined.
The simulation models are based on information from the
reference model UNISIM-I-R.

The UNISIM-I-M model has a coarser grid than the
reference case, with 93 960 blocks (81� 58� 20) measuring
100m� 100m� 8m. The total simulation time is about
7min in a cluster of 4 processors.

The initial production strategy is a water-flooding
project with 25 wells (14 producers and 11 injectors) with
7 years of production history data.

The set of models was built considering the following
uncertainties: structural models, Pressure, Volume, and
Temperature dependencies (PVT), Oil-Water Contact
(OWC), water relative permeability, rock compressibility,
and 500 geo-realizations with petrophysical characteristics
related to facies, Net-To-Gross (NTG) ratio, porosity,
horizontal and vertical permeabilities. Combining these
uncertainties, 2000 possible scenarios were generated, and
then a probabilistic history-matching process was applied to
reduce the number of scenarios, resulting in 48 scenarios
(simulation models). This set of scenarios, combining all
uncertainties and geo-realizations, honoring thehistorydata
in previously defined confidence interval compose UNISIM-
I-M. Figure 2 shows the 3D view of one realization of
UNISIM-I-M, with the location of producers (Fig. 2a) and
injectors (Fig. 2b).

2.3 Representative models

Representative Models (RM) are widely used to reduce the
number of models for optimization purposes (Schiozer
et al., 2004; Costa et al., 2008; Marques et al., 2013; Sarma
et al., 2013; Shirangi and Durlofsky, 2015). The RM
represent the variability of the uncertainties within a small
number of models. Thus, all RM can be optimized to have
different project options, each one representing a different
scenario. For UNISIM-I-M, 12 RMwere selected, according
to the procedure suggested by Meira et al. (2016), in which
the selected models present significant variations in several
indicators such as Net Present Value (NPV), cumulative
oil and water produced, and oil recovery factor. In the
following sections, these models are referred as RM-c.

2.4 Upscaling in the reference case and fine-scale
representative models

To exclude the effects of uncertainties and analyze only the
impact of the upscaling, we generated an upscaled model
directly from the reference case, referred to in this work as
model R-c. This model has the same grid scale as the
UNISIM-I-M models. Moreover, to exclude the upscaling
effect and verify only the impact of the uncertainties, we
used 12 fine-scale models, which consist of the same
12 geostatistical realizations that generated the 12 RM, but
with the same grid as the reference case.We refer to them in
this text as RM-f.

Figure 3 shows the schematic procedure to generate the
UNISIM-I models, starting with the reference case, the
generation of uncertainties, upscaling, history matching
and the selection of representative models. The boxes
highlighted in blue show the different models addressed in
this work:R-f (reference case),R-c (only upscaling effect),
RM-f (only uncertainty effects), and RM-c (both
upscaling and uncertainty effects). Table 2 summarizes
all the models used in this work.

3 Methodology

The main task in this paper is to compare the behavior of
production strategies in different simulation models,
observing the discrepancies in relation to the real response
(reference case). In this context, the methodology consists
of the following steps:

–
 definition of production strategies for the representative
models;
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Fig. 2. Porosity map of one realization of UNISIM-I-M, with the location of a) producers; b) injectors.

Fig. 3. Schematic of UNISIM-I-M model generation. The highlighted blue boxes represent the models used in this work.
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–
 simulation of the production strategies in the following
models (besides the RM-c):
– R-f (reference case, to verify the real response of the
strategies);

– RM-c (isolated effect of the upscaling);
– RM-f (isolated effect of the uncertainties);
– NPV calculation for each strategy, for each aforemen-
tioned model;
analysis of the results.
–
The first step aims to optimize the production strategy
for each representative model. As this work focuses on a
field in the management phase, the initial production
strategy is not altered, as it has already been imple-
mented. Wells are placed after the historical period, in
undrained areas, to increase the economic return,
measured by NPV. We optimized all 12 RM-c and also
the model R-c, totaling 13 different strategies. The



Table 2. Summary of the models used in this work.

Model Description Quantity
of models

R-f Reference case (fine-scale grid) 1
R-c Upscaling in reference case (coarse grid) 1
RM-f Representative models in fine-scale 12
RM-c Representative models in coarse scale 12

Table 3. NTG cut-off based on the interval facies.

Facies NTG

0 1.0
1 0.8
2 0.6
3 0.0

Fig. 4. Reference case relative permeabilities.
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increment in economic return is measured by the
difference between the NPV of the optimized strategy
and the base strategy for each RM.
4 Application

4.1 Geostatistical realizations

Facies modeling was defined using a Sequential Indicator
Simulation (SIS) with vertical trend (Ravenne et al., 2002).
In the general context, applying SIS provides 3D realistic
images of the reservoir heterogeneities and is useful for
controlling fluid flow and assessing final uncertainties in
production (Seifert and Jensen, 1999).

Petrophysical modeling of porosity was defined using a
3D stochastic modeling, SGS, to perform the petrophysical
modeling of porosity; combining well logs, distribution
values for omnidirectional variograms and 3D facies model
to control and condition the porosity distribution
(Dubrule, 1998; Kelkar and Perez, 2002). This is a
kriging-based method in which unsampled locations are
visited in a random order until all are visited. Porosity was
then simulated, reproducing per-facies distribution as
derived from the blocked well data.

For our 3D models, we defined the Net-To-Gross
(NTG) cut-off based on the interval facies as illustrated in
Table 3. We also assumed a linear dependence of porosity
and log-permeability in the core description data (Avansi
and Schiozer, 2015). So, we use a linear regression to get an
equation to represent the log-permeability distribution as a
function of porosity for the entire reservoir model.

More information about the simulation model, geo-
statistical realizations and uncertainties can be seen in
Avansi and Schiozer (2015) and Schiozer et al. (2017).

4.2 Upscaling

Porosity is upscaled by simply using a volume-weighted
arithmetic averaging method and we choose to weight it by
NTG. The idea is to ensure that the hydrocarbon pore
volume remains constant when upscaling (additive prop-
erty characteristics).

Permeability is upscaled using a flow-based upscaling
technique, which produces effective permeability to replicate
the fine-scale behavior (before the upscaling) in overall flow
rate by using a single-phase pressure solver, FLOWSIM
(Deutsch, 1989).When an isotropic permeability is upscaled,
the case of this work, the effective results become anisotropic;
three effective permeabilities in all directions (i, j, and k) are
then obtained for the upscaled reservoir (SIM model).

NTG is upscaled using a volume-weighted arithmetic
averaging with no weighting properties. NTG is also an
additive property and it is directly related to maintain-
ing constant the hydrocarbon volume during the
application.
4.3 Models data

Figure 4 shows the relative permeability curve of the
reference case, and Table 4 presents PVT data.
4.4 Economic parameters

Table 5 shows the economic parameters for NPV
calculation, based on Gaspar et al. (2015).
5 Results

For each strategy, we calculated the NPV for the following
situations: (a) the strategy applied to the representative
model (NPVRM-c), (b) the strategy applied to the reference
case (NPVR-f), (c) the strategy applied to model R-c
(NPVR-c), and (d) the strategy applied to RM-f (NPVRM-f).

Figure 5 shows the NPV values obtained for each
strategy. Note the visible optimistic bias generated by the
upscaling. For each strategy, the highest NPV is obtained
for the case where only the upscaling effect is considered
(green columns). Similarly, note that the uncertainties
tend towards a pessimistic bias (red columns). The purple
columns are the results from the reference case. In Figure 6,
we observe a similar behavior for the produced cumulative
oil produced (Np).



Table 4. PVT data.

p Rs Bo Bg viso visg co

35 32 1.20 3.46E-02 2.05 0.0109 1.62E-04
42 35 1.20 2.91E-02 1.99 0.0113 1.62E-04
49 38 1.21 2.45E-02 1.91 0.0117 1.62E-04
60 43 1.23 1.99E-02 1.81 0.0123 1.62E-04
69 47 1.24 1.72E-02 1.73 0.0128 1.62E-04
81 53 1.25 1.44E-02 1.62 0.0134 1.62E-04
94 59 1.27 1.23E-02 1.52 0.0142 1.62E-04
106 64 1.28 1.08E-02 1.43 0.0148 1.62E-04
122 72 1.30 9.30E-03 1.32 0.0157 1.62E-04
134 77 1.32 8.40E-03 1.25 0.0164 1.62E-04
148 84 1.33 7.60E-03 1.17 0.0172 1.62E-04
166 92 1.35 6.70E-03 1.09 0.0182 1.62E-04
193 105 1.39 5.80E-03 1.00 0.0197 1.62E-04
213 115 1.41 5.30E-03 0.96 0.0208 1.62E-04
219 118 1.42 5.10E-03 0.94 0.0211 1.62E-04
230 122 1.43 4.90E-03 0.91 0.0217 1.62E-04
248 131 1.45 4.50E-03 0.85 0.0227 1.62E-04
283 147 1.50 4.00E-03 0.75 0.0246 1.62E-04
317 163 1.54 3.50E-03 0.65 0.0265 1.62E-04
353 180 1.58 3.20E-03 0.54 0.0285 1.62E-04
360 183 1.59 3.10E-03 0.52 0.0289 1.62E-04

Table 5. Economic parameters (Gaspar et al., 2015).

Market Values
Discount Rate (%) 9
Oil Price (USD/bbl) 50

Taxes

Special Taxes on G. Revenue (%) 9.25
Corporate Taxes (%) 34
Royalties (%) 10

Costs

Oil Production (USD/bbl) 10
Water Production (USD/bbl) 1
Water Injection (USD/bbl) 1

Investments
Horizontal Well (103 USD/m) 61.17
Additional Vertical Well (103 USD) 21.67

Fig. 5. NPV obtained for all 13 strategies, applied to RM-c (blue
columns), RM-f (red columns), R-c (green columns), and R-f
(purple columns).
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Figure 7 shows the variation in NPV (the difference for
the strategies before and after the optimization � DNPV).
Note that, although all strategies in the RM-c present
positive NPV variation, some strategies present negative
variation in the reference case. Furthermore, all strategies
presenting negative NPV variation in the reference case
also showed this characteristic in model R-c.

The best strategy (i.e. highest economic return for the
reference case) is that optimized for model R-c, which
indicates that the effect of the uncertainties, in terms of
NPV, is stronger than the effect of upscaling. In fact, we
can see in Figure 8a the strong correlation between the
NPV of the strategies applied to the reference case and the
NPV of strategies applied to model R-c. In Figure 8b, the
NPV of the reference case and the representative models
noticeably do not correlate. In Figure 8c, we also see no
correlation between the NPV of the reference case and the
NPV of RM-f models.

Figure 9 shows how the correlation changes regarding
cumulative oil production for the strategies simulated for
the reference case (NpR-f) against model R-c (NpR-c) in
Figure 9a; against the representative models (NpRM-c) in
Figure 9b; and against models RM-f (NpRM-f) in Figure 9c.
Analyzing the result graphs, we observe that the first case
presents better correlation than the second and third,
similarly to the analysis for NPV.



Fig. 6. Cumulative oil produced for all the 13 strategies, applied
to RM-c (blue columns), RM-f (red columns), R-c (green
columns), and R-f (purple columns).

Fig. 7. Variation in NPV for all the 13 strategies, applied to RM-
c (blue columns), RM-f (red columns), R-c (green columns), and
R-f (purple columns).

Fig. 8. Relationship between a) NPVR-c x NPVR-f; b) NPVRM-c x NPVR-f; and c) NPVRM-f x NPVR-f.

V.E. Botechia et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 23 (2018) 7
In addition to the cross-plot analysis, it is important to
show and compare the production curves for all cases.
Figure 10 shows the oil production over time for selected
wells with different strategies simulated in different
models. In these graphs, brown lines represent the reference
case, blue lines are RM-c, green lines are R-c, and red lines
refer to RM-f. After comparing all production curves, the
curve in model R-c is the closest to the real response.
Moreover, the representative models are clearly more
affected by uncertainty than upscaling. Note that these
wells were implemented after the optimization process and
did not go through a history-matching process.

These results show that the production forecasts, for
this case, were greatly impacted by uncertainties. Since the
response of the wells greatly depends on the petrophysical
properties of the model, they can vary considerably
between the different models representing the uncertain-
ties. Even when well history matched, the models may



(a) (b)

(c)

Fig. 9. Relationship between a) NpR-c x NpR-f; b) NpRM-c x NpR-f; and (c) NpRM-f x NpR-f.

Fig. 10. Oil rate of a well for optimized strategies for a) RM-c1; b) RM-c6; c) RM-c11; and d) RM-c12. The brown line represents the
reference case, the blue line is RM-c, the green line is R-c, and red line refers to RM-f.
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Fig. 11. Average absolute NQDS of all strategies.

Fig. 12. Relationship between a) NPVR-c x NPVR-f and b) NpRM-c x NpR-f and, considering oil viscosity of 100 cP.

Fig. 13. Oil rate of a well for optimized strategies for a) RM-c1 and b) RM-c6, considering oil viscosity of 100 cP. The brown line
represents the reference case, the blue line is RM-c, the green line is R-c, and red line refers to RM-f.
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present areas that are considerably different to the real
field, causing potential errors in production forecasts and in
model-based decisions.

The figures above are examples of qualitative analysis
of some production curves for wells applied to different
models. To better quantify the difference between
curves, a useful indicator is the Normalized Quadratic
Distance with Signal (NQDS) (Almeida et al., 2017;
Avansi et al., 2016; Maschio and Schiozer, 2016), shown
in Equation (1).
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NQDS ¼ SD

jSDj �
Xi¼1

n
ðSimi �HistiÞ2

Xi¼1

n
ðHisti � tolþ CpÞ2

; ð1Þ

where “i” corresponds to an index of time; “Sim” the value of
simulated data and “Hist” the value of historical data; “tol”
is a tolerance given by a percentage of the observed data;
“Cp” is a constant to prevent division by zero in the formula;
and “SD” is the simple deviation (Eq. 2).

SD ¼
Xn

i¼1

ðSimi � HistiÞ: ð2Þ

The closer to zero NQDS is, the closer the two curves
being compared are. NQDS equals to zero means the curves
are coincident.

We calculated the average of absolute NQDS of the
following well parameters for all strategies: oil and water
rates, cumulative oil, andwater production. The parameter
values of UNISIM-I-R were used as reference for NQDS
calculation. Figure 11 shows that the lowest average NQDS
was obtained for strategies simulated in model R-c,
demonstrating again that the results obtained in this
model are the closest to the reference case.

It is highlighted that the simulation models went
through a history-matching process, and these results
demonstrate that this does not guarantee models to be
representative of the field. This is important mainly when
defining new wells for the strategy, since the regions of the
model without wells may be poorly represented. Using
seismic data is one possible way to improve the quality of
the models for history matching (Davolio et al., 2013;
Assunção et al., 2016; Almeida et al., 2017).
6 Effects of higher oil viscosity

The oil viscosity presented in this study is similar to that of
the water, hence coupling effects are not expected to occur.
However, as mentioned in the Introduction, the strong
interaction between the heterogeneity and an unstable
character of the fluid flow displacement can affect the
upscaling. Thus, we performed the simulation runs
changing the oil viscosity to a value a hundred times
higher than the original case (∼100 cP), hence a more
unstable flow is expected, and we wish to analyze how this
impacts the upscaling.

Figure 12 shows that the strong correlation between the
indicators (NPV for Fig. 12a and Np for Fig. 12b) of the
strategies applied to the reference case and the indicators of
strategies applied to model R-c is maintained, even with oil
viscosity much higher than water viscosity.

Figure 13 shows the oil production over time for selected
wells with different strategies simulated in different
models. Similarly to the behavior shown in Figure 10,
the curve in the model R-c is the closest to the reference
case (R-f). Thus, even with very different viscosities
between oil and water, the RM were more affected by
uncertainty than upscaling, which is an indicative that
coupling effects are not the main issue in this study case.
7 Conclusion

To understand the causes of biases presented by produc-
tion forecasts of simulation models, our analysis focused on
two sources of errors: uncertainties and upscaling. We used
a reference case as the real response and a set of simulation
models to include both effects. Moreover, we used a
simulationmodel derived from the reference case to exclude
the effects of the uncertainties, as well as a set of fine-scale
models to exclude the effects of the upscaling.

The results showed that, for the studied case, the
uncertainties have a stronger impact on production and
economic indicators than the upscaling. The upscaling
generates an optimistic bias towards production and
economic indicators, but they are well correlated with
the real response. The production forecasts were greatly
impacted by uncertainties because the response of the wells
is highly dependent on the petrophysical properties of the
model, which can vary a lot between the different models
characterizing the uncertainties and were poorly repre-
sented in the representative models.
Nomenclature
Bg
 Gas formation volume factor

Bo
 Oil formation volume factor

Cp
 Constant to prevent division by zero

Histi
 Historical data in time ‘i’

Kro
 Oil relative permeability

Krw
 Water relative permeability

Np
 Cumulative oil produced

NpR-c
 Cumulative oil produced of the strategies

simulated in model R-c

NpR-f
 Cumulative oil produced of the strategies

simulated in the reference case

NpRM-c
 Cumulative oil produced of the strategies

simulated in the representative models

NpRM-f
 Cumulative oil produced of the strategies

simulated in RM-f

NPV
 Net Present Value

NPVR-c
 Net Present Value of the strategies simulated in

model R-c

NPVR-f
 Net Present Value of the strategies simulated in

the reference case

NPVRM-c
 Net Present Value of the strategies simulated in

the representative models

NPVRM-f
 Net Present Value of the strategies simulated in

RM-f

NQDS
 Normalized Quadratic Distance with Signal

p
 Pressure

R-c
 Reference case (fine-scale grid)

R-f
 Upscaling in reference case (coarse grid)

RM-c
 Representative Models in coarse scale

RM-f
 Representative Models in fine scale

Rs
 Gas solubility

SD
 Simple Deviation

Simi
 Simulation value in time ‘i’

tol
 Tolerance
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